
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Learning Segmentation from Multiple Datasets with
Different Label sets

Diploma Thesis

Elnaz Babayeva

Supervisor: Ing. Milan Šulc

Master program: Open Informatics
Specialization: Artificial Intelligence

Prague, May 24, 2019

Declaration

I hereby declare I have written this diploma thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis. Moreover, I state that this thesis has neither
been submitted nor accepted for any other degree.

In Prague, May 24, 2019

..
Elnaz Babayeva

ii

Abstract

The thesis deals with the task of object instance segmentation, which aims to learn
a per-pixel mask of every object instance of defined classes within an image. State-
of-the-art convolutional neural networks require large quantities of annotated training
data. Segmentation masks are costly to annotate.The work focuses on training instance
segmentation from multiple datasets with different label sets, and addresses the problem
of missing annotations: instances of a class, which are labeled only in some datasets, may
be considered the background in a dataset where the class is not labeled.

As the main contribution of the thesis, two semi-supervised methods to distinguish
between unlabeled instances and background are proposed. One is based on feature
similarity of object proposals, second trains a separate classification head for each dataset
and uses all heads to discover unlabeled instances. Both methods were implemented as
an extension of Mask R-CNN and tested on two splits of the MS COCO dataset: the first
divides images into three datasets with overlapping label sets, the second divides images
into three datasets with disjoint label sets. On the first split with overlapping labels, the
baseline method performed 5% worse in terms of mAP compared to a fully supervised
setting. The proposed methods KNN and ε-MHC improved mAP in the semi-supervised
scenario by 1.75% and 0.72% of mAP respectively, which means 35% and 14% increase
towards the bound given by full annotation. Interestingly, on the second set with disjoint
labels, the proposed methods performed the same as baseline. Analysis of individual
errors cases did not show noticeable changes in categorical errors or in the type of errors.

Keywords: Computer vision, segmentation, detection, missing annotations, neural
network, deep learning.

iii

Abstrakt

Diplomová práce se zabývá úlohou segmentace instanćı objekt̊u, jej́ıž ćılem je naučit se
v obrázku označit pixely oblasti každé instance objektu z definovaných tř́ıd. Moderńı
konvolučńı neuronové śıtě vyžaduj́ı velké množstv́ı anotovaných trénovaćıch dat. Anotace
segmentačńıch masek je nákladná. Práce se zaměřuje na trénováńı segmentačńıch śıt́ı
z několika datových sad s r̊uznými množinami označených tř́ıd, a věnuje se problému
chyběj́ıćıch anotaćı: instance z tř́ıdy anotované pouze v některé datové sadě, může být v
jiné dataové sadě, kde anotována neńı, považována za pozad́ı.

Hlavńım př́ınosem diplomové práce je návrh dvou metod pro rozeznáváńı neoznačených
instanćı objekt̊u od pozad́ı. Prvńı metoda je založena na podobnosti př́ıznak̊u deteko-
vaných oblast́ı zájmu. Druhá metoda vytvoř́ı pro každou množinu označených tř́ıd vlastńı
klasifikačńı hlavu, a neoznačené instance vyhledává pomoćı všech hlav. Obě metody
byly implementovány jako rozš́ı̌reńı Mask R-CNN a testovány na datové sadě MS COCO
rozdělené dvěma zp̊usoby: v prvńım př́ıpadě byly obrázky rozděleny do tř́ı datových sad
s částečným překryvem anotovaných tř́ıd, v druhém př́ıpadě do tř́ı datových sad s dis-
junktńımi množinami anotovaných tř́ıd. V prvńım př́ıpadě s překryvem tř́ıd by naivńı
řešeńı znamenalo zhoršeńı o 5% mAP oproti plné anotaci. Navržené metody KNN a ε-
MHC zlepšuj́ı učeńı s chyběj́ıćımi anotacemi o 1.75% mAP a 0.72% mAP, což posouvá
výsledek o 35% a 14% směrem k výsledk̊um s plnou anotaćı. V druhém př́ıpadě s dis-
junktńımi množinami anotovaných tř́ıd dosahovaly navrhované metody stejných výsledk̊u
jako naivńı řešeńı. Analýza jednotlivých chyb neodhalila významné rozd́ıly v jejich druhu
či ve výskytu chyb v jednotlivých tř́ıdách.

Kĺıčová slova: Poč́ıtačové viděńı, segmentace, detekce, částečná anotace, neuronové
śıtě, hluboké učeńı.

iv

Acknowledgements

Foremost, I want to express my deep gratitude to my supervisor Milan Šulc. He guided
and educated me in the fields of object detection and computer vision. His support and
interest in my work helped me to pursue it further and push the boundaries. I appreciate
his time, which he spent consulting my work and his valuable advice as in academia as in
day-to-day life.

I would like to thank professor Matas for giving me the opportunity of joining CMP
and giving me a second chance when I had hard times. I am very grateful to members of
the CMP group, especially to Ahmet, Ondra, Filip, Tomáš, Klára, Matěj for creating a
great, fun, and friendly environment for learning and working.

Moreover, I want to thank Stratosphere Lab, especially to Sebas, Mari, Vero, and Jan,
for moral support and encouragement which I have received from them during the whole
studies. Special thanks go to wITches for allowing me to become an educator and to
encourage me making the world a little better. I appreciate all the moral support from
my friends: Nastya L, Nastya A, Kamila K, Jakub, Kuanysh, Sasha, Dasha, Polina.

Last but not least, I am thankful to my mom and dad for their love and support and
to my sisters Kamila, Leila, and Laura, who are always there for me. Most importantly,
I would like to thank Yura for his love and encouragement and not letting me give up.

v

Contents

Abstract iii

Abstrakt iv

Acknowledgements v

1 Introduction 1

2 Related Work 3
2.1 Relevant Tasks in Computer Vision . 3
2.2 Segmentation Datasets Overview . 4

2.2.1 PASCAL Visual Object Classification 4
2.2.2 Microsoft Common Objects in Context 5
2.2.3 PASCAL VOC Context . 6
2.2.4 Microsoft COCO Stuff . 7
2.2.5 ADE20K . 8
2.2.6 CityScapes . 8

2.3 State-of-the-art Instance Segmentation Methods 9
2.4 Faster R-CNN . 10

2.4.1 Region Proposal Network . 11
2.4.2 Region of Interest Pooling . 14
2.4.3 Region-based Convolution Neural Network 14
2.4.4 Feature Pyramid Networks . 16

2.5 Mask R-CNN . 17
2.5.1 RoIAlign . 18

2.6 Semi-supervised Learning for Dataset Combination 18
2.7 Multi-Label Learning with Missing Labels 19
2.8 Learning to Segment Every Thing . 21

3 Problem Statement 25
3.1 Notation . 25
3.2 Problem Definition . 25
3.3 Missing Annotations . 26
3.4 Label Inconsistency . 27

4 Method 29
4.1 Mask R-CNN with KNN Search . 30
4.2 Faster R-CNN with Multiple Classification Heads 33

vi

CONTENTS vii

5 Experiments 37
5.1 Datasets . 37

5.1.1 Existing Large Scale Datasets . 37
5.1.2 Training Datasets . 39
5.1.3 Validation Datasets . 41

5.2 Implementation Details . 42
5.2.1 Training . 43
5.2.2 Approximate Joint Training of Faster R-CNN 43
5.2.3 Hyper-parameters . 43
5.2.4 Mean Average Precision . 43

5.3 Results . 44
5.3.1 Mask R-CNN . 47
5.3.2 Error Analysis of Faster R-CNN + KNN 48

6 Conclusion 51
6.1 Future Work . 52

Bibliography 53

A Attachments 57
A.1 Table of CD Contents . 57

Chapter 1

Introduction

Visual recognition has been rapidly improving with deep learning systems using Con-

volution Neural Networks(CNN) [1]. We are interested in the task of object instance

segmentation, which aims to learn a per-pixel mask of every object instance of defined

classes within an image. State-of-the-art CNN’s [2]–[7] have millions of parameters, and

large quantities of labeled training data are required to learn the model. Labeling a large

number of images with segmentation masks is very costly and time-consuming: a trained

annotator spent 90 minutes per image with full pixel-wise semantic segmentation of one

image in the Cityscapes dataset [8].

There are existing large-scale datasets such as Pascal VOC [9] and Microsoft COCO [10].

The Microsoft COCO dataset is one of the largest datasets for object instance detection

and segmentation. It contains 100, 000 images with 81 predefined classes. Increasing

the number of the predefined classes improves the ability to understand the whole scene

captured in the image.

The objective of this thesis is to improve object instance segmentation by utilizing

existing datasets with different sets of labeled classes (label sets). The resulting model

should benefit from a larger number of training samples and recognize classes from all

training datasets. Using multiple dataset during training is challenging: instances of a

class, which is labeled only in some datasets, may be considered the background in a

dataset where the class is not labeled. We denote this problem as missing annotations.

During training of object detection network, detection of each unlabeled instance is pe-

nalized as false positive.

As the main contribution of the thesis, two semi-supervised methods to distinguish be-

tween unlabeled instances and background are proposed for instance segmentation based

on object detection.

The first method is based on feature similarity of object proposals. In each epoch, a

database of all annotated object instances is created. If the network predicted an instance

1

CHAPTER 1. INTRODUCTION 2

of an un-annotated class c, similarity to other instances of class c in the database is used

to distinguish between un-annotated instances and background.

The second proposed semi-supervised method extends detection based methods by

adding a separate head with classification and regression layer for each label set. The loss

for proposals, which are classified as background by the head corresponding to the image

label set, is dropped if the proposals have high classification score in any other head.

Both methods were implemented into the Mask R-CNN framework. Experiments are

done on different splits of the MS COCO dataset: one split has datasets with distinct label

sets, another has datasets with overlapping label sets. On the first set with overlapping la-

bels, the baseline method performed 5% worse in terms of mean average precision (mAP)

compared to a fully supervised setting. The proposed methods KNN and ε-MHC, im-

proved mAP in the semi-supervised scenario by 1.75% and 0.72% of mAP respectively,

which means 35% and 14% increase towards the bound given by full annotation.

The thesis is structured as follows: Chapter 2 provides an overview of the large-

scale datasets, the state-of-the-art-approaches to instance segmentation, and the semi-

supervised approaches to training from several datasets. The problem statement is de-

scribed in detail in Chapter 3. The proposed methods are presented in Chapter 4, and

experiments are shown in Chapter 5. The final conclusion are drawn in Chapter 6.

Chapter 2

Related Work

Deep convolutional neural networks brought significant improvements to the field of com-

puter vision, especially in the areas of object classification, object detection, semantic

segmentation, and instance segmentation tasks [4], [5], [7].

This chapter begins with the definition of the computer vision tasks that are relevant

to this work (Section 2.1). The existing real-scene datasets with semantic levels of annota-

tions are presented in Section 2.2. The state-of-the-art methods in instance segmentation

are reviewed in Section 2.3, along with with the detailed explanation of Mask R-CNN [5]

in Section 2.5. Section 2.6 discusses the semi-supervised approaches in joining datasets.

2.1 Relevant Tasks in Computer Vision

The task of object detection consists in localizing and classifying instances of every

object of a predefined class within an image. Typically, the output of an object detection

algorithm are the bounding boxes around the objects, and classes assigned to it.

The task of semantic segmentation consists in labeling each pixel of an image with a

corresponding semantic label. Semantic segmentation does not perform object detection

with a bounding box. The output of the semantic segmentation task is a mask, with

the same size as the input image, where each pixel is classified to one of the predefined

semantic labels.

The task of instance segmentation can be interpreted as a combination of object

detection and semantic segmentation. It consists in labeling each pixel of an image with

its object instance, i.e. not only finding the category it belongs to but also differentiating

objects of the same category.

Figure 2.1 shows examples of different levels of annotations for object detection, se-

mantic segmentation, and instance segmentation.

3

CHAPTER 2. RELATED WORK 4

Figure 2.1: Example of different levels of annotations in the Microsoft COCO dataset.
The left image shows bounding box annotations for the object detection task. The center
image has per-pixel annotations for the semantic segmentation: black pixels are labeled as
giraffe, and gray pixels are labeled as background. The right image shows a segmentation
instance mask. Instance segmentation differentiates pixels of two giraffes as two different
objects, while semantic segmentation takes both giraffes as one blob.

