
Master Thesis

Bayesian Parameter Estimation of State-Space Models
with Intractable Likelihood

Bc. Tomáš Kala
Supervisor: Ing. Kamil Dedecius, PhD.

May 2019

Department of Computer Science

Faculty of Electrical Engineering

Czech Technical University in Prague

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

434690Osobní číslo:TomášJméno:KalaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

BioinformatikaStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Bayesovské odhadování parametrů stavových modelů při nedostupné věrohodnostní funkci

Název diplomové práce anglicky:

Bayesian parameter estimation of state-space models with intractable likelihood

Pokyny pro vypracování:
Stavové modely představují velmi populární formalismus vhodný pro
popis celé řady různých náhodných procesů, od časových řad po aplikace
v teorii řízení. Pokud tyto modely neobsahují statické parametry, lze pro
jejich odhad použít např. Kalmanův filtr a jeho varianty, dále particle
filtraci aj. Pokud ovšem statické parametry obsahují, tyto filtry zpravidla
nekonvergují a nezbývá, než přikročit k optimalizačním technikám typu
maximalizace věrohodnosti či particle Markov chain Monte Carlo. Další
komplikace nastávají, pokud navíc není věrohodnostní funkce pro
pozorovanou veličinu dostupná, nebo je nepřesná či příliš komplikovaná.
Diplomová práce je specificky zaměřena poslední zmíněnou problematiku.
Specifické pokyny
1. Seznamte se s metodami pro odhadování stavových modelů pomocí
kalmanovské filtrace a sekvenční Monte Carlo filtrace. Nastudujte
problematiku statických parametrů a jejich odhadu.
2. Proveďte rešerši ohledně využití daných metod v oblasti bioinformatiky,
například v modelování buněčných procesů.
3. Seznamte se s metodami ABC - Approximate Bayesian Computation a
jejich využití ve filtraci stavových modelů.
4. Navrhněte vhodný způsob odhadování statických parametrů stavových
modelů s využitím metod ABC.
5. Experimentálně (na vhodném problému z oblasti molekulární biologie)
a případně teoreticky ověřte vlastnosti navržené metody, diskutujte její
vlastnosti a navrhněte další možné směry výzkumu.

Seznam doporučené literatury:
1] C. C. Drovandi, A. N. Pettitt, and R. A. McCutchan, “Exact and approximate Bayesian inference for low integer-valued
time series models with intractable likelihoods,” Bayesian Anal., vol. 11, no. 2, pp. 325–352, 2016.
[2] S. Martin, A. Jasra, S. S. Singh, N. Whiteley, P. Del Moral, and E. McCoy, “Approximate Bayesian Computation for
Smoothing,” Stoch. Anal. Appl., vol. 32, no. 3, pp. 397–420, 2014.
[3] T. B. Schön, A. Svensson, L. Murray, and F. Lindsten, “Probabilistic learning of nonlinear dynamical systems using
sequential Monte Carlo,” Mech. Syst. Signal Process., vol. 104, pp. 866–883, May 2018.
[4] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain Monte Carlo methods,” J. R. Stat. Soc. Ser. B (Statistical
Methodol., vol. 72, no. 3, pp. 269–342, Jun. 2010.
[5] K. Dedecius, “Adaptive kernels in approximate filtering of state-space models,” Int. J. Adapt. Control Signal Process.,
vol. 31, no. 6, pp. 938–952, Jun. 2017.

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Kamil Dedecius, Ph.D., ÚTIA AV ČR

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 24.05.2019Datum zadání diplomové práce: 04.02.2019

Platnost zadání diplomové práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Kamil Dedecius, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Abstract

State-space models (SSMs) are widely used to formalize partially-observed random pro-
cesses found e.g. in biology, econometrics and signal processing. Given a sequence of
observed variables, the interest is to infer a corresponding sequence of latent states as-
sumed to have generated the observations. This procedure is known as filtering. When
the SSM is parameterized by a static parameter in addition to the dynamic states, the
inference must target both components. The problem then becomes considerably more
complex, and the filters typically do not converge. Unless the SSM is linear and Gaus-
sian, its likelihood is intractable, and straightforward inference of the static parameter
is not possible. It has been shown that the particle filter can be used as an unbiased es-
timator of this likelihood even in non-linear models, but the method requires the SSM
observation model to be specified as a probability density function. In applications, one
is typically in possession of a means to simulate new observations, but not to evaluate
their probabilities. Attempts to fit arbitrary probability distributions to the observations
typically lead to the particle filter collapsing. Inspired by the techniques of Approximate
Bayesian Computation (ABC), this thesis derives an ABC-based filter, which is able to
estimate the likelihood even when the observation model is not probabilistic. The per-
formance of the derived algorithm is first demonstrated on a simulation study. Next, the
method is applied to a molecular biology problem describing a simplified prokaryotic
auto-regulatory network.

Keywords: State-space model, particle filter, Approximate Bayesian Computation, auto-
regulation.

Abstrakt

Stavové modely představují široce používaný formalismus pro popis částečně pozoro-
vaných náhodných procesů vyskytujících se např. v biologii, ekonometrii a zpracování
signálu. Cílem filtrace je odhadnout sekvenci skrytých stavů, o níž předpokládáme, že
vygenerovala sekvenci pozorovaných náhodných veličin. Je-li stavový model navíc para-
metrizován statickým parametrem, je nutné ho zahrnout v inferenci. Celý proces se tím
podstatně zkomplikuje, a filtrační algoritmy typicky nekonvergují. Až na případ lineár-
ního Gaussovského stavového modelu není věrohodnostní funkce dostupná, a inference
tak není snadná. Bylo ukázáno, že částicový filtr je možné použít jako nestranný odhad
věrohodnosti i v nelineárním modelu. Tento odhad ovšem předpokládá, že model pozo-
rování je dán jako hustota pravděpodobnosti. V aplikacích je typicky k dispozici simulace
pozorovaných veličin ze skrytých stavů, ale ne vyhodnocení jejich pravděpodobností. Po-
kusy o modelování pravděpodobnostního rozdělení těchto pozorování pak často vedou
ke kolapsu částicového filtru. Inspirováni technikami Approximate Bayesian Compu-
tation (ABC) odvodíme filtr schopný odhadnout věrohodnost i v případech, kdy model
pozorování není zadán jako hustota pravděpodobnosti. Vyvinutý algoritmus je nejprve
otestován v simulační studii. Následně je aplikován na problém z molekulární biologie,
ve kterém se pokusíme modelovat zjednodušený autoregulační systém v prokaryotách.

Klíčová slova: Stavový model, částicový filtr, Approximate Bayesian Computation, au-
toregulace.

Author statement for graduate thesis:

I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, date

signature

3

Acknowledgements

I would like to thank my supervisor Kamil Dedecius for being such a positive person. It
was a real pleasure to work with him and I believe I have learned a great deal. Next, I
want to thank my family for keeping me alive and well-fed. Finally, I thank my friends
Lukáš and Petr for keeping me sane.

5

Contents

1 Introduction 9

2 Background 11
2.1 Markov Chain Monte Carlo methods . 11
2.2 Parameter inference in state-space models 12
2.3 Approximate Bayesian Computation . 12
2.4 Applications to molecular biology . 13

3 Learning the parameters of a state-space model 15
3.1 State-Space Model definition . 15
3.2 Parameter inference . 16
3.3 The particle filter . 18
3.4 Using the particle filter to estimate the likelihood 21

4 Approximate Bayesian Computation 25
4.1 Motivation . 25
4.2 ABC in general . 26
4.3 ABC in SSMs . 27
4.4 Likelihood estimate through ABC . 32

5 Applications 35
5.1 Implementation notes . 35
5.2 Preliminary: the Gillespie algorithm . 35
5.3 Lotka-Volterra model . 36

5.3.1 Problem description . 36
5.3.2 Inference using the particle filter . 38
5.3.3 Inference using ABC . 41
5.3.4 Experiment conclusion . 46

5.4 Prokaryotic auto-regulation model . 46
5.4.1 Problem description . 46
5.4.2 Inference using the particle filter . 48
5.4.3 Inference using ABC . 51
5.4.4 Experiment conclusion . 55

6 Conclusion and future work 57

Bibliography 59

A Attached files 63

7

Chapter 1

Introduction

Probabilistic and statistical modelling arises in a wide variety of situations. Often, the
measurements one uses to perform inference have been corrupted by an unknown error.
In addition, one may not have access to a correct model for the particular situation — the
“true” model is either unknown, or even impossible to formulate.

In the former case, one naturally assumes a random error associated with the obser-
vations, and attempts to infer an unknown parameter from the data while accounting for
this randomness. The inference may take the form of a point estimate, confidence region,
hypothesis test, etc.

In the latter case, one has no choice but to work with a given, although possibly sim-
plified model, either because of insufficient domain knowledge, or for computational
reasons. Some degree of uncertainty about the parameters of such a model is then intro-
duced. It is often beneficial to think of these parameters as random variables themselves,
in accordance with the Bayesian methodology (Robert, 2007). Such formulation allows
to quantify one’s prior beliefs about the parameter values, and then to update them upon
receiving new observations.

In this thesis, we work with state-space models (SSMs) consisting of a sequence of
observed random variables yt indexed by discrete time t = 1, . . . ,T , which are assumed to
be generated by a latent random process xt. The distribution of xt and yt is assumed to be
parameterized by a static parameter θ. Our goal is to perform posterior inference about
this parameter, given the observed sequence {yt}Tt=1. Furthermore, we assume that the
likelihood function of the SSM is intractable and must be estimated. This assumption
is well-grounded, as the likelihood is only available in severely restricted cases to be
discussed in Chapter 3, together with a formal definition of the SSM.

The contribution is twofold. First, we show how to apply the Approximate Bayesian
Computation (ABC) methodology (Rubin et al., 1984; Pritchard et al., 1999) to obtain an
estimate of the likelihood even under a misspecified model for the observed variables yt.
Second, we use our results to model the genetic auto-regulation process in prokaryotes.
In such a problem, the observation model is typically misspecified, as all attempts to
describe such a complex system are necessarily simplified. The quote by the famous
statistician George E. P. Box, “all models are wrong, but some are useful” (Box, 1979), comes
to mind here.

The rest of the thesis is organized as follows. In Chapter 2, we review some of the
related work. Literature on Markov Chain Monte Carlo (MCMC) methods is discussed,
as well as their use in estimating the parameters of an SSM. We list several results dealing
with inference in SSMs with intractable likelihoods, as these are relevant to this thesis.
Literature on ABC methods is reviewed as well, along with papers describing how these
could be applied to SSMs. Finally, we discuss the application of SSMs to bioinformatics,
focusing on molecular biology.

9

CHAPTER 1. INTRODUCTION

In Chapter 3, we properly define the assumed form of a state-space model. We show
how one would implement a sampler to approximately infer the static parameters given a
sequence of observations. We also show that in this basic form, such sampler is unusable,
since it relies on the evaluation of the likelihood function, which is intractable (up to
certain special cases). We then describe how this likelihood can be estimated using the
particle filter (Doucet et al., 2001) without affecting the asymptotic properties of the
sampler.

Chapter 4 provides a description of the ABC framework, and how it can be applied
to estimate the likelihood even under a misspecified observation model. We discuss the
pros and cons of such approach compared to the particle filter described in Chapter 3.

Chapter 5 provides numerical studies, where we apply the model developed in Chap-
ter 4 to several examples and compare it with the model utilizing the particle filter. This
chapter also includes the prokaryotic auto-regulation study discussed above.

Finally, Chapter 6 concludes the thesis and discusses some possible directions to be
investigated in the future.

10

Chapter 2

Background

Markov Chain Monte Carlo methods have been widely used for approximate inference in
general probabilistic models. We first address some classical works devoted to these tech-
niques, as well as their use in state-space models. We then move on to literature describ-
ing the inference in SSMs, starting with filtering and continuing to likelihood estimation.
Afterwards, works related to the Approximate Bayesian Computation methodology are
surveyed. The chapter is concluded by a section describing the use of the state-space
models in bioinformatics, with a focus on problems arising in molecular biology and
genetics.

2.1 Markov Chain Monte Carlo methods

Monte Carlo methods (Robert and Casella, 2005) form a large class of algorithms relying
on random sampling to produce numerical results, allowing to approximately solve a
vast amount of otherwise intractable problems. In statistical modelling, the expectation
of some transformation of a random variable is typically of interest. This is approxi-
mated by the empirical mean of a transformed random sample generated according to
this distribution. Often, the probability distribution of interest is too complex to sample
exactly. Assuming that the probability density function of this distribution can be eval-
uated (at least up to a normalizing constant), Monte Carlo methods are able to output
a random sample approximately distributed according to the true distribution. Markov
Chain Monte Carlo (MCMC) methods (Brooks et al., 2011) employ a Markov chain de-
signed so that its limiting distribution is the target. At least asymptotically, the samples
are indeed distributed according to the desired distribution.

An attractive property of MCMC, as opposed to plain Monte Carlo, is that the tran-
sition distribution of such chain need not resemble the target distribution even closely,
and that the problem is relatively unaffected by the dimensionality (MacKay, 2002). The
downside is the difficulty to determine convergence — for how long a chain should be
simulated in order to sufficiently reach the limiting distribution. In addition, one typ-
ically requires independent samples from the target distribution, which, however, the
Markov chain samples are not. The Markov chain samples are usually “thinned out” by
keeping every nth one to ensure their approximate independence.

Perhaps the best known MCMC algorithm is the Metropolis algorithm (Metropolis
et al., 1953), later improved by Hastings (1970). In this algorithm, random samples are
iteratively generated from the Markov chain transition distribution. Each sample is then
compared with the previous one and accepted with a certain probability ensuring that
the limiting distribution is indeed the target. The go-to references for (Markov Chain)
Monte Carlo methods are Robert and Casella (2005) and Brooks et al. (2011). An appeal-
ing treatment of MCMC methods with applications in physics and machine learning can

11

CHAPTER 2. BACKGROUND

be found in MacKay (2002).
Many MCMC algorithms have been proposed to solve a wide variety of problems. For

our task, the Metropolis-Hastings algorithm is sufficient, since the main problem is in the
likelihood estimation and not in designing the best sampler possible.

2.2 Parameter inference in state-space models

We assume that the state-space model (SSM) takes the form informally stated in Chap-
ter 1, fully specified in the next chapter. If all the parameters of interest change in time,
that is, the inference is about the latent process xt given the observed sample y1, . . . ,yT ,
one arrives at the task of state filtering.

If the transition distribution from state xt to state xt+1 is linear in the states and
corrupted by uncorrelated additive noise centered at 0, this task can be solved exactly by
the Kalman filter (Kalman, 1960). The resulting filter is then optimal with respect to the
mean squared error. A particularly nice overview of the Kalman filter connecting it with
other linear statistical models is Roweis and Ghahramani (1999).

