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Abstract
In order to improve the fluency of a non-
autoregressive model for neural machine
translation, we propose an extension for
the scoring model used during the beam
search decoding. We compute the score
as a linear combination of feature values,
including the score from an n-gram lan-
guage model and other auxiliary features.
We determine the weights of the features
using the structured perceptron algorithm.
We train the models for three language
pairs and evaluate their decoding speed
and translation quality. The results show
that our proposed models are still effi-
cient in terms of decoding speed while
achieving a competitive score relative to
autoregressive models.

Keywords: neural machine translation,
non-autoregressive machine translation,
beam search, language model, structured
perceptron

Abstrakt
V této práci navrhujeme způsob pro zlep-
šení plynulosti výstupu neautoregresiv-
ního modelu pro neuronový strojový pře-
klad. Využíváme k tomu rozšířený mo-
del pro počítání skóre během paprskového
prohledávání. Skóre vypočítáváme jako
lineární kombinaci dílčích skóre pocháze-
jících z n-gramového jazykového modelu
a dalších pomocných příznaků. Váhy pro
lineární kombinaci určujeme pomocí struk-
turovaného perceptronu. Pro vyhodnocení
rychlosti a kvality překladu trénujeme mo-
dely pro tři dvojice jazyků. Výsledky uka-
zují, že modely s navrženým vylepšením
jsou stále dostatečně efektivní z hlediska
rychlosti a zároveň dosahují výsledků srov-
natelných s autoregresivními modely.

Klíčová slova: neuronový strojový
překlad, neautoregresivní strojový
překlad, paprskové prohledávání,
jazykový model, strukturovaný
perceptron
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Chapter 1

Introduction

Advances in artificial intelligence (AI) allow machine translation (MT) to
substitute the work of human translators in everyday life. In 2018, more than
143 billion words per day were translated by Google Translate [1]. Demand
for fast and high-quality MT makes it one of the current research targets.

Recently, end-to-end neural machine translation (NMT) models based on
deep neural networks (DNNs) outperformed traditional statistical machine
translation (SMT) approaches in translation quality [2, 3]. At the same time,
evaluating DNNs is computationally expensive which makes the NMT models
slower than SMT models during the inference time. Computations in neural
networks can be parallelized, which improves the inference speed in practice.
However, some parts of the current NMT models cannot be parallelized.
This is caused by the autoregressive nature of decoders used in the models.
Autoregressive decoders generate output tokens sequentially, conditioning the
output in each timestep on the previously generated sequence of tokens. This
implies that the decoding is not parallelizable and the decoding time is linear
in the length of the output sequence.

Non-autoregressive MT tackles the low decoding speed by removing the
autoregressive property of a decoder. In non-autoregressive models, each
output token is independent on the rest of the output sequence. While it
allows parallelization of the decoding process, it results in lower quality of the
translation as the decoder cannot capture the sequential nature of natural
language.

The goal of this thesis is to improve the translation quality of non-
autoregressive models, making it comparable with autoregressive models
while preserving their main advantage – the decoding speed. To achieve the
goal, we improve the decoding process in a non-autoregressive model with
Connectionist Temporal Classification (CTC) described in [4]. Instead of
decoding output tokens using only the score from the model, we compute the
score as a linear combination of feature values. We include the score from the
model as one of the features and we design the additional features to improve
the quality of the output sentence: a language model helps to improve the
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1. Introduction .....................................
fluency of the sentence, the rest of the features help to generate the sentence
of correct length. To learn the feature weights, we use a variant of structured
perceptron algorithm for beam search [5].

We evaluate the benefits of suggested improvements experimentally. We
train the enhanced MT models for three language pairs, evaluate the models
on standard datasets, and compare the results with state-of-the-art baselines.

The results show that our approach can be used not only to increase the
quality of non-autoregressive NMT, but also to control the tradeoff between
NMT speed and quality.

The rest of the thesis is organized as follows:

.Chapter 2 introduces the field of MT, summarizes briefly its history
and provides an overview of MT algorithms and evaluation metrics..Chapter 3 compares current approaches to non-autoregressive MT and
introduces the model used as a base model in the thesis..Chapter 4 presents the improvements over the base model and explains
the design choices for the features, the feature weights, and the scoring
model..Chapter 5 describes the framework used for implementing and evalu-
ating the experiments, and other technologies and libraries used in the
process..Chapter 6 provides an overview of the experiments and discusses the
results and the benefits of the suggested approach..Chapter 7 concludes the thesis, summarizes the work, and suggests
directions for future work.

2



Chapter 2

Machine Translation

This chapter provides a brief overview of the history of MT, followed by
the introduction of two MT paradigms – SMT and NMT. Concepts of MT
which are essential for understanding the main contribution of this thesis –
as a language model, encoder-decoder approach, the Transformer model with
self-attentive layers, or the beam search algorithm – are explained here. The
chapter also introduces evaluation metrics for MT.

2.1 Background

MT is an application of computers for automated translation of text from one
language into another [6]. The principal reason for automating the translation
process is the ubiquitous need for translation in the today’s interconnected
world and the lack of human translators to perform it. Advantages of having
automated translation may include better international cooperation, removal
of language barriers, and military or economy motives. There is also pure
research motivation – MT allows us to study how the human brain works
and how to formalize and automate working with language. According to [7],
MT is one of the AI-complete tasks, i.e. solving the problem completely
involves understanding the basics of human intelligence, our common sense,
and knowledge acquisition.

History of MT (described in [8,9]) follows closely the history of AI. First
attempts to use a computer for automatic translation dates back to the
invention of the first computers in 1940’s. At that time, MT was purely rule-
based – machines were equipped with hand-coded rules for manipulating with
words and sentences. Creating rule-based algorithms required considerable
amount of human expertise and the algorithms were not robust. Due to the
limited computing power and lack of available datasets, this was the only
available approach until 1980’s.

In 1990’s, the statistical approach to MT revived the interest in MT.

3



2. Machine Translation..................................
Large corpora1 were used for automated capturing of patterns in language.
SMT allowed limiting the amount of human involvement and knowledge
needed for MT. Still, it required many simplifications to make the translation
computationally tractable and multiple processing steps were needed to
achieve the state-of-the-art results. SMT is discussed in Section 2.2.

DNNs have changed the field of MT and natural language processing (NLP)
in general. After the introduction of the first end-to-end models based on
DNNs as [10] in 2013 and [11,12] in 2014, NMT has achieved and surpassed
the state-of-the-art results and replaced previous MT models in commercial
translation systems. NMT is characterized by the end-to-end approach,
requiring minimal or no preprocessing. This effectively involves training a
single, large neural network that reads an input sentence and outputs its
correct translation [2]. NMT is discussed in Section 2.3.

2.2 Statistical Machine Translation

SMT systems are designed to learn automatically from data. The translation
task in SMT is defined as follows: given a sentence f in the target language F ,
find the most probable sentence e in the source language E, i.e. the sentence
which maximizes p(e|f). The translation in SMT is viewed as a deterministic
decoding process – each sentence f is an encoded version of the sentence
e and the job of the translation system is to decode it [13]. Although this
approach involves simplifications ignoring the semantics and pragmatics of
the translation process, it has proven successful in practice.

A standard way of determining e with the highest conditional probability
p(e|f) builds on the Bayes’ theorem [14,15].

e = arg max
e

p(e|f) = arg max
e

p(f |e)p(e)
p(f) = arg max

e
p(f |e)p(e). (2.1)

Factorizing the conditional probability allows to split the translation process.
First, we train two independent models – a source language model for esti-
mating p(e) and a translation model for estimating p(f |e). The parameters
of both models are estimated automatically from corpora, but possibly in a
different way. Then we use a decoder to perform the actual translation, i.e.
to find the sentence which maximizes the product p(e)p(f |e).

2.2.1 Language Model

A language model (LM) is used in SMT to determine p(e), i.e. the probability
of the sentence e in the source language E. It should assign high probabilities

1corpus, pl. corpora – a dataset of natural language examples
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.............................2.2. Statistical Machine Translation

to the sentences which are fluent in the source language and low probabilities
to any other sentences.

To compute p(e), we split the sentence e into the sequence of tokens:
e = (e1, e2, . . . , em). Using this notation, the probability of the sentence can
be written down as a product of conditional probabilities for each token:

p(e) = p(e1) · p(e2|e1) · p(em|e1, e2, . . . , em−1) =
m∏

i=1
p(ei|e1, . . . , em−1).

(2.2)

Estimating all conditional probabilities would require a large number of
parameters. To make the process computationally tractable, we can make a
simplifying assumption and limit the history of each token. This gives rise to
n-gram LMs, where the probability of each token is conditioned only on its
n− 1 immediate predecessors; n is the order of the LM.

The probability of each n-gram can be calculated from the data by counting
its occurrences in the corpus and normalizing the count. For a bigram model
(n = 2):

p(e2|e1) = #(e1e2)
#(e1) . (2.3)

Some n-grams may be missing in the corpus. There are several ways to
deal with this problem, e.g. using a linear interpolation with lower-order
n-grams:

p(e2|e1) = λ
#(e2)
N

+ (1− λ)#(e1e2)
#(e1) , (2.4)

where N is the total number of words in the corpus and λ ∈ (0, 1).

The probability of the sentence p(e) is calculated as a product of probabili-
ties of all the n-grams in the sentence:

p(e) =
m∏

i=1
p(ei|em−n+1, . . . , em−1). (2.5)

Special tokens <s> are used as a padding in the beginning of the sentence.

2.2.2 Translation Model

A translation model in SMT is used to estimate p(f |e), i.e. the probability
of the sentence f being a translation of the sentence e. It assumes that the
words in the source language E generate the words in the target language
F . In the example pair of sentences (Jean aime Marie | John loves Mary)
John generates Jean, loves generates aime, and Mary generates Marie. This
correspondence between the words is called an alignment.

Intuitively, the alignment has to be neither in order, nor one-to-one. There-
fore, the translation model needs to capture several parameters [16]:

5



2. Machine Translation..................................
. lexical probability t – probability that a word from E translates to a

word from F. fertility n – probability that a word from E generates a certain number
of words in F. distortion d – probability that a word from F on the position i corre-
sponds to a word from E on the position j, given the lengths of e and
f .

For example, t(Jean|John) is the probability that John translates into
Jean, n(2|John) is the probability that John generates 2 words and d(2|1, 3, 3)
is the probability that the word on the position 2 in f is generated by the word
on the position 1 in e given that |e| = 3 and |f | = 3. These parameters can
be estimated iteratively from the data using the expectation-maximization
algorithm [17].