2.2 Segmentation Datasets Overview

This section describes the following generic large-scale segmentation datasets:

• Microsoft Common Object in Context (MS COCO) [10]

• PASCAL Visual Object Classes (PASCAL VOC) [9]

• PASCAL Context [11]

• COCO Stuff [12]

• CityScape [8]

• ADE20K [13]

All these datasets have semantic annotations. The MS COCO and Pascal VOC contain

instance segmentation annotations (e.g., objects vs background), while others have per-

pixel whole scene annotations without instances. All datasets will be described in detail

in the following sybsections.

2.2.1 PASCAL Visual Object Classification

PASCAL Visual Object Classification (PASCAL VOC) [9] is a well-known baseline dataset

for object classification, object detection, instance segmentation, person layout, and ac-

tion classification. Eight annual challenges were held from 2005 to 2012 focusing on

CHAPTER 2. RELATED WORK 5

Figure 2.2: Expansion of the PASCAL VOC dataset from 2005 to 2012. Before 2008
the test dataset was publicly available, then it was split 50% as test and /50% training-
validation.

improving these datasets. Each year the dataset was updated with more images, classes,

and annotations. The expansion of the dataset through the years is shown in Figure 2.2.

The final version of PASCAL VOC was made in 2012. It consists of 11, 530 images and

27, 000 bounding boxes in total. It is equally split into validation and training sets. For

the segmentation problem, there are 6, 900 labeled images. The quality of the segmented

objects is precise. In order to have decisive segmentation annotations, the border regions

of the objects are marked with the ”void” label indicating that they could objects or

background.

Although the PASCAL VOC dataset contains only 20 categories (plus the background

category), it is still used as a reference dataset in the object detection and segmentation

problems, partially because the images have a wide range of viewing conditions such as

angle, and lighting. The annotations on the dataset only cover 29.3% of the pixels on

each images in order to create realistic scenes, as opposed to solely putting an object

in the center of the image. Images were collected from the Flickr image database, and

annotated with the following 20 classes: Aeroplane, Bicycle, Bird, Boat, Bottle, Bus, Car,

Cat, Chair, Cow, Dining table, Dog, Horse, Motorbike, Person, Potted plant, Sheep, Sofa,

Train, TV/monitor.

2.2.2 Microsoft Common Objects in Context

Microsoft COCO, also known as Microsoft Common Objects in Context or MS COCO [10]

is a large-scale dataset, focused on research problems in scene understanding such as

CHAPTER 2. RELATED WORK 6

detecting objects which are not in canonical view, understanding the relationship between

objects and precise localization of objects. The dataset was created in 2014 for detection

and segmentation challenges and consists of 164, 000 images with more than a million

labeled instances. There are 80 object classes divided into 11 hierarchical parent classes.

The main idea of the dataset was to collect common objects of everyday life scenes. To

define what is a common object, MS COCO authors asked children aged 8-11 to name

objects in outdoors and indoors environments, then the authors chose 272 final classes,

ranked them manually and kept those classes with more than 5 000 instances. The

final classes and their number of instances are displayed in Figure 2.3. The classes are

organized into a hierarchy, e.g., superclass vehicle includes classes boat, track, car, and

bus. All images were collected using Google search engine, Bing search engine, and Flickr.

Annotations were done using Amazon Mechanical Turk with strict annotation rules. The

semantic annotations on this dataset have a single label per pixel while bounding boxes

are overlapping.

Figure 2.3: Classes and their number of instances in the COCO dataset. The number of
instances per class is imbalanced. Class person has almost one million instances, while
classes toaster and hair drier have less than 10 000.

2.2.3 PASCAL VOC Context

The PASCAL VOC Context [11] dataset, also known as VOC Context, is an extension of

the PASCAL VOC dataset, which goes beyond the original instance segmentation task

by providing annotations for the whole scene. The number of classes is increased from

20 to 520. The classes are divided into three types: objects, stuff, and hybrids. Objects

are classes that are defined by shape. VOC Context includes the original 20 PASCAL

categories and it enlarges them with rare classes such as accordion, wood, and fork. Stuff

classes are amorphous background regions such as sky, and water. Hybrid classes are

classes which shape is so variable that they cannot be easily modeled, such as road.

The classes in this dataset are not distributed uniformly. Taking into account 59 of

the most frequent classes and assigning the rest to the background label, 87.2% of the

pixels are labeled as foreground. The disadvantage of PASCAL VOC Context is the use

CHAPTER 2. RELATED WORK 7

of free-form labels for annotation rules. As a result, classes such as bridge and footbridge

are introduced in VOC Context as a parent-child relationship. This leads to inconvenient

merging of labels: the annotators named the same thing using different labels. The

main distinction of VOC Context from the previous datasets is that it allows multi-class

labels; e.g. the pixels of a tree seen through a window are labeled both tree and window.

Figure 2.4 shows images of the VOC Context and their ground truth annotations. The

images are diverse, and the whole scene is annotated, which leads to coarse annotations.

Figure 2.4: Example of the whole scene annotations from VOC Context dataset[11].

2.2.4 Microsoft COCO Stuff

The Microsoft COCO Stuff [12] dataset, also known as COCO Stuff, extends the MS

COCO dataset with a stuff category for labeling amorphous background regions, such as

grass and sky, and therefore providing better scene understanding. COCO Stuff uses the

same images as MS COCO but it extends the amount of classes to 172: 80 classes are

the same as the original MS COCO dataset, 91 classes belong to the new stuff category,

and 1 new class unlabeled. The unlabeled class is used when the pixel does not belong to

any predefined class or the annotator was not able to infer the class of a pixel. Authors

manually selected mutually exclusive 90 stuff classes, which cover the majority of pixels,

only 6% of pixels are unlabeled. As in COCO, stuff classes are also organized into label

hierarchy: parent class textile has cloth and curtain as children. The stuff part of the

dataset is labeled by a semi-supervised superpixel method with the final call from a human

annotator. In Figure 2.5 MS COCO images with their corresponding mask are shown.

Object annotations of original MS COCO correspond to annotations from the MS COCO

dataset.

CHAPTER 2. RELATED WORK 8

Figure 2.5: Example of whole scene segmentation on COCO Stuff dataset.

2.2.5 ADE20K

The ADE20K dataset has densely annotated images where every pixel has a semantic label

using a large and an unrestricted open vocabulary. The dataset consists of 25, 000 images

with approximately 434, 000 labeled instances and 2, 693 classes. ADE20K supports

multi-class labels by labeling not only the object itself but also its parts. For example

the class door contains the class knob so the pixels of the doorknob are labeled both as

door and knob. The total part hierarchy reaches three levels of deepness. All images in

ADE20K contain at least five objects. The maximum number of object instances in one

image is 419 for objects with parts, and 273 for objects without parts. This shows that

the ADE20K dataset has highly complex annotations, but at the same time it is coarse

and inconsistent because of the semantics of the labels and the dense annotations.

2.2.6 CityScapes

The Cityscapes dataset is a large-scale dataset with pixel-level and instance-level semantic

annotations of a diverse set of stereo video sequences recorded in streets from 50 different

cities [8]. The images were recorded in similar weather condition in order to be consistent.

CHAPTER 2. RELATED WORK 9

It has 20, 000 coarsely-annotated images and 5, 000 precise annotations with 60, 000

instances. Around 97% of all labeled pixels in the coarse annotations were assigned the

same class as in the fine annotations, showing the high accuracy of labeling.

There are 30 predefined classes for annotations, which are grouped into eight cate-

gories: flat, construction, nature, vehicle, sky, object, human, and void. The classes were

selected based on their frequency, relevance, and compatibility with existing datasets.

2.3 State-of-the-art Instance Segmentation Methods

Instance segmentation is the combination of object detection and semantic segmentation

tasks. There are usually two common approaches for instance segmentation: the first is

based on object detection methods, where at the beginning the proposals of objects are

generated, and then they are segmented and classified; the second method starts from

per-pixel semantic classification and attempts to divide the pixels of the same category

into different instances.

For object detection there is a family of R-CNN methods such as R-CNN [14], Fast

R-CNN [15] and the state-of-the-art Faster R-CNN [4], which are based on proposal

generation and their classification. In these methods, regions of interest are used to

localize the object within the image. You Only Look Once (YOLO) [16] is another state-

of-the-art object detection single convolutional network, which predicts the bounding

boxes and their probabilities without region proposals, but as one regression model.

The state of the art semantic segmentation algorithm U-Net [17] is based on the Fully

Convolutional Network (FCN) [6], which is one of the first neural networks trained end-

to-end for semantic segmentation tasks. The U-Net algorithm consists of two parts: the

downsampling path which learns semantic information and the upsampling one that re-

stores spatial information. The output of the network is the map with the class prediction

for each pixel in the input image.

Driven by the effectiveness of object detection R-CNN methods, many methods for

instance segmentation problem are based on segmenting the proposals. In Instance-aware

Semantic Segmentation via Multi-task Network Cascades [18], a complex network with

multiple stages was introduced. The network generates bounding box proposals before

segmentation followed by classification. DeepMask [19] learns to propose segmentation

masks, which are then classified by Fast R-CNN.

Another family of solutions to the instance segmentation problem is driven by the

success of semantic segmentation. For example, in InstanceCut [20] two approaches are

combined: semantic segmentation and edge detection. The semantic segmentation map

is cut into instance segmentation masks using the edge detection network.

CHAPTER 2. RELATED WORK 10

Mask R-CNN [5] is a conceptually simple and flexible framework which is based on

Faster R-CNN object detection method. Mask R-CNN adds a branch for mask prediction

in parallel with a prediction of object localization and object classifications. Mask R-CNN

surpassed all the approaches in instance segmentation MS COCO challenge in 2017.

Considering the semi-supervised approach in instance segmentation, MaskX R-CNN

is a training paradigm with a weight transfer function, that enables training instance seg-

mentation models on a large set of categories all of which have box annotations, but only

a small fraction of which have a mask annotations [21]. MaskX R-CNN transfers param-

eters of the bounding box prediction to the parameters of mask prediction, allowing to

train network with a combination of strongly supervised samples (e.g., mask annotations)

and weakly supervised annotations (e.g., bounding boxes).

In this work, we focus on the Mask R-CNN approach because it is a flexible framework

for the instance segmentation challenge. Since Faster R-CNN is the primary architecture

for Mask R-CNN, in Section 2.4 we discuss the Faster R-CNN in more detail, and in

Section 2.5 we explain the difference between Mask R-CNN and Faster R-CNN. The

semi-supervised approach MaskX R-CNN is discussed in Section 2.8.

2.4 Faster R-CNN

Faster R-CNN is one of the state-of-the-art networks in object detection. Faster R-CNN

consists of two modules: Region Proposal Network(RPN) for generating proposals (e.g.,

region of interest) and Faster R-CNN detection network that uses these proposals to detect

and classify objects. Faster R-CNN is the continuation of R-CNN and Fast R-CNN [14],

[15] detection networks.

The most significant contribution of Faster R-CNN is the Region Proposal Network

for proposal generation, which is faster than Selective Search [22] used previously. RPN

is represented as a fully convolutional network, which allows training Faster R-CNN end-

to-end.

The whole pipeline of Faster R-CNN is shown in Figure 2.6. The backbone network

of Faster R-CNN is shared as for the RPN so for the detection network. The backbone

network is based on a common CNN architecture such as VGG or ResNet (usually pre-

trained on ImageNet) [2], [3]. The output of the backbone is a convolutional feature

map. RPN simultaneously regresses regions of different scales and aspect ratios, and its

objectness score at each location on a regular grid of feature map.

Faster R-CNN optimization function consists of two losses: RPN loss and R-CNN loss,

which will be discussed further subsections.

CHAPTER 2. RELATED WORK 11

Figure 2.6: Faster R-CNN pipeline as a single network for object detection. In our
settings, the backbone architecture is ResNet. The output of the backbone is the feature
map. Region Proposal Network in applied on the feature map and outputs the rectangular
object proposals with an objectness score. Region of Interest (ROI) pooling converts
arbitrary size proposals to the fixed size vector, which is then applied to regression and
classifications layer of the object detection network. The output of the pipeline is the
bounding box parameters for the objects and its corresponding classification score.

