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Abstrakt

Tato diplomova prace popisuje decentralizovany systém jménem NodeSkipper urceny pro kteroukoli
spojitou neorientovanou sit. Uzly v této siti mohou posilat nebo vyhledavat jiné uzly nebo vyvolat
proces "consensus", kdy se cela sit shodne na hodnoté zvolené veli¢iny tak, aby byl vysledek ovlivnén
kazdym uzlem a byl pro vSechny uzly stejny. NodeSkipper je inspirovany datovou strukturou Skip List,
kterd diky ndhodnosti své struktury, kterd se pres postupné pridavani a ubirani uzll pfiblizuje
zvolenému pravdépodobnostnimu rozdéleni, nabizi velmi vSestranny vykon a vysokou robustnost.

Protokol NodeSkipper pracuje nejlépe pro sité s efektem malého svéta, ktery se vyskytuje ve
skutecnych sitich pfirozené. Diky tomuto efektu roste prlmér sité pouze logaritmicky vzhledem k
mnozZstvi uzld. V takové siti je NodeSkipper schopny dorucit zpravu nebo hledat uzel v logaritmickém
Case. Diky své necentralizovanosti a absenci konkrétni struktury funguje velmi dobfe s velkymi
sitémi, kde jsou nové uzly nepredvidatelné pfidavany a odebirany a pfima spojeni navazovdna a
ztracena, jako napfiklad vozidla v silniéni dopravé, dorucovaci roboti, stroje v tovarné, bezpecnostni
systémy pro velkd Gzemi, pocitace spolupracujici na vypocetné narocné uloze nebo roboti Ucastnici
se boje.

ProtoZe tento systém nema zadné uzly s vyssi dalezitosti, je odolny vici cilenym Utoklm a vzhledem
k tomu, Ze funguje na kterémkoli spojitém grafu, je odolny vic¢i ndhodnym utoklm a selhanim. Diky
schopnosti dojit ke shodé mlze dobre koordinovat své prostiedky.

Abstract

This thesis describes a decentralized system that can work over any connected undirected network
called NodeSkipper. Each node in this system can send a message to another node, look-up any node
or request the system to reach consensus, which means that every node in the system will agree on
a quantity of interest in a manner where each node influences the result. The system is designed
after the Skip List data structure, which uses randomized structure that over successive entries and
removals converges towards its probability distribution, while providing great all-rounded
performance and robustness.

The NodeSkipper protocol works best over networks with small-world effect, which occurs naturally
on real networks. This effect manifests itself by network diameter scales logarithmically with the
number of nodes. On such network, NodeSkipper can deliver messages and look-up nodes in
logarithmical time as well. Thanks to its decentralized nature and no rigid structure, it works well
with large networks where new nodes are unpredictably added and removed and direct connections
gained and lost, such as cars on the road, delivery robots, machines in a manufacturing plant, large
scale security system, computers working together on computationally demanding task or battle
units in armed conflict.

Because this system does not have any nodes of special importance, it is resistant to targeted
attacks. Because it works as long as the graph is connected, it is resistant to random attacks and
failures. Thanks to its ability to reach network wide consensus, it can coordinate its efforts.
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1 Introduction

Network is one of the ways in which a system can be represented, it can help to
highlight the parts that the system is composed of, their interactions, relations or
dependencies. A network is composed of nodes and edges. Edges represent a con-
nection between nodes, they often have a label or a state description. Nodes are the
subsystems that make a whole, much like edges, they can have a state or a label,
but can also feature internal logic or even some level of autonomy, [2].

When we are studying a complex system, it might not be feasible to look at every-
thing at once. Dividing a problem into sub-problems or just simple states can make
a problem easier to understand and help us with finding the solution, [3]. This is
not something that is done only in computers or only by humans. Many animals
seem to have developed such a method of analysis long before humans even ex-
isted, [5]].

Nevertheless, a problem that is described and understood still needs to be solved
and networks can help with that as well. Once again, humans were not the first to
discover that, as shown time and time again, alone, we can do little, but together,
we can do so much, although we might have been the first to make a proverb out
of it. Plants can communicate in a cascade to warn others of threats, [1], animals,
such as fish and birds can pass information, distribute it through their group, reach
a consensus and act on it in unison, [18], with some mammals even implementing
advanced decision making, [21]].

In computational theory, networking has been important from the very start. In
fact the Analytical Engine, the first proposed general purpose computer designed
by Charles Babbage, [22], could be represented as an automaton, since it can be
emulated on a computer with random access memory (i.e. modern computer) and
for each program P of n steps that would run on such computer, a Turing machine
that produces the same result for each instance of program P can be constructed,
[28]]. Although a network can be used to represent a computer that does not mean
that it is a good idea and it is indeed seldom used, with notable exception of small
subsystems of computer logic, such as branch prediction, [30].

1.1 Early communication networks

Where network representation makes much more sense are network of individual
computers, namely the Internet, the latest iteration in the effort to communicate
over large distance, but not the first. The attempts to communicate in cases where
voice and gestures do not reach are probably as old as the first civilizations, with
the likely use of smoke signals. First well documented and far spanning com-



munication systems, apart from simply dispatching a messenger, can be found in
4th century BC in Roman Republic and China, during the Warring States period.
These systems include signal fires, pot drainage systems or drum beats, [24]]. Even
though these systems might seem crude and impractical by today’s standards, they
must have seemed sufficient at the time, since little progress can be observed over
the next 2000 years. The invention of a telescope in 1608 prompted this to finally
change with optical semaphore signalization being proposed by Robert Hook in
1684, [24]. It prompted the creation of wide spanning communication networks
all over Europe. Even though the transfer speed was as low as 2 words per minute
and bad weather could disrupt communication, it was the first time a real time con-
versation could be carried out over vast distances. Even though it was mainly used
for military purposes, it showed the potential of communication less constrained
by distance.

It would not be until 1816, when the system that would give the public its
chance to enjoy near real time communication over long distances took form. Many
inventors worked on similar concepts, but it was Francis Ronalds who was first able
to present a working prototype of electrical telegraph, [24]. The first glimpse of
the things to come appeared with teleprinters. They were machines intended to
transfer text to one another. One of the early examples is the Morse telegraph from
1837 by Samuel Morse and Alfred Vail, [24]. The devices in this circuit switched
network could only connect to one other device for a defined period of time and
transmit messages during this period. This means that the topology of the network
would change to accommodate a new connection, [2]. This network became truly
global in 1858, when the Atlantic Telegraph Company successfully laid a cable
across Atlantic ocean, connecting Europe to the North America. While this con-
nection failed in the same year, lasting success for Atlantic Telegraph Company
came in 1866, when they have managed to lay a new cable as well as rescue and
finish one of previous attempts. Another breakthrough came in 1886 by Heinrich
Rudolf Hertz, when he demonstrated wireless transmitting of telegraph messages,
[24]]. This system was refined by Guglielmo Marconi in 1899 and adopted for naval
use. It was one of the first wide broadcasts, with information for ships and their
crews.

