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Chapter 1

Introduction

„Data is the new oil. It’s valuable, but if unrefined it cannot
really be used. It has to be changed into gas, plastic,
chemicals, etc. to create a valuable entity that drives profitable
activity; so must data be broken down, analyzed for it to have
value.“

Clive Humby, 2006

Almost everyone interested in business or the industry in general probably once
heard the quote above, at least the first sentence. Naturally there are people who try
to detract it, saying it is just a marketing tool or proposing the minor differences,
such as the tangibility, claiming that the same data can be collected by multiple
companies and used more than one time, instead of one barrel of oil [1].

However, the arrival of „knowledge economy“ is undeniable. Looking into the
global ranking of the top 10 biggest companies in 2008, one can find there is
PetroChina, followed by Exxon, Russian Gazprom, Royal Dutch Shell and Sinopec
(China). 10 years later, in 2018, guess how many oil companies are in this ranking?
None. The top spots are occupied by technological companies and most of them are
very deep in the data related business, for example Google, Microsoft, Amazon or
Facebook [2].

Obviously, not just large corporations collect data. Everyone does. Currently,
it is a necessity for every chain store, even the smallest ones, to have some kind of
loyalty programs and collect data based on a customer IDs, what they buy, what
they search online. This data might be used for targeted advertisements or sold
later on to some third parties.

Going back to the quote from the beginning of this chapter, we would like to
point out the main idea of Clive Humby’s claim, that the oil has to be refined to be
useful, in case of data, it has to be processed to obtain something of a value.

1



INTRODUCTION

Data collection Preprocessing Feature selection Classification

Figure 1.1: Common ML pipeline consists of data collection, extraction of numerical
features in the preprocessing step, feature selection and classification.

Currently, the best known methods for dealing with data fall under the ma-
chine learning framework, whose name suggests, that the amount of data has far
overreached the human comprehension. Some typical machine learning pipeline
(see Figure 1.1) may have the following components. At first the data has to be
collected, then the data is processed to introduce some numerical features, that rep-
resent the model of a problem. Those steps are followed by feature selection, the
process intended to pick up the most expressive features and consequently reduce
the dimensionality of the problem. The last step is the classification. Depending
on the goal and circumstances classification may be substituted with regression or
clustering.

The purpose of this thesis is to examine the wide field of one of these machine
learning steps - feature selection - with the focus on large sets of data and problems
connected with that. FS (feature selection) is an important stage in the whole
procedure of data processing. It helps to reduce the complexity of datasets rich
with features, select the most expressive features, reducing the dimensionality and
make the classification process less computationally demanding. This is of a great
importance as the supply of data is growing faster than computational resources,
therefore there is a demand for more effective and faster algorithms.

To demonstrate the power of feature selection we would like to present here
the story about the co-operation of Andrew Pole and the retailer Target from the
beginning of this millennium [3].

The marketers of this chain selling daily consumption and household items once
got a brilliant idea how to increase the enterprise’s revenue. They spotted that
future parents tend to buy goods all in one place without judging the price just to
save energy and time. All they needed was to make the customers buy diapers at
Target, because then the client will buy everything else there. They wanted to give
the discount coupons for diapers to pregnant customers with the right timing before
their baby was born (and before any competing retailer does that). The key was
to determine the date of birth of the baby. That was Andrew Pole’s time to shine.
After running data through his algorithms, from thousands of products (features), he
selected 25 items that should be tracked. Pole discovered some interesting patterns

2



such as buying a lot of unscented lotion somewhere in the fourth month of pregnancy,
later followed by cotton balls, vitamin supplements and other products. Based on
that he was able to estimate the birth date admirably precisely.

The presented research is aimed to study the effects of feature selection on clas-
sification performance. Introduction to the FS and overview of available methods is
described in Chapter 2. The practical dimension starts with the description of the
project owned by Cisco, in which these FS methods should be utilized, in Chapter
3. Chapter 4 further characterizes the methods selected to be implemented and ex-
plains why these were selected. The implementation details are covered in Chapter
5, followed by the experiments in Chapter 6. Then, in Chapter 7, there are the most
important results highlighted and also, there is a proposal for future work. In the
final part, Chapter 8, there is a conclusion of this thesis.
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Chapter 2

State of the Art

Feature selection is a process of selecting a subset of features in order to improve
a following predictor, reduce resources for storage and computation, reduce the
training time, better understand the data or lower the effects of the curse of dimen-
sionality1. The methods may even be tuned to give preferential treatment to one of
these FS benefits. [4, 5].

Occasionally, just to filter out the features that are redundant can improve the
generalization performance in the classification process, model interpretability and
the training speed [6]. It is important to note here, that feature selection should
not be mixed with methods like Principal Component Analysis (PCA) which is just
reducing the number of dimensions by applying a liner transformation to a data
space. Meanwhile, FS uses the data in their original form and does not transform
them to another space [5].

There is a straightforward way to find the best subset of features which is the
exhaustive search. Unfortunately, with increasing n (number of features), it is com-
putationally impossible to evaluate all subsets, as it is NP-hard because of the 2n

possible subsets [7]. That is a reason to adopt a heuristic approach for feature
selection2.

These heuristic algorithms are usually sorted to three classes (filters, wrappers
and embedded methods) [4, 5]. Each of them we are going to review in the following
sections. The chapter is going to be concluded with a comparison of the method
classes from the theoretical point of view.

We take for granted the precomputed matrix of features xi,j with i = 1, .., N
1 This expression was first used by Richard E. Bellman. When the dimension increases, the

data becomes very sparse. That is a problem for traditional algorithms, starting on so simple
things such as Euclidean distance. This phenomena is usually illustrated with a ratio of volumes
of a hyper-sphere and a hyper-cube, which goes to zero as the dimension goes to infinity.

2 Actually, in 1991, an algorithm called FOCUS was founded [8], which does the exhaustive
search in quasi-polynomial time.

5



STATE OF THE ART

FS - Filter

Best
feature
subset

Train set

Test set Classification Accuracy

(a) Filter FS

Best
feature
subset

Train set

Test set Classification Accuracy

FS - Wrapper
Subset
generator Clasification

Accuracy

Subset

(b) Wrapper FS

Figure 2.1: The difference between the filter FS (2.1a) and wrapper FS (2.1b) archi-
tecture is in the dependency on a learning algorithm (here mentioned as classifier).
Accuracy is used as the performance evaluation criterion in this case. Inspired by
[9].

samples in rows, j = 1, .., D features in columns and a separate vector y of class
labels, where the label c is usually an integer. This shall be the default notation for
this thesis, unless locally stated otherwise.

2.1 Filter methods

Filter FS method’s aim is to calculate a score for each feature, according to which
the features are sorted. Then one of the two scenarios happen. Either a group of
features is filtered out based on some predefined threshold, or a subset of k best
features with the highest score is selected.

Typically, these scores are computed without employing the learning algorithm,
which makes filter methods very undemanding for resources. The straightforward-
ness of filter methods is visualized in Figure 2.1a They are also statistically robust
against overfitting [4, 10].

