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Abstrakt

Tato prace se zabyva problémem
detekce introni v DNA hub. Spravna
detekce intront je stézejni pro roz-
poznani druhu na zakladé neznamé
DNA sekvence. Introny vsak nelze iden-
tifikovat pomoci sady jednoduchych
pravidel. Z toho duvodu jsme navrhli
feseni, které vyuziva t¥i modely strojo-
vého uceni. Dva z téchto modelti se snazi
detekovat zacatky, respektive konce in-
tronid. Introny pak vznikaji parovanim
detekovanych zacatkt s konci a jsou
déle filtrovany pomoci tretiho modelu,
jehoz tcelem je zpresnéni vysledki.

Pracovali jsme s daty 940 hub patii-
cich do riznych taxond. Parametry mo-
deld ale byly urceny empiricky na za-
kladé testovani na pouze jednom druhu,
coz ponechava prostor pro zlepseni, ne-
bot lze ocekéavat, ze takové parametry
nebudou optimalni pro ostatni druhy.

Prestoze byly pouzity suboptiméalni
parametry, pomoci navrzeného Treseni
1ze najit az 90 % vsSech introna konkrét-
nich druht.

Kli¢ova slova: detekce intronii; genom
hub; support vector machine (metoda
podpurnych vektori)

Pieklad titulu: Automatickd detekce
intrond v genomech hub pomoci metod
strojového uceni

/ Abstract

Vi

This thesis tackles the problem of in-
tron detection in fungal DNA. An ac-
curate intron detection is crucial when
recognizing a species from a given un-
familiar DNA sequence. However, the
introns cannot be identified using a set
of simple rules. Therefore, we designed
a solution consisting of three machine
learning models. Two of them attempt
to detect starts and ends of the intron
sequences, respectively. The introns are
then composed by pairing the detected
starts and ends and further filtered by
the third model, which is supposed to
refine the results.

We worked with data of 940 different
fungi belonging to many taxons. How-
ever, parameters of the models were de-
termined empirically using a grid search
only on a single species, which leaves a
space for future improvement as one can
expect the parameters to be suboptimal
for other species.

Despite using suboptimal parameters,
the designed solution is able to detect
up to more than 90% of all introns of
certain species.

Keywords: intron detection; fungal
genome; support vector machine
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Chapter 1
Introduction

A genome of a eukaryotic organism contains parts called genes which consist of sub-
sequences of two types: introns and exons. Both the introns and exons are difficult
to determine given a sample of DNA due to multiple reasons, one of which may be
their relatively small size when compared to the whole genome. Another reason is that
the subsequences respect almost no rules, especially the exons. Some regularities hold
among the majority of introns; however, the regularities are not very distinctive too.

The goal of this thesis is to develop a solution able to detect introns within fungal
DNA. Since the intron detection is so complex, it is very challenging (perhaps even
impossible) to come up with a traditional algorithm that would be capable of performing
the task. We are also provided with a database of already known, annotated sequences
available. Altogether it seems like a suitable problem for machine learning.

We thus decomposed the problem into a series of three classification tasks:

1. classification of intron starts,

. classification of intron ends,

3. classification of whole introns given their starts and ends according to the previous
tasks,

[\

each of which is performed by a trained support vector machine.
Using the presented approach, we were able to detect up to more than 90% of all
introns in individual organisms.

B 1.1 Motivation

The motivation for the thesis arises in the field of environmental microbiology which is
a field of science that deals with microorganisms present in environments such as soils,
forest litter, and others.

Environmental microbiologists have a wide range of interests, and one of them is to
know what fungi occur in the soil at given locations. An approach that is used for this
purpose is based on DNA comparison and could be summarized as follows:

1. the biologists gather soil samples in a forest,

2. then, DNA sequences present in the samples are extracted,

3. the sequences are compared with a database of DNA of known fungi, if there is an
approximate match, they know what fungus of taxon the sequence belonged to.

This approach, however, does not perform very well. The main problem lies in the
fact that introns bring variability into the DNA of organisms (i.e., the introns of two
related fungi could differ significantly). Therefore, even though the DNA database
contains fungi that are closely related to the fungi present within the gathered samples
of soil, there are very few matches. Another complication is that although the total
number of all fungi is expected to be up to 1,800,000, only around 90,000 are currently
known and described, and just a small fraction of that is sequenced.



The proposed solution is to determine the fungi based on homology that is preserved
in the exome of relatives. This approach, of course, requires to extract exons from the
fungal genomes. Since introns are generally easier to identify than exons, we chose to
identify the introns in the first place and to utilize the fact that any intron is always
located between two exons which can thus be extracted afterward.

I 1.2 Text structure

After this introduction, we briefly introduce terminology and concepts from genetics and
biology that we use throughout the thesis. We also present the theoretical foundations
that are behind the machine learning methods we used to implement the solution, and
several metrics to evaluate trained models.

The next chapter contains related work. We mention a broad spectrum of different
approaches not only from a field of machine learning.

In the fourth chapter, we describe the provided data and also give some statistical
properties of the data which reveal relevant findings we will employ in our implemen-
tation.

Based on the findings presented in the previous chapter, we design our solution in
Chapter 5. The solution consists of multiple parts each of which we touch and outline
in the chapter.

In Chapter 6, we describe the software we used to handle the provided data.

Chapters 7 and 8 deal with an implementation of the splice site classification and the
intron classification. It includes an overview of the parameter selection and discussion
on the model ability to generalize.

Chapter 9 shows results of the whole classification process, which was designed in
Chapter 5, when applied on multiple fungi.

Finally, Chapter 10 summarizes the thesis and proposes ideas for future work.



Chapter 2
Theoretical background

In this chapter, we introduce several concepts coming from biology or machine learning
that we use in the thesis. The biological part pays the main attention to regularities
that may help to detect introns. The machine learning part focuses on support vec-
tor machines that will be our primary detection method. As we deal with biological
sequences, we will use kernel functions as an effective counterpart to explicit feature
extraction.

B 2.1 pNAbasics

The following paragraphs regarding the basics of DNA are based on [1-3].

Every living organism has DNA within its cells. DNA, an acronym for deoxyribonu-
cleic acid, denotes a complex molecule which, among other purposes, contains all the
information necessary to build and maintain an organism.

DNA is composed of a series of smaller molecules called nucleotides. Every nucleotide
contains a nitrogenous base, a deoxyribose sugar molecule, and a phosphate group. There
are four different DNA nucleotides named after the nitrogenous bases they contain:

m adenine (A),
m thymine (T),
m guanine (G),
m and cytosine (C).

The deoxyribose molecule contains five carbon atoms arranged in the shape of a ring.
We refer to each of these atoms by a number followed by the prime symbol. The area
surrounding the 5 carbon is known as the 5" end of the nucleotide, and at the opposite
side of the deoxyribose ring, there is the 3’ end - the area around the 3’ carbon. When
the nucleotides are bonded together, the 5" end of a single nucleotide attaches to the 3’
end of the adjacent nucleotide. Consequently, a group of bonded nucleotides forms a
strand.

A strand of DNA can bond with another strand of DNA resulting in a double-
stranded DNA. The bond is base-to-base: bases from one strand are bonded with
complementary bases from the other strand — see Figure 2.1. The complementary
bases are given according to Table 2.1.

nucleotide base complementary base
A T
T A
G C
C G

Table 2.1. Pairs of nucleotides that form bonds between DNA strands.

The two strands of a double-stranded DNA run anti-parallel to each other. One runs
in 3’ — 5’ direction while the other in the opposite (5" — 3') direction.
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Figure 2.1. An illustration of double-stranded DNA. Based on [4].

I 2.2 Genes and protein synthesis

DNA includes, among others, sections called genes. A gene is the basic physical and
functional unit of heredity. ... Some genes act as instructions to make molecules called
proteins. However, many genes do not code for proteins [5].

In general, there are two categories of genes: eukaryotic and prokaryotic [6]. Because
fungi are eukaryotic organisms [7], we will consider only eukaryotic genes in the following
lines. Be aware that there are differences between eukaryotic and prokaryotic genes.

There are three major steps of protein synthesis for eukaryotic genes (see Figure 2.2):

m transcription,
m post-processing,
m and translation [8].

During transcription, a particular enzyme called RNA polymerase breaks the bonds
in a double-stranded DNA and attaches to one of the strands. The enzyme then begins
moving down the strand in the 3’ — 5’ direction, and as it does so, it pairs together
complementary bases creating a new strand of precursor messenger ribonucleic acid
(pre-mRNA) that is organized in the 5 — 3 direction. RNA is a molecule composed
of a series of the same nucleotides as in DNA except thymine (T) is replaced with uracil
(U) 2.

In the post-processing step, the pre-mRNA molecule is processed to form mature
mRNA [2]. A necessary step called splicing takes part during the process. The step
involves removal of certain (noncoding) sequences referred to as intervening sequences,
or introns. The remaining sequences of a gene, called exons, get connected and together
they form the final mRNA [9]. The process of splicing is especially relevant for the thesis,
so it is further described in the next section.

The information contained in the final, mature mRNA is used to direct the creation
of a new protein molecule during the translation step. The site where the translation
begins and ends is marked by a start and stop codon!, respectively. Start codon is
usually ATG, and stop codon one of TAG, TAA, or TGA [10].

Il 2.2.1 RNASsplicing

A gene is a series of alternating introns and exons, whereas every gene must start and
end with exons. As mentioned before, the introns are removed during the splicing
process [11].

Splicing requires introns to contain a branch point, and two different splice sites
(boundaries between the intron and its adjacent exons):

m the exon-intron boundary, known as the donor site (5" end of the intron),
m and the intron-exon boundary, called the acceptor site (3’ end of the intron) [12].

LA codon is a nucleotide triplet that is a part of the genetic code and codes for a specific amino acid.



2.3 Support Vector Machines

D NA [— exon _l_ intron —|— exon -[— intron —|— exon -[— intron —|— exon -[— intron —[— exon _l

ATG  GT AG  GT AG GT AG  GT AG  TAG.TAA

o TGA
transcription

UAG,UAA
AUG GU AG GU AG GU AG GU AG UGA

y
pre-mMRNA - can I I oA

splicing
MRNA <o I "'Y"
AUG UAG,UAA
translation UGA
\
protein N I

Figure 2.2. The process of protein synthesis. The image is taken (and redrawn) from [8].

The branch point is a single nucleotide (typically adenine) which is involved in the
splicing.

The vast majority of introns has the dimer GT as the donor site and AG as the
acceptor site (this fact is known as GT-AG rule [6]). Therefore, the dimers GT and AG
can be used to identify potential donor and acceptor sites, respectively. The GT-AG
pair, however, occurs very frequently making it not sufficient to solely search for the
GT-AG pairs when trying to identify the true splice sites and, consequently, an intron.

Another regularity is that introns often contain a polypyrimidine tract, which is a
region with frequent occurrence of Ts. This region is usually close to the acceptor site
[12].

I 2.3 Support Vector Machines

Support Vector Machine (SVM) is a supervised learning model which belongs to the
family of linear classifiers and currently is one of the most effective classification algo-
rithms. The following description is based on [13, Chapter 4] and [14].