The next big step forward was the invention of a telephone in 1876 by Alexan-
der Graham Bell and its implementation a year later. Apart from allowing its sub-
scribers to communicate by spoken words, not just text, it provided the users with
much greater bandwidth, something that Telex messaging network took advantage
in 1933, [24]. Telex enabled anyone with access to a telephone line and a modi-



fied telephone switch to connect to anyone with the same set-up. This network has
already supported multiplexing, allowing up to 25 parallel connections on a single
line and automatic routing.

Next important development was the creation of modulation and demodulation de-
vice, modem for short, in 1949, [24]]. This device allowed computers to commu-
nicate over the network directly, human operator was no longer required. This
provided all the pieces needed for creation of Bell 101 modem, allowing comput-
ers to connect to each other over telephone lines.

Now that it was possible for average consumer to connect to another computer, it
was important to also provide a reason to do so and a way to do it without ex-
pert knowledge. This is where commercial networks come in. The ones focusing
on corporate clientele, such as CompuServe, focused mainly on services such as
digital office, distributed computing, shared data access and advanced communica-
tion, which were big drives motivating the rapid adoption of computer networking.
Other networks were targeting mainly the non-professional customers, for exam-
ple Minitel, focused on providing access to news, games or connecting and finding
other users, [12]]. They offered their own software and often specialized hardware
for their clients that can be used to interpret the data coming from the telephone
line and provided an infrastructure that user can connect to.

1.2 Backbones and inter-networking

Although there was an abundance of networks for both businesses and individuals
to connect to, there was no universal product. A Tymnet subscriber could not send
an email to a Telenet subscriber, even thou both systems supported the service,
[20]], since the networks could not link to one another. This started to be a prob-
lem, since it was not feasible to switch computers from two networks to a new one
every time an expansion was needed or to have a separate network for each subset
of computers that needed to be networked together. This was especially infeasible
for the networks that, unlike those using modems and telephone lines, used dedi-
cated connections, like Cyclades and NPL in Europe, [[13] or ARPAnet, Satnet or
Prnet in the United states. As a result the OSI and TCP/IP,[I.2.1] layered protocols
were proposed, [16], allowing for data to be transferred between computers of dif-
ferent networks.
While TCP/IP was a project inside the ARPA, OSI was heavily influenced by the
existing standards, such as IBM’s SNA and Digital Equipment Corporation’s DEC-
net, who introduced the layering concept in answer to the still growing networks
and the need to be inter-connected without the need to affect the functionality of
the original local networks, [6].

Initially, the OSI model has seen some success and was initially considered to



be the future of inter-networking, in great part thanks to DEC and IBM, whose
SNA was the most dominant architecture, being its big proponents. Neverthe-
less, the TCP/IP has also seen substantial adoption, mostly in the United States of
America, since its intercontinental demonstration in 1977, thanks to the support
from National Science Foundation (NSF), which provided significant investment
to the infrastructure of many networks that were using it and the quickly growing
vendor, CISCO.

Since the protocol battle lasted, many hardware and software vendors added sup-
port for both OSI and TCP/IP, [6]. While both systems aimed for wide compat-
ibility, the DECnet and SNA were still rather restrictive, wanting its customers
to remain fully within their ecosystems. When Data Link Switching allowed the
much larger SNA install base to run over IP network and when the networks sup-
ported by NSF, which were originally strictly for non-commercial use, with most
users being government employees and university students, lifted these restrictions
in 1991, which allowed commercial networks to connect to the existing infrastruc-
ture using the TCP/IP model, turning them into Internet service providers (ISP),
the TCP/IP protocol has gained a lot of momentum. This has eventually resulted
in its dominance over the OSI model, with TCP and IP protocols still widely used
to this day.

ARPAnet, mentioned above, was one of the oldest network systems, started in
1969, [24], it was strictly non-commercial network. It has undergone a critical
transformation in 1985, when parts of it got re-purposed as NSFNET. This new
network allowed much greater volume of data to be transferred compared to the
ARPAnet connections, [9]]. This has brought about a major change, one that is the
defining feature of the Internet we are using today. For the last 2400 years, we
have been building new connections in a network based on a need of connecting
two points. If two places needed to communicate, we would build a connection
between them. Some existing infrastructure might be used, but mostly if it was
already between the two points. These connections were quite similar, with similar
bandwidths, reliability or priority. But now, there were tiers of connections. The
backbone of the network, the first tear, was now NSFNET. With this new structure,
when a new connection was required, we would seek to connect it to the backbone,
even if the goal is to connect it to just one or a few of specific remote nodes.
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1.2.1 TCP/IP model

Both the TCP/IP and OSI models introduce layers that serve to specify the function
of various protocols and how they should interact and pass data to one another, [19].
While these models are not strict, not adhering to them could negatively effect
compatibility and should be only done for a good reason, such as a considerable
simplification or an increase in efficiency.
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Figure 2: Main networking layer models, [38]]

The TCP/IP model has 4 layers, they, along with they most agreed mapping to
the ISO model can be seen on figure 2] The function of individual layers is, [17]:

e Link layer

A protocol in a link layer provides connection between two hosts that allows
them to communicate. It assumes the other host is directly reachable with-
out the need for any interconnecting node in the middle. For this reason, a
protocol in the link layer usually operates on local networks(LAN), although
it can be used over remote hosts which lack direct connection. In this case,
there is usually a tunnelling protocol in use which hides all the intermediate
elements from the link layer protocol, so that the two host can be treated as
if they had a direct connection.

e Internet layer
The internet layer delivers a packet, which is formatted piece of data that is



carried over network, from its source to the destination node. It introduces
an addressing that can be used to define the nodes and can carry the packet
over the boundaries of local networks, connecting multiple networks through
gateways. Internet layer protocol has to find a route between the endpoints
(i.e. routing).

e Transport layer
Transport layer protocol enables a communication between two nodes. It fa-
cilitates the sending of an entire messages that consist of one or more pack-
ets. It is responsible for segmenting data in the message at the source node
and reassembling the message and the destination node. It enables a protocol
in the application layer to transfer data to another node.

e Application layer

The application layer ensures that a message can be sent to another node
and that this message has a format that is understood by other nodes on the
network, allowing it to be read. It provides and interface that allows the
communication over the network. It specifies the availability of the commu-
nication, establishes agreement on strategy for achieving data integrity and
error recovery. It is what an application, such as web browser of email client,
uses to connect to other machines.

1.3 Centralized and distributed approach to networking

While the centralized approach to networking certainly managed to move the In-
ternet into the mainstream and allow humans and businesses from all around the
world, and even the Earth’s orbit, to communicate in real time for relatively low
costs in a very short period of time, it also brought many problems and drawbacks.
While it is clear that enthusiast driven decentralized approach to networking would
not be able to spread that fast and the inter-continental communication is still feasi-
ble mostly for large corporations, the economically accessible centralized solution
has mostly removed the motivation to develop such a system. This left us with
something of a monopoly, not just businesses, even though oligopoly just 11 major
backbone providers for the whole word, is not as much as many would have hoped,
but rather monopoly of just one approach with no other option anywhere in sight.
The Internet is important part of our lives, our economies, our decision processes,
our relationships, yet we have little control over it.