2.1.1 Correlation criteria

The Pearson correlation coefficient is an example of the simplest criteria [4, 11]. It
is defined as follows:

R(j) = cov(xj, y)√
var(xj)var(y)

, (2.1)

where cov and var means covariance and variance respectively, xj represents the j-th
feature, y designates the response variable. We are able to approximate coefficients

6



Filter methods

(2.1) from data using the following estimator:

R̂(j) =
∑N

i=1(xi,j − x̄j)(yi − ȳ)√∑N
i=1(xi,j − x̄j)2 ∑N

i=1(yi − ȳ)2
, (2.2)

where the hat notation symbolize an estimation and the bar notation is a mean (in
this case over index i).

Usually, R̂2 is used in practical applications, because it is easy to apply quadratic
programming. When the task is formulated as a quadratic programming problem,
the optimization is straightforward because of the convex objective function. How-
ever, using R̂2 over R̂ brings a loss of information, since it is no longer distinguish-
able, if the value of R̂ was initially positive of negative [4].

2.1.2 Mutual information

Another classifier independent metric is mutual information (MI). It is based on
Shannon’s information theory [12]. MI is defined using entropy:

H(y) = −
∑

c

P(c) logP(c), (2.3)

which gives the uncertainty in the class output. In combination with conditional
entropy:

H(y|x) = −
∑

i

∑
c

p(i, c) log p(c|i), (2.4)

which expresses the uncertainty after knowing the i-th feature vector. Then, mutual
information is defined as:

I(y, x) = H(y)− H(y|x). (2.5)

MI is a measure of dependence between two variables, in this case it is the depen-
dency of the feature vector and the class labels. The higher the dependency is, the
bigger the MI is. Absolutely independent x and y will result in zero MI.

In the end, the mutual information computed for each feature is taken as the
score for a filter feature selection method.

2.1.3 Relief

This filter method was proposed by [13]. Relief benefits from randomized procedure,
which is highlighted as very important part in [14]. In each round a random sample
of data X is selected. Then, two samples from its neighborhood are found, one of the
same class, called Near-hit (NH) by the authors and one of the other class (original

7
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Relief was designed for two-class problems), called Near-miss (NM). These three
feature vectors are then used to update weights of the features as follows:

Wj = Wj − diff(xj,NH)2 + diff(xj,NM)2, (2.6)

where
diff(a, b) = (a− b)/nu, (2.7)

nu being so called normalization unit to keep diff values between 0 and 1 included,
when the feature is numerical. For categorical features:

diff(a, b) =


0, a and b are the same,

1, a and b are different.
(2.8)

Relief is efficient (polynomial time complexity, which is based just on number of
features and iterations), but that can be said about all filter methods. According
to the authors, advantages of Relief are its robustness against noise and that it is
unaffected by feature interaction [13].

Over the time, Relief was evolved by many individuals and groups3. Problems
of the original version were tackled. To mention few of many, [16] introduces a
multi-class solution, [17] proposes a Relief mutation robust to outliers.

The original Relief has more drawbacks. One of them is a need of manual selection
of the threshold to divide the selected subset of features from the rest of them.
Secondly, Relief can select redundant features. And lastly, as the authors admit, it
has problems with datasets that are sparse or not rich in samples.

2.2 Wrapper methods

Feature selection methods known as wrappers generate subsets of features and eval-
uate them using a classifier. That means, there are no scores for each individual
feature.

The main difference between filters and wrappers is, that filters does not use a
prediction algorithm in its process, meanwhile wrappers do and so they are classifier
dependent, see Figure 2.1. On one hand, the presence of classifier in feature selection
can lead to better results, on the other hand there is a high risk of over-fitting, also
computational complexity might be a problem, especially with increasing dimension
[14, 5].

Wrapper methods can be further divided to Sequential Selection Algorithms and
Heuristic Search Algorithms.

3 Today, it is even called a family of RBAs - Relief-based algorithms [15].
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2.2.1 Sequential Selection Algorithms

Here, Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS)
can be distinguished. SFS starts with an empty subset. In each iteration, one
individual feature which, together with previously selected features, has the best
score in a learning algorithm, is added. When the required size of the subset is
reached, SFS is stopped. SBS is the opposite. It starts with a full subset and the
features are eliminated from the most dispensable. This simplistic greedy approach
should not be so prone to overfit [18].

One can combine both of these methods into so called Sequential Floating For-
ward Selection (SFFS) [19]. After each iteration of SFS, there is one step of SBS
applied on the currently selected subset, to conditionally exclude one feature. Then,
according to a classifier, this feature is returned back in the set if the results are
impaired by the exclusion, otherwise the feature is removed permanently. Similarly
to SFS, SFFS is terminated when reaching the desired number of features.

The auhtors of [5] claim, that these methods produce nested subsets, meaning
that they might allow some highly correlated features to be selected. In order to
prevent this behavior, the authors of [20], suggest to conditionally exclude the feature
and replace it with the second best, and so on. ASFFS (Adaptive SFFS) allows to
add and remove adaptively computed number of features in one step of SFFS.

2.2.2 Heuristic Search Algorithm

Methods from this category usually deal with the problem of scanning the feature
space effectively, which is not necessarily sequential.

Typical example of a heuristic search algorithm is Genetic Algorithm (GA)
[21, 22], which is applied to binary vectors representing a bit mask over the fea-
ture vectors [5]. Starting from an initial generation of randomly sampled masks
(chromosomes), in each round the best parents are chosen as the basis of the next
generation, according to a performance predictor. In traditional GA there are two
operations to compute the next generation with, firstly crossover (two parents swap
parts of itself) and secondly mutation (bit - gene - is inverted; or multiple bits).

Development of GAs brought many conventional and unconventional improve-
ments, which propose some additional methods of evolution. First one of them is
elitism which lets the best individuals advance without any change. Second is a
supervised form of crossover, so the children are significantly different from their
parents. Crossover of very similar genes is prevented with a mechanism called incest
prevention. Finally, re-initialization is forced, when the population is not evolving,
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with next initial genes generated from the best individuals [23, 24].
Another frequently mentioned method is Particle Swarm Optimization (PSO)

[25], which was originally developed as a model of animal behavior in a group,
like a flock of birds. It works similarly as a genetic algorithm. PSO, compared to
GA, does not employ any operations like mutation. It just updates the generated
population based on the swarm knowledge and the individual knowledge of each
agent (alternative of a GA’s chromosome in PSO) [26, 27].

2.3 Embedded methods

The main characteristic of embedded methods is selecting features during the classi-
fication training process [28]. Embedded methods tries to balance the disadvantages
of filter and wrapper approaches [5]. They are not as simple as filter methods and
therefore not so fast, but also are nowhere near to wrappers in complexity.

Embedded methods usually optimize some objective function J . There are two
types of methods. The first one usually combines greedy search and sequential
selection to create nested subsets, because it is easy to compute J or at least to
approximate. But, instead of using classifier, simpler metrics, like those used in
filter methods are used. The second type directly optimizes an objective function by
maximizing the goodness of fit (or minimizing the empirical error) while minimizing
the number of used features [4].

2.3.1 Nested Subsets

Mutual information is good metric to use as the objective function. It is used for
example by the authors of [11]. The difference between this approach and the one
presented in 2.1.2 is that here a potential feature to add to a subset of selected ones is
compared with MI not to the class, but to the subset of already sequentially selected
features. An upgrade of this procedure which estimates the mutual information using
Parzen windows is introduced in [29].

Mutual information is good metric to use as the objective function. It is used for
example by the authors of [11], who minimize the MI between a potential feature to
add and a subset of already sequentially selected features, meanwhile the approach
presented in 2.1.2 uses the MI between the feature to add and the vector of class
labels y.