B 2.3.1 Linearclassification

For an input space X C R” D > 1 and a target space ) = {—1,+1}, a linear classifier
learns a hypothesis (or a prediction rule) f: X — ) in the form of

f(x) = sgn ((x,w) +0),

where x € X is an input sample, w € R” is a weight vector, and b € R is a bias. A
linear classifier thus labels all points falling on one side of the hyperplane (x,w)+b =0
positively, and the rest negatively.

Given a training sample S, = {(x’,3") | 1 < i < m} C (X x V)™, SVMs find
the mazimum-margin hyperplane which is the hyperplane with maximal distance (or
margin) to the closest examples. As a consequence, the hyperplane separates the classes
represented by their examples.

Bl 2.3.2 Primal optimization problem

Had we dealt with linearly separable data, we would always find a hyperplane with
parameters w, b that does not pass through any sample point such that

min [(x,w) + b| = 1.
(x,y)ESm



Then for linearly separable data, it holds
(X, w) +b>1, i=1,...,m,
and hence
Y ((Xw)+b) >1, i=1,...,m.
However, we generally deal with data that is not linearly separable, i.e., there is a

sample (x’,y') € S, such that
Y ((xi,w> + b) # 1L
Therefore we introduce slack variables & > 0 for each sample (x%,4") € S,,, such that
y (X", w) +b) > 1-¢.

The slack variables §; allow a violation of the desired inequality. Since we wish
the violation to be as small as possible, we seek a hyperplane that minimizes ) ;- &.
Another objective is to find a hyperplane with a large margin. That is equivalent to
minimizing the norm of the weight vector ||wl|, because the lower the norm gets, the
greater the margin will be. However, these two objectives can potentially be conflicting
as a larger margin can lead to more violations of the inequality.

The following optimization problem captures the trade-off between the margin-
maximization and the slack penalty minimization.

I AT %
min 5wl +C;&
s.t. yi((xi,w>+b)21—§i, i=1,...,m,

51207 Z.:17"‘77/”’7

where C' > 0 is a regularization constant. Higher C' means higher norm |jw|| and thus
a smaller margin.
Il 2.3.3 Dual optimization problem

Let us introduce Lagrange variables o; > 0,1 < ¢ < m, and 3; > 0,1 < i < m. Then
we define the Lagrangian for the primal problem by

m

Clwb &0, 0) = Swl? + 0D &~ 3 o[y () +b) — 1+ Z%
=1

=1

Obtaining the Karush-Kuhn—Tucker conditions and plugging them into the La-
grangian leads to the dual formulation which is a convex quadratic program that reads

m 1 m
max Zai ~3 Z a;05y'y’ (X', x7)
i=1

4,j=1

m

i L
g ay =0, 1=1,....m,
i=1

OSO@SC, izl,...,m.



The primal variable w can be expressed with respect to the dual variables

m
w:g o y'x" = g a;y'x’,
i=1

1€Lsy

where Zsy = {i | a; > 0}. Sample vectors x‘,i € Zgy are called support vectors as they
support the hyperplane. The bias b can be obtained from any support vector x,i € Zgy
by
b=y — (x',w).
Expressing the weight vector w in terms of the dual variables a then leads to the
hypothesis

f(x) =sgn <<x, Z aiyixi> + b> = sgn ( Z iyt (x, x") + b> .

i€Lsy 1€lsv

B 2.3.4 Kerneltrick

As we can observe, the training samples occur merely in the form of dot product in
both the hypothesis and the dual problem. Let us define a new function k£ : X x X — R.
Such a function is called a kernel (or a kernel function) over X.

We can now set

k(x,x') = (x,x),
which allows us to rewrite the dual optimization problem to
m 1 m
N vt /
max Zaz 5 Z a0y Yy k(x, x")
i=1 ij=1
m .
s.t. ZaiyZ =0, 1=1,...,m,
i=1
0<a; <C, i=1,...,m,
and also the hypothesis
f(x) =sgn ( Z iy k(x,x") + b> :
i€lsy

We can define more complex kernel functions (than mere dot product). That way it
is possible to influence the shape of the decision boundary and even make it non-linear.
In consequence, we can classify data which are not linearly separable by employing a
non-linear kernel. The next section introduces several kernels.

I 2.4 Kernel functions

There is a broad spectrum of different kernels, each of which is suitable for different
data (or task). We shall define some of the most popular ones for data consisting of
real-valued vectors, and, furthermore, a few so-called string kernels.



B 2.4.1 Forreal-valued data

Kernels in this section assume the input samples to be numeric vectors, i.e., X C RP,
where D is dimension of the samples.

The linear kernel is the most basic kernel. It is defined as the dot product of its
inputs

Ei(x,x') = (x,x').

Given its simplicity, it is fast to compute, but it is suited for linearly separable data
only.

The polynomial kernel of degree d is defined as:

kPO (x, x') = ((x,x") +1)".

The value of the parameter r affects the influence of higher-degree versus lower-degree
monomials. However, values of 0 or 1 are often chosen. When r = 0 we call the kernel
homogenous. The value of the degree d controls the flexibility of the decision boundary
[8].

The radial basis function kernel (sometimes also called the gaussian kernel) with the
definition

k,rbf(x7 X,) _ e*’y||X*x’H2

corresponds to the dot product of the input vectors in infinite dimensional space [14].
The parameter v has a similar effect on the flexibility of the decision boundary as the
degree d in the polynomial kernel [8].

B 2.4.2 String kernels

A string kernel is such a kernel that operates on strings, i.e., the input space X’ contains
character sequences of finite length, although, the lengths of the sequences may vary in
general.

The spectrum kernel utilizes an explicit feature mapping to transform the input
vectors:

B () = (W), Wa(x),
where x,x’ are sequences over an alphabet ¥, and ¥; maps a sequence x into a |X|!
dimensional feature space. Each dimension corresponds to the number of occurrences
of a string s € X! in x [8]. The parameter [ is sometimes called the order of the kernel.
The weighted degree kernel assumes sequences of fixed length L and employs posi-
tional information:
L—k+1

Z B Z x[l i+k] = x[l 1+k])

=1

where X(;.;44) is the substring of length k of x from position i. The major parameter, the
degree d, sets the maximal length of compared subsequences. Another parameter is a
vector of weights . A suggested value for the weights is Oy = 2dd_2’f:11 [15]. Such setting
assigns lower weights for longer subsequences since they contain shorter subsequences
that already contributed to the kernel output.

The weighted degree kernel with shifts [15] extends the weighted degree kernel by

allowing some positional flexibility of matching substrings [8]:

L—-k+1 S

kZlVds Z Bk Z Z 5s,uk,z,s x,X’ 9

i=1 s=0

where fig i s xx = I(X[ipsivdrs) = X[i:i+d]) + IXiitd) = Xfpsiars))-



2.5 Evaluation metrics for model performance

I 2.5 Evaluation metrics for model performance

When dealing with binary classification, we can divide the outcome of the classification
to four classes with respect to the truth:

m {rue positives — positive examples classified as positive,

m {rue negatives — negative examples classified as negative,
m false positives — negative examples classified as positive,
m false negatives — positive examples classified as negative.

The number of examples in each class is denoted as TP, TN, F'P, and F'N, respec-
tively.
B 2.5.1 Accuracy
Accuracy is defined as the ratio of correctly classified samples

TP + TN
TP+ TN+ FP + FN

Accuracy =

A similar metric is classification error Error = 1 — Accuracy.

Accuracy (or classification error) is not, however, a suitable evaluation method when
dealing with very imbalanced classes [16]. Assume a dataset with examples of which
99% are negatives and only 1% positives. A trivial classifier that predicts always false
achieves 99% accuracy (or 1% classification error).

B 2.5.2 Receiver Operating Characteristics curve

Receiver Operating Characteristics (ROC) captures the trade-off between True Positive
Rate TPR = % and Fualse Positive Rate FPR = FPF_F%. We often depict the trade-
off as a curve (see Figure 2.3), and to sum it up into a single number, we then use the
area under the curve (AUC). A notable property of the ROC curve is that it is not
influenced by the class priors [16].

When given a classifier for which TPR = 1.00, then the classifier successfully detected
all positive examples. However, if FPR = 1.00, the classifier designated all negative

examples as positive as well.

Example of a ROC curve

True positive ratio

False positive ratio

Figure2.3. An example of a ROC curve. The dashed line represents a classifier that chooses

between the positive and negative class randomly (with the same probability for both the

classes). The AUC for such a classifier is 0.5. A better classifier (with AUC = 0.89) is

represented by the blue curve. The red broken line shows a course for an optimal classifier
with respect to the ROC (AUC = 1.00).



2. Theoretical background

Il 2.5.3 Precision and Recall

TP

Precision-Recall (PR) curve shows the relationship between precision P = g5 55 and
recall R = TPﬂiPFN' Note that the recall here is the very same value as the TPR that was

discussed before. This evaluation metrics is especially useful when we are concerned
in the positive class only [16]. We can compute AUC similarly as in the before case.
Unlike ROC, PR reflects the class priors.

If a classifier achieves both the precision P = 1.00 and recall R = 1.00, then the
classifier detects all positive examples and, furthermore, there are no false positives
(i.e., every positive prediction is correct).
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Chapter 3
Related work

When talking about intron detection, there are two related tasks to handle. One of
them is splice site detection. In this particular task, we try to determine positions of
donor and acceptor splice sites in a sequence of DNA (or RNA) nucleotides. The other
task is to decide whether the DNA subsequence between a pair of complementary splice
sites is an intron.

In the following sections, approaches that employ both traditional algorithms and
machine learning are cited. In general, there is a variety of different machine learning
methods that can be used in the problems mentioned above. We, based on the thesis as-
signment, constrain the broad spectrum of possible ML methods by removing the whole
class of probabilistic methods from our consideration. Therefore, only non-probabilistic
machine learning methods are stated.

I 3.1 Splice site classification

In all of the following works, a neighborhood (with a given size) around splice sites
is assumed. The neighborhood determines subsequences that are used for prediction
and is sometimes called a window. Furthermore, only a small subset of all possible
donor-acceptor pairs is considered — often only the most frequent pair GT-AG — because
the more pairs are considered, the more difficult the prediction gets.

Splice site prediction plays a crucial role in gene finding systems, an example of such
a system is Genie [17]. In Genie, they use feed-forward neural networks to predict donor
and acceptor splice sites. A similar approach was also described formerly [18]. To use
neural networks on string data (such as DNA sequences), one must decide on the input
encoding method. An orthonormal encoding method! is frequently used [18, 17, 19], but
other encodings are used too. For example, there is a complementary encoding method?
which is inspired by the complementary relationship between different nucleotides [20].

Apart from the artificial neural networks, support vector machines (SVM) are used
and prove to be well suited for this task. Some approaches employ an explicit feature
mapping. In [21], they use three types of features: positional information (presence or
absence of a nucleotide), compositional information (presence or absence of a polymer),
and coding potential (presence or absence of codons in reading frames). A similar
approach is used by [22] where each sequence is considered as a sequence of pairs
of nucleotides, and each pair is encoded as a 16-dimensional binary vector®. Another
approach is to examine mono-nucleotide* and pair-wise nucleotide encoding (each pair is
assigned a number between 1 and 16) combined with frequency differences between true
and false sites [6]. In [23], they use a numerical encoding based on differences in error
matrices for true, and false splice sites. Furthermore, they compared the performance

For example, A — 0001,7 — 0010, G — 0100, C' — 1000.