In the current and only system, a backbone provider can chose to blackhole a range
of addresses, [7] and the average user is left little to know chance that such a
site even existed. The routing of our requests is controlled by a few entities with

10



unknown or unclear intentions, which inevitably leads to exploitation, [8]]. The so-
lution? Just a patch and continue on, heading unchanged, even when whole nations
lose the Internet connection[[14]], a different approach is hardly even discussed.
Now, this approach is seeping into the content of the Internet as well. Google dom-
inates the search market in all but four countries of the world and owns two of
the most visited websites, about half of the e-commerce done in the united states
is done through Amazon, half of the domain names have been registered through
Godaddy, 60% of content management services, used largely by news sites and
opinion driven sites is provided by WordPress. The largest social media site, Face-
book, has 2.3 billion monthly users, [39]. For many people, Internet has turned
into a gateway for accessing a very limited selection of large portals, whose con-
tent is closely monitored and adjusted based on the profiles they have created by
providing them with wealth of data. Sadly, if 90% of websites vanished overnight,
many might not even notice.

Thanks to the Internet’s centralized nature, governments have many options of
blocking access to content they deem inappropriate, [42]], [43], [44], [45], [46].
Recent developments in European union even present threat to possibility of legal
existence for small internet platforms that allow for user input, [47]], possibly forc-
ing them to shut down or have a large company filter, view and control their traffic.
While there is little chance that a decentralized network that could compete with
the Internet would form in near future, there are still many options to stay less
restricted. Virtual private networks are more affordable then ever, TOR provides
great options for obfuscating traffic and avoiding DNS blocking, DHT and blockchain
technologies provide distributed networks over the centralized one, that are diffi-
cult to disrupt. And even though they get less traffic, smaller platforms do exist, as
well as decentralized variants to each of the mainstream website that do not need
any server to let its users connect.

2 State of the art

This project is not made in vacuum, it is based on previous research and existing
ideas. It is not the first distributed routing protocol, just a different take on it.

2.1 The Skip list data structure

The skip list is the basis for the proposed NodeSkipper protocol, whose name is
intentionally similar. Skip list is a probabilistic data structure that arguably offers
all the benefits and none of the drawbacks of all the other data structures. It is easy
to implement, works for random or structured input, has insertion, deletion and
search for an element in logarithmic time, can retrieve both the highest and lowest
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element in constant time, so it can be used very much like a heap, can scale up and
down easily, generates very little overhead for pointers, needs no pre-allocation for
the data stored and can easily be implemented for multi-threaded workloads, [[10].
The structure of skip list is very similar to linked list. Each element points to
the both the element that precedes it and the one that follows it, these are called
pointers on level 0. On top of this, some elements also have links of higher level,
where the probability of having pointers up to a level L is (p)”, with p being a
parameter defined by the user. Both the remove and insert operations rely on the
search operation and then apply changes to the pointers, meaning that as long as
the search operation is fast, all the basic operations are. As the name suggests, the
search operation relies on skipping some of the elements in the list, since it starts
on the highest level available and only goes to a lover level once the value that it
searches for is exceeded.

Search path / update|i]—forward|i]
AW = : -
e _r - ] - N
4 o T bl T NIL
ENEEN e O ML 20 I S R = N N
original list, 17 to be inserted
-
| — - - [
6] = sl NIL
SO M S pE R NE S FE S S DE e I ST

list after insertion, updated pointers in grey

Figure 3: The structure and search pattern in skip list, [[10]

As seen in figure, @), skip list also has a header block at the beginning and
an optional sentinel block the end as well. These blocks have level equal to the
maximal level in the whole skip list and each level links to the first or last element
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of that level, respectively.
initialization;
for each search level do

while forward[level] < search key do
step to next element on level

update forwards(element.forward)
update backwards(element.backward)

end
end

return element | . .
Algorithm 1: Abstraction of the search operation

It can be seen in the pseudocode of the search algorithm, see (I)), that it holds
lists of all to closest nodes of each level in both the backwards and forward direc-
tion. It either returns the searched for element or the one that directly precedes it,
if searched for key is not in skip list.

initialization;

search(key)

if value exists then
change element

return
end

while random <p do
| count increase

end
create new element

for count levels do
element.forward[level] = forwards[level]

forwards[level].backward = new element
element.backward[level] = backwards[level]
backwards[level].forward = new element

end
Algorithm 2: Abstraction of the insert operation
Since the probability of reaching each new level decreases geometrically, we
will rarely see high level pointers and thus the creation of new element has near
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constant speed once the position if found with search method.
initialization;
search(key)

if value does not exist then
| return False

end
for each element.level do

if forwards[level] = header & backwards[level] = sentinel then
forwards[level].backward = null

backwards[level].forward = null

end

else
forwards[level].backward = element.backward[level]

backwards[level].forward = element.forward[level]

end
end
delete element

Algorithm 3: Abstraction of the delete operation

2.2 Consensus protocols for fully distributed networks

Solving problems in a distributed way with autonomous agents, no matter if it is a
data analysis simulation on single computer, physical network of network attached
computers or robots interacting with the world around them, provides many ad-
vantages, but also some disadvantages. One of the greatest challenges is control of
such a multi-agent system. Where for a single algorithm, we would simply code
how it should react to specific inputs, what are its goal and how to reach it. In
multi-agent system, such problems are categorized under cooperative control and
are generally solved by consensus protocols, [31]].

A consensus protocol implements a distributed control policy that enables the
agents to reach agreement on quantities of interest represented by an internal state
of each agent. This protocol is distributed in a sense that for each agent, it relies
only on information held by that agent or its neighbours (i.e. local information),
[23]]. Based on the nature of the connection between agents, they adjust their in-
ternal state based on a differential equation, if the connection is continuous, with
little interruption and sufficient bandwidth. If the connection does not meet these
qualities and the communication relies on discrete packets delivered among agents,
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difference equation is used, [33].

In general, a consensus algorithm ensures that each node’s value in a network is
driven towards the value of its neighbours, as can be seen in this common continu-
ous consensus algorithm

#i(t) = Y (wj(t)aiy) — xi(t)di

JjEN
Or in matrix form (see [3.3|for the full transition)
#(t) = —Lx(t)

Where z(0) is vector of internal states of the nodes, a; ; is an element of adja-
cency matrix A and d; is an element of in-degree matrix D. This strategy is suffi-
cient to ensure that if strong connectivity exists, a common value will be reached,
[26]. The initial vector z(0) has to be provided and will be used to determine the
resulting common value, which will be between x,,,in and x,,ax, in this case, the
common value will be a linear combination of the initial vector z(0), [33]. Internal
logic of each node might also adjust its x;(t), generally in case it needs to reflect
on a change of external factors.