Another method which uses MI as its scoring parameter is mRMR [30]. The
relevancy of features is measured with MI between a feature and a class label. From
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this, the relevancy part, computed basically the same way as the objective function
of the method from the previous paragraph, is subtracted [5].

Before leaving mutual information in peace, it is necessary to mention that MI
is the basis of feature selection embedded in tree algorithms, for example CART
(Classification And Regression Tree) [31, 32].

In literature, one particular criterion appears often, just in slightly modified form.
This feature score is used for two class problem as follows:

wj = µj(+)− µj(−)
σj(+) + σj(−) , (2.9)

where (+) and (−) denotes the two classes, j is the j-th feature, µ stands for mean
and σ for standard deviation (σ2 is variance then), was defined by [33]. In similar
fashion, there is:

wj = |µj(+)− µj(−)|
σj(+) + σj(−) (2.10)

in [34],

wj = (µj(+)− µj(−))2

σ2
j (+) + σ2

j (−) (2.11)

in [35] and

wj =
∑C

k=1 nk(µj,k − µj)2∑C
k=1 nkσ2

j,k

(2.12)

which is called the Fisher’s score, k stands for a class here (there are C classes), nk

means number of instances of the k-th class [36].
A representative of a method which approximates the objective function is for

example Optimal Brain Damage (OBD), the pruning algorithm first used in neural
networks [37] (from here the symptomatic name). This method uses second order
Taylor expansion in the optimum of the cost function to approximate it.

2.3.2 Direct Objective Optimization

The second type of embedded methods is characteristic by direct optimization of
the objective function. This category is well represented for example by Support
Vector Machines (SVM) and similar methods. Those, which uses a linear predictor
f(x) = w · x + b are the most popular by far (and also in this thesis the linear
methods would be covered, but non-linear would be not).

The theory of linear models is summarized in [32]. The author explains that this
classification with embedded selection is an optimization problem:

min
w,b

1
N

N∑
i=1

`(w · xi + b, yi) + CΩ(w), (2.13)
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where `(f(xi), yi) is the value of loss function, in which f(x) = w · x + b, represents
the empirical error, and Ω(w) is the penalty term, punishing the amount of used
features. C is the coefficient controlling the influence of the penalty, (xi, yi) is a
training point, yi ∈ {−1, 1}.

Furthermore, [32] claims, majority of the methods that are trying to optimize
the fit and penalize overfitting at the same time, are combinations of just a few loss
functions and penalty (sparsity/density) terms. The usual empirical error terms are
the `1 loss, also called hinge loss:

`1(w · x + b, y) := max(1− y(w · x + b), 0), (2.14)

the `2 loss:
`2(w · x + b, y) := (w · x + b− y)2 (2.15)

and the logistic loss, which is used in logistic regression:

`logistic(w · x + b, y) := log(1 + e−y(w·x+b)). (2.16)

The two mentioned penalty terms are the `0 norm, which is the number of non-zero
coordinates of w, and the `1 norm:

Ω(w) =
D∑

j=1
|wj|. (2.17)

The original SVM [38] was just an algorithm maximizing the margin between
data points. Back then in 1992 there were no controllable penalty term yet4, that
was added later.

By combining the hinge loss and `1 or `0 penalty a method known as `1-SVM
and respectively FSV (Feature Selection concaVe) is obtained, both first proposed
by [39]. In reality, the `0 penalty is approximated. Optimization with true `0 norm
would not generalize well, because it would have many solutions and therefore the
regularization would be insufficient as [40] explained. Also, using the real `0 penalty
would result in an NP-Hard problem [7].

According to [28], the authors of [39] considered the `0 penalty better than the `1.
The authors of [40] agrees and present their own re-scaling iterative SVM method,
how to estimate `0 penalty.

Some research groups creates a mix of `0, `1 and `2 together, for example [41] use
`0 as a penalization function and other two to support the goodness of fit. Other
combination are examined by [28].

4 The algorithm from [38] was not even called SVM, but the basis of the SVM algorithm is
already distinguishable from here.
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There are also authors, who think that the density penalty `1-SVM provide is
good enough. [42] uses that simply without any iteration, claiming, that it will result
in zero weight for enough features and after that, the selection might continue with
backward elimination. This supports the idea of [43] who proposed similar algorithm
a year before, under the name SVM-RFE (SVM-Recursive Feature Elimination).

To finalize the enumeration of loss-penalty combinations according to [32], LASSO
method by [44] and Generalized LASSO derived of it by [45] have to be mentioned.
The first one is a consolidation of `2 loss and `1 penalty, the second one uses logistic
loss as its function to measure the empirical error.

2.4 State of the Art Conclusion

Before we start comparing the methods together, few more things have to be ex-
plained. Because of the project for which some FS methods should be implemented
(see next chapter - 3) let us limit to supervised methods of feature selection, which
keeps features in the original form (no feature extraction). Obviously, unsupervised
methods could be taken into consideration and according to [4] or [5], also cluster-
ing or methods like PCA and similar can reduce the dimension, but that is not the
aim of this thesis. Another simplification was, to present many of the methods as
two-class problems, but for majority of them, there already are multi-class solutions,
they are just not mentioned here.

At this point it should be evaluated which methods are worth considering to
implement for a big-data project. In terms of the computational complexity, filters
are clearly the winner with some embedded methods using filter-like metrics tightly
behind. Wrappers, on the other hand should have advantage in selecting the best
appropriate subset of features, but for the cost of speed, which is shown in Figure
2.2.

On average, embedded method seems to be good compromise, but also, it depends
on individual use case. If someone needs to retrain the model daily, filter selection
might be his best option. Otherwise, if a new model is needed every three months,
spending a day instead of an hour with the training process is negligible and wrappers
are the way to go.

The initial intention to decide which methods to implement based on the infor-
mation gained form literature was left aside. Even though, the obtained knowledge
is in favor of filter methods and maybe embedded ones, we decided to select multiple
methods across all types.
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Figure 2.2: Approximated feasibility of the classes of methods. Although, the ab-
solute numbers displayed are outdated, proportionally it corresponds to the reality.
Taken over from [14].

14



Chapter 3

Cisco Advanced Malware
Protection and Static Analysis

Information in this chapter are not so tightly connected to feature selection tech-
niques, but explains the context of the practical application of this thesis.

This chapter is an intermezzo between a pure research of FS algorithms and
a description of methods purposefully selected and implemented into the project
introduced in this chapter.

In the first part, there is an introduction of the product, that is directly impacted
by the results of this thesis. The second section briefly covers the pipeline of the
particular project that applies machine learning (ML) to the static classification of
executable files.

3.1 Cisco AMP

Historically, Cisco is recognized for its manufacturing of high-end network devices.
However, due to the general trend in the IT business it has also focused on expanding
of its software division. Its computer security branch has a wide portfolio of products
and the AMP (Advanced Malware Protection) package is one of them [46]. It is a
security tool that works both as an intrusion prevention system and as an intrusion
detection system.

AMP is divided into multiple parts, for example AMP for Networks, AMP for
Email Security, AMP for Web Security and AMP for Endpoints. The name of
each system speaks for itself and additional information are on the product web
page [46], but we definitely have to devote a paragraph at least to the last one
mentioned, because the feature selection methods from this thesis should help to
this particular product.
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AMP for Endpoints focuses to find and mitigate the threats that are not detected
by traditional anti-virus systems. To do this, it uses the information shared across
all of the AMP products as well as its own cloud-based engines. One of these engines
is the one we try to improve, and it is based on the Static Analysis project.