For example, A — 1,T — —1,C +— 2,G — —2.

There are 4 different nucleotides and, therefore, 42 = 16 different pairs of nucleotides.
Maps A, T,C,G to 1,2, 3,4 respectively.

=W N =

11



of neural networks, support vector machines and random forests for the task of donor
splice site prediction using the proposed encoding.

When using kernel functions, an SVM can handle DNA sequences directly without
an explicit feature mapping. The spectrum kernel, weighted degree kernel (WD), and
weighted degree kernel with shifts (WDS) are, among other kernels, applied in computa-
tional biology [8]. The locality improved kernel, WD and WDS kernels are used for the
splice site prediction very often [11,21,24]. In addition to SVM, further statistical in-
formation (such as intron and exon length statistics) can be used to improve prediction
accuracy [11]. Efficient algorithms for computing the mentioned kernels, and also for
fast SVM training, were proposed [25]. In [26], they compare two methods of multiclass
SVM (where classes are donor splice site, acceptor splice site, or none), and evaluate
ensembles of multiclass SVMs using bagging.

A completely different way to solve the splice site prediction problem is realized by
an algorithm called BRAIN which infers a DNF formula from the training examples
such that it describes the splicing rule [27]. An advantage of this approach is that
the resulting formula (or the splicing rule) can be easily interpreted. A discriminant
analysis can be used to predict the splice sites too [28]. Another approach is to employ
a hypernetwork architecture to find DNA splice sites. The hypernetwork architecture is
a biologically inspired information processing system composed of networks of molecules
forming cells, and a number of cells forming a tissue or organism [29].

I 3.2 Intron classification

Many statistical analyses regarding introns (e.g., intron lengths) for various organisms
have been performed. Following works studied different, specific organisms, and thus
the results do not necessarily apply globally to all organisms.

A relation between the number of lengths that are multiple of three, and the number
that are multiple of three plus one (or two) was studied. The numbers should be
similar but it turned out that, based on introns from 29 eukaryotic species, skew in
intron length distributions is common [30].

For a plant, it was shown that the length of introns and exons vary depending on
the number of introns per gene [31]. For fungi, however, the introns tend to be short
[32]. A correlation between the number of introns and variations in intron (and exon)
lengths was discovered [33]; furthermore, a correlation between the lengths of neighbor-
ing introns was observed [34].

There were multiple approaches to intron prediction as a sequence classification prob-
lem. A set of deterministic rules to detect an intron was introduced [35]. Utilization
of signal processing methods to analyze DNA sequences, and to further predict introns
and exons was proposed [36]. In [37], they extract statistical information from DNA
sequences using a wavelet-based time-series approach. The information is then used
to construct feature vectors, which are further used to train an SVM with an aim to
classify DNA sequences (exons or introns).

Support vector machines have been successfully used for sequence classification tasks,
e.g., [38-40]. There has been an effort to interpret support vector machines with the aim
to extract biologically relevant knowledge, for example, using Support Vector Multiple
Kernel Learning [41]. SVMs were used to build a system which recognizes classes of
proteins [42].

There were other methods for sequence classification based on, for example, sequence
comparison [43], or compression-based induction [44].

12



Chapter 4
Data analysis

In this chapter, we describe the data we have been provided with and, furthermore,
we present several statistical properties of the data. These properties are important in
order to propose a reasonable solution. Later, we motivate our solution based on the
statistical properties stated in this chapter.

B 41 Thedata

We are given DNA sequences and annotations describing individual genes and their
positions in the DNA for 940 different organisms. The data is acquired from the genome
portal of the Department of Energy Joint Genome Institute! (JGI) which is a web
application that provides access to JGI genomic databases and allows searching or
exploring genomes.

In biology, a species belongs to a genus which belongs to a family and so on. These
are so-called taxonomic ranks and for the needs of thesis we consider? the following five
of them (ordered from the most general to the most specific):

. phylum [§],

. class [45],
.order [123],

. family [306],
.and genus [567].

U W N~

The numbers in the brackets state the number of taxons for each of the taxonomic
ranks.

B 4.1.1 Sequences

The DNA sequences are stored in a simple, yet convenient, text-based format called
FASTA?. The FASTA files are assigned to the respective organisms using their filenames
which always read as <Organism>_AssemblyScaffolds.fasta.

Each sequence in the FASTA format is described by a so-called description line which
starts with the symbol > and precedes the particular DNA sequence (see Listing 4.1).
In our data, the description lines are used to denote different continuous subsequences
of the whole genome called scaffolds. Since a scaffold is a continuous DNA sequence, it
always contain DNA of a single organism only. All text lines are usually shorter than
some fixed value (it is 70 characters in our case).

The sequences should consist of A, C, T, or G only, but the character N—which,
according to the nucleid acid notation?, stands for “any base“—occurs in the data too.

! genome. jgi.doe.gov

2 There is a taxonomic rank above phylum too, but it is not important for us since all the fungi we work
with are contained in a single group on that level.

3 ncbi.nlm.nih.gov/BLAST/fasta.shtml

4 https://www.bioinformatics.org/sms/iupac.html
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>scaffold_1
GATAGGCGCCATAGCCCTCCATTGTGGGTGTTAGAACAAGGGCAATTCCTGCCACCTATACTGGCAGCCT
ATGAGTGGCCCAGATTAGCTTAGTATGATTACATAATGCTCCCTATAACACTGGCTGAGAAACAAADATG
ATTCCTCAGCGTTCGTCTCTATCATTTGGGGATAATAGAATTAGAA

Listing 4.1. An example of a FASTA format. The first line is the description line; it states

the name of the following scaffold. The scaffold consists of a sequence of 185 characters

each of which denotes an individual nucleotide. The sequence is spread over three lines so
that the number of characters per line does not exceed 70.

The occurrences might arise when creating the FASTA files from inaccurately sequenced
DNA.

The overall size of the FASTA files is 38 GB, while the sizes of the individual FASTA
files range from 2.2 MB to 325 MB and the number of bases distributed within scaffolds
per file (proportionally) ranges from 10° to 10% bases.

B 4.1.2 Annotations

The gene annotations are distributed as GFF! files. The files are linked with the
organisms using their filenames in a similar way as the FASTA files.

A GFF file consists of lines each describing a particular subsequence using nine
columns separated by a tab (see Listing 4.2 for an example):

. scaffold name,

. source,

. feature type,

. start position (inclusive),

. end position (inclusive),

. score,

. strand,

. frame,

. and a semicolon-separated list of additional attributes.

© 00 ~J O U = W N~

scfd_1 JGI exon 919 1103 . - . name "gml"
scfd_1 JGI CDS 919 1103 . - 2 name "gml"
scfd_1 JGI stop_codon 919 921 . -0 name "gml"
scfd_1 JGI exon 1187 1322 . - . name "gml"

Listing 4.2. An example of a GFF file. This snippet, according to the first column, de-
scribes subsequences from a scaffold called scfd_1. All the subsequences belong to a gene
named gml which is located on a negative strand.

The scaffold name is the name stated in the description line of the scaffold (see Listing
4.1). The feature type determines the meaning of the subsequence and can be one of
the following:

m exon,

m CDS (i.e., coding sequence),
m start codon (start_codon),
m or stop codon (stop_codon).

! www.ensembl.org/info/website/upload/gff.html
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Note that one of the feature types is exon, which is not be confused with exon men-
tioned in Section 2.2. Exon as a feature type includes, in addition to coding sequences,
also non-coding exon sequences. However, exon, as introduced in Section 2.2, means a
coding sequence only and is denoted as CDS in the notion of the feature types. There
is not any feature type for introns so their positions cannot be extracted directly, but
it is possible to derive them based on the positions of other feature types. Section 4.1.4
deals with this problem.

Start and stop codon refers to the meaning explained in Section 2.2.

Start and end position assign the subsequence location within the scaffold (both the
positions are inclusive).

Strand can be either + or - and determines DNA strand which contains the subse-
quence.

The list of attributes may contain any key-value pair. There is although a common
key name with an associated value that states the name of a gene which includes the
given subsequence. This key-value pair is present in case of every organism. However,
for one organism called Volvol the pair has a different semantic; it contains values such
as conserved hypothetical protein instead of gene names.

We will omit a description of the fields source, score, and frame as they are irrelevant
for the thesis.

B 4.1.3 Subsequence extraction

A tuple (N, S, Ps, P.), where N is the name of a scaffold, S denotes a strand, and Ps, P,
are start and end position, is essentially sufficient information to locate a subsequence
in a FASTA file. In the case of positive strand, the extraction is fairly straightforward.

1. Find a sequence of a scaffold named NV,
2. return the sequence between positions P and P, inclusively while skipping line breaks
which are not considered as a part of the sequence.

For subsequences located on negative strand, the extraction involves two additional
steps:

1. reverse the extracted subsequence,
2. rewrite each character of the extracted subsequence to its complement (see Table
2.1).

See Listing 4.3 for an example of both a positive and negative strand extraction which
followed the instruction described above.

In general, sequences in the FASTA files represent the positive strand of DNA. There-
fore, when working with negative strand, one needs to reverse the sequences a rewrite
them according to the complementarity.

B 4.1.4 Gettingintrons from the annotations

To find introns using specific methods of machine learning, we need to label intron
subsequences. To do that, we need to know their positions, but, as aforementioned,
the positions of introns cannot be extracted from the GFF files directly. This section
describes an algorithm which allows us to get the positions for a given gene.

We assume that it is possible to obtain all non-intron subsequences for the gene,
which can be done simply by grouping the subsequences by the gene name which is
always among the additional attributes. Also, we reckon that any gene starts and ends
with a non-intron sequence. This is trivially satisfied as a gene always starts and ends
with an exon.
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1
12
13
14
15
16

>scaffold 1
ACATAGACATACTTGATGGATGAGAATGGATCAACTAGAACTGCTCAGAGCGTAGGCATACGCATCCGCA
TCAGACGTCAGCACGCATACTCGCATCCCTGACCATCACGCATCAGCTACTCGATCATGCAGCATCTTGC
AGACGCCTACATATCCCAATGCACGATGCGATCTGAAATAC

>(scaffold 1, +, 68, 75)

GCATCAGA

>(scaffold_1, -, 68, 75)

TCTGATGC

Listing 4.3. An example of subsequence extraction. The listing uses the FASTA format.

The scaffold named scaffold_1 contains a source sequence of 181 characters. The other

two scaffolds represent results of two extractions. Names of those two scaffolds are tuples
which express origin of the extractions as described in the beginning of this section.

Given the gene, let us denote the number of the non-intron subsequences as m. We
can then represent the non-intron subsequences as pairs (s;,€;),1 < i < m, where s;
and e; are start and end positions of i-th subsequence, respectively. Without any loss
of generality, we assume s; < e; for 1 <¢ <m, and s; < s;41 for 1 < i < m. The first
assumption can be satisfied by swapping s; and e; for any 4 that violates the assumption,
and the second one by employing a simple ordering on the subsequences. Then we can
define the algorithm as seen in Listing 4.4.

