FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF BACHELOR'’S THESIS

Title: Memory efficient cluster representations in non-metric spaces.
Student: Jaroslav Hlava¢

Supervisor: Ing. Martin Kopp

Study Programme: Informatics

Study Branch: Computer Security and Information technology

Department: Department of Computer Systems

Validity: Until the end of winter semester 2020/21

Instructions

The goal of this thesis is to create a memory efficient representation of network host behavioural clusters
used in the Cognitive targeted anomaly detection framework. The used behavioural similarity measure
does not form a metric space. Therefore the non-metric cluster representation is needed.

Study the state-of-the-art literature on the topic of cluster representations in non-metric spaces.

Create benchmark datasets and use them to compare the memory and computational requirements of
existing methods for cluster representations in non-metric spaces.

Analyze the results, select the best method, and incorporate it into the Cognitive targeted anomaly
detection framework and fine-tune its parameters for the network security domain.

References

Will be provided by the supervisor.

prof. Ing. Pavel Tvrdik, CSc. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague February 25, 2019

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Bachelor’s thesis

Memory efficient cluster representations in
non-metric spaces

Jaroslav Hlavac

Department of Computer Systems

Supervisor: Ing. Martin Kopp

May 15, 2019

Acknowledgements

I would like to express my thanks to my supervisor Ing. Martin Kopp for the
inspiration I always brought from our meetings, for the opportunity to work
on a real problem and last but not least for his patience.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 15,2019 .

Czech Technical University in Prague

Faculty of Information Technology

© 2019 Jaroslav Hlavac. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Hlava¢, Jaroslav. Memory efficient cluster representations in non-metric
spaces. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2019.

Abstrakt

Internet je dnes nejpouzivanéjsim komunika¢nim médiem a proto je bezpecnost
pocitacovych siti aktudlnim tématem. Monitorovani opakujicich se vzora v
chovani jednotlivych siti je jeden z moznych pristupt k jejich zabezpecovani.
Presnost a rychlost detekce anomaélii je zavisla na kvalité modelu vytvoreného
pro danou sif. Na zdkladé chovani jednotlivych prvki lze sif rozdélit na
mensi ¢asti. Tim se predejde ptilis robustnimu modelu zanesenému Sumem
zplisobenym riznorodosti prvkl v siti. Jeden z moznych pristupt k vytvoreni
téchto ¢asti je komunitni shlukovani. Tyto shluky mohou mit az tisice reprezen-
tanti, pokud se jednd o velkou sit.

V této praci je prezentovan algoritmus pro vytvareni shlukovych proto-
typu v Cognitive Targeted Anomaly Detection Framework. Momentélné jsou
shluky v tomto frameworku reprezentovany ndhodnou podmnozinou prvki z
celého shluku. Pro shlukovéani se pouzivéa parova podobnost mezi jednotlivymi
prvky. Proto je potieba vyuzit medodu pro vybér reprezentanti, ktera je
pouzitelna i v topologickych prostorech. Modifikovany algoritmus §-Medoids
je predstaven jako novéa metoda pro vytvareni shlukovych prototypu. Algo-
ritmus J-Medoids Modified pro kazdy shluk zajisfuje vybér malého mnozstvi
reprezentantti s maximalnim mnozstvim zachované informace pro pouziti v
klasifikacnich problémech a je rychlejsi nez nemodifikovana verze algoritmu.

Klicova slova algoritmus -Medoids, Detekce anomalii, Komunitni shlukovéani,
Parova podobnost, Systém detekce naruseni, Topologicky prostor, Vybér reprezen-
tantt

vii

Abstract

The Internet is a dominant medium for communication, therefore securing
computer network is a crucial task. One approach for securing networks
is monitoring their behavior patterns. Precise and fast network behavior
anomaly detection highly depends on the models created for the monitored
network. To create a model that is not clogged by noise from the whole net-
work, hosts can be separated into smaller groups by community-based cluster-
ing. On big networks of tens of thousands devices, these clusters can contain
several thousands of hosts.

This thesis presents an algorithm for finding cluster prototypes for clusters
in Cognitive Targeted Anomaly Detection Framework. In the framework, a
pair-wise similarity measure is used for clustering. Clusters are then repre-
sented by a number of randomly selected samples. Therefore, representative
selection methods for topological spaces have to be used. A modification of
0-Medoids algorithm is proposed with the ability to select a low number of rep-
resentatives while maintaining the best possible coverage of the cluster. The
introduced algorithm is also faster then the unmodified version of d-Medoids.