In case continuous communication cannot be guaranteed, but nodes are still able to
communicate at a discrete instants of time, a difference equation is used, [33]]. One
simple algorithm, similar to the continuous algorithm presented above, is

zilk] + 3251 a; j[k]x; (k]
1+d; ’

xilk+1] = 1=1,...,n (D
Or in matrix form
z[k+1] = (I — D)"Y + A)z[k]

Where x[0] is vector of internal states of the nodes, a; ; is an element of adjacency
matrix A, D is an in-degree matrix and d; an element of in-degree matrix used to
prevent the equation to diverge from weighted average when the adjacency and in-
degree matrices are not normalized. This algorithm drives the shared value towards
the weighted average of the initial vector and it can be shown, using Gershgorin’s
disc theorem that if the directed graph has a spanning tree or is strongly connected,
or if the undirected graph is connected, the | z;[k] — z;[k] | = 0 as k — oo for
all 7 and j, or in words, the the difference between the values of each pair of
node converges to zero, generating consensus across the connected nodes. If the
adjacency and in-degree matrices are not row stochastic, the resulting consensus
might be higher than the highest initial value, if the row sums exceed 1 or below
the initial value, if the opposite is true [4]. If both matrices are stochastic, global
average will be reached.
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2.3 Kademlia, a popular decentralized routing and lookup system

Kademlia is a decentralized protocol for routing queries and node lookup. The two
things needed when two nodes in a graph want to communicate. It can achieve this
without any global authority or enforced network structure and the complexity of
a query or a lookup completion is O(logn), where n is the number of nodes in a
graph, [11].

While Kademlia is not the first communication protocol for decentralized systems,
it is one of the most popular. Thanks to its many advantages, few drawbacks and
well rounded performance, it was Kademlia which moved algorithms based on dis-
tributed hash tables (DHT) into the mainstream, being utilized by individual users
in torrent clients, chatting and VoiP programs or multi-player games, same as big
companies such as Facebook and Twitter, [29]. Instead of a rigid structure de-
pendant on a central server that needs to handle the clients, which can be easily
overloaded or targeted in an attack, peer to peer systems scale with the amount of
clients, do not have a single point of failure, are able to spread the load among indi-
vidual users and the more advanced ones, such as Kademlia, dynamically adjust the
route based on network utilization. The Kademlia algorithm assigns a 160bit key
to each client, each of these hashes has a corresponding value that can be looked up
on the network. The position of the nodes within Kademlia networks corresponds
to nodes in binary search tree, where each bit of the address determines whether it
is necessary to go to the left or right node on that level.

The binary tree in this form is a representation of set of consecutive one dimen-
sional values. When the tree is iterated through with a depth-first algorithm, the
original structure is recovered in ascending order. Each node has links to several
other nodes. Apart from its parent, it also has the link to every sub-tree it encounter
along the way to the root. Therefore, it has the amount of links that is equal to its
level. While it is true that each node’s address is the same length, 160bits, not every
node holds links to 160 other nodes. If there is any sub tree with only one node, the
node is placed at the root of this sub-tree, since there is no reason to continue with
the searching, once this sub-tree is located, since it is already clear that the search
is for that node or a non-existent node.
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1111 Space of 160—bit numbers 00..00

Figure 4: Kademlia tree, the circled sub-trees are the ones black node has connec-
tion to, [[L1]

The Kademlia system also defines a closeness metric. It is defined as XOR
of the two addresses in their binary representation, the result is a 160bit number
that has one for each digit where the addresses were different and O for each place
where they were the same. The higher the leftmost one in the result is, the more are
the two addresses different, more importantly, this number also tells each node, in
which sub-tree to look for the other node. If the first one in in the highest digit, the
other node is in the other half of the tree, if it is the second digit, it is the tree that
splits one level below root, and so on. Once the correct sub-tree is located, the node
sends a message to the node it is connected to in that tree. Since that node must
have the digit mentioned above, and all the preceding once same as the target node,
it is closer, based on the XOR metric. From here, the process repeats, with each
step getting closer to the target, finally, when the result of XOR metric is 0, the
node has been found. Because the amount of levels in a tree grows logarithmically
with respect to the number of nodes, the average number of look-up steps needed
to reach a node is grows at the same rate as the amount of levels.

3 The NodeSKkipper protocol

NodeSkipper is a decentralized routing protocol that allows nodes that form a con-
nected undirected graph to exchange messages with any other node, look-up any
other node, look up the first node with higher and lower address as an unoccupied
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address, join the network if it is not part of it and has direct connection to at least
one node that is, form new direct connections, release direct connections and leave
the network. It is resistant to directed attacks on its structure, thanks to having
no structure and is resistant to attack on any random node, save for bridges, as all
graphs become disconnected when losing a bridge node, since it only requires the
graph to be connected, other properties only serve to improve its performance.
When a node is joining the network, a process described here, [3.6 in more detail,
it will make a request towards nodes that it directly connects to and that are already
part of the network. These nodes will request the system to reach consensus on
the address of the new node. This value will be so that it is similar to the nodes
close to the new one, as is described and tested here, Once the address is deter-
mined, the direct neighbours of the new node will look-up this address, provided
it does not exist, the call will return the closest preceding and succeeding node to
that address, since when the process reaches one of these nodes, it would return its
address and address of its closest neighbour in the direction of the look-up. In the
extreme case where the found node is the largest or smallest, only its value will be
returned. These addresses will be passed to the new node, which will store them
as its first remote connections, with the direct neighbours being the direct connec-
tions, these two sets can overlap. At this point, the node is added to the system and
it will start building its remote connections. By default, it will look up addresses
based on equation:

abs(adrl — adr2)
2

dif f = x4 n=1,2,3,.. 2)
where adrl and adr2 are the remote connections of the new node and dif f is
difference of address from own address in each direction. Value must not exceed
the lower extreme 0 and upper extreme 2'2® — 1, apart from that, both the multi-
plication factor and divisor in equation, [2| can be adjusted by each node, based on
computational capability and memory size, or just preference. Look-ups used for
building connections are marked and nodes they pass through build a dictionary
that allows them to pass the subsequent request to that same destination quickly,
without having to search the closest match. This approach is inspired by the Multi-
protocol Label Switching (MPLS), one of the most successful networking protocols
of this millennium, as it was implemented into most Internet’s major autonomous
systems, something most innovative and advantageous novel approaches fail to do,
as the industry is often resisting change.

It is not only the new nodes that are building list of remote connections. Any ex-
isting nodes needs to maintain its list, if a new closest node appear, it needs to add
it to the list, in favour of the previous closest node in that direction. If the node
experiences disproportionate amount of lookups into some range of addresses, it
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could also choose to add a remote connection there.
Apart from remote connection building, there is one other special marked look-up,
path optimization. When a node has spare computational cycles, it can request the
next steps in its MPLS inspired directory to tell it its next step. It can then try to
route to that node through another node and saving it as the next step should the
process be faster. This will also serve as a check that the next node is alive. Another
check into node availability needs to be done towards the remote connections. This
approach is inspired by the great shortest paths algorithm by Robert W. Floyd, [27]].
initialization;
1G,j) = a(i,j) p(i,j) =ifor k = I:n do
fori=I:ndo
forj = I:ndo
if I(i,j); l(i,k) + (k,j) then
| 1G)=1G,k) + 1(k,)) p(i.)) = p(k.j)
end
end
end

end
Algorithm 4: Floyd’s shortest paths algorithm

While this algorithm’s complexity is O(n?, it will tell, just based on the adja-
cency matrix A, represented by its elements a(i,j) the length of every shortest path
in the graph as 1(i,j), all the shortest loops as 1(i,i), but most importantly, the p(i,j)
tells us which node to go to next, if we are in node i and want to travel along the
shortest path to the node j. Since the decentralized system does have n computa-
tional units at its disposal and could complete the task in roughly O(n?, which is
feasible, it would have to be changed each time something in the system changes.
Instead, applying these rules locally and randomly, it will not guarantee a shortest
path, but will give similar result on average.
With the application of the above, we can guarantee that a look-up will find the
requested node or closest nodes on both sides and that a message intended for ex-
isting node will be delivered. This is acutaly guaranteed by the fact that node can
only be added when it knows its nearest neighbours on either side means, that each
valid request can be passed to a node that is closer to the target than the preceding
node. In this sense, NodeSkipper uses the XOR metric, just as well as Kademlia, if
only not as directly. Going by one node is of course the worse scenario and would
form quite an oxymoron with a name like NodeSkipper. The experience from Skip
List shows that with the list of remote connections, the number of nodes to query is
likely to be of a logarithmic relation to the number of nodes, not linear, again much
like Kademila in this regard. But while Kademila is primarily aimet at power-law
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networks and indeed, NodeSkipper can work on those networks as well, it is de-
signed mainly for the naturally occurring small world effect networks, where it can
form paths that are approaching optimum thanks to its path adjustment and con-
sensus driven address assignment.