2.2.3 Decoder

Decoder in SMT aims to find a sentence e maximizing p(e)p(f |e). There are
too many possible sentences to perform an exhaustive search. However, we
can get good results in practice by building a solution incrementally, keeping
only a limited number of solutions with the highest probability in each step.
This approach is a variant of the beam search algorithm described in detail in
Section 2.5.

2.3 Neural Machine Translation

NMT is a data-driven approach to MT which adopts neural networks to
train the statistical models. Neural networks are a powerful machine learning
technique used to achieve state-of-the-art results on difficult problems such
as visual object recognition [18] and speech recognition [19].

Similarly to SMT, the decoding phase in NMT is based on looking for the
translation with the highest probability. The advantage of the NMT over SMT
models is the ability of neural networks to learn complex functions, which
eliminates many of the simplifying assumptions in SMT models. NMT models
are able to condition the target translation on the whole source sentence and
capture non-trivial long-distance dependencies. Moreover, general focus in
NMT is to train the models end-to-end which removes the implicit constraints
introduced by the pipeline design of SMT.

Introduction of NMT has considerably changed the field of MT in the recent
years. NMT models (such as the ones discussed in Sections 2.3.5 and 2.3.6)
surpassed the results of SMT models by a large margin. At the MT shared

6



.............................. 2.3. Neural Machine Translation

task organized by the Workshop on Machine Translation (WMT), nearly all
submissions have switched from SMT models to NMT models between 2015
and 2017 [20]. Companies such as Google or Facebook transitioned from
SMT to NMT in their translation systems [21,22].

At the same time, NMT systems have weaknesses that need to be taken
into account in practice [23]. Training times of NMT systems can range
between days and months even when using GPUs2. Large corpora required
for training need not to be available for less common language pairs. NMT
models are known to make semantical errors such as mistranslation of proper
nouns or inconsistencies in numerical expressions; and it is hard to debug the
inner workings of a neural network. Also, inference times can be too slow for
desktops or mobile phones, which requires the translation systems to be run
in cloud environments. Solutions to these problems are subject to ongoing
research, with the last problem being also in the focus of this thesis.

2.3.1 Neural Networks

A neural network is a computational model which can be trained to produce
output based on given input. It is composed of basic computational units
called neurons. A neuron receives n input signals x1 . . . xn from input data
or from some other neurons and computes an output y. Each input signal
is multiplied with the weight wi associated with the i-th input connection.
Additionally, there is a constant unit input signal xn+1 multiplied by a weight
called bias. The output of the neuron is the result of the non-linear activation
function f applied on the weighted sum of input signals.

y = f

(
n+1∑
i=1

xi · wi

)
(2.6)

Neurons in neural networks are organized in layers. DNNs contain multiple
layers, with hidden layers observing only the output of the previous layers.
Output of the last layer is the output of the network. Layers of the neural
network can be compactly represented as matrices and forward propagation
of the signal as matrix multiplication.

The training of neural networks is based on optimization of the weights of
the connections between the neurons. The difference between the output of
the network and the reference output in the training examples is the prediction
error of the network. The weights are updated during the process called
back-propagation to minimize their contribution to the prediction error.

2GPU = graphical processing unit, a hardware accelerator specialized on numerical
computations.

7



2. Machine Translation..................................
2.3.2 Word Representation

The input of a neural network is a vector of real numbers. In order to
process natural language by neural networks, we need a suitable continuous
representation of words. A straightforward solution is to use one-hot encoding,
where each word is associated with a V -dimensional vector (V is the size
of the vocabulary, e.g. V = 50000). With one-hot encoding, i-th word
has 1 on i-th position and 0 on the rest of the positions. For example:

. aardvark = (1, 0, 0, 0, 0, 0, . . .)>. abacus = (0, 1, 0, 0, 0, 0, . . .)>.

Another option is to use word embeddings. We can find an N -dimensional
real-valued vector for each word (where N is low, e.g. N = 300) and use this
vector as a representation of the word in the continuous space. The aim is to
assign similar vectors to similar words. This makes the representation not
only compact, but it also allows the neural network to generalize over related
words.

One way to define word similarity is to assume that similar words occur in
similar context. This is used in an approach to learn the word embeddings
called word2vec [24, 25] in which a neural network with one hidden layer
is trained to either predict the current word from its context (continuous
bag-of-words) or to predict the context from the current word (continuous
skip-gram). The word embeddings are the weights of the hidden layer after
the training is finished.

Similar approach is used in end-to-end NMT models for training word
embeddings without additional preprocessing steps. The first layer of the
model is the embedding layer which is designed to learn the word embeddings
during the training.

2.3.3 Recurrent Neural Networks

The model of neural networks described in Section 2.3.1 is essentially the
feedforward model. It has a fixed-size input which limits the size of the
context we can feed into the network. Feedforward models (in combination
with word embeddings) can be used as an alternative to n-gram models used
in SMT [26].

To be able to condition the translation on the input sentence of any length,
we can use recurrent neural networks (RNNs). RNNs process the input one
token at a time, using the same transformation for each step:

ht = A(ht−1, xt) (2.7)

8



.............................. 2.3. Neural Machine Translation

where ht is the hidden state of the network in time t, A is the transformation
applied by the network, and xt is the t-th input symbol. The transformation
is applied repeatedly on the previous hidden state and the current input
symbol (see Figure 2.1). After the end of the input is reached, the hidden
state should contain an encoded representation of the whole sentence.

Figure 2.1: Basic scheme of transformations used in an RNN. The scheme on
the left shows the transformation applied in each timestep, the scheme on the
right shows the same transformation unrolled for each timestep. Source: [27].

In practice, the basic RNN network cannot handle long-distance depen-
dencies so well. As the state gets updated repeatedly, the information from
the beginning of the sentence is gradually lost. Long Short Term Memory
(LTSM) network [28] is a special kind of RNN which is explicitly designed to
retain important information from the whole sequence. The transformation
is divided between several functional units called gates which can learn to
filter which information to remember and which to forget. The structure of
LSTM is depicted in Figure 2.2.

Figure 2.2: Structure of an LTSM. Yellow rectangles are neural network layers,
red circles are pointwise operations; together forming the gates – the input,
forget, and output gate. Source: [27].

2.3.4 Encoder-Decoder Model

Having an efficient way for encoding the information from the sentence into a
single vector, we can use another RNN to decode it as another sentence. This
is the idea behind the encoder-decoder MT model for sequence-to-sequence
learning described by Sutskever et al. [11] and Cho et al. [29] in 2014. The
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2. Machine Translation..................................
model operates in two steps:..1. An LSTM called an encoder encodes the input sentence X = x1 . . . xn

into a hidden state hn by repeatedly applying a transformation E in
each timestep i ∈ (1, n):

hi = E(hi−1, xi). (2.8)..2. An LSTM called a decoder uses hn as its initial state s0 and produces
the translation Y = y1 . . . ym of the input sentence by repeatedly applying
a transformation D in each timestep j ∈ (1,m):

sj , yj = D(sj−1, yj−1). (2.9)

The workflow of an encoder-decoder architecture is depicted in Figure 2.3.
The encoder takes the input sentence and encodes it into a hidden state.
In each timestep, the decoder takes the previous hidden state and the last
output symbol, and computes the conditional probability distribution over
the vocabulary. The symbol with the maximum probability is selected as
the output symbol and used as the input for the next step. The first input
symbol is a special token <s> denoting the beginning of the sentence. When
the decoder outputs a special token <eos> denoting the end of the sentence,
the decoding is finished.

<s><s>
x1 x2 x3 x4

~y1 ~y2 ~y3 ~y4 ~y5

Figure 2.3: Encoder encodes the input sentence X into a hidden state, decoder
uses the hidden state to decode the output sentence Y . Source: [30].

2.3.5 Attention Model

Even LSTMs may not be able to capture all information in the sentences,
especially if the sentence is long. The main bottleneck is the fixed-length
vector into which all the information has to be compressed. For better
flexibility of the encoder-decoder model, Bahdanau et al. in 2015 [2] proposed
to combine it with the attention model. It adds the decoder the ability to
extract information from relevant words in the input sentence regardless on
their position.

10



.............................. 2.3. Neural Machine Translation

Unlike the standard encoder-decoder model, this approach keeps all the
hidden states generated during the encoding process. In each decoding step
j, the attention model a computes the vector αj of attention values for each
hidden state hi of the encoder using softmax:

αji = exp(a(sj−1, hi)∑
k exp(a(sj−1, hk)) . (2.10)

Figure 2.4 shows how the attention values may be distributed.
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Figure 2.4: Visualization of attention values. Attention model is used for
translating the source sentence in English (x-axis) to the target sentence in
French (y-axis). Each square shows the attention weight αji of the i-th source
word for the j-th target word, in grayscale (black: 0, white: 1). Source: [2].

The attention vector αj is used to compute a context vector cj which is
the weighted average of the hidden states of the encoder:

cj =
∑

i

αjihi. (2.11)

The context vector is used as an additional input for the decoder:

sj , yj = D(sj−1, yj−1, cj). (2.12)

The main difference between the alignment model used in SMT and the
attention model used in NMT is that the alignment model is discrete (words
are either aligned or not) and the attention model is probabilistic (attention
values are real numbers summing up to 1).
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2.3.6 Transformer Model

The Transformer model introduced by Vaswani et al. in 2016 [31] is the
state-of-the-art NMT model which builds on top of the encoder-decoder NMT
models with attention. However, it introduces some modifications in the
architecture.

Self-Attention. The Transformer completely replaces the RNNs in the
encoder and decoder with the mechanism called self-attention. The self-
attention works similarly to the encoder-decoder attention (see Section 2.3.5),
i.e. it computes a single vector as a weighed average of a sequence of vectors.
Unlike the encoder-decoder attention, it attends only to the hidden states
from the previous layer. In the first layer, the self-attention attends directly
to the word embeddings. An example is shown in Figure 2.5.

Figure 2.5: Self-attention values of one of the encoder heads while encoding the
hidden state for the token ’it_’. Words with darker color are assigned greater
weight. Source: [32].

This leads to the following improvements:

. The model gains an additional degree of freedom in encoding the hidden
states. It can encode different parts of the sentence into the state and it
is not limited to the information from the previous hidden state.. The computation of the hidden state for each word is independent on the
computation of the rest of the hidden states. This allows to parallelize
the encoding process which is otherwise inherently sequential in RNNs.