Keywords §-Medoids algorithm, Community-based clustering, Intrusion de-
tection system, Network anomaly detection, Pair-wise similarity, Representa-
tive selection, Topological space

viii

Contents

Introduction

(Goals|

L Intrusion Detection System|
[L1.1 Types of Intrusion Detection Systems|
I1.2 Network Anomaly Detection|.
[1.3 Challenges of Real-Time Anomaly Detection|
[1.4 Cognitive Targeted Anomaly Detection Frameworkl

BTl cal O x IS Fithe Aril
[2.1 Introduction to Clustering|
[2.2 Clustering in Topological Space|
2.3 Representative Selection|
2.4 Algorithms Relevant for Topological Space|.

B_Datasets|

3.2 Image Recognition Datasets|
3.3 Network Security Dataset|

4 Experiments|

4.2 Test on Image Recognition Datasets|
4.3 Test on Network Security Data]
44 Fitofthe Datal oo oL

iConclusion|

|Bibliography|

ix

11
11
12
14
18

23
23
24
25

27
27
33
35
39

41

43

45

47

List of Figures

2.1 Centroids of a cluster calculated as mean of all points.| 16
2.2 Choice of medoidd 17
2.3 Comparing run times of 0-Medoids and Random Selection| 22
3.1 Graphs of all datasets| 24
4.1 Confusion matrices for Blobs 3D dataset! 29
4.2 Contusion matrices for Overlap dataset| 30
4.3 Confusion matrices for Moons dataset] 31
4.4 Confusion matrices for Circles 3D dataset| 32
4.5 Difference between o-Medoids Full and Modifiedl 32
4.6 Contusion matrices for Pendigits dataset|. 34
4.7 Confusion matrices for MNIST Fashion dataset/ 36
4.8 Confusion matrices for real network datal 38
4.9 Average fit of representatives in one cluster| 39

xi

List of Tables

4.1 Number of selected representatives with coverage in percent for the

L Blobs3D datasetl oo 28
4.2 Number of selected representatives with coverage in percent for the |
| Overlap dataset|. 29
4.3 Number of selected representatives with coverage in percent for the |
[Moons dataset] 30
4.4 Number of selected representatives with coverage in percent for the |
[Circles3D datasetl 30
4.5 Number of selected representatives with coverage in percent for the |
| Pendigit dataset| 0 L. 33
4.6 Number of selected representatives with coverage in percent for the |
[MNIST Fashion datasetl 35
4.7 Number of selected representatives with coverage in percent for the |
[real network datalo o 37

xiii

Introduction

The Internet became a dominant medium for communication several decades
ago, and there are still many issues concerning its security. Companies all
around the world connect more and more of their infrastructure to the Inter-
net. Each connected device is an opportunity for attackers. Security engineers
are always inventing new methods to stop the attacks and keep their networks
safe and secure. It is a never-ending race between attackers, trying to over-
come new security methods, and defenders, the security personnel, trying to
be always one step ahead of the attackers. This race creates the drive for very
sophisticated defense mechanisms.

Multi-layer defense systems are protecting contemporary networks. As
attackers overcome one layer, there is yet another layer waiting for them.
However, if the attackers succeed to bypass all of them unnoticed, a huge
problem can occur. Attackers can collect user credentials, exfiltrate data or
gain control of devices without anybody’s knowledge. It can take a long time
before the breach is noticed. A similar thing happened in Marriot Interna-
tional child company Starwood in 2018 [I]. Names, emails, addresses and
credit card numbers of 500 million customers were stolen in an attack that
was discovered in 2018 but possibly could have begun as early as in 2014.

One of several methods that are used to detect such intrusions is looking
for anomalies in the behavior of network hosts - Network Behavioral Anomaly
Detection (NBAD). In NBAD, devices inside the network are used as probes
to gather information about the behavior of the network or individual hosts.
The current behavior of the network is then compared to a model created
from the historical data. If a significant deviation occurs, the security team is
notified and can act accordingly.

It is not uncommon for a company to have tens of thousands of devices or
even more. Using a single model for the whole network may be insufficient to
detect breaches successfully. For example, an infection of a single device can
be missed in the traffic of a medium sized company. In order to detect such
anomalies, it is needed to focus on smaller parts of the network. Clustering

INTRODUCTION

network hosts based on their behavior can be used to divide it into smaller
pieces.

In Cognitive Targeted Anomaly Detection Framework from Cisco, host
behavior is used to find groups of similar hosts in a network. The main focus
of this thesis is to find a memory efficient representation of these clusters which
also allows them to change dynamically in time. Four algorithms previously
used to represent clusters were studied and modified for future use in Cognitive
Targeted Anomaly Detection Framework. They were tested and compared on
both real and test datasets.