FUNCTION ExtractIntrons(s, e)
start := min(s)
end := max(e)
last := start
introns := []
FOR i IN 1..m DO
IF s[i] > last + 1 THEN
append (last+l, s[i]-1) to intromns
END IF
last := max(last, e[il)
END FOR

RETURN introns
END FUNCTION

Listing 4.4. Pseudocode of an algorithm that extracts intron positions for a gene. The

arguments s and e are, respectively, lists of start and stop positions of non-intron subse-

quences as defined in the text. The variable m refers to the number of non-intron sequences

as introduced in the text as well. The algorithm result is a list of pairs of start and end
positions for all introns in the given gene.

In the beginning, the algorithm finds the minimal start position, and the maximal
end position. Then, after making exactly m iterations to find the intron positions, it
returns the result. The algorithm thus has a linear time complexity O(m).

I 4.2 Statistical analysis of the data

Statistical analysis of the data might lead to interesting findings. Therefore in this
section, we examine the DNA sequences present in the FASTA files. We remove the
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4.2 Statistical analysis of the data

organism Volvol from the analysis as the GFF file of this organism does not respect the
discussed name attribute rule (see Section 4.1.2) and thus it is not possible to determine
its gene positions.

B 4.2.1 Splicesite pairs

As mentioned before in the Section 2.2.1, the most common pair of splice sites is GT
(the donor site) and AG (the acceptor site). This statement holds in the case of our
data too. Over 97% of all the introns start with GT and end with AG. Apart from
that, a wide range of 426! different pairs of splice sites occurs in the data.

Figure 4.1 displays the relative frequency of four most frequent splice site pairs. Every
other pair has its relative frequency lower than 0.1%.

In the figure, we can observe that the most common acceptor site AG forms a pair
with another dimer (different than GT) too, the pair GC—AG is even the second most
common splice site pair. In fact, both the donor site GT and the acceptor site AG pair
with all 16 possible dimers (consisting of A, C, T, or G); although such pairs are not
frequent.

1.0

0.8

o
o

Frequencies

o
~

0.2

0.013 0.003 0.001 0.007

GT—AG GC—AG CT—AC AT—AC others
Splice site pairs

0.0

Figure 4.1. The relative frequency of four most frequent splice site pairs.

Il 4.2.2 Nucleotide bases within introns

If we divide all the DNA sequences into two disjoint groups of intron and non-intron
sequences, we can compare nucleotide distributions for both the groups. It turns out
that there are distinct differences—see Figure 4.2.

Despite not being a nucleotide base, we also included frequencies for the character
N to get a complete view of the distributions. However, ignoring the frequency of N,
we see that the distribution for the non-intron sequences is almost uniform. On the
contrary, the intron sequences have a strong presence of thymine (T), when compared
to the non-intron sequences, which could be explained by the polypyrimidine tracts
being present in the introns (see 2.2.1). Another, yet not that significant, difference
between the two distributions is in the guanine (G) frequency which is greater in case
of the non-intron sequences.

! The number includes splice sites containing N too. Otherwise there would be at most 42 - 42 = 256
possible splice site pairs.
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4. Data analysis
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Figure 4.2. Relative frequencies of different nucleotide bases (or characters) within selected
introns, within all introns, and outside introns. The selected introns are such introns that
start and end with GT and AG, respectively, and do not contain any N.

Figure 4.2 also depicts a distribution for a group of introns that start with GT, end
with AG, and consist purely of A, C, T, or G. This group can be viewed as a group of
typical (in sense of splice sites) introns that are well sequenced (so they contain exact
nucleotides). These typical introns are in the majority (see Figure 4.1]) and thus the
nucleotide distribution of these introns does not deviate from the distribution of all
introns very much.

Il 4.2.3 Intronlengths

As mentioned in the related work, it has been reported that introns of some fungal
organisms tend to be short [32]. Table 4.1 and histogram in Figure 4.3 imply the same
for our data.
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Figure 4.3. Intron lengths histogram. The blue area displays range between the 5th, which
is 45, and the 95th percentile, which is 173. Thus, 90% of all intron lengths are between
45 and 173. Although it is missing in the plot, the 99th percentile is 476.

There are multiple organisms with single-base introns, e.g., AbobiZ'. The intron
having the maximal length belongs to Gymlul organism and is located in a gene named

! https://genome. jgi.doe.gov/cgi-bin/dispGeneModel ?db=Abobil1&id=471248

18


https://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Abobi1&id=471248

4.2 Statistical analysis of the data

statistic value
minimum 1
average 81
median 58
maximum 49062

Table 4.1. Basic statistics of intron lengths (see a related histogram in Fig. 4.3).

gwl.144.11.1'. Given all the intron lengths, the 99th percentile is 476 which allows
us to ignore very long introns and still cover 99% of the domain.

For comparison, the average intron size for the human genome is more than 5000
bases [45].

It is useful to examine lengths of the individual phyla (see Table 4.2). Phyla Chytrid-
iomycota and Zoopagomycota have abnormally long introns; on the other hand, Cryp-
tomycota and Microsporidia have the opposite.

phylum number of species median intron length
Ascomycota 521 62.5
Basidiomycota 317 63.0
Blastocladiomycota 4 75.0
Chytridiomycota 22 184.0
Cryptomycota 2 28.0
Microsporidia 8 31.0
Mucoromycota 50 74.5
Zoopagomycota 16 204.5

Table 4.2. Median lengths of introns in different phyla.

B 4.2.4 Portionofintrons in the data

Introns represent just a small portion of the entire DNA (also partly because they
are short as concluded in the previous section): only 3.7% of all nucleotides belong to
introns. A visualization of the portion is shown in Figure 4.4.

We have stated that GT and AG are the most common donor and acceptor splice
sites, respectively. However, given the DNA sequences we have, only about 0.82% of all
GTs and 0.72% of all AGs are the actual splice sites. The difference of 0.1% between
the portions arises mainly from the fact that there are about 1.14 times more AGs than
GTs in the DNA data.

Bl introns
Bl exons
I other

Figure 4.4. Portion of DNA that belongs to introns, exons, or neither of them.

! https://genome. jgi.doe.gov/cgi-bin/dispGeneModel ?db=Gymlul&id=125403
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4. Data analysis

H 4.2.5 Introndistribution on strands

Introns can occur on both the positive and negative strand of DNA. In the provided
data, the distribution between the strands is approximately uniform:

m 50.074% of introns lie on the positive strand,
m and 49.926% on the negative strand.

Bl 426 Summary
Let us summarize the important statistical properties that were discovered.

m The vast majority of all splice site pairs respect the GT-AG rule,

m there are statistical differences between intron and non-intron sequences on the level
of nucleotide distributions,

m the introns are generally short (e.g., when compared to the human genome),

m a typical intron is about 60 bases long,

m however, the lengths of typical introns of different phyla vary (e.g., Zoopagomycota
has very long introns compared to the others),

m more than 75% of DNA! is represented by non-coding sequences (i.e., less than a
quarter of the DNA are genes),

m and finally, the number of introns on the positive strand is (almost) the same as on
the negative strand.

L within the provided data
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Chapter 5
Classification process

Given a long sequence of fungal DNA, the ultimate goal of the thesis is to find introns
contained in the DNA. In other words, we need to localize start and end positions of the
introns. As mentioned before, each intron starts and ends with the donor and acceptor
splice site, respectively. Although there are many possible pairs of donor and acceptor
splice sites, we will consider only introns starting with GT and ending with AG. By
doing so, we substantially reduce the task complexity while still covering most of the
domain, as over 97% of introns stick to the GT—AG rule (see Section 4.2.1). If we
also considered the minor splice sites, it would necessarily lead to many false detections
because only a negligible fraction of dimers that form these minor splice sites are splice
sites.
A “naive” algorithm solving the task could be defined as follows.

FUNCTION find-introns-naive(sequence):
FOR i IN O..length(sequence) DO
IF sequencel[i, i + 1] = °GT’ THEN
FOR j in (i + 2)..(i + neighborhood) :
IF sequencelj, j+1] = ’AG’ THEN
is_intron := classify(span(sequence, i, j+1))
IF is_intron = 1 THEN
output sequenceli, j+il
END IF
END IF
END FOR
END IF
END FOR
END FUNCTION

Listing 5.1. A naive approach to the intron retrieval. The algorithm takes a sequence,

finds all GTs in the sequence, and for each of them, it searches some forward neighborhood

for AGs. If an AG is found, the sequence between the GT and the AG is considered as a

candidate intron sequence and therefore is passed to classification (function span returns

the sequence extended with some neighborhood). Based on the classification result, the
algorithm then decides whether the sequence is an intron.

The algorithm would be inefficient as it produces a candidate intron for any GT and
AG that are within their neighborhood. The number of such candidates depends on
the size of the neighborhood (which should be based on the results presented in Section
4.2.3) however it could get very large. Moreover, the vast majority of the candidates
would be negative examples.

A Dbetter approach is to classify each GT and AG independently beforehand, and
afterward produce the intron candidates by pairing the positively classified splice site
candidates only.

One could argue that it is unnecessary to process a GT if there is no AG in its
neighborhood and vice versa. However, this is extremely unlikely to happen, assuming a
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reasonable neighborhood size (Figure 5.1 displays a graph of a function which represents

the probability). Consequently, this approach produces proportionally fewer intron
candidates when compared to the naive algorithm.
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Figure 5.1. The conditional probability that there is no AG in a neighborhood of size n

after a given GT. For simplicity, we assume that the nucleotides are distributed uniformly

and independently. We should consider intron lengths up to a few hundreds of bases (see

Figure 4.3), and, as we can observe, for n > 100 the probability is very close to zero. See
Appendix B for computation of the probability.

I 5.1 The framework

Based on the previous findings, we can now set out a framework (or a general process)
which we will use to find introns in a DNA sequence.
Figure 5.2 contains a holistic view of the classification process. There is an input, an

output, and three different, consecutive tasks. Each part is introduced and described
in the following sections.

1 2
3
INPUT C'S-QEI%:'EY GENERATE CLASSIFY OUTPUT
FASTA AL PAIRS INTRON FASTA

Figure 5.2. Schema of the classification process. The classification process input is a

FASTA file containing DNA sequences. In the first step, every splice site candidate within

the DNA sequence is classified using a trained model. Then in the second step, intron

candidates are formed based on positively classified splice site candidates. The third and

final task is to classify the intron candidates, and to produce a FASTA file consisting of
positively classified intron candidates.

B 5.1.1 Input

The process has a FASTA file as its only input. The FASTA file contains DNA sequences
in which introns are about to be detected.

Generally, the FASTA files always contain sequences coming from only a single
strand—suppose the positive one—but given those positive strand sequences, it is al-
ways possible to get sequences from the negative strand too, as the strands are com-
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plementary. However, there are additional steps involved in order to get the negative
strand sequences (we explained the steps in Section 4.1.3).

To keep the classification process simple, we completely abandon the concept of
strands. Only sequences read directly from the input FASTA file are considered (i.e.,
there is no reversing nor rewriting of the sequences). Of course, this way we would
implicitly lose all potential introns located on the negative strand, which is about half
of all introns in a genome (see Section 4.2.5). Since this is not acceptable, we come up
with a simple solution.

We suggest extending the input FASTA file by introducing new scaffolds which are
complementary to the scaffolds from the original input. Although it causes the input to
double its size, it allows us to keep the whole process straightforward and simple while
not giving up half of the potential introns.