Positional Encoding. A side-effect of using the self-attention mechanism is
the loss of information about the word order. To address this, the Transformer
adds a vector called positional encoding to each input word embedding. The

12



.............................. 2.3. Neural Machine Translation

vector is computed deterministically for each position in the sentence. The
computation of the vector is designed to encode the relative word order
independently on the length of the sentence.

Decoder. The decoder is still autoregressive, i.e. conditioned on the previous
part of output. During the training, the causality is preserved by masking
the future positions in the output so that the decoder can attend only to the
decoded part of the sentence.

Architecture. The architecture of the Transformer3 is shown in Figure
2.6. There are 6 encoder and 6 decoder layers organized in stacks. Each
layer is composed of two sublayers: a self-attention sublayer and a single-
layer feedforward network. The self-attention sublayer is composed of 8
self-attention instances called heads with a different weight matrices, forming
a multi-head attention. There is a residual connection [33] around each of the
two sublayers, followed by layer normalization [34].

Figure 2.6: The Transformer model architecture. The decoder uses both encoder-
decoder attention and self-attention mechanisms. Source: [31]

3The architecture with the same hyperparameters is used also in the models building on
top of the Transformer.
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2. Machine Translation..................................
2.4 Tokenization

A token (resp. a subword) is a sequence of characters which is treated by the
MT model as a single and indivisible item in the vocabulary. Tokenization
(resp. segmentation) is a process of breaking the input text into tokens4.

In SMT, tokenization is traditionally used as a part of a pipeline. Although
NMT models can be trained end-to-end without any preprocessing or post-
processing, good tokenization helps the models to deal with out-of-vocabulary
words while keeping the size of the vocabulary reasonably large. This is
important as machine translation is an open-vocabulary problem. During
detokenization, tokens can be composed into words which did not appear
in the training data, e.g. in case of translating proper names or compound
nouns.

As an example of advanced tokenization technique for NMT, the authors
of [35] propose encoding words into subwords using the byte pair encoding
(BPE) compression algorithm [36]. BPE gets a list of subwords by splitting
the sentence into individual characters and consecutively merging the most
frequent adjacent pairs of characters, until the desired vocabulary size is
reached. Tokenization is achieved by applying the same merge operations
to the input text. Another tokenization algorithm proposed in [37] is the
unigram language model which is capable of outputting multiple subword
segmentations with probabilities.

2.5 Beam Search

In theory, the output of the decoding algorithm should be the most probable
target translation, i.e.

Y ∗ = arg max
Y

p(Y |X). (2.13)

However, the search problem is exponential in the length of the output
sequence which is intractable in practice.

Approximate decoding algorithms were developed to deal with this issue.
The most straightforward approach is to use the greedy decoding algorithm,
i.e. in each step, output a token with the highest probability. Note that this
does not implicitly maximize the probability of the whole output sequence, as
the output in each step is conditioned on the output from the previous steps.

An extension of the greedy decoding algorithm is the beam search algorithm.
The idea is to keep b partial outputs called hypotheses. In each step, b best

4Traditionally, tokenization and tokens are based on syntax while segmentation and
subwords are based on semantics. As the tools described in this thesis work somewhere in
between of those approaches, we will use the terms interchangeably.
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.................................. 2.6. Evaluation Metrics

hypotheses are extended by an output token, resulting in b ·V new hypotheses
(V is the size of the vocabulary). A score is computed for each hypothesis as
the product of probability of its tokens normalized by the hypothesis length.
The hypotheses are re-ranked by their score and b hypotheses with the highest
score are kept for the next decoding step.

Beam search allows to account for more possible translations, which im-
proves the results of the decoding algorithm. It introduces some computational
overhead, which can be adjusted by altering the beam size b. In SMT, large
beam sizes (b = 1000) are used [38]. In NMT, b = 10 can be enough for a
good approximation [39]. With b = 1, this approach effectively becomes the
greedy decoding algorithm.

2.6 Evaluation Metrics

A standardized metric for evaluating the results of MT algorithms is not easy
to define – a single text may have multiple correct translations and their
correctness may be subjective. It is also not straightforward how to define
how far is an incorrect translation from the correct one.

Initially, most of the measures of MT quality were performed by humans.
People were asked to evaluate various aspects of the translated sentence such
as comprehensibility, fluency, or accuracy [9]. However, manual evaluation is
expensive and time-consuming, and it is in conflict with the aim to reduce the
dependency of MT on human input. With this in mind, automated evaluation
metrics were developed.

2.6.1 BLEU

BLEU (Bilingual Evaluation Understudy) score introduced in [40] is an
inexpensive and language-independent method for automatic MT evaluation.
It builds the intuition on a principle the closer a machine-generated translation
is to a professional human translation, the better it is. The closeness is
computed as a weighted average over different n’s of n-gram matches against
the reference translation, combined with a brevity penalty for short sentences.

Formally, BLEU score is computed as

Bleu = BP · exp
(

N∑
n=1

wn log pn

)
(2.14)

where pn the number of n-grams in the candidate translation present in the
reference translation, divided by the total number of n-grams in the reference
translation; wn are positive weights summing to one; and BP is the brevity
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2. Machine Translation..................................
penalty computed as

BP =
{

1 if c > r

e1−r/c otherwise,
(2.15)

where c is the length of the candidate translation and r is the length of the
reference translation.

BLEU score is used for evaluation of translation quality for the experiments
in this work as the de facto standard metric for MT evaluation [41].

2.6.2 Translation Edit Rate

An alternative metric proposed in [42] is the Translation Edit Rate (TER),
which is based on the Levenshtein distance. TER measures the minimum
number of edits that a human would have to perform to change a system
output so that it exactly matches a reference translation. The edits include
an insertion, deletion or substitution of a word, and an edit which moves
sequences of contiguous words. TER is computed as:

TER = 1
r
· dL(tr, tc) (2.16)

where dL(tr, tc) is the Levenshtein distance between the reference and candi-
date translations, and r is the length of the reference translation.
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Chapter 3

Non-autoregressive MT

This chapter presents the motivation behind the non-autoregressive MT and
the work that has been done in this field so far. The approaches which are
presented also include the end-to-end model with CTC, which is used as a
base model in this thesis.

3.1 Motivation

Despite the advances of NMT in translation quality, NMT models are slow dur-
ing the inference time. This prevents deployment of high-quality translation
systems into offline desktop or mobile environment.

There are two main reasons for the low inference speed:..1. DNNs are computationally expensive to evaluate. In case the expen-
sive evaluation is combined with linear complexity of the algorithm, it
can result in low inference speed for longer sentences...2. Some parts of the models are not parallelizable. Parallelization can
help to improve the speed of evaluation of DNNs, but if some part of the
model is inherently sequential, it slows the algorithm down in accordance
with the Amdahl’s law [43].

There are efforts to solve these problems since the introduction of the first
NMT models. Almost every part of the Transformer model (Section 2.3.6)
can be parallelized and it is more economical in the number of operations
compared to other models [31,44].

However, the autoregressive decoder used in all the NMT models described
in Section 2.3 (including the Transformer) cannot be parallelized. In every
step, the output of the decoder depends on its output from the previous step
(hence autoregressive). This makes the decoder inherently sequential.
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3. Non-autoregressive MT ................................
The autoregressivity has several benefits. It corresponds to the sequential

nature of language and the way the real translations are produced. Autore-
gressive models achieve state-of-the-art performance on large corpora and are
easy to train.

Nevertheless, as autoregressive decoders became the main bottleneck of
speeding up the NMT models, recent works have attempted to solve the
issues by the non-autoregressive approach. In non-autoregressive models,
the conditional probability of the target sentence is factorized, making the
probability of each output token independent on the rest of the sentence. In
other words, the probability distribution of each token yj depends only on
the source sentence X.

Intuitively, this naive approach does not yield good results. The main issue
described in [44] is the multimodality problem. There may be more acceptable
translations for the target sentence, forming a probability distribution. As
each of the target tokens draws from the distribution independently, it may
happen that a different translation is selected for each token. An example may
be the English sentence “Thank you.”, which can be translated into German
as “Danke.”, “Danke schön.” or “Vielen Dank”. As the non-autoregressive
model assumes the probability distributions for each word are conditionally
independent, the model can also assign high probability to translations “Danke
Dank.” and “Vielen schön.”, which are not correct.

Another problem is the unknown length of the target sentence prior to
translation. As all output tokens are decoded independently and in parallel,
we cannot use the <eos> token to terminate the decoding and we have to
estimate the target sentence length in advance.

The models described in the following sections use various approaches to
tackle these drawbacks. All the models build on top of the autoregressive
Transformer model with self-attention and introduce modifications for non-
autoregressive translation.

3.2 Latent Fertility Model

The first non-autoregressive NMT model was described by Gu et al. in
2017 [44]. The Transformer encoder part stays unchanged, but the decoder
part is modified:.Decoder input. As the decoder is non-autoregressive, it can no longer

use previously predicted output as its input. However, omitting the
input for the decoder entirely leads to poor performance, so it is instead
substituted by copied encoder input (details are discussed below)..Causality mask. There is no need to prevent earlier decoding steps from
accessing information from later steps, so the mask from Transformer is
no longer used for future positions in the output during the training.
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.Positional attention. Decoder is equipped with additional positional
attention module. It acts similarly to self-attention, but instead of word
embeddings it attends to positional encodings. Positional attention
should help the decoder to perform local word reordering.

The model introduces an additional step to the processing pipeline. A
latent fertility model is introduced to estimate the fertility (see Section 2.2.2)
of each word. Based on their fertility, the words from the source sentence are
repeated in the decoder input. The resulting output length is determined by
the sum of all fertility values.

The latent fertility model aims to remove the non-determinism in the
decoding process in order to tackle the multimodality problem. By predicting
the fertility sequence, it introduces a latent variable z. Conditioning the
translation on z should filter out the target sentences which are not consistent
with the particular fertility sequence.

Using only the fertilities is still not sufficient to solve all cases of the
multimodality problem. In many cases, there are multiple correct translations
consistent with the same sequence of fertilities. The authors additionally
try to apply sequence-level knowledge distillation [45] to rescore the possible
output sentences using an autoregressive model. They note that this approach
makes the resulting translation less noisy and more deterministic, but lower
in quality.

3.3 Model with Iterative Refining

Following up on the latent fertility model, Lee et al. in 2018 [46] introduced
a non-autoregressive NMT model based on iterative refining. The hyperpa-
rameters are similar to the previous model, but there are several changes in
the model architecture.

Instead of estimating the fertility of each word, the model estimates only
the total length of the target sentence. It is predicted by a separate network
which receives the output of the encoder on its input. This is a fast and
simple way to help the model in decoding the target sequence, however, it
leaves the task of improving translation quality up to another part of the
model.