2.4.1 Region Proposal Network

Region Proposal Network takes an image of any size as input and outputs a set of the

rectangular proposals and their corresponding objectness score - a measure of belonging

to the object class vs. background.

To generate region proposals, RPN slides a fully convolutional network of size n× n,

which is applied on the last shared convolutional map of the backbone architecture. Each

sliding window is mapped to the low dimensional features, which are sent to a regression

layer regrpn, predicting the bounding box for the proposal, and to a classification layer

clsrpn predicting if the region is an object. RPN pipeline is shown on Figure 2.7. Note that

RPN operates as a sliding window, the fully-connected layers are shared across all spatial

locations. The n × n convolutional layer is followed by two sibling 1 × 1 convolutional

layers regrpn and clsrpn.

Anchors

At each sliding window location, RPN predicts k proposals of different aspect ratios and

scales, which are parameterized relatively to its k reference boxes, called anchors.

These k anchors are centered with the sliding window and associated with a scale and

an aspect ratio. In Faster R-CNN there is a setting with 3 scales and 3 aspect ratios,

creating in total 9 anchors at each sliding window position. For a feature map with size

H ×W there are H ×W × k anchors in total.

The output of the regression layer regrpn is a vector with 4k neurons, which encodes

of the coordinates of k boxes, the class output layer clsrpn is a 2k vector the object-

CHAPTER 2. RELATED WORK 12

ness/background score for each of k proposals.

Anchors and their proposals are translation invariant. If the object translates in the

image, the proposal should also be translated, and the same function should be able to

predict the proposal in either location.

Another advantage of the RPN is a pyramid of anchors, which regresses bounding

boxes with respect to different size/scale anchors, using the same convolutional feature

map of the single scale, which is more computationally efficient.

Some RPN proposals are overlapping. To avoid a similar proposal, non-maximum

suppression (NMS) method is applied. NMS thresholds the proposal with low objectness

score and removes proposals which have high Intersection over Union (IoU) with each

other. In general, the NMS method keeps 2000 proposals per image.

intermediate layer

4kcoordinates2kscores

clsrpn layer reg
rpn

layer

sliding window

kanchors

convolutionfeature map

Figure 2.7: Region Proposal Network. Each sliding window is mapped to a lower-
dimensional feature map, which is sent to the classification and regression layer. At
each point of the sliding window, k proposals are predicted, each of them assigned to one
of the anchors. Anchors have different scale and aspect ratio.

RPN Loss Function

Each anchor used in training is assigned a binary label (i.e., object or not object) with

the following procedure:

• The positive label is assigned to the anchor with the highest IoU with the ground

truth, and to all the anchors with IoU overlap higher than 0.7 with any ground truth.

The positive label of one ground-truth box may be assigned to multiple anchors.

CHAPTER 2. RELATED WORK 13

• Negative label is assigned to non-positive anchors if its IoU is lower than 0.3 for

all ground truth boxes.

• Anchors which are not positive and not negative do not participate in training.

The objective function for RPN consists of two parts: regression loss and classification

loss for each proposal. The classification loss is logarithmic loss over two classes: object or

not object. ’The classification loss for a proposal and its corresponding anchor is defined

in Equation 2.1, where :

• i is the index of an anchor in a mini-batch

• pi is the objectness score of an anchor (object vs. background)

• p∗i = 1/0 the ground truth label whether the anchor is positive/negative

Lclsrpn(pi, p
∗
i) = −(p∗i · log(pi) + (1− p∗i) · log(1− pi)) (2.1)

For bounding box regression, the network learns the offsets of predicted bounding box

proposals with respect to the ground truth and anchors bounding boxes. For the network,

it is simpler to learn offsets from anchors then predict parameters of proposals as center

coordinates, width, and height. The parametrization is shown in Equation 2.2.

φ((x∗, y∗, w∗, h∗), (x, y, w, h)) = (tx, ty, tw, th)

tx = x∗−x
w

ty = y∗−y
h

tw = log(w
∗

w
)

th = log(h
∗

h
)

(2.2)

The regression loss for a proposal i is defined in Equation 2.3. For accounting dif-

ferent sizes and aspects ratios, k bounding box regressors are learned. Each regressor is

responsible for one scale and aspect ratio, so k regressors do not share any weights.

Lreg(ti, t
∗
i) =

∑
j∈x,y,w,h

L1
smooth(tji − t

j
i∗) (2.3)

where

• ti is a parameterized offset vector of the predicted bounding box with respect to

its anchor. (tx, ty, tw, th) = φ((x, y, w, h), (xa, ya, wa, ha)): where x, y is the center

of predicted proposal and w, h the width and height of the proposal. (xa, ya) are

coordinates of the anchor’s center, and (wa, ha) is width and height of the anchor.

CHAPTER 2. RELATED WORK 14

• t∗i is a parameterized offset vector of an anchor with respect to it’s assigned ground

truth bounding box. (tx
∗
, ty

∗
, tw

∗
, th

∗
) = φ((x∗, y∗, w∗, h∗), (xa, ya, wa, ha)), where

(x∗, y∗, w∗, h∗) are the parameters of the ground truth bounding box, and (xa, ya, wa, ha)

are parameters for an anchor.

• L1
smooth is a combination of L1 and L2 losses. It is more robust to outliers.

L1
smooth(x) =

0.5x2, if |x| < 1

|x| − 0.5, otherwise
(2.4)

The loss function for a proposal is defined as:

Lrpn(pi, ti, t
∗
i , p
∗
i) =

1

Nbatch

∑
i

Lcls(pi, p
∗
i) + λ ∗ 1

Nreg

∑
i

p∗iLreg(ti, t
∗
i) (2.5)

Note, that Lreg contributes to Lrpn only for positive anchors, so they are objects and

have ground truth bounding boxes. λ is a balancing term, a trade-off between classification

and regularization loss. Nbatch is mini-batch size, and Nreg is the number of anchor

locations(W ×H).

2.4.2 Region of Interest Pooling

The output of RPN are the object proposals with no class assigned to them. Faster

R-CNN reuses the existing convolutional feature map and RPN proposals by extracting

fixed-sized feature maps for each proposal using the region of interest pooling(RoIPool).

Fixed size feature maps are needed to classify the proposals into a fixed number of classes.

RoI max(average) pooling divides h× w RoI window into a H ×W grid of sub-windows

of approximate size h
H

x w
W

and then computes maximum (average) values from each sub-

window, creating a fixed-size feature map. The disadvantage is that RoIPool quantizes a

floating-number RoI to the discrete values of the feature map. The process of RoIMaxPool

is shown on Figure 2.8

2.4.3 Region-based Convolution Neural Network

Region-based convolutional neural network (R-CNN) is the last step in the pipeline of

Faster R-CNN. The R-CNN follows two objectives: to classify proposals into object classes

(+ background) and to adjust the proposals coordinates. There are two separate fully

connected layers: one for classification with NC + 1(number of classes+background) neu-

rons and another for a regression branch with 4∗NC neurons(4 bounding box parameters

CHAPTER 2. RELATED WORK 15

0.1 0.2 0.1 0.6 0.4

0.5 0.9 0.5 0.4 0.8

0.8 0.2 0.0 0.6 0.5

0.1 0.5 0.1 0.7 0.4

0.1 0.2 0.1 0.6 0.4

0.5 0.9 0.5 0.4 0.8

0.8 0.2 0.0 0.6 0.5

0.1 0.5 0.1 0.7 0.4

0.9 0.8

0.8 0.7

0.0 0.6 0.5

0.1 0.7 0.4

MAXPOOL

0.0 0.6 0.5

0.1 0.7 0.4

0.1 0.6 0.4

0.5 0.4 0.8

0.8 0.2

0.1 0.5

0.1 0.2

0.5 0.9
0.1 0.6 0.4

0.5 0.4 0.8

0.8 0.2 0.0

0.1 0.5 0.1

0.1 0.2 0.1

0.5 0.9 0.5

Bilinear
Interpolation

MAXPOOL

0.92 0.53

0.83 0.62

Figure 2.8: Example of RoIPool and RoIAlign. The matrix represents a proposal; the
solid lines are an ROI with 2× 2 bins. Left. RoI max pooling is applied to the proposal.
RoI Pool divides feature map into 4 bins and computes the maximum value of each of
them. There is a misalignment of segments due to quantization. Right. RoI Align divides
feature map into 4 equal bins. In each bin 2 sampling points are calculated by bilinear
interpolation from the nearby grid points on the feature map. The final fixed size map is
created by taking the maximum value of each bin. No quantization is performed on any
coordinates involved in the RoI, its bins, or the sampling points.

for each class), trained with the multi-task loss which is similar to the RPN loss. The

regression branch outputs bounding-box regression offsets for each class.

R-CNN Loss Function

Each training RoI is labeled with a ground-truth class u and a ground-truth bounding-

box regression target v. A positive label is assigned to the bounding box, which has

at least 0.5 IoU overlap with ground truth box. Negative bounding boxes are sampled

from the remaining RoIs which have maximum IoU with any ground truth bounding box

in the interval (0.1, 0.5). (Note: in RPN the negative were RoI with less than 0.3 IoU

with ground truth).

The final network’s detection loss consists of classification loss Lr−cnn
cls and a regression

loss Lreg. Lr−cnn
cls (p, u) = −logpu is the log loss for the ground truth class u, where p

is prediction vector for N + 1 classes p = (p0, p1, p2, ..., pN), where 0 is an index of the

background.

LR−CNN(p, u, tu, t∗) = Lr−cnn
cls (p, u) + λ · [u ≥ 1] · Lreg(t

u, t∗) (2.6)

Note, that the bounding-box regressor predicts parameters for each class, tu is the

CHAPTER 2. RELATED WORK 16

predicted bounding box offsets for ground truth class u. The regression loss is the same

as for RPN Lreg(t
u, t∗), where tu is predicted tuple for ground truth, and t∗ is a tuple

of ground truth bounding-box regression target. The Iverson bracket indicator function

[u ≥ 1] is present because the regression loss is defined only for the object classes. λ is a

normalization parameter which controls the trade-off between classification and regression

loss.

The final Faster R-CNN loss is a sum of LR−CNN and LRPN . The pseudocode for the

Faster R-CNN algorithm is shown on Algorithm 1.

Algorithm 1: Faster-RCNN algorithm.

1 train faster rcnn(model,train data, total epochs) model.create

2 while current epoch ≤ total epochs do

3 for batch in train data do

4 feature map = model.resnet(batch)

5 proposals, objectness scores = model.rpn(feature map)

6 fixed size proposals = model.roi align(feature map, predicted proposals)

7 bboxes, cls scores = model.faster rcnn(fixed size predicted proposals)

8 loss = compute loss(batch, bboxes, cls scores, proposals, objectness scores)

9 model.update loss(loss)

10 end

11 end

2.4.4 Feature Pyramid Networks

Even with RPN characteristics, detecting objects in different scales is a challenging task,

especially for small objects. In order to improve the detection on different scales, feature

pyramid network is intruded into the detection network.

Feature Pyramid Network (FPN) [23] is a feature extractor designed for pyramid

concept. It replaces the feature extractor of detectors like Faster R-CNN and generates

multiple feature maps on different scales with better quality information. The motivation

is to combine low-resolution semantically strong features with high-resolution semantically

weak features with the help of lateral connections.

FPN pipeline consists of two parts: bottom-up and top-down pathway. The bottom-up

pathway is a fully convolutional network for feature extraction. With the downsampling

approach the spatial resolution of a feature map decreases but the semantic value of

each level increases. The top-down pathway reconstructs higher resolution layers from

semantically richer but lower resolution layers with an upsampling method.

The reconstructed layers are semantically strong, but the locations of objects are not

precise after all the downsampling and upsampling. The lateral connections between

CHAPTER 2. RELATED WORK 17

reconstructed layers and the corresponding feature maps are added. This helps the pre-

dictor to improve detection of the spatial locations and also simplifies training by acting

like skip connections (similar to ResNet).

In Faster R-CNN, FPN is used as feature detector. In FPN, a pyramid of multi-scale

feature maps is generated from different levels of backbone architecture such as ResNet.