Once the state transition becomes non-linear, as is typically the case, one can use
various generalizations of the Kalman filter, such as the extended Kalman filter (EKF),
which locally linearizes the transition distribution and then applies the Kalman filter
to it, or the unscented Kalman filter (Julier and Uhlmann, 1997). These methods come
without any optimality guarantees, though. The EKF additionally works best under a
very mild non-linearity, due to its first-order approximation.

In recent years, the particle filter (Doucet et al., 2001) has become a popular alterna-
tive due to its simple implementation, appealing asymptotic properties and the fact that
it allows for the transition model to be arbitrarily non-linear. Since the particle filter is
used later in Chapter 3, we postpone a more detailed description there.

If, on the other hand, some of the unknown parameters are static, the task becomes
more complex. Blindly applying an MCMC algorithm or any other approximation is not
possible, as the likelihood function, on which such algorithms typically depend, cannot
be evaluated. The paper Andrieu et al. (2010) introduced the idea of using the particle
filter to obtain an estimate of the likelihood, which has been shown by Del Moral (2004)
to preserve the limiting distribution of the underlying Markov chain. The resulting al-
gorithm is called Marginal Metropolis-Hastings. A more recent overview can be found in
the tutorial by Schön et al. (2017).

2.3 Approximate Bayesian Computation

In its original formulation, the method of Approximate Bayesian Computation (ABC)
provides a way to approximate the posterior distribution p(θ | y) ∝ f (y | θ)p(θ), assuming
that the prior p(·) is fully known, and that the likelihood f (· | θ) can be sampled from,
but not evaluated (Rubin et al., 1984; Pritchard et al., 1999). A more recent treatment of
ABC methods can be found in Marin et al. (2012) or Lintusaari et al. (2017).

Principally, ABC works by simulating a sample θ̃ from the prior, substituting it to
the observation-generating model, and simulating pseudo-observations ỹ. The generat-
ing model can be either the true likelihood, or some deterministic process – a differential
equation, a chemical reaction, etc. The pseudo-observations are then compared to the
real observations y, and if they are “similar enough”, the sample θ̃ is accepted. Oth-
erwise, it is rejected. The posterior distribution of θ is given in terms of the accepted
samples θ̃. The above described variant is referred to as the accept-reject ABC, for obvi-
ous reasons.

12

CHAPTER 2. BACKGROUND

In this thesis, we apply the ABC method in place of the particle filter to allow for
inference about the static parameter θ when the observation likelihood is not available.
In addition, the use of ABC allows for a possibly misspecified observation model of the
SSM, which is often the case, as one may not possess the necessary domain knowledge or
computational power needed for the real model. Such a situation has been considered by
Jasra (2015), although only through the use of the accept-reject variant given above.

Since accepting a sufficient number of samples may take a long time, an idea is to
measure the distance between the true and pseudo-observations through a kernel func-
tion. This formulation would not reject any samples — instead, previously rejected sam-
ples would get assigned low weights. This has been investigated by Dedecius (2017),
along with a proposed way to automatically tune the kernel width. How to exactly apply
the ABC method to our problem is addressed in Chapter 4 in detail.

2.4 Applications to molecular biology

Finally, we review works describing how the framework of SSMs and their parameter
inference can be applied in the context of bioinformatics, more concretely, to problems
of molecular biology and genetics.

The go-to reference for stochastic modelling in biology is Wilkinson (2011). It con-
tains a broad overview of applications of various probabilistic models to examples from
molecular biology and chemistry. Included is a description of the Gillespie algorithm
Gillespie (1976, 1977) used to simulate chemical reactions, which we use in Chapter 5.

A recent application of SSMs to molecular biology can be found in Golightly and
Wilkinson (2011), where the authors use the particle filter to approximate the unknown
likelihoods of various biological models. We implement these examples in Chapter 5 and
compare them with the ABC approximation.

The paper d’Alché Buc et al. (2007) models biological networks, such as gene regu-
latory networks or signalling pathways, by SSMs, and estimates their parameters. The
static parameters of the model are viewed as dynamic states which, however, do not
change in time. The unscented Kalman filter is then applied to estimate these “dynamic”
parameters. Such approach is simple, as it does not require the use of MCMC algorithms,
but comes without the appealing asymptotic properties of MCMC inference.

Wang et al. (2009), Sun et al. (2008) and Zeng et al. (2011) proceed in a similar fashion
when estimating the parameters of various biochemical networks. The used models are
only mildly non-linear, and so the extended Kalman filter is sufficient, again without any
asymptotic guarantees of identifying the true parameters.

An interesting approach to learning the structure of a gene regulatory network from
a gene expression time series can be found in Noor et al. (2012). First, the particle fil-
ter is applied to learn the hidden states of the network. Once these hidden states are
known, the LASSO regression is applied to learn a sparse representation of the regula-
tory network, since each gene is assumed to interact only with a small number of other
genes.

13

Chapter 3

Learning the parameters of a
state-space model

This chapter describes the state-space model (SSM) formulation we are working with. In
Section 3.1, we formally define the SSM and state our assumptions about the individual
probability distributions.

In Section 3.2, we calculate the posterior distribution of the parameters of interest,
and show that straightforward inference is not possible. Further on, we derive a sampler
to approximate this distribution. This sampler is unusable, as it requires the evaluation
of the intractable likelihood. Nevertheless, it is illustrative to compare it with the variant
derived later.

To circumvent the likelihood evaluation, we introduce the particle filter in Section 3.3.
This section gives the definition and some of the properties of the filter.

Finally, in Section 3.4 we show how to use the particle filter to estimate the likelihood,
and argue that it does not affect the asymptotic properties of the sampler.

Most of this chapter is based on Andrieu et al. (2010) and Schön et al. (2017).

3.1 State-Space Model definition

The state-space model, often also called the hidden Markov model (HMM) assumes a
sequence of latent states {xt}∞t=0 ⊆ Rdx following a Markov chain, and a sequence of ob-
served variables {yt}∞t=1 ⊆ Rdy . All involved distributions are parameterized by an un-
known static parameter θ ∈Θ ⊂ Rd .

For a fixed time T ≥ 1, we use the shorthands x0:T = {xt}Tt=0 and y1:T = {yt}Tt=1 through-
out the thesis.

The HMM formulation means that the joint distribution of x0:T and y1:T factorizes,
for any T ≥ 1, into

p(x0:T ,y1:T | θ) = p(x0 | θ)
T∏
t=1

ft(xt | xt−1,θ)gt(yt | xt ,θ), (3.1)

where p(x0 | θ) is the prior distribution over the initial state, ft(xt | xt−1,θ) is the transition
distribution at time t and gt(yt | xt ,θ) is the observation model at time t.

The factorization (3.1) can be written more clearly as

x0 | θ ∼ p(x0 | θ),

xt | xt−1,θ ∼ ft(xt | xt−1,θ), t = 1, . . . ,T ,

yt | xt ,θ ∼ gt(yt | xt ,θ), t = 1, . . . ,T .

15

CHAPTER 3. LEARNING THE PARAMETERS OF A STATE-SPACE MODEL

Finally, in accordance with the Bayesian approach (Robert, 2007), we introduce a
prior distribution π over the unknown parameter θ quantifying our knowledge about θ
before having observed any data. This allows us to state the full joint distribution

p(x0:T ,y1:T ,θ) = p(x0:T ,y1:T | θ)π(θ). (3.2)

The corresponding graphical model is depicted in Figure 3.1.

x0 x1 x2 . . . xT

θ

y1 y2 . . . yT

f1 f2 f3 fT

g1 g2 gT

Figure 3.1: Graphical model describing the full joint distribution (3.2). The shaded nodes
denote the observed variables, white nodes represent the latent variables.

3.2 Parameter inference

Given an observed sequence y1:T , Bayesian inference relies on the joint posterior density

p(θ,x0:T | y1:T) = p(x0:T | θ,y1:T)︸ ︷︷ ︸
State inference

p(θ | y1:T)︸ ︷︷ ︸
Parameter inference

. (3.3)

Our primary goal is to infer the static parameter θ. From (3.3), it is clear that for state
inference, one needs knowledge about θ, so even if the latent states x0:T are of interest,
knowledge about θ is necessary.

Bayesian inference To perform Bayesian inference of θ, we express the posterior of θ
by applying the Bayes theorem:

p(θ | y1:T) =
p(y1:T | θ)π(θ)∫
p(y1:T | θ)π(θ) dθ

. (3.4)

Evaluating the likelihood p(y1:T | θ) requires marginalising over x0:T :

p(y1:T | θ) =
∫
p(x0:T ,y1:T | θ) dx0:T , (3.5)

where p(x0:T ,y1:T | θ) is given in (3.1). Unless the SSM is linear and Gaussian, such
dx(T + 1)-dimensional integral is intractable (Andrieu et al., 2010).

Inference under tractable likelihood assumption Let us first proceed as if the like-
lihood was tractable. We derive a sampler for θ and note which component cannot be
evaluated because of dependence on the intractable likelihood (3.5). Section 3.4 then
describes the necessary modifications to allow circumventing the likelihood evaluation.

16

CHAPTER 3. LEARNING THE PARAMETERS OF A STATE-SPACE MODEL

Often, the interest is not directly in the posterior p(θ | y1:T) itself, but in the expecta-
tion of some function φ w.r.t. this distribution, i.e., in

Ep(·|y1:T)[φ(θ)] =
∫
φ(θ)p(θ | y1:T) dθ. (3.6)

We construct a Metropolis-Hastings sampler (Metropolis et al., 1953; Hastings, 1970)
with target distribution p(θ | y1:T). This gives us M samples approximately distributed
according to this target, denoted θ(m), m = 1, . . . ,M. The expectation (3.6) is then approx-
imated by the arithmetic mean

1
M

M∑
m=1

φ(θ(m)).

An appealing property of the Metropolis-Hastings algorithm is that such arithmetic mean
almost surely converges to (3.6) as the number of samples grows (Robert and Casella,
2005), i.e.,

1
M

M∑
m=1

φ(θ(m))
a.s−−−−−−→

M→∞

∫
φ(θ)p(θ | y1:T) dθ.

Finally, we note that if one is interested in the distribution p(θ | y1:T) itself, it can be
recovered by the empirical distribution

p̂(θ | y1:T) =
1
M

M∑
m=1

δθ(m)(θ),

where δ denotes the Dirac distribution. This estimate can be additionally smoothed using
kernel methods (Wand and Jones, 1994).

Metropolis-Hastings algorithm The Metropolis-Hastings algorithm is described in Al-
gorithm 1. Although well-known, it is included for comparison with the variant utilizing
the particle filter introduced in Algorithm 5.

The algorithm constructs a Markov chain on the variable θ, whose transition distri-
bution q is called the proposal distribution in this context. Starting from an initial state
θ0, candidate states θ′ are iteratively sampled according to q(· | θ), where θ is the current
state of the chain.

In the next step, the acceptance probability α is calculated in (3.7). This probability
considers which of the two states θ and θ′ is more probable under the target distribu-
tion p(· | y1:T) ∝ p(y1:T | θ)π(θ). Additionally, it allows the chain to “step back” and not
move to the new state θ′ by comparing the probability of the two states under q, but in
reverse direction. With probability α, the Markov chain then evolves into θ′; otherwise,
it remains in the current state.

It can be shown (Robert and Casella, 2005) that the distribution p(θ | y1:T) is the
limiting distribution of such Markov chain. This means that with the number of transi-
tions going to infinity, the sampled θ are distributed according to our target distribution
p(θ | y1:T). To approximately reach this limiting distribution, a number of initial samples
(called the burn-in period) is often discarded. In addition, one usually wants indepen-
dent samples from the target distribution, which the samples from a Markov chain are
not. In practice, only samples with a given spacing are kept to ensure their approximate
independence; this is called thinning.

Similarly to the prior π, setting the proposal q is problem-dependent, and both distri-
butions must be selected carefully. Diagnosing converge of the sampler is a notably dif-
ficult task, and one usually resorts to graphical tools to determine whether the sampled
values have stabilized (Brooks et al., 2011). Some of such plots are given in Chapter 5.

17

CHAPTER 3. LEARNING THE PARAMETERS OF A STATE-SPACE MODEL

Algorithm 1 Metropolis-Hastings

Input: Number of samples M, {y1, . . . ,yT } .
1: Initialize θ(0).
2: for m = 1 to M do
3: Sample θ′ ∼ q(· | θ(m−1)).
4: Calculate the aceptance probability

α = min
{

1,
p(y1:T | θ′)π(θ′)

p(y1:T | θ(m−1))π(θ(m−1))

q(θ(m−1) | θ′)
q(θ′ | θ(m−1))

}
. (3.7)

5: Sample u ∼ U (0,1).
6: if u ≤ α then
7: θ(m)← θ′ . With probability α, accept the proposed sample.
8: else
9: θ(m)← θ(m−1) . With probability 1−α, reject the proposed sample.

10: end if
11: end for
Output:

{
θ(1), . . . ,θ(M)

}
We see from Algorithm 1 that the acceptance probability (3.7) cannot be calculated,

as it depends on the intractable likelihood p(y1:T | θ). In Section 3.4, we give a modi-
fied variant of the Metropolis-Hastings algorithm, where the likelihood is approximated
using the particle filter. The derivation of this filter is the content of the next section.

3.3 The particle filter

The particle filter (Doucet et al., 2001) is a method for approximating the filtering dis-
tribution p(xt | y1:t ,θ) using a finite number of samples called particles. The algorithm
is also known as sequential Monte Carlo or sequential importance sampling. The latter
name sheds some light on how the method works, and it is exactly through importance
sampling that the particle filter is derived.

Importance sampling Here we briefly review the basic idea behind importance sam-
pling. For a more thorough treatment, the reader is referred to MacKay (2002) or Robert
and Casella (2005).

Consider a situation where the expectation of some function φ w.r.t. the distribution
with density p(x),

Φ B Ep[φ(X)] =
∫
φ(x)p(x) dx, (3.8)

is of interest. Assume that the integral is analytically intractable and that one cannot
generate samples from p(x) to approximate this expectation. Assume further that the
density p(x) can be evaluated, at least up to a multiplicative constant, i.e., that it takes
the form

p(x) =
p∗(x)
Z

,

where Z is an unknown normalizing constant, and p∗(x) can be evaluated. Such situation
frequently arises in Bayesian statistics, where a posterior distribution of interest

p(θ | x) =
p(x | θ)p(θ)∫
p(x | θ)p(θ) dθ

18

CHAPTER 3. LEARNING THE PARAMETERS OF A STATE-SPACE MODEL

is given in terms of the Bayes theorem. The normalizing constant in the denominator is
often unavailable in analytic form. However, the numerator can be evaluated.

Next, we introduce a (typically simpler) distribution with density q(x) = q∗(x)
ZQ

s.t.

1. One can sample from q;

2. One can evaluate q∗;

3. p(x) > 0 implies q(x) > 0.