The translation quality is improved by a second decoder. It is applied
repeatedly on the candidate translation that is produced by the first decoder.
This process is called iterative refining. The second decoder acts as a denoising
autoencoder – it views the candidate translation as a corrupted version of
the correct output and it tries to restore it. The decoder is trained separately
from the rest of the model.
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3. Non-autoregressive MT ................................
3.4 End-to-End Model with CTC

The model introduced by Libovický and Helcl in 2018 [4] eliminates the need
for explicit target sentence length estimation by using the CTC algorithm.
The model can be trained end-to-end and it is used as a base model for the
work in this thesis.

3.4.1 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) [47, 48] is an algorithm dealing
with alignment of two sequences.

The problem is formulated as follows: we are given an input sequence
X = (x1, . . . , xm) and an output sequence Y = (y1, . . . , yn). We want to find
the alignment between the sequences, i.e. a mapping of elements of X to the
elements of Y , given that:

. The input sequence X may be longer than Y (i.e. m ≥ n).. The correspondence between the elements of X and Y is not known.. The alignment is monotonic: if xi ∈ X, yj ∈ Y and xi is aligned with yj ,
then xi+1 is aligned either with yj or with yj+1.

The problem can be illustrated on an example from speech recognition. X is
the audio signal split into m samples, Y is the output sequence composed of
n characters. We do not know n in advance, but we know that each character
corresponds to one or more samples. A possible way to perform the alignment
is to assign a character to each sample and collapse the repeats. In order to
be able to decode multiple same characters in a row, we introduce a special
character ε which acts as a delimiter. See Figure 3.1.

X

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

alignment h ε e e ε l ε l l o o ε

Y h e l l o

y1 y2 y3 y4 y5

Figure 3.1: A example of an alignment between the audio wave samples X and
the sequence of characters Y = hello.

20



..............................3.4. End-to-End Model with CTC

Multiple alignments may exist for a single pair of X and Y . For example,
the following alignments are all valid for the input sequence X of length n = 6
and the output sequence Y = cat:. (c, a, a, t, t, t). (c, c, a, ε, ε, t). (c, ε, a, a, t, t).

CTC algorithm gives us an efficient way to compute the distribution of
all possible Y ’s for a given X, marginalizing over all possible alignments for
each Y . This can be used for computing:

. output – during the inference, we can compute Y ∗ = arg maxY p(Y |X)
to get the most likely output sequence Y given the input sequence X. loss function – during the training, we can compute p(Y |X) for the
output sequence Y from the model for the reference input sequence X.

The use of CTC for computing the output is described in detail in Section
4.1. The loss function is computed as a sum of probabilities over the possible
alignments, each probability calculated as a product of the probabilities of
the alignment at given the input sequence X in each timestep t ∈ T :

p(Y |X) =
∑
a∈A

T∏
t=1

pt(at|X). (3.1)

Computing the probability for all the possible alignments one-by-one would
lead to a combinatorial explosion. For example, for X of length m = 50
without any repeating elements and Y of length n = 30, the number of
possible alignments is (

m+ n

m− n

)
=
(

80
20

)
≈ 3 · 1018. (3.2)

To avoid this problem, CTC uses dynamic programming. It builds on the
insight that if two alignments have reached the same output at the same step,
they can be merged. Let Z = (ε, y1, ε, . . . , ε, yn, ε) be a sequence containing
elements of Y with ε in between each two elements (and at the beginning
and the end of the sequence). We denote the CTC score of the subsequence
Z1:s after t timesteps as αs,t. We have two cases for computing αs,t:..1. In this case zs ∈ Y and zs 6= zs−2. This means we have three possible

positions in the previous step that we have to consider:

αs,t = (αs−2,t−1 + αs−1,t−1 + αs,t−1) · pt(zs|X). (3.3)
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a

ϵ

t - 1 t

b

Figure 3.2: Case 1. We consider three possibilities in the previous timestep:
previous character a, delimiter ε, or current character b. Source: [48]..2. In this case either zs = ε or zs = zs−2. This means that we cannot skip

the previous token in Z. If zs = ε, it is because we cannot skip over any
elements of Y (and zs−1 ∈ Y ); if zs = zs−2, it is because we have to keep
ε between two identical characters. Therefore:

αs,t = (αs−1,t−1 + αs,t−1) · pt(zs|X). (3.4)

t - 1 t

ϵ

a

ϵa

a

ϵ

Figure 3.3: Case 2. We consider two possibilities in the previous timestep:
previous character ε (resp. a), or current character a (resp. ε). Source: [48]

Using these two steps, we can compute paths for all possible alignments
and use the score from the two final nodes1 as p(Y |X) (see Figure 3.4).

3.4.2 Model Architecture

The model [4] follows the architecture of the Transformer and the other
non-autoregressive models. However, it does not estimate the target sentence
length. Instead, it only sets its upper bound as k-times the length of the input
sentence (in the experiments k = 3).

This allows to decode a sentence of any length (shorter than the upper
bound) in the following way: after encoding the input sequence X of length

1The delimiter ε at the end of the alignment is optional, so we have to sum the score
from both nodes to get the final score.
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x1 x2 x3 x4 x5 x6

ϵ

ϵ

ϵ

a

b
Two final
nodes

Figure 3.4: Input X = (x1, . . . , x6), output Y = ab. Each node (s, t) represents
αs,t – the CTC score of the subsequence Z1:s after t steps. Source: [48]

n, each encoder state is projected to k vectors, forming a sequence of length
k · n. This sequence is processed by the decoder and labeled either with an
output token or with the ε symbol.

The labeling can be processed by the CTC algorithm similarly to the
example with the audio signal shown in Figure 3.1. The ε tokens act as
delimiters and mark the decoder states which do not produce any word
during the decoding process.

Figure 3.5 shows the architecture of the model.

Input token embeddings

Encoder

h

Wsplh

s

Decoder

Connectionist Temporal Classification

y1 y2 y3 ϵ y4 ϵ y5 y6 ϵ ϵ ϵ y7 y8 ϵ y9 ϵ
Output tokens / blank symbols

Figure 3.5: The architecture of the end-to-end model with CTC. Source: [4].
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Chapter 4

Design

This chapter describes the main contribution of this thesis – a novel approach
for decoding the target translation in a non-autoregressive NMT model. The
model builds on top of the end-to-end model with CTC described in Section
3.4. The decoding process is improved by a scoring model which uses a linear
combination of feature values to score the translation hypotheses. The weights
of the features are determined using a variant of a structured perceptron
algorithm.

4.1 Beam Search with CTC

The beam search algorithm (described in Section 2.5) does not bring any
advantage to the non-autoregressive models described in Sections 3.2 and 3.3.
By definition, the output tokens in these models are mutually independent and
selecting the token with maximal probability also maximizes the probability
of the whole sentence. This allows to use greedy decoding and to parallelize
the decoding process.

In the end-to-end model with CTC from Section 3.4, however, there may
be multiple derivations of the same hypothesis, i.e. yielding the same output
sentence (see Section 3.4.1). In each decoding step, we have to combine
probabilities of all the derivations of the same hypothesis. This implies
that the inference algorithm in this model is sequential and its runtime is
linear in the length of the output sentence, although it is still faster than the
autoregressive models1. In this case, the beam search algorithm can be used
for improving the quality of the translation as the greedy algorithm is not
guaranteed to find the sentence with maximal probability.

We use this property of the model as an opportunity to introduce a more
1It is important to note that the model stays non-autoregressive in a sense that it

still requires only a single pass through the decoder stack, i.e. the token probability
distributions for each output position are computed in parallel. The only sequential part of
the process is combining the computed probabilites, which is fast in practice.
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complex scoring model for the beam search. Instead of computing the
probabilities of translation hypotheses using only the CTC score, we compute
the score of the hypotheses as a linear combination of features.

Algorithm 1 and Figure 4.1 provide an overview of the decoding algorithm.
The algorithm runs in k·TX steps, where TX is the length of the input sentence
X and k is the multiplication factor of the encoder states. The derivations
from the previous steps are expanded with 2b tokens with the highest score2.
The score of a single derivation is the product of the conditionally independent
probabilities of its tokens (line 7). The CTC score of a hypothesis is the sum
of the scores of its derivations formed in the current beam search step (line
8). The function SelectNBest is based on the scoring model described in
Section 4.2.

Algorithm 1 Beam Search Algorithm with CTC
1: B ← {∅} . Beam
2: for t = 1 to k · TX do
3: H ← ∅ . Hypothesis → CTC score
4: W ← 2b best tokens in step t
5: for hypothesis h ∈ B do
6: for token w ∈W do
7: s← p(h) · pt(w) . Derivation score
8: H[h+ w]← H[h+ w] + s
9: end for
10: end for
11: B ← SelectNBest(H, b)
12: end for
13: return B

4.2 Scoring Model

The function SelectNBest(H,n) (line 11 in Algorithm 1) selects n hypothe-
ses from H with the highest score. We employ a linear model for scoring the
hypotheses. We compute the score of the hypothesis h as

score(h) = w ·Φ(h) (4.1)

where Φ is a feature function of h and w is a feature weight vector. The feature
function Φ : H → R4 maps a derivation of a hypothesis to an n-dimensional
vector, where n is the number of features. In our case

Φ(h) = (Φc(h),Φl(h),Φr(h),Φt(h)). (4.2)

The individual features are described in the following sections.
2In contrast to the standard beam search formulation, we use only by 2b tokens with

highest score, as expansion by all V tokens would prohibitively slow down the algorithm
and increasing the coefficient did not bring any improvement in our experiments.
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Figure 4.1: An example of the beam search with CTC: vocabulary = (a, b, ε),
b = 2, k ·Tx = 3. In each timestep t, b best hypotheses from the previous step are
expanded with the tokens from the vocabulary and ranked by their score from
the scoring model (darker color indicates higher score). The scores of different
derivations of a single hypothesis are combined. The resulting sentence after
k · Tx steps is ’aa’ of length 2.

4.2.1 CTC Score

We use the CTC score from the original end-to-end model as one of the
features. We work with log-probabilities to avoid numerical issues, i.e.

Φc(h) = log p(h|X). (4.3)

It is important to note that unlike other features, we do not train the weight
for this feature. Instead we set it to 1 in order to normalize the vector as the
linear scoring model is independent on the scale s of the vector:

w ·Φ(h) ≈ sw ·Φ(h), s ∈ R>0. (4.4)

4.2.2 Language Model

In SMT, an LM is responsible for handling the fluency of the translation (see
Section 2.2.1). There is no LM in autoregressive NMT – the NMT model is
trained end-to-end and the decoder part plays a role of a conditional LM.