Furthermore, we can name the newly introduced scaffolds based on names of the
scaffolds from which they originate, e.g., by adding a prefix to the original names. Such
a naming convention binds together two different scaffolds that, however, represent
complementary strands of the same sequence. See Listing 5.2 for pseudocode of this
procedure.

FUNCTION extend-input(scaffolds):
FOR i IN O..length(scaffolds) DO
output (name(scaffolds[i]), sequence(scaffolds[i]))

new_name := "neg " + name(scaffolds[i])
compl_seq := complement(reverse(sequence(scaffolds([i])))
output (new_name, compl_seq)
END FOR
END FUNCTION

Listing 5.2. Pseudocode of a function that extends an input with complementary se-

quences. The function takes a list of all original scaffolds. It then outputs each of the

original scaffolds and their respective complementary scaffolds which are named the same
as the originals but with a prefix neg_.

I 5.2 Task: Classify splice sites

The purpose of this task is to classify all splice site candidates that are contained within
the input FASTA file.

It follows from the related work that methods of statistical machine learning are fre-
quently used for splice site classification. Many approaches use artificial neural networks
or support vector machines, in particular.

Artificial neural networks can learn very complex decision functions, but they tend to
have many parameters to tune. Moreover, ANNs do not require a convex cost function,
but they do not guarantee to find the global optimum. On the contrary, SVMs always
find the global optimum and have only a few parameters in exchange for a simple
decision function which we can however influence using a specific kernel.

Among the related work, the best results have been achieved by a support vector
machine [24]. And therefore we too shall follow this approach.

The best performing SVM employed weighted degree and weighted degree with shits
kernels, both of which are string kernels (see Section 2.4.2). These kernels seem like a
natural choice as they should be able to utilize the intron characteristics such as the
presence (and location) of polypyrimidine tracts or the branch point (see Section 2.2.1).
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Both the kernels have the same definition except there is a possible subsequence
shifting involved in WDS kernel which makes it more general than WD. Because of
that, WDS kernel may yield better results [24] in exchange for longer computation time
due to additional iterations implied by the subsequence shifting.

Since we work with large datasets, execution speed is an essential criterion. We, thus,
will use the WD kernel.

B 5.2.1 Classification problem

Our goal is to classify both donor and acceptor splice site candidates. The approach
we have chosen above, however, leads to considering the donors and acceptors indepen-
dently. Splitting the classification of the splice sites into two independent tasks also
allows us to run the tasks in parallel which is very convenient in terms of execution
time.

The classification tasks for both the donors and acceptors are essentially the same
and thus have the same definition.

For each splice site candidate, we extract a sequence of length NV such that the splice
site is contained within the sequence. The length N and location of the splice sites
within the sequence are given by parameters which are explained in Section 5.2.2. The
sequences are considered input examples for a classifier.

Given M sequences, the classifier then assigns each sequence to a positive or nega-
tive class, meaning that the sequence contains a true or false splice site, respectively.
Therefore we deal with a binary classification problem with the input space

X ={AC TG

and the target space
Y ={-1,+1}.
SVM is a supervised learning algorithm which means that it requires to know the

true classes for each sequence during its training. This is not a problem since the true
classes follow from the sequence annotation (see Section 4.1.2).

B 5.2.2 Parameters
Since we use the WD kernel, two parameters arise directly:

m a degree d,
m and weights fj, (both are explained in Section 2.4.2),

and, because the WD kernel operates over fixed-length sequences, there are other
two parameters:

m the sequence length,
m the splice site position within the sequences.

The value of the degree d has to be determined empirically, however in the related
work, values around d = 20 were used. Regarding the weights i, we will use the values
By = 2% as suggested in [15].

We call the sequences, containing the splice sites, windows around the splice sites.
The windows are parameterized by the number of bases before and after the splice site.
Let us denote these two numbers Wy and Wg, respectively.

It follows from the definition of the numbers W, Wx that they determine both the

window size (or the sequence length)

N=W +Wgr+2
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5.3 Task: Generate pairs
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Figure 5.3. Splice site windows. The blue baseline represents a continuous DNA sequence
which contains an intron that starts with a GT donor and ends with an AG acceptor.
The blue bar behind the donor GT depicts the window around the donor. The analogous
applies for the blue bar behind the acceptor AG. The arrows depict the value of WE , ng
in case of donors, or Wf‘, Wﬁ in case of acceptors. Note that the part of the window
defined by WZ (or W) always interferes with an intron (assuming true splice site).

A
4
h

v

and the position of splice sites within the window. See Figure 5.3 for a graphical
explanation.

I 5.3 Task: Generate pairs

The previous task, the splice site classification, classifies every splice site candidate
that is present within the input FASTA. From now on, we consider only the positively
classified donors and acceptors and use them to create a set of intron candidates.

As mentioned before, an intron starts with a donor and ends with an acceptor. We
therefore iterate over each (positively classified) donor and try to find one or possibly
more (positively classified) acceptors that are located within a reasonable distance D
from the donor.

Il 5.3.1 Distance between splice sites

The distance D between splice site pairs directly determines the length of produced
intron candidates
N=D+2

and therefore, also the length of introns we can detect. The value of D should be based
on the length of real introns which we analyzed in Section 4.2.3.
Let us denote a lower bound Dj; and an upper bound Dy, and let them constrain
the distance
Dy <D< Dy.

By setting these bounds, we control the length of intron candidates. It must hold
Dy > 2, as the minimal possible intron candidate is GTAG with length of N = 4 where
the distance between its splice sites is D = 2. Suitable values of the bounds are discussed
in Section 5.4.

I 5.4 Task: Classify intron

The part of the process we have introduced so far produces a set of intron candidates,
i.e., sequences which, we believe, could be introns based on their splice sites. However,
it turns out that many of the candidates are false positive examples. By employing the
final step of the process (see Figure 5.2), we aim to reduce the number of false positives
while maintaining the number of true positives as much as possible.
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FUNCTION make-pairs(donors, acceptors, d_min, d_max):
FOR i IN O..length(donors) DO
pos := position(donors[i])
to_pair := filter(acceptors, pos + d_min, pos + d_max)
FOR j in 0..length(to_pair) DO
output (donors([i], to_pair[j])
END FOR
END FOR
END FUNCTION

Listing 5.3. Pseudocode for pair generation. The function takes positively classified donors
and acceptors, and the minimal and maximal distance between two complementary splice
sites. Function filter returns acceptors located between given positions.

The problem we deal with in this task is similar to the problem we try to solve in
the splice site classification. The current task is also a binary classification problem.
However, there is an essential difference in the input space: unlike the splice site classifi-
cation, here we deal with sequences of variable lengths. It is therefore impossible to use
the same approach as in the splice site classification because the weighted degree kernel
requires fixed-sized sequences. It is also useful to use a different feature representation
(i.e., kernel) in order to bring different kind of information to the process.

We touched the topic of intron classification in the related work (Section 3.2), but
none of the mentioned approaches is very suitable given our setup. We bring up a
simple yet effective solution.

Once again, we will use a support vector machine but with the spectrum kernel in
this case. We introduced the spectrum kernel in Section 2.4.2. It “compares” two
sequences over an alphabet 3 based on the number of occurrences of subsequences X'
within each sequence. The subsequences length [ is a parameter of the kernel, and the
alphabet ¥ = {A,C, T, G} in case of DNA sequences.

The motivation of our approach consists of two parts:

m SVMs solve binary classification problems exceptionally well,
m there are differences between the nucleotide distribution of intron and non-intron
sequences (see Figure 4.2).

When the kernel parameter [ = 1, the kernel compares the sequences by the number
of occurrences of each nucleotide. Hence, this value of [ directly utilizes the differences
in the nucleotide distributions to determine intron and non-intron sequences (see Figure
4.2).

However, greater values of [ would induce feature space of higher dimensionality which
could be beneficial for the classification as it could capture sequential regularities. Thus
we will perform experiments to choose the best parameter [.

This approach relies on the statistical differences in I-mer!' distributions of intron
and non-intron sequences. The longer the sequences are, the stronger and more robust
differences can be expected.

The length of sequences can be controlled by the previously introduced bounds
Dy, Dy. Let us thus set the lower bound Dy = 28 (which implies intron lengths
N > 30), and the upper bound Dy = 598 (which implies N < 600). Given the pro-
vided data, approximately 98% of true introns fit in this range. Should the classification

L l-mer is a nucleotide subsequence of length [.
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5.5 Fungi heterogeneity and classification models

target more typical introns, the bounds can always be tightened closer to the median
length (see Section 4.2.3).

B 5.4.1 Output

After the intron classification is done, we will get a set of supposedly true introns. It
is the final result of the whole classification process, and therefore we need to store
the output in a file. Since the output is, as well as the process input, a set of DNA
sequences, we will stick to the FASTA file format.

It is also important for the output to contain origin (scaffold name along with start
and end positions) of the introns. It is however possible to store this kind information
in the description lines (see Section 4.1.1). Let us introduce a new convention for the
description lines of introns for this purpose: >SCAFFOLD START END, where SCAFFOLD
is the name of the scaffold that contains the given intron, and START with END declare
the start and end positions. See Listing 5.4 for an example of the introduced syntax.

>scaffold_1 1930 1971
GTACTAGCTGCTATAGCTAGTGGTAGAACCATGTTTGACAAG

Listing 5.4. An example of a description line of an intron. The intron is located at scaffold
named scaffold_1, starts at position 1930 and ends at 1971.

Note that the output does not contain any information about strands. It is so because
of the simplification introduced in Section 5.1.1. According to our suggestion, the
information about the strand of origin is in the scaffold name.

I 5.5 Fungi heterogeneity and classification models

We expect that a single model (either for splice sites or introns) will not be sufficient
for all fungi. But we naturally try to minimize the number of models as more models
means more executions of the classification pipeline.

To minimize the number of models means to find the most general taxonomic rank
(see Section 4.1) for which a trained model performs (almost) as well as in case of more
specific ranks.
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Chapter 6
Data processing tools

This chapter describes two major tools we used to process the data.

I 6.1 Extraction from FASTA

The solution consists of two tasks, the classification of splice site and introns, where
we employ support vector machines. In Section 5.2.2, we defined that the data for the
splice sites classification will consist of fixed-size windows (or sequences) around the
splice site candidates. For the intron classification, the data is a set of sequences of
variable lengths (see Section 5.4).

The datasets for both the tasks consist of subsequences of scaffolds stored within
the FASTA files we have. Therefore we need a tool that would allow us to extract an
arbitrary subsequence from a given scaffold located in a given FASTA file.

We have implemented such a tool and called it extract-fasta. It uses only the
command line interface (CLI) to communicate via a simple protocol.

The program expects the name of a FASTA file as its only argument. When running,
it reads the whole FASTA file, parses all scaffolds from the file and keeps them in a
map. It follows that the whole FASTA file is loaded into RAM which is questionable.
However, the maximal size of a FASTA file within the data is 325MB, and that is—given
the typical memory size being over 8GB nowadays—relatively insignificant.

Once the FASTA file is loaded, the program reads line by line from the standard input
where the user enters locations of the subsequences they wish to extract. The input is
expected to respect the following form: scaffold strand start end\n. For example,
scaffold_1 + 217 302 causes extraction of the subsequence starting at position 217
and ending at position 302 on the positive strand of scaffold scaffold_1.