The expectation (3.8) can then be written as

Φ =
∫
φ(x)

q(x)
q(x)

p(x) dx =
∫
φ(x)

p(x)
q(x)︸︷︷︸
w∗(x)

q(x) dx = Eq[φ(X)w∗(X)],

where w∗(x) are called the importance weights. By defining w(x) = p∗(x)
q∗(x) , Φ can be ap-

proximated by

Φ ≈ Φ̂ B

∑N
i=1φ(x(i))w(x(i))∑N

i=1w(x(i))
, x(1), . . . ,x(N) iid∼ q(x).

We note that by using w instead of w∗ and normalizing by the weights sum instead of
the sample size N , we bypass the evaluation of Z and ZQ, since they cancel out. The
importance weights here account for correcting the discrepancy between the distribution
q(x) and the true distribution p(x).

The estimator Φ̂ converges to the true expectation Φ as N → ∞. However, it is not
necessarily unbiased (MacKay, 2002).

Sequential importance sampling (SIS) The SIS algorithm uses a set of weighted par-

ticles
{(
x

(i)
t ,w

(i)
t

)
: i = 1, . . . ,N

}
to represent the filtering distribution p(xt | y1:t ,θ). To sim-

plify notation, we write w(i)
t instead of wt(x(i)) from now on. The empirical approxima-

tion to p(xt | y1:t ,θ) is then

p̂(xt | y1:t ,θ) =

∑N
i=1w

(i)
t δx(i)

t
(xt)∑N

i=1w
(i)
t

.

As the name suggests, the algorithm involves a sequential application of the impor-
tance sampling procedure with increasing time t.

Returning to the SSM (3.1), we consider the posterior distribution of a sequence of
states x0:t given a sequence of observations y1:t. By application of the Bayes theorem, we
obtain the following recursive formula:

p(x0:t | y1:t) ∝ p(yt | x0:t ,y1:t−1)p(x0:t | y1:t−1)

= gt(yt | xt)p(xt | x0:t−1,y1:t−1)p(x0:t−1 | y1:t−1)

= gt(yt | xt)ft(xt | xt−1)p(x0:t−1 | y1:t−1),

where the equalities follow from the hidden Markov model independence assumptions.
For clarity, we suppress the static parameter θ from the conditioning.

19

CHAPTER 3. LEARNING THE PARAMETERS OF A STATE-SPACE MODEL

For the target p(x0:t | y1:t), we introduce an importance sampling distribution q(x0:t | y1:t)

and sample x(i)
0:t from it. The importance weights are (up to normalization) given by

w
(i)
t ∝

p(x0:t(i) | y1:t)

q(x(i)
0:t | y1:t)

∝
gt(yt | x

(i)
t)ft(x

(i)
t | x

(i)
t−1)p(x(i)

0:t−1 | y1:t−1)

q(x(i)
0:t | y1:t)

.

(3.9)

By definition of the conditional probability and the hidden Markov model assumptions,
we can write the importance sampling distribution as

q(x0:t | y1:t) = q(xt | x0:t−1,y1:t)q(x0:t−1 | y1:t−1).

By substituting into (3.9), we obtain the following recursion:

w
(i)
t ∝

gt(yt | x
(i)
t)ft(x

(i)
t | x

(i)
t−1)

q(x(i)
t | x

(i)
0:t−1,y1:t)

p(x(i)
0:t−1 | y1:t−1)

q(x(i)
0:t−1 | y1:t−1)

∝
gt(yt | x

(i)
t)ft(x

(i)
t | x

(i)
t−1)

q(x(i)
t | x

(i)
0:t−1,y1:t)

w
(i)
t−1.

(3.10)

Evidently, updating the ith weight when transitioning from time t − 1 to t is a relatively
simple task involving only multiplication by the first fraction in (3.10).

The sequential importance sampling algorithm is summarized in Algorithm 2. This
is almost the particle filter; there are still two issues to be addressed, though. First, the
problem of weight degeneracy discussed in the next paragraph. Second, the choice of the
importance sampling distribution q(x) addressed later.

Algorithm 2 Sequential Importance Sampling

Input: Number of particles N, current parameter value θ, {y1, . . . ,yT } .
1: Sample x(i)

0 ∼ p(· | θ), i = 1, . . . ,N . . Initialize N particles.

2: w
(i)
0 ←

1
N , i = 1, . . . ,N . . Initialize uniform weights.

3: for t = 1 to T do
4: Sample x(i)

t ∼ q(· | x(i)
0:t−1,y1:t ,θ), i = 1, . . . ,N . . Sample N new particles.

5: Set w(i)
t ∝

gt(yt |x
(i)
t ,θ)ft(x

(i)
t |x

(i)
t−1,θ)

q(x(i)
t |x

(i)
0:t−1,y1:t ,θ)

w
(i)
t−1, i = 1, . . . ,N . . Update the weights as per

(3.10).
6: end for

Resampling A serious problem preventing the use of the SIS algorithm is that the
weights degenerate over time. At each time step, the variance of the weights reduces
(Doucet et al., 2001). This means that the (normalized) weights always converge to a
situation where a single weight is 1 and the others are 0.

To alleviate this, the following resampling step is introduced.
The normalized importance weights are interpreted as a probability vector of a cat-

egorical distribution. The particles are then resampled (sampled with replacement) ac-
cording to this distribution. This effectively selects a population of “strong individuals”
for the next time step.

Algorithm 3 is known as multinomial resampling. There are other, more sophisti-
cated, approaches, such as stratified resampling (Douc and Cappe, 2005), which come at
the cost of increased complexity.

20

CHAPTER 3. LEARNING THE PARAMETERS OF A STATE-SPACE MODEL

Algorithm 3 Multinomial resampling

Input: Importance weights w(1)
t , . . . ,w

(N)
t , particles x(1)

t , . . . ,x
(N)
t .

1: w̃
(i)
t ←

w
(i)
t∑N

j=1w
(j)
t

, i = 1, . . . ,N . . Normalize weights.

2: Sample ai s.t. P(ai = j) = w̃(j)
t , i, j = 1, . . . ,N . . Sample indices with replacement.

3: w
(ai)
t ← 1

N , i = 1, . . . ,N . . Reset weights.

Output: Resampled particles x(a1)
t , . . . ,x

(aN)
t and weights w(a1)

t , . . . ,w
(aN)
t .

The particle filter The remaining step is the choice of the importance sampling distri-
bution q(xt | x0:t−1,y1:t ,θ). Obviously, the more similar this distribution is to the target
p(x0:t | y1:t ,θ), the closer approximation we obtain.

The particle filter arises when the transition distribution ft(xt | xt−1,θ) is chosen as
the importance distribution, that is, when

q(xt | x0:t−1,y1:t ,θ) = ft(xt | xt−1,θ).

The importance weights (3.10) then simplify into

w
(i)
t ∝ gt(yt | x

(i)
t)w(i)

t−1. (3.11)

The particle filter is summarized in Algorithm 4. The algorithm is called bootstrap par-
ticle filter, due to resemblance of the resampling step to the non-parametric bootstrap
(Efron, 1979). By being defined in terms of importance sampling, the algorithm inherits
the appealing asymptotic properties.

Algorithm 4 Bootstrap particle filter

Input: Number of particles N, current parameter value θ, {y1, . . . ,yT } .
1: Sample x(i)

0 ∼ p(· | θ), i = 1, . . . ,N . . Initialize N particles.

2: w
(i)
0 ←

1
N , i = 1, . . . ,N . . Initialize uniform weights.

3: for t = 1 to T do
4: Sample x(i)

t ∼ ft(xt | x
(i)
t−1,θ), i = 1, . . . ,N . . Sample N new particles.

5: Set w(i)
t ∝ gt(yt | x

(i)
t ,θ)w(i)

t−1, i = 1, . . . ,N . . Update the weights as per (3.11).

6: Resample x(i)
t and reset w(i)

t using Algorithm 3, i = 1, . . . ,N .
7: end for

3.4 Using the particle filter to estimate the likelihood

As mentioned in Section 3.3, the particle filter is typically used to approximate the filter-
ing distribution p(xt | y1:t ,θ). This will be utilized to provide a tractable approximation to
the likelihood p(y1:T | θ) such that the limiting distribution of the Metropolis-Hastings
Markov chain remains unaffected. This section describes how it is done and gives the
resulting variant of the sampler

Likelihood estimate in general Suppose that we are in possession of an estimator ẑ of
the likelihood p(y1:T | θ). As such, it necessarily depends on y1:T and θ. Since we aim to
use the particle filter to calculate ẑ, the estimator also depends on the importance weights
calculated using random samples x(i)

t . This makes the estimator a random variable with

21

CHAPTER 3. LEARNING THE PARAMETERS OF A STATE-SPACE MODEL

some distribution denoted ψ(z | θ,y1:T). It is not necessary to have this distribution avail-
able, as it is later shown to cancel out in the Metropolis-Hastings acceptance ratio.

We now return to our model (3.4) and introduce ẑ as an auxiliary variable, along with
our variable of interest θ. This changes the target distribution from p(θ | y1:T) to

ψ(θ, z | y1:T) = p(θ | y1:T)ψ(z | θ,y1:T) =
p(y1:T | θ)π(θ)

p(y1:T)
ψ(z | θ,y1:T). (3.12)

In theory, we could now construct a Metropolis-Hastings algorithm with ψ(θ, z | y1:T) as
the target, instead of p(θ | y1:T) as was the case in Algorithm 1. However, this would not
solve our problem, since calculating the acceptance ratio still requires the calculation of
the likelihood p(y1:T | θ), as (3.12) makes clear.

Instead, we define a new target distribution over (θ, ẑ) by replacing the likelihood in
(3.12) by its estimate ẑ:

π(θ, z | y1:T)B
zπ(θ)
p(y1:T)

ψ(z | θ,y1:T). (3.13)

There are of course some conditions imposed on π(θ, z | y1:T) for it to be useful:

1. π(θ, z | y1:T) must be non-negative for all (θ, z);

2. π(θ, z | y1:T) must integrate to 1;

3. the marginal distribution of π(θ, z | y1:T) for θ must be the original target p(θ | y1:T).

The first two conditions simply state that π is a valid probability distribution. The
third condition ensures that by constructing a Metropolis-Hastings algorithm with π
as the target, the original target distribution is preserved once the auxiliary variables
are marginalised out. All three conditions are satisfied if ẑ is a non-negative unbiased
estimator of the likelihood p(y1:T | θ). This is shown as follows.

1. Non-negativity of π follows from the assumed non-negativity of the estimator ẑ
and validity of the distributions in (3.13).

2, 3. Assume that ẑ is an unbiased estimate of p(y1:T | θ), i.e., that Eψ [̂z] = p(y1:T | θ).
Consider now the marginal of π for θ:∫

π(θ, z | y1:T) dz =
π(θ)
p(y1:T)

∫
zψ(z | θ,y1:T) dz

=
π(θ)
p(y1:T)

Eψ [̂z]

=
π(θ)
p(y1:T)

p(y1:T | θ)

= p(θ | y1:T),

(3.14)

the original target distribution. This satisfies condition 3. For condition 2, we
simply integrate (3.14) w.r.t. θ, which results in unity due to p(θ | y1:T) being a
valid probability distribution.

Acceptance ratio computation Given the new target distribution π, we can now con-
struct a Metropolis-Hastings algorithm on the joint space of (θ, z).

22

CHAPTER 3. LEARNING THE PARAMETERS OF A STATE-SPACE MODEL

This means that the proposed samples are now given as (θ′ , z′) ∼ ψ(·, · | y1:T). In
practice, this is done by first sampling θ′ ∼ q(· | θ(m−1)), and then ẑ′ ∼ ψ(· | θ′ ,y1:T). The
acceptance ratio can now be computed as

α = min
{

1,
π(θ′ , z′ | y1:T)

π(θ(m−1), z(m−1) | y1:T)

q(θ(m−1) | θ′)ψ(z(m−1) | θ(m−1),y1:T)

q(θ′ | θ(m−1))ψ(z′ | θ′ ,y1:T)

}
= min

{
1,

z′π(θ′)ψ(z′ | θ′ ,y1:T)

z(m−1)π(θ(m−1))ψ(z(m−1) | θ(m−1),y1:T)

q(θ(m−1) | θ′)ψ(z(m−1) | θ(m−1),y1:T)

q(θ′ | θ(m−1))ψ(z′ | θ′ ,y1:T)

}
= min

{
1,

z′π(θ′)
z(m−1)π(θ(m−1))

q(θ(m−1) | θ′)
q(θ′ | θ(m−1))

}
.

Since (3.14) shows that the marginal of π for θ is the original target p(θ | y1:T), all we
need to do is to discard the sampled ẑ(m) and keep only θ(m) when running Metropolis-
Hastings on the joint space of (θ, z).

Calculating the estimate using the particle filter Finally, we describe how exactly is
the particle filter used as an estimator of p(y1:T | θ).

First, we decompose the likelihood into a product of simpler distributions, which are
then marginalised over the corresponding hidden state:

p(y1:T | θ) =
T∏
t=1

p(yt | y1:t−1,θ)

=
T∏
t=1

∫
p(yt ,xt | y1:t−1,θ) dxt

=
T∏
t=1

∫
p(yt | xt ,θ)p(xt | y1:t−1,θ) dxt .

(3.15)

Using the particles
{
x

(i)
t

}N
i=1

, we plug in the empirical approximation to p(xt | y1:t−1,θ),

p̂(xt | y1:t−1,θ) = 1
N

∑N
i=1 δx(i)

t
(xt), into (3.15), obtaining

p(y1:T | θ) ≈
T∏
t=1

∫
p(yt | xt ,θ)

 1
N

N∑
i=1

δ
x(i)
t

(xt)

 dxt

=
T∏
t=1

1
N

N∑
i=1

∫
p(yt | xt ,θ)δ

x(i)
t

(xt) dxt

=
T∏
t=1

1
N

N∑
i=1

p(yt | x
(i)
t ,θ)

due to linearity of the integral and properties of the Dirac distribution.
In p(yt | x

(i)
t ,θ), we recognize the particle filter weights w(i)

t defined in (3.11). This
allows us to finally define the likelihood estimate as

ẑB
T∏
t=1

1
N

N∑
i=1

w
(i)
t . (3.16)

This estimator is obviously non-negative due to construction of the weights. The proof
that it is also unbiased (and therefore also integrates to unity) is more involved and the
reader is referred to Del Moral (2004) for the original proof.

23

CHAPTER 3. LEARNING THE PARAMETERS OF A STATE-SPACE MODEL

Finally, we describe the resulting variant of the Metropolis-Hastings algorithm em-
ploying the likelihood estimate (3.16). This algorithm, called marginal Metropolis-Hastings,
was introduced by Andrieu et al. (2010). Compared to Algorithm 1, all components of
this algorithm can be evaluated. Due to construction of the estimator ẑ, the marginal of
the limiting distribution of Algorithm 5 is the original target p(θ | y1:T).