The ability to reach a system-wide consensus, described in, [3.3] is not only im-
portant for the assignment of node addresses, it provides the whole system with a
mechanism that allows it to cooperate more efficiently. Along with the ability to
dynamically add and remove both nodes and edges, it makes NodeSkipper protocol
a great fit for real world systems, such as cars on a road, delivery robots, machines
in a manufacturing plant, large scale security system, computers working together
on computationally demanding task or battle units in armed conflict.

Additionally, this section also discusses the node manager, that takes care of single
computer multithreaded uses of the protocol, the multithreading used in this
project is also described, [3.2] along with the utility module, [3.1] used to work with
the NodeSkipper packets, also described in this section.

3.1 Utility module

The util.py module provides agents with base conversion and hashing functionality
needed for building NodeSkipper packages.
Its most important components are:

o str2byteArr
Creates UTF-8 encoding from given string.

e byteArr2str
Uses bytearray with UTF-8 encoding to generate a string.

e hex2byteArr
Accepts a string with hexadecimal number and converts it into bytearray. If
the number of digits is odd, it prepends a 0. Throws ValueError for invalid
hexadecimal number.
It encodes each two digits as one Byte, to reduce space used.

e byteArr2hex
Converts each Byte into two digits of a hexadecimal number. These pairs are
ordered in the same way they were in the bytearray and returned as a string.

e int2byteArr
Converts an integer into a bytearray, by expressing it as a base 256 number
and storing each digit as an ifem in the bytearray.
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e byteArr2int
Treats bytearray as a base 256 number and converts it into a base 10 integer.

3.2 Multithreading

The language used for the practical part of this thesis, Python, is based on the
von Neumann model, where processor executes a finite list of commands that act
on data stored in random access memory, [41]. Such a list of commands is often
called a thread. Most modern computers have more than one processing units, or
cores, which allow for multiple instruction to be computed at once, but this is not
possible with just one thread, [40]. While this inefficiency could be ignored in the
testing phase of the NodeSkipper protocol, this model is intended to be used as a
groundwork for multi-agent system playing the game Starcraft2, a real time strat-
egy and it is necessary to make sure that all the computational resources can be
utilized and that all the threads get sufficient computational time, since each thread
will represent one agent and each agent one unit or structure, where inactive thread
will result in effective loss of that building or structure.

The Python language supports multithreading, the mode used in this project is
shared-memory multithreading, [41], where all the threads share the same sector
of computer memory and use python synchronization methods in order to access
these resources without conflict.

Another instance of multithreading occurs when the NodeSkipper protocol is im-
plemented, even in the testing model. The NodeSkipper protocol can only work
with nodes that are able to reach consensus, which means that multiple agents with
their own internal logic need to execute computations based on input from other
agents that result in all of the agents arriving at the same value that reflects the
initial state of participating agents, [23]. This mode of multithreading operation is
often called the message-passing model, [41]].

3.2.1 Ensuring that each thread gets sufficient computation time

In multithreaded workloads, it is possible to significantly decrease the computation
efficiency if incorrect amount of computation time is allocated to a thread, [32]. In
worst case scenario, this could result in a deadlock, [34], halting the computation
and breaking the whole program. Even in the less extreme scenarios, the effects of
inefficient load balancing can lead to unpredictable behaviour and unresponsive-
ness of the program.

To test the that all the threads are getting similar amount of compute time, a test
scenario, where multiple threads were given similar workload, has been set up,
taking data from shared synchronized data structure. They are all started in a span
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of several milliseconds and would compare the deviation in run time to the average
run time. The resolution is in seconds in hopes of making the averaging trivial,
since It is only necessary to confirm that they all get roughly the same compu-
tation time. This testing was done on CPU: Intel Core2 Quad Q9550 2.8GHz,
GPU: ATI HD 3650, RAM: Corsair CM3X1024-1066C7 2GB (4 sticks), Python
v3.7.0:1bf9cc5093.

initialization;
while gueue not empty & not enough work done do

for number of tasks * number of threads do
| create random workload

end

create lock for number of threads do
| create new thread

end

for each thread do
| start thread

end

for each thread do
| join thread

end

end
Algorithm 5: Abstraction of the thread manager
initialization;
while queue not empty & not enough work done do
initialize lock
pop workload from queue
release lock

if queue empty then
| Terminate unsuccessfully

end

count +=1
calculate library hashing function
sleep(0.01s)

end
Algorithm 6: Abstraction of the testing thread
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Table 1: Testing, tasks = 5000, threads = 100, tries = 100

[s]

Start (last - first) [s] | Fastest runtime [s] | Slowest runtime[s] | Finish (last - first)

0 50 50 0

3.3 Using network consensus to assign an address to a node

The NodeSkipper protocol assumes that each node is connected to a both the node
whose address directly precedes its address and the node whose address directly
follows it. Random disruptions of this principle should not cause significant dam-
age to connectivity, but if the nodes were able to chose their address, targeted attack
would be possible, with chance of temporally impacting reachability of the target
node. Furthermore, it is desirable to assign a node with IP address that respects its
neighbourhood, for improved performance.

To test the IP address assignment a graph with structure similar to well initialized
NodeSkipper graph has been created. Its nodes are connected to nodes with closest
IP address and the probability that a node is connected to another node decreases
logarithmically with delta of their addresses. The edge weights simulate ping and
are related to square root of delta of their addresses.
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Figure 5: Example of test network for IP address assignment, seed=45

To reach consensus on this simulated network, see 2.2] the global dynamics

given by © = — Lz were chosen for this task. The motivation for using this model
being its simplicity, an ease of implementation and good option for analysing the
convergence to the final value, since if the IP address assigned is not desirable, it
is beneficial to have the opportunity to track down where the result started to go
wrong.
For this reason, using matrix operations was not chosen and the dynamics were
implemented by an algorithm that iterates over all the nodes and applies given
formula, which means it is necessary to understand the individual steps behind the
matrix form formula. This is also important, because in the live version, Laplacian
matrix of the whole graph will not be available and this computation will be carried
out by individual nodes that will only see their immediate neighbourhood.

i t)am-) - l’l(t)dl (3)



Where each node has an integer as its state description, once consensus is
reached, this integer will be used as the IP address for the new node, x represents
the vector of state descriptions of all the nodes in the network in current iteration,
T represents the difference in state of each node in the next iteration, N is set of
all the nodes, A represents the adjacency matrix, a; ;j represents one element of
the adjacency matrix, D represents the degree matrix, d; represents one diagonal
element of the degree matrix and L represents the Laplacian matrix.