3.2 Static Analysis

Static analysis is a computer security discipline, which usually employs a malware
analyst, who tries to uncover the behavior of an executable file, without actually
running it, to decide, if a piece of software is malicious or benign. For this the
analyst may employ tools, such as parsers, string matchers, disassemblers or even
decompilers, which are able to extract a close approximation of the actual source
code that the file was compiled from.

In spite of dynamic analysis, the binary file is not executed in this type of analysis.
The analyst has to make a decision based on information available in PE (Portable
Executable) file headers. These are data structures containing links for dynamic
libraries, lists of imported and exported functions and so on [47].

The bottleneck in this procedure is, that the analyst is human. Even all analysts
from all over the Earth, perfectly organized, could not analyze all the samples.
Therefore the solution is to make a completely automated process of that, as a
supervised learning task. Analysts are still used to provide labels for training data,
but their work is significantly reduced.

There is nothing special about the pipeline of the Static Analysis project after
all, because it is almost identical to the flow of any machine learning task, similar
to the graphical interpretation in Figure 1.1.

The first step is to ingest as many data as possible. The examined object are
obviously computer programs, more precisely the stored PE headers. This project
has multiple sources. The data with labels are obtained for example the shared
AMP database, Threat Grid cloud [48] and other internal Cisco databases.

The second phase is to normalize the data, because it comes in slightly different
form from each of the sources. Also the labels has to be assigned correctly to known
samples. Outputs of this step are training and testing (validation) datasets.

The third step is what this thesis is about. There are huge amounts of samples,
the dimension of the data is also quite large. Classification results would be impaired
if all dimensions were used, so the feature selection is applied. Moreover, there is a
strict limit for number of used features set by the project documentation. This will
be extended in Chapter 6, where the data is also described more precisely.
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The last action done is the classification, which indicates, how good the feature
selection was.

That is where the research part ends. In reality, data without labels from the
endpoints, which needs to be classified are collected after the research FS and clas-
sification on the validation data. Since getting the full sample would be too bur-
densome for the endpoint, only a small percentage of features is downloaded to the
AMP engine to predict the correct label.
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Chapter 4

Selected feature selection methods

This chapter presents the FS methods implemented into Cisco AMP project.
As a way to handle a big data and fit the dataset in memory during computation,

a map reduce procedure was created to handle data in batches. Individual methods
use the map reduce slightly differently, some just loads the data in an efficient sparse
matrix form, to do one big computation at the end, the other methods stores just a
result of computation on this small chunk of data.

4.1 Current method

This method was already implemented in the Static Analysis project and it was the
only method of feature selection. One of the goals of this thesis is to search for a
better FS method. That makes an obvious reason why this baseline method should
be at the first place in this list.

No large description is needed here. This method just adds up the data together
in parallelized manner and then applies the scoring formula from the equation 2.10
on each feature to then rank them according to the score. This behavior makes the
method easily classifiable as a filter method.

Also the properties of the method corresponds to filter methods in general. The
advantage of this approach is its low computational time from which the vast ma-
jority is spent on loading the data. The disadvantage is that it does not inspect any
relationships between features. It is just a straight, proof of concept (PoC) method.

4.2 Linear SVM method

The Linear SVM method (LSVM) makes use of the embedded feature selection in
the SVM algorithm, in the same way, it was already presented in Chapter 2. A
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LSVM classifier is provided with a training data, after the algorithms is fitted to
the data, the coefficients from the primal SVM problem are taken as feature weights
and features are sorted accordingly.

Relatively simple approach is selected. Following footsteps of [42], SVM with
`2 loss and `1 penalty was used. On top of that, an iterative reweighing is done,
inspired by [40].

Advantages of Linear SVM method should be its speed and effectiveness in high
dimensions. Also, there are not many parameters to tune in SVM, just the constant
C controlling influence of the penalty term. The C is also the biggest weakness of
LSVM, because there is no deterministic procedure how to derive it. C has to be
guessed from experience or multiple values for C have to be tried.

4.3 LightGBM method

Also in this method it was taken an advantage of an embedded FS process from a
classifier. This time, it was a forest method developed in Microsoft called LightGBM
(LGBM - Light Gradient Boosting Machine). The specialty of LGBM is that its
trees are grown leaf-wise, not level-wise [49].

Similarly to the previous method, LGBM is executed on training data and during
this process. Then a vector of so called feature importance is derived from the trained
model. It is the sum of total information gains from nodes, in which the particular
feature was used to split the samples [50].

Although there are multiple forest methods available, we were prone to select this
one, because it is the method used as the classification engine in the Static Analysis
project.

The positives of this method are basically the benefits shared across all embedded
methods. It is relatively fast and so on. The only thing that could be viewed as
a negative, apart of the need to select the parameters of the learning algorithm, is
that trees in general are known to easily overfit the data [51]. But, in FS this is not
so big issue, as it could be in the classification afterwards.

4.4 DAF methods

DAF methods are based on Dependency-Aware Feature selection algorithm proposed
in [14].

The algorithm generates so called probe feature subsets, limited in size with an
upper-bound (random number from 1 up to τ , which is an optional parameter, or D,
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the number of features), which are then evaluated by a criterion function J(·) This
is repeated until a desired number of probe subsets is generated, after a predefined
time limit, or until there are such subsets generated, so that for every feature there
are at least ω (another optional parameter) subsets that do contain the feature and
at least ω that do not.

After the probe subsets with scores are prepared (let S denote the set of gener-
ated subsets, Sf and S̄f the set of probe subsets containing feature f and do not
respectively), the summarizing part starts. From the generated subsets and their
scores, for each feature there are means and variances calculated for cases where the
feature is present and when not:

µf = 1
|Sf |

∑
S∈Sf

J(S), (4.1)

µ̄f = 1
|S̄f |

∑
S∈S̄f

J(S), (4.2)

σ2
f = 1
|Sf |

∑
S∈Sf

[J(S)− µf ]2, (4.3)

σ̄2
f = 1
|S̄f |

∑
S∈S̄f

[J(S)− µ̄f ]2. (4.4)

Out of this, two dependency-aware scores are derived:

DAF0(f) = µf − µ̄f (4.5)

DAF1(f) = (µf − µ̄f )|S|
|Sf |σf + |S̄f |σ̄f

(4.6)

According to the authors of [14], DAF0 may be seen as the average benefit of
including the feature f . The normalized version, DAF1, should prevent „possibly
misleading emphasis put on features that appear important but behave unstably“.

Finally, as in every of the implemented methods, features are sorted by the DAF
score and k best are selected.

Inspired by the article, the third score is proposed, which just replaces the means
µf and µ̄f with medians mf and m̄f , as a solution to the same issue, because of
which DAF0 was normalized to DAF1, it is called DAF2:

DAF2(f) = mf − m̄f . (4.7)

As a typical representative of wrapper FS algorithms, DAF methods heavily em-
ploys the learning algorithm, which takes majority of its running time (even though,
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the generating phase and evaluating phase are embarrassingly parallelizable). An-
other disadvantage is the need to select a classifier and tune it. For the investigation
in Cisco project a small RF (Random Forest) was selected as the guts of the J(.)
function, even though [14] originally uses k-Nearest Neighbor or SVM. The good
thing is, that DAF evaluates the feature quality in context of other features. Also,
this method can exclude correlated features in process, which is positive. DAF
should be better than other context-aware FS methods, because of its speed and
robustness against over-fitting [14].