Algorithm 5 Marginal Metropolis-Hastings

Input: Number of samples M, {y1, . . . ,yT } .
1: Initialize θ(0).
2: Run Algorithm 4 with θ(0) to obtain the weights w(i)

0,t , t = 1, . . . ,T , i = 1, . . . ,N .

3: Calculate ẑ(0) according to (3.16) using w(i)
0,t .

4: for m = 1 to M do
5: Sample θ′ ∼ q(· | θ(m−1)).

6: Run Algorithm 4 with θ′ to obtain the weights w(i)
m,t , t = 1, . . . ,T , i = 1, . . . ,N .

7: Calculate ẑ′ according to (3.16) using w(i)
m,t .

8: Calculate the aceptance probability

α = min
{

1,
ẑ′π(θ′)

ẑ(m−1)π(θ(m−1))

q(θ(m−1) | θ′)
q(θ′ | θ(m−1))

}
.

9: Sample u ∼ U (0,1).
10: if u ≤ α then
11:

(
θ(m), ẑ(m)

)
← (θ′ , ẑ′) . With probability α, accept the proposed sample.

12: else
13:

(
θ(m), ẑ(m)

)
←

(
θ(m−1), ẑ(m−1)

)
. With probability 1−α, reject the proposed

sample.
14: end if
15: end for
Output:

{
θ(1), . . . ,θ(M)

}

24

Chapter 4

Approximate Bayesian Computation

We are now in possession of a sampler able to approximate the posterior distribution
p(θ | y1:T) even when the model likelihood is not tractable. As such, the sampler can
be used in general non-linear SSMs, as long as the observation model gt(yt | xt ,θ) is a
well-defined probability density. This requirement can be relaxed by introducing the
method of Approximate Bayesian Computation (ABC). The algorithm derived in this
chapter utilizes the ABC framework to approximate the SSM likelihood even when the
observation model is misspecified or given only as a deterministic mapping xt 7→ yt. This
allows to infer θ even when gt(yt | xt ,θ) is not given in terms of a probability density
function.

We first motivate the use of ABC methods in our problem in Section 4.1. Then, in
Section 4.2, we describe the method in general and discuss some limitations. Section 4.3
introduces ABC to our state-space model framework and addresses some potential issues
through kernel functions. Finally, in Section 4.4, we summarize how exactly is the ABC
method used in our model, and provide an alternative variant of the Metropolis-Hastings
algorithm which relies on ABC instead of the particle filter to estimate the likelihood.

4.1 Motivation

In the previous chapter, we derived a way to bypass the likelihood function evaluation
when calculating the Metropolis-Hastings acceptance ratio. The method relies on the
particle filter to calculate a set of weights w(i)

t ∝ gt(yt | x
(i)
t ,θ), where gt(yt | x

(i)
t ,θ) is the

observation model defined in (3.1). These weights are used to estimate the likelihood
p(y1:T | θ) as given in (3.16). However, calculating the weights in such way requires full
knowledge of this observation model.

In practice, one may not have access to a correct observation model in the form of
a probability density gt(yt | xt ,θ). Instead, only a model of the process which generates
an observation yt from the latent state xt may be available. This generative process may
take the form of a differential equation, chemical reaction, simulation, etc. One is then
in possession of a mean to generate an observation, but not to evaluate how probable it
is. By attempting to fit an arbitrary probability distribution to this generative model, an
error is necessarily introduced. The particle filter weights might then not reflect reality,
and would lead to incorrect results when using such misspecified model for gt(yt | xt ,θ).

As an alternative way to approximate the likelihood p(y1:T | θ), we can utilize our
knowledge of the generative process xt 7→ yt to simulate a number of pseudo-observations
ut. A surrogate for the observation density gt(yt | xt ,θ) is then calculated by evaluating
the closeness of these pseudo-observations to the true measurement yt. Intuitively, if a
large number of the simulated observations fall close to yt, we would expect the true
probability density to be high in that region. By bypassing the evaluation of gt(yt | xt ,θ),

25

CHAPTER 4. APPROXIMATE BAYESIAN COMPUTATION

inference can proceed even without knowing the observation model density. This is ex-
actly the idea behind the approximate Bayesian computation methodology; it is discussed
in Section 4.2.

Unfortunately, such approximation comes at a price. In Chapter 3, it has been shown
that using the particle filter does not introduce any approximation error, since the likeli-
hood estimate is unbiased and leaves the limiting distribution of the Metropolis-Hastings
Markov chain intact. This is not the case when applying ABC methods, see Section 4.3.

4.2 ABC in general

Before describing how to apply ABC to state-space models, we first summarize the under-
lying ideas. The ABC method is introduced in the context of general Bayesian inference
under a misspecified likelihood function. Later on, we build on these foundations when
applying ABC to our SSM framework.

One thing to note is that ABC has traditionally been applied to estimate the posterior
p(θ | y) for some parameter θ and observation y. The method is first considered with
this application in mind, and in Section 4.3, we describe how use it to estimate the SSM
likelihood instead.

Approximate Bayesian Computation The methodology of ABC dates back to Rubin
et al. (1984), where a procedure using simulated psedudo-observations to approximate
the posterior distribution was first described. Lately, ABC methods have gained popular-
ity in modelling biological processes (Pritchard et al., 1999). A more recent review can
be found in Marin et al. (2012); Lintusaari et al. (2017).

In its classical formulation, ABC provides a way to approximate an intractable poste-
rior p(θ | y) ∝ p(y | θ)π(θ) by introducing an auxiliary variable u. The posterior approxi-
mation is then constructed by integrating over this variable and considering only values
sufficiently close to the true measurement (Jasra et al., 2012). It takes the form of

p(θ | y) ≈ pε(θ | y) =

∫
IAε,y (u)p(u | θ)π(θ) du∫

Aε,y
du

, (4.1)

where IAε,y is the indicator function of a setAε,y =
{
u ∈ Rdy : ρ(u,y) ≤ ε

}
and ρ : Rdy×Rdy →

R is a metric, typically the Euclidean distance.
The motivation behind (4.1) is that such integral can be approximated by randomly

sampling from the likelihood p(· | θ) without needing to evaluate it. This way, the like-
lihood can exist only conceptually, and we are able to simulate samples u from a model
reflecting some real-world process, without considering the underlying probability den-
sity.

The hyper-parameter ε ≥ 0 controls how far the auxiliary variable u can be from the
true measurement y to be considered similar. Clearly, if we set ε = 0, the integral becomes
p(y | θ)π(θ), and we recover the true posterior. In general, the smaller ε, the better
approximation is obtained, though at the cost of increased computational complexity.

To avoid the curse of dimensionality, a summary statistic s : Rdy → Rp, 1 ≤ p < dy is
often introduced. Instead of comparing ρ(u,y) ≤ ε, one then compares ρ(s(u),s(y)) ≤ ε
(assuming that the metric has been redefined to ρ : Rp ×Rp→ R).

It can be shown that if s is a sufficient statistic for the parameter θ, the probabil-
ity density pε(θ | y) converges to p(θ | y) as ε→ 0 (Jasra, 2015). However, it is typically
impossible to find such statistic outside of the exponential family of distributions. Other-
wise, using a statistic that is not sufficient introduces an additional approximation error.

26

CHAPTER 4. APPROXIMATE BAYESIAN COMPUTATION

Basic version of the ABC simulation We now give a basic variant of a sampling-based
approximation to pε(θ | y). In the spirit of (4.1), Algorithm 6 performs rejection sampling
by comparing whether a sampled u is in Aε,y or not. After describing the algorithm, we
discuss some limitations of this basic approach.

Algorithm 6 ABC Rejection Algorithm

Input: Number of samples M, observation y, metric ρ, maximum distance ε.
1: i← 1
2: while i ≤M do
3: Sample θ′ ∼ π(·). . Sample from the prior.
4: Simulate u from p(· | θ′). . Simulate a pseudo-observation.
5: if ρ(u,y) ≤ ε then
6: θ(i)← θ′ . Accept the proposed sample.
7: i← i + 1
8: end if
9: end while

Output: Accepted samples
{
θ(1), . . . ,θ(M)

}
.

ABC rejection iteratively samples parameters θ′ from the prior, plugs them into the
likelihood p(· | θ′), and simulates pseudo-observations u. These are then compared to
the true measurement y using the metric ρ. If the proposed parameter θ′ gave rise to
a pseudo-observation similar enough to the true y (i.e., u ∈ Aε,y), the parameter is kept
under the assumption that the true data are likely under θ′. The ABC approximation is
then given in terms of the accepted samples θ(1), . . . ,θ(M) as the empirical distribution

p(θ | y) ≈ 1
M

M∑
i=1

δθ(i)(θ).

Setting a low value of ε increases the approximation accuracy, at the cost of increased
rejection rate. On the other hand, setting ε too large causes the algorithm to accept
more often, but leads to simulating pseudo-measurements dissimilar to y and, in turn,
incorrect θ(i). Setting a suitable value of ε is therefore the main difficulty when using
ABC. Several approaches are discussed by Jasra et al. (2012); Jasra (2015). One particular
way (Dedecius, 2017) is used in Section 4.3 in the context of SSMs.

There are many improvement to the basic ABC of Algorithm 6, discussed for instance
by Marin et al. (2012). In particular, more sophisticated sampling approaches relying
again on MCMC are described. This is not an issue relevant to the SSM framework, as
the samples are generated in a different fashion, given in the next section.

4.3 ABC in SSMs

Next, we describe how exactly is the ABC methodology applied in the context of SSMs.
Section 4.2 states that the typical use case of ABC arises in cases where we have

knowledge about the data-generating process, but are unable to evaluate the probability
of such data. In the context of SSMs, this translates into knowing how the observed values
yt have been generated from the latent states xt, but being unable to evaluate the density
gt(yt | xt ,θ). This prevents us from calculating the importance weights wt through the
particle filter, which relies on the availability of gt(yt | xt ,θ).

Toni et al. (2009) and Jasra et al. (2012) describe how a filter could be constructed us-
ing the ABC approximation. Additionally, Jasra (2015) applies this filter in the context of
SSMs. We first discuss the construction of this filter. Afterwards, we address a particular
limitation of this approach through kernel functions.

27

CHAPTER 4. APPROXIMATE BAYESIAN COMPUTATION

Filter construction through ABC In SSMs, the dimensionality of the observation space
is typically low; the observations are often scalar quantities. It is then not necessary to
consider any summary statistics.

Jasra et al. (2012) consider a modification of the particle filter (Algorithm 4) which
simulates pseudo-observations according to the observation model, and calculates the
importance weights based on their closeness to the true measurements. The pseudocode
is given in Algorithm 7.

Algorithm 7 ABC-based filter

Input: Number of particles N, current parameter value θ,maximum distance ε, {y1, . . . ,yT } .
1: Sample x(i)

0 ∼ p(x0 | θ), i = 1, . . . ,N . . Initialize N particles.

2: w
(i)
0 ←

1
N , i = 1, . . . ,N . . Initialize uniform weights.

3: for t = 1 to T do
4: Sample x(i)

t ∼ ft(xt | x
(i)
t−1,θ), i = 1, . . . ,N . . Sample N new particles.

5: Simulate u(i)
t from gt(ut | x

(i)
t ,θ), i = 1, . . . ,N . . Simulate N pseudo-observations.

6: Set w(i)
t ∝ IAε,yt (u

(i)
t)w(i)

t−1, i = 1, . . . ,N .

7: Resample x(i)
t and reset w(i)

t using Algorithm 3, i = 1, . . . ,N .
8: end for

The algorithm proceeds similarly to Algorithm 4 except for the way the weights are
computed. Instead of evaluating the unavailable density gt(yt | xt ,θ) at the true observa-
tion yt, a pseudo-observation ut is simulated. The weight is then set to a non-zero value
if ut ∈ Aε,yt , and 0 otherwise. It may seem that the weights for the same particle i nec-
essarily collapse to 0 after a number of time steps due to the recursive multiplication in
step 6. However, step 7 resets the weights uniformly after resampling, so such collapse
does not occur.

Analogously to Section 3.4, the weights are then used to approximate the likelihood
p(y1:T | θ). According to Jasra (2015), the estimate is given by

ẑ =
T∏
t=1

1
N

N∑
i=1

w
(i)
t∫

Aε,yt
du
. (4.2)

The integral in the denominator essentially normalizes the weights w(i)
t to be equal to the

probability density of U (yt;ε), the uniform distribution in a sphere centered at yt with
radius ε given in terms of the metric ρ.

Bias The use of this ABC filter introduces bias to the parameter inference. Recall that
in Section 3.4, we required ẑ to be an unbiased estimator of p(y1:T | θ). This was the case

when the weights were calculated according to w(i)
t ∝ gt(yt | xt)w

(i)
t−1. This unbiasedness is

not preserved here, since ẑ estimates

pε(y1:T | θ) =
∫
pε(x0:T ,y1:T | θ) dx0:T

=
∫
p(x0 | θ)

T∏
t=1

ft(xt | xt−1,θ)gεt (yt | xt ,θ) dx0:T

(compare the inside of the integral with (3.1)), as noted by Jasra (2015). Here the approx-
imate observation density is given by the ABC form

gεt (yt | xt ,θ) =

∫
IAε,yt (u)gt(u | xt ,θ) du∫

Aε,yt
du

,

28

CHAPTER 4. APPROXIMATE BAYESIAN COMPUTATION

similarly to (4.1). This essentially means that by plugging (4.2) into the Metropolis-
Hastings acceptance ratio, the limiting distribution of the underlying Markov chain be-
comes pε(θ | y1:T) ∝ pε(y1:T | θ)π(θ), instead of the correct p(θ | y1:T). In general, this bias
cannot be dealt with, and is a price to pay for using the incorrect observation model.

An interesting way to address this deficiency has been proposed by Fearnhead and
Prangle and by Wilkinson (2013). The authors note that one uses data y1:T assumed to
have been generated according to (3.1), p(y1:T | θ), but fitting the ABC approximation
pε(y1:T | θ). In an attempt to bring the data closer the model being really fitted, the
authors use a sequence of perturbed observations zt = yt+v, v ∼ U (0;ε) which denotes the
uniform distribution in a sphere given by ρ, with radius ε and centered at the origin. It is
proved that if θ is estimated according to maximum likelihood, the estimate is consistent
when using the perturbed sequence z1:T . This approach is called the Noisy ABC.

Use of kernel functions A limitation of Algorithm 6 and Algorithm 7 lies in the use of
the indicator function IAε,y . There are two problems:

1. A practical one; it may happen that no samples are accepted and the output is
null in the case of Algorithm 6, or too many weights become zero in the case of
Algorithm 7 and the filter collapses.

2. A more fundamental one, the simulated pseudo-observations ut are all assigned
equal weights, regardless of how far they lie from the true measurement yt. In-
tuitively, a pseudo-observation closer to the true yt should be assigned a higher
weight than one which is further away.