In non-autoregressive NMT, the output tokens are not conditionally depen-
dent on the rest of the output and the LM component is missing. Therefore,
the translations may be less fluent – the words are unnecessarily repeated, the
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word order is incorrect and the sentences are generally less comprehensible
(regardless of the adequacy of the translation given the input sentence).

Previous research indicates that incorporating a LM component into the
decoding process can leverage the quality of results. In [49], the authors
experiment with using a LM trained on target monolingual data to improve
the quality of low-resource language pairs (with not enough parallel data)
and show improvement of the results of the NMT model from [2] on both low-
resource and high-resource language pairs. In automatic speech recognition,
the authors of [50] propose a beam search algorithm which combines an n-gram
LM with scores from a model trained using CTC and achieve state-of-the-art
accuracy.

Following up on the research, we also use an n-gram LM for scoring the
hypotheses. Similarly to more complex approaches like recurrent LMs, which
take into account the whole output sentence, an n-gram LM is able to assign
low-probability to repeating words or words that do not belong together in
the target language and thus handicap derivations containing these mistakes.
Unlike those approaches, an n-gram LM is not too computationally demanding
which allows to maintain the decoding speed.

In particular, we use KenLM [51] described in Section 5.3. The score of
a sentence in KenLM is based on a product of probabilities of n-grams in
the sentence, similarly to Equation 2.5. However, KenLM uses modified
Kneser-Ney smoothing [52], which is an interpolation technique allowing
better estimation of n-gram probabilities. The main idea (out of several) in
this technique is using a back-off model for calculating the score of a single
n-gram. If the n-gram did not appear in the data, we use a probability of a
lower order n-gram together with a backoff penalty b:

p(wn|wn−1
1 ) = p(wn|wn−1

f )
f−1∏
i=1

b(wn−1
i ), (4.5)

where wn
1 = (w1, . . . , wn) is an n-gram and wn

f is the longest part of the
n-gram encountered in the data.

The value of the LM feature in the scoring model is based on the log-
probability of the sentence as calculated by KenLM. Since the hypotheses
may contain blank symbols, the beam may consist of hypotheses of different
lengths. Because shorter sequences are favored by KenLM, we divide the
log-probability of each hypothesis h by its length l in order to normalize the
scores:

Φl(h) = LMn(h)
l

. (4.6)

4.2.3 Blank / Non-Blank Symbol Ratio

Besides the impaired fluency, translations from the non-autoregressive model
often suffer from output that is too short compared to the reference output.
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This motivated us to design features for the linear model penalizing the
hypotheses with short output.

The number of decoder states is equal to the number of encoder states
multiplied by factor k. Intuitively, we would expect that on average, for every
sequence of decoder states of length k, there should be approximately one
decoded non-blank symbol (i.e. an output token) and k − 1 blank symbols in
order to maintain the length of the sentence. In practice, this estimate may
differ depending on:. language pair – the languages may have sentences of different average

length. input-output sentence pair – the length of the translation may differ
from the length of the input sentence. position in the decoded sentence – the ratio fluctuates more when
there are less decoded tokens.

Nevertheless, adding a feature based on this ratio can inform the model that
there are too many (or too few) blank symbols in the output and guide the
decoding toward sentences of correct length. We formulate the feature as

Φr(h) = max
(

0, #blanks(h)
#non-blanks(h) − δ

)
(4.7)

where δ is a hyperparameter that thresholds the penalization for the ratio. In
other words, the feature penalizes the hypothesis if the ratio is higher than δ
and it stays zero otherwise, which allows the ratio to vary to certain extent.

To estimate the penalization threshold δ, we observed how the ratio behaves
during the decoding. We used the model with the splitting factor k = 3 trained
for the English-German language pair. We ran the model on the validation
dataset and for every input sentence, we employed dynamic programming to
find the most likely derivation of the reference translation – see the function
FindCtcHypothesis in Algorithm 3 in Section 4.3.2. For every timestep in
the derivation, we computed the ratio of blank and non-blank symbols. The
histogram of values of the ratio (up to 10) is shown in Figure 4.2.

We can see that the empirical distribution has a peak at k − 1 = 2, which
confirms the previous intuition. Furthermore, most of the distribution mass
lies in the interval (0, 4) = (0, 2 · (k − 1)). We make an assumption that a
ratio above 2 · (k − 1) is an outlier and the derivation with such ratio should
be penalized. Therefore, in our experiments we set δ = 4.3

Note that if the ratio is lower than 1, it signalizes that the output could be
too long. Nevertheless, this kind of misbehavior is rare with our datasets and
we decided not to penalize this case.

3The languages in our experiments have sentences of similar length. For more distant
language pairs (e.g. English-Chinese), the value of δ should be reconsidered.
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Figure 4.2: Histogram of values of blank/non-blank ratio for the model with
k = 3. The ratio was computed at each timestep from the most likely derivations
of reference translations on the en-de validation dataset. The peak is centered
around k − 1 = 2, i.e. most commonly there are two blank symbols for each
non-blank symbol in the decoded hypothesis.

4.2.4 Trailing Blank Symbols

Yet another case which violates the intuition behind the correct decoding
process is a long sequence of blank symbols in the derivation. This can be
another indication that the target translation will be too short. As the
non-blank symbols from the beginning of the hypothesis may prevent the
blank/non-blank ratio to control this aspect, we add a feature counting the
number of trailing blank symbols:

Φt(h) = max (0,# trailing blanks− γ(X)) . (4.8)

We assume that more blanks in a row can appear during the decoding
of longer sentences. Therefore, the normalization coefficient γ is a function
of the input sentence X (as we do not have the output sentence Y at the
time of inference). We used the similar approach to estimate the function,
i.e. we used the model with k = 3 trained for the English-German language
pair and we used the function FindCtcHypothesis to find the most likely
derivations of the reference translations on the validation dataset. Figure
4.3 shows maximal lengths of a sequence of blank symbols in the derivation
of the reference translation depending on the number of the input sequence
tokens.

We can see that γ(X) = # tokens(X) is a reasonable estimate for the
threshold of the longest sequence of blank symbols during the decoding.
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Figure 4.3: A boxplot for every number of input sentence tokens. Each boxplot
shows the quartiles of the distribution of the maximal length of a sequence
of blank symbols in the derivation of the reference translation. The red line
shows the graph of the function f(x) = x used for estimating the normalization
coefficient γ.

Although the estimate could be adjusted for longer sentences, we decided to
keep this version in our experiments for simplicity.

4.3 Feature Weights

The score of a hypothesis is computed as a linear combination of its features.
The weights for the linear combination are stored in the vector w, which is a
hyperparameter of the neural model.

The importance of each feature (which should be reflected in its weight)
can differ for each language pair and for each trained instance of the model.
As we have no prior assumptions about the features, we need a reliable and
automatic way to estimate the value of this hyperparameter.

4.3.1 Brute-Force Search

We can find the value of w with some kind of brute-force search technique, e.g.
grid search or random search. In grid search, we create a list of values (usually
equidistant) for each weight and perform an exhaustive search over all the
possible combinations. Similar approach is random search in which we also
try all the combinations, but the values for each weight come from uniform
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random sampling. This was shown to be more efficient for hyperparameter
optimization than grid search [53].

However, neither of the approaches is reasonably efficient in our case. As
we do not have any prior information about suitable values, we would need
many samples to cover a wide range while keeping relatively high density of
samples. This would quickly lead to combinatorial explosion – for 50 samples
and 3 features we would need 503 = 125 000 trials to test all the possible
combinations.

4.3.2 Structured Perceptron

Our problem is a sequence labeling task – we want to find a sequence of labels
h for a sequence of hidden states conditioned on the input sequence X using
a linear model s.t. the score in Equation 4.1 is maximized. Machine learning
techniques were developed for this kind of task (e.g. conditional random
fields [54], structured perceptron [55], structural SVMs [56]). Learning
the weights can help to combat the inefficiency of the brute-force search.
Nevertheless, all these techniques assume exact inference to guarantee their
theoretical convergence properties. As we use beam search for the decoding,
we have to use a technique which supports inexact inference instead.

A variant of structured perceptron for inexact search was suggested in [5].
The authors develop a theoretical framework of a violation-fixing perceptron,
which is guaranteed to converge even with inexact search, given that each
perceptron update contains a violation. A violation is an example with higher
score than the correct example. As we will describe later, we can use a
hypothesis that stays in the beam after the reference hypothesis falls off the
beam as a violation.

Algorithm 2 describes the variant of the structured perceptron we used
for learning the value of w. The algorithm operates on dataset D =
{(x(i), y(i))}Ni=1 which is a set of N pairs, each pair consisting of a sequence of
hidden states x (the output from the decoder after the model processes the
corresponding input sentence X) and the reference translation y. For every
example in D, we use a function FindCtcHypothesis to find the most likely
hypothesis h for the reference translation y and the function FindViolation
to find a violation ĥ. We update the vector w by the difference in features
between h and ĥ. We use the learning rate α to adjust the size of the update.

The function FindCtcHypothesis in Algorithm 3 allows us to find the
most likely derivation h of the reference translation y. This is necessary
because y may have many possible derivations and the features are computed
for a particular derivation. The algorithm uses dynamic programming to
find the most likely path to decode y. We know that at each timestep, the
derivation of y can be expanded either by ε or by the next token of y. We also
know that in the last timestep, h has to contain all the tokens of y. We fill the
possible derivations in the table A, in each timestep expanding the derivation
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Algorithm 2 Violation-Fixing Structured Perceptron
1: D ← {(x(i), y(i))}Ni=1
2: w← 0
3: repeat
4: for each (x, y) ∈ D do
5: h← FindCtcHypothesis(x, y) . Algorithm 3
6: (ĥ, t)← FindViolation(x, y,w) . Algorithm 4
7: if h 6= ĥ then
8: w← w + α(Φ(h1:t)−Φ(ĥ))
9: end if

10: end for
11: until converged

from the previous timestep and setting the parent pointer accordingly. If
there are more possible derivations for a single timestep and a number of
expanded tokens, we keep the derivation with higher CTC score. After A is
filled, the path is reconstructed by following the parent pointers.