The feature map layer is selected in the most proper scale to extract the feature region

based on the width w and height h of the RoI, produced by RPN. The pipeline of the

process is shown on Figure 2.9. FPN improves Faster R-CNN accuracy by 8% on the

large object detection and by 12.5% on small object detection[23].

Figure 2.9: Feature Pyramid Network with Faster R-CNN pipeline. FPN generates N
feature maps. Proposals generated by RPN extracted from their assigned feature map:
small object extract features from the smaller maps.

2.5 Mask R-CNN

Mask R-CNN is a simple, flexible system which surpasses state-of-the-art methods in in-

stance segmentation task. Mask R-CNN[15] expands Faster R-CNN by adding a branch

that predicts a segmentation mask for each Region of Interest(RoI), shown in Figure 2.10.

The Mask R-CNN predicts the masks in parallel with bounding box regression and clas-

sification. The mask branch is a small Fully Convolutional Network(FCN)[6] applied to

each RoI. In the previous Section 2.4, we discussed Faster R-CNN in depth because Mask

R-CNN is based on it.

Formally, Mask R-CNN consists of Faster R-CNN loss and newly added mask loss

Lmask. The mask branch has Cm2 dimensional output for each RoI, which encodes C

binary masks of size m × m, one for each class of C classes. Lmask is activated only

for ground-truth class k associated with the RoI; others mask do not contribute to the

loss (similar as for regression layer), so there is no competition among classes for mask

prediction. The class-specific mask can be changed to class-agnostic mask, (i.e., predicting

CHAPTER 2. RELATED WORK 18

a single m ×m output regardless of class). Class-agnostic map setting is only 0.6% AP

(average precision) less accurate than class-specific.

Figure 2.10: Mask R-CNN pipeline. Mask branch is added after RoIAlign. Mask consists
of small Fully Convolutional Network and outputs a binary mask for each RoI.

A mask preserves the spatial layout of the input. For each RoI, a mask is predicted

by FCN. Because FCN preserves spatial information, each RoI should precisely encode

information from the feature map. To extract a feature map without any quantization,

the authors introduce RoIAlign instead of RoIPool.

2.5.1 RoIAlign

RoIPool is a standard operation for extracting feature maps from each RoI. Quantization

creates a misalignment between RoI and the extracted features. Instead of rounding the

real-valued boundaries of the RoI to the nearest location on a coarse grid, as it was done in

RoIPool, RoIAlign method is introduced. RoIAlign uses bilinear interpolation to compute

the values of the input features at four regularly sampled locations in each RoI bin and

aggregates the result (using max or average). RoIAlign increases AP from 3% to 10%

percent in different settings. A detailed example of RoIAlign is shown in Figure 2.8.

2.6 Semi-supervised Learning for Dataset Combina-

tion

Most of the deep learning approaches require a large number of training datasets. Com-

bination of datasets utilizes as much diverse training data as possible and increases the

number of recognizable classes.

Multiple heterogeneous datasets were combined for training a CNN with hierarchical

classifier for the semantic segmentation task [24]. The classes of the datasets are seman-

tically connected, and for hierarchical classification 108 labels were manually separated

CHAPTER 2. RELATED WORK 19

in three levels of hierarchy, which is not always possible due to a large number of classes

in other scenarios.

A selective loss function, integrated into CNN to use multiple training datasets with

possibly different label sets, is introduced in Semantic Segmentation via Multi-task, Multi-

domain Learning [25]. The datasets used in the experiments contain the images from the

same set of images; only annotations were done for different tasks, so the label sets are

different.

Semi-supervised and weakly-supervised learning for semantic segmentation task is dis-

cussed in [26], [27]. In these semi-supervised approaches, datasets with different levels

of supervision are combined, for example, a dataset with image-level information and a

dataset with high-quality semantic segmentation label. In our task, we focus on a com-

bination of datasets with different label sets, but with the same level of annotation’s

supervision.

The problem of partially labeled datasets is discussed in Multi-label learning with Miss-

ing Labels [28]. Based on the sample-level/class-level similarity, the full label assignment

for each partially labeled sample is recovered. The core idea is based on feature similarity:

if two feature vectors are similar to each other, then their labels would also be similar. In

Section 2.7 there are more details about this approach.

2.7 Multi-Label Learning with Missing Labels

For the semi-supervised approach, we focus on the problem of missing annotations, where

instead of assuming a complete set of label assignments, an only partial set of labels is

available, while others are missing or not provided. A similar problem is discussed in

Multi-Label Learning with Missing Labels(MLML) [28].

In MLML each sample can be assigned to multiple classes,(e.g., multi-label learning)

and be partially labeled. Labels are separated into three groups: positive label - class is

present for the sample, negative label - class is absent for the sample, and missing class

- there is no information about whether the class is present or not. More formally, if xi

is labeled (c1,¬c2, ?c3), it means that xi is assigned to c1 and not to c2, but there is no

information about c3, so c3 is a missing label and xi is called partially labeled sample. The

goal is to predict the complete label assignments of all partially labeled and unlabeled

samples. The task is based on two assumptions: label consistency and label smoothness.

Label consistency is responsible for predicted label assignments to be consistent with

initial positive and negative labels. Label smoothness consists of two parts: sample-level

smoothness, where two samples with similar features have similar labels, and class-level

smoothness, where two semantically similar classes have similar instances. Based on

CHAPTER 2. RELATED WORK 20

these assumptions, the problem of multi-label with missing labels is converted to a linear

program problem, which is possible to solve with Sylvester equation [29].

x1 x2 x3 x4

c1 -1 1 0 0

c2 1 1 0 0

c3 0 0 -1 0

X1 X X X2 3 4

C C C1 2 3

Figure 2.11: The graph on the left describes the label assignments of classes c1, c2, c3 to
the samples x1, x2, x3, x4. The red link denotes negative label where xi is not labeled
with class ci. The green link denotes positive label where xi is labeled with class ci. No
link means a missing label. The initial label matrix is presented on the right, where one
column vector corresponds to one sample node, and one-row vector corresponds to one
class node.

Task Definition

Dataset X = (x1, x2...xn), xi ∈ Rd×1, where each sample can be assigned to m classes

C = {c1, c2...cm} simultaneously, so the labels for xi is represented as a vector yi =

(yi,1, yi,2, .., yi,m), where yi,j ∈ {−1, 0, 1}. Positive label yi,j = 1 means that sample xi

is labeled by as cj; negative label yi,j = −1 means that sample xi is not labeled by as

cj; missing label yi,j = 0 means that there is no information about whether or not xj

is labeled as cj. The sample xi is unlabeled when yi is zero vector; xi is fully labeled,

when yi is consisted of non-zero entries; xi is is partially labeled, when yi consists from

zero and non-zero entries. Initial label matrix Y ∈ {1, 0,−1}m×n represents a column

vector of label assignments yj for vector xi. The goal is to predict fully labeled matrix

Z ∈ {−1, 1}n×m with the following two assumptions:

• label consistency. The predicted label matrix Z should be consistent with the

initial label matrix Y .

• label smoothness. The smoothness assumption consists of the sample-level and

class-level smoothness:

– sample-level smoothness. If two samples xi ∼ xj, where ∼ denotes similar-

ity, then corresponding columns zi ∼ zj.

– class-level smoothness. If two classes ci ∼ cj, then corresponding rows

zi ∼ zj.

CHAPTER 2. RELATED WORK 21

Based on above assumption the MLML problem defined as follows:

Z∗ = argminZ ||Z − Y ||2F +
λX
2
tr(ZLXZ

T) +
λC
2
tr(ZTLCZ) (2.7)

The first term ||Z−Y ||2F indicates the label consistency, where || ∗ ||F is the Frobenius

norm. Z ∈ {−1, 1} and Y ∈ {−1, 0, 1}, so the minimum of the ||Z − Y ||2F is when for

∀y ∈ {−1, 1}, zi,j = yi,j.

tr(ZLXZ
T) represents sample-level smoothness and tr(ZTLCZ) is a class-level smooth-

ness, λX and λC are hyperparameters for the trade-off between label and class level

smoothness.

LX is dependent on sample similarity matrix V n×n
X - a pairwise correlation of X com-

puted based on k-nn graph. VX is shown in Equation 2.8. di,j is the Euclidean distance,

between xi and xj. Note, that xj is not within k nearest neighbour of xi then di,j = 0.

σi = d(xi, xh), where xh is the h-th nearest neighbour of xi.

VX = exp
(
−d2 (xi, xj) /σiσj

)
(2.8)

LC is dependent on class similarity matrix VC , which embeds the semantic correlation

among the classes C described in Formula 2.9. Y ·i = (Y1i, Y2i, . . . , Yli) is a sub vector of Y·i

and l is a number of partially labeled samples. Since the unlabeled sample consists only

from zero entries, it can not provide useful information for the semantic correlations. So,

the entries corresponding to the completely unlabeled samples are ignored in Equation

2.9.

VC(i, j) = exp

(
−η

[
1−

〈
Y ·i, Y ·j

〉∥∥Y ·i∥∥∥∥Y ·j∥∥
])

(2.9)

The more detailed explanation of sample-level and class-level smoothness is described

in [29].

Based on these class-level and sample-level assumptions, partially labeled samples

are being fully classified. The idea of sample-level smoothness is applied in our semi-

supervised methods.

2.8 Learning to Segment Every Thing

For instance segmentation, most of the methods require all samples from the dataset to be

labeled with segmentation mask. In Learning to Segment Every Thing [21], the authors

propose a partially supervised training method, that enables to train instance segmenta-

tion models on a large set of categories all of which have bounding box annotation, but

CHAPTER 2. RELATED WORK 22

only a small set of samples have mask annotation. It is done with the help of a novel

weight transfer function, which allows predicting category mask based on its bounding

box detection parameters.

The partially supervised instance segmentation problem task is formulated as follows:

• All the training samples have bounding box annotations

• A small subset of categories have the mask annotations

• The instance segmentation algorithm should utilize bounding box annotations and

available mask annotations to fit a model that can segment instances of all object

categories.

For the partial instance segmentation method a transfer function is built on Mask

R-CNN [5]. As discussed in Section 2.5, Mask R-CNN decomposes the task of the mask

prediction and class/bounding box prediction. Because all three branches are trained

together, the parameters of the bounding box learn the visual embeddings of the class

objects. This enables to transfer this information to the mask branch. The weight trans-

fer function is trained to predict the category mask based on its bounding box detection

parameters. It can be trained end-to-end in Mask R-CNN, taking samples with masks

annotations as supervisions. At testing time, the weight transfer function can predict seg-

mentation mask for every category, including those which did not have mask annotations

during the training phase.

Task Definition

Let C be the set of object classes. C = A ∪ B, where examples from A has mask

annotations and examples from B has only bounding box annotations. Note, the mask

annotations can be easily converted to bounding box annotations, so there is also available

bounding boxes for dataset A. The task becomes partially supervised because categories

from B are weakly supervised (e.g., no mask annotations) available. MaskX R-CNN [5]

transfers category-specific information from the model’s bounding box detectors to its

instance mask predictors.

In Mask R-CNN, the class-specific bounding box parameters and mask parameters are

learned independently, more in Section 2.5. Instead, MaskX R-CNN predicts category-

specific mask parameters from its bounding box parameters using generic class-agnostic

weight transfer function, which can be trained simultaneously with Mask R-CNN. Specif-

ically, for a given class c ∈ C, wc
det is a class-specific object detection parameters of

the last layer bounding box branch. wc
seg is a class-specific weight of mask branch. In

Mask R-CNN wc
det and wc

seg are independent, while in MaskX R-CNN wc
seg = T (wc

det; θ),

CHAPTER 2. RELATED WORK 23

where θ are parameters of class-agnostic mask. The transfer function T is applied to any

category c ∈ C and should be generalized to classes whose masks the network has not

seen during the training. For this, class-agnostic parameters θ are responsible for the

generalization, while wc
det are seen as an appearance-based visual embedding of the class.

T is implemented as a small, fully connected network. The whole pipeline is shown in

Figure 2.12.

A U B

A U B

Figure 2.12: MaskX R-CNN.MaskX R-CNN is an extension of Mask R-CNN network,
the extension is shown in grey. MaskX R-CNN predicts a category’s segmentation param-
eters wc

seg from it box detection parameters wc
det, using weight transfer function. During

training, the weight transfer function needs as mask as bounding box annotation.