There are some old context-aware methods, that are pretty much not feasible. To
give an example, one comes from cooperative game theory and it is called Shapley
values after Lloyd Shapley, who invented it in 1953 [52]. Shapley values are very
similar to DAF, but does some reweighing with factorials and combination numbers,
which makes the method useful only as a theoretical concept.

4.5 Parez method

Along with aforementioned methods yet another filter class algorithm was imple-
mented. This one is custom made and it is based on information gain.

The data are split according to all features individually and the information gain
is computed. That means that the features, according to which the data are divided
in the most precise way, are selected.

A big plus for this method is, that is it as fast as the Current method, probably
because Parez is a filter too. Another benefit is, that Parez does not have any
demands for the data, like to have a normal distribution (which was true for the
Current method, but it was silently ignored by the authors and not cared about
later when the method was tested and worked). The first, general, disadvantage is
the same as for a few other methods here, the relationships between features are
omitted so, redundant features can go through. The second one is, that for the data
split, a threshold has to be selected. We selected our threshold as the average of a
minimal and a maximal value in a feature vector.

4.6 Meta method

The last method is basically a compilation of the other methods. Its name was
developed from the word „metaphysics“, which in the original Greek version of the
word - „metaphysika“ - meant „after physics“ [53]. In the same way, we have our
„after method“ or „meta method“.
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The method takes the ranks of features from many methods, in this case, it was
fed with results of all previous seven methods (DAF methods are counted as 3, since
all 3 types were used). Then a median of ranks is taken as the score of Meta method.
Then the top k demanded features are selected based on this median of ranks.

The advantages of this approach are, that it should be robust and it should find
an appropriate feature representation. It is very fast to do the computation of the
Meta method itself. The only disadvantage is that it takes a lot of time to go
through the other methods first. So, in cases, where the other methods would be
used anyway, as in our case, it is a good idea to use this method afterwards. On the
contrary, it makes no sense to do many FS procedures, just for the purpose of using
Meta method or any similar collage concept.
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Chapter 5

Implementation

In this chapter we would like to mention the tools used to implement our FS methods.
In many cases the choice of a particular third party library or it’s version was dictated
by already available set of tools in Static Analysis project.

5.1 Python

The Static Analysis project introduced in Chapter 3 is implemented in Python,
version 3.7. Python is an object-oriented, high-level programming language [54].
Python is de-facto a standard language, in the field of machine learning and artificial
intelligence it is the number one language according to many user rankings, see for
example [55, 56, 57].

Python is also an interpreted language, which could indicate lower performance
than other standard languages, but a big advantage of Python is that there exist
huge amounts of libraries, usually written in languages like C, which run very fast.
Python works here like an universal glue to put the libraries together, benefiting
from the very easy syntax.

Few of the libraries, that made our work much more convenient, will be mentioned
next.

5.2 Python libraries

SciPy [58] is an organization, that provides many Python libraries as open source
software. Majority of the important libraries that are used in the project were
created by them. The development of these open-source tools are mostly sponsored
by non-traditional charity organization NumFOCUS [59].

25



IMPLEMENTATION

First library is NumPy. It is the basic package for fast computing with vectors
and n-dimensional array objects in general.

The library Sparse does almost the same as NumPy, but it is dedicated to matrices
with a sparse structure. The matrices can be stored in multiple formats, by row, by
column, coordinate format and so on. The formats are quickly interchangeable and
therefore can be tailored to the specific algorithm.

Scikit-learn is a huge quality of life improvement for ML experts from all over the
World. The authors [60] made a collection of various machine learning algorithms,
from Decision Tree to, for example, SVM, which is used in one of our methods (4.2).
The whole library is based on Python, NumPy and other tools from SciPy project.

One last important library was LightGBM from Microsoft, this one was already
mentioned as the basis of one of the methods proposed in this thesis (4.3) and as
the classifier in the Static Analysis project.

5.3 AWS

Amazon Web Services (AWS) is a cloud service, that offers computing power and
storage. AWS has many products for analytic purposes, machine learning, blockchain,
internet of things, etc. [61]. We had the opportunity to use these resources thanks
to Cisco.

From the variety of AWS tools we used Amazon Simple Storage Service (S3) for
the storage purposes and AWS Batch from the category of computing resources to
do experiments with big datasets.

5.4 Docker

To use AWS Batch conveniently, Docker Containers was used [62]. Container is a
standardized unit of software which packs the code and its dependencies into one
package - image, which is executable on any operating system as long it has some
implementation of the Docker Engine installed.

Docker as a company currently occupies 83 percent of the market [63]. A year
or two ago, when it was 99 percent and when the Static Analysis project for AMP
was started, the choice of Docker as a container vendor was unambiguous.
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5.5 Testing

Although this chapter so far was more or less about giving credits to the tools that
was used in the Static Analysis project, this place is the best one for a few paragraphs
about testing. The practical part of this thesis is not a basic school programming
task, one finishes working on when it passes few test examples. This was written
with intention to contribute to a project that would help to secure millions of devices
globally. Therefore it has to be properly tested.

For the testing, we used a library called Pytest. It is a tool that allows user
to test programs with the easy Python syntax and that is well implementable to
continuous integration tools like Jenkins.

We had to create unit tests for a main FS class, and for the methods classes.
LGBM and LSVM methods were focused less, because they use already mentioned
external libraries. That is a great advantage. Firstly, open-source code is used by
many users and when there is a bug, the community realizes that very fast. Secondly,
Cisco has a strict policy about 3rd party software and devotes a specialized testing
department for this purposes.
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Chapter 6

Experiments

In this chapter, there are results of the measurements done in order to research the
qualities of the implemented FS methods.

In section 6.1 the datasets used in this research are described. There are defini-
tions of the experiments in part 6.2, followed by the results in passage 6.3.

6.1 Datasets

Apparently, we need an object to test the methods on. The title of this thesis
indicates, that some big data are to be involved in this chapter. Moreover, some
smaller datasets were selected, with purpose to confirm a general functionality of
the methods.

6.1.1 NIPS FS challenge datasets

As a workshop at the Neural Information Processing Systems (NIPS) in 2003, there
was a FS challenge organized by Isabelle Guyon and her colleagues [64]. For this
competition, a set of five datasets was provided which we are also going to use.

The set consists of five small datasets called Arcene, Dexter, Dorothea, Gisette
and Madelon. They were chosen, because together they make a complete collection
of datasets which are complementing each other in multiple characteristics, e.g.
density or attribute type, and so on. Therefore it makes a great sense to use them
all in our research as a good baseline.

