Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Raspberry Pi platform without an operating
system

Petr Vanc

Supervisor: prof. Ing. Zahradnik Pavel, CSc.
Subfield: Cybernetics and Robotics
May 2019

ii

Acknowledgements

I thank my supervisor prof. Ing. Pavel
Zahradnik, CSc. for willingness, helpful-
ness and assistance with work. I thank
department of Cybernetics and Robotics
for making this work possible.

I also thank Zoltan Baldaszti, Leon de
Boer a David Welch for very beneficial
posts on Raspberry Pi forum.

iii

Declaration

I declare that I have written this work
independently and I have listed all the
literature I used.

In Prague, 24. May 2019

Abstract

Purpose of this work is to make overview
of working with bare metal applications
on platform Raspberry Pi 3 due to insuf-
ficient documentation of product and its
system on chip Broadcom BCM2837.

This thesis contains descriptions on
work with elements of peripherals and fea-
tures that this device have. But mainly
program codes, that can be used to quick
start of work on Raspberry Pi 3.

It includes two experiments on getting
maximum speed of GPIO output and max-
imum speed of DA converter.

Keywords: Raspberry Pi, bare metal
Supervisor: prof. Ing. Zahradnik Pavel,
CSc.

Katedra telekomunikac¢ni techniky,
Technicka 1902/2,
Praha 6

iv

Abstrakt

Zamér této prace je vytvorit souhrn prace
s platformou Raspberry Pi 3 bez operac-
niho systému kvili chybéjici oficialni do-
kumentaci k chipu Broadcom BCM2837.

Tato préace obsahuje popis jednotlivych
elementi periferii a dalsich vlastnosti této
desky. Hlavné vsak vzorové programové
useky pro rychly start prace na Raspberry
Pi 3.

Navic obsahuje dva experimenty na zis-
kani maximalni rychlosti GPIO vystupu
a maximalni rychlosti DA konverteru.

Kli¢ova slova:
metal

Raspberry Pi, bare

Pteklad nazvu: Platforma Raspberry
Pi bez pouziti opera¢niho systému

Contents 34 Linker.......................
Part | 4 Troubleshooting and loading
Theoretical part program 19
4.1 Simulating Raspberry Pi usin
1 Theoretical introduction 3 QEMU ... g c p o Y g .
1.1 What is Raspberry Pi 4.2 Using SD card................
1.2 Raspberry Pi3 ... 4.3 Bootloaders 21]
1.3 Architecture ARM
Part Il
1.3.1 Architecture ARMvS8-A 5] Practical part
2 AARCH64 assembly 7 5 Basic interfaces
. 5.1 General purpose input output
2.0.1 Registers................... 7
s (GPIO) . oo
2.0.2 Branching..................
8 5.2 Public timer 30/
3 Cross compilers 9 5.3 Universal asynchronous receiver
transmitter (UART)
3.1 Introduction 9
5.4 Working with memory.........
3.2 GNU compilers
5.5 Interrupts
3.2.1 Fasmarm compiler
5.6 Direct memory access (DMA) ..
3.2.2 AARCHG64 elf compiler

5.7 Pulse width modulation (PWM)
3.2.3 ARM Eclipse build plug-in . .

5.8 Mailboxes 39
3.3 Working with makefiles........

5.9 Memory management unit
(MMU) ..o

5.10 Serial Peripheral Interface (SPI)

5.11 Multicore applications........

5.11.1 Advanced applications

6 Screen output
Part 111

Experimental part

7 Speed of GPIOs 53
7.1 Assignment
7.1.1 System properties..........
7.1.2 Measure conditions.
7.1.3 Measuring program
7.2 Measured tests 54l
7.3 Conclusion 59
8 Speed of DA Converters 61|
8.1 Assignment
8.1.1 Measuring program

vi

8.2 Measured tests

83 Conclusion...................

Appendices

A Bibliography

B List of Abbreviations

C Project Specification

Figures

1.1 Raspberry Pi 3 model A, B+,
[UptI8]. .o

2.1 Registers in AARCH64 [Shol5]. .

7.1 C Code (bare switching in

functions).
7.2 C Code (bare switching).

7.3 C Code (bare switching) with
cache and MMU on (measured on
200MHz osciloscope).............

8.1 Saw generated via DA converter
without cache...................

8.2 Saw generated via DA converter
with cache................... ...

8.3 Saw generated via DA converter
with constant table. 65]

8.4 Saw generated via DA converter
with managing hold pin.

8.5 Data set-up and hold times (from
Philips TDA8702 datasheet).

8.6 Change of output voltage
(Measured on 200MHz oscilloscope).

vii

8.7 Generating sine
frequency 59.5kHz

wave with

Tables

1.1 Specifications of Raspberry Pi
models..........

2.1 AACH64 Register table. [modi§]

2.2 AARCH64 Branching. [Ibalf] . ..

3.1 Configuration file.
5.1 Main base addresses table.

MOCIZa] v
5.2 GPIO control registers table

MOCTZD) oo
5.3 GPIO table [Inci2¢].
5.4 System Timer Registers table.

MCTZA] e

5.5 UART Registers Table. [Inc12e€]

5.6 ARM Interrupt and ARM Timer
register table. [Inc12f] [Inc12g] ...

5.7 Control block data structure table.

5.8 DMA address map table. [IncI2i

5.9 PWM address map table. |Incl12j]

viii

5.10 Videocore register.

5.11 Sample filling mailbox array. . .
5.12 MMU Specifications.
5.13 SPI wires description

table.[Inc12¢]

5.14 SPI Address map table. [Inc12K]

6.1 Example of filling mailbox array to
setup screen. 48|

7.1 GPIO Speed table.............

8.1 Speed of generating saw signal. .

Part |

Theoretical part

Chapter 1

Theoretical introduction

B 11 whatis Raspberry Pi

Raspberry Pi is single board computer in one chip developed in United
Kingdom. Its purpose was and is to promote and teach computer science
and revive microcomputer revolution of the 1980s. It was originally made
for programming in Python language, but in this thesis, I will concentrate
on low level programming using language C and Assembler in result of not
using operating system.

Specifications between model B:

Version RPi 1 B+ RPi 2 B vl1.2 RPi 3 B+
Instruction set ARMv6, 32-bit ARMvS8-A, 64-bit ARMvS8-A, 64-bit
SoC (Broadcom) BCM2835 BCM2837 BCM2837B0

FPU VEPv2 VFPv4+NEON VFPv4+NEON

GPU Broadcom VideoCore IV, 250 MHz

CPU ARM1176JZF 4x Cortex-Ab53 4x Cortex-Ab3

Frequency 700 MHz 900 MHz 1.4GHz
Memory (SDRAM) 512 MB 1 GB 1 GB

Table 1.1: Specifications of Raspberry Pi models.

All models have are powered by source with voltage 5V. Power is reaching
value of 6 Watt with latest model 3B+ under stress. When testing older

3

1. Theoretical introduction

models I get values topping 3 Watts. Using source with current 1A is sufficient
for most cases.

B 12 Raspberry Pi 3

Third version of Raspberry Pi is currently the latest version. This is the
version I will be using for experiments and testing.

Figure 1.1: Raspberry Pi 3 model A, B+, [Upt1§].

Official specifications:
CPU: ARM Cortex A-53, 1.2GHz (model B+ has 1.4GHz),
Caches: 32kB Level 1 and 512kB Level 2 cache memory
System of chips: Broadcom BCM2837
RAM: 1GB LPDDR2, 900MHz
Peripherals: GPIO 40 pins, HDMI, 3.5mm audio jack, 4X USB 2.0, Ethernet,
Camera Serial Interface (CSI), Display Serial Interface (DSI) [Mag]

B 1.3 Architecture ARM

Architecture ARM is wide spread in the world. For example in most of
smartphones, remote devices and now it is getting its way into laptops.

ARM Holdings company is providing Raspberry Pi a central processing
unit. It is designing the ARM range of RISC processor cores, computing
with reduces instruction set. The ARM company does not fabricate silicon
itself. Other companies implements this design in their own architectures. In

4

1.3. Architecture ARM

Raspberry Pi case it is company Broadcom providing whole package under
name system on chip called Broadcom BCM2837 in case of Raspberry Pi
version 3B+. [Hol|

ARM architecture is divided at present days between group Cortex-A.
These are intended for application use. They have often operating system
and they are designed for third party applications. Second group is Cortex-R
made for real-time signal processing. Especially where is significant demand
for safety. Third and last group is Cortex-M. It is microcontroller-oriented
processors for system on chip applications. They are optimized for small size
and use in the lowest price chips.

Main processor in Raspberry Pi is made from group Cortex-A.

Besides groups, ARM architecture is also numbered on versions. Between
versions ARMv3 and ARMv7 architecture was 32-bit. With ARMv8 comes
the possibility to use 64-bit version. As I'm using Raspberry Pi 3B+, there
is architecture version ARMv8-A on processor ARM Cortex Ab53. It uses
instruction set AARCHG64.

B 1.3.1 Architecture ARMvS-A

Newest version of ARM architecture covers the Applications profile only.
Addition of a 64-bit operating capability is alongside 32-bit execution. In-
struction set name is AARCH32 for 32-bit version and AARCHG64 for 64-bit
version. It is compatible with previous version of architecture.

Length of instruction set is fixed. Instructions are 32-bits in size. There are
31 general purpose registers, that are always accessible and are 64-bits wide.
Last general purpose register is dedicated zero register. Program counter and
stack pointer are not included in general purpose registers. |Gri

Besides its older version, architecture ARMv8-A includes SIMD (single
instruction, multiple data). The ability of performing the same operation
on multiple data points simultaneously. It also has capability of processing
numbers with decimal point effectively. There is also new exception model
when processing interrupts.

Virtual addresses are stored in 64-bit registers. [Shol5

Chapter 2

AARCHG64 assembly

This chapter will be focused on changes between 32 bit assembly and 64 bit
version AARCHG64.

B 2.0.1 Registers

Instead of classic r register names, there are x0-z28 64-bit registers and their
32-bit version w0-w28 registers. So there are 29 registers accessible in both
32-bit or 64-bit way. First 8 (z0-z7) are used to pass return values. Next ten
registers (z8-z18) are temporary registers for every function. We cannot say
anything about their value when returning from function. Next nine registers
(219-228) are used by a function. Values must be saved when returning from

function. [mod18]

63 32 31 0

L]

T
Wn
L

Y
xn

Figure 2.1: Registers in AARCH64 [Shol5].