CHAPTER 2. RELATED WORK 24

Chapter 3

Problem Statement

3.1 Notation

• C - the set of all labeled classes.

• I - the set of all images.

• D - the set of datasets. Dataset Dd ∈ D is defined by the tuple (Id, C
+
d), Id ∈ I,

C+
d ∈ C.

C+
d - label set, set of classes which are annotated in the images Id.

C−d = C \ C+
d - the set of missing classes which may be present in images Id, but

not annotated.

If C−d = ∅ then the dataset Dd is fully labeled, if C−d 6= ∅ then the dataset is partially

labeled.

• NC , NI , ND - total number of classes, images and datasets.

• d - an index of the dataset. d ∈ {1, .., ND}

• A - the set of the annotated instances. ac ∈ A an instance of class c ∈ C.

• P - the set of all generated proposals by object detection network

• X - the set of the feature vectors. Each proposal pi has its corresponding feature

vector xi.

3.2 Problem Definition

There are several instance segmentation datasets D1, D2, ...DND
with similar visual con-

tent and different label sets. To utilize as much training data as possible and to in-

25

CHAPTER 3. PROBLEM STATEMENT 26

crease the number of recognized labels C =
⋃
C+

d , d ∈ {1, .., ND}, all datasets are used

for training. The goal is to segment masks of objects in c ∈ C using all image sets

Id, d ∈ {1, .., ND} for training. Combining datasets with different label sets for detec-

tion/segmentation task is a semi-supervised scenario because instances of classes c ∈ C−d
are not annotated in dataset Dd. Object instance segmentation methods are often based

on object detection. Each region predicted by the object detection method is considered

correct or incorrect prediction based on its IoU with annotated instances.

In a supervised object detection, the following cases happen:

• TP - true positive: region of class c is annotated and predicted

• FP - false positive: region of class c is not annotated but predicted

• TN - true negative: region of class c is neither annotated nor predicted

• FN - false negative: region of class c is annotated but not predicted

In our semi-supervised scenario, two more cases appear because of dataset combina-

tion:

• TuP - true un-annotated positive: region of class c ∈ C−d is not annotated, although

it is present in the image, and it is predicted

• FuN - false un-annotated negative: region of class c ∈ C−d is not annotated, although

it is present in the image, and it is not predicted

Without missing annotations, TuP is evaluated to be FP and FuN is considered to be

TN.

We focus on problem of missing annotations, described in Section 3.3. In addition, we

discuss other problems in dataset combination in Section 3.4.

3.3 Missing Annotations

For simplicity, consider two datasets D1, D2 with two corresponding sets of images I1, I2

and two corresponding sets of labeled classes C+
1 , C+

2 . The goal is to learn to segment

masks of objects in C = C1 ∪ C2.

One possible naive approach is to apply supervised learning on each dataset separately:

train network M1 on dataset D1 and train M2 on dataset D2. M1 and M2 learned to

predict objects from classes C1, C2 respectively, so the overall ensemble of the models

is able to predict classes C. During testing time, both models M1 and M2 predict their

corresponding set of classes C1 and C2, and the final output is the union of the predictions.

CHAPTER 3. PROBLEM STATEMENT 27

The disadvantage of this approach is the need to evaluate several models, which is time-

consuming and expensive in GPU-hours. Moreover this approach is inefficient, because

similar features are learned separately in each network.

Another naive approach is to concatenate datasets into one and train one system

for all D datasets. As it was mentioned in Section 2.5, methods such as Mask R-CNN

first generate proposals and then classify them into C classes and background. Because

of missing annotations across the datasets, objects of the same class c are penalized

differently. If there is an object of class c ∈ C−d in an image in Id, it is considered as

background, while if it belongs to an image in Id, it is considered as positive proposal of

class c.

To distinguish between background and objects of missing annotations, we propose

two semi-supervised methods to instance segmentation. The proposed methods reduce

the number of samples considered as false positive, by discovering true unlabeled positives

TuP .

3.4 Label Inconsistency

Most of deep learning approaches in classification tasks contain an output layer with N

neurons, which aim to classify an input vector to N classes [5], [15]. Usually, classifica-

tion is performed with softmax classifier which minimizes the cross-entropy between the

estimated class probabilities and the true distribution, which in this interpretation is the

distribution where all the probability mass is on the correct class [30]. In that case, classes

compete with each other.

A naive approach to train classification systems with multiple training datasets is

to change the classification layer to size NC , where C =
⋃ND

d=1C
+ and each neuron of

the classification layers corresponds to one of the classes in C. The problems with this

approach is that classes across the datasets can be semantically similar or be in a hier-

archical relationship. This causes label inconsistencies when different labels correspond

to one object in different datasets. Due to softmax classifier, inconsistent labels compete

with each other, and it causes slow and not accurate training.

We distinguish three problems in label inconsistency:

• Semantic similarity. In different datasets, the classes, which are semantically

similar, can be called different names. For example, the Cityscapes dataset distin-

guishes between classes caravan, truck, where in the COCO dataset they are merged

into the class truck. A similar situation arises with the class person, which in the

autonomous driving car dataset is called pedestrian or rider.

CHAPTER 3. PROBLEM STATEMENT 28

• Synonyms. Equivalent objects are called by synonyms. The PASCAL VOC

datasets include classes such as airplane, motorbike, but in the COCO dataset there

is airplane and motorcycle.

• Hierarchical relationship. Some labels can be parts of other labels across datasets.

In ADE20K the class doorknob is presented. Class doorknob would be a part of the

class door in the PASCAL VOC Context dataset. In this case, labels are not se-

mantically similar to each other, but one is part of each other.

When dealing with a small set of labels, such as 80 classes in the COCO dataset and

20 classes in the PASCAL VOC dataset, it is possible to eliminate these problems by

manually changing their labels to use a single set of new labels defined [21], [26]. With

an increasing number of labels, setting them manually is not an option.

Chapter 4

Method

As a baseline model, we have chosen Mask R-CNN, a state-of-the-art system for the

instance segmentation task. Mask R-CNN is an extension of Faster R-CNN with a seg-

mentation mask as described in Section 2.5.

By combining datasets with different label sets the network receives negative reward

for TuP .

During Mask R-CNN training, P proposals are generated. If a proposal pd is classified

as class c ∈ C−d and its annotation is background then there are two cases which can

occur:

• It is an instance of the missing class for this dataset, i.e, TuP prediction.

• The proposal p is a background, i.e, FP prediction.

In classical supervised learning for object detection problem, these two cases are identi-

cal: Mask R-CNN generates a loss for misclassification. In our semi-supervised scenario,

the first case is the consequence of joining datasets with different label sets. Mask R-

CNN produces a loss for TuP predictions, which forces the network to ”unlearn” objects

of missing labels. FuN predictions do not contribute to loss so unlabeled objects which

were predicted as background do not influence the training process. The following two

semi-supervised methods, described in Section 4.1 and in Section 4.2, focus on discover-

ing TuP predictions, which would otherwise be considered FP and would penalize the

network for actually correct predictions.

The mask loss Lmask in Mask R-CNN is not penalized for false positive cases and

therefore the semi-supervised training can be described only in terms of Faster R-CNN.

29

CHAPTER 4. METHOD 30

4.1 Mask R-CNN with KNN Search

The first method was inspired by Multi-Label Learning with Missing Labels (MLML) [28],

discussed in Section 2.7.

To distinguish between false positives (background proposals) and TuP , we apply the

MLML sample-level assumption, if instances are similar they belong to the same class,

i.e. if x1 ∼ x2, then their corresponding classes are the same: cx1 = cx2 , where c ∈ C.

Faster R-CNN+KNN method is based on feature similarity of object proposals. In each

epoch, a database of all annotated objects is created. If a proposal p is classified as class

c ∈ C−d and its annotation is background, the minimum distance of the corresponding

feature vector x and the feature vector of a predefined database is computed. If the

minimum distance surpasses the threshold, then the loss for this proposal is set to zero.

Generated proposals are represented in the form of bounding boxes. In Faster R-

CNN each proposal p is transformed into the feature vector xp by the fully-connected

layer fc2 in Figure 2.6. This feature vector is then sent to the following classification and

regression layers where the network predicts the class and the bounding box offsets. It

has been shown that the penultimate fully-connected layers provide reasonable feature

representation [31]. Because of the sample-level assumption, features can be fine-tuned

with metric learning, which will pull features of the same class closer to each other. For

simplicity, in this work we use ”off-the-shelf” features.

The database of feature vectors of all the ground truth instances is created offline

after each epoch. The ground truth bounding boxes are sent through the same pipeline as

proposals generated by RPN, so the output for each ground truth instances ak is a feature

vector xk. The database building is shown in Algorithm 2. Data about each training

instance are inserted into the database containing information about the corresponding

image, class, dataset, bounding box, and feature vector.

Algorithm 2: Database of ground truth instances.

1 Function create feature db(train instances, model):
2 for image in train instances do
3 gt box, gt class, gt dataset, gt image = get ground truth info (image)
4 backbone feature map = model.backbone(image)
5 fixed size boxes = model.roi align(feature map, gt boxes)
6 , , features = model.r-cnn(fixed size boxes)
7 feature db[idx] = [gt image, gt dataset, gt class, gt box, feature]

8 end
9 return feature db

The threshold which is applied to detect the similarity between the predicted proposals

and ground truth objects is computed for each class c ∈ C. Computing the threshold

CHAPTER 4. METHOD 31

is shown in Algorithm 3: for each sample in the database, k nearest neighbors search

is applied. We find the minimum distance to a neighbor of the same class as the query

sample, as shown in Lines [5-7] in Algorithm 3. If there is no neighbor of the same class as

a query sample, which means that the query is similar more to the features of a different

class, then such queries do not contribute to the threshold calculation, for a threshold to

be robust. The threshold is set as a median of the minimum distances for class.

Algorithm 3: Calculating distance threshold for each class.

1 Function get threshold per class(feature db):

2 classes = set(feature db.classes)

3 for sample in feature db do

4 k idx, k distances = knn(sample.feature, feature db.features, 5)

5 for idx in k idx do

6 k class = feature db[idx].class

7 if k class == sample.class then

8 dists per class[sample.class].add(k distances[idx])

9 break

10 end

11 end

12 end

13 for class in dist per class do

14 median dist per class = median(dist per class[class])

15 end

16 return median dist per class

The whole pipeline of Mask-RCNN+KNN is shown in Algorithm 4. At the beginning

of each epoch, the database of annotated instances and thresholds is updated. Lines [8-11]

correspond to the Faster R-CNN, where in addition to predicted scores and proposals, the

region object detection network returns feature vectors x for each proposal p. Moreover,

the loss function, described in Algorithm 5, multiplies loss of instances by a binary vector

of weights, since the loss of ambiguous samples is dropped. RPN loss and Faster R-CNN

are implemented as it was described in Equation 2.5 and Equation 2.6.

The semi-supervised part of the algorithm is shown in Lines [15-26]. If a proposal is

classified into c ∈ C−dataset id and its annotation is background, then the nearest neighbor

search is applied. If the distance from the nearest neighbor to the proposal is less than

the precomputed threshold for the class c, then the R-CNN and RPN loss for the proposal

CHAPTER 4. METHOD 32

is dropped.

Algorithm 4: K-NN applied with Faster R-CNN

1 Function train faster rcnn(model,train data, total epochs):

2 for current epoch in total epochs do

3 features db = create feature db(train data.all instances, model)

4 distance threshold per class = get threshold per class(feature db)

5 for image in train data do

6 dataset id = image.dataset id

7 C+
dataset id, C

−
dataset id = get label sets(sample, dataset id)

8 backbone feature map = model.backbone(image)

9 proposals, objectness scores = model.rpn(backbone feature map)

10 fixed size proposals = model.roi align(backbone feature map,

predicted proposals)

11 bboxes, cls scores, features = model.r-cnn(fixed size proposals)

12 classes = argmax(cls scores)

13 N = len(classes)

14 weights for loss = ones(N)

15 for idx in N do

16 class = classes[idx]

17 gt class = get ground truth class(sample, bboxes[idx]) // ground

truth class of predicted bbox, 0 - background

18 if class 6= 0 and gt class=0 and class ∈ C−dataset id then

19 class features = get class feature from db (features db, class)

20 nn idx, nn distance = knn (features[idx], class features, 1)

21 threshold = distance threshold per class[class]

22 if nn distance ≤ threshold then

23 weights for loss[idx] = 0

24 end

25 end

26 end

27 loss = compute loss(image, bboxes, cls scores, proposals,

objectness scores, weights for loss)

28 model.update(loss)

29 end

30 end

CHAPTER 4. METHOD 33

Algorithm 5: Loss function.