Algorithm 3 Most Likely Derivation of Reference Translation Using CTC
Score
1: function FindCtcHypothesis(x, y)
2: A← array Ty × Tx . T = length of the sequence
3: A[0, 0] = ∅ . empty hypothesis
4: for t = 0 to Tx − 1 do
5: for i = 0 to Ty − 1 do
6: heps = A[i, t] + ε . expand by blank symbol
7: htok = A[i, t] + Y [i] . expand by output token
8: UpdateTable(heps, A, i, t+ 1, (i, t))
9: UpdateTable(htok, A, i+ 1, t+ 1, (i, t))

10: end for
11: end for
12: return reconstruct_path(A)
13: end function
14:
15: function UpdateTable(h,A, k, l, parent)
16: if exists A[k, l] and (ctc_score(h) > ctc_score(A[k, l])) then
17: A[k, l] = h
18: set_parent(A[k, l], parent)
19: end if
20: end function

Algorithm 4 describes the function FindViolation. The beam search
proceeds similarly to Algorithm 1 but it keeps tracks of all the derivations in
the beam that contain a prefix of the target translation. As soon as there is
no such derivation in the beam, the function returns all the hypotheses which
stayed in the beam.
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Algorithm 4 Find Violation for Beam Search
1: function FindViolation(x, y,w)
2: B0 ← {∅} . initial beam
3: for t = 1 to Tx do
4: Bi ← best_b_hyps(x,Bi−1) . line 3 to line 11 in Algorithm 1
5: if y1:t /∈ Bi then . correct derivation falls off the beam
6: return (t,Bi)
7: end if
8: end for
9: return (Tx,BTx) . update in case the final derivation is incorrect
10: end function

The article [5] suggests to perform the update only on the first hypothesis
in the beam. We found out that applying the update rule instead to all the
hypotheses in the beam leads to faster convergence. At the same time, this
approach does not violate the theoretical properties of the algorithm as all
the hypotheses that stayed in the beam were incorrect and had higher score
than the correct derivation.
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Chapter 5

Implementation

This chapter describes specific toolkits and libraries that were used for imple-
mentation, experiments, and evaluation of the novel non-autoregressive NMT
model.

5.1 Neural Monkey

Neural Monkey1 is an open-source toolkit for NMT and other sequence-to-
sequence tasks [57]. It is actively developed and available under the Berkeley
Software Distribution (BSD) license. We use it for prototyping the NMT
architectures, training the models, and running the experiments in this thesis.

The core of the Neural Monkey toolkit is the TensorFlow machine learning
library [58]. The computation in the TensorFlow library is split into two stages
– design and compilation of the computational graph, and graph execution
on input data. This allows the numerical computations to be performed
efficiently. In order to preserve the performance, the core of TensorFlow is
implemented in C. The Application Programming Interface (API) is also
provided for other programming languages including Python, which is used
by Neural Monkey.

In contrast with general frameworks built on top of the TensorFlow library
(tfLearn2, Keras3) which provide abstraction on the level of individual neural
network layers, the API of Neural Monkey uses bigger building blocks to
enable high-level abstraction on the equation level. The building blocks are
the components common in sequence-to-sequence learning, e.g. encoders,
decoders or classifiers. In particular, Neural Monkey contains a collection of
components implemented according to the recent research papers, including
the components relevant for our model as the Transformer encoder and the
CTC decoder (described in Sections 2.3.6 and 3.4, respectively).

1https://github.com/ufal/neuralmonkey
2https://github.com/tflearn/tflearn
3https://github.com/keras-team/keras/
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The building blocks are parametrized using INI configuration files. The

files contain key-value pairs, delimited by the ’=’ sign. The key-value pairs
are grouped into sections, which are later interpreted as Python objects. The
INI configuration files enable to specify e.g. number and sizes of hidden layers
of the network without interacting with the actual code. They also provide a
comprehensive overview of the model architecture and the parameters, which
enables to easily check, modify or re-run the experiments. To give an idea
about the structure of a configuration file, one of the configuration files used
for the experiments is included in Appendix B.

To run the training, we need to provide the configuration file to the training
script:

neuralmonkey-train <EXPERIMENT_INI>

To run the inference, we also need to provide a configuration file which
specifies the location and loading/preprocessing method of the input data:

neuralmonkey-run <EXPERIMENT_INI> <DATASETS_INI>

Flexibility of the TensorFlow library allows to seamlessly switch between
execution on CPU and GPU.

There are other available toolkits for NMT similar to Neural Monkey.
OpenNMT [59] is an open-source NMT framework developed by the Harvard
NLP group, using PyTorch 4 and TensorFlow. Nematus [60] is a similar
framework developed by the Edinburgh NLP group, using Theano5 (and most
recently also TensorFlow). Tensor2Tensor is a more general deep learning
library built on top of TensorFlow, which is maintained by Google Brain and
which contains a reference implementation of the Transformer model. We use
Neural Monkey due to its extensibility, experiment management functionality,
up-to-date components, and availability of the implementation of the base
model.

5.2 SentencePiece

SentencePiece6 is a language-independent subword tokenizer and detokenizer
[61]. It is an open-source library available under the Apache License. We use
SentencePiece for processing the input and output from the model.

SentencePiece implements both BPE and unigram language model algo-
rithms described in Section 2.4. In contrast with other implementations of
these algorithms, SentencePiece does not rely on spaces between the words
(which may be missing in some languages, e.g. Japanese). Instead it treats the

4https://github.com/pytorch/pytorch
5https://github.com/Theano/Theano
6https://github.com/google/sentencepiece
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sentences as a continuous sequence of Unicode characters. The whitespaces
are included in the tokens, escaped by the meta-symbol (U+2581) for clar-
ity. This allows to reverse the tokenization process without any ambiguities.
An example of text tokenization is shown in Table 5.1.

tokenization style raw text tokenized

language-dependent
Hello world. [Hello] [world] [.]

こんにちは世界。 [こんにちは] [世界] [。]

language-independent
Hello world. [Hello] [ wor] [ld] [.]

こんにちは世界。 [こんに] [ちは] [世界] [。]

Table 5.1: Standard language-dependent tokenization algorithms rely on inter-
punction and spaces between the words. The rules for tokenization of Japanese
must be implemented manually as there are no spaces between the words. In
SentencePiece, the sentences are treated as a continuous sequence of Unicode
characters, which makes it language-independent. The tokenization is based on
frequencies of sequences of characters, including the whitespaces.

The size of the vocabulary in SentencePiece is determined prior to training,
which makes it suitable for NMT models which use fixed vocabulary size.
SentencePiece also allows to define rules to handle semantically-equivalent
Unicode characters, which can be used e.g. to normalize diacritics in Roma-
nian.

5.3 KenLM

KenLM7 is an open-source library for training and querying n-gram LMs [51].
It implements advanced data structures to make the queries fast and memory-
efficient.

An LM is trained on monolingual data for a particular language. KenLM
uses modified Kneser-Ney smoothing (briefly described in Section 4.2.2) for
estimating the LM. The training produces a file in ARPA format8 which
contains a list of n-grams, their probabilities and backoff weights.

The maximum n-gram order of the model is specified with a command line
parameter -o. In the following example, the LM will contain all n-grams of
order 1 to 5. The file text contains monolingual data, the text.arpa is the
output file with the LM:

7https://github.com/kpu/kenlm
8a common format supported by language modeling toolkits, developed by Doug Paul

at MIT Lincoln Labs for research sponsored by the U.S. Department of Defense Advanced
Research Project Agency (ARPA)
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bin/lmplz -o 5 <text >text.arpa

ARPA files can be converted into a binary format for faster loading and
querying:
bin/build_binary text.arpa text.binary

KenLM provides a Python API which we use to incorporate the LM queries
into the inference algorithm.

5.4 WarpCTC

CTC loss for training the neural model in Neural Monkey is computed using
the implementation provided by the TensorFlow library. At the time of
writing, this implementation did not allow to parallelize the computations on
GPU, which was unnecessarily slowing down the training process.

Therefore, we use the CTC loss as implemented in WarpCTC9 instead.
WarpCTC is an open-source library available under the Apache license. It
provides the parallel implementation of the CTC algorithm described in [62].
WarpCTC allows to improve the performance of the training process on GPU
while keeping it numerically stable. It also provides Python bindings for
TensorFlow which allows to incorporate the library into the rest of the code
with only minor modifications.

WarpCTC does not provide the code for CTC decoding. As the decoding
cannot be parallelized in any case, we use the corresponding implementation
from the TensorFlow library.

5.5 SacreBLEU

Results from the BLEU score evaluation metric described in Section 2.6.1
can be influenced by several parameters, e.g. by setting of the maximum
n-gram order or the weight of each n-gram order. If these values differ across
the experiments, it is difficult to evaluate and compare the results. This
motivated the development of the BLEU score metric with unified parameters.

SacreBLEU10 is a Python package which provides a way to compute
shareable, comparable, and reproducible BLEU scores [63]. It operates
on detokenized text, applies its own internal preprocessing, and produces
the results as it is adopted by the WMT. SacreBLEU also automatically
downloads common test sets for respective language pairs, which ensures that

9https://github.com/baidu-research/warp-ctc
10https://github.com/mjpost/sacreBLEU

38

https://github.com/baidu-research/warp-ctc
https://github.com/mjpost/sacreBLEU


..................................... 5.5. SacreBLEU

the correct datasets are used in all the experiments. All the BLEU scores in
the experiments described in Chapter 6 were calculated using SacreBLEU.

BLEU score from SacreBLEU can be retrieved by the command:
cat output.detok | sacrebleu -t wmt14 -l en-de

where parameter -t specifies the test set and -l specifies the language pair.

The output is a single comprehensive string with the result and the para-
meters used for the evaluation:

BLEU+case.mixed+lang.en-cs+numrefs.1+smooth.exp+test.wmt18\
+tok.13a+version.1.2.12 = 14.66 50.2/22.1/11.0/5.8 (BP = 0\
.897 ratio = 0.902 hyp_len = 49309 ref_len = 54652)

The first part of the string are the parameters of the BLEU score, the test
set, the language pair and the version of SacreBLEU, delimited by the
’+’ sign. After the ’=’ sign follows the overall BLEU score to be reported
in the results and the scores for particular n-gram orders. The additional
information inside the brackets informs about the brevity penalty and the
length of sentences compared to the reference.
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Chapter 6

Experiments

This chapter evaluates the benefits of the proposed model. It describes the
experiments we performed in terms of parallel and monolingual datasets,
the model architecture and the parameters for the training. The chapter
concludes with a quantitative evaluation of the results and comparison with
other related models in terms of decoding speed and translation quality.

6.1 Languages and Datasets

We perform experiments on three language pairs in both directions: English-
German (en-de), English-Romanian (en-ro), and English-Czech (en-cs). The
models for each language pair (and direction) share the same architecture
and training hyperparameters. The difference is in the datasets used for the
training of each model and in the weights of the scoring model. We select
these particular language pairs in order to make the results comparable with
related work.