2. AARCHG64 assembly

Name Size Description

Wn 32-bits General purpose registers 0-28
Xn 64-bits General purpose registers 0-28

WZR 32-bits Zero register
XZR 64-bits Zero register
SP 64-bits Stack pointer

Table 2.1: AACHG64 Register table. [mod18]

B 2.0.2 Branching

Compare two values using instruction e¢mp and then use branching function
b.<cond>, where <cond> is condition from flag register assigned in comparing
instruction. They can be chosen from condition table:

Mnemonic Description Condition flags

EQ Equal 7 set
NE Not Equal 7 clear

CS or HS Carry Set C set

CC or LO Carry Clear C clear
MI Minus N set
PL Plus, positive or zero N clear
VS Overflow V set
VC No overflow V clear
HI Unsigned Higher than or equal C set and Z clear
LS Unsigned Less than or equal C clear or Z set
GE Signed Greater than or Equal N and V the same
LT Signed Less than N and V differ
GT Signed Greater than Z clear, N and V the same
LE Signed Less than or Equal Z set, N and V differ

Table 2.2: AARCHG64 Branching. [Ibal6]

Chapter 3

Cross compilers

. 3.1 Introduction

To cross-compile is to build on one platform a binary that will run on another
platform.

When working with bare metal Raspberry Pi, it is needed to use Cross
compiler, because there is no system on Raspberry Pi, that could compile a
program as in case of using operating system. [Sys]

All cross compilers are running without any IDE. Advantage is that you
don’t need any licence and all compilers are free to use.

Wanted result is file in format image with name and extension kernel8.img.
This file can be copied into Raspberry Pi 3B+ via micro SD card.

B Boot sequence

When Raspberry Pi is turned on, it searches in micro SD card for bootcode.bin
file. This SD card must be bootable. This can be done with Rufus program
on Windows or UNetbootin program on Linux. Then Raspberry Pi searches

3. Cross compilers

for few files:
bootcode.bin
start.elf
fixup.dat [Foua]

These files can be found for example in Raspbian operating system. And they
are only responsible for proper boot of image file.

kernel8.img

This image file is then transfered to RAM and bare metal program is ready
to be executed. Raspberry Pi does not have BIOS. Instead it has ability to
add configuartion file called:

config.txt

In this file there can be specified basic system configurations with very

simple file format property=value. Value can be integer or string. Comments
are made with character #.

Table of useful configuration choices:

Name Property Values
GPU memory gpu_mem from 0 to 944 (MB)
Disable 12 cache disable_12cache 0, 1 (default)
HDMI Safe setup hdmi_ safe 0,1
GPIO Setup gpio 0-54=ip,op,a0-ad
ARM Frequence arm_ freq 700-1400 (MHz)

Table 3.1: Configuration file.

B Description

GPU memory: As the memory for CPU and GPU is same, this sets
memory for GPU, the remaining is for CPU. With 1GB RAM with model
3B+, maximum possible RAM memory assigned to GPU is 944MB.
HDMI Safe setup: Setup HDMI with maximum compatibility. [Foub]
GPIO Setup: Set given GPIOs to input (ip), output (op), alternative
function (a0-a5). It can set multiple GPIOs at once. Example: gpio=0-5=op
sets first five GPIOs to output.

ARM Frequency: Sets Frequency on every processors in MHz.

10

3.2. GNU compilers

B 32 GnuU compilers

In this section will be introduced types of cross-compilers capable of running
programs on Raspberry Pi 3.

B 3.2.1 Fasmarm compiler

For use of assembly code only, there is easy way to compile via flat assembler
service called Fasm with ARM specified version Fasmarm.

B Instalation

First step is to download executable binary version from official page of
Fasmarm. Second step is to assign global variable in installation folder. This
can be done with command:

Listing 3.1: Export path
export PATH="$PATH:/<path to installation folder>"

<path to installation folder> Alter to your installation folder

Compilation is very easy:

Listing 3.2: Compilation

fasmarm <your asm code> <result image file >

<your asm code> Represents Assembly code with extension *.asm or *.S.
<result image file> Represents image file, that is ready to be load into
Raspberry Pi flash memory

11

3. Cross compilers

B 3.2.2 AARCHG64 elf compiler

Default cross-compiler for most applications is AARCHG64 compiler for making
executable and link-able files.

B Installation

Step 1: Download binutils, gcc compiler and other depedencies:

Listing 3.3: Download depedencies

wget https

wget https://ftpmirror.gnu.org/binutils/binutils —2.30.tar.gz

wget https://ftpmirror.gnu.org/gcc/gec—8.1.0/gcc—8.1.0.tar.gz

wget https://ftpmirror.gnu.org/mpfr/mpfr—4.0.1.tar.gz

wget https://ftpmirror.gnu.org/gmp/gmp—6.1.2.tar.bz2

wget https://ftpmirror.gnu.org/mpc/mpc—1.1.0.tar.gz

wget https://gcc.gnu.org/pub/gcc/infrastructure/isl —0.18.tar.bz2
Yy

gcc.gnu.org/pub/gcc/infrastructure /cloog —0.18.1.tar.gz

Create symbolic values in binutils folder:

Listing 3.4: Create symbolic values

In —s ../isl—x isl

In gcc folder:

Listing 3.5: Create symbolic values
In —s ../isl—x isl
In —s ../mpfr— mpfr
In —s ../gmp—* gmp
In —s ../mpc—* mpc
In —s ../cloog—x cloog

Listing 3.6: Build binutils

mkdir aarch64—binutils

cd aarch64—binutils

../ binutils —x/configure —prefix=/usr/local/cross—compiler \
—target=aarch64—elf —enable—shared —enable—threads=posix \
—enable—libmpx —with—system—zlib —with—isl \
—enable—__ cxa_ atexit —disable—libunwind—exceptions \
—enable—clocale=gnu —disable—libstdcxx—pch \

12

3.2. GNU compilers

—disable—libssp —enable—plugin —disable—linker —build—id \
—enable—1to —enable—install —libiberty \
—with—linker —hash—style=gnu —with—gnu—1d \

——enable—gnu—indirect —function —disable—multilib
—disable—werror \

—enable—checking=release —enable—default—pie \
——enable—default —ssp —enable—gnu—unique—object
make —j4

make install

cd

Build gcc compiler:

Listing 3.7: Build binutils

mkdir aarch64—gcc

cd aarch64—gcc

../ gcc—x/configure —prefix=/usr/local/cross—compiler \
—target=aarch64—elf —enable—languages=c \

—enable—shared —enable—threads=posix —enable—libmpx \
—with—system—zlib —with—isl ——enable—__ cxa_ atexit \
—disable—libunwind—exceptions —enable—clocale=gnu \
——disable—libstdcxx —pch —disable—libssp ——enable—plugin \
—disable—linker —build —id ——enable—1to —enable—install —libiberty \
—with—linker —hash—style=gnu —with—gnu—1d \

—enable—gnu—indirect —function —disable —multilib \
—disable—werror —enable—checking=release —enable—default—pie \
——enable—default —ssp —enable—gnu—unique—object

make —j4 all—gcc
make install —gcc
cd

Create global links:

Listing 3.8: Export path
export PATH="$PATH:/usr/local/cross—compiler/bin"

Bl 3.2.3 ARM Eclipse build plug-in

Second option is ARM Eclipse build plug-in with specified name ARM-none-
eabi. Main features is high configuration ability and is recommended for bare
metal applications. [Ecl19]

13

3. Cross compilers

Difference between first option AARCH64-elf and ARM-none-eabi is their
application binary interface. It describes how compiler should generate the
assembler. Especially how functions should be called, arguments passed, etc.

[Toh11]

B Installation

Listing 3.9: Installation [Soll6]

sudo add—apt—repository ppa:team—gcc—arm—embedded/ppa
sudo apt—get update
sudo apt—get install gcc—arm—embedded

B 33 Working with makefiles

Makefiles are a simple way to organize code compilation. It is needed when
using extension files or compiling complex code structures. [Max]

Makefile when cross compiling for ARM device is almost the same as
compiling inner computer application. To describe process of making final
image file, I will use AARCHG/ elf GNU compiler as covered before. First
step is generating object files from assembler and C files using command
aarch64—elf—gce. Second step is to create executable and linkable file with
extension . elf from created object files and custom made linker file with
extension .ld. This is done with command aarch64—elf—Id. Third and
last step is from this . elf file create final binary image file using command
aarch64— elf—objcopy.

This is example of Makefile using starting assembler file start .S that will
call main.c. It uses linker link.ld. You can add libraries and extensions
contaning c file and header file into folder include. Objects will be saved into
obj directory.

Listing 3.10: Makefile

STORAGE = <name of SD card>
USER = <user name>
CFLAGS = —Wall —02 —ffreestanding —nostdinc —nostdlib

all: kernel8.img

14

3.4. Linker

start.o: start.S
aarch64—elf —gcc $(CFLAGS) —c start.S —o obj/start.o

%.o0: include/%.c
aarch64—elf —gcc $(CFLAGS) —c¢ $< —o obj/$@

main.o: main.c

aarch64—elf —gcc $(CFLAGS) —c main.c —o obj/main.o

kernel8 .img: start.o main.o start.o uart.o
aarch64—elf—1d —nostdlib —nostartfiles obj/main.o \
obj/start.o obj/uart.o —T link.ld —o kernel8.elf
aarch64—elf —objcopy —O binary kernel8.elf kernel8.img

.PHONY: clean

clean:
rm kernel8. elf
rm kernel8.img
rm obj/%.0
run:
gemu—system—aarch64 -M raspi3 —kernel kernel8.img \
—serial null —serial stdio
load :

cp kernel8.img /media/$(USER)/$ (STORAGE)
umount /media/$(USER)/$ (STORAGE)

Command make will clean everything and make final image file.
Command make run will run image file in QEMU simulator, which is de-
scribed in capitol 3.1.

Command make load will load image on SD card by <name of SD card> and
<user name>.

. 3.4 Linker

Job of linker is to take multiple object files and make from them one executable
and link-able file. In linker file with extension *.ld is described how the sections
in the input files should be mapped into the output file. [Obe]

15

3. Cross compilers

Origin address for 64-bit starts at 0x80000. 0x8000 for older 32-bit models.