The thesis is organized as follows. Chapter [1]introduces the anomaly-based
network intrusion detection. Chapter [2] explains the theory behind cluster-
ing and representative selection in metric and non-metric spaces. Chapter [3]
presents datasets that were used for testing. Chapter [4] covers all the experi-
ments with their results and is followed by the conclusion of this thesis.

Goals

This work aims to study methods that can be used in Cognitive Targeted
Anomaly Detection Framework for the representation of network host behav-
ioral clusters. Behavioral similarity used for clustering in this framework does
not form a metric space, which creates a requirement for algorithms used for
representative selection.

This thesis should present a method that can be used for finding the cluster
prototypes of clusters in a non-metric space. Cluster prototypes represent the
whole cluster in a way that is convenient for further computation, for example,
assigning newly added samples to their corresponding cluster.

Networks monitored by Cognitive Targeted Anomaly Detection Frame-
work can have up to several hundreds of thousands of hosts which leads to
massive clusters. If the classification of newly added hosts were done by com-
paring the new host to all others, the memory and time needed for classifica-
tion would be unmanageable. In the framework, each cluster is represented
by a subset of its samples. The number of representatives selected from each
cluster should be kept as small as possible to maintain computational and
memory efficiency.

Methods used for general cluster representation in non-metric spaces should
be studied. From these previously studied methods, the best-suited ones will
be selected and implemented. As part of this thesis, a benchmark dataset for
testing the chosen methods should also be created. A further goal is to test
the chosen methods on clustering datasets used by others and on a newly cre-
ated benchmark dataset. Based on this testing, a method should be selected
that suits best the security field and can be incorporated into the Cognitive
Targeted Anomaly Detection Framework. This method should be finetuned
to get the best possible results in the framework.

CHAPTER 1

Intrusion Detection System

This chapter presents the ideas from network security needed to understand
the main objective of this thesis. Different approaches to network intrusion
detection systems (IDS) are explained in Section In Section the
scope is narrowed to network anomaly detection IDS and Section delves
deeper into the challenges of it. Section serves as an introduction to
Cognitive Targeted Anomaly Detection Framework used by Cisco. Methods
researched in this thesis were tested on real data collected from Cognitive
Targeted Anomaly Detection Framework.

1.1 Types of Intrusion Detection Systems

An intrusion detection system (IDS) is a security tool designed for identifica-
tion of unauthorized use or abuse of computer systems by both system insiders
and external penetrators [2]. IDS that is explicitly designed for monitoring
computer network is called Network IDS (NIDS) as in comparison to host
IDS and hybrid IDS. Host IDS focuses on monitoring the internal state of
a computer system (e. g. mainframe computer) and its dynamic behavior.
Hybrid IDS combines different techniques including the ones used in a host
and network IDS creating an IDS that can leverage information from each of

its parts for better intrusion detection. Examples of NIDS software are [3]:
e Snort
e Suricata
e Bro Network Security Monitor

These systems are used on computer networks to detect and or even prevent
attacks that are threats to the essential services of such a network. These
basic services are [2]:

e Data confidentiality

1. INTRUSION DETECTION SYSTEM

e Data and communication integrity
o Accessibility

Attackers try to disrupt these services by accessing confidential information
(snooping), manipulating information (data tampering attacks) or disabling
access to network services (Denial of Service attacks). IDS must have multiple
components to detect as many of these attacks as possible. As each kind of
intrusion is better detected by a different method, there are several types of
IDS []:

e Signature-based (knowledge-based): Patterns of known attacks or
threats are being compared to captured events for intrusion detection.

e Anomaly-based (behavior-based): A static or dynamic model of a
given network is created over a period of time, and the current network
behavior is compared to expected (model) behavior for anomalies.

e Stateful protocol analysis (specification-based): The system keeps
track of known protocols (e. g., pairing requests with replies) and finding
unexpected behavior in these protocols.

Cognitive Targeted Anomaly Detection Framework combines all of these ap-
proaches. This thesis focuses on the behavior-based part of the framework.

1.2 Network Anomaly Detection

Network anomaly detection is a method used in Intrusion Detection Systems
(IDS) as explained in the previous section. This method focuses on comparing
network host behavior changes in time. If a change more significant than a
certain threshold is observed, network anomaly is detected. In IDS, when an
anomaly is detected, an alert is created to inform the network administrator
about what has happened. This alert can be any kind of message ranging
from a syslog message to an email sent to the admin.

Host behavior is collected from devices in the network. There is at least
one device (although many times multiple) dedicated for collection of net-
work flows (using NetFlow protocol). Flow collection is the most widely used
method for gathering data on the network. One network flow is an aggregated
information about one connection that consists of source and destination ad-
dresses, source, and destination ports, begin and end timestamps for commu-
nication and size of data transferred in each direction [5]. This aggregation
of information enables much faster (even real-time) detection of problems on
a network as compared to, for example, deep packet inspection (DPI). DPI is
another method used to detect problems in a network. It focuses on explor-
ing the payload of each packet and is mostly considered unusable. Not only

6

1.3. Challenges of Real-Time Anomaly Detection

the majority of traffic is encrypted, but it is also impossible to look into each
packet because of the enormous amount of traffic in today’s networks.