1 Function compute loss(image, bboxes, cls scores, proposals, objectness scores,
weights = None):

2 N = len(cls scores)
3 if weights==None then
4 weights = ones(N)
5 end
6 gt proposals, gt objecetness score, gt cls scores, gt bboxes =

get ground truth info(image, bboxes, cls scores, proposals,
objectness scores)

7 rpn loss, r rcnn = 0,0
8 for id in N do
9 rpn loss += weights[id](rpn cls loss(objectness scores[id],

gt objectness scores[id]) + reg loss(proposals[id], gt proposals[id]))
10 faster rcnn += weights[id](faster cls loss(cls scores[id],

gt cls scores[id]) + reg loss(bboxes[id], gt bboxes[id]))
11 end
12 total loss = rpn loss+ faster rcnn
13 return total loss;

4.2 Faster R-CNN with Multiple Classification Heads

We extended Faster R-CNN by adding a classification and regression layer for each dataset

separately. The original classification and regression layers were removed, and 2ND layers

were added: the classification and regression layers for each dataset d ∈ D. The global

feature extractor is shared for all datasets, but the classification for each dataset is per-

formed on the corresponding head during training. The setting with multiple classification

heads is denoted as Faster R-CNN with MCH - multi-head classification.

We proposed a semi-supervised approach Faster R-CNN with ε-MCH, where we drop

the loss for proposals which are classified as background in their corresponding head but

have high classification score in one of the other branches. If the object does not have a

predicted class c in the label set, e.g., c ∈ C−d , it can be classified by a classifier trained

on different label sets.

For Faster R-CNN with MCH, the change in architecture of R-CNN is changed.

Changes are shown in Figure 4.1 and in Algorithm 6. For each dataset d ∈ D a branch

with two layers is created: cls layerd and reg layerd with corresponding size of NC+1 neu-

rons and 4NC neurons respectively and the background is included in each classification

CHAPTER 4. METHOD 34

Figure 4.1: Multi-headed classification for each dataset. Proposals from datasets 1,2,3
update only its branch during training. First two layers of R-CNN is shared for all
datasets.

branch.

Algorithm 6: R-CNN with multiple heads.

1 Function model.multihead r-cnn.create(datasets):

2 fc1 = fc layer()

3 fc2 = fc layer()

4 faster rcnn.multiheads = {}
5 for dataset id in datasets do

6 C+ = dataset.C+

7 NC+ = len(C+)

8 cls layerd= fc layer(NC+ + 1)

9 reg layerd= fc layer(4 NC+)

10 model.r-cnn heads [dataset.id] = [fc1, fc2, cls layerd, reg layerd]

11 end

Faster R-CNN with ε− MCH is described in Algorithm 8 and has the similar pipeline

as the original Faster R-CNN.

Function model.rcnn in Algorithm 1 is changed to model.multihead r-cnn, which

contains a head for each dataset and outputs the binary weights for the proposals, which

are then sent to the loss function in Algorithm 5.

The main changes are done in model.multihead r-cnn in Algorithm 7. Each image

has the information about the dataset it belongs to. In Line 5 the proposals are sent

CHAPTER 4. METHOD 35

to the classification and regression layers of the corresponding branch to the dataset.

If one of the proposals is predicted as a background but has higher classification score

than εobjectness the proposal is sent to the branches corresponding to the other datasets.

Each of the head predicts classhead and cls scorehead for this proposal. If classhead is not

background and cls scorehead is higher than the predefined threshold for this class then

the weights of the loss for this proposal is set to zero.

Algorithm 7: Faster R-CNN with multiple heads.

1 Function model.multihead r-cnn(proposals, image, objectness scores,
thresholds db):

2 dataset id = image.dataset id
3 gt classes = get ground truth class (image, proposals)
4 N = len(proposals)
5 bboxes, cls scores = model.r-cnn heads(dataset id)(proposals)
6 classes = argmax(cls scores)
7 thresholds db = update threshold db(classes, cls score, gt classes)
8 classes threshold = get threshold (thresholds db)
9 weights for proposals= ones(N)

10 for idx in N proposals do
11 class = classes[idx]
12 proposal = proposals[idx]
13 if class == 0 and objectness scores ≥ εobjectness and class ∈ Cdatasetid

then
14 for head id in datasets do
15 if head id 6= dataset id then
16 bboxhead, cls scorehead = model.r-cnn heads(head id)(proposal)
17 clshead = argmax(cls scorehead) cls thresh =

classes threshold[clshead]
18 if clshead 6= 0 and clshead ≥ cls threshhead then
19 weights for proposals[idx] = 0
20 end

21 end

22 end

23 end

24 end
25 return bboxes, classes, weights for proposals, thresholds db

CHAPTER 4. METHOD 36

Algorithm 8: Faster R-CNN algorithm with multi-head classification.

1 Function train faster rcnn(model, train data, total epochs):

2 model.remove r-cnn

3 model.multihead r-cnn.create (train data.datasets)

4 for current epoch in total epochs do

5 for image in train data do

6 feature map = model.backbone(batch)

7 proposals, objectness scores = model.rpn(feature map)

8 fixed size proposals = model.roi align(feature map,

predicted proposals)

9 bboxes, classes, weights for proposals, thresholds db =

model.multihead r-cnn(fixed size predicted proposals,image,

objectness scores, thresholds db)

10 loss = compute loss(image, bboxes, cls scores, proposals,

objectness scores, weights for proposals)

11 model.update loss(loss)

12 end

13 end

The thresholds db ∈ (0, 1)C,50 is a matrix, which saves the 50 most recent classification

scores for each correctly classified class. The threshold for each class is set to the mean

of its saved scores. In the beginning the threshold for each class is set to infinity to limit

the number of false positives. During the training, classification scores are getting higher,

so the thresholds should also increase. Function get threshold computes a median of

thresholds db for each class.

Chapter 5

Experiments

Our proposed methods were tested on Faster R-CNN where class-agnostic masks were

learned separately on top of the pretrained Faster R-CNN detectors.

5.1 Datasets

5.1.1 Existing Large Scale Datasets

In order to evaluate the proposed methods, several datasets are required with different

label sets. Section 2.1 presented 6 different datasets with semantic and instance segmen-

tation annotations. The number of images for each dataset is shown in Figure 5.2. The

number of classes and number of instances for each dataset is shown in Figure 5.1. The

MS COCO and MS COCO Stuff datasets have the largest set of images. The ADE20K

dataset has more than 3, 000 classes with 600, 000 annotated instances. The MS COCO

Stuff dataset consists of object annotations coming from the MS COCO dataset and about

300, 000 annotations of stuff classes.

Datasets
VOC

Context
VOC COCO ADE20K

COCO
Stuff

CityScapes

VOC Context 460 20 41 325 74 15

VOC 20 20 20 20 20 5

COCO 41 20 80 59 80 8

ADE20K 325 20 59 3039 111 23

COCO Stuff 74 20 80 111 172 11

CItyScapes 15 5 8 23 11 40

Table 5.1: Intersection of label sets of the different datasets.

Table 5.1 shows the intersection between label sets of the different datasets. PASCAL

37

CHAPTER 5. EXPERIMENTS 38

Figure 5.1: Number of annotation with the corresponding number of labels for each
dataset. Because the COCO Stuff dataset and the PASCAL VOC dataset have per pixel
annotations, we took a region of one class as one annotation.

VOC dataset is a subset of the PASCAL VOC Context, and the MS COCO dataset

is a subset of MS COCO Stuff. PASCAL VOC is also a subset of all datasets except

Cityscapes. There are only six labels which are present in all datasets: person, car, train,

bus, bicycle, and motorbike.

The MS COCO, ADE20K, and PASCAL VOC datasets have instance segmentation

annotations. Cityscapes has only instance annotations for some classes, and PASCAL

VOC Context and MS COCO Stuff are augmented datasets with stuff classes of the

original PASCAL VOC and MS COCO datasets. Examples of the dogs annotations in

MS COCO, PASCAL VOC, and ADE20K are shown in Figure 5.3.The MS COCO and

PASCAL VOC datasets contain precise instance segmentation annotations, while the

ADE20K dataset has coarse annotations.

MS
 C

OC
O

St
uf

f

MS
 C

OC
O

AD
E2

0K

Pa
sc

al
VO

C

Pa
sc

al
VO

C
Co

nt
ex

t

Cit
yS

ca
pe

s

0

20000

40000

60000

80000

100000

120000 117266 117266

20210

11530 10103
5000

Datasets image counts

Figure 5.2: Number of images in the different datasets.

CHAPTER 5. EXPERIMENTS 39

Figure 5.3: Examples of dogs annotations in different datasets. First, second an third
row corresponds to annotations from PASCAL VOC, MS COCO, ADE20K respectively.

5.1.2 Training Datasets

Our problem demands several datasets with similar visual content and different labels

sets. ADE20K has coarse annotations and not well defined classes, Pascal VOC label set

is subset of the MS COCO label set. In order to have the same quality of annotations

and different label sets, we decide to split the MS COCO dataset into 3 datasets with

different label sets. To avoid inconsistency of the datasets and to test the ideas described

in our methods, two splits of MS COCO training dataset are created: coco disjoint and

coco overlap. They contain all the images and classes from the original MS COCO dataset,

and corresponding annotations of the split are a subset of annotations in the MS COCO

dataset.

coco disjoint and coco overlap are divided into three subsets each to create a multi-

dataset setting. For simplicity datasets corresponding to coco disjoint split are denoted as

coco disjoint0, coco disjoint1, coco disjoint2. The same indexation is applied for coco overlap.

In coco disjoint split the classes across the datasets are disjoint, while in coco overlap label

sets across datasets overlapping. Separation of the classes into different datasets for each

split is shown in Figure 5.4. Both cases simulate the real world datasets:coco disjoint

datasets have nothing in common so that they could come from different tasks, while

coco overlap datasets have shared classes, so their combination should raise the variety of

shared classes samples and bring new information from disjoint classes.

Images across the datasets do not overlap. So each image from the MS COCO dataset

CHAPTER 5. EXPERIMENTS 40

bicycle, car, truck, fire
hydrant, stop sign, parking
meter, bird, cat, dog, sheep,

cow, zebra, giraffe, backpack,
handbag, tie, suitcase,

snowboard, sports ball, kite,
skateboard, surfboard,

tennis racket, cup, bowl,
apple, sandwich, orange,
broccoli, carrot, hot dog,
toilet, tv, remote, oven,

refrigerator, book, vase,
scissors, hair drier

person

motorcycle, airplane, bus,
train, boat, traffic light,

bench, horse, elephant, bear,
umbrella, frisbee, skis,

baseball bat, baseball glove,
bottle, wine glass, fork,

knife, spoon, banana, pizza,
donut, cake, chair, couch,
potted plant, bed, dining

table, laptop, mouse,
keyboard, cell phone,

microwave, toaster, sink,
clock, teddy bear, toothbrush

coco_disjoint
0

coco_disjoint
1

coco_disjoint
2

bottle, dining table,
cup, car,

chair, handbag,
traffic light,

 bowl, book, person train, elephant, fire hydrant,
sandwich,

sink, parking meter,
baseball glove,

baseball bat, zebra,
couch, bear,

bus, toaster, hair drier,
pizza, fork

microwave, remote, toilet, hot dog, refrigerator,
teddy bear, laptop, dog, keyboard,

bed, scissors, skateboard, stop sign, oven

sheep, horse,
cow, orange,
surfboard,

bicycle,
motorcycle,

knife,
boat, clock

spoon, vase, kite,
bird,

cell phone, bench
carrot, potted plant,

donut,
 sports ball

umbrella, tie,
cake, banana,

truck,
wine glass,

skis,
broccoli,
backpack,
suitcase

toothbrush,
giraffe,

airplane,
 mouse,
frisbee,

tv, snowboard,
cat, tennis

racket,
apple

coco_overlap
2

coco_overlap
0

coco_overlap
1

Figure 5.4: Separations of the original COCO classes in three datasets for each split.
Right. coco disjoint has a dataset for person class, due to large number of instances in
the original MS COCO dataset. Left. coco overlap classes are distributed among three
datasets, 10 most frequent classes are represented for all datasets.

belongs only to one dataset. Images are divided in the following procedure: if object of

class c ∈ C+
d and object of class c

∫
C−

d
are annotated in image i ∈ ICOCO, i is randomly

assign to datasets Dd or Dd, and annotations of classes not belonging to the chosen dataset

are removed from the image. The example of removing annotations is shown in Figure

5.5.