Because the graph has weighted edges, the computation is more difficult than sub-
tracting the cardinality times the value of each x; from sum of z; belonging to its
neighbours. Also the weights shown in figure, [5} will not be used, since they do
not reflect where the new node is connected and will thus not return a value that
helps to keep the structure of the graph. Instead, a simulated value that attempts to
replicate the amount of ping between the nodes that connect to the new node and
each z; will be used.

This will be done by depth-first search algorithm, starting at the node or nodes
connected to the new node that will assign each search node the value of simulated
ping as a sum of ping of the node that added it to the search queue and the weight of
the edge between them. To make nodes with higher ping less influential, the mul-
tiplicative inverse of their simulated ping will be used as their weight. The nodes
originally connected to the new node will have edge weight of 4, those connected
probabilistically based on distance, will have the weight based on square root of
their IP difference.
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Figure 6: Example of test network for IP address assignment with simulated ping,
seed=45

Since the nature of the communication is discrete and could experience time-
outs and de-synchronization caused by outside factors during deployment, a differ-
ence equation would be better suited for this task, see[2.2] Since this is a weighted
graph, the equation needs be in a form that would not grow beyond largest initial
value.

ik + 1] =kl + D ((a5k] — zi[k])(1/aiy)) 4)

jGN,am >0

Where z|[k] is vector of states of all nodes in the iteration k and rest of the
variables have the same meaning as the ones in [3] The equation [} is applied to
each node for as long as the value is changing.

26



initialization;
for 0:1000:20 do

| add node to a graph G
end

for each node in G do
| add edge to node with first smaller and larger address

end
select all nodes in G

for n times do
remove half the nodes in selection

add edge to node with first smaller and larger address within selection
end
Algorithm 7: Graph construction and consensus testing

To evaluate the result of applying the equation ] 100 random nodes were
added. The result of a consensus algorithm should be value that is close to the
value of the nodes that are directly connected to the new node. In some test cases,
the new node is connected to only one other node, in others, it is connected to sev-
eral direct neighbours. The expected result is the simple average of the addresses
of the nodes the new node is directly connected to. While it is a simple method
of obtaining an estimate of the result, it should be sufficient, since NodeSkipper
works with any address distribution and if the addresses correspond to their loca-
tion within the graph, it only speeds up the query and lookup operations, although
not asymptotically. It is more important of having a method that would have the
nodes agree on a some common quantity, having an idea what the result could be
and have a way of influencing this result. Since NodeSkipper is intended for many
diverse uses it might need facilitate decisions such as, whether to manufacture
item A or B, in what ratio to purchase commodities C and D, is node E malicious,
should a group of units attack enemy worker line or go defend from an army with
a trajectory towards their base, and so on.
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Figure 7: Reaching consensus with simple difference equation described in

The result showed in [/| shows little to no reaction of the strategy to the place
where the new node was added. It returns results around the average value and the
difference increases as the distance from graph average increases. While this result
of the consensus algorithm could be used in NodeSkipper algorithm, as it does
provide agreement on the new IP address and does not allow only small subset of
nodes to pick a desired address, but the structure of the network would not reflect
the position of the nodes and distribution of the nodes across the address space
would not be uniform.

To mitigate this, a vector representing ping to each node from the new node is
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introduced into the equation.

wilk+1] =k + (Y (k] — 2i[k])(1/ai ) *pingi/k, k>0 (5)
JEN,a; ;>0

The higher the ping, the quicker is the node to change its value. The result is
that the nodes farther from the new node will have less influence on the resulting
number. The constant k is used to adjust the size of step in each iteration.

Consensus deviation from expected result
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Figure 8: Reaching consensus with difference equation and added vector of ping
described in 3]

Since the values in matrix A reflect time needed to pass information between
two nodes, it seems to be providing the same information as the ping vector, yet did
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not have the desired effect. The result is still closest to the expected value around
the global average, but the effect is much diminished. To simplify the equation and
decrease computational complexity, we can reduce it with a signum function.

wilk+1] =wilk]+( Y ((xjlk] = @ilk])(1/sgn(ai;)))) «pingi/k, k>0
JEN,a; ;>0

zilk + 1] = zilk]+ (D (k] — 2i[k])(1/1))) * pingi/k, k>0 (6)
J€N,a; ;>0

zilk+ 1) =kl + (Y. (2;k] — ai[k]) * pingi/k, k>0 (7)
JEN,a;,;>0

Since the result of the sgn(a; ;) would always be 1 because of the sum con-
ditions, it was replaced by that number in equation [6] and subsequently removed
completely in equation [/, the whole equation was simplified and the weights in
adjacency matrix disregarded.
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Figure 9: Simplified algorithm without weighted adjacency matrix described in

The result looks much the same as the one reached with weighted adjacency
matrix, [5] although there was no need to reconstruct the matrix or use it to divide
the sum.

To further improve the result, we could use quadratic or even cubic form of the
ping to make the effect stronger.

wilk + 1 =ailk]+ (> (a5[k] — zilk])) = pingl [k, k>0 (8

Jj€N,a; ;>0
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Consensus deviation from expected result
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Figure 10: Algorithm without weighted adjacency matrix and cubic values of ping
described in

This result copies the expected value almost perfectly and shows no apparent
correlation between address average and consensus result, although there seems
to be higher deviation from expected result when lower number are expected, an
effect which reoccurs when using this algorithm when connecting a new node to
several different nodes at once, as seen in, The result could possibly be too
close to the expected value, since it could possibly enable an attack that would
leverage the foreknowledge of consensus result.

It is possible that new node is physically connected to more than one node when
joining the network. For example when a wireless device in range of several other
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devices is added. In such a case, it is desirable to have the address of the new device
close be roughly average of the addresses of its direct neighbours. The equation
remains unchanged, the only difference is that the ping vector holds distance to
closest direct neighbour, not the one specific direct neighbour.

Consensus deviation from expected result

160

140 -

120 ~

100 -
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60 1
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Difference from expected result

20

T T T T
0 200 400 600 800
Expected result

Figure 11: Algorithm without weighted adjacency matrix, and multiple direct
neighbours for added node, described in

In figure|1 1} an increase in accuracy as expected value drops from 100 to 40 and
rises from 800 to 860 can be observed. Random dip is not impossible, considering
the low sample size of 100 nodes, but the symmetry is very strange and unexpected.
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Consensus deviation from expected result

140 ~

120 -

100 ~

80

60

40 -

Difference from expected result

20 ~

T T T T
0 200 400 600 800
Expected result

Figure 12: Algorithm without weighted adjacency matrix, and multiple direct
neighbours for added node, described in (/| retested

When the seed of 45 was removed and the test was conducted with different
random values, the phenomenon did not reoccur, as shown in figure @ It is un-
known why the result in figure[I T/had the symmetric inconsistency. Both the results
show noticeably worse adherence to expected value then when single direct neigh-
bour was present, yet the highest accuracy around global average and steady and its
linear increase dependant on distance from this average, remains. The inaccuracy
is still much smaller than that shown in algorithm 4 and the resulting address does
reflect the immediate neighbourhood of the new node.
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Consensus deviation from expected result
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Figure 13: Algorithm without weighted adjacency matrix and cubic values of ping
with multiple direct neighbours described in