Network flows are collected and then sent via NetFlow protocol to one
place where they are stored, and evaluated by detection algorithms. Network
anomaly detection system creates a baseline model of the network behavior,
which is then compared to the actual traffic. Any sudden change is considered
to be an anomaly that is reported by the IDS.

1.3 Challenges of Real-Time Anomaly Detection

There are several challenges in anomaly-based network intrusion detection.
A huge volume of data needs to be processed very fast to keep the real-time
reaction rate to anomalies. Also, each normal behaviour that is identified as
anomalous creates unwanted load for postprocessing of the occurence. Having
a big amount of these false positives slows the process down. Finally there is
a lack of labeled training data to create models of wanted network behavior
[6].

Therefore, even having access to all the traffic in a network does not nec-
essarily mean that every anomaly that occurs can be detected. Maintaining
a model for each host is not an option as not every network host generates
enough traffic to create a precise model of its behavior. Creating a behavioral
model for the whole network is not a very good option either. The behavior
of each host is different and combining them together leads to a very diverse
model. A small amount of infected devices or a single intrusion attempt can
be easily missed in this model due to the volume of information given by the
rest of the network.

To give an example, imagine detection of a single infected device, such as a
printer in a 10 story office building. This printer, being a part of a botnet, was
ordered to generate traffic for DDoS (Distributed Denial of Service) attacks.
Looking at the traffic of the printer before and after infection it could easily
be seen that it increased by several hundred or even thousands of percent.
However, an anomaly detection system could hardly notice a change when
considering the traffic of the whole office building.

If an AD system does not mark malicious traffic as an anomaly, it is con-
sidered a false negative. That is another challenge AD systems are struggling
with, to keep the number of missed attacks at 0 or as close to it as possible.

One more problem connected to false negatives are the false positives. A
false positive is a network sample of benign network traffic marked as anoma-
lous by the AD system. For example, if we would have our anomaly detection
system set up wrong, it might detect an anomaly every day at 8 AM when
workers come to the office, start their computers and download daily email.
Comparing the time window from before 8 AM and after 8 AM would not
give us any relevant information. This problem can be mitigated by setting a

7

1. INTRUSION DETECTION SYSTEM

window, for which the model is calculated, long enough so that these mistakes
do not happen. There are many other situations when false positive alerts
can happen. Having more than 0 false positives is not that big of a problem
as having more than 0 false negatives. In IDS there is always a way to filter
and double check the anomalies. However, a network anomaly detection sys-
tem should avoid a big overhead in false positives as it could overwhelm the
System.

In conclusion, a good anomaly detection system should detect all anomalies
that are somehow connected to malicious behavior while trying to keep the
number of false positives alerts as small as possible. The small number of false
positives that are reported is then analyzed further in the following layers in
the IDS.

1.4 Cognitive Targeted Anomaly Detection
Framework

Algorithms studied in this thesis are tested as a part of Cognitive Targeted
Anomaly Detection Framework which is a part of Cognitive Threat Analytics
developed and used by Cisco. This framework successfully uses community-
based clustering on the behavior of each host [7]. The aim is to split the whole
network into smaller groups. Running anomaly detection for each group then
yields significantly better results as compared to the traditional whole network
approach. Not only it works better because of community-based clustering,
but also because of the ability to adapt dynamically as the network changes.
Thus it is able to incorporate changes that happen on a given network such
as adding and removing devices.

The method is separated into two phases. In the initial phase, the state of
the network is learned, and an initial model is created. Then, in the second
ongoing phase, the framework dynamically adjusts clusters to the current state
of the network.

The initial phase starts by collecting 24 hours of traffic from a given net-
work. Collected data consists of network traffic flows and proxy server logs.
Once the 24-hour period is over, clustering of hosts starts. Each host is rep-
resented by a tuple h = S, F", where:

e S” represents set of all visited pairs server:port

e F" represents the frequency of visits of server:port pairs

1.4. Cognitive Targeted Anomaly Detection Framework

The frequency is defined as:

.n
2

FS}L:EZI(thsvh)v (1)

1

where n is the number of time windows, I is the indicator function, which
is 1 if the network host h visited the server s in the timewindow t; and 0
otherwise. This ratio-based frequency ensures that frequently visited servers
(e.g., Google, Facebook) do not overshadow the less frequently visited servers.