Figure 5.5: The difference in annotations of COCO dataset in the left image and it’s
annotations subset coco disjoint0 in the right image. The classes as person, tv, book, re-
frigerator, vase are not labeled in coco disjoint0 dataset, so their annotations are removed.

A number of images, annotations, classes for each dataset of the splits and the MS

COCO dataset are shown in Table 5.2. All images and categories from COCO dataset

are used in the datasets, while 51.5% in coco disjoint and 22.9% coco overlap annotations

from original COCO datasets and are lost due to not overlapping image approach.

The histograms of most frequent class annotations for coco overlap is shown in Figure

5.6. coco overlap covers all the annotation of most frequent classes. The ratio of instances

CHAPTER 5. EXPERIMENTS 41

Datasets N images N categories N instances
coco disjoint0 43558 39 144135
coco disjoint1 46315 40 164325
coco disjoint2 27393 1 108806
coco overlap0 39012 40 230678
coco overlap1 40408 46 221426
coco overlap2 37846 44 210132
coco disjoint 117266 80 417266
coco overlap 117266 80 662236
COCO 117266 80 860001

Table 5.2: Number of images, number of categories and instances in training split for
coco disjoint and coco overlap split. coco disjoint and coco overlap cover all the images
and categories from COCO datasets, but coco disjoint and coco overlap covers 51.5% and
77% of total number of COCO annotations. coco overlap datasets has more uniformly
distributed number of images than coco disjoint.

for each class between the datasets corresponds to the ratio of the total number of instances

between the dataset.

Figure 5.6: Histogram represent s number of annotations per class for datasets in
coco overlap. Three datasets are shown in different colors. Number of annotations which
were dropped from COCO dataset for each class are shown in black.

5.1.3 Validation Datasets

Validation set correspond to the MS COCO validation split.

CHAPTER 5. EXPERIMENTS 42

In addition, to compute the accuracy of the individual datasets, coco val was split in

coco disjoint vali where annotations of classes which are not in coco disjoint vali label set

were dropped. The same settings were done for coco overlap vali.

Datasets N images N categories N instances
coco disjoint val0 5000 39 12422
coco disjoint val1 5000 40 13355
coco disjoint val2 5000 1 11004
coco overlap val0 5000 40 28564
coco overlap val1 5000 46 29650
coco overlap val2 5000 44 29118
coco val 5000 80 36781

Table 5.3: Number of annotations, images and classes in each validation dataset split.
All datasets are subsets of coco val dataset. All images participate in validation but each
dataset contains annotations of object of its corresponding label sets.

5.2 Implementation Details

For our task, we used existing Mask R-CNN baseline, implemented in pytorch. There

is an existing official version of Mask R-CNN network, which part of detection system

Detectron, published by Facebook AI Research center [32]. Detectron is built in Caffe2

framework, which uses static computational graph created in the beginning and which is

not possible to change during runtime. For more efficient computation with dynamic com-

putational graph, which allows making changes in the network during running, we have

used pytorch Mask R-CNN implementation [33]. https://github.com/roytseng-tw/

Detectron.pytorch.

For Faster R-CNN+KNN, the database of 860, 000 ground truth instances was created.

To compute KNN search of query vector of size 1024 in such a large database is time-

consuming. In order to increase computational power, we have used faiss library [34] for

efficient similarity search. faiss supports GPU computation, which enables to do exact

nearest neighbor search efficiently. If the number of annotated instances increases, it is

possible to use approximate search based on the partition-based method.

All the experiments as for training as for validation were computed with the NVIDIA

1080Ti GPU support. Mask R-CNN implementation supports multi-GPU training. For

Faster R-CNN+KNN a distributed GPU training was applied: one GPU supports faiss

library for KNN search and the second one can be applied for Faster R-CNN. This method

does not support multi-GPU training.

https://github.com/roytseng-tw/Detectron.pytorch
https://github.com/roytseng-tw/Detectron.pytorch

CHAPTER 5. EXPERIMENTS 43

5.2.1 Training

For all the experiments, we have used Faster R-CNN with FPN, where the backbone is

ResNet50. ResNet50 is pretrained on ImageNet dataset. Input images are rescaled as

their shorten edge is 800 pixels. There is one image per batch with 512 sampled RoI, and

the ratio of positive and negative RoIs is 1:3. For anchors RPN uses 4 scales and 3 aspect

ratios with 2000 proposals kept after applying NMS. Anchors of a single scale assigned to

a corresponding features map created by FPN. Then RoIAlign extracts a features map of

size 7× 7 for each RoI.

We train the network on one GPU for 6 epochs, with a learning rate of 0.02 decreasing

it by 10 at 4th and 5th epochs.

At testing time, the number of proposals before NMS and post NMS is set to 1000.

5.2.2 Approximate Joint Training of Faster R-CNN

Most of Faster R-CNN implementations, like an official one in Detectron, do not use

end-to-end training, because the training time is not efficient. Instead, approximate joint

training is introduced. In each SGD iteration, RPN generates the proposals which are

treated as fixed in Fast R-CNN detector. During backward path shared layers are updated

from both RPN loss and Fast R-CNN loss. Derivatives of predicted bounding boxes with

respect to the proposals are ignored.

In our proposed methods, we set RPN and Faster R-CNN loss to zero for some pro-

posals. Because the training is not end-to-end we tracked proposals’ anchors and corre-

sponding feature maps, produced by FPN, to set drop the proposal’s loss for RPN.

5.2.3 Hyper-parameters

In Faster R-CNN with ε-MCH we introduce the objectness score threshold εthreshold = 0.4.

The threshold is not changed during the training because, in the next step, the following

sample is thresholded by another dynamic threshold.

In Faster R-CNN+KNN, while calculating the threshold, we use KNN search with

five nearest neighbors. Because we search for the closest sample of the same class, five

neighbors are sufficient. Metric for similarity is L2.

5.2.4 Mean Average Precision

In the MS COCO challenge, the main measure in object detection task is mean aver-

age precision(mAP), a 101-point interpolated AP with average over multiple IoU and

categories.

CHAPTER 5. EXPERIMENTS 44

The general definition for the Average Precision (AP) is the area under the precision-

recall curve:

AP =

∫ 1

0

p(r)dr (5.1)

For COCO, AP is the average over 10 IoU from 0.5 to 0.95 with a step size of 0.05 on

80 categories. We use the mAP as our primary metric.

5.3 Results

For the evaluation we have trained 5 systems and evaluated them for each split coco overlap

and coco disjoint :

• FS Baseline is Faster R-CNN,trained on fully annotated COCO dataset.

• Baseline 1 is Faster R-CNN trained on a partially annotated split coco overlap or

coco disjoint.

• Baseline 2 is Faster R-CNN trained on each dataset of the partially annotated split

separately.

• Baseline 3 is Faster R-CNN + MHC (multi-headed classifier). An extended version

of Faster R-CNN with a corresponding classifier to each dataset, trained on partially

annotated split.

• Faster R-CNN + KNN. Our proposed semi-supervised method, based on feature

similarity, described in Section 4.1 trained on partially annotated split.

• Faster R-CNN + ε-MHC. Our proposed semi-supervised method, based on classifica-

tion through different heads, described in Section 4.2, trained on partially annotated

split.

We compare Faster R-CNN results for coco overlap in Table 5.4 and for coco disjoint

in Table 5.5.

Faster R-CNN trained on fully annotated datasets is 5% and 4% better than Faster

R-CNN trained on coco overlap and coco disjoint respectively. Interestingly, result of

Baseline 1 on coco disjoint is better than coco overlap, even though in coco disjoint there

are 33% less annotations present. The expectation was that coco disjoint will learn better

the most frequent class person which is the only object class of coco disjoint2. The mAP

of person in coco disjoint for Baseline 1 is 44%, while mAP for class person in coco overlap

is close to 50%, as shown Figure 5.7.

CHAPTER 5. EXPERIMENTS 45

For coco overlap split Faster R-CNN + KNN surpasses the baseline with joint training.

Mean average precision for each class for baseline and Faster R-CNN + KNN is shown

in Figure 5.7. There is not noticeable correlation between the frequency of the labels

and it’s prediction. Our proposed method was able to predict classes such hair drier,

while baseline did not discover it. Examples of the proposals generated by baseline Faster

R-CNN and Faster R-CNN+ KNN are shown in Figure 5.8.

Figure 5.7: mAP for each class predicted by Baseline Faster R-CNN and out proposed
method Faster R-CNN+KNN. Both methods were trained on coco overlap. Labels are
sorted by the frequency in ground truth.

Our methods did not improve training Faster R-CNN with coco disjoint dataset. Due

to a small number of instances KNN search was not precise in the feature similarity. Only

20% of the ground truth instances in coco disjoint have the nearest neighbor the instance

of the same class. Error analysis on Faster R-CNN + KNN for coco disjoint is described

in Section 5.3.2.

Dataset
Faster R-CNN

FS Baseline Baseline 1 +KNN Baseline 2 + ε-MHC Baseline 3
coco val 0.32 0.27 0.29 0.27 0.28
coco overlap val0 0.31 0.28 0.30 0.28 0.29 0.27
coco overlap val1 0.31 0.27 0.28 0.27 0.29 0.26
coco overlap val2 0.32 0.26 0.27 0.28 0.26 0.24

Table 5.4: All the methods, except FS Baseline, were trained on coco overlap split and
evaluated on all coco val and validation datasets for each label set. FS Baseline was
trained on fully annotated MS COCO train dataset. Baseline 1 is joint training of Faster
R-CNN on coco disjoint datasets. Baseline 2 is Faster R-CNN trained on each dataset of
split separately. Baseline 3 is Faster R-CNN with multiple classification heads.

Faster R-CNN + MHC and Faster R-CNN + ε-MHC showed only local improvements

on both splits. During last epoch on Faster R-CNN + ε-MHC on coco overlap only 12%

of unlabeled instances were sent to the classification layer of the different branches, and

only 3% passed the threshold and were classified correct.

CHAPTER 5. EXPERIMENTS 46

person 1.00

bottle 0.92

person 0.99

bottle 0.98bottle 0.93

dining table 0.95

person 1.00

bottle 0.96

dining table 0.94

person 0.99

bowl 0.91

bottle 0.99bottle 0.97

person 1.00

horse 0.94

person 1.00

person 0.95person 0.90

truck 0.93

person 0.97

person 0.99

handbag 0.99person 1.00
person 0.99

bird 0.97

person 0.98

person 1.00

handbag 0.99person 1.00
person 0.98

bird 0.98
person 0.99

boat 0.94

Figure 5.8: Bounding box predictions are shown in green rectangles, their classes and
classification scores are written in white above the bounding box. Right column has
predictions from naive Faster R-CNN trained on coco overlap. Left column corresponds
to the predictions from Faster R-CNN + KNN trained on coco overlap.

CHAPTER 5. EXPERIMENTS 47

Dataset
Faster R-CNN

FS Baseline Baseline 1 +KNN Baseline 2 + ε-MHC Baseline 3
coco val 0.32 0.28 0.28 0.28 0.28
coco disjoint val0 0.32 0.28 0.28 0.28 0.28 0.22
coco disjoint val1 0.30 0.28 0.28 0.28 0.28 0.32
coco disjoint val2 0.48 0.44 0.43 0.43 0.43 0.49

Table 5.5: Experiments completed on coco disjoint. All the methods were trained on
split coco disjoint and evaluated on all coco val and validation datasets for each label set.
FS Baseline was trained on fully annotated MS COCO train dataset. Baseline 1 is joint
training of Faster R-CNN on coco disjoint datasets. Baseline 2 is Faster R-CNN trained
on each dataset of split separately. Baseline 3 is Faster R-CNN with multiple classification
heads.