Both issues can be mitigated by considering a general kernel function in place of the
indicator IAε,y . Let a kernel of width ε centered at y and evaluated at u be denoted by
κ(u;y,ε). In machine learning, kernel functions are often taken proportional to some sym-
metric probability density function (Hastie et al., 2001). However, as we aim to replace
the indicator function IAε,y by such kernel, we require the kernel to be properly normal-
ized (integrate to unity) to mirror the normalization in (4.2).

With the kernel function, we can write w(i)
t ∝ κ(ut;yt ,ε)w(i)

t−1. The likelihood estimate
(4.2) becomes

ẑ =
T∏
t=1

1
N

N∑
i=1

w
(i)
t (4.3)

due to the kernel being normalized. This way, the weights are no longer uniform but
reflect the distance of ut from yt. There is also no risk of the filter collapsing due to
majority of the weights becoming zero.

Introducing the kernel function to the weights computation is in principle similar
to using importance sampling rather than simple rejection sampling (MacKay, 2002).
Instead of accepting/rejecting the generated samples based on whether they match some
criterion, they are all accepted and weighted according to how well they match it.

With the kernel functions in mind, we describe a procedure for automatic tuning of
the kernel width ε, which has been ignored so far. The adopted method has been derived
in a one-dimensional setting, i.e., u,y ∈ R. We correspondingly denote y by y and u by
u. When considering multivariate observations, the kernels are applied coordinate-wise
(assuming independence between the components of y or u, respectively).

Before describing the kernel tuning procedure, we give several examples of com-
monly used kernel functions and comment on their usage. The kernels are shown in
Figure 4.1.

29

CHAPTER 4. APPROXIMATE BAYESIAN COMPUTATION

1. Gaussian kernel The Gaussian kernel takes the form

κ(u;y,ε) =
1

√
2πε2

exp
{
−

(u − y)2

2ε2

}
.

It is one of the most-commonly used kernel functions.

2. Cauchy kernel The Cauchy kernel takes the form

κ(u;y,ε) =
1

πε
[
1 +

(
u−y
ε

)2
] .

As opposed to the Gaussian distribution, the Cauchy distribution has heavier tails,
which make it suitable for situations with potentially distant observations. This
kernel typically assigns non-trivial probability even to distant pseudo-observations,
preventing the filter from collapsing under outliers.

3. Uniform kernel The uniform kernel takes the form

κ(u;y,ε) =

 1
2ε , y − ε < u < y + ε;

0, otherwise.

Using this kernel, we recover the standard ABC which accepts u if u ∈ Aε,y ={
u :

∣∣∣u − y∣∣∣ < ε}. If we are in a situation with multivariate observations yt and ap-
ply the uniform kernel coordinate-wise, the set of accepted samples coincides with

the standard ABC using ρ(u,y) = max
dy
i=1

∣∣∣ui − yi ∣∣∣, the L∞ distance.

y

Kernel comparison
Gaussian
Cauchy
Uniform

Figure 4.1: The Gaussian, Cauchy and uniform kernel functions centered at y = 0 with
width ε = 3.

The Noisy ABC procedure described above is then naturally generalized by perturb-
ing the observations by samples from a given kernel, instead of the uniform distribution
in a ball.

30

CHAPTER 4. APPROXIMATE BAYESIAN COMPUTATION

Kernel width tuning In this paragraph, we address the issue of tuning the kernel width
ε. Since the previous section has shown that the indicator function IAε,y is recovered by a
particular kernel, the method also applies to the standard ABC formulation.

A careful setting of ε is necessary. When the kernel width is too low, most of the N
generated pseudo-observations are assigned with low probabilities, and the importance
weights are close to zero. On the other hand, when the width is too high, even outlying
pseudo-observations are assigned a non-trivial probability and shift the filter to incorrect
values. In addition, the kernel becomes flat and close to the uniform variant. A manual
setting of ε is thus a non-obvious task without any guidelines in the data. Additionally,
the width should somehow reflect the filter evolution over time, since all observations yt
are different and may require different kernel widths.

In this thesis, we adopt a procedure described by Dedecius (2017), which is briefly
reviewed below. More details can be found in the original paper.

The method is based on the idea that the true observation model gt(yt | xt ,θ) should

cover a given number of generated pseudo-observations u(i)
t , i = 1, . . . ,N by a 100p% high

probability region (p-HPR), where p ∈ (0,1) is a given constant. If this is true, the pseudo-
observations can be expected to describe the distribution gt(yt | xt ,θ) sufficiently-well.

As this distribution is not known, it is approximated by the kernel κ evaluated at u(i)
t , i =

1, . . . ,N .
As given in (4.3), the kernel is evaluated at each pseudo-observation u(i)

t , i = 1, . . . ,N
while centered at yt. We then need to tune the width at time t, denoted εt, so that a
given fraction α

N of the pseudo-observations is covered by the p-HPR of the kernel. For
the procedure to work, the kernel function κ must be invariant under translation and
scaling, i.e., belong to the location-scale family of distributions. Many popular kernels
including the three discussed above, belong to this family.

The tuning procedure involves two steps:

1. Identify u[α]
t , the αth closest pseudo-observation to yt.

2. Center the kernel κ at yt and set the width εt so that∣∣∣∣∣∣∣
∫ u

[α]
t

yt

κ(ut;yt ,εt) dut

∣∣∣∣∣∣∣ =
p

2
, (4.4)

meaning that u[α]
t lies at the boundary of the p-HPR of κ(·;yt ,εt).

These two steps are visualized in Figure 4.2. In the case of multidimensional yt and ut,
this procedure is performed coordinate-wise.

The meaning of equation (4.4) is that u[α]
t is either the 1−p

2 -quantile or the 1+p
2 -quantile

of κ(·;yt ,εt), depending on whether u[α]
t ≤ yt or u[α]

t ≥ yt. If we restrict ourselves to
symmetric kernels, we may get rid of this case division by exploiting kernel symmetry.

Let F denote the cumulative distribution function of the kernel κ(·;0,1) centered at 0
with width ε = 1. Let its quantile function be denoted by F−1. From κ belonging to the
location-scale family, we get that the quantile function of a general kernel κ(·;yt ,εt) is

Q(β) = yt + εtF
−1(β), β ∈ (0,1) . (4.5)

As (4.4) and the assumed kernel symmetry require
∣∣∣∣u[α]
t

∣∣∣∣ to be the 1+p
2 -quantile of κ(·;yt ,εt),

we can substitute u[α]
t for Q(β) in (4.5) and solve for εt, obtaining

εt =

∣∣∣∣u[α]
t − yt

∣∣∣∣
F−1(1+p

2)
, (4.6)

31

CHAPTER 4. APPROXIMATE BAYESIAN COMPUTATION

yt u[]
t

Kernel tuning

Figure 4.2: Visualization of the kernel tuning procedure. In this picture, α = 2, p = 0.95,
and the kernel is Gaussian. Plotted is the kernel along with a number of pseudo-
observations u(i)

t and the true measurement yt. Equation (4.4) states that the shaded
area has volume p/2 = 0.475.

where the absolute value comes from the kernel being symmetric, so it is irrelevant
whether we consider pseudo-observations lower or greater than the true observation yt.
The quantile function F−1 is uniquely associated with each kernel, and the only free pa-
rameters are α and p.

4.4 Likelihood estimate through ABC

The main contribution of this thesis is the utilization of the ABC framework to make
inference possible even in SSMs with an unknown observation model. We have already
derived all the necessary elements needed to state our main result. It remains to put them
together by formalizing the entire inference process using ABC as a likelihood estimator.

Algorithm 8 presents a modification of the particle filter which uses the ABC ap-
proximation as a surrogate for the unknown observation model. Compared to the par-
ticle filter, our formulation is applicable even when the observation model gt(yt | xt ,θ)
is not given as a probability density. Unlike the basic ABC filter described in Algo-
rithm 7, our variant employs kernel functions to measure observation similarity, reflect-
ing the fact that the closer a pseudo-measurement is to the true observation, the higher
weight it should be assigned. In addition, we account for automatic tuning of the kernel
widths by adapting them so that they cover a sufficient number of the simulated pseudo-
measurements.

Finally, Algorithm 9 reformulates the marginal Metropolis-Hastings according to the
ABC methodology. Under the new formulation, the estimator ẑ of p(y1:T | θ) is con-
structed by evaluating (4.3) on a set of importance weights calculated by Algorithm 8.
The result is used to compute the acceptance probability which again controls whether a
proposed θ′ and the corresponding ẑ′ are accepted or not.

32

CHAPTER 4. APPROXIMATE BAYESIAN COMPUTATION

Algorithm 8 ABC-based filter with automatic kernel tuning

Input: Number of particles N, current parameter value θ, HPR p,
number of covered pseudo-observations α, {y1, . . . ,yT } .

1: Sample x(i)
0 ∼ p(· | θ), i = 1, . . . ,N . . Initialize N particles.

2: w
(i)
0 ←

1
N , i = 1, . . . ,N . . Initialize uniform weights.

3: for t = 1 to T do
4: Sample x(i)

t ∼ ft(xt | x
(i)
t−1,θ), i = 1, . . . ,N . . Sample N new particles.

5: Simulate u(i)
t from gt(· | x

(i)
t), i = 1, . . . ,N . . Simulate N pseudo-observations.

6: Identify u[α]
t . . Find the αth closest pseudo-observation to yt.

7: εt←
∣∣∣∣u[α]
t −yt

∣∣∣∣
F−1(1+p

2)
. Set the kernel width at time t according to (4.6).

8: Set w(i)
t ∝ κ(u(i)

t ;yt ,εt)w
(i)
t−1, i = 1, . . . ,N .

9: Resample x(i)
t and reset w(i)

t using Algorithm 3, i = 1, . . . ,N .
10: end for

Algorithm 9 Marginal Metropolis-Hastings with ABC filter

Input: Number of samples M, {y1, . . . ,yT } .
1: Initialize θ(0).
2: Run Algorithm 8 with θ(0) to obtain the weights w(i)

0,t , t = 1, . . . ,T , i = 1, . . . ,N .

3: Calculate ẑ(0) according to (4.3) using w(i)
0,t .

4: for m = 1 to M do
5: Sample θ′ ∼ q(· | θ(m−1)).

6: Run Algorithm 8 with θ′ to obtain the weights w(i)
m,t , t = 1, . . . ,T , i = 1, . . . ,N .

7: Calculate ẑ′ according to (4.3) using w(i)
m,t .

8: Calculate the aceptance probability

α = min
{

1,
ẑ′π(θ′)

ẑ(m−1)π(θ(m−1))

q(θ(m−1) | θ′)
q(θ′ | θ(m−1))

}
.

9: Sample u ∼ U (0,1).
10: if u ≤ α then
11:

(
θ(m), ẑ(m)

)
← (θ′ , ẑ′) . With probability α, accept the proposed sample.

12: else
13:

(
θ(m), ẑ(m)

)
←

(
θ(m−1), ẑ(m−1)

)
. With probability 1−α, reject the proposed

sample.
14: end if
15: end for
Output:

{
θ(1), . . . ,θ(M)

}

33

Chapter 5

Applications

Having investigated the theoretical properties of our method, it remains to empirically
assess its performance. For the first test scenario, we have selected the Lotka-Volterra
model described in Section 5.3. This is a relatively simple problem whose purpose is to
validate our conclusions from the theoretical analysis. The second example is a simpli-
fied model for a prokaryotic auto-regulatory network addressed in Section 5.4. In both
scenarios, the particle filter-based approach is compared with our ABC approximation
under various model misspecifications.

The considered problems require simulating stochastic reactions in order to propa-
gate the system states through time. This is done with the help of the Gillespie algorithm,
which is first described in Section 5.2.

5.1 Implementation notes

All of the experiments described below have been implemented in Python 3.6.5. The
performance-critical parts were additionally written in Cython to obtain C-like perfor-
mance. The only additional dependencies are NumPy 1.14.3, SciPy 1.2.1, Matplotlib
2.2.2 and Statsmodels 0.9.0. The experiments have been performed on a standard laptop
computer.

5.2 Preliminary: the Gillespie algorithm

The Gillespie algorithm (Gillespie, 1976, 1977) is used to simulate a stochastic process
describing the time evolution of a system of reactions. The discussion given here follows
Wilkinson (2011).

Time evolution of a reaction system Consider a system consisting of u speciesX1, . . . ,Xu
and v reactions R1, . . . ,Rv . The species can describe literal animal species, as is the case
in the Lotka-Volterra model in Section 5.3, or individual molecule types, as in Section 5.4.
The reactions describe the interactions between these species through time.

Let the number of molecules (or individuals, in case of animal species) of the species
Xi at time t be denoted by Xi,t, and let Xt =

(
X1,t , . . . ,Xu,t

)ᵀ. Additionally, let the number
of reactions of type Ri which occurred in a time window (0, t] be denoted by Ri,t, and let
Rt =

(
R1,t , . . . ,Rv,t

)ᵀ. The evolution of the system from time 0 to time t is described by the
equation

Xt −X0 = SRt , (5.1)

where S ∈ Ru×v is called the stoichiometry matrix of the system, and describes the dif-
ference in the number of molecules of each species after each reaction occurs. To gain

35

CHAPTER 5. APPLICATIONS

insight into the meaning of S, it is instructive to write it as

S = Ppost −Ppre,

where the element (i, j) of Ppre denotes the number of molecules of Xi before a reaction
of type Rj takes place, and the element (i, j) of Ppost describes the same quantity after it
takes place. Equation (5.1) can then be written as

Xt = X0 +
(
Ppost −Ppre

)
Rt ,

and describes the net gain in the number of molecules of each species given their initial
numbers, and accounting for their increase/decrease when a number of reactions of each
type occurs.

In addition, each reaction Ri has a stochastic rate constant ci and a rate law (also
called the hazard function) hi(Xt , ci) associated with it. The interpretation of the hazard
function is such that hi(Xt , ci)dt is the probability of a reaction of type Ri occurring in
a time interval (t, t + dt], conditionally on the system being in state Xt. Such a situa-
tion is described by an exponential distribution – the time to the event of a reaction of
typeRi occurring, assuming no other reaction is taking place, is distributed according to
Exp (hi(Xt , ci)). This is however a convenient simplification, since multiple reactions are
typically occurring at the same time.

The Gillespie algorithm In a system with v reactions and their hazard functions hi(Xt , ci),
the hazard of some reaction occurring is

h0(Xt ,c) =
v∑
i=0

hi(Xt , ci),

where c = (c1, . . . , cv)ᵀ. The time to the next reaction is then distributed according to
Exp (h0(Xt ,c)). The particular reaction type is a random variable with a categorical dis-

tribution Cat
(̃
h1(Xt , c1), . . . , h̃v(Xt , cv)

)
, where h̃i(Xt , ci) =

hi(Xt , ci)
h0(Xt ,c)

.