When each host is represented, the clustering algorithm is started. A
technique called community-based clustering is used to create groups of hosts.
This clustering works for graphs, where communities are more densely con-
nected parts of the graph. In the words of this NBAD: Those hosts that
communicate with similar peers are considered to be in the same community.
Community-based clustering is explained in detail in Section

The density of samples in sets of data is determined by cosine similarity
of frequency vectors of two hosts. Similarity measure between hosts a and b
is defined as:

5
sim(a, b) = = , (2)
DU

where F'*, F® represent the frequency and S represents the union of sets of
servers visited by the network hosts a and b.

After the clustering is done, only clusters that are bigger than 10 hosts
are selected for representative selection. Smaller clusters are analyzed using
a fallback method - host-centric anomaly detection. For the purpose of this
work, we do not consider clusters smaller than 10 hosts.

When clusters are determined, x random representatives are selected from
each cluster. Currently, x is an empirically set parameter. In this thesis,
tests were made to improve this random selection method. A more detailed
explanation of this method can be found in [7].

After the initial training phase is over and the model is established, data
continues to be collected. Every 4 hours all hosts that are observed are as-
signed to existing clusters. At that point, a portion of cluster representatives
is replaced by new ones to capture the ever-changing nature of the network
data.

These clusters are then further used in anomaly detection. They serve as
a foundation for calculating baseline behavior for hosts belonging to it. If a
host is known to belong to a cluster A and its behavior suddenly starts to
differ from the behavior of representatives selected for cluster A, an anomaly
is found and reported further into the NIDS.

CHAPTER 2

Theoretical Overview and State
of the Art

This chapter introduces a theoretical background to explain clustering meth-
ods, the topic of non-metric spaces and the problem of representative selection.

2.1 Introduction to Clustering

As defined in [8], clustering is an unsupervised machine learning method that
organizes objects into groups so that each group consists of members that are
similar in some way. Without any prior knowledge of the data, this method
looks for structures in feature vectors. For each cluster ¢, a variability can
be calculated. It shows how much objects in given cluster differ. Variability
and dissimilarity are two properties defined for a better understanding of the
data. Variability is defined as

variability (c) = Z distance(mean(c), e)? , (3)

ecc

where e is an object from given cluster. The distance is a measure that quan-
tifies the proximity of two objects with the same number of features. Many
different distance measures are used in clustering. FExamples of commonly
used ones are:

Euclidean distance

Manhattan distance

Mahanalobis distance

e Cosine similarity

11

2. THEORETICAL OVERVIEW AND STATE OF THE ART

Dissimilarity is defined as

dissimilarity (C) = Z variability(c) , (4)
ceC

where C stands for a set of all clusters. For clustering, the aim is to keep
the dissimilarity of all clusters from the dataset as low as possible. Given this
definition, the best way to cluster every dataset would be to put each object
to its cluster. That would not lead to any reasonable result. Therefore there
is a constraint added for clustering methods. It can be either the maximum
number of clusters or the maximum distance between two clusters.

A straightforward example of clustering is a method called agglomerative
hierarchical clustering [8]. Given N objects in a dataset, it creates N clusters
- meaning there is a cluster for each object. The method looks for two clos-
est clusters and merges them into one. This agglomerative merging continues
until the constraint is met, meaning until there is a certain number of clus-
ters or until the distance between closest clusters exceeds a certain threshold.
This method is a greedy algorithm, and therefore it might not result in glob-
ally optimal clustering. Also, the algorithm has a time complexity of O(n?).
Therefore, it cannot be used in big datasets.

An example of a much faster clustering algorithm that is also greedy is
K-means [§]. The 'K’ in K-means stands for the number of clusters that we
want to get as a result. To use this algorithm, the number of desired clusters
has to be known in advance. K-means randomly chooses K centroids in the
space of the dataset and then assigns each point to a centroid. After creating
these clusters, it calculates a new centroid for each cluster and then assigns
the points in datasets to the new centroids. The algorithm stops when the
centroids of clusters stop changing. Algorithm [I] shows the pseudocode of
K-means algorithm.

This algorithm is fast, it has time complexity O(k - n), where k is the
number of clusters and n is the number of objects in a dataset. It is the most
common clustering algorithm as it typically converges in a few iterations. For
more details about basic clustering algorithms see [§].

The clustering, as explained in this section has restrictions make it in-
aplicable in Cognitive Targeted Anomaly Detection Framework. Firstly, the
number of clusters is not previously known, so choosing K for K-means is not
an option, and secondly, the distance measure used does not form a metric
space. Next section delves deeper into what it means when a measure does
not form a metric space.