5.3.1 Mask R-CNN

For Faster R-CNN and Faster R-CNN + KNN, the mask branch was added and fine tuned

on coco overlap dataset. Faster R-CNN weights were frozen, and only class-agnostic mask

branch was trained. Both network were trained on 6 epochs. The results are shown in

Table 5.6. The detection mAP has not been change, since their weight were not updated.

Mask’s mAP for out method is 1% higher than for baseline solution, 27% vs 26%. In

Figure 5.9 are examples of segmented mask.

Mask R-CNN fine tuned on
Faster R-CNN Faster R-CNN + KNN

Mask AP 0.264 0.270
Detection AP 0.27 0.29

Table 5.6: Mask and Detection mAP for Mask R-CNN fined t

horse 0.91

person 1.00

person 0.99

handbag 0.99

person 1.00
person 0.98

bird 1.00

person 0.99

person 0.99

dining table 0.92

chair 0.99

person 0.99

laptop 0.99

person 0.98

chair 0.99

person 1.00

laptop 0.99

chair 0.95

bowl 0.93

keyboard 0.92

tv 0.98

cup 0.99

Figure 5.9: Masks prediction produced by Mask R-CNN fine tuned on Faster R-CNN +
KNN on coco overlap dataset.

CHAPTER 5. EXPERIMENTS 48

5.3.2 Error Analysis of Faster R-CNN + KNN

We apply KNN search on features of the ground truth instances extracted from pretrained

Faster R-CNN on coco disjoint. KNN search is used with L2 norm and k = 4 neighbors.

The results are shown in Figure 5.11. In the 2nd row, KNN not only detected the neighbors

of the same class as search query person but also saved the context of the scene. The

last neighbor in this search has ground truth class as chair. It is caused by the high IoU

of the bounding box of the chair and person, sitting on it. In the 3rd row, the second

nearest neighbor to an instance knife is a person, which is visually similar to knife: the

body is shaped like a blade, and the leg looks like a handle. In the 4th row, neighbors

of horse instance were all misclassified. But, the neighbours of search query horse have

similar features: chair has the same colors as query, zebra has similar shape. In the 5th

row, the query object truck is barely recognizable by the human eye, but the KNN search

still found appropriate two objects of the same class.

We have calculated frequency of neighbour k being the same class as a search query. At

least 22% of samples do not have a sample of the same class among 4 nearest neighbours

and 20% of samples have the nearest neighbour the sample of the same class. It means,

that the features of the same class are not close to each other in L2 distance. To prevent

this, it is possible to apply metric learning during Faster R-CNN training, and to pull the

features of the same class together. To visualize the similarity between samples, we apply

Figure 5.10: UMAP visualization of ground truth instances extracted from pretrained
Faster R-CNN.

Uniform Manifold Approximation and Projection (UMAP) [35], a dimension reduction

technique. UMAP was trained on 417, 266 instances with standard parameters. The

visualization for the most frequent classes is shown in Figure 5.10. The samples do not

create clusters, but some classes tend to be closer to each other such as class person.

Class person in 69% of cases have the nearest neighbour as sample of the same class. As

CHAPTER 5. EXPERIMENTS 49

a feature work, it is possible to apply metric learning during Faster R-CNN training, and

to push the features of the same class together.

cow cow cow cow cow

person person person person chair

knife knife knife person person

horse chair zebra zebra bench

truck truck truck kite traffic light

ski ski snowboard snowboard snowboard

Figure 5.11: Nearest neighbour search on the ground truth objects extracted from pre-
trained Faster R-CNN. The first image is a search query, 4 images next to it is the nearest
neighbours computed by KNN with L2 metric. Sign below the pictures is the ground
truth class of the proposal.

CHAPTER 5. EXPERIMENTS 50

Chapter 6

Conclusion

The work focuses on training instance segmentation from multiple datasets with different

label sets, and addresses the problem of missing annotations.

Two novel semi-supervised methods were proposed for object detection based net-

works. These methods can use both images with instance segmentation annotations and

images with bounding box annotations only.

The first method is based on feature similarity of object proposals. If the network

predicted an instance as class c ∈ C− (not belonging to the image label set), similarity

to other annotated instances of class c is used to distinguish between unlabeled instances

and background.

The second proposed semi-supervised method extends the object detection method by

adding a separate classification head for each label set. The loss for proposals, which are

classified as background by the head corresponding to the image label set, is dropped if

the proposals have a high classification score in any other head.

Both methods were implemented as an extension of Mask R-CNN. Experiments are

done on two splits of the MS COCO dataset: the first divides images into three datasets

with overlapping label sets, the second divides images into three datasets with distinct

label sets. In the first split, only 24% of annotations were lost, while in the second split,

almost half of the annotations were lost. All images and classes kept as in original COCO.

On the first set with overlapping labels, the baseline method performed 5% worse

in terms of mAP compared to a fully supervised setting. The proposed methods KNN

and ε-MHC improved mAP in the semi-supervised scenario by 1.75% and 0.72% of mAP

respectively, which means 35% and 14% increase towards the bound given by full an-

notation. Interestingly, on the second set with distinct labels, the proposed methods

performed the same as baseline. Given the significantly lower number of object instances

(417266 vs. 662236), the thresholds in both methods may benefit from a different setting.

Analysis of individual error cases did not show noticeable changes in categorical errors or

51

CHAPTER 6. CONCLUSION 52

in the type of errors.

6.1 Future Work

In Experiments in Chapter 5, first an object detection network was trained with the

proposed methods, and an instance class-agnostic segmentation mask branch was added

and fine-tuned afterwards. Comparison against class-specific segmentation and against

end-to-end training may bring further insights.

The method based on similarity search, Faster R-CNN + KNN, heavily relies on the

distances between feature embeddings. The quality of this metric may be improved by

adding a metric learning objective to Faster R-CNN loss.

For Faster R-CNN + ε− MHC, correct proposals of an annotated class c can be used

as a background example for branches which do not contain c in their label set. The

thresholding of Faster R-CNN + ε− MHC should be revised: only 12% of unlabeled

annotations passed the thresholds during training.

Bibliography

[1] J. Schmidhuber, “Deep learning in neural networks: An overview”, Neural networks,

vol. 61, pp. 85–117, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”,

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778.

[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-

ception architecture for computer vision”, in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 2818–2826.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time ob-

ject detection with region proposal networks”, in Advances in neural information

processing systems, 2015, pp. 91–99.

[5] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN”, in Computer Vision

(ICCV), 2017 IEEE International Conference on, IEEE, 2017, pp. 2980–2988.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-

tic segmentation”, in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2015, pp. 3431–3440.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”,

in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2016.

[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,

S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene under-

standing”, in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 3213–3223.

[9] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pas-

cal visual object classes (voc) challenge”, International journal of computer vision,

vol. 88, no. 2, pp. 303–338, 2010.

53

BIBLIOGRAPHY 54

[10] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick, “Microsoft coco: Common objects in context”, in European conference

on computer vision, Springer, 2014, pp. 740–755.

[11] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A.

Yuille, “The role of context for object detection and semantic segmentation in the

wild”, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2014.

[12] H. Caesar, J. Uijlings, and V. Ferrari, “COCO-Stuff: Thing and stuff classes in con-

text”, in Computer vision and pattern recognition (CVPR), 2018 IEEE conference

on, IEEE, 2018.

[13] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene pars-

ing through ade20k dataset”, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 633–641.

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation”, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 580–587.

[15] R. Girshick, “Fast R-CNN”, in Proceedings of the IEEE international conference on

computer vision, 2015, pp. 1440–1448.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection”, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 779–788.

[17] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-

ical image segmentation”, in International Conference on Medical image computing

and computer-assisted intervention, Springer, 2015, pp. 234–241.

[18] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via multi-task

network cascades”, in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 3150–3158.

[19] P. O. Pinheiro, R. Collobert, and P. Dollár, “Learning to segment object candi-

dates”, in Advances in Neural Information Processing Systems, 2015, pp. 1990–

1998.

[20] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and C. Rother, “Instancecut:

From edges to instances with multicut”, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 5008–5017.

BIBLIOGRAPHY 55

[21] R. Hu, P. Dollár, K. He, T. Darrell, and R. Girshick, “Learning to segment every

thing”, in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 4233–4241.

[22] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, “Selective search for

object recognition”, International Journal of Computer Vision, 2013. doi: 10 .

1007/s11263- 013- 0620- 5. [Online]. Available: http://www.huppelen.nl/

publications/selectiveSearchDraft.pdf.

[23] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature

pyramid networks for object detection”, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 2117–2125.

[24] P. Meletis and G. Dubbelman, “Training of convolutional networks on multiple

heterogeneous datasets for street scene semantic segmentation”, in 2018 IEEE In-

telligent Vehicles Symposium (IV), IEEE, 2018, pp. 1045–1050.

[25] D. Fourure, R. Emonet, E. Fromont, D. Muselet, A. Trémeau, and C. Wolf, “Se-

mantic segmentation via multi-task, multi-domain learning”, in Joint IAPR Inter-

national Workshops on Statistical Techniques in Pattern Recognition (SPR) and

Structural and Syntactic Pattern Recognition (SSPR), Springer, 2016, pp. 333–343.

[26] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille, “Weakly-and semi-

supervised learning of a deep convolutional network for semantic image segmenta-

tion”, in Proceedings of the IEEE international conference on computer vision, 2015,

pp. 1742–1750.

[27] Q. Tian and B. Li, “Simultaneous semantic segmentation of a set of partially labeled

images”, in 2016 IEEE Winter Conference on Applications of Computer Vision

(WACV), IEEE, 2016, pp. 1–9.

[28] B. Wu, Z. Liu, S. Wang, B.-G. Hu, and Q. Ji, “Multi-label learning with missing

labels”, in 2014 22nd International Conference on Pattern Recognition, IEEE, 2014,

pp. 1964–1968.

[29] G. Chen, Y. Song, F. Wang, and C. Zhang, “Semi-supervised multi-label learning

by solving a sylvester equation”, in Proceedings of the 2008 SIAM International

Conference on Data Mining, SIAM, 2008, pp. 410–419.

[30] [Online]. Available: http://cs231n.github.io/linear-classify/.

[31] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-the-

shelf: An astounding baseline for recognition”, in Proceedings of the IEEE conference

on computer vision and pattern recognition workshops, 2014, pp. 806–813.

https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/s11263-013-0620-5
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://cs231n.github.io/linear-classify/

BIBLIOGRAPHY 56

[32] Facebookresearch, Facebookresearch/detectron, 2019. [Online]. Available: https://

github.com/facebookresearch/Detectron.

[33] Roytseng-Tw, Roytseng-tw/detectron.pytorch, 2019. [Online]. Available: https://

github.com/roytseng-tw/Detectron.pytorch.

[34] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with GPUs”,

arXiv preprint arXiv:1702.08734, 2017.

[35] L. McInnes, J. Healy, N. Saul, and L. Grossberger, “Umap: Uniform manifold ap-

proximation and projection”, The Journal of Open Source Software, vol. 3, no. 29,

p. 861, 2018.

https://github.com/facebookresearch/Detectron
https://github.com/facebookresearch/Detectron
https://github.com/roytseng-tw/Detectron.pytorch
https://github.com/roytseng-tw/Detectron.pytorch

Appendix A

Attachments

A.1 Table of CD Contents

An attached CD contains git repository of the extended Mask R-CNN pipeline with the

following five branches:

• master original Mask R-CNN method

• faster rcnn knn implemented semi-supervised Faster R-CNN + KNN approach

• faster rcnn mhc implemented Faster R-CNN with multi-classification heads

• faster rcnn mhc eps implemented ε - Faster R-CNN with multi-classification heads

• faster rcnn mhc test testing pipeline for Faster R-CNN with multi-classification

heads methods

The repository is also available at https://github.com/elnazavr/Detectron.pytorch.

git.

57

https://github.com/elnazavr/Detectron.pytorch.git
https://github.com/elnazavr/Detectron.pytorch.git