With the above in mind, the Gillespie algorithm can now be formulated, and is given
in Algorithm 10. Its purpose is to simulate the state evolution (5.1) for a given time hori-
zon T while accounting for the randomness in the time until a reaction of a particular
type takes place. For the purpose of this algorithm, denote the columns of the stoichiom-
etry matrix S by Si , i = 1, . . . ,v.

The algorithm is usually the bottleneck of most simulations, and must be imple-
mented carefully; otherwise, the simulation becomes unacceptably slow. The final time
t is at the output as well, since it may exceed the horizon T . If the algorithm is run con-
secutively during a simulation, the interest is to follow the previous run by starting at its
final time t.

5.3 Lotka-Volterra model

5.3.1 Problem description

The first considered problem is the Lotka-Volterra model (Lotka, 1909; Volterra, 1928).
The system describes a simplified time interaction of a population consisting of a preda-
tor and prey species. Denoting the prey species by X1 and the predator species by X2, the
system can be described by the reactions

R1 : X1→ 2X1, (5.2)

R2 : X1 +X2→ 2X2, (5.3)

R3 : X2→∅. (5.4)

36

CHAPTER 5. APPLICATIONS

Algorithm 10 Gillespie algorithm

Input: Time horizon T , rate constants c = (c1, . . . , cv)ᵀ , initial molecule numbers X0.
1: t← 0
2: Xt← X0
3: while t ≤ T do
4: Calculate hi(Xt , ci), i = 1, . . . , v.
5: h0(Xt ,c)←

∑v
i=1hi(Xt , ci)

6: Calculate h̃i(Xt , ci) =
hi(Xt , ci)
h0(Xt ,c)

, i = 1, . . . , v.

7: Sample dt ∼ Exp (h0(Xt ,c)) . . Simulate the time to the next reaction.
8: Sample i ∼ Cat

(̃
h1(Xt , c1), . . . , h̃v(Xt , cv)

)
. . Simulate the reaction type.

9: Xt+dt← Xt + Si . Update the state according to the reaction i.
10: t← t + dt
11: end while
Output: Final state Xt , final time t.

Equation (5.2) describes the reproduction of the prey species. Equation (5.3) describes
the interaction between the predator and the prey where a predator consumes an individ-
ual of the prey species and produces an offspring. Equation (5.4) describes the extinction
of the predator species when no prey is present.

The state of the system at time t is Xt =
(
X1,t ,X2,t

)ᵀ. The stoichiometry matrix is given
by

S =
(
1 −1 0
0 1 −1

)
,

and the hazard functions vector is h(X ,c) = (c1X1, c2X1X2, c3X2)ᵀ (Golightly and Wilkin-
son, 2011). Although simple to describe, this model is analytically intractable (Wilkin-
son, 2011).

For the inference problem, we consider the unknown parameters to be θ = (c1, c2, c3)ᵀ,
and the state at time t to be xt =

(
X1,t ,X2,t

)ᵀ. Since the rate constants c1, c2, c3 are by defi-
nition positive, we are working in the log space to avoid restricting ourselves to positive
support distributions. The model is specified by the following:

p(x1,0 | θ) = Po (50) ,

p(x2,0 | θ) = Po (100) ,

ft(xt | xt−1,θ) is simulated using Algorithm 10 ,

gt(yt | xt ,θ) =N2

(
xt ,102

)
.

The parameter prior and the Metropolis-Hastings proposal are additionally given by

π(logci) = U (−7,2) , i = 1,2,3,

q(θ′ | θ) =N3 (θ,0.01I3) .

The initial parameters are θ(0) = (1,0.005,0.6)ᵀ. We simulate a sequence of 16 obser-
vations yt using the Gillespie algorithm with parameters θ(0). The inference is started
in the correct parameters and applied on a short sequence only; its purpose is only to
demonstrate that the algorithm is able to identify these parameters.

We apply the marginal Metropolis-Hastings algorithm depending on the particle fil-
ter as well as the one utilizing ABC methods. Both algorithms are ran forM = 50000 sam-
ples with N = 100 particles. Additionally, the number of covered pseudo-observations in
the ABC formulation is α = 90 and the volume of the p-HPR is p = 0.95.

37

CHAPTER 5. APPLICATIONS

When using the ABC method, we simulate pseudo-observations from the observation
model gt without the noise term. That is, we simulate ut = xt, deterministically.

5.3.2 Inference using the particle filter

To start, we consider inference using Algorithm 5, i.e., using the particle filter to approx-
imate the likelihood.

Correctly specified observation model At first, we assume the correct model specifica-
tion. This means that the observations yt have been corrupted by Gaussian noise, and the
observation model gt is Gaussian as well. In this situation, the particle filter is expected
to perform well, as all assumptions have been met.

In Figure 5.1, Figure 5.2 and Figure 5.3, the results for the parameters c1, c2 and
c3, respectively, are shown. For each parameter, we show (in this order) the trace plot,
the autocorrelation plot, and the histogram of sampled values. We use no burn-in pe-
riod, as the inference starts in the correct values, but apply thinning of 100, i.e., keep
every 100th sample. This ensures relatively uncorrelated samples, as is clear from the
auto-correlation plots. The acceptation rate of the Metropolis-Hastings algorithms moves
around 20 %.

0 100 200 300 400 500
0.9

1.0

Trace plot

0 20 40 60 80 100
0

1
Autocorrelation

0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075
0

10

Histogram

c1

Figure 5.1: Particle filter-based inference of the parameter c1 in the Lotka-Volterra model.
Uses Gaussian noise and a Gaussian observation model. The true value is shown in red.

In all cases, the correct parameters are well-covered by the sampled values, while
allowing for some degree of variance. The histograms provide estimated posterior distri-
butions of the individual parameters. The sampled values can be used to provide point
estimates or credible intervals for the true parameters.

Misspecified observation model Next, we keep the Gaussian observation model, but
corrupt the observation sequence by a Cauchy noise with scale 10. Arguably, this scale is
quite high, but is used to match the scale of the Gaussian noise from the previous section.
The heavy-tailed Cauchy distribution allows sampling distant noise terms, and corrupts
the observation sequence yt much more severely. The Gaussian observation model gt
then assigns probability close to zero to these values, and the filter collapses. This is
clear from Figure 5.4, Figure 5.5 and Figure 5.6.

38

CHAPTER 5. APPLICATIONS

0 100 200 300 400 500
0.0045

0.0050

Trace plot

0 20 40 60 80 100
0

1
Autocorrelation

0.0044 0.0046 0.0048 0.0050 0.0052
0

2000

Histogram

c2

Figure 5.2: Particle filter-based inference of the parameter c2 in the Lotka-Volterra model.
Uses Gaussian noise and a Gaussian observation model. The true value is shown in red.

0 100 200 300 400 500

0.60

0.65

Trace plot

0 20 40 60 80 100
0

1
Autocorrelation

0.56 0.58 0.60 0.62 0.64 0.66 0.68
0

20
Histogram

c3

Figure 5.3: Particle filter-based inference of the parameter c3 in the Lotka-Volterra model.
Uses Gaussian noise and a Gaussian observation model. The true value is shown in red.

39

CHAPTER 5. APPLICATIONS

0 100 200 300 400 500
1.00

1.01

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

1.0000 1.0025 1.0050 1.0075 1.0100 1.0125 1.0150 1.0175
0

500

Histogram

c1

Figure 5.4: Particle filter-based inference of the parameter c1 in the Lotka-Volterra model.
Uses Cauchy noise and a Gaussian observation model. The true value is shown in red.

0 100 200 300 400 500
0.0048

0.0050
Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.00480 0.00485 0.00490 0.00495 0.00500
0

25000

Histogram

c2

Figure 5.5: Particle filter-based inference of the parameter c2 in the Lotka-Volterra model.
Uses Cauchy noise and a Gaussian observation model. The true value is shown in red.

40

CHAPTER 5. APPLICATIONS

0 100 200 300 400 500

0.60

0.61
Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.5925 0.5950 0.5975 0.6000 0.6025 0.6050 0.6075 0.6100
0

500
Histogram

c3

Figure 5.6: Particle filter-based inference of the parameter c3 in the Lotka-Volterra model.
Uses Cauchy noise and a Gaussian observation model. The true value is shown in red.

Clearly, Cauchy noise corrupts the sequence too much, and the results are poor.
The accepted parameters are almost constant, and the posterior distribution is not even
remotely-well approximated. This is an expected behavior, since the particle filter is
known not to perform well under model misspecification.

5.3.3 Inference using ABC

Next, we apply Algorithm 9, the variant of the Metropolis-Hastings algorithm depending
on ABC.

Gaussian noise, Gaussian kernel At first, we again corrupt the sequence yt by a Gaus-
sian noise, as indicated above. We then run Algorithm 9 with a Gaussian kernel to infer
about the parameters θ. The results are shown in Figure 5.7, Figure 5.8 and Figure 5.9.

Compared to the results obtained by running the particle filter-based inference with
a correct observation model, the results are slightly worse in the case of c1, as the true
value is in a region with a lower probability. Somewhat worse result is to be expected
though, since the ABC methods provide only an approximation. Otherwise, the results
are comparable to those utilizing the particle filter.

Cauchy noise, Gaussian kernel Next, we again corrupt the observation sequence by the
heavy-tailed Cauchy noise. First, we keep the Gaussian kernel to calculate the importance
weights. The results are in Figure 5.10, Figure 5.11 and Figure 5.12.

Compared to the particle filter with a misspecified observation model, the filter does
not collapse at all. Instead, it remains stable, and the results resemble those obtained
from a particle filter assuming a correct observation model, or those given by the previous
ABC use-case.

This shows the strength of the ABC approximation – even under a heavy-tailed noise
such as the Cauchy one, using a set of simulated pseudo-observations with a suitable ker-
nel function allows the likelihood estimate to remain stable even under a severe model
misspecification.

41

CHAPTER 5. APPLICATIONS

0 100 200 300 400 500
0.8

1.0
Trace plot

0 20 40 60 80 100
0

1
Autocorrelation

0.80 0.85 0.90 0.95 1.00
0

10
Histogram

c1

Figure 5.7: ABC-based inference of the parameter c1 in the Lotka-Volterra model. Uses
Gaussian noise and a Gaussian kernel. The true value is shown in red.

0 100 200 300 400 500
0.0045
0.0050
0.0055

Trace plot

0 20 40 60 80 100
0

1
Autocorrelation

0.0044 0.0046 0.0048 0.0050 0.0052 0.0054 0.0056 0.0058
0

1000

Histogram

c2

Figure 5.8: ABC-based inference of the parameter c2 in the Lotka-Volterra model. Uses
Gaussian noise and a Gaussian kernel. The true value is shown in red.

42

CHAPTER 5. APPLICATIONS

0 100 200 300 400 500

0.6

0.7
Trace plot

0 20 40 60 80 100
0

1
Autocorrelation

0.55 0.60 0.65 0.70
0

10

Histogram

c3

Figure 5.9: ABC-based inference of the parameter c3 in the Lotka-Volterra model. Uses
Gaussian noise and a Gaussian kernel. The true value is shown in red.

0 100 200 300 400 500

0.9
1.0
1.1

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.85 0.90 0.95 1.00 1.05 1.10
0

10

Histogram

c1

Figure 5.10: ABC-based inference of the parameter c1 in the Lotka-Volterra model. Uses
Cauchy noise and a Gaussian kernel. The true value is shown in red.

43

CHAPTER 5. APPLICATIONS

0 100 200 300 400 500
0.004

0.006

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.0040 0.0045 0.0050 0.0055 0.0060 0.0065
0

1000

Histogram

c2

Figure 5.11: ABC-based inference of the parameter c2 in the Lotka-Volterra model. Uses
Cauchy noise and a Gaussian kernel. The true value is shown in red.

0 100 200 300 400 500
0.5

0.6

Trace plot

0 20 40 60 80 100
0

1
Autocorrelation

0.475 0.500 0.525 0.550 0.575 0.600 0.625 0.650
0

10

Histogram

c3

Figure 5.12: ABC-based inference of the parameter c3 in the Lotka-Volterra model. Uses
Cauchy noise and a Gaussian kernel. The true value is shown in red.

44

CHAPTER 5. APPLICATIONS

Cauchy noise, Cauchy kernel Finally, we repeat the same experiment as in the previous
section, but use a Cauchy kernel instead of the Gaussian one. The results are very similar
to those obtained using a Gaussian kernel, indicating that the filter is fairly robust to
kernel choice. This agrees with the conclusion provided by Dedecius (2017).

The Cauchy kernel might be preferable to the Gaussian one for computational rea-
sons – its quantile function (required for kernel width tuning) can be calculated without
resorting to numerical approximations.

0 100 200 300 400 500

0.9
1.0
1.1

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.85 0.90 0.95 1.00 1.05 1.10 1.15
0

10

Histogram

c1

Figure 5.13: ABC-based inference of the parameter c1 in the Lotka-Volterra model. Uses
Cauchy noise and a Cauchy kernel. The true value is shown in red.

0 100 200 300 400 500
0.0045

0.0050

0.0055

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.0046 0.0048 0.0050 0.0052 0.0054 0.0056 0.0058
0

2000
Histogram

c2

Figure 5.14: ABC-based inference of the parameter c2 in the Lotka-Volterra model. Uses
Cauchy noise and a Cauchy kernel. The true value is shown in red.

45

CHAPTER 5. APPLICATIONS

0 100 200 300 400 500
0.50
0.55
0.60
0.65

Trace plot

0 20 40 60 80 100
0

1
Autocorrelation

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66
0

20
Histogram

c3

Figure 5.15: ABC-based inference of the parameter c3 in the Lotka-Volterra model. Uses
Cauchy noise and a Cauchy kernel. The true value is shown in red.

5.3.4 Experiment conclusion

The Lotka-Volterra simulation study demonstrated the performance of our algorithm and
confirmed our expectations about the differences between the particle filter and our ABC-
based method. As indicated in Chapter 3, the particle filter-based inference using the
correct observation model gives the best results. The sampled values well cover the true
parameter and have a reasonable degree of variance. On the other hand, when the obser-
vation model is misspecified, the filter completely collapses, and the inference becomes
unreliable.

Application of the ABC framework to the correctly specified model introduces some
bias which was theoretically justified in Chapter 4. The method achieves a slightly worse
precision than the particle filter, although the results are still sensible. ABC mainly excels
under a misspecified model and prevents the filter from collapsing, while still achieving
results comparable to the correctly parameterized particle filter. In addition, the ABC
filter is not particularly sensitive to the kernel choice. These points make our method
a superior choice when the true observation model is not known, as it allows for stable
inference at a similar computational cost.

5.4 Prokaryotic auto-regulation model

5.4.1 Problem description

The second considered model comes from Golightly and Wilkinson (2005, 2011), and
describes a simplified prokaryotic autoregulatory gene network. The discussion below
follows these two papers.