2.2 Clustering in Topological Space

This section explains how does clustering approaches differ in topological
spaces. A metric space is a topological space with special properties, that

12

2.2. Clustering in Topological Space

Algorithm 1 K-means
Input: data X = zg, z1, ..., ,; number of clusters &
Output: k clusters; k centroids
1:t=0
2: Initialize centroids; = k randomly chosen examples from X
3: do
4: t=t+1

5. Initialize clusters = ()

6: for cin centroids; do

7: Initialize cluster. = ()

8: add cluster. to clusters

9: end for

10: for x in X do

11: closest_centroid = argmin . .oniroids (¢,)
12: add x to cluster osest centroid

13: end for

14: centroids; = 0)

15: for cluster in clusters; do

16: new_centroid = mean(cluster)
17: add new_centroid to centroids;
18: end for

19: while centroids; = centroids;_1

20: return clusters, centroids;

are given in its definition. Therefore, each clustering algorithm that works on
a topological space will work on a metric space also. However, there are algo-
rithms that give better results in metric spaces that will not work by definition
on a topological space, i.e. K-Means algorithm.

A metric space (see e.g. [9]) is a pair (X,d) where X is a set and d is a
mapping X x X — R which satisfies the following conditions:

(i) d(z,y) = 0;
(i) d(z,y) =0 <= z=vy;
(ili) d(z,y) = d(y,z)
(iv) d(z,2) < d(z,y) + d(z, 2) for z,y,z € X.

Any function d following these conditions is called distance.

The similarity measure in Equation [2] does not fulfill the last point of
the definition above, as is explained in Section Consequently, it is not
a distance and does not form a metric space. Furthermore, it is a pairwise
similarity that forms a subspace for comparing each pair of samples. This

13

2. THEORETICAL OVERVIEW AND STATE OF THE ART

is why that similarity measure forms a topological space, which is defined as
follows (see e.g., [10]).

Given any set S a topology on S is a family F' = F,|a € A, where A is
some indexing set, each F,, C S, and with the following properties:

(i) The empty set @ is in F.

(ii) The given set S is in F'.
(iii) The intersection of any two sets of F is in F.
(iv) The union of any number of sets of F is in F.

The ordered pair (S, F') is called a topological space.

K-means clustering from the previous section cannot be used, because
centroids do not exist in topological spaces. A popular method that is used
for clustering in non-metric spaces is called community-based clustering.

Community-based clustering detects communities in the data [7]. A com-
munity is a subset of examples in the data, that is densely connected with each
other. One of the ways how to detect communities in a graph is to create a
full-adjacency matrix. This matrix contains all connections between all nodes
in the given graph. Analyzing the matrix can tell us about the densities in
different parts of graphs.

Louvain method is a similar approach to clustering when we do not have a
simple graph but a set of samples and a pairwise similarity measure [7]. This
method relies on creating a full similarity matrix for the whole dataset and
then looking for communities in the data.

In Cognitive Targeted Anomaly Detection Framework, Louvain method
cannot be used directly as calculating the full similarity matrix has a com-
plexity of O(n?), which is impossible to calculate for a large network. That
is why an approximative clustering method is used. This method iteratively
samples network hosts and runs the clustering algorithm on the sampled hosts.
Each iteration creates or updates cluster prototypes. If the data in the cur-
rent batch fit into a previously prototyped cluster, they are added to it, and
the cluster prototype is updated. If samples differ more than a predefined
threshold, a new cluster prototype is created.

2.3 Representative Selection

This section focuses on the idea of finding a representation of clusters. Clus-
tering huge datasets can result in big clusters of several tens of thousands of
objects in them. Computational operations such as assigning new objects to
clusters (e. g. K-Nearest Neighbors) are dependent on the number of objects
in each cluster or the representation of these clusters. If it was possible to

14

2.3. Representative Selection

represent these clusters in a different way than keeping all track of all of the
objects, further operations on these clusters would run faster.

A cluster prototype is a data sample that represents all samples in the
data cluster. According to [11], there are three motivations for finding the
most representative cluster prototypes:

e Summarization
e Compression
e Efficient Finding Nearest Neighbors

All of these apply to the NBAD. Therefore, summarizing the behavior of the
whole cluster into a cluster prototype is desirable. As is finding the smallest
possible number of prototypes for each cluster for efficient finding nearest or
most similar neighbors when adding new hosts to their corresponding clusters.

2.3.1 Definition of Representative Selection for Non-Metric
Spaces

Representative selection aims to find a minimal subset of examples from a
cluster, that carries sufficient information about the whole cluster. This prob-
lem was well defined in [I2] and the following definition is taken from that
paper.