In Table 6.1 there is further specification of the data, including the original
domain from which the data are taken, the type of features, which might be binary,
integer or real. In the density aspect, the datasets are distinguished as either dense
or sparse. The authors of [64] originally provided each of the dataset in three parts
(train set, validation set and test set) with intention to use the third one for the
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Name Domain Type Density #Feat #Trn #Tst %Pr
Arcene Mass spectrometry Real Dense 10000 100 100 30
Dexter Text classification Integer Sparse 20000 300 300 50

Dorothea Drug discovery Binary Sparse 100000 800 350 50
Gisette Digit recognition Integer Dense 5000 6000 1000 30
Madelon Artificial Real Dense 500 2000 600 96
Static Malware binaries Integer Sparse 400000 107 106 -

Table 6.1: Parameters of the NIPS FS challenge datasets and the Static dataset -
name, domain, type of features, density, the count of features, the number of train
samples and test samples, the percentage of probes used. For Static dataset, the
number of probes is unknown. Inspired by [64].

evaluation of the competition, so there are known labels only for the first two. Since
our task requires labels, only train set and validation set is used from these NIPS
datasets, but from now the validation data and labels would be referenced as test
data and test labels. Original test data would be omitted.

There are few more aspects about these FS Challenge datasets that makes them
such a balanced portfolio and very appropriate to use for our task. All sets of
data are provided with a specific percentage of features, by the authors of [64]
called probes which are features made up to fit into the feature distribution but
have no informational value. This probe percentage is displayed in the last column
of Table 6.1. Moreover, Dorothea makes the challenge more difficult by having
imbalanced classes. The Madelon dataset has its own specialty, that no single feature
is informative on its own and Madelon was artificially created in this way.

These datasets are now available at the Irvine Machine Learning Repository of
the University of California [65].

6.1.2 Static Analysis dataset

We also test the proposed methods with a real dataset used in Static Analysis
project. Unfortunately this data set is property if Cisco and can not be publicly
disclosed. Cisco has many of them and the datasets usually differ just in the dates,
when the samples were collected, while features stay generally the same.

For this thesis we selected a dataset containing approximately ten millions sam-
ples in training part and a test set of about one million samples. Positive and
negative class are almost in balance and the features are very sparse (about 99
percent of data are zeros).
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We use PE headers as the source of features (see Chapter 3 for details). The
individual data are integers, usually representing a binary feature with zeros and
ones or specifies a count of how many times some property appeared, for example so
called „strings“, which has a specific meaning in malware analysis theory, see [47].
These strings very much helps to boost the number of features in this dataset up to
about 400000. Usually, in one sample there are just few of them involved and many
features indicating a count of the particular „string“ stays zero, from here the great
amount of features and the sparsity of the dataset. Extra features which a human
analyst would not probably use are for example sizes of the program sections.

6.2 Experimental design

This experiment measures the performances of the individual FS methods. At first,
FS is done on the first part of data, training data. Then, using just the selected
features of the training data a LGBM classifier1 is trained. Finally, test data are
fed into the trained classifier. The accuracy of this classification on test data was
selected as the criterion for comparison. Accuracy is a standard metric used by
many authors ([9, 14, 27] are the examples) for this kind of experiments. All of the
methods are compared on each dataset. The number of involved features is used
only as a secondary metric.

The feature selection process was done for each method on each particular dataset.
It was measured, how the accuracy changes when just the top k features selected.
The k was increased with a growing step up to the point where all features were
used with one exception, which is the Static dataset.

This limitation was already mentioned in section 3.2. Due to the hardware limi-
tation only a maximum of 10000 features can be obtained from the endpoint to not
overload it and its resources. For the research purposes we went a bit further, up to
15000 features, but not the full 400000.

Even though the comparison with all features is not possible on Static dataset,
we found at least one way, how to compare quality of the FS methods. There would
be an experiment with ten thousand (the upper bound for selected features in Static
Analysis project) randomly selected features.

1 That is the one used in Static Analysis project.
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Method Accuracy #Feat
Current 0.68 2
LSVM 0.83 900
LGBM 0.68 4
DAF0 0.82 91
DAF1 0.81 9
DAF2 0.84 35
Parez 0.82 350
Meta 0.71 250

Table 6.2: The best accuracy
reached by individual methods in
Arcene dataset and number of
features used for that.

Measured acuracies - Arcene dataset
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Figure 6.1: The best accuracy reached by indi-
vidual methods in Arcene dataset.

6.3 Results

This section is going to be divided in two parts. In the first one, the general results
on each dataset will be announced. In the second, the key facts and results will be
highlighted.

6.3.1 General results

We are aware of the fact, that some of the graphs proposed in this section seems to
be unclear, but they are necessary for the general comparison of the methods. With
thorough reading, the graphs have a value. At the end of this section, there is a
summary of the best methods for each dataset.

Arcene

The aggregate graph for the smallest of the datasets is in Figure 6.7. Table 6.2
and Figure 6.1 show the best results of individual methods and number of features
needed to achieve it. The best accuracy is obtained with DAF2 method: 84 percent,
while using just 35 out of 10000 features. Also DAF1 worked well, with only 9
features used it gained 81 percent accuracy.

Also, DAF0, LSVM and Parez scored satisfyingly, but with much more used
features than the best methods. Otherwise, Current and LGBM, in spite of having
maximal accuracy with the least features, had very poor performance, which heavily
influenced the Meta method, too.
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Method Accuracy #Feat
Current 0.856̄ 25
LSVM 0.893̄ 36
LGBM 0.88 15
DAF0 0.893̄ 32
DAF1 0.88 120
DAF2 0.886̄ 40
Parez 0.83 7000
Meta 0.883̄ 10

Table 6.3: The best accuracy
reached by individual methods
in Dexter dataset and number of
features used for that.

Measured acuracies - Dexter dataset
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Figure 6.2: The best accuracy reached by indi-
vidual methods in Dexter dataset.

Dexter

In Figure 6.2 and Table 6.3, there is a summary of the measurements on Dexter
dataset. The best methods here are DAF0 and LSVM, with accuracy of 0.893̄ and
32, respectively 36 used features. Figure 6.8 captures the whole experiment.

The disappointment here is the Parez method, which just ties the accuracy that is
reached without feature selection. The good thing is, that it reduces the number of
features from 20000 to 7000, but 7000 is a huge number compared to the performance
of other methods. Otherwise, Meta method was a pleasant surprise here. With only
10 features used, its accuracy was relatively close to the highest one reached on this
dataset.

Other methods scored relatively well, with an improvement in accuracy in com-
parison to classification without FS. Current method is the worst from this group,
but we do not consider it a failure, because of the adequate number of selected
features.

Dorothea

Dorothea dataset was dominated by DAF methods. Surprisingly, all DAF types
reached the same accuracy, but with different amount of features used. DAF1 was
the best of them, meanwhile DAF0 was the worst of the three. Even though DAF0

used just 5 percent of features it is too much compared to other methods.
In this series of experiments with Dorothea dataset, no clear loser is going to be

nominated. Usage of all methods resulted into significant growth in accuracy and
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Method Accuracy #Feat
Current 0.94286 37
LSVM 0.94571 67
LGBM 0.94286 220
DAF0 0.95429 5000
DAF1 0.95429 200
DAF2 0.95429 490
Parez 0.94571 460
Meta 0.94857 430

Table 6.4: The best accuracy
reached by individual methods in
Dorothea dataset and number of
features used for that.

Measured acuracies - Dorothea dataset
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Figure 6.3: The best accuracy reached by indi-
vidual methods in Dorothea dataset.

all methods (excluding one, already mentioned exception) less than 0.5 percent of
features.

The cumulative graph for Dorothea dataset is in Figure 6.9 and maximal values
reached are in Table 6.4 and Figure 6.3. One might be afraid, that the results
were influenced by the fact, that the dataset is not balanced. However, this issue
was addressed by setting proper class weights in classification and also in feature
selection, where it was possible.