The model assumes that the dimer of a protein P , denoted P2, represses the transcrip-
tion of its coding gene by binding to a regulatory region in the gene. This transcrip-
tion begins by binding of RNA-polymerase to the promoter of the gene. As the RNA-
polymerase moves along the gene, it transcripts the gene into mRNA. The transcription
is repressed by binding of P2 to regions od the gene called operators. The repression and

46

CHAPTER 5. APPLICATIONS

transcription can be described in a simplified way by the following reactions:

R1 : DNA+ P2→DNA · P2

R2 : DNA · P2→DNA+ P2

R3 : DNA→DNA+RNA.

The entire process of translating the mRNA into the protein P is summarized by the
single reaction

R4 : RNA→ RNA+ P .

The reversible dimerization of P is described by

R5 : 2P → P2

R6 : P2→ 2P .

The remaining two reactions describe mRNA and protein degradation

R7 : RNA→∅
R8 : P →∅.

The state of the system at time t is Xt = (RNAt , Pt , (P2)t , (DNA · P2)t ,DNAt)
ᵀ. The stoi-

chiometry matrix is given by

S =


0 0 1 0 0 0 −1 0
0 0 0 1 −2 2 0 −1
−1 1 0 0 1 −1 0 0
1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0

 , (5.5)

and the hazard function vector is (Golightly and Wilkinson, 2011)

h(X ,c) =
(
c1P2DNA, c2DNA · P2, c3DNA, c4RNA,

c5P (P − 1)
2

, c6P2, c7RNA, c8P

)ᵀ
.

The matrix (5.5) has linearly dependent rows – we can add the last two rows together
to produce a zero vector. Given the variable ordering in Xt, this implies that

DNA · P2 +DNA = k,

where k is a constant. This is equation is called a conservation law, and the constant k
denotes the number of copies of the particular gene in the genome. From this conserva-
tion law, it follows that DNA·P2 = k−DNA, which we substitute into the system described
above. This results in a system of four variables only, denotedXt = (RNAt , Pt , (P2)t ,DNAt)

ᵀ.
This substitution simplifies the stoichiometry matrix (5.5) into

S =


0 0 1 0 0 0 −1 0
0 0 0 1 −2 2 0 −1
−1 1 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0

 ,
and the hazard function vector into

h(X ,c) =
(
c1P2DNA, c2(k −DNA), c3DNA, c4RNA,

c5P (P − 1)
2

, c6P2, c7RNA, c8P

)ᵀ
. (5.6)

47

CHAPTER 5. APPLICATIONS

For the inference problem, the unknown parameters are θ = (c1, c2, c3, c4, c7, c8)ᵀ. The
parameters c5 and c6 are assumed to be known, exactly as in Golightly and Wilkinson
(2011). The latent state at time t is xt = (RNAt , Pt , (P2)t ,DNAt)

ᵀ. We again work in the
log-space, as the rate constants are positive by definition. The model described by Go-
lightly and Wilkinson (2011) assumes the initial state to be known x0 = (8,8,8,5)ᵀ, k = 10,
c5 = 0.1, c6 = 0.9, and that

ft(xt | xt−1,θ) is simulated using Algorithm 10 ,

gt(yt | xt ,θ) =N
(
Pt + 2(P2)t ,2

2
)
.

This means we are only able to observe the protein concentrations, subject to error. The
problem becomes considerably more challenging compared to the Lotka-Volterra model,
where we observed the entire state vector (up to noise). Here we only observe a noisy
linear combination of two elements of the latent state, which makes the inference much
more difficult. The biological interpretation is that we are not able to distinguish the
protein monomers from its dimers.

The parameter prior and the Metropolis-Hastings proposal are additionally given by

π(logci) = U (−7,2) , i = 1,2,3,4,7,8,

q(θ′ | θ) =N6 (θ,0.08I6) .

The initial parameters are sampled from the prior distributions. We simulate the data yt
using Algorithm 10 and obtain a sequence of T = 237 observations yt ∼N

(
Pt + 2(P2)t ,22

)
.

The marginal Metropolis-Hastings is run again forM = 50000 samples, this time with
N = 200 particles. We use a burn-in period of 10000 and thin the samples by 25. The
ABC parameters are α = 180 and p = 0.95. The pseudo-observations are again simulated
from gt without the noise term.

5.4.2 Inference using the particle filter

We again start by applying the particle filter-based algorithm. At first, we examine the
results under a well-specified model. Next, we use a misspecified model by once again
corrupting the input sequence by the Cauchy noise.

Correctly specified observation model At first, we consider the model exactly as de-
scribed above, and perform inference using the particle filter. This is a well-specified
model, since the observation model gt coincides with the noise on the data sequence y1:T .
The results are shown in Figure 5.16, Figure 5.17 and Figure 5.18.

Most of the parameters (apart from c4) are well-covered by the posterior samples,
agreeing with the results of Golightly and Wilkinson (2011). Even after thinning, we
see that the samples are highly correlated. The original authors did not provide any
autocorrelation plots, so the results cannot be compared. Having such correlated samples
means that calculating empirical estimates would be unreliable, as they typically require
independent observations. This issue could be addressed by considering more complex
proposal distributions or samplers.

Misspecified observation model Next, we examine the filter behavior under a misspec-
ified observation model. We still use gt as described above (i.e., Gaussian), but corrupt
the input sequence y1:T by a Cauchy noise instead of Gaussian, keeping the scale param-
eter at 2. The results are shown in Figure 5.19, Figure 5.20 and Figure 5.21.

The results are (as expected) similar to the same situation in the Lotka-Volterra study.
The particle filter completely collapses under a misspecified model and is unusable for
any statistical inference.

48

CHAPTER 5. APPLICATIONS

0 200 400 600 800 1000 1200 1400 1600
0.0

0.5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

Histogram

c1

(a) c1

0 200 400 600 800 1000 1200 1400 1600
0

5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0 1 2 3 4 5 6 7
0

1

Histogram

c2

(b) c2

Figure 5.16: Particle filter-based inference of the parameters c1 and c2 in the auto-
regulation model. Uses Gaussian noise and a Gaussian observation model. The true
values are shown in red.

0 200 400 600 800 1000 1200 1400 1600
0

5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0 1 2 3 4 5 6 7
0.0

0.5

Histogram

c3

(a) c3

0 200 400 600 800 1000 1200 1400 1600
0.0

0.5
Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.0 0.1 0.2 0.3 0.4 0.5
0

10

Histogram

c4

(b) c4

Figure 5.17: Particle filter-based inference of the parameters c3 and c4 in the auto-
regulation model. Uses Gaussian noise and a Gaussian observation model. The true
values are shown in red.

0 200 400 600 800 1000 1200 1400 1600
0

2

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.0 0.5 1.0 1.5 2.0 2.5
0

2

Histogram

c7

(a) c7

0 200 400 600 800 1000 1200 1400 1600

0.1
0.2
0.3

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.05 0.10 0.15 0.20 0.25 0.30
0

10

Histogram

c8

(b) c8

Figure 5.18: Particle filter-based inference of the parameters c7 and c8 in the auto-
regulation model. Uses Gaussian noise and a Gaussian observation model. The true
values are shown in red.

49

CHAPTER 5. APPLICATIONS

0 200 400 600 800 1000 1200 1400 1600
0.10

0.11

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.100 0.102 0.104 0.106 0.108 0.110 0.112 0.114
0

2000
Histogram

c1

(a) c1

0 200 400 600 800 1000 1200 1400 1600
0.5

0.6

0.7
Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.50 0.55 0.60 0.65 0.70
0

100

Histogram

c2

(b) c2

Figure 5.19: Particle filter-based inference of the parameters c1 and c2 in the auto-
regulation model. Uses Cauchy noise and a Gaussian observation model. The true values
are shown in red.

0 200 400 600 800 1000 1200 1400 1600
0.35

0.40

0.45

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.36 0.38 0.40 0.42 0.44 0.46 0.48
0

200

Histogram

c3

(a) c3

0 200 400 600 800 1000 1200 1400 1600
0.20

0.25
Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.20 0.21 0.22 0.23 0.24 0.25
0

250

Histogram

c4

(b) c4

Figure 5.20: Particle filter-based inference of the parameters c3 and c4 in the auto-
regulation model. Uses Cauchy noise and a Gaussian observation model. The true values
are shown in red.

0 200 400 600 800 1000 1200 1400 1600
0.3
0.4
0.5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.30 0.35 0.40 0.45 0.50 0.55
0

200

Histogram

c7

(a) c7

0 200 400 600 800 1000 1200 1400 1600

0.09

0.10
Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.088 0.090 0.092 0.094 0.096 0.098 0.100
0

1000
Histogram

c8

(b) c8

Figure 5.21: Particle filter-based inference of the parameters c7 and c8 in the auto-
regulation model. Uses Cauchy noise and a Gaussian observation model. The true values
are shown in red.

50

CHAPTER 5. APPLICATIONS

5.4.3 Inference using ABC

Next, we apply the marginal Metropolis-Hastings algorithm depending on the ABC meth-
ods.

Gaussian noise, Gaussian kernel At first, we use an input sequence corrupted by a
Gaussian noise, as described above, and use ABC with a Gaussian kernel. The results are
shown in Figure 5.22, Figure 5.23 and Figure 5.24.

Unfortunately, it appears that the ABC approximation introduces too much bias to
the inference, as only two parameters (c4 and c7) are correctly identified. In addition, the
samples for c8 are not as far off, judging from the x-axis labels. Samples for the remaining
parameters have diverged from the true values. As was the case with the particle filter,
there is a strong autocorrelation present in the sampled values.

Some indications given in Wilkinson (2011) state that ABC (though applied in a dif-
ferent context than SSMs) together with the simple Gillespie algorithm can lead to poor
results. To obtain better estimates, more sophisticated reaction simulators should be
considered for the complex problems studied in molecular biology.

0 200 400 600 800 1000 1200 1400 1600
0

5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0 1 2 3 4 5 6 7
0.00

0.25

Histogram

c1

(a) c1

0 200 400 600 800 1000 1200 1400 1600
0.0

0.5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

Histogram

c2

(b) c2

Figure 5.22: ABC-based inference of the parameters c1 and c2 in the auto-regulation
model. Uses Gaussian noise and a Gaussian kernel. The true values are shown in red.

0 200 400 600 800 1000 1200 1400 1600
0

5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0 1 2 3 4 5 6 7
0.0

0.2

Histogram

c3

(a) c3

0 200 400 600 800 1000 1200 1400 1600
0

2

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1
Histogram

c4

(b) c4

Figure 5.23: ABC-based inference of the parameters c3 and c4 in the auto-regulation
model. Uses Gaussian noise and a Gaussian kernel. The true values are shown in red.

51

CHAPTER 5. APPLICATIONS

0 200 400 600 800 1000 1200 1400 1600
0

5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0 1 2 3 4 5 6 7
0

1
Histogram

c7

(a) c7

0 200 400 600 800 1000 1200 1400 1600

0.05

0.10
Trace plot

0 20 40 60 80 100
0

1
Autocorrelation

0.02 0.04 0.06 0.08 0.10
0

50

Histogram

c8

(b) c8

Figure 5.24: ABC-based inference of the parameters c7 and c8 in the auto-regulation
model. Uses Gaussian noise and a Gaussian kernel. The true values are shown in red.

Cauchy noise, Gaussian kernel Next, we again apply the heavy-tailed Cauchy noise to
the input sequence, but keep using the Gaussian kernel. We are interested to see whether
the filter collapses, as was the case in particle filter-based inference under a misspecified
model. The results are shown in Figure 5.25, Figure 5.26 and Figure 5.27.

The situation is similar to the previous experiment with Gaussian noise. The param-
eters c1, c4 and to a lesser degree, c8, are identified. The samples of the other parameters
diverge.

Unlike the particle filter, our method again does not collapse under model misspec-
ification. It is still a better choice if we do not have access to the correct model, as it
manages to identify at least some parameters.

0 200 400 600 800 1000 1200 1400 1600
0

5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0 1 2 3 4 5 6 7
0

1

Histogram

c1

(a) c1

0 200 400 600 800 1000 1200 1400 1600
0

1

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
0

5
Histogram

c2

(b) c2

Figure 5.25: ABC-based inference of the parameters c1 and c2 in the auto-regulation
model. Uses Cauchy noise and a Gaussian kernel. The true values are shown in red.

Cauchy noise, Cauchy kernel Finally, we are interested to see what happens when we
keep the Cauchy noise on the input sequence but use the Cauchy kernel. The results are
shown in Figure 5.28, Figure 5.29 and Figure 5.30.

As expected, the filter does not collapse. There is still a notable identification prob-
lem, similarly to the the previous two experiments – a simple change in the kernel func-
tion cannot significantly improve the estimate quality. Compared to the Gaussian kernel
experiment, the sampled values are somewhat more spread out.

52

CHAPTER 5. APPLICATIONS

0 200 400 600 800 1000 1200 1400 1600
0

5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0 1 2 3 4 5 6 7
0.00

0.25

Histogram

c3

(a) c3

0 200 400 600 800 1000 1200 1400 1600
0.0

0.5
Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.0 0.1 0.2 0.3 0.4 0.5
0

5

Histogram

c4

(b) c4

Figure 5.26: ABC-based inference of the parameters c3 and c4 in the auto-regulation
model. Uses Cauchy noise and a Gaussian kernel. The true values are shown in red.

0 200 400 600 800 1000 1200 1400 1600
0

1
Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.0 0.2 0.4 0.6 0.8 1.0
0

5
Histogram

c7

(a) c7

0 200 400 600 800 1000 1200 1400 1600
0.00

0.05

0.10
Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.02 0.04 0.06 0.08 0.10
0

50
Histogram

c8

(b) c8

Figure 5.27: ABC-based inference of the parameters c7 and c8 in the auto-regulation
model. Uses Cauchy noise and a Gaussian kernel. The true values are shown in red.

0 200 400 600 800 1000 1200 1400 1600
0

2
Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.0 0.5 1.0 1.5 2.0
0

2
Histogram

c1

(a) c1

0 200 400 600 800 1000 1200 1400 1600

2.5
5.0
7.5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

1 2 3 4 5 6 7
0.0

0.5
Histogram

c2

(b) c2

Figure 5.28: ABC-based inference of the parameters c1 and c2 in the auto-regulation
model. Uses Cauchy noise and a Cauchy kernel. The true values are shown in red.

53

CHAPTER 5. APPLICATIONS

0 200 400 600 800 1000 1200 1400 1600

2.5
5.0
7.5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

1 2 3 4 5 6 7
0.0

0.2

Histogram

c3

(a) c3

0 200 400 600 800 1000 1200 1400 1600

0.5
1.0
1.5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0

1

Histogram

c4

(b) c4

Figure 5.29: ABC-based inference of the parameters c3 and c4 in the auto-regulation
model. Uses Cauchy noise and a Cauchy kernel. The true values are shown in red.