Sample linker file could look like:

Listing 3.11: Sample linker file

SECTIONS
{
. = 0x80000;
.text
{
.= ALIGN(4);
~__text start N
__start =

KEEP (* (. text .startup))
*(.text .text.x .gnu.linkonce.t.x)
x(.rel.text .rel.text.x
*(.init .init.x)
. = ALIGN (4);
_ _text_end = .;

}

.bss

{

.rel.gnu.linkonce.t.x)

. = ALIGN(4);
bss start = =

(.bss .bss.x .gnu.linkonce.b.x)
(.rela.bss .rela.bss.x
(COMMON)
. = ALIGN (4);
~ bss end = .;
}
.rodata

{

*
* .rela.gnu.linkonce.b.x)
*

. = ALIGN (4);
__rodata_start__ =

x(.rodata .rodata.x)
x(.rel.rodata .rel.rodata.x .rel.gnu.linkonce.r.x)
. = ALIGN (4);

~_rodata_end = .;
}
.data

{

. = ALIGN(4);

/* Normal data memory is align 8 x/
___data_start = =

x(.data .data.x .gnu.linkonce.d.x)
x(.rel.data .rel.data.x

. = ALIGN (4);

.rel.gnu.linkonce.d.x)

16

3.4. Linker

_ _data_end_ = .;

}

_end = .;

/DISCARD/ : { *(.comment) =*(.gnux) x(.notex) x*(.eh framex) }

Defined sections are .text where are executable instructions stored. Next
section is .bss where are undeclared variables and .data section with data
itself. Saved marks at every section where section starts and ends are good
for memory management used later.

17

18

Chapter 4

Troubleshooting and loading program

Easiest way to test program is to emulate Raspberry Pi program.

B Simulating Raspberry Pi using QEMU

QFEMU which stands for Quick emulator is open-source service capable of
emulating ARM processors. It can emulate many interfaces as well. For
example USB, UART, hard disk or display.

B Installation

When using linux, installation by using apt—get install gemu will install
older version of QEMU which does not support Raspberry Pi 3. I prefer
installing it from source code.

Listing 4.1: QEMU Installation

wget https://download.gemu.org/qemu—4.0.0.tar .xz
tar xvJf gemu—4.0.0.tar.xz

cd gemu—4.0.0

./ configure

make

19

4. Troubleshooting and loading program

Once again export path for running QFMU from anywhere.

Listing 4.2: Export path
export PATH="$PATH:<path to gemu installation>"

From now running Raspberry Pi 3 emulator is done with command:

Listing 4.3: Run QEMU
gemu—system—aarch64 —-M raspid —kernel kernel8.img

where -M specifies machine. It works when emulating other versions of
Raspberry Pi (raspi2, raspi) -kernel loads the name of image kernel. For
Raspberry Pi version 1 it is kernel.img, For version 2 it is kernel7.img and for
version 3 it is kernel8.img.

Other arguments can be:

-serial stdio enables UART communication -drive file=$(<disk image
file>if=sd,format=raw adds disk drive

If the program gives right result with emulator, it is time to load program
to real device. Loading bare metal program to Raspberry Pi can be done by
multiple ways.

B a2 Using SD card

More laborious way to load program is moving micro SD card from PC to
Raspberry Pi. This cycle contains:

1. Compile program using command make

2. Load program on SD card and un-mount SD card using command
make load (using Makefile described before)

3. Move SD card from PC slot to Raspberry Pi

4. Turn on Raspberry Pi using power switch

20

4.3. Bootloaders

To quit program, it is possible to just power off the Raspberry Pi. Micro
SD card reader is not the only source of uploading the program. Another
source can be flash drive attached to any USB.

. 4.3 Bootloaders

Bootloader is service that sends the program into device via some periphery
and execute itself. It is composed of two parts. First part is in PC and has
to send the image file into device. Second part is in device itself and its work
is to receive the program and execute it.

The best way is to represent first part by program CuteCom. It can be
any other program, that can send file via serial port. Terminal protocol can
be XMODEM or plain text. Send files can be *.bin or *.hez. In linker file is
best to divide sections of bootloader and the loaded program.

Working variant of bootloader that I tested can be provided from David
Welch. [Well

21

22

Part ||

Practical part

23

24

Chapter 5

Basic interfaces

I Definition of main base addresses

Definition of main peripherals base addresses.

Address Name
0x3F000000 periph_ base
0x200000 General Purpose IO controller
0x215000 mini UART
0x3000 System Timer
0xB000 Interrupt controller
0xB&80 VideoCore mailbox

Table 5.1: Main base addresses table. [Incl2al

B 5.1 General purpose input output (GPIO)

There are 54 general-purpose I/O (GPIO) lines split into two banks. All
GPIO pins have at least two alternative functions within BCM. The alternate
functions are usually peripheral IO and a single peripheral may appear in
each bank to allow flexibility on the choice of IO voltage.

The GPIO peripheral has three dedicated interrupt lines. These lines are

25

5. Basic interfaces

triggered by the setting of bits in the event detect status register. Each bank
has its own interrupt line with the third line shared between all bits. [Inc12b]

System of chips Broadcom BCM2837 does not have one specific register to
change GPIOs. Instead of it, it has two registers. One sets the pins that has
true value and ignores false (zero) values. Second resets the pins with also
true value and ignores false (zero) values. This means, that setting all output
registers to desired value with ones and zeros requires two instructions with
write to register memory.

The periphery detects write to this registers with event status register. If is
on SET register written the same value, the periphery will detect this writing
and can set output GPIO value. Output values of GPIO pins can be only
digital. Have only true/false values with voltage 3.3V/0V. Physical base
address: periph_ base + 0x200000

Address Field Name Description Read/Write
0x00 GPFSELO GPIO Function Select 0 R/W
0x04 GPFSELI1 GPIO Function Select 1 R/W
0x08 GPFSEL2 GPIO Function Select 2 R/W
0x0C GPFSEL3 GPIO Function Select 3 R/W
0x10 GPFSEL4 GPIO Function Select 4 R/W
0x14 GPFSEL5 GPIO Function Select 5 R/W
0x1C GPSETO0 GPIO Pin Output Set 0 W%
0x20 GPSET1 GPIO Pin Output Set 1 W%
0x28 GPCLRO GPIO Pin Output Clear 0 W%
0x2C GPCLRI1 GPIO Pin Output Clear 1 W
0x34 GPLEVO0 GPIO Pin Level 0 R
0x38 GPLEV1 GPIO Pin Level 1 R
0x40 GPEDSO GPIO Pin Event Detect Status 0 R/W
0x44 GPEDS1 GPIO Pin Event Detect Status 1 R/W
0x4C GPRENO GPIO Pin Rising Edge Detect 0 R/W
0x50 GPREN1 GPIO Pin Rising Edge Detect 1 R/W
0x58 GPFENO GPIO Pin Falling Edge Detect 0 R/W
0x5C GPFEN1 GPIO Pin Falling Edge Detect 1 R/W
0x7C GPARENO GPIO Pin Async. Rising Edge 0 R/W
0x80 GPAREN1 GPIO Pin Async. Rising Edge 1 R/W
0x88 GPAFENO GPIO Pin Async. Falling Edge 0 R/W
0x8C GPAFEN1 GPIO Pin Async. Falling Edge 1 R/W

Table 5.2: GPIO control registers table [Incl2b].

All registers are 32-bit.

26

5.1. General purpose input output (GPIO)

Number Pull ALTO ALT1 ALT2 ALT3
GPIOO High SDAO SA5 <reserved>

GPIO1 High SCLO SA4 <reserved>

GPIO2 High SDA1 SA3 <reserved>

GPIO3 High SCL1 SA2 <reserved>

GPIO4 High GPCLKO SA1 <reserved>

GPIO5 High GPCLK1 SAO0 <reserved>

GPIO6 High GPCLK2 SOE_N/SE <reserved>

GPIO7 High SPIO_CE1_N SWE_N/SRW_N <reserved>

GPIO8 High SPIO_CEO_N SDO <reserved>

GPIO9 Low SPI0O__MISO SD1 <reserved>

GPIO10 Low SPIO__MOSI SD2 <reserved>

GPIO11 Low SPI0 SCLK SD3 <reserved>

GPIO12 Low PWMO SD4 <reserved>

GPIO13 Low PWM1 SD5 <reserved>

GPIO14 Low TXDO SD6 <reserved>

GPIO15 Low RXDO SD7 ALT4 below

GPIO16 Low <reserved> SD8 SPI1 _CE2 N CTSo
GPIO17 Low <reserved> SD9 SPI1_CE1_N RTSO
GPIO18 Low PCM__CLK SD10 SPI1__CEO_N BSCSL SDA/MOSI
GPIO19 Low PCM_FS SD11 SPI1__MISO BSCSL SCL/SCLK
GPIO20 Low PCM__DIN SD12 SPI1__MOSI BSCSL/MISO
GPIO21 Low PCM_DOUT SD13 SPI1_SCLK BSCSL/CE_N
GPIO22 Low <reserved> SD14 ALT2 below

GPIO23 Low <reserved> SD15 <reserved>

GPIO24 Low <reserved> SD16 <reserved>

GPIO25 Low <reserved> SD17 <reserved>

GPIO26 Low <reserved> <reserved> <reserved>

GPIO27 Low <reserved> <reserved> <reserved>

GPIO28 = SDAO SA5 PCM_CLK <reserved>
GPIO29 - SCLO SA4 PCM_FS <reserved>
GPIO30 Low <reserved> SA3 PCM_DIN CTSO0
GPIO31 Low <reserved > SA2 PCM_DOUT RTSO
GPIO32 Low GPCLKO SA1l <reserved> TXDO
GPIO33 Low <reserved> SAO <reserved> RXDO
GPIO34 High GPCLKO SOE_N/SE <reserved> <reserved>
GPIO35 High SPI0O_CE1_N SWE N/SRW_N <reserved>
GPIO36 High SPI0_CEO_N SDO TXDO <reserved>
GPIO37 Low SPIO_MISO SD1 RXDO <reserved>
GPIO38 Low SPI0o_ MOSI SD2 RTSO <reserved>
GPIO39 Low SPIO_SCLK SD3 CTSO0 <reserved>
GPIO40 Low PWMO SD4 <reserved>
GPIO45 - PWM1 SCLO SCL1 <reserved>

Table 5.3: GPIO table [Inc12d].

27

5. Basic interfaces

Numbers GPIO0-GPIO39 are contained on board with easy access. 1
added GPIO40 and GPIO45, which are pins connected to 3.5mm audio jack.
GPCLKQ have function general purpose clock. PWM function is Pulse-width
modulation. TXD and RXD are for UART Transmit Data and Receive Data.