For each line of the input, the program writes the extracted sequence to the standard
output. The sequences are outputted in the FASTA format meaning that a descrip-
tion line precedes each extracted sequence. The description line contains the origin of
the extracted sequence which is the same as the input line that invoked the sequence
extraction.

Note that the program accepts strands. If the strand is -, the program automatically
reverses and rewrites the given sequence so that the outputted sequence is the correct,
complementary one.

We have to consider the strands now, despite not considering them during the classifi-
cation, because about half of genes are located on the negative strand (see Section 4.2.5).
So if we only worked with the positive strand, we would lose half of the data available
for training of the models.

Since the program uses the standard input and output, we can use features of the
UNIX command line such as pipes or I/O redirection (see an example of typical usage
of the program in Listing 6.1).

Because the scaffolds are stored in a map, the complexity to get a scaffold given its
name is constant. Then, in case of the positive strand, the program returns a substring
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6.2 GFF processing

./find-introns fung.gff | extract-fasta fung.fasta > fung-introns.fasta

Listing 6.1. An example of a typical usage of extract-fasta program. The example

contains two programs, find-introns and extract-fasta, which are chained together

using the pipe (suppose that the output of find-introns respects the syntax of the

input of extract-fasta). The final result is then redirected to a new file called

fung-introns.fasta. The idea of this whole pipeline is that program find-introns

extracts positions of introns from file fung.gff, then passes them to extract-fasta
which outputs the introns into a new FASTA file.

of the scaffold, which has linear complexity in the length of the extracted sequence. In
case of the negative strand, there is also the additional “complementarity” procedure
which has, however, linear complexity too. Overall, an extraction of a subsequence of
length n has a linear complexity O(n).

I 6.2 GFF processing

The GFF files contain sequence annotations (see Section 4.1.2). We need to be able to
parse the annotations in order to determine intron positions which is crucial to train
and test the SVM classifiers.

We have implemented a Python script named process-gff which goes through a
GFF file, parses its content and outputs intron positions.

The GFF files do not contain positions of introns directly (see Section 4.1.4) so we
follow the algorithm described in Listing 4.4 to extract the positions.

The algorithm requires us to group all non-intron sequences by the genes to which
they belong. We can do this by using a dictionary (where keys are gene names and
values are lists of non-intron sequences) and a single iteration over all lines each of
which we would parse to get the gene name, and then store into the dictionary.

Consequently, the processing tool has a linear time complexity O(n), where n is the
number of lines in a given GFF.
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Chapter 7
Splice site classification

In this chapter, we describe the implementation of the splice site classification. In partic-
ular, we touch the topics of parameter selection, or generalization capability (concerning
the taxonomic ranks of fungi).

However, at the beginning of the chapter, we discuss the selection of a machine learn-
ing library that we coincidentally used for both the splice site and intron classification.
We also include a code snippet which we used to perform the splice site classification
tasks.

I 7.1 Machine learning library

As stated in Section 5.2 and 5.4, we have two types of classifications both of which we
decided to deal with using SVMs. Since support vector machines are extensively used,
there are libraries providing efficient and optimized implementations of SVMs.

We were considering two different libraries:

m Scikit-learn,
m and Shogun.

Scikit-learn [46] is a machine learning library featuring many well-established algo-
rithms apart from SVM. This library has many users, large community, a great online
documentation, and the provided Python API is very convenient to use.

However, Scikit-learn implements only a few kernels; moreover, none of them is a
sequence kernel. Although there is a way of implementing a custom kernel function, it
is not viable for large data because the kernel function must return the Gram matrix
of size n X n given n training samples. Imagine having 200,000 training samples. That
would imply a matrix of 4 - 10!° elements. Assuming each element is a 4-byte number,
we would need 149GB of RAM. This leads us to Shogun.

Shogun [A7] provides a smaller set of algorithms when compared to Scikit-learn, but
it implements SVM too. In general, the available documentation and provided Python
API is worse than in the case of Scikit-learn. However, what makes Shogun a great
library is the vast range of implemented kernel functions—both the weighted degree and
spectrum kernel are present. The kernel implementations are also focused on large-scale
applications, so there is not an issue with the capacity of RAM.

Based on the advantages and disadvantages stated before, we conclusively decide to
use the SVM implementation from Shogun instead of Scikit-learn for both the splice
site and intron classification.

B 7.1.1 Script

We used a Python script to train and evaluate splice site models. See Listing 7.1 for a
code snippet. The code is very straightforward.

1. read the input dataset,
2. split the dataset into train and test data,
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3. create feature objects (which are instances of classes from Shogun) for train and test
sequences,

4. analogically, create label objects for train and test labels,

5. instantiate a kernel with a given degree d,

6. create a new SVM instance with given the parameter C, the kernel, and the true
train labels,

7. train the SVM,

8. classify sequences in the test dataset (and perhaps in the training too),

9. evaluate the model.

import shogun as sg
import numpy as np

data = read_data(data_filename, window=(W_L, W_R))
train, test = split_data(data, test_size)

train_features = sg.StringCharFeatures(train.sequence.tolist(),
sg.RAWBYTE)

test_features = sg.StringCharFeatures(test.sequence.tolist(),
sg.RAWBYTE)

train_labels = sg.BinaryLabels(np.array(train.label))
test_labels = sg.BinaryLabels(np.array(test.label))

kernel = sg.WeightedDegreeStringKernel (train_features,
train_features,
degree)

svm = sg.LibSVM(C, kernel, train_labels)
svm.train()

test_predict = svm.apply_binary(test_features)
// compute evaluation metrics...

Listing 7.1. A snippet of code used for training and evaluation of a splice site model.

I 7.2 Parameter selection
In Section 5.2.2, we described parameters that arise from using the WD kernel:

m a degree d,
m weights S,
m and parameters Wy, Wr for the window size.

There is also another parameter C, which is the regularization constant of the SVM
(see Section 2.3.2), that allows us to control the decision boundary of the SVM.

We have already set the weights to be g = 23&&% in Section 5.2.2. Coincidentally,
this is also the default setup for the WD kernel in Shogun so we can omit the weights
from further considerations about the parameters.

There are DNA sequences of 940 different fungi, each of which belongs to one of
567 different genera, 406 families, 123 orders, 45 classes, and 8 phyla. We already

mentioned in Section 5.5 that a single universal model will not be sufficient for all the
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fungi. However, to get a basic understanding of how different parameters influence the
model performance, we will start with a single, arbitrary fungus—we picked Armost1!
from phylum Basidiomycota.

B 7.2.1 Dealing with unbalanced datasets

In Section 4.2.4, we stated that less than 1% of all splice site candidates are true splice
sites. Therefore, uniform sampling of the splice site candidates from the data necessarily
leads to a dataset with extremely unbalanced class priors where more than 99% of all
examples are negative.

Training a SVM using such a dataset is challenging. Since the goal of the SVM is
to minimize the number of misclassifications (i.e., maximize its accuracy), it tends to
classify all examples as negative and achieve more than 99% accuracy.

Generally, there are two approaches to tackle this issue:

m subsample the negative examples to make the difference in the class priors less sig-
nificant,
m or set different regularization constants C~, C* for the positive and negative class.

The subsampling approach modifies the original class priors directly. The second
approach does not affect the class priors but it allows us to set C* > C~, i.e. greater
penalty for misclassification of positive examples than negative. Setting C* = 2C~ is
analogous to oversampling the positive class by a factor of 2.

We have tried both the approaches. The results are in the following sections. In
all the experiments, we did not use any sequences (i.e., windows around splice sites)
containing N (see Section 4.1.1).

Il 7.2.2 Subsampling the negative class

We have performed a grid search through 81 combinations of parameters

= C € {0.1,1,10},

m d e {15,20,25},

= W, € {60,380, 100},

= and Wy € {60, 80, 100}.

Within the sequenced DNA of Armost1, only about 2.7% of all splice site candidates
are true splice sites. Therefore, the class priors are P(+) = 0.027 and P(—) = 1 —
P(+) = 0.973. To alleviate the imbalance, we decided to subsample the negative class
and keep only 10% of the negative examples. Consequently, the class priors changed to
P(+) =0.27 and P(—) = 0.73.

The donor dataset consisted of 413 042 examples: 94 886 positives and 318 156
negatives. The acceptor dataset contained 441 773 examples: 96 697 positives and 345
076 negatives. For both the donors and acceptors, we used 65% of the data for training
and 35% for testing.

Many configurations led to high accuracy and recall for both the donors and accep-
tors. Precision is high too, but it is computed on a dataset with modified class priors,
and therefore the precision is too optimistic. To get a meaningful estimate, we need to
consider the original class priors and adjust the precision [16]. The adjusted precision
is significantly lower than the plain precision. We will thus focus on the first 10 con-
figurations with the highest adjusted precision (as the other metrics are generally high
for any configuration we tested).

! https://genome. jgi.doe.gov/Armost1/Armost1.home.html
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See Table 7.1 for results for the donor splice site classification. All ten configurations
have the regularization constant C' = 1. We can observe that higher order d does not
necessarily imply better performance. Another observation is that the window size Wg
tends to be rather high; 8 of the 10 best configurations have Wx > 80.

C d 143 Wgr Acc [%] Pr [%] Praqj [%] Rec [%]
1 15 100 80 95.502 91.518 44.735 88.633
1 15 60 100 95.461 91.446 44.505 88.522
1 25 100 60 95.454 91.417 44.415 88.522
1 20 80 80 95.428 91.374 44.279 88.449
1 20 60 60 95.460 91.253 43.903 88.744
1 25 60 80 95.444 91.241 43.868 88.678
1 25 80 100 95.424 91.228 43.828 88.597
1 20 80 100 95.385 91.221 43.804 88.419
1 25 60 100 95.358 91.174 43.662 88.344
1 25 100 80 95.354 91.158 43.611 88.347

Table 7.1. The best results for donor model achieved with subsampling of the negative
examples. Acc is accuracy, Pr is precision, and Rec is recall.

Table 7.2 presents 10 best configurations for the acceptor splice site classification. The
regularization constant is C' = 1 in all the configurations, which is what we observed
in the donors too. Higher degree d can improve performance (compare the second and
the third configuration), but it can also cause performance degradation if it is too high
(see the second and the sixth configuration). The window preference is the opposite to
the donors; here the Wy, tends to be greater.

C d Wi, Wg Acc [%)] Pr [%] Praq; [%] Rec [%)]
1 20 100 100 94.181 89.777 39.714 82.848
1 20 30 60 94.329 89.705 39.527 83.696
1 15 80 60 94.296 89.625 39.323 83.622
1 25 100 80 94.174 89.593 39.241 83.028
1 25 60 100 94.130 89.500 39.003 82.907
1 25 80 60 94.249 89.498 38.999 83.524
1 20 80 80 94.204 89.488 38.973 83.306
1 20 60 60 94.312 89.483 38.962 83.870
1 15 100 60 94.195 89.466 38.917 83.288
1 25 100 60 94.135 89.462 38.908 82.981

Table 7.2. The best results for acceptor model achieved with subsampling of the negative
examples. Acc is accuracy, Pr is precision, and Rec is recall.