Let X be a data set, d: X xX — R+ be a distance measure (not necessarily
a metric), and J be a distance threshold below which samples are considered
sufficiently similar. The task is finding a representative subset Z C S that
best encapsulates the data. Two following requirements are imposed on an
algorithm for finding a representative subset:

¢ Requirement 1: The algorithm must return a subset Z C S such that
for any sample = € S, there exists a sample z € Z satisfying d(z, z) < 6.

e Requirement 2 : The algorithm cannot rely on a metric representation
of the samples in S.

To compare the quality of different subsets returned by different algorithms,
two criteria are measured:

e Criterion 1: |Z] - seeking the smallest possible subset Z that satisfies
Requirement 1.

e Criterion 2: Representative should best fit the data on average. Given
representative subsets of equal size, the preference is on the one that
minimizes the average distance of samples from their respective repre-
sentatives.

15

2. THEORETICAL OVERVIEW AND STATE OF THE ART

a) b)
3 - @ Centroid - @ Centroid
@ Cluster points e .. @ Cluster points
] 10 L L]
. ° o o3 2 .
2 « * .® '--
. * s . L]
. o %, °
1 ° ® L . s s .
.
‘ g : ® 20 .’ 06 et o . -'
]]
- o of® ... e 2% e L] R -. . . A
0 . :" o Pep ‘..
. [}
o * w V% "* 04 s
0® o % v %y, Se .
% « = . *
-1 L] * o [[]
.'.% L4] 02]
® e o ® .
L]
o . . oo . - o
L]
. 00| @@ &

Figure 2.1: Centroids of a cluster calculated as mean of all points.

Criteria 1 and 2 are applied to a representative set solution. In addition, the
following desiderata for a representative selection algorithm are expected.

e Desideratum 1: Stable representative selection algorithms are pre-
ferred. Let Z; and Z5 be different representative subsets for dataset S
obtained by two different runs of the same algorithm. Stability is defined

as the overlap ‘282} . The higher the expected overlap is, the more sta-

ble the algorithm is. This desideratum ensures the representative set
is robust to randomization in data ordering or the choices made by the

algorithm.

e Desideratum 2: The algorithm should be efficient and scale well for
large datasets.

This definition of representative selection problem serves well for this pa-
per.

2.3.2 Representative Selection in a Metric Space

A dataset that hase the same number of features for each sample and there
is a metric metric that fulfills all the requisites in the definition of the metric
space is a metric dataset. Selecting a prototype from this dataset is often
best achieved by calculating a centroid for a given cluster. A centroid can be
calculated as the mean of the points in the cluster. An example of a centroid
in a cluster can be found in Figure a). Other ways of calculating centroids
can be used, e.g. weighted average of all points.

16

2.3. Representative Selection

a) b)
3 - @ Medoid P @ Medoid
@ Cluster points I .. @ Cluster points
L 10 L] P L]
® .
. - .. s (1] ‘ ® .
2 s ° .y ®e
. Y, o8 . "Lt
. * . .
e %y
1 . ** o3 . .-' . .
]
* egd g R ." 06 et @ %
]]
= T eef o 3% . . % = % .
0 L Y -
* :' f." °
. LI - 04 s
(1] *
o s, 00 ™y, e .
-
b} *« ® . *
-1 L] C ™ ® []
.'.'t b . 02 .
LI P X] .
.
2 LI oo . - o
L]
. 00| @@ 4

Figure 2.2: Choice of medoids

However, if a calculated centroid is not meaningful (see Figure b)), a
medoid can be selected as an alternative to it. A medoid is a point that is in
the set that minimizes the average distance to all the other points in the set.
It can be thought of as a median of the dataset. Formally, medoid is defined

as:
n

Tmedoid = argminye{zl,mg,...,mn} Z d(yv xz)) (5)
i=1
where x1, xo, ..., T, is a set of n points in a space with a distance function d.
In Figure 2.2 medoids were chosen instead of centroids.

2.3.3 Representative Selection in a Topological Space

According to the previous section, the concept of centroid cannot be used
to solve the problem of finding a representative in an arbitrary space (i.e.,
topological space). Instead, medoids can be selected for datasets in arbitrary
spaces.

K-Medoids algorithm resembles K-means algorithm in breaking the dataset
into K groups. In these groups it finds a medoid that is minimizes the dis-
tance to each other point in the group. K-Medoids is most commonly used
for representative selection in topological spaces.