When applying the equation described in (8| the consensus is farther from ex-
pected value when the expected value is smaller. The same behaviour can be ob-
served in the case of adding a node connected to only one neighbour when using
the same algorithm (see [I0). This could be caused by other nodes who are close
to the direct neighbours of the new nodes, who also have small ping, skewing the
result, since with small values, the same difference in value is of greater proportion
(5 is only smaller by 15 than 20, but is only 75% of its value, while 135 is smaller,
also by 15, than 150, but is 90% of its value). The same effect would then be ampli-
fied by the method used to calculate the expected value, a simple average of direct
neighbour addresses. It could also be the case that squared ping values make a step
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too big and destabilize the whole system, it does not approach infinity, since max-
imal value of a node is kept at 1000 and since not every step is over-approximated
the overall consensus does not remain at this maximum value.

Because the adjacency matrix used is not normalized, it is necessary to check for
these over-approximations. The general equation, [I} avoids this problem by av-
eraging the local neighbourhood in each iteration, thus returning value that is not
higher that highest local value and not lower than lowest local value. To leverage
the vector ping with this equation, we would need to normalize it as well, which is
problematic, since maximal ping is not an information known globally and over-
estimating the ping would slow down the process. As a solution, it is possible to
guess the maximal ping and check that local extremes were not exceeded should
the ping be higher than our estimate.

Zilk] + Xjenai >0 ik wilk]) + (pmgi )

zilk + 1] = min(maz(x;[k] + ( 1+d; norm

P9 4 g, >0
orm

©)

glélj{fle[k]),rjne%(x][k]), i=1,...,n, a;; =0, norm >0,
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Consensus deviation from expected result
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Figure 14: Local averages with linear ping@

When the equation, [0 is applied, the influence of global average is quite sig-
nificant, as can be seen in figure, The vector of pings in its linear form does not
slow down the nodes close to the origin enough. The ping can be more prominent
if it is raised to a higher power, but since it has to be normalized in order to keep it
from exceeding the largest original value, it will turn it into even smaller number,
which slows down the whole consensus algorithm.
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zi[k] + EjeN,ai,pO (k]

xi[k + 1] = min(max(x;[k] + ( — milk]) * (pingz‘ )27

1+d; norm
. . ping;
K], k), i=1,...,n, ai; =0, > 0, <1,d;>0
min 2 k]), max z;[K]), i n, i norm py— i
(10)
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Figure 15: Local averages with quadratic ping
The result achieved with equation, [I0] and shown in figure, [15] is indeed much

improved, but the computation time has increased as well. The fail-safe that was set
up is not being used, because all the results are being normalized. But since there
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is control ensuring the results do not exceed local minima, it is possible to decrease
the maximum ping estimate, even below what is known to be correct value.

Consensus deviation from expected result
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Figure 16: Local averages with quadratic ping exceeding normalized values

And indeed, this approach produces similar result in fraction of the time. In-
terestingly, even though the not fully normalized ping multiplier got as large as 4,
in no iteration did the local consensus exceed local extremes.

39



Consensus deviation from expected result

80 4 T

|
o
I

h
o
1

L
=]
1

]
o
1

Difference from expected result

[¥¥)
o
1

T T T T
0 200 400 600 800
Expected result

Figure 17: Local averages with quadratic ping exceeding normalized values and
multiple neighbours to the new node @
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When multiple nodes are being added, the result is even better and again with
no need for the fail-safe to be engaged. The strategy given by the equation, (10}
with very optimistic maximal ping estimate is therefore the most consistent, best
performing in the tests conducted and is so far the best candidate to be used in
the NodeSkipper protocol, since the approaches attempting to make larger steps,
using linear regression to estimate future values, are way too volatile. In future, it
might be worth investigating whether proportional integral derivative (PID) control
concept might provide better and safer estimates.
It is of course possible to reach consensus even with higher orders of the ping
vector, such as

Tilk] + 2 jen,a,,>0 25 K] — wilk]) + (pingi )

zi[k 4+ 1] = min(maz(x;[k] + ( 1+d; norm

< 1, di >0
(1)

The problem is that with this approach, once the value is not properly normalized,
it can grow quite large, even if it is just it is cubed, 2.5% = 6.25, but 2.5% = 16.625.
This results in the max and min function to be used quite often, but when nodes
are just oscillating between maximal and minimal values in their neighbourhoods,
reaching consensus could prove challenging. A simulation that was using strategy
identical to the one producing figure, except the formula raised the vector of
pings to third power, not second, as can be seen here, [IT] did not reach consensus
on a single IP address after 10 000 000 cycles.

To be sure that the result is converging to some common value, the vector needs
be normalized to begin with, resulting in very small steps and very long procedure.
Regardless, such a system is still guaranteed to reach consensus, [23].

: , ping
gré%lxj[k]),rjrle%(%[k]), i=1,..,n, a;; =0, norm > 0, nor’n;
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Consensus deviation from expected result
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Figure 18: Local averages with cubic ping

This approach was already unacceptably slow with squared values, raising the
power had the expected effect and increased the cycles needed to a point where
even testing on consumer hardware is difficult and time consuming. The results,
on the other hand, are very good. An approach that would produce results like those
demonstrated by the cubic equation, [IT] but one that also converges as quickly as
would be beneficial.

Since the cubic formula causes the nodes with high ping change values very quickly,
while slowing down everything close to the new node, unfortunately it slows them
so much that it is infeasible to wait for the result in the real time system, it could be
used in a fixed amount of steps at the start of the algorithm. That way the asymp-
totic complexity is not affected, it serves just as linear complexity pre-computation.
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Once these steps are completed, quadratic ping formula, [I0] can be used, for the
fast performance. The far away nodes would have their values adjusted, while the
close nodes would not have changed much.
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Figure 19: Local averages with cubic and square ping

And the result confirms those assumptions, while the value is not as close as
with purely cubic ping,[I8] it works better than purely square ping, [I'7] for a similar
computational time.
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Figure 20: Local averages with cubic and square ping with multiple neighbours to
the new node

In the figure, it can be seen that even if the new node connects to multiple
nodes, the result are still excellent.

From all the approaches in this chapter, the combination of local average for-
mula multiplied by vector of ping raised to the third power, (1, and switching
to a quadratic version of this formula, [I0] after constant, 500 in this case, amount
of steps, provides the best results. It guarantees convergence, does not return re-
sults based on distance from global average, returns values close to those of the
neighbouring nodes and produces the result quickly.

In real case scenario, not all nodes will be at the same amount of cycles, like it was
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in this testing environment. In that instance, it is possible for a node that switched
to the quadratic algorithm to propagate this value along with its value in current
iteration, but while there might be no apparent immediate risks connected to this
approach, experience shows that when one entity could influence how computa-
tion on a difference entity is done, and even change the mode of operation at will,
it often exposes serious security risks, (e.g. downgrade attacks), [15]. The safer
option is for each node to switch once it does the set amount of cycles. This would
cause different nodes to be using different equations at the same time, but such a
situation will occur for only limited period of time and since only scale of the state
change is affected, it would not prevent consensus from being formed, since the
whole transition from k to k + 1 can still be represented by a single normalized
matrix multiplied by a vector of states.