B Sample code GPIO Setup

Listing 5.1: GPIO Setup
bool gpio_init (uint_fast8 t gpio, GPIO_MODE mode)
{
if (mode < 0 || mode > GPIO_ALTFUNC3 || gpio > 54)
return false;
uint32_t bit = ((gpio % 10) % 3);
uint32_t reg = GPIO—>GPFSEL|[gpio / 10];
reg &= ~(7 << bit);
reg |= (mode << bit);
GPIO—>GPFSEL| gpio / 10] = reg;

return true;

Checks valid GPIO or mode. Creates bit mask, read the register and
clears the mode bits and rewrite them to new mode bits. Then write value to
register. GPIO_MODE is GPIO mode where input is 0, output is 1 and other
are alternative functions as can be seen in GPIO table. Register GPFSEL
can be found in table 5.2.

B Sample code GPIO Input

Listing 5.2: GPIO Input
bool gpio_inp(uint8_t gpio)
{
if (gpio > 54)
return false;
uint32 _t bit = 1 << (gpio % 32);
uint32_t reg = GPIO—>GPLEV|[gpio / 32];
if (reg & bit)
return true;
return false;

Checks valid GPIO. 54 GPIOs are divided into two 32-bit registers. Func-

28

5.1. General purpose input output (GPIO)

tion will choose register and return true or false by value of pin. Register
GPLEV can be found in table 5.2.

B Sample code GPIO Output

Listing 5.3: GPIO OUTPUT
bool gpio_out(uint8_ t gpio, bool toggle)

{
if (gpio > 54)
return false;
uint32_t bit = 1 << (gpio % 32);
if (toggle) {
GPIO—>GPSET[gpio / 32] = bit;
} else {
GPIO—>GPCLR [gpio / 32] = bit;
}

return true;

Checks valid GPIO. Create bit mask and sets gpio to given value. Register
GPLEV can be found in table 5.2.

B Sample code GPIO Edge detect

Listing 5.4: GPIO Edge detect
bool gpio_edge(uint8_t gpio, bool rising)
{
if (gpio > 54)
return false;
uint32_t bit = 1 << (gpio % 32);
if (rising) {
else GPIO—>GPREN|[gpio / 32] = bit;
} else {
else GPIO—>GPFEN|[gpio / 32] = bit;
}

return true;

Checks valid GPIO. Create bit mask. If edge detect is wanted on rising
edge, GPREN register is used. If it is wanted on falling edge, GPFEN register
is used. For asynchronous edge detect are used GPAREN and GPAFEN

29

5. Basic interfaces

registers.

. 5.2 Public timer

System timer peripheral provides four 32-bit timers and one 64-bit timer.
Each have output register and compare register with specified value. When
the two registers are the same, it triggers given action. [Inc12d] ARM system
timers are with base frequency 1IMHz. When using 64 bit timer, it is split to
between two 32 bit registers.

Physical base address: periph_ base + 0x3000

Addr. Offset Reg. Name Description

0x0 CC System Timer Control/Status
0x4 CLO System Timer Counter Lower 32 bits
0x8 CHI System Timer Counter Higher 32 bits
0xC Co System Timer Compare 0

0x10 Cl1 System Timer Compare 1

0x14 C2 System Timer Compare 2

0x18 C3 System Timer Compare 3

Table 5.4: System Timer Registers table. [Incl2d]

B Sample code System Timer

Listing 5.5: System Timer
uint64 t timer getClockCount ()

{

uint64_t highReg;
uint32_t lowReg;
do {

highReg = SYSTEMTIMER—>CHI;

lowReg = SYSTEMTIMER—CLO;
} while (highReg != (uint64_t)SYSTEMTIMER—>CHI);
uint64_t finalReg =

(uint64_t)highReg << 32 | lowReg;

return finalReg;

Because timer is 64-bit, it is read from high 32-bit register CHI and low

30

5.3. Universal asynchronous receiver transmitter (UART)

register CLO. Function checks if high register isn’t rolling. It returns one
composite value. Delay function can be written from this example.

B 53 Universal asynchronous receiver transmitter
(UART)

Mini UART is composed only with two pins. First is receiver RXD and TXD
as shown in table 5.3. It can be used with valid clock rate via mailboxes.

Addr. Offset Reg. Name Description
0x0 DR Data Register
0x18 FR Flag register
0x24 IBRD Integer Baud rate divisor
0x28 FBRD Fractional Baud rate divisor
0x2C LCRH Line Control register
0x30 CR Control register
0x34 IFLS Interupt FIFO Level Select Register
0x38 IMSC Interupt Mask Set Clear Register
0x3C RIS Raw Interupt Status Register
0x40 MIS Masked Interupt Status Register
0x44 ICR Interupt Clear Register
0x48 DMACR DMA Control Register
0x80 ITCR Test Control register
0x84 ITIP Integration test input reg
0x88 ITOP Integration test output reg
0x8C TDR Test Data reg

Table 5.5: UART Registers Table. [Incl2¢]

All registers are 32-bit.

B Sample code UART Initialization

Listing 5.6: UART Initialization

void uart__init ()

{
mbox_ prop_msg(void, 36, MBOX REQUEST,
MBOX_TAG SETCLKRATE, 12, 8, 2, 4000000, 0);

31

5. Basic interfaces

register unsigned int r=xGPFSELI1;
r&=~((7<<12)|(7<<15));
r|=(4<<12)|(4<<15);

*GPFSEL1 = r;

«*GPPUD = 0;

r=200;

while(r——) { asm volatile("nop"); }
*GPPUDCLKO = (1<<14)|(1<<15);
r=200;

while(r——) { asm volatile("nop"); }
*GPPUDCLKO = 0;

+*UARTO ICR = Ox7FF;
«UARTO IBRD = 2
+*UARTO FBRD = 0xB;
«*UARTO _LCRH = 0bl1<<5;
«*UARTO CR = 0x301;

It sends mailbox request for setting clock rate. It maps UART to GPIO
pins on GPIO14 and GPIO15 which is ALTO function. Setting registers from
table 5.5. Clear interrupts and setting baud rate to 115200Hz.

B Sample code UART Send

Listing 5.7: UART Send

void uart_send (unsigned int c) {
do{ asm volatile("nop"); }
while (! (*AUX MU ISR & 0x20));
*AUX MU IO=c ;

It waits for ready to send data and then write the character to buffer.

B Sample code UART Receive

Listing 5.8: UART Receive

char uart_getc() {
do{asm volatile("nop");}
while (! (*AUX MU ISR & 0x01));
return (char)(xAUX MU 10);

32

5.4. Working with memory

It waits for buffer to have a data and return them.

B 54 Working with memory

Following global variables initialization methods besides classic ones can be
useful for some applications.

B Global variable

In assembly language. It aligns specific length of variable in program data. If
it is marked as global myVar variable will be accessible.

Listing 5.9: Assignment of global variable

.globl myVar;
myVar : .4byte O0;

B Sample code Memory Allocate function

Since bare metal applications haven’t got classic malloc function. It can
be implemented marking area of memory in linker file. For this example is
defined __end mark as MEMORY START after bss section in linker file and
ends with periph_base as MEMORY__END.

Listing 5.10: Memory Allocate function

unsigned long memory_ pointer = MEM START;
void smalloc (unsigned int size)
{
if (size < 1 || memory_pointer + size > MEM END)
return (voidx*)0;
memory__pointer 4= size;
return (voidx*)(memory_pointer — size);

}

33

5. Basic interfaces

B 55 Interrupts

There are three types of interrupts. The GPU peripheral interrupts, CPU
ARM control peripheral interrupts and special events interrupts. For each
interrupt there is interrupt enable bit (Read/write) and interrupt pending bit
(Read only). Interrupts generated by ARM control block are level sensitive,
which means that they are remain enabled until enable bit is cleared or they
are disabled. [Incl2I]

I will use ARM timer register structure, that will call interrupt. To get
GPU clock I'm using mailboxes. Physical base address: periph_ base +
0xB000

Address offset Description
ARM Interrupt register part
0x200 IRQ basic pending
0x204 IRQ pending 1
0x208 TRQ pending 2
0x20C FIQ control
0x210 Enable TRQs 1
0x214 Enable TRQs 2
0x218 Enable Basic IRQs
0x21C Disable IRQs 1
0x220 Disable IRQs 2
0x224 Disable Basic IRQs
ARM Timer register part
0x400 Load
0x404 Value (Read Only)
0x408 Control
0x40C IRQ Clear/Ack (Write only)
0x410 RAW IRQ (Read Only)
0x414 Masked IRQ (Read Only)
0x418 Reload
0x41C Pre-divider
0x420 Free running counter

Table 5.6: ARM Interrupt and ARM Timer register table. [Inc12f] [Inc12g]

B Sample code Timer Interrupt setup

Listing 5.11: Timer Interrupt setup

34

5.5. Interrupts

void irq_init (uint32_t us,
TimerIrqHandler function)
{

uint32_t divisor;
uint32_t Buffer[5] = { 0 };
ARMTimer—Control. TimerEnable = false;

mbox_ prop_msg(&Buffer [0], 5,
MAILBOX TAG GET CLOCK_ RATE,
8, 8, 4, Buffer[4]);
Buffer [4] /= 250;
divisor = ((uint64_t)us*Buffer[4])/1000000;
setTimerIrqAddress (function);
Irq—EnableBasicIRQs . Enable_ Timer IRQ = true;
ARMTimer—Load = divisor
ARMTimer—>Control. Counter32Bit = true;
ARMTimer—Control. Prescale = Clkdiv];
ARMTimer—>Control. TimerlrqEnable = true;
ARMTimer—>Control. TimerEnable = true;
return;

Function has two arguments. First means waiting period in microseconds
and second is address of function that will be launched. Function first stops
timer for safety reasons. It calls mailbox to get GPU clock. Calculate divisor
for setting period. Then fill ARMTimer with values of divisor, 32-bit mode
turned on, pre-scale divider set to 1 and enabling the timer with interrupt.
For setting called interrupt address is used special function.

Listing 5.12: Set timer interrupt address function

setTimerlrqAddress:
msr daifset ,#2
ldr x1, =TimerlrqAddr
str x0, [x1]
ret

When this function is launched address of function is saved in register z0
as default. First the function disable all interrupts and save address on place
where interrupt handler can call it. Interrupt handler is created with Vector
Table saved as macro in assembly file. It can look like this:

Listing 5.13: Vector Table

.balign 0x800
.globl VectorTable
VectorTable:

35

5. Basic interfaces

vector _ start
vector hang
vector hang
vector hang

vector hang // synchronous
vector irq_handler // irq

vector hang // fast interrupt
vector hang // SErrorStub

vector hang
vector hang
vector hang
vector hang

vector hang
vector hang
vector hang
vector hang

In this table each of four units corresponding to differnt types of interrupt.
For this application it is second unit second entry. It will call irq handler
function which can launch wanted custom function.