Both the donor and acceptor classification is a difficult task since only a small fraction
of GT or AG are true splice site. A trade-off between precision and recall emerges from
this fact. Either we discover only a few introns, which results in bad recall, or we produce
many false positives and therefore achieve low (adjusted) precision. The class priors
affect the number of positively classified examples: the more substantial subsampling of
the negative class is performed, the more positives are classified.

Compared to the acceptors, we accomplish better results for the donors, perhaps due
to AG being more frequent than GT in general (see Section 4.2.4).
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Notice that accuracy is over 94% which, in connection with rather low precision,
means that the models perform very well in the classification of the negative examples
that are in the majority.

Another interesting observation is, that the window sizes Wy, Wg tend to be longer
on the side of splice sites where an intron is: for donors, it is Wg, and for acceptors Wr,.
It means that given a splice site, the models rather consider what is inside of an intron
that succeeds (or precedes) the splice site than what is before (or after) that intron.

B 7.2.3 Different regularization constants

For the experiments of the approach of different regularization constants C* and C~,
we set the rest of parameters to d = 15, Wy = 60, and Wz = 100. We also fixed
the negative regularization constant C~ = 1, and then tried various values of Ct—see
Table 7.3.

We experimented with the donor splice sites only. As the previous section showed,
the task of donor classification is easier than the acceptor one, and it is sufficient to
explore only one of the task in order to compare the two different approaches of dealing
with class imbalances.

The donor dataset consisted of 94 613 positive and 3 185 820 negative examples, that
is 3 280 433 examples in total. We used 85% examples for testing, which leaves 15%
for training. It is an unusual split ratio which we chose, however, in order to keep a
reasonable execution time of the SVM training (and 15% of the dataset is still almost
half a million examples).

Table 7.3 displays performance of a models with different values of C*. This approach
led to substantial improvement in precision, however, in exchange for deterioration of
recall. The value of CF does not affect the outcome very much as all the experiments
arrive at more or less the same performance.

Note that since we did not modify the class priors, we do not compute adjusted
precision in this case.

ct Ace [%] Pr [%] Rec [%]

10 98.351 74.290 65.499
20 98.350 74.343 65.350
20 98.351 74.246 65.580
100 98.342 74.126 65.316
200 98.355 74.449 65.422
500 98.349 74.283 65.386
1000 98.346 74.257 65.279

Table 7.3. Results for donor model achieved with different regularization constants. Acc
is accuracy, Pr is precision, and Rec is recall.

I 7.3 Generalization

The previous sections showed how a model, trained on a single organism (Armost1),
performs on sequences of the very same organism. In this section, we explore how the
performance develops if we train a model on a whole phylum of fungi, and then test it
on a class, an order, a family, a genus, or an organism that belongs to the phylum. Table
7.4 contains the results. Description of how we computed the results and discussion on
them follows after the table.
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B 7.3.1 Method

To perform the generalization experiments, we used the parameters that we found in
Section 7.2.2 to be optimal for Armosti. One can, of course, expect that they will not
be optimal for all organisms but finding the optimal parameters for each dataset would
be extremely time-consuming as it would require to perform a grid search as in Section
7.2.2.

We trained a model for each phylum on a dataset consisting of splice site windows
that were randomly sampled from positive strands of all fungi that belong to the phylum.
Table 7.5 displays sizes of the datasets.

donors acceptors

positive negative positive negative
Ascomycota 22010 225647 39982 228868
Basidiomycota 49159 198868 94237 202835
Blastocladiomycota 35675 213710 77378 203848
Chytridiomycota 39165 210557 75892 212051
Cryptomycota 18096 51535 59589 60965
Microsporidia 52 49267 104 64587
Mucoromycota 39787 206312 83044 208477
Zoopagomycota 25614 223840 48860 225567

Table 7.5. Number of positive and negative examples that were used to train models of
the phyla.

Then, given a model trained on a phylum P, we tested the model on a class C' that
belongs to phylum P, order O that belongs to class C, and so on. For example, a model
trained on phylum Ascomycota was tested on class Furotiomycetes, order FEurotiales,
family Aspergillaceae, genus Aspergillus, and species Aspwel. We therefore test how a
general model behaves on more specific data.

The taxonomic ranks (except for species) were chosen deterministically: always the
one with the highest number of members. We started with the phyla which were given.
Then for each phylum, we picked a class that belongs to the phylum and has the highest
number of fungi, and so on up to species which always has a single member, so we picked
a random one.

B 7.3.2 Discussionon the results

We omitted accuracies from the table in order to fit the table on a single page, but all
of them were above 90% (multiple above 95%). The high accuracies are achieved by
correct classification of the negative examples as we have already seen before. However,
let us focus more on the positive examples, therefore on precision and recall.

To get a better overview of the results, see Figure 7.1 which contains line plots
representing the development of precision and recall with respect to the taxonomic
ranks for both the donors and acceptors.

The general phylum models of both the donors and acceptors achieved better preci-
sion and recall on more specific data (i.e., on lower level taxonomic ranks) for phyla

m Ascomycota,

m Blastocladiomycota,
m Chytridiomycota,
m and Mucoromycota.
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7.4 Single model

In the case of phylum Basidiomycota, the performance of the donor model slightly
decreases for more specific data, but the acceptor model maintains its performance. On
the contrary, we can observe significant deterioration in the performance of the models
of phylum Zoopagomycota.

The improvements in both precision and recall of multiple phylum models lead to a
hypothesis that the trained phylum models describe the major groups of fungi within the
phyla very well. Furthermore, the used parameters, that follow from the experiments
on Armostl (see Section 7.2.2), seem like a reasonable choice either for the phylum
models.

However, the unsatisfactory results of the Zoopagomycota model suggest the opposite.
The parameters we used are probably unfit for this phylum and the underlying fungi.
Also the sequences within this phylum might hold different properties than the other
phyla which would require further analysis.

Notice that the results correspond with the differences in intron lengths in each
phylum—see Table 4.2. The models fail on Zoopagomycota, species of which have the
longest introns. Perhaps the window sizes should be adjusted for this phylum.
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phylum class order family genus species phylum class order family genus species
—— Ascomycota —— Blastocladiomycota —— Mucoromycota
—— Basidiomycota —— Chytridiomycota —— Zoopagomycota

Figure 7.1. Precision and recall of donor and acceptor splice site classification. The figure
does not contain results for model of phyla Cryptomycota and Microsporidia because they
do not belong to any class, order, family, or genus.

I 7.4 Single model

The previous section showed that when applied on the respective fungi, the phylum
models, apart from Zoopagomycota, perform comparably to the Armostl model. How-
ever, it would be more convenient to have just just a single model for both the donors
and acceptors.

We performed experiments similar to the above but with only two models, one for
donors and another for acceptors, which we trained using randomly sampled windows
of all fungi. Given results of the experiments, we computed arithmetic differences of the
current results and the previous results (i.e., a model per phylum). Figure 7.2 contains
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7. Splice site classification
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—— Ascomycota —— Blastocladiomycota —— Mucoromycota
—— Basidiomycota —— Chytridiomycota —— Zoopagomycota

Figure 7.2. Precision and recall of donor and acceptor splice site classification for univer-

sal models. The figure does not contain results for model of phyla Cryptomycota and

Microsporidia because they do not belong to any class, order, family, or genus. The differ-
ences are in percentage points.

plots representing the differences current — previous; positive values, therefore, mean
improvement and negative the opposite.

At most of the domain, there was a deterioration for both the donors and acceptors.
Some differences go up to -20 percentage points, which is a significant decrease. We
thus must conclude that we could not accomplish a universal model able to classify
donors nor acceptors of all the fungi with a consistent performance.

I 7.5 Execution time

The execution time of the splice site classification depends heavily on implementation
of the SVM and the kernel. The library we used, Shogun, provides efficient implemen-
tations. It is difficult to express the time required to classify the splice sites because
the implementation employs parallel execution. However, it is possible to make a rough
estimate based on the performed classifications.

There was a classification of

m 1 236 958 donor splice sites that took 104 minutes to complete on 8 CPUs,
m and 1 962 935 acceptor splice sites that took 158 minutes to complete on 8 CPUs.

A simple calculation n_examples/time/n_cpus gives 1 487 examples/minute for the
donor model, and 1 553 examples/minute for the acceptor model.

Of course, the parameters of the SVM and kernels play an important role in the
execution times. There would be longer executions for wider windows or higher degrees.
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Chapter 8
Intron classification

Following the classification process, we established in Section 5.1, we have so far tackled
only the problem of the splice site classification in detail. The second task is to generate
pairs of positively classified complementary splice sites. We already discussed this task
in Section 5.3.1 where we also included pseudocode of an algorithm that deals with the
task entirely. The implementation is trivial, so we continue with the next task—the
intron classification.

This chapter provides a code snippet of a Python script we used to train the intron
classification models. We also give an insight into parameter selection and performance
of models when applied on the whole phyla.

I 8.1 Script

We stick to the library (Shogun) we used for the splice site classification, however, we
employ a different kernel function called spectrum kernel (see Section 5.4) for the intron
classification. The script is very similar to the previous (Listing 7.1), it differs only in
the creation of the kernel. See Listing 8.1 for a snippet.

import shogun as sg
import numpy as np

charfeat = sg.StringCharFeatures(sg.DNA)

charfeat.set_features(train_sequences)
train_features = sg.StringWordFeatures(charfeat.get_alphabet())
train_features.obtain_from_char(charfeat, order - 1, order, 0, False)

charfeat.set_features(test_sequences)
test_features = sg.StringWordFeatures(charfeat.get_alphabet())
test_features.obtain_from_char(charfeat, order - 1, order, 0, False)

preproc = sg.SortWordString()
preproc.init(train_features)

train_features = preproc.apply(train_features)
test_features = preproc.apply(test_features)

kernel = sg.CommWordStringKernel (train_features, train_features,
False, cache_size)

Listing 8.1. A snippet of code used for training and evaluation of a splice site model.

Essentially, the features for this kernel are numeric vectors where each dimension
represents a different k-mer. It is therefore required to precompute this features from
the sequences first. Given the precomputed features, the rest of the process is the same
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as in the case of splice sites: instantiate the kernel, pass it to a new SVM, train the
model and use it to predict.

I 8.2 Parameter selection

For the intron classification, we use the spectrum kernel, which has only a single pa-
rameter, the order [. Another parameter is the regularization constant C' of support
vector machines. In this section, we show how each of these parameters affects model
performance.

Similarly to the splice site classification, we start with a single, arbitrary organism;
we picked Kocim! from phylum Basidiomycota this time. We used the Armost! mod-
els to classify all donor and acceptor splice site candidates present within the DNA
sequences of the fungus. Based on the classification results, we created a dataset of in-
tron candidates by pairing positively classified donors and acceptors (see Section 5.3.1).

The dataset consisted of 41 013 intron candidates, 8 815 of which were true introns
and 32 198 were not. For testing, we used 40% of the dataset. The rest was used for
training of models with

m the regularization constants C~ = 1,C" € {1,2,3,4},
m and the order [ € {1,2,3,4,5}.

The output of the intron classification is the output of the whole process. Therefore,
we aim to maximize the classification recall. Table 8.1 contains first 10 configurations
with the highest recall. Also, the classes are not significantly unbalanced in this case,
and thus we display accuracies too. In the table, we can observe the the trade-off
between precision and recall. The first configuration, which achieves the highest recall,
has one of the lowest precisions among the configurations. The highest accuracy is
achieved using configuration C™ = 1,1 = 5 which however has one of the lowest recall.