3.4 Format of the NodeSkipper packet

For compatibility reasons, the NodeSkipper packet is represented as an array of
bytes with a specific format that allows for unambiguous encoding and decoding.

e Protocol version
1 Byte - The count starts at 0, included for compatibility reasons.

e Packet length
10 Bytes - The value is for the whole packet, the parts with fixed length are
included as well.

e Source address
16 Bytes - The address of packets original sender.

e Destination address
16 Bytes - The address of the node for which the packet is intended for.

e Next hop
16 Bytes - The address that previous node evaluated as most likely to be able
to locate destination node in least amount of steps.

o Packet data
Its length is (Packet length - 75), it contains the data being sent.

e Hash check
32 bytes - It contains a SHA-256 hash of the whole packet, excluding the
Hash check section.
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3.5 The node manager

The goal of node manager is to allow the individual nodes operate, from their point
of view, as independent units that can pass messages to a few other independent
units. Its secondary use is for benchmarking the performance of the whole system.
It monitors the speed of node addition, message sending and node removal. It is
the only part of the program that knows the addresses of all the nodes. However, it
does not provide this information to anyone other component.

initialization;

set up list of message queues;

set up list of locks for synchronization;

set up map of IDs and addresses;

pick random address within range;

create new thread;

for :number of nodes do

pick random number of direct neighbours;
create new thread with IDs and addresses of direct neighbours;

end

for O:number of nodes do
start stopwatch;
start thread;
while no job done announcement do

wait 1ms;
end
record stopwatch;
end
for 0:5 do
for 0:10 do

start stopwatch;

send message between 2 random nodes;

sum record time;
end
save(sum/10);
for 0:10 do

start stopwatch;

remove random node;

record stopwatch;
end

end
Algorithm 8: Operation of the node manager
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3.6 The NodeSkipper node

Any NodeSkipper node must be able to join the system, leave the system, accept
another nodes in the system, look-up nodes within the system, send messages to
other nodes, pass look-up and message requests, answer relevant look-up and next
step requests and accept messages.

initialization;
look-up own IP;
wait of answer;
add nodes to remote connections;
diff = ((right address - left address)/2)*4;
while address-diff; 0 do
look-up address-diff;
wait of answer;
add closer node to remote connections;
diff = diff*4;
end
diff = ((right address - left address)/2)*4;
while address-diffj(2**128)-1 do
look-up address-diff;
wait of answer;
add closer node to remote connections;
diff = diff*4;
end
Algorithm 9: Operation of the basic NodeSkipper node

4 Numerical testing

The tests in this section were done on CPU: Intel Core2 Quad Q9550 2.8GHz,
GPU: ATI HD 3650, RAM: Corsair CM3X1024-1066C7 2GB (4 sticks), Python
v3.7.0:16f9¢c5093

It is important for a NodeSkipper system to be able to add nodes quickly, especially
since if two nodes want to join the system and both have an address that shares at
least one closest neighbour, the second node to be announced has to wait for an
answer until the addition process of the first node is complete.

The following test was done by node manager, (see [3.5). Nodes were added from
0 to 100 ten times, the time intervals were then averaged.
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Figure 21: Time needed to add a node to the system

The time needed to add the first few nodes is very low, since there is not much
network that needs to be build, but while it does grow fast, it is clearly slowing its
growth and no result exceeded 1 second.

Node removal is quite simple, since the exiting node only needs to send messages
to its list of contacts. Once they are sent, it can end its own thread. 50 nodes from
100 node graph were removed 10 times and the results averaged.
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Figure 22: Time needed to remove a node from the system

While the disproportionality of the graph might make it seem very inconsistent,

the differences in time needed are very slow and there does not seem to be any
observable growth of time needed for the time needed to remove the node and the
overall time needed is very small.
The last test concerns sending messages. This functionality is crucial, as it is used
in the other processes. 100 messages were sent at the start and then 4 more times
upon 10 nodes being removed. The time was measured from a time node A sent a
message to a time where node B received the message and then averaged.
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Time to send a message
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Figure 23: Time needed to send a message within the system

Once again, there is very little variation and the messages were delivered, on
average, in a very short time.

S Investigating the use of NodeSkipper in creating a Star-
craft 2 player simulation

Creating a fully featured agent able to play a Starcraft 2 match is a challenging
tasks, as Starcraft 2 is one of the most complex human games, which state-space
too large to be searched by current technology. The task could be simplified using
the divide & conquer approach. Instead of implementing the whole strategy, it is
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possible to only implement logic for individual components, the army units, the
workers and the structures.

5.1 Worker

The motivation of a worker is to collect resources. Possible challenges are enemy
army units trying to kill it, and lack of resource fields with close drop-off points.
initialization;
while is alive do
search for unsaturated resource field with drop-off point;
while field exists & no enemy army unit nearby do
‘ collect resources;
end
if enemy nearby then
‘ move towards and past the closest defensive unit or structure;
end
elsif no unsaturated safe resource field found
evoke consensus algorithm on claiming a new resource collecting
base;

end
Algorithm 10: Worker internal logic
Should many workers have problems find unsaturated resource fields, the con-
sensus will change towards claiming a new base. Army units having trouble fight-
ing the enemy might skew consensus the other way, since in their motivation an-
other base makes protection harder.

5.2 Army unit

The army unit wants to maximize its value by obtaining upgrades, increasing its
development (i.e. threat posing to enemy, usually achieved by positioning) and
causing damage to the enemy. Army unit is willing to be killed if it causes more
damage than what is its cost, given economical situation of opponent is compara-
ble.
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initialization;

while is alive do

evoke consensus algorithm on purchasing upgrade for its type of unit
if one is not in progress;

search for a place to attack; if strong enough to attack then
‘ attack;

end

else
‘ evoke consensus on attacking the target;

end

if not enough resources to attack then
‘ evoke consensus on building additional units;

end

end
Algorithm 11: Army unit internal logic
If the army is strong enough, it would never have problem finding a target to
attack, unless the game was won. Should many units have this problem, it is likely
more units are needed.

5.3 Structures

The structures provide vision of the battlefield, open technology paths and enable
resources to be collected. Their motivation is not being killed, if no buildings re-
main, the game is lost.

initialization;
for Each tech path do
if Tech path is open then

‘ evoke consensus on this technology;
end
if enemy sighted then

‘ evoke consensus on attacking the target;
end
if not enough resources to attack then

‘ evoke consensus on building additional units;
end

end
Algorithm 12: Structure internal logic
If the army encounters enemy units susceptible to some technology, they will
support it in consensus process. Its reaction to enemy units is stronger, since army
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unit could distract itself with easier to attack target. If structure does not find
support for its defence, it immediately evokes consensus on building more army.

6 Conclusion

The NodeSkipper showed that it can deliver the same benefits as existing decentral-
ized routing protocols, while also providing less reliance on the network structure
and providing an extra functionality in its ability to reach consensus, which has the
potential to improve the performance of many instances of its implementation.
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