B 5.6 Direct memory access (DMA)

DMA controller is directly connected to peripherals. DMA controller must
be setup to use physical addresses of the peripherals. BCM2837 provides 16
independent DMA channels. [Incl2m]

DMA is using control blocks (cb) data structure. In this control block is
defined the DMA transfer. It contains source adrress, destination address,
length of transfer, stride, address of next control block of trasfer and informa-
tion about transfer. There is possible to specify for example wait between
transfers. Stride is used when sending more blocks and it defines spaces
between them.

36

5.6. Direct memory access (DMA)

32-bit Word Description Associated Read-Only
Offset Register
0 Transfer Information TI
1 Source Address SOURCE__AD
2 Destination Address DEST AD
3 Transfer Length TXFR LEN
4 2D Mode Stride STRIDE
5 Next Control Block Address NEXTCONBK
6-7 Reserved — set to zero. N/A

Table 5.7: Control block data structure table. [Inc12h]

This needs to be in uncached memory.

* Physical address = periph__base + Address offset + N * 0x100
NOTE: N refers to number of DMA

Address Register Description

Offset * Name
0x0 N_CS DMA Channel N Control and Status
0x4 N CONBLK AD DMA Channel N Control Block Address
0x8 N_TI DMA Channel N CB Word 0 (Transfer Information)
0xC N_SOURCE_AD DMA Channel N CB Word 1 (Source Address)
0x10 N DEST AD DMA Channel N CB Word 2 (Destination Address)
0x14 N TXFR LEN DMA Channel N CB Word 3 (Transfer Length)
0x18 N_ STRIDE DMA Channel N CB Word 4 (2D Stride)
0x1C N_NEXTCONBK DMA Channel N CB Word 5 (Next CB Address)
0x20 N_DEBUG DMA Channel N Debug

Table 5.8: DMA address map table. [Incl2i|

B Sample code DMA Start

Listing 5.14: DMA start

void dma_start(void % src_addr, void * dest_addr,
uint32 t transfer info, uint32 t transfer len
uint32 t DMA CHANNEL) {
// Prepare DMA control block.
struct dma cb * cb =
(struct dma_cbx)malloc(sizeof(struct dma_cb));

cb—>info = transfer_info;

37

5. Basic interfaces

cb—>src = (uint32_t=*)src_addr;

cb—>dst = (uint32_t*)dest_addr;
cb—>length = transfer_len;

cb—>stride = 0;

cb—>next = (uint32_tx*)cb; // Loop itself

struct dma channel* channel =

(struct dma channel*)0x3F00700 + DMA CHANNEL % 0x100;

channel—>cs |= DMA_CS END;
channel—>cblock = (uint32_ tx*)cb;
channel—>cs = DMA_CS_PRIORITY |
DMA CS PANIC PRIORITY
channel—>cs |= DMA_CS_ACTIVE;

Function creates DMA control block. Sets source and destination address.
Sets transfer length. In this example the same DMA block loops itself, which
means repeating same transfer until it is disabled. In control and status
register is saved priority of channel and panic signal. Which means what to
do when sending data and get outside sending zone. It also sets DMA active.

Listing 5.15: Shutdown DMA channel
dma_stop(uint32__t DMA_CHANNEL) {

struct dma_ channel* channel =

(struct dma channel*)0x3F00700 + DMA CHANNEL % 0x100;

channel—>cs |= DMA_CS _ABORT;
msec_wait (100);

channel—>cs &= ~DMA_CS ACTIVE;
channel—>cs |= DMA_CS_RESET;

B 5.7 Pulse width modulation (PWM)

Outputs bit stream with fixed frequency. It can be configured to output
PWM stream or serialized version of 32-bit words. In this serialized mode
it is configured to load data from FIFO storage block. This block can store
up to eight 32-bit words. Modes are clocked by clk_pwm. Default clock is
100MHz. [Inci2n)]

Physical base address: periph_base + 0x20C000

38

5.8. Mailboxes

Address Register Description Size
Offset Name
0x0 CTL PWM Control 32
0x4 STA PWM Status 32
0x8 DMAC PWM DMA Configuration 32
0x10 RNG1 PWM Channel 1 Range 32
0x14 DAT1 PWM Channel 1 Data 32
0x18 FIF1 PWM FIFO Input 32
0x20 RNG2 PWM Channel 2 Range 32
0x24 DAT?2 PWM Channel 2 Data 32

Table 5.9: PWM address map table. [Inc12j]

B Sample code PWM start

Listing 5.16: Enable pwm channel in assembly

PWM START:
mov w0, (periph_base + PWM base) and $0000FFFF
mov wl,(periph_base + PWM base) and $FFFF0000
orr wO,w0,wl
mov wl,$RANGE_VAL
str wl,[x0,RNG1]

mov wl ,PWM USEF1 + PWM PWEN1 + PWM CLRF1
str wl,[x0,CTL]

Function that starts PWM channel in assembly. Configuration about range
is saved on RNG1 and RNG2. Another configuration can be saved in CTL
register. In given example are PWM__USEF1 to use queue with FIFO (first
in, first out). PWM__PWENI to enable channel and PWM__CLRF1 to clear
FIFO.

. 5.8 Mailboxes

Mailbox interface. Used to communicate with GPU.

It has different channels. Channels have different formatting. Most use-
ful mailbox channel is property channel with number 8. Another can be
framebuffer with channel 1 used for screen view.

39

5. Basic interfaces

To use mailbox, we fill the mailbox array and then send it to GPU. Mailbox
videocore register starts at (periph_base + 0xB880).

Register name Address

MBOX_READ 0x0
MBOX__POLL 0x10
MBOX_SENDER 0x14
MBOX_STATUS 0x18
MBOX CONFIG 0x1C
MBOX WRITE 0x20

Table 5.10: Videocore register.

B Sample codes

Function for sending and receiving message via mailbox.

Listing 5.17: Send message via Mailbox
unsigned int r =
(((unsigned int)((unsigned long)&mbox)&~0xF) | (ch&O0xF));
do{asm volatile("nop");} while(xMBOX STATUS & MBOX FULL);
«MBOX_WRITE = r;

Example will wait until can write to the mailbox and write the message
too channel identifier.

Listing 5.18: Receive a response

unsigned int r =
(((unsigned int)((unsigned long)&mbox)&~0xF) | (ch&O0xF));

while (1){
do{asm volatile("nop");} while (xMBOX STATUS & MBOX EMPTY);
if (r = «MBOX_READ)
// got mailbozr data
}

Example loops until gets received a message and check if it is successful
response.

In this examples:
MBOX RESPONSE has value 0x80000000

40

5.9. Memory management unit (MMU)

MBOX_FULL is 0x80000000 and
MBOX_EMPTY is 0x40000000

If it is wanted for example to get serial number via mailbox. Mailbox would
be filled like this:

Number of 32-bit register Description Value
0 Length of the message 36
1 Type of message (request) 0
2 Type of command (get serial number) 0x10004
3 Buffer size 8
4 8
5 Clear output buffer 0
6 0

Table 5.11: Sample filling mailbox array.

B 5.9 Memory management unit (MMU)

For using advanced features like caches it is needed to turn on MMU. This unit
is already integrated in device. It just needs to be configured and launched.

41

5. Basic interfaces

Variable Value Description
PAGESIZE 4096
PT PAGE 0b11 granularity - 4k granule
PT_BLOCK 0b01 2M granule
Accessibility
PT_ KERNEL (0«6) privileged, supervisor EL1 access only
PT_USER (1«6) unprivileged, ELO access allowed
PT RW (0«7) read-write
PT_RO (1«7) read-only
PT AF (1«10) accessed flag
PT NX (1UL«54) no execute
Shareability
PT_ OSH (2«8) outter shareable
PT ISH (3¢8) inner shareable
Defined in M AIR register
PT MEM (0«2) normal memory
PT DEV (1«2) device MMIO
PT NC (242) non-cachable
TTBR__ CNP 1

Table 5.12: MMU Specifications.

This example creates MMU translation tables.

Listing 5.19: Initialize memory management unit

unsigned long data_page = (unsigned long)&_data/PAGESIZE;
unsigned long r, b, *xpaging=(unsigned longx)&_end;

// setup L1 cache
paging [0]=(unsigned long)((unsigned charx)& end+2+PAGESIZE) |
PT PAGE | PT_AF | PT_USER | PT ISH | PT MEM;

// setup L2 cache, first 2M block

paging[2x512]=

(unsigned long)((unsigned charx)&_end+3+«+PAGESIZE) |
PT PAGE | PT _AF | PT _USER | PT ISH | PT MEM;

// setup L2 cache, 2M blocks
b=periph_ base >>21;

for (r=1;r<512;r++)
paging[2%512+r]|=(unsigned long)((r<<21)) |
PT BLOCK | PT_AF | PT NX | PT USER |
(r>=b? PT_OSH|PT DEV : PT_ISH|PT MEM);

// setup L3 cache

42

5.9. Memory management unit (MMU)

for (r=0;r <512;r++)

paging[3*512+r]|=(unsigned long)(r+PAGESIZE) |
PT PACE | PT_AF | PT _USER | PT_ISH

((r<0x80 || r>data page)? PT RW|PT NX : PT RO);

// kernel L1 cache
paging[5124511]=(unsigned long)((unsigned charx*)&_ end+4xPAGESIZE) |
PT PAGE | PT AF | PT KERNEL | PT ISH | PT MEM;

// kernel L2 cache
paging [4%512+511]=(unsigned long)((unsigned charx)&_end+5+xPAGESIZE) |
PT PAGE | PT_AF | PT _KERNEL | PT_ISH | PT MEM;

// kernel L3 cache
paging [5*512]=(unsigned long)(MMIO BASE40x00201000) |
PT PACE | PT_AF | PT NX | PT KERNEL | PT OSH | PT DEV;

// Memory Attributes array
r= (0xFF << 0) | (0x04 << 8) | (0x44 <<16);
asm volatile ('"msr mair_ell, %0" : : "r" (r));

// Mapping characteristics

r= (0bOOLL << 37) | (b << 32) | (0bIOLL << 30) |
(0b11LL << 28) | (0bOILL << 26) | (0bOILL << 24) |
(0bOLL << 23) | (25LL << 16) | (ObOOLL << 14) |
(0blILL << 12) | (0bOILL << 10) | (0bOILL << 8) |
(ObOLL << 7) | (25LL << 0);

asm volatile ("msr tcr_ell, %0;.isb" : : "r" (r));