0 200 400 600 800 1000 1200 1400 1600
0

5

Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0 1 2 3 4 5 6 7
0.0

0.5
Histogram

c7

(a) c7

0 200 400 600 800 1000 1200 1400 1600

0.5

1.0
Trace plot

0 20 40 60 80 100

0

1
Autocorrelation

0.2 0.4 0.6 0.8 1.0
0

5
Histogram

c8

(b) c8

Figure 5.30: ABC-based inference of the parameters c7 and c8 in the auto-regulation
model. Uses Cauchy noise and a Cauchy kernel. The true values are shown in red.

54

CHAPTER 5. APPLICATIONS

5.4.4 Experiment conclusion

We applied our algorithm to a simplified representation of a prokaryotic autoregulatory
network. As in the Lotka-Volterra study, the latent spaces were again simulated using
the Gillespie algorithm. In this experiment, inference was much more difficult, as the
observed sequence yt was only a one-dimensional linear combination of two of the four
elements of the state vector xt.

The particle filter managed to well identify the static parameter under a correct ob-
servation model. When this model was misspecified, the filter completely collapsed and
the results became unusable, as was expected.

Our ABC-based method introduced too much bias and encountered identification
problems in about half of the unknown parameters. We attempted to increase the num-
ber of particlesN and carefully tune the scale of the proposal distribution, but the results
remained similar. Still, the ABC filter does not collapse even when applied to a sequence
corrupted by heavy-tailed noise. Our method should be considered when we suspect that
the observation model is unknown, as it remains stable and identifies at least a subset of
the parameters.

One thing to note is due to the form of the hazard function (5.6), the parameters
c2 and c3, and c4 and c7 are correlated, as they appear together with the same nucleic
acids. This may introduce additional difficulties with parameter identification. Another
possible cause for the unsatisfactory results is the simple Gillespie algorithm. It is likely
that using a more complex simulation mechanism would lead to better results; this is a
possibility left for future work.

55

Chapter 6

Conclusion and future work

This thesis deals with static parameter inference in state-space models (SSMs). We ap-
proach the problem using the probabilistically consistent and versatile Bayesian frame-
work. This involves formulating a prior density and inferring a posterior distribution of
the static parameter given an observed sequence. The inference process is complicated
by the intractable likelihood of the state-space model, which prevents the application of
standard Bayesian methods.

The state-of-the-art approach to the problem is to approximate the unknown pos-
terior distribution using Markov Chain Monte Carlo (MCMC) sampling from the static
parameter space and employing a “nested” sequential Monte Carlo filter – i.e., a parti-
cle filter – for the likelihood evaluation. In particular, this likelihood serves to calculate
the MCMC acceptance probability. This is known as the particle Markov Chain Monte
Carlo (PMCMC) algorithm. The particle filter can be proved to preserve the asymptotic
properties of the sampler, even though the likelihood is only approximated.

A common drawback of this approach is the assumptions of a fully specified data-
generating mechanism in the form of a probability density function. In applications, this
assumption is often violated and calls for approximations. In this thesis, a novel method
inspired by the recently developed approximate Bayesian computation (ABC) filters is
proposed. While it preserves the MCMC part of the algorithm, it replaces the particle
filter by an adaptive ABC filter. The likelihood is then approximated by applying this
ABC filter to each sample from the static parameter space. Compared to the particle
filter, this method does not require the data-generating model to be probabilistic and
instead allows for deterministic functions commonly occurring in practice.

The resulting algorithm does not introduce any additional computational complexity
over the particle filter. Unlike PMCMC, our method does not collapse under a misspeci-
fied observation model of the SSM and remains stable even when the observed sequence
is corrupted by a heavy-tailed noise. Under a known data-generating model, our algo-
rithm necessarily performs worse than the particle filter, since it brings an additional
level of approximation. The bias of the ABC method is only mild in the simulation study
and the results are comparable to the particle filter. It is more notable in the much more
complex autoregulation model but arguably, the Gillespie algorithm used to simulate
reactions is too simplistic. It is likely that employing a more complex simulator would
represent the biological process more faithfully and allow for more precise inference.

In future work, generalizations of the adaptive kernel tuning to multiple dimensions
should be considered. The tuning procedure utilized in this thesis has been derived in
context of one-dimensional kernels and applied coordinate-wise in a multidimensional
setting. As a consequence, the individual observation vector elements are assumed in-
dependent. More reliable likelihood estimates and, in turn, closer representation of the
static parameter posterior could be obtained by exploiting the observation dependencies.

57

CHAPTER 6. CONCLUSION AND FUTURE WORK

If applications to more complicated biological systems was of interest, one should
study more sophisticated ways of simulating the latent states. The Gillespie algorithm is
still a naïve method, and fails to cover the details present in systems as complex as those
found in molecular biology.

58

Bibliography

C. Andrieu, A. Doucet, and R. Holenstein. Particle markov chain monte carlo methods
(with discussion). Journal of the Royal Statistical Society, Series B, 72:1–33, 01 2010.

G. E. Box. Robustness in the strategy of scientific model building. In Robustness in
statistics, pages 201–236. Elsevier, 1979.

S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of markov chain monte carlo.
CRC press, 2011.

F. d’Alché Buc, M. Quach, and N. Brunel. Estimating parameters and hidden variables in
non-linear state-space models based on ODEs for biological networks inference. Bioin-
formatics, 23(23):3209–3216, 12 2007. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btm510. URL https://doi.org/10.1093/bioinformatics/btm510.

K. Dedecius. Adaptive kernels in approximate filtering of state-space models. In-
ternational Journal of Adaptive Control and Signal Processing, 31(6):938–952, 2017.
doi: 10.1002/acs.2739. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/

acs.2739.

P. Del Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems
With Applications, volume 100. 05 2004. ISBN 0387202684. doi: 10.1007/
978-1-4684-9393-1.

R. Douc and O. Cappe. Comparison of resampling schemes for particle filtering. pages
64 – 69, 10 2005. ISBN 953-184-089-X. doi: 10.1109/ISPA.2005.195385.

A. Doucet, A. Smith, N. de Freitas, and N. Gordon. Sequential Monte Carlo Meth-
ods in Practice. Information Science and Statistics. Springer New York, 2001. ISBN
9780387951461. URL https://books.google.cz/books?id=uxX-koqKtMMC.

B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):
1–26, 1979.

P. Fearnhead and D. Prangle. Constructing summary statistics for approximate bayesian
computation: semi-automatic approximate bayesian computation. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 74(3):419–474. doi: 10.1111/j.
1467-9868.2011.01010.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/

10.1111/j.1467-9868.2011.01010.x.

D. T. Gillespie. A General Method for Numerically Simulating the Stochastic Time Evo-
lution of Coupled Chemical Reactions. Journal of Computational Physics, 22:403–434,
Dec. 1976. doi: 10.1016/0021-9991(76)90041-3.

D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of
Physical Chemistry, 81(25):2340–2361, 1977. doi: 10.1021/j100540a008. URL https:

//doi.org/10.1021/j100540a008.

59

https://doi.org/10.1093/bioinformatics/btm510
https://onlinelibrary.wiley.com/doi/abs/10.1002/acs.2739
https://onlinelibrary.wiley.com/doi/abs/10.1002/acs.2739
https://books.google.cz/books?id=uxX-koqKtMMC
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2011.01010.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2011.01010.x
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008

BIBLIOGRAPHY

A. Golightly and D. J. Wilkinson. Bayesian inference for stochastic kinetic models using
a diffusion approximation. Biometrics, 61(3):781–788, 2005.

A. Golightly and D. J. Wilkinson. Bayesian parameter inference for stochastic biochemi-
cal network models using particle markov chain monte carlo. Interface focus, 1:807–20,
12 2011. doi: 10.1098/rsfs.2011.0047.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

W. K. Hastings. Monte carlo sampling methods using markov chains and their ap-
plications. Biometrika, 57(1):97–109, 1970. doi: 10.1093/biomet/57.1.97. URL
http://biomet.oxfordjournals.org/cgi/content/abstract/57/1/97.

A. Jasra. Approximate bayesian computation for a class of time series models. In-
ternational Statistical Review, 83(3):405–435, 2015. doi: 10.1111/insr.12089. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12089.

A. Jasra, S. S. Singh, J. S. Martin, and E. McCoy. Filtering via approximate bayesian com-
putation. Statistics and Computing, 22(6):1223–1237, Nov 2012. ISSN 1573-1375. doi:
10.1007/s11222-010-9185-0. URL https://doi.org/10.1007/s11222-010-9185-0.

S. J. Julier and J. K. Uhlmann. A new extension of the kalman filter to nonlinear systems.
pages 182–193, 1997.

R. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering (ASME), 82D:35–45, 01 1960. doi: 10.1115/1.3662552.

J. Lintusaari, M. U. Gutmann, R. Dutta, S. Kaski, and J. Corander. Fundamentals and
recent developments in approximate bayesian computation. Systematic biology, 66(1):
e66–e82, 2017.

A. J. Lotka. Contribution to the theory of periodic reactions. The Journal of Physical
Chemistry, 14(3):271–274, 1909. doi: 10.1021/j150111a004. URL https://doi.org/

10.1021/j150111a004.

D. J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge Univer-
sity Press, New York, NY, USA, 2002. ISBN 0521642981.

J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder. Approximate bayesian computational
methods. Statistics and Computing, 22(6):1167–1180, 2012.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation
of state calculations by fast computing machines. The journal of chemical physics, 21(6):
1087–1092, 1953.

A. Noor, E. Serpedin, M. N. Nounou, and H. N. Nounou. Inferring gene regulatory net-
works via nonlinear state-space models and exploiting sparsity. IEEE/ACMTransactions
on Computational Biology and Bioinformatics, 9:1203–1211, 2012.

J. K. Pritchard, M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman. Population growth
of human y chromosomes: a study of y chromosome microsatellites. Molecular biology
and evolution, 16(12):1791–1798, 1999.

C. Robert. The Bayesian choice: from decision-theoretic foundations to computational imple-
mentation. Springer Science & Business Media, 2007.

60

http://biomet.oxfordjournals.org/cgi/content/abstract/57/1/97
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12089
https://doi.org/10.1007/s11222-010-9185-0
https://doi.org/10.1021/j150111a004
https://doi.org/10.1021/j150111a004

BIBLIOGRAPHY

C. P. Robert and G. Casella. Monte Carlo Statistical Methods (Springer Texts in Statistics).
Springer-Verlag, Berlin, Heidelberg, 2005. ISBN 0387212396.

S. Roweis and Z. Ghahramani. A unifying review of linear gaussian models. Neural Com-
put., 11(2):305–345, Feb. 1999. ISSN 0899-7667. doi: 10.1162/089976699300016674.
URL http://dx.doi.org/10.1162/089976699300016674.

D. B. Rubin et al. Bayesianly justifiable and relevant frequency calculations for the ap-
plied statistician. The Annals of Statistics, 12(4):1151–1172, 1984.

T. Schön, A. Lindholm, L. Murray, and F. Lindsten. Probabilistic learning of nonlinear
dynamical systems using sequential monte carlo. Mechanical Systems and Signal Pro-
cessing, 03 2017. doi: 10.1016/j.ymssp.2017.10.033.

X. Sun, L. X. Jin, and M. Xiong. Extended kalman filter for estimation of parameters in
nonlinear state-space models of biochemical networks. PLoS ONE, 3:1220 – 4, 2008.

T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf. Approximate bayesian
computation scheme for parameter inference and model selection in dynamical sys-
tems. Journal of the Royal Society, Interface, 6 31:187–202, 2009.

V. Volterra. Variations and Fluctuations of the Number of Individuals in Animal Species
living together. ICES Journal of Marine Science, 3(1):3–51, 04 1928. ISSN 1054-3139.
doi: 10.1093/icesjms/3.1.3. URL https://doi.org/10.1093/icesjms/3.1.3.

M. Wand and M. Jones. Kernel Smoothing. Chapman & Hall/CRC Monographs on
Statistics & Applied Probability. Taylor & Francis, 1994. ISBN 9780412552700. URL
https://books.google.cz/books?id=GTOOi5yE008C.

Z. Wang, X. Liu, Y. Liu, J. Liang, and V. Vinciotti. An extended kalman filtering approach
to modeling nonlinear dynamic gene regulatory networks via short gene expression
time series. IEEE/ACM transactions on computational biology and bioinformatics / IEEE,
ACM, 6:410–9, 07 2009. doi: 10.1109/TCBB.2009.5.

D. Wilkinson. Stochastic Modelling for Systems Biology, Second Edition. Chapman &
Hall/CRC Mathematical and Computational Biology. Taylor & Francis, 2011. ISBN
9781439837726. URL https://books.google.cz/books?id=G3BaHtBrW68C.

R. Wilkinson. Approximate bayesian computation (abc) gives exact results under the
assumption of model error. Statistical applications in genetics and molecular biology, 12:
1–13, 05 2013. doi: 10.1515/sagmb-2013-0010.

N. Zeng, Z. Wang, Y. Li, M. Du, and X. Liu. Inference of nonlinear state-space models
for sandwich-type lateral flow immunoassay using extended kalman filtering. IEEE
Transactions on Biomedical Engineering, 58:1959–1966, 2011.

61

http://dx.doi.org/10.1162/089976699300016674
https://doi.org/10.1093/icesjms/3.1.3
https://books.google.cz/books?id=GTOOi5yE008C
https://books.google.cz/books?id=G3BaHtBrW68C

Appendix A

Attached files

The attached files contain the source codes and input data necessary to run the experi-
ments. The main scripts used to run the simulations come with a command line interface
containing a help message listing the accepted arguments. The attachment structure is
specified in Table A.1.

File Description
/data Serialized input data for the two experiments.
auto_regulation.py Script to run the autoregulation experiment.
auto_regulation_routines.pyx Additional routines writen in Cython.
lotka_volterra.py Script to run the Lotka-Volterra experiment.
lotka_volterra_routines.pyx Additional routines written in Cython.
mcmc.py Implementation of the inference methods.
utils.py Miscellaneous utility functions.

Table A.1: List of attached files.

63

	Introduction
	Background
	Markov Chain Monte Carlo methods
	Parameter inference in state-space models
	Approximate Bayesian Computation
	Applications to molecular biology

	Learning the parameters of a state-space model
	State-Space Model definition
	Parameter inference
	The particle filter
	Using the particle filter to estimate the likelihood

	Approximate Bayesian Computation
	Motivation
	ABC in general
	ABC in SSMs
	Likelihood estimate through ABC

	Applications
	Implementation notes
	Preliminary: the Gillespie algorithm
	Lotka-Volterra model
	Problem description
	Inference using the particle filter
	Inference using ABC
	Experiment conclusion

	Prokaryotic auto-regulation model
	Problem description
	Inference using the particle filter
	Inference using ABC
	Experiment conclusion

	Conclusion and future work
	Bibliography
	Attached files