Gisette

The measurements on Gisette dataset came out in similar manner as for Dorothea
dataset. The DAF methods helped to gain the highest accuracy score of 96 percent,
but this time DAF1 left the most features for classification.

Also, all of the methods were even more close together, both in accuracy and
count of used features, than in the Dorothea experiments.

The details of the experiment with Gisette dataset can be found in Figure 6.10,
Table 6.5 and Figure 6.4 displays the maximum values.

Madelon

With Madelon dataset, things starts to get more interesting again. Madelon, as
mentioned, is an artificial dataset, with just 4 % features (20), that are useful. The
rest of the features is there just to confuse the observer.
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Method Accuracy #Feat
Current 0.957 340
LSVM 0.959 500
LGBM 0.958 130
DAF0 0.96 340
DAF1 0.96 1000
DAF2 0.96 400
Parez 0.956 280
Meta 0.959 600

Table 6.5: The best accuracy
reached by individual methods in
Gisette dataset and number of
features used for that.

Measured acuracies - Gisette dataset
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Figure 6.4: The best accuracy reached by indi-
vidual methods in Gisette dataset.

Here, the clear winner is LGBM method, which can be seen in Figure 6.5 or
Table 6.6. Also the least amount of features selected by LGBM, with just 2 extra
unnecessary features. The graph of all measurements on Madelon dataset is in
Figure 6.5.

The worse method can be also clearly marked, even though the difference from
the rest of the methods is not as significant as it was in case of the best one. It was
the Current method scoring the lowest accuracy and selecting the most features,
too. The rest of the methods was anomalous neither positively, nor negatively.

Static

For Static dataset, there is a difference, that there is no experiment with all fea-
tures done, because of memory limits. For all other datasets it could be said, that
classification after FS was better then without FS.

From Figure 6.6 and Table 6.7 it can be seen, that accuracy gained with five
out of eight methods have growing tendency after the mentioned border of 10000
features. Unluckily, the limitation is present in the Static Analysis project and has
to be considered. In Table 6.8, the accuracy gained by the methods using exactly
10000 features is displayed for additional comparison. No method got its highest
score with less than 10000 features used. The overall graph can be seen in Figure
6.12.

The method with the highest accuracy is Meta, which won using maximum
amount of features, that was measured with. Although all of the methods resulted
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Method Accuracy #Feat
Current 0.835 400
LSVM 0.8516̄ 370
LGBM 0.873̄ 22
DAF0 0.846̄ 70
DAF1 0.8516̄ 45
DAF2 0.853̄ 86
Parez 0.845 160
Meta 0.8483̄ 33

Table 6.6: The best accuracy
reached by individual methods in
Madelon dataset and number of
features used for that.

Measured acuracies - Madelon dataset
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Figure 6.5: The best accuracy reached by indi-
vidual methods in Madelon dataset.

in a very similar score in the end, much slower growth of DAF curves, cannot be
overlooked. Interestingly enough, DAF methods did not negatively affect the Meta
method. On the 10000 border it is the LSVM method, which is the best. The bonus
result is that even the worst method scores almost 3 percent higher in accuracy,
than if the features were selected by bare luck2.

General results summary

Table 6.9 recapitalizes the winning and losing methods on each dataset. DAF
methods might seem to be very superior, but in terms of accuracy, the first place
was shared with another method 3 times (only once it was shared with non-DAF
method), the one which selected less features was preferred as the winner in that
case.

In the same table, the worst methods on each dataset are mentioned. In our case,
the worst method is the one with the lowest maximum value of accuracy. Also, there
is the difference between the maxima of the best and the worst method.

2 Compared on 10000 features.
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Method Accuracy #Feat
Current 0.99045 10000
LSVM 0.99124 10000
LGBM 0.99125 12500
DAF0 0.98951 15000
DAF1 0.98964 15000
DAF2 0.98872 15000
Parez 0.99031 15000
Meta 0.99149 15000

Table 6.7: The best accuracy
reached by individual methods in
Static dataset and number of fea-
tures used for that.

Measured acuracies - Static dataset
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Figure 6.6: The best accuracy reached by indi-
vidual methods in Static dataset.

Method Accuracy
Current 0.99045
LSVM 0.99124
LGBM 0.99119
DAF0 0.98813
DAF1 0.98851
DAF2 0.98728
Parez 0.98995
Meta 0.99108

Table 6.8: The accuracy reached by individual methods in Static dataset while using
10000 features.

Dataset Arcene Dexter Dorothea Gisette Madelon Static
Best method DAF2 DAF0 DAF1 DAF0 LGBM Meta
Worst method LGBM Parez LGBM Parez Current DAF2

Difference 0.16 0.063̄ 0.0114 0.004 0.0383̄ 0.004

Table 6.9: The methods which helped to gain maximal accuracy for each dataset.
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Figure 6.7: Dependency of accuracy on increasing number of features, measured on
Arcene dataset. The best result is denoted for each curve with a circle.

38



Results

1
0

0
1
0

1
1
0

2
1
0

3
1
0

4
1
0

5

F
e

a
tu

re
 c

o
u

n
t (-)

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

Acucracy (-)

D
e
p

e
n

d
e
n

c
y
 o

f a
c
c
u

ra
c
y
 o

n
 fe

a
tu

re
 c

o
u

n
t D

e
x
te

r d
a
ta

s
e
t

C
U

R
R

L
S

V
M

L
G

B
M

D
A

F
0

D
A

F
1

D
A

F
2

P
A

R
E

Z

M
E

T
A

Figure 6.8: Dependency of accuracy on increasing number of features, measured on
Dexter dataset. The best result is denoted for each curve with a circle.
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Figure 6.9: Dependency of accuracy on increasing number of features, measured on
Dorothea dataset. The best result is denoted for each curve with a circle.
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Figure 6.10: Dependency of accuracy on increasing number of features, measured
on Gisette dataset. The best result is denoted for each curve with a circle.
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Figure 6.11: Dependency of accuracy on increasing number of features, measured
on Madelon dataset. The best result is denoted for each curve with a circle.
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Figure 6.12: Dependency of accuracy on increasing number of features, measured
on Static dataset. The best result is denoted for each curve with a circle.
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Chapter 7

Discussion

In the first part of this chapter, we are going to highlight the results that are most
important for us. The second proposes some ideas for future work.

7.1 Result’s highlights

This part will present a compilation of the best and the most interesting results and
facts from the experimental part.

It shows unexpected problems that occurred in the results and highlights, which
anticipations came true and which did not.

7.1.1 The ultimate goal

The assignment of this thesis brought an extra task, which was not mentioned, but
was the most expected. The actual goal, why Cisco assigned the task, was not to
compare the FS methods, but to beat the Current one.

The thesis could end up in two ways. Either it would propose a FS procedure,
that would beat the Current method at least on Static dataset, or there would be a
bunch of theoretical concepts and proofs showing, why Current method is the best
one for this kind of data.

On this place, we can happily announce, that the thesis evolved the first way
and we proposed feature selection methods, which beat the Current one not only on
Static dataset (see Figure 7.1), but on all trial datasets, too.