// Save addresses of tables
asm volatile ('"msr ttbr0O_ell , %0"
((unsigned long)& end + TTBR CNP));

asm volatile ('"msr ttbrl_ell , %0" : : "r
((unsigned long)& end + TIBR_CNP + PAGESIZE));

l|r|l

// Enable page translation

asm volatile ("dsb.ish; isb; mrs %0, sctlr _ell" : "=r" (r));
r|=0xC00800;

r&=~((1<<25) | (1<<24) | (1<<19) | (1<<12) | (1<<4) |
(1<<3) | (1<<2) | (1<<1));

rl= (1<<0);

asm volatile ("msr sctlr_ell , %0;,isb" : : "r" (1r));

43

5. Basic interfaces

B 5.10 Serial Peripheral Interface (SPI1)

Serial Peripheral Interface is serial synchronous communication. It is interface
bus used to send data between microcontrollers. It can be also sensors, and
SD cards. It has clock signal, so data are synchronous. Receiver device can

be very simple against UART for example. [Gru]

Devices in SPI interface are divided between master and slave. Master
provides the clock signal and slave only listens the clock. There are two wires
for data transfer. In MOSI wire master is sending data and slave listens. In
MISO wire master listens and slave is sending data. Last wires in interface
are slave select wires. They are set to true all time. When they are set to
false. Slave wakes up and do some action. Wires defined on Raspberry Pi

are:
Pin GPIO x=1 x=0 Description
SPIx CE2 N 16 - Slave select 2
SPIx CE1 N 17 35 Slave select 1
SPIx CEO_N 18 36 Slave select 0
SPIx_ MISO 19 37 Master input, slave output
SPIx_ MOSI 20 38 Master output, slave input
SPIx_ SCLK 21 39 Clock signal

Table 5.13: SPI wires description table.[Incl2c]

SPI register map.

Address Offset Register Name

Description

0x0

0x4 FIFO
0x8 CLK
0xC DLEN
0x10 LTOH
0x14 DC

SPI Master Control and Status
SPI Master TX and RX FIFOs

SPI Master Clock Divider
SPI Master Data Length
SPI LOSSI mode TOH
SPI DMA DREQ Controls

Table 5.14: SPI Address map table. [Inc12k]

44

5.11. Multicore applications

B 5.11 Multicore applications

Raspberry Pi 3 has four processors. For use of more than one of them in
terms of most possible independence, some changes needs to be done.

In linker file needs to be defined different sections for stack memory. This
addresses have to be initialized. While core zero will execute main thread.
Other cores needs to be set to listen for calling.

Another thing is to create global variables containing important data. For
example which cores are ready. If core is not ready, it cannot execute function.
Function is called with core number in register x0 and function address in
register x1.

Listing 5.20: Core Execute

.globl core_launch
core_launch:

ldr x3, =cores_ready
ldr w2, [x3]
cmp w0, w2
bces CoreExecuteFail
mov x6, #0
mov w6, w0
mov x5, #address_cpul
str x1, [xH, x6, lsl #3/
dsb sy
sev
mov x0, #1
ret
CoreExecuteFail :
mov x0, #0
ret

Every core except zero will be asleep and listens on address if it is been

set. They created 2 bit mask of core Id. Loaded address address cpu0,
from which will be callen. It must be zeroed. To get processor to sleep, use
instruction wfe. When address is set, it will wake and make a function call
on that address.

45

5. Basic interfaces

B 5.11.1 Advanced applications

When goal is to process data in real time, I can use for example two cores.
One will be constantly read data from periphery and save them to some
public register. Another will always read the register and send it to desired
output periphery.

46

Chapter 6

Screen output

In this chapter, I will focus on using HDMI output. First thing is change
resolution and other properties with mailbox. Then send the values to GPU.
We can use property channel or frame buffer channel. This will set screen to
resolution 1024x768 with RGB and other properties.

To display something on the screen, we fill the specified pointer with wanted
data.

Length of mailbox is 140 Bytes. Message is type request. On Address 20 is
frame width, address 24 is frame height. On addresses 40 and 44 are virtual
width and height. On address 48 is virtual offset. On address 60 and 64 is x
and y offset. On address 68 is setting depth. On address 84 is setting pixel
order. On address is color type, 1 for RGB. On address 112 is Framebuffer
pointer.

47

6. Screen output

Addr Values
0 35%4
4 MBOX_ REQUEST
8 0x48003
12 8
16 8
20 1024
24 768
28 0x48004
32 8
36 8
40 1024
44 768
48 0x48009
52 8
56 8
60 0
64 0
68 0x48005
72 4
76 4
80 32
84 0x48006
88 4
92 4
96 1
100 0x40001
104 8
108 8
112 4096
116 0
120 0x40008
124 4
128 4
132 0

136 MBOX_ TAG LAST

Table 6.1: Example of filling mailbox array to setup screen.

B Sample code print picture

Listing 6.1: Print picture
void 1fb__showpicture ()

{

48

6. Screen output

int x,y;
unsigned char xptr=Ifb;
char xdata=header_data, pixel[4];

ptr += (frameHeight—height)/2xpitch + (frameWidth—width)=2;
for (y=0;y<height ;y++) {
for (x=0;x<width ;x++) {
HEADER,_ PIXEL(data, pixel);
*((unsigned intx)ptr)=x((unsigned int x)&pixel);
ptr+=4;
}

ptr+=pitch—width x4;

49

50

Part I

Experimental part

o1

52

Chapter 7

Speed of GPIOs

B 71 Assignment

Find out the maximum safe speed of GPIOs. First I will test the maximum
writing speed on GPIO pins.

Manufacturer is providing only maximum possible frequency of output
GPIOs, that is not corresponding to its real value.

B 7.1.1 System properties

There are two parts, that can determine the speed of writing GPIO pin.
First is time which processor is writing value to certain register. Second is
periphery that is responsible to read the register number and accomplish the
GPIO value change. This is done by flip-flop circuit.

By the datasheet of Broadcom BCM2837 has the maximum GPIO pins
frequency, which is ~ 125M Hz at 1.2V but is reduced if the pins are heavily
loaded or have a capacitive load.

I set the frequency to 1.4GHz, which was defaultly set to 700Mhz in config

53

7. Speed of GPIOs

file. I will use in this example only one of four cores. I will not use graphic
adapter in this example. Later I will use caches L1 & L2 & L3, because access
time of RAM in Raspberry Pi slowing process as I will show in examples
below.

B 7.1.2 Measure conditions

Device: Raspberry Pi 3 B+

® CPU frequency: 1.4GHz (ARM Cortex-A53)
® GPIO Maximum clock: 125MHz

Measuring osciloscope: Tektronix TDS1001B

® Osciloscope frequency: 40MHz
B 7.1.3 Measuring program

Switching between values HIGH (3.16V) and LOW (0V) which are values of
transistor-transistor logic. I will rate quality of signal.

Program uses bare metal C language with possible inner blocks in assembly
language. If blocks written in C cannot be written better in assembler, I'm
using C language.

I'm using volatile pointers, so compiler wont optimize these variables. I'm
compiling with —03, —04 or —O fast option for highest possible speed.

. 7.2 Measured tests

1. Measuring speed within predefined function

2. Measuring speed without function, only assign value to given register

o4

7.2. Measured tests

3. Measuring speed with code from official Raspberry Pi webside (RPi
GPIO)

4. Measuring speed with enabled cache

B Speed of GPIOs within predefined function

In first example bare cycle with function that are switching the pin:

Listing 7.1: Example 1

main () {
gpio_setup (N, GPIO_OUTPUT);
gpio = N;
while (1) {
gpio_output (gpio ,!true);
wait_cycles (m);

}

void gpio_output (unsigned int pin, bool value)
{
volatile unsigned intx p;
unsigned int bit = 1 << (pin % 32);
if (value) {
p = (unsigned int x)(SET_REGISTER_ADDR);

} else {

p = (unsigned intx)(CLR_REGISTER ADDR);

}

xp = bit;

return;

}

void wait_cycles(unsigned int n)

{
}

if(n) while(n—) { asm volatile("nop"); }

NOTE: In every example constant N stands for number of GPIO pin, which
can be pin 0-53 available. Constant M stands for waiting number of cycles
between switch.

55

7. Speed of GPIOs

Source
i =t 380.0ns

125 1.020MHz
1 oV 40.0my

Cursor 1

CHi 100 A S0l THI 7 185Y
28-Mar-19 1313 439.430kH:

Figure 7.1: C Code (bare switching in functions).

In this first example speed is about 1MHz.

B Speed of GPIOs without predefined function

In second program I tried for even for higher speed get rid of functions, which
are slowing down the process by few processor cycles.

Listing 7.2: Example 2

void main (){
gpio_setup (N, GPIO_OUTPUT);

volatile unsigned intx p_on;
volatile unsigned intx p_ off;
unsigned volatile int gpio = N;
unsigned volatile int bit = 1 << gpio;
p_on = (unsigned volatile intx)(SET_REGISTER_ADDR);
p_off = (unsigned volatile intx)(CLR_REGISTER_ADDR);

while (1){
xp_on = bit;
xp_off = bit;

}

return;

56

7.2. Measured tests

.......... RS
I PP Type
u T : s . .:: Jui . .s. w i3 : o .: T”-I-Ie

{': Source
4 CH1
1 =t 550.0ns
125 1.818MH:z
1 =V 10y
.............. Corbiy

CH1 1.00% kd 2500ns : GHI 1.85‘-.-'
26-tlar-13 13:34 1.74461MHz

Figure 7.2: C Code (bare switching).

In second example the result is speed about 1.8 M Hz.

B Speed of GPIOs with code from official Raspberry Pi webside (RPi
GPIO

Third example is using RPi GPIO Code Samples (link). This C code is edited
to work on bare metal applications.

Listing 7.3: Example 3

volatile unsigned #*gpio;

// GPIO setup macros
#define INP_ GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)%3))
#define OUT GPIO(g) *(gpio+((g)/10)) |= (1<<(((g)%10)%3))

// sets bits which are 1 ignores bits which are 0
#define GPIO_SET x*(gpio+7)
// clears bits which are 1 ignores bits which are 0
#define GPIO_CLR *(gpio+10)

int main ()

{

int volatile g = N;
int volatile gpio_value = I<<g;
gpio = 0x3F200000;

o7

7. Speed of GPIOs

INP _GPIO(g); // must use INP_GPIO before we can use OUT _GPIO
OUT _GPIO(g);

while (1){
GPIO_SET = gpio__value;
GPIO_CLR gpio_value;

}

return 0;

Y // main

In third example I'm using RPi GPIO Code Sample edited for bare metal
function. The speed is exactly the same as in second example.