We preprocess all datasets using SentencePiece (see Section 5.2). We train
the SentencePiece models with vocabulary size of 50,000 on parallel datasets
for each language pair.

6.1.1 Parallel Datasets

Parallel datasets are used for training the neural models and the SentencePiece
models. Each parallel dataset in our experiments is a pair of plaintext files, a
file per each language. Each file contains a sentence per line, the sentences
on the corresponding lines are translations of each other. There is a single
reference translation per sentence, which is a standard in related work.

Table 6.1 describes the parallel datasets used for the training. The datasets
are the standard WMT parallel datasets 1 [64–66].

1http://statmt.org/wmt19/translation-task.html
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lang. pair training data # sentences corpus

en-de WMT15 4.5M Europarl corpus
en-ro WMT16 0.6M Europarl corpus
en-cs WMT18 57M movie subtitles

Table 6.1: The parallel datasets used as the training data. The datasets for
en-de and en-ro are extracted from the proceedings of European Parliament.
The en-cs dataset is extracted from movie subtitles, which manifests in higher
volume of the dataset but inferior quality compared to the other datasets.

6.1.2 Monolingual Datasets

Monolingual datasets are used for training the n-gram LM. Each monolingual
dataset is a plaintext file with one sentence per line.

Table 6.2 describes the monolingual datasets used for the experiments. The
datasets are the standard WMT monolingual datasets2.

language data source # sentences corpus

English WMT09 20M
News Crawl

corpus
German WMT17 20M
Romanian WMT15 2.2M
Czech WMT15 20M

Table 6.2: The monolingual datasets used for the experiments. For English,
German and Czech, we use the first 20M sentences. For Romanian, we use the
complete dataset.

6.1.3 Validation and Test Datasets

We use small datasets for validation and testing. The datasets are the
standard WMT datasets (see the page with parallel datasets – Development
sets for validation and Test sets for testing). Table 6.3 gives an overview of
versions of the datasets we used. Using these particular test sets is necessary
to be consistent with the test sets used in the other works.

lang. pair development test

en-de WMT13 WMT15
en-ro WMT16 WMT16
en-cs WMT13 WMT18

Table 6.3: The versions of the development and test datasets used for the
experiments. Note that even if the version is the same, the datasets for validation
and for testing are different.

2http://data.statmt.org/news-crawl/
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6.2 Model Architecture

On top of the principles described in previous chapters, there are several
hyperparameters in the model architecture that can influence the performance
of the model, the convergence rate and the memory used during the training.
We performed preliminary experiments to choose a suitable hyperparameters
for the resulting model.

Transformer Variants. There are several variants of the hyperparameter
setting for the Transformer architecture described in the original paper [31].
We base the parameters for our model on two Transformer variants, altering
the feedforward layer size dff and the number of heads for the multi-head
attention h:

. dff = 2048, h = 8 (Transformer base). dff = 4096, h = 16 (Transformer big).

Shared Embeddings. The Transformer paper [31] suggests sharing the
same weight matrix between the embedding layer and the final linear layer
before the softmax. This can be interpreted as a dot product between the
embeddings and output states, which could stabilize the training and lead to
faster convergence. We experiment with both shared and non-shared variants.

Batch Size. The batch size defines the number of samples which are fed
into the neural network before updating its parameters. Using higher batch
size requires more memory, but may potentially lead to faster convergence.
We experiment with batch sizes of 10 and 20 samples.

Positional Encoding. Positional encoding informs the model about the
relative or absolute position of the tokens in the sequence. Following the
Transformer architecture, we always add the positional encodings to the
encoder input. For the decoder input, we experiment with two variants – with
(•) and without (◦) positional encoding added to the input.

We experiment with all the possible combinations of the hyperparameter
setting listed above, resulting in 16 different architectures. Table 6.4 summa-
rizes the results of the experiments in terms of BLEU score on the validation
dataset.

The models based on Transformer big and the models with higher batch
size have higher memory requirements and do not exhibit better translation
quality. On the contrary, positional encoding and shared embeddings are
beneficial in almost all the cases. Taking into account the resulting BLEU
score, we select the model architecture based on Transformer base, with
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Transformer embeddings batch size pos. encoding BLEU

base

shared
10 • 19.0

◦ 18.6

20 • 17.6
◦ 17.5

non-shared
10 • 18.3

◦ 17.6

20 • 17.1
◦ 16.9

big

shared
10 • 18.6

◦ 18.2

20 • 18.1
◦ 17.8

non-shared
10 • 15.7

◦ 17.5

20 • 15.9
◦ 15.6

Table 6.4: Hyperparameters of the models trained on en-de language pairs
and their performance in terms of BLEU score on the validation dataset. The
best performing model is the model based on Transformer base, with positional
encoding, shared embedding and batch size b = 10.

positional encoding, shared embedding, and batch size b = 10 as the default
model architecture for the main experiments.

All these experiments were performed on the en-de language pair. We
expect similar behavior for the rest of the language pairs and therefore we
use the same model architecture for all the language pairs, as running the
experiments separately would be too computationally demanding.

6.3 Training

We train non-autoregressive models for the language pairs en-de, en-ro, and
en-cs in both directions. Additionally, we also train corresponding auto-
regressive models for later comparison. All the models use the same set of
hyperparameters as the Transformer base model, i.e. model dimension 512,
the feedforward layer of dimension 2048 and 8 attention heads. The non-
autoregressive models are based on the implementation described in [4] with
the splitting factor for the encoder states k = 3. The remaining parameters
for Neural Monkey are specified in the configuration file in Appendix B.

We train the weights for the structured perceptron separately for each
model. We initialize the scoring model with zero weights for all the features,
apart from the CTC score for which we set a fixed weight of 1. We split
the validation data in halves and use one half as the training set and the
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second half as a held-out set. The training set is used for training the weights
as described in Section 4.3.2. The held-out set is used for validation – we
evaluate the performance of the model on the held-out set during the training
and we keep the weights of the model which performed the best.

For both training and evaluation, we use the infrastructure of the Linguistic
Research Cluster3 of the Institute of Formal and Applied Linguistics, located
at the Faculty of Mathematics and Physics of the Charles University. We use
the GPU subsystem for training and CPU subsystem for evaluation. The
models are trained on machines with 8 GB of allocated RAM and single
GPU GeForce GTX 1080 Ti with 11 GB of GPU memory. The evaluation is
performed on machines with 32 GB of allocated RAM and Intel(R) Xeon(R)
E5-2630 v4 CPU.

Training each of the non-autoregressive models took approximately two
weeks. The models for en-de and en-ro (and vice versa) were trained for 10
epochs.4

6.4 Results

We evaluate two aspects of the NMT models – translation quality and
translation speed (i.e. latency). In order to evaluate the benefits of all the
suggested improvements, we perform an ablation study for the features of the
scoring model. We also add several examples illustrating the model behavior
with different parameter settings.

Table 6.5 summarizes the BLEU score of the models. The top part contains
the results of non-autoregressive models described in Chapter 3. The middle
part contains the results of the autoregressive models used as a baseline. The
bottom part contains the results of our improved model. Some results are
missing as authors did not include the results in their published work.

We observe that the autoregressive models usually outperform the non-
autoregressive models in terms of BLEU score. The difference is the smallest
for en-ro and ro-en, which can be caused by the fact that monolingual datasets
bring greater benefits for low-resource language pairs. We also observe that
the beam search greatly improves the translation quality over the end-to-end
model with CTC.

Table 6.6 summarizes the results of the models in terms of decoding time
per sentence. The low latency is the main benefit of the non-autoregressive
models. Although we do not achieve the same translation quality as the
autoregressive models with the same decoding time, we can achieve better

3https://wiki.ufal.ms.mff.cuni.cz/grid
4Training epoch = using all input data for training the model. The en-cs and cs-en

models were trained for approximately same amount of time, which resulted in less epochs
due to larger amount of training data.
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Method

WMT15 WMT16 WMT18

en-de de-en en-ro ro-en en-cs cs-en

End-to-End w/ CTC [4] 19.71 21.64 18.45 25.48 13.92 14.87
Latent Fertility [44] - - 27.29 29.06 - -
Iterative Refining [46] 12.65 14.48 24.45 23.73 - -

AR Transformer, greedy 26.39 28.56 19.91 27.33 16.00 22.72
AR Transformer, beam 5 26.99 29.39 20.81 27.99 17.08 23.54

Ours, beam 1 20.81 22.68 18.49 26.27 14.29 15.05
Ours, beam 5 23.29 25.96 18.56 28.68 14.64 16.99
Ours, beam 10 23.99 26.19 18.68 28.99 14.66 17.51
Ours, beam 20 24.01 26.59 18.77 29.23 14.75 17.73

Table 6.5: Results of the models in terms of BLEU score. Authors of [44] used
the WMT14 en-de dataset, which is not comparable with the rest of the results.
We present the results of [44] and [46] using a single pass through the model.

speed with only a minor decrease in quality. Furthermore, we observe that
we can control the speed/quality trade-off by either lowering or increasing
the beam size.

Method Decoding time
per sentence [ms]

End-to-End w/ CTC [4] 314
AR Transformer, greedy 1637
AR Transformer, beam 5 4093

Ours, beam 1 347
Ours, beam 5 435
Ours, beam 10 597
Ours, beam 20 1382

Table 6.6: Results of the models in terms of decoding time per sentence. The
time is computed as the time to decode a single sentence, averaged over the
whole test set. Note that we do not include other non-autoregressive models as
they were tested with different frameworks and infrastructure, and the results
are generally not comparable.

Figure 6.1 plots the time required to translate a sentence with respect to
its length. We see that the greedy decoding of the end-to-end model with
CTC is nearly constant in the length of the source sentence. The beam search
decoding of our model is more time-consuming, however, it is still a lot faster
than the autoregressive model. The difference holds especially for longer
sentences, where the autoregressive model gets prohibitively slow.
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Figure 6.1: Comparison of the CPU decoding time of the autoregressive model
(red), the proposed method with beam size of 10 (green), and the end-to-end
non-autoregressive model with CTC (blue).

For illustration, Table 6.7 the shows the difference between the translations
with different beam sizes on a single example from the cs-en model. The
larger beam size generally leads to more precise inference.

cs (ref) Colin odporuje tím, že to není pravda a obviňuje Paula z ne-
správného nakládání s některými nemovitostmi.

b = 1 Colin contradicts it’ not true and and accusing Paul of mising of certain
real estate.

b = 5 Colin contradicts it’s not true and and accusing Paul of mising of certain
real estate.

b = 10 Colin contradicts it’s not true and accusing Paul of mising of certain real
estate.

b = 20 Colin contradicts that it’s not true and accusing Paul of mising of certain
real estate.

en (ref) Colin argues this is not true, but accuses Paul of incompetently managing
some properties.