7.1.2 Usefulness of feature selection

With exception of Static dataset, where it cannot be confirmed due to insufficient
working memory, FS improves the resulting accuracy in a comparison to classifi-
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Figure 7.1: Comparison of Current and LSVM method on Static dataset. LSVM
was selected for this, because it provided the best result, when considering the 10000
upper bound for used features.

cation with all features. The importance of this fact for the thesis is, that the
developed methods generalize and no method damages the process.

7.1.3 Literature’s favorites

At the end of conclusion, the authors of [32], presents an assumption, that with an
increasing number of training samples, embedded methods will be better than filter
methods.

This seems to be correct expectation, at least based on our experiments. On
Arcene dataset, which has just 100 training data points, LGBM shares the worst
accuracy and LSVM does good in this, but for the cost of selecting incomparably
many features than winner does. With more and more samples, these embedded
methods became better and better, up to a point, that they are the best two methods
on Static dataset with ten millions samples.

7.1.4 Some information gains are more equal than others

Parez and LGBM methods are both based on information gain. Parez was imple-
mented in the most primitive approach, computing just information gain in level
one trees, meanwhile training a forest of trees and counting in all splitting nodes is
very sophisticated algorithm.

We expected that considering accuracy, Parez would be beaten in all cases by
LGBM. We were wrong. As already mentioned, on Arcene dataset LGBM was the

46



Result’s highlights

10 0 10 1 10 2 10 3 10 4

Feature count (-)

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
c
u

c
ra

c
y
 (

-)

Comparison of LGBM and Parez methods on Arcene dataset

LGBM

PAREZ

Figure 7.2: Comparison of Parez and LGBM method on Arcene dataset. With
exception of one point where the Parez’s curve has its minimum, LGBM scores
worse than Parez.

worst one. On the other hand, as can be seen from Figure 7.2, Parez is not better
than LGBM not only in maximal accuracy, but consistently across almost every
feature count measured.

This might be caused by the fact, that Parez is well suited to classify Arcene
data, or, the amount of samples is just too low, so the forest structure cannot learn
from it properly.

7.1.5 DAF disappointment

DAF methods in its performance did exactly the opposite from the embedded meth-
ods. Meanwhile LSVM and LGBM worked poorly on smaller datasets and were the
top methods on the big dataset, DAF produced good results at first but then it was
lagged behind the other methods.

The reason for that could be the limitation on probe subset count1. To defend our
choice of this parameter, we can say that a Mann-Whitney U-test was performed,
according to which even ten times less probe subsets would be enough for DAF
to work just alright. Another option is that there are just better methods better
suitable for the type of data that are in the Static dataset. Also, there might be
problem with correct labeling of samples, which could impair DAF more than other
methods.

Although there is a word „disappointment“ in the headline for this part, we
1 We selected the probe subset limit as the stopping criterion of the three options, more infor-

mation about stopping criteria available in section 4.4.
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would say, that DAF worked pretty well. We just had higher expectations and there
just were better methods, easier to tune.

Speaking of tuning the methods, we performed no exhaustive search for the pa-
rameter selection. We could call it just a „very sparse grid search“. The parameters
of the methods were selected more or less by experience. Of course the tuning
could be done in exhaustive manner, but that would be costly, time consuming and
unnecessary for this thesis.

7.2 Future work and development possibilities

In this part there are three topics, which are obvious next steps in FS part of the
Static Analysis project. Some of them were already in progress, but are too practical
or way out of the assignment, to cover them in this thesis.

7.2.1 Multi-class feature selection

Many of the methods mentioned in State of the Art chapter (2) and methods imple-
mented this thesis (chapter 4), have already prepared theoretical or even practical
solution for multi-class problems.

We decided to stick to two-class problems in this thesis, because of inability to
find such a great set of datasets testing FS quality for multi-class problems, as the
datasets from NIPS FS challenge, which are just two-class tasks. Also it made the
prototyping of the methods much easier.

This would be useful to further dig in. We could imagine adding a new label,
„suspicious“ to Static dataset. Samples marked like this could be then passed to a
malware analyst to decide between its maliciousness or legitimacy.

7.2.2 Deeper data analysis

When we will be freed from the boundaries of the assignment, we would like to make
a proper data analysis. For the thesis, it was sufficient to know, that the data are
sparse integers, and a little bit about the domain.

There is a suspicion, that a lot of binary features are uncorrelated. If this was
the case, Standard FS method, the already implemented one, would be the best
possible method.
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Future work and development possibilities

7.2.3 Method chaining

What did not happened much in this thesis was experimentation with combinations
of the methods. Actually there was one.

One of them was Meta method, which was here strictly implemented as a com-
bination of all previous methods. In section 4.6 it was said, that it is not worth
the time to run all methods, just to use Meta method after. But, with current
knowledge, we could imagine the Meta method based just on LGBM and LSVM as
a very potent combination for Static Analysis data.

We see Meta method as a conjunction of a parallel combination of other methods.
What we are still missing is a serial combination of methods, for example to first run
`1-SVM and then pass just features with non-zero weights to the next step, maybe
a wrapper like DAF, which would be benefited with already lowered dimension.

Unfortunately, even though it would be very interesting to try all of these and
other combinations, it is more of an engineering task, based on experience instead
of research, therefore it was also excluded from the thesis.

49





Chapter 8

Conclusion

The fact, that the assignment did not come form a university environment, but from
a company, that operates on the market, has its benefits and disadvantages. It needs
to be noticed, that the thesis was partially influenced by that.

Although such case might have it’s pros and cons, the bottom line is that the
positives heavily outweigh the negatives. The biggest advantage is availability of
resources, both the data, which were that large, that it would be very hard to
obtain elsewhere, and the computation resources, which the university does not
have so far1. Another perk is also personal. Since the implemented piece is used
in a real product, I see that as the first contribution of mine to the cyber security
industry, importance of which grows rapidly.

The cost for all of this is, that the thesis was censored by Cisco with intention,
not to leak the valuable pieces, like the code or the data. But to relieve the pressure
form this point, there is a guarantee, that the work was very well checked and it
was taken care of the quality.

Despite this one stain on the transparency, the assignment might be considered
fulfilled in all points. The research of FS methods was thorough. The key elements
of the field were observed from as far back as the half of the previous century.

Based on the research, favorable methods were selected. In total, seven new FS
methods were created for Static Analysis project. The size of the contribution can
be expressed by comparison of Figure 1.1 as the „before“ state and Figure 8.1 as
the „after“ state.

The methods had to undergo a series of experiments on public datasets, created
especially to test feature selection quality and then on the large data from the Static
Analysis project.

1Actually from very recent, there is a computing cluster on CTU, which would be sufficient
[66], but it came too late and there was not any chance, even theoretical to use it.
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CONCLUSION

Data collection Preprocessing Classification

Feature selection

Meta

Parez

DAF 2

DAF 1

DAF 0

LGBM

LSVM

Standard

Figure 8.1: Static Analysis project pipeline after adding the products of this thesis.

The task, to „select the best feature selection approach“ could be a bit obscure,
but basically it was meant to find a FS method, which would improve the results
of the classifier in the AMP for Endpoints tool and also in this last point, the goal
was achieved.
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Appendix A

Contents of the CD

• JS_DP.pdf - this document

• MATLAB code

– graph_creator.m - m-file for overall graph generating

– graph_creator2.m - m-file for summary graph generating

• Measured data

– arcene.txt

– dexter.txt

– dorothea.txt

– gisette.txt

– madelon.txt

– static.txt
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