B Enable caches

On bare metal application, we must enable caches L1 & L2 for not loading
instruction and data from RAM. This can be made with assembler:

Listing 7.4: Turn on instruction and data cache in C with inline assembler
commands

// Read System Control Register configuration data
asm ("MRS X0, SCTLR_EL1");

// Set [C] bit and enable data caching

asm ("ORR, X0, X0, #(l <<.2)");

// Set [I] bit and enable instruction caching

asm ("ORR, X0, X0, #(l.<<,12)");

// Write System Control Register configuration data
asm ("MSR, SCTLR_ELIL, X0");

Note that memory management unit must be initialized at this moment.

After that we are getting around 30MHz.

o8

7.3. Conclusion

S
T T T T

Tek n o MPosi 104008 CURSOR

55183

FEE

D ERRRNERER (REEERENY ERSEE NN EEERENE . L EEENEE) EEERNE

$568543853

(NER]

M 10.0ns e T
J0.00713MHz

i

Figure 7.3: C Code (bare switching) with cache and MMU on (measured on
200MHz osciloscope).

. 7.3 Conclusion

All examples are made with bare metal applications.

Speed [MHz] Switch in functions Cache on

(ex.1) 0.6 yes no
(ex.2) 1.8 no no
(ex.3) from RPi GPIO 1.8 no no
(ex.4) 30.3 no yes

Note: Frequencies are for every change of output signal per second.

Table 7.1: GPIO Speed table.

Speeds were very slow when we were not using L.1&L2 caches, around 1.8MHz.
When turning on cache, speed rise to 60 million changes per second (30MHz).
Problem when turning on cache is that we must turn on memory management
unit. Set up the paging array and we tell the CPU to use it.

99

60

Chapter 8

Speed of DA Converters

B s.1 Assignment

Get the maximum speed that can produce DA Converter.

Goal is connect DA converter to Raspberry Pi and generate saw signal with
highest speed. Later I can create different shape of signal like sine wave.

Secondary goal is to find out if the code is continuous, the saw signal would
be flat. To know if processor is not operating something else like interrupt.

B DA Converter properties

I'm using DA converter Philips TDA8702. It is 8 bit converter. It has
clock input pin. I will call it hold pin. If it is turned on, it holds the output
analog value. If it is turned off. The value on output is released.

My interpretation of connecting the converter to Raspberry Pi is using the
shortest way between each circuits. Downside is that bit numbers on converter
do not represent the same numbers of pins on Raspberry Pi.

61

8. Speed of DA Converters

Output voltage values of DA converter starts at 3.3V and continue to 5V.
So range is about 1.7V long.

B Measure conditions

Device: Raspberry Pi 3 B+

® CPU frequency: 1.4GHz (ARM Cortex-A53)

8 GPIO Maximum clock: 125MHz
Measuring osciloscope: Tektronix TDS1001B
® Osciloscope frequency: 40MHz

DA Converter: Philips TDA8702

® QOutput voltage: 3.3V - 5V
Converter clock max frequency: 30MHz

® Analog bandwidth ~ 3dB 150MHz

B 8.1.1 Measuring program

Program will generate saw increment value of 8 bit register. The output will
be brought into 8 different GPIOs to DA Converter and analog value will be
measured in oscilloscope.

First type of program will change output in function. I set the hold bit and
it will hold the analog output. I set it to true at the start of change values of
output pins and reset it after the change is done. This is because I would get
false analog values, when it is not all set yet.

Note that I'm using the char datatype, that has 8 bit length. So I don’t have
to reset the value, but it will throw away carry bit and just reset the number
to zero.

62

. 8.2 Measured tests

8.2. Measured tests

1. Measuring speed within predefined function

2. Measuring speed with enabled cache

3. Measuring speed with predefined constant table, with caches

4. Measuring speed with constant table, caches and using hold bit for

fidelity

5. Measuring how quickly will converter change the output voltage

6. Generating sine wave

B Measuring speed within predefined function

Listing 8.1: Example 1 - generate saw
// NOTE: all GPIOs are already set to output mode

char value = 0;

while (1) {
value++;
gpio_output (16
gpio_output (12
gpio__output (7
gpio_output (5
gpio_output (6
gpio_output (2
gpio_output (21
gpio_output (13
gpio_output (19
gpio_output (16

}

)

)

9

)

9

// CLK — hold the wvalue

& 0x80)); // DO
& 0x40)); // D1
& 0x20)); // D2
& 0x10)); // D3
& 0x08)); // D4
& 0x04)); // D5
& 0x02)); // D6
& 0x01)); // D7

// CLK — release the wvalue

The result of this example is measured in oscilloscope as follows:

63

8.5p66d0fDACOnverterSlIlIllllIllllIlIllllIllllIllIlll

Figure 8.1: Saw generated via DA converter without cache.

As we can see frequency of saw cycles is about 500Hz. Now let’s enable cache
for higher speed.

B Measuring speed with enabled cache

Figure 8.2: Saw generated via DA converter with cache.

Saw generated by DA converter with enabled cache has frequency about
13.7kHz.

64

8.2. Measured tests

B Measuring speed with constant table

In third example I will use constant table for turning values of saw. This
is because it will set all 8 output bits in one operation cycle instead of in 8
cycles. It will boost up saw speed about 8 times.

i

....................

Y L
FErrrrnan

CERRERENLIL [EEEERENEEE |

11-Api=19 00:37 117.655Hs

Figure 8.3: Saw generated via DA converter with constant table.

We can see error when changing to higher bits, because I didn’t used hold
pin due to get the highest speed. The frequency of saw is about 120kHz.

B Measuring speed with managing the hold pin

When adding managing hold pin, I double instruction for writing the register
memory from two instructions to four instructions. Speed is obviously divided
by two. Frequency of saw is 60kHz.

65

8. Speed of DA Converters

: 5.00us
; 3.60¥ |

T.00% A M E00s CH 7 440y
’ 11-Apr-19 0223 S35340kH:

Figure 8.4: Saw generated via DA converter with managing hold pin.

Why I can’t change the hold bit values in setting other values command is
because hold bit must be set between setting other values.

gy, DAT =™ [HD; DAT
— 30V
K= 7 Zw
CLK Sﬁ

/ 30V
3 13V

/ —ov

Figure 8.5: Data set-up and hold times (from Philips TDA8702 datasheet).

66

8.2. Measured tests

Measuring how quickly will converter change the output voltage

Figure 8.6: Change of output voltage (Measured on 200MHz oscilloscope).

The change of output voltage is converter capable about 1V every 6ns. This
means limit of speed comes from Raspberry Pi and hold pin on DA Converter.
Which has frequency of 30 MHz and cannot be switched at the same time

when switching input digital pins.

Bl Sine wave

[ERREE (NEN
- . E

(RRRE N

1

F 5,00 05
11-Apr-13 1313

CH1
58,5933kHz

=t 168008

21 09.52kHZ

1 =V 20.0mY

Cursar 2
2.80us
4944

27 4.40%

Figure 8.7: Generating sine wave with frequency 59.5kHz.

67

8. Speed of DA Converters

Using same set up as shown above with hold pin. Sine wave is generated in
full range of output voltage capable by DA converter.

. 8.3 Conclusion

Speed [kHz] Functions Cache constant table hold pin

(ex.1) 0.5 yes no no yes
(ex.2) 13.7 yes yes no yes
(ex.3) 117.7 no yes yes no
(ex.4) 58.8 no yes yes yes

Table 8.1: Speed of generating saw signal.

When switching output GPIOs with constant table, I can change every 8
bites with one instruction. This changing is capable of producing saw signal
of 256 values (8 bit) with frequency 120kHz. However this producing error
peaks, because it do not hold the value when it is not ready yet. To solve this
I need to add two more instructions dividing twice the frequency to 60kHz.

I did not register any interrupts between tests. Signal is linear when generating
saw and can be used for producing signals like sine wave with fidelity. Up to
60kHz with tested 8 bit DA converter.

68

69

8. Speed of DA Converters

Appendices

70

Appendix A

Bibliography

[Ecl19]

[Foua]

[Foub]

[Gri]

[Gru]

[Hol]

Ibal6]

[Incl2al

GNU MCU Eclipse, How to install the arm toolchain,
|//gnu-mcu-eclipse.github.io/toolchain/arm/install/, May
2019, Accessed: 2019-05-20.

Raspberry Pi Foundation, The boot folder,

/ /www .raspberrypi.org/documentation/configuration/ |
[boot_folder.mdl

, config.tct, https://www.raspberrypi.org/
ldocumentation/configuration/config-txt/README.md.

Richard Grisenthwaite, Armuv8 technology preview, https://www

larm.com/files/downloads/ARMv8_Architecture.pdf|

Mike Grusin, Serial peripheral interface
(spi), https://learn.sparkfun.com/tutorials/
|serial-peripheral-interface-spi/alll Accessed: 2019-05-22.

ARM Holdings, The arm architecture, https://www.arm.com/
files/pdf/ARM_Arch_A8.pdf.

Roger Ferrer Ibanez, FExploring aarch6) as-
sembler, https://thinkingeek.com/2016/10/08/
lexploring-aarch64-assembler-chapterl/, October 2016,
Accessed: 2019-05-20.

Broadcom Inc., Bem?2835 arm peripherals,
|/ /www . raspberrypi.org/app/uploads/2012/02/ |
BCM2835-ARM-Peripherals.pdf, February 2012, updated
for version BCM2837, Accessed: 2019-03-02, p. 89.

71

https://gnu-mcu-eclipse.github.io/toolchain/arm/install/
https://gnu-mcu-eclipse.github.io/toolchain/arm/install/
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/config-txt/README.md
https://www.raspberrypi.org/documentation/configuration/config-txt/README.md
https://www.arm.com/files/downloads/ARMv8_Architecture.pdf
https://www.arm.com/files/downloads/ARMv8_Architecture.pdf
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all
https://www.arm.com/files/pdf/ARM_Arch_A8.pdf
https://www.arm.com/files/pdf/ARM_Arch_A8.pdf
https://thinkingeek.com/2016/10/08/exploring-aarch64-assembler-chapter1/
https://thinkingeek.com/2016/10/08/exploring-aarch64-assembler-chapter1/
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

A. Bibliography

[Inc12b]

[Inc12c]

[Inc12d]

[Inc12e]

[Inc12f]

[Inc12g]

[Inc12h]

[Inc12i]

[Inc12j]

[Inc12k]

, Bem2835 arm peripherals, https://www.raspberrypi
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf]
February 2012, updated for version BCM2837, Accessed:
2019-03-02, p. 90.