Cct l Acc [%] Pr [%] Rec [%)]
4 4 80.330 52.293 96.682
4 3 78.861 50.429 96.653
3 3 79.587 51.334 96.568
4 ) 82.208 55.007 94.555
3 4 82.427 55.435 92.995
3 ) 83.427 57.135 91.634
2 4 85.170 60.958 86.217
2 5 85.511 62.047 83.919
1 ) 85.969 67.220 67.754
1 4 85.475 66.532 65.230
1 3 83.457 63.579 53.914

Table 8.1. The results of trained models with the best recall. Acc is accuracy, Pr is
precision, and Rec is recall.

I 8.3 Performance on phyla

The approach (especially the spectrum kernel) relies on statistical differences in k-mer
distributions between intron and non-intron sequences. We suppose that the statistical
properties are preserved among the individual phyla. In this section we attempt to test
the assumption.
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B 8.3.1 Method

Since the input of intron classifiers is always based on the output of the splice site
classifiers, we also train the intron models in this manner. Therefore, to train and test
an intron model for each phylum (there are eight of them), it is required to classify
eight datasets using splice site models of the individual phyla beforehand.

Of course, in order to use a splice site model, one needs to train it first, and since
the training is a time-consuming task, we will use the models trained and described in
Section 7.3.

We will utilize the fact that the splice site models were trained on positive strands
only. If we restrict ourselves to negative strands only, we can freely use any splice site
candidate of any fungi without having to worry about picking a candidate that was
used during the training of the splice site models.

We, furthermore, wish to test the whole classification process on one fungus of each
phylum (see Chapter 9). It would be practical for the tests to use the models we are
about to train for the intron classification experiments. Thus, when creating datasets
for these experiments, we will skip one fungus for each phylum and that fungus will be
later used for the overall tests.

The data for this task are more complicated to obtain than for the splice site classi-
fication, because to obtain intron candidates we need all splice site candidates from a
continuous DNA sequence. To accomplish this, we used algorithm described in Listing
8.2.

for each phylum P
pick a random fungus F
until we have enough data do
pick a fungus G, G !'=F
randomly select a set S of N scaffolds of the fungus G
for each scaffold T from the set S
extract all splice site candidates from neg. strand of T

Listing 8.2. Pseudocode of an algorithm we used to extract splice site candidates. The
fungi G were selected in alphabetical order. The parameter N was chosen with respect to
the number of members in each phylum (greater N for smaller phyla).

As a result, we obtained eight datasets for eight phyla, which we subjected to the
splice site classification. Then, by pairing the positively classified complementary splice
sites, datasets for the intron classification were created. Table 8.2 specifies the sizes of
the datasets.

phylum positives negatives total
Ascomycota 4 547 16 249 20 796
Basidiomycota 20 313 177 536 197 849
Blastocladiomycota 5 936 43 088 49 024
Chytridiomycota 13 887 129 558 143 445
Cryptomycota 267 6 021 6 288
Microsporidia 17 3 20
Mucoromycota 14 670 98 955 113625
Zoopagomycota 5 200 29 141 34341

Table 8.2. Sizes of datasets that were used to train and test the intron classifiers.
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8. Intron classification

For the experiment, we used 70% of the data for training and 30% for testing. All
the models used C~ = 1,CT = 4,1 = 4 which are the parameters of the model that
achieved the highest recall before (see Table 8.1). See Table 8.3 for the results of the
intron models.

phylum Ace [%] Pr [%] Rec [%]
Ascomycota 78.073 49.923 94.648
Basidiomycota 85.656 41.425 95.914
Blastocladiomycota 82.282 39.822 90.623
Chytridiomycota 85.230 38.683 89.846
Cryptomycota 93.217 28.571 40.000
Microsporidia 83.333 83.333 100.000
Mucoromycota 83.428 43.250 90.843
Zoopagomycota 83.034 46.966 93.269

Table 8.3. Results of the intron classification. Acc is accuracy, Pr is precision, and Rec is
recall. Figure 8.1 contains a schematic illustration of the results for Basidiomycota.

Notice that the model of Microsporidia phylum detected all the introns that were in
the dataset. However, the phylum had only a few introns [tab:intron-class-datasets].
The model of Cryptomycota achieved the lowest precision and recall among the models.
That is perhaps due to the ratio between positive and negative examples in the dataset
(there is 30 times more negatives than positives).

Generally, the models achieve high recall but low precision, meaning they find the
majority of true introns present among the candidates, but also give a lot of false
positives.

Figure 8.1. Schematic illustration of the intron classification results for Basidiomycota

phylum. The blue bubble represents input dataset that contains examples of two classes,

positive (denoted by the circled plus) and negative (denoted by the circled minus). The

black line displays a virtual boundary between positively and negatively classified examples.

Labels TP, FP, TN, FN denote areas representing true positives, false positives, true

negatives, and false negatives, respectively. The proportions correspond to the computed
results from Table 8.3.

I 8.4 Executiontime

Similarly to Section 7.5, we give the execution time for the intron model too. A classifi-
cation of 225 832 intron candidates took 40 minutes to complete on 8 CPUs. Therefore,
about 5 646 examples got classified per minute. Compared to the splice site models,
the intron model is faster to evaluate.
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Chapter 9
Complete classification

Now, each step of the classification process (see Figure 5.2) has been introduced. We
have also presented individual results of each step. This chapter describes the results
of the whole process when applied on several fungi.

B 2.1 Method

When creating the datasets for the intron classification experiments, we left out a single
fungus for each phylum (see Listing 8.2). We thus have a set of species that can be
used to test the whole classification process:

m Aspwel (phylum Ascomycota)

m Mycalbl (phylum Basidiomycota)

m Allmal (phylum Blastocladiomycota)
m Chytril (phylum Chytridiomycota)
m Rozall_1 (phylum Cryptomycota)

m Enchel (phylum Microsporidia)

m Liccor! (phylum Mucoromycota)

m Coerel (phylum Zoopagomycota)

The negative strands of these organisms have not been used for the training of the
splice site models nor the intron models. We therefore considered the negative strand
only, and applied the whole process.

1. Extract splice site candidates from (the negative strand of) all scaffolds,

2. classify the splice site candidates,

3. create intron candidates by pairing the positively classified complementary splice
sited from the previous step,

4. classify the intron candidates,

5. output the positively classified intron candidates.

We used the phylum models from Section 7.3 for the splice site classification, and
the phylum models from Section 8.3 for the intron classification.

I 9.2 Results

Table 9.1 how many introns are on the negative strand of a species in total, and how
many we detected.

The performance varies for different species. However, a substantial loss of the introns
usually happened before the intron classification. Therefore, we can state that the
performance of splice site models influences the overall performance to a great extent.
Thus the performance could be improved by more involved analysis of the parameters

43



9. Complete classification

species total potential found

Aspwel 13 168 12 874 12 153 (92.29%)
Mycalbl 89 312 84 454 73 453 (82.24%)
Allmal 23 162 20 693 17 949 (77.49%)
Chytril 23 259 13 893 11 797 (50.72%)
Rozall_1 10 424 3 776 2 332 (22.37%)
Enchel 16 7 7 (43.75%)
Liccorl 26 632 24 182 21 712 (81.53%)
Coerel 1903 1 685 644 (33.84%)

Table 9.1. Results of the classification process when applied on a whole species. Column
total contains the total number of introns that are present on the negative strand for each
species, column potential shows how many true introns were among the intron candidates
before the intron classification, and the last column presents the number of true positives
returned by the intron classifiers (i.e. the final number of correctly detected introns).

of the splice site model for each phylum, or by more specific definition of the target
domain (e.g., only some classes of fungi).

Since the overall performance depends heavily on the performance of the splice site
models, the worst results were achieved for the species that belong to the “unusual”
phyla in terms of intron lengths (see Table 4.2).
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Chapter 1 0
Conclusion

The goal of the thesis was to implement a solution able to detect introns present in the
provided DNA of fungi. Based on the biological background and statistical properties
of the data, a solution consisting of a combination of multiple-purpose support vector
machines was designed. Although there were applications of machine learning to detect
splice sites already, we built a complete pipeline that can identify introns.

The solution employs two SVM models for the donor and acceptor splice site classifi-
cation. These models, however, tend to produce many false positives, therefore another
SVM, the intron model, was added.

For each of the SVM models, a grid search through sets of reasonable parameters
was performed. The grid search results showed how each parameter influences the
performance of the models. For the splice site models, the window sizes were especially
relevant.

As it turned out, a single donor (or acceptor) model is too general and thus achieves
poor performance only. Therefore one donor (or acceptor) model per phylum was
suggested.

Despite being trained using the same parameters, the models achieved decent results.
For specific fungi, the classification process detected more than 80% of all introns.

I 10.1 Future work

Using a different set of parameters for models of different phyla promises further im-
provements in the classification performance. However, since the grid search through
parameters demands much time and computational resources, it is left for future work.

As mentioned, an intron is always between two exons. This fact has not been di-
rectly used in the thesis (although it might have been used through the WD kernels).
Introducing an exon model that would classify the neighboring sequences of each intron
could bring up new kind of information to the process.

Introns are located in genes. Genes, however, form only a small fraction of the DNA
sequences, the rest is non-coding DNA. It would be useful to preprocess the input DNA
sequences and remove all the non-coding DNA. This should reduce the number of false
positives coming from the splice site classification. Perhaps a hidden Markov model
could be used to locate the genic areas [48-49].
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Appendix A
List of abbreviations

ANN
AUC
CDS
CLI
DNA
DNF
FN
FP
FPR
JGI
ML
PR
RNA
ROC
SVM
TN
TP
TPR
WD
WDS

artificial neural network

area under the curve

coding sequence

command line interface
deoxyribonucleic acid
disjunctive normal form

false negative

false positive

false positive ratio

Joint Genome Institute
machine learning
precision-recall

ribonucleic acid

receiver operating characteristic
support vector machine

true negative

true positive

true positive ratio

weighted degree kernel
weighted degree kernel with shifts
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Appendix B
The probability of a sequence not containing
AG

The question being asked is what is the probability that a DNA sequence of length n
does not contain a dimer AG assuming that the nucleotides are uniformly distributed
and independent of each other.

Let us define a recursive function F'(n) which returns the number of all DNA se-
quences of size n that do not contain any AG:

17
F(1) =4,
4-F(n—1)— F(n—-2).

There is only a single, empty, sequence for n = 0. For n = 1, there are four sequences
as there are four different nucleotides.

For a greater n, we find the value by computing F(n — 1), which is the number of
all sequences of length n» — 1 not containing AG, and multiplying that number by 4
because we can append four possible nucleotides to each of the sequences. However,
the resulting number also includes such sequences of length n — 1 that end with an
A, and appending a G to them would produce an AG. There are F(n — 2) of those
sequences as there are F'(n — 2) sequences not containg an AG to which we can append
an AG and get a sequence of length n which ends with the AG. Therefore we subtract
F(n—2).

Since the total number of DNA sequences of size n is 4", the probability in question

is equal to P(n) = Fif).
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