Table 6.7: Translations of the cs-en model with different beam sizes b.

Furthermore, we perform an ablation study to show the benefits of particular
features in the scoring model. Table 6.8 shows how the features contribute
to the BLEU score. We can see that combining the features is beneficial
and that the improvement is substantial with larger beam sizes. The feature
weights were trained separately for each beam size.

Table 6.9 illustrates the benefits of the features on manually selected
sentences. Note that without a LM, there are word compounds like Aggressiv-
itätivität or sindschilder which do not make sense in German. On the other
hand, LM can be harmful in case of proper names which are not common.
In these cases, other features can help the model to get closer to the correct
translation.
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Beam Size 1 5 10 20

c+ l + r + t 20.81 23.29 23.99 24.01
c+ l + r 20.58 23.22 23.56 23.35
c+ l 19.31 21.94 22.59 22.70
c 19.71 20.09 20.17 20.19

Table 6.8: BLEU scores for en-de translation model for different beam sizes and
feature sets: CTC score (c), language model (l), ratio of the blank symbols (r),
and the number of trailing blank symbols (t).

a) On account of their innate aggressiveness, songs of that sort
were no longer played on the console.

b) Aufgrund ihrergeboren Aggressivitätivität wurden Lieder dieser Art nicht
mehr auf der Konsole gespielt.

c) Aufgrund ihrer Aggressivität wurden Lieder dieser Art nicht mehr auf
der Konsole gespielt.

d) Aufgrund ihrergeborenen Aggressivität wurden Lieder dieser Art nicht
mehr auf der Konsole gespielt.

e) Aufgrund ihrer angeborenen Aggressivität wurden Lieder dieser Art nicht
mehr auf der Konsole gespielt.

f) Aufgrund ihrer ur eigenen Aggressivität wurden Songs dieser Art nicht
mehr auf der Konsole gespielt.

a) Ailinn didn’t understand.
b) A hat nicht.
c) Das war nicht.
d) Die hat nicht verstanden.
e) Aili hat nicht verstanden.
f) Ailinn verstand das nicht.

a) Further trails are signposted, which lead up towards Hochrhön
and offer an extensive hike.

b) Weitere Wege sindschilder, die nach Hochrhön und eine ausgedehnte
Wanderung.

c) Weitere Wege sind, die in Hochrhön und eine ausgedehnte Wanderung.
d) Weitere Wege sindschilder, die in Hochrhön und eine ausgedehnte Wan-

derung.
e) Weitere Wege sind ausgeschilder, die in Hochrhön und eine ausgedehnte

Wanderung.
f) Weitere Wege sind ausgeschildert, die Richtung Hochrhön hinaufsteigen

und zu einer ausgedehnten Wanderung einladen.

Table 6.9: Manually selected sentences illustrating the benefits of the features
on the en-de model. Following the notation in Table 6.8, the sentences are: a)
English reference, b) model output (c), c) model output (c+l), d) model output
(c+l+r), e) model output (c+l+r+t), f) German reference.
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Chapter 7

Conclusion

In this thesis, we introduced an improvement of a non-autoregressive NMT
model. We started by summarizing the history of the field of MT and the
recent developments in the subfield of NMT, including its drawbacks. We
followed by an introduction of non-autoregressive NMT, which is trying to
tackle some of the drawbacks. In particular, we explained the end-to-end
model with CTC on which we build upon in this thesis. We proposed an
extension of this model which incorporates a LM and other features into the
scoring model in order to improve the fluency of translations. We implemented
the model using the Neural Monkey framework and we evaluated the benefits
of the approach in a series of experiments.

The experiments show that the main benefit of the proposed approach
is the opportunity to balance the tradeoff between translation quality and
translation speed. The autoregressive models are still superior in translation
quality in most of the language pairs, even though by a narrow margin.
In contrast, the non-autoregressive models are very fast, but often lack in
translation quality. Our approach keeps the asymptotically constant decoding
speed of non-autoregressive models (in the number of decoder runs), but uses
a beam search with an extended scoring model to improve the translation
quality. By altering the beam size, we can adjust the speed and the quality
ratio to achieve acceptable results in both of the domains.

We defined specific features which can improve the performance of the
model. The main feature is the LM trained on monolingual data which
improves the fluency of the translations. Other features help to tackle the
shortness of the translated sentences. We presented an ablation study which
shows the benefit of each of the features. We also performed a cursory manual
evaluation to confirm our intuition about the role of each of the features.

In the future, we will aim to add our approach directly into the Neural
Monkey framework. To improve our approach, we can experiment with
employing other features into the scoring model or adjusting the parameters
of the existing features, which may work differently on other language pairs.
In order to achieve even better results in terms of latency, we can implement
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the decoding process and other critical parts of the code in C++. It would
also be interesting to inspect the influence of monolingual datasets with the
process of back-translation which could be used to enhance the results of the
base CTC model and the autoregressive baselines.
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Appendix A

Acronyms

AI Artificial Intelligence

API Application Programming Interface

ARPA Advanced Research Project Agency

BLEU Bilingual Evaluation Understudy

BPE Byte Pair Encoding

BSD Berkeley Software Distribution

CPU Central Processing Unit

CTC Connectionist Temporal Classification

DNN Deep Neural Network

GPU Graphical Processing Unit

LM Language Model

MIT Massachusetts Institute of Technology

MT Machine Translation

NLP Natural Language Processing

NMT Neural Machine Translation

RAM Random Access Memory

RNN Recurrent Neural Network

SMT Statistical Machine Translation

TER Translation Edit Rate

WMT Workshop on Machine Translation
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Appendix B

Configuration File

A Neural Monkey configuration file used for training the en-de model.

[vars]
prefix="/lnet/spec/work/people/kasner/neuralmonkey-ctc-decoder"
exp_prefix="{prefix}/experiments"
runners_batch_size=40
vocab_size=50000
trainer_batches_per_update=10
src="en"
tgt="de"
suffix="-kombo-shared-b{trainer_batches_per_update}-v{vocab_size}"
use_pos=False
langpair="{src}{tgt}"
data_prefix="{prefix}/data/{langpair}"
ende_src_train="wmt_data.{src}.{vocab_size}.spm"
ende_tgt_train="wmt_data.{tgt}.{vocab_size}.spm"
ende_src_val="validation.{src}.{vocab_size}.spm"
ende_tgt_val="validation.{tgt}.{vocab_size}.spm"
src_train_name=$ende_src_train
tgt_train_name=$ende_tgt_train
src_val_name=$ende_src_val
tgt_val_name=$ende_tgt_val

[main]
name="EN -> DE, SAN > split states > CTC"
tf_manager=<tf_manager>
output="{exp_prefix}/{langpair}-san_ctc{suffix}"
epochs=10
train_dataset=<train_data>
val_dataset=<val_data>
trainer=<trainer>
runners=[<runner>]
postprocess=None
evaluation=[("target", evaluators.bleu.BLEU)]
logging_period="10m"
validation_period="2h"
runners_batch_size=$runners_batch_size
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B. Configuration File ..................................
random_seed=1234
overwrite_output_dir=False
batching_scheme=<batch_scheme>

[batch_scheme]
class=dataset.BatchingScheme
batch_size=800
token_level_batching=True

[tf_manager]
class=tf_manager.TensorFlowManager
num_threads=12
num_sessions=1
save_n_best=5

[train_data]
class=dataset.load
series=["source", "target"]
data=["{data_prefix}/{src_train_name}","{data_prefix}/{

tgt_train_name}"]

[val_data]
class=dataset.load
series=["source", "target"]
data=["{data_prefix}/{src_val_name}","{data_prefix}/{tgt_val_name

}"]

[vocabulary]
class=vocabulary.from_wordlist
path="/lnet/spec/work/people/kasner/spm/models/{vocab_size}/sp.{

langpair}.{vocab_size}.vocab"
contains_frequencies=True
contains_header=False

[input_sequence]
class=model.sequence.EmbeddedSequence
vocabulary=<vocabulary>
data_id="source"
embedding_size=512
scale_embeddings_by_depth=True
max_length=64

[encoder]
class=encoders.transformer.TransformerEncoder
input_sequence=<input_sequence>
ff_hidden_size=2048
depth=6
n_heads=8
dropout_keep_prob=0.9
attention_dropout_keep_prob=0.9

[state_split]
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................................... B. Configuration File

class=model.sequence_split.SequenceSplitter
parent=<encoder>
projection_size=1536
factor=3

[second_encoder]
class=encoders.transformer.TransformerEncoder
input_sequence=<state_split>
ff_hidden_size=2048
depth=6
n_heads=8
dropout_keep_prob=0.9
attention_dropout_keep_prob=0.9
input_for_cross_attention=<encoder>
n_cross_att_heads=8
use_positional_encoding=$use_pos

[decoder]
class=decoders.CTCDecoder
name="decoder"
max_length=64
encoder=<second_encoder>
data_id="target"
vocabulary=<vocabulary>
input_sequence=<input_sequence>

[obj]
class=trainers.cross_entropy_trainer.CostObjective
decoder=<decoder>

[trainer]
class=trainers.delayed_update_trainer.DelayedUpdateTrainer
clip_norm=1.0
batches_per_update=$trainer_batches_per_update
objectives=[<obj>]
optimizer=<adam>

[adam]
class=tf.contrib.opt.LazyAdamOptimizer
beta1=0.9
beta2=0.997
epsilon=1.0e-9
learning_rate=1.0e-4

[runner]
class=runners.plain_runner.PlainRunner
decoder=<decoder>
output_series="target"
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Appendix C

CD Contents

The attached CD contains source codes used for this thesis. Note that the
input datasets and the language models are not included on the medium
because of their excessive size. The scripts for submitting the jobs may
contain some specific options for the job scheduling engine of the Linguistic
Research Cluster.

/
src...........................................project source codes

scripts.tar.gz .......................................scripts
kenlm.tar.gz ........................................KenLM
neuralmonkey.tar.gz .........................Neural Monkey
sentencepiece.tar.gz .........................SentencePiece
warpctc.tar.gz ...................................WarpCTC

thesis.................................................thesis files
src .................................. thesis LATEX source code

img............................................thesis figures
thesis.pdf...............................thesis in PDF format

README.txt................................CD content description
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