, Bem2835 arm peripherals, https://www.raspberrypi
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf),
February 2012, updated for version BCM2837, Accessed:
2019-03-02, p. 102.

, Bem2835 arm peripherals, https://www.raspberrypi,
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf),
February 2012, updated for version BCM2837, Accessed:
2019-03-02, p. 172.

, Bem2835 arm peripherals, https://www.raspberrypi,
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf),
February 2012, updated for version BCM2837, Accessed:
2019-03-02, p. 178.

, Bem2835 arm peripherals, https://www.raspberrypi}
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals. pdf,
February 2012, updated for version BCM2837, Accessed:
2019-03-02, p. 112.

, Bem2835 arm peripherals, https://www.raspberrypi
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals. pdf),
February 2012, updated for wversion BCM2837, Accessed:
2019-03-02, p. 196.

, Bem2835 arm peripherals, https://www.raspberrypi
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf]
February 2012, updated for version BCM2837, Accessed:
2019-03-02, p. 40.

, Bem2835 arm peripherals, https://www.raspberrypi
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf),
February 2012, updated for version BCM2837, Accessed:
2019-03-02, p. 41.

, Bem2835 arm peripherals, https://www.raspberrypi,
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf),
February 2012, wupdated for version BCM2837, Accessed:
2019-03-02, p. 141.

, Bem2835 arm peripherals, https://www.raspberrypi,
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf,
February 2012, updated for wversion BCM2837, Accessed:
2019-03-02, p. 152.

72

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

A. Bibliography

[Inc12]] , Bem?2835 arm peripherals, https://www.raspberrypil
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf],
February 2012, updated for version BCM2837, Accessed:

2019-03-02, p. 109.

[Inc12m] , Bem2835 arm peripherals, https://www.raspberrypi
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf]
February 2012, updated for version BCM2837, Accessed:

2019-03-02, p. 38.

[Inc12n] , Bem2835 arm peripherals, https://www.raspberrypi
lorg/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf]
February 2012, updated for wversion BCM2837, Accessed:

2019-03-02, p. 138.

[Johll] Johan, arm gcc toolchain as arm-elf or arm-none-
eabi, https://stackoverflow.com/questions/5961701/
|larm-gcc-toolchain-as-arm-elf-or-arm—none-eabi-what-is-the-difference,
November 2011, Accessed: 2019-05-20.

[Mag] Magpi Magazine, Raspberry pi 3: Specs, bench-
marks testing, https://www.raspberrypi.org/magpi/
[raspberry-pi-3-specs-benchmarks/|

[Max] Bruce A. Maxwell, A simple makefile tutorial, http://wuw.cs|
|colby.edu/maxwell/courses/tutorials/maketutor/|

[mod18] modexp, A guide to armb64 / aarch64 assembly on linux with shell-
codes and cryptography, https://modexp.wordpress.com/2018/
[10/30/arm64-assembly/, October 2018, Accessed: 2019-05-20.

[Obe] Sophie Charlotte Oberschule, Linker scripts,
|/ /www.scoberlin.de/content/media/http/informatik/gcc_ |
[docs/1d_3.htmll

[Shol5] Chris Shore, Armwv8-a architecture overview,
|//armkeil .blob.core.windows.net/developer/Files/pdf/ |
lgraphics-and-multimedia/ARMv8_Overview.pdf, September
2015, Accessed: 2019-05-20.

[Sol16] Mark Solters, Arm gcc toolchain in ubuntu, http://marksolters,
\com/programming/2016/06/22/arm-toolchain-16-04.html}
July 2016, Accessed: 2019-05-20.

[Sys] GNU Operating System, Cross-compilation,
|/ /www .gnu.org/savannah-checkouts/gnu/automake/manual/ |
html_node/Cross_002dCompilation.htmll

[Uptl8] Eben Upton, New product: Raspberry pi 3
model a+, https://www.raspberrypi.org/blog/

73 |

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://stackoverflow.com/questions/5961701/arm-gcc-toolchain-as-arm-elf-or-arm-none-eabi-what-is-the-difference
https://stackoverflow.com/questions/5961701/arm-gcc-toolchain-as-arm-elf-or-arm-none-eabi-what-is-the-difference
https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/
https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
https://modexp.wordpress.com/2018/10/30/arm64-assembly/
https://modexp.wordpress.com/2018/10/30/arm64-assembly/
http://www.scoberlin.de/content/media/http/informatik/gcc_docs/ld_3.html
http://www.scoberlin.de/content/media/http/informatik/gcc_docs/ld_3.html
http://www.scoberlin.de/content/media/http/informatik/gcc_docs/ld_3.html
https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/ARMv8_Overview.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/ARMv8_Overview.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/ARMv8_Overview.pdf
http://marksolters.com/programming/2016/06/22/arm-toolchain-16-04.html
http://marksolters.com/programming/2016/06/22/arm-toolchain-16-04.html
https://www.gnu.org/savannah-checkouts/gnu/automake/manual/html_node/Cross_002dCompilation.html
https://www.gnu.org/savannah-checkouts/gnu/automake/manual/html_node/Cross_002dCompilation.html
https://www.gnu.org/savannah-checkouts/gnu/automake/manual/html_node/Cross_002dCompilation.html
https://www.raspberrypi.org/blog/new-product-raspberry-pi-3-model-a/
https://www.raspberrypi.org/blog/new-product-raspberry-pi-3-model-a/
https://www.raspberrypi.org/blog/new-product-raspberry-pi-3-model-a/

A. Bibliography

mnew-product-raspberry-pi-3-model-a/,, November 2018,
Accessed: 2019-05-20.

[Wel] David Welch, bootloader07, https://github.com/
|dwelch67/raspberrypi/tree/master/boards/pi3/aarch64/ |

Accessed: 2019-03-21.

74

https://www.raspberrypi.org/blog/new-product-raspberry-pi-3-model-a/
https://www.raspberrypi.org/blog/new-product-raspberry-pi-3-model-a/
https://www.raspberrypi.org/blog/new-product-raspberry-pi-3-model-a/
https://github.com/dwelch67/raspberrypi/tree/master/boards/pi3/aarch64/bootloader07
https://github.com/dwelch67/raspberrypi/tree/master/boards/pi3/aarch64/bootloader07
https://github.com/dwelch67/raspberrypi/tree/master/boards/pi3/aarch64/bootloader07

Appendix B

List of Abbreviations

Shortcut Meaning

IDE Integrated development environment

BIOS Basic Input-Output System

USB Universal Serial Bus

UART Universal asynchronous receiver-transmitter
PC Personal computer

SPI Serial Peripheral Interface

DMA Direct Memory Access

pc program counter

sp stack pointer

75

76

cvuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
e N
Pfijmeni: Vanc Jméno: Petr Osobni Cislo: 465926

Fakulta/ustav: Fakulta elektrotechnicka

Zadavajici katedra/Gstav: Katedra méreni

L Studijni program: Kybernetika a robotika
J

Il. UDAJE K BAKALARSKE PRACI

Nazev bakalarské prace:

Platforma Raspberry Pi bez pouziti operacniho systému

Nazev bakalarské prace anglicky:

Raspberry Pi Platform without an Operating System

Pokyny pro vypracovani:

Seznamte se s mozZnostmi vyvoje programového vybaveni a béhu programu na platformé Raspberry Pi bez pouziti
operacniho systému. UvaZuijte deterministické procesy. Dostupné moznosti porovnejte. Vyberte vhodny zplisob a realizujte
ukazkové programy, zejména pro vstup a vystup dat v realném &ase v definovanych €asovych okamzicich a pro vyuziti
videovystupu.

Seznam doporucené literatury:

[1] https://lwww.raspberrypi.org/forums/viewtopic.php?t=35207

[2] http://www.valvers.com/open-software/raspberry-pi/step01-bare-metal-programming-in-cpt1/

[3] https://lwww.raspberrypi.org/forums/viewforum.php?f=72
[4]nttps://archive.fosdem.org/2017/schedule/event/programming_rpi3/attachments/slides/1475/export/events/attachments/
programming_rpi3/slides/1475/bare_metal_rpi3.pdf

[5] https://en.wikibooks.org/wiki/Bare-metal_Raspberry_Pi_Programming

Jméno a pracovisté vedouci(ho) bakalarské prace:

prof. Ing. Pavel Zahradnik, CSc., katedra telekomunikaéni techniky FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalafské prace:

Datum zadani bakalarské prace: 14.02.2019 Termin odevzdani bakalarské prace: 24.05.2019

Platnost zadani bakalarské prace:
do konce letniho semestru 2019/2020

prof. Ing. Pavel Zahradnik, CSc. podpis vedouci(ho) ustavu/katedry prof. Ing. Pavel Ripka, CSc.
podpis vedouci(ho) prace podpis dékana(ky)

. J
IIl. PREVZETIi ZADANI

Student bere na védomi, Ze je povinen vypracovat bakalafskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych pramenu a jmen konzultant(je tfeba uvést v bakalarské praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

	Theoretical part
	Theoretical introduction
	What is Raspberry Pi
	Raspberry Pi 3
	Architecture ARM
	Architecture ARMv8-A

	AARCH64 assembly
	Registers
	Branching

	Cross compilers
	Introduction
	GNU compilers
	Fasmarm compiler
	AARCH64 elf compiler
	ARM Eclipse build plug-in

	Working with makefiles
	Linker

	Troubleshooting and loading program
	Simulating Raspberry Pi using QEMU
	Using SD card
	Bootloaders

	Practical part
	Basic interfaces
	General purpose input output (GPIO)
	Public timer
	Universal asynchronous receiver transmitter (UART)
	Working with memory
	Interrupts
	Direct memory access (DMA)
	Pulse width modulation (PWM)
	Mailboxes
	Memory management unit (MMU)
	Serial Peripheral Interface (SPI)
	Multicore applications
	Advanced applications

	Screen output

	Experimental part
	Speed of GPIOs
	Assignment
	System properties
	Measure conditions
	Measuring program

	Measured tests
	Conclusion

	Speed of DA Converters
	Assignment
	Measuring program

	Measured tests
	Conclusion

	Appendices
	Bibliography
	List of Abbreviations
	Project Specification