There are not many other well-explored methods for solving the problem
of finding medoids. The one that is used in this thesis is explained in [12]. The
main ideas from K-means clustering were taken and transformed for usage in
a non-metric space with a pair-wise similarity measure. Instead of stating the
K in advance they state a parameter 0 < § < 1 that serves as a constraint.
Then they separate the cluster into subclusters based on this parameter. Each

17

2. THEORETICAL OVERVIEW AND STATE OF THE ART

of these subclusters is represented by a medoid. A set of these medoids then
serves as a cluster prototype for the whole cluster. This method is explained
in greater detail in the Section

2.4 Algorithms Relevant for Topological Space

Based on the previously explained approaches for finding representatives of
clusters in non-metric spaces, the following methods were chosen, tested and
compared as a part of this thesis.

e Random selection
e Greedy Selection
e)-Medoids One-Shot

e)-Medoids

2.4.1 Random Selection

Random selection algorithm serves as a baseline to measure the improvement
as it is the method currently used in Cognitive Targeted Anomaly Detection
Framework. It selects a given number of representatives from the cluster
randomly.

In dense clusters, selecting random samples from each cluster leads to un-
desired noise. However as experimental results presented in [7] in the domain
of computer networks, the density of clusters is not significant. It, of course,
depends on each network, but given the best practices in segmentation of
networks, the overlaps in clusters are not expected to be great.

2.4.2 Greedy Selection

The greedy selection algorithm is a straightforward algorithm that selects a
random sample from the set as the first representative. Then it looks for the
most different sample in the rest of the dataset. Once the desired sample
is found, the algorithm removes all neighboring samples with at least the
similarity of & from the set. Then it looks for other dissimilar samples until
the whole set is represented.

The speed of this algorithm depends on the sparsity of the given set. In
the worst case scenario, all points would be selected as representatives while
always calculating the distance to each remaining sample in the set. Then it
would reach the time complexity of O(n?).

18

2.4. Algorithms Relevant for Topological Space

2.4.3 o6-Medoids

The two following algorithms were first explained in [I12]. They were tested on
two different problems that also use clustering in non-metric space - computing
distance of two musical segments and comparing trajectories of objects.
0-Medoids algorithm tries to find a minimal subset of points that are
needed to cover the cluster with only one given constraint, that distance of the
representatives would be at least 6. There are two versions of this algorithm.
One-shot version is faster but less precise than the full J-medoids algorithm.

2.4.4 0-Medoids One-Shot

The idea behind this algorithm is to go through the dataset looking for repre-
sentatives that differ at least by the given parameter ¢ from each previously
selected representatives. By taking this approach, it can in one iteration over
data find the representatives that are certain to differ by § from each other.

The pseudocode of this algorithm is shown in Algorithm [2 It have been
optimized for better memory efficiency as opposed to the version in the cited
paper. The main ideas remain the same, only keeping track of clusters that
the points are assigned to is removed for this one-shot version.

Algorithm 2 §-Medoids One-shot

Input: data zg ... x,,, required distance ¢
1: Initialize representatives = ()
2: for i =0 to m do
3: Initialize dist = oo

4: for rep in representatives do
5: if d(z;,rep) < dist then
6: dist = d(z;,rep)

7: end if

8: end for

9: if dist > § then

10: add z; to representatives
11: end if

12: end for

The choice of the first representative strongly influences the selection of
the medoids to represent the cluster. In some cases, this one-shot approach
could be misleading.

2.4.5 0-Medoids Full

The full version of the algorithm runs a one-shot algorithm multiple times.
Each time it goes through the dataset it selects a better medoid than before.
If two consecutive passes through the data do not change any medoid, the

19

2. THEORETICAL OVERVIEW AND STATE OF THE ART

algorithm stops. This algorithm is shown in Algorithm [3] Original algorithm
from [I2] lacks the routine ReduceClusters on line 24. This routine is intro-
duced in this thesis as an improvement of the algorithm because the original
algorithm selected too many representatives. It is explained in greater detail
in the Section 2.4.6]

This approach is slower than §-Medoids, as the main routine from one shot
algorithm has to be run multiple times. Experimental results of [12] show that
the algorithm converges in very few (<10) cycles. On the other hand, it is
able to select better medoids, thus getting rid of the difficult choice of the first
representative to select.

Algorithm 3 §-Medoids

Input: data zq ... x,,, required distance ¢
1:t=0
2: Initialize representativesy, = ()
3: Initialize clusters = ()

4: do

5. t=t4+1

6: fori=0tomdo

7 Initialize dist = oo

8: Initialize representative = null

9: for rep in representatives do

10: if d(x;,rep) < dist then

11: representative = rep

12: dist = d(z;,rep)

13: end if

14: end for

15: if dist < ¢ then

16: add z; to clusteryepresentative

17: else

18: representative = x;

19: Initialize clusteryepresentative = 0
20: add z; to clusterrepresentative

21: add clusteryepresentative to clusters
22: end if

23: end for

24: Call ReduceClusters

25: Initialize representatives; = ()
26: for cluster in clusters do

27 representative = argmin ¢ g, qer(> d(z,s) 1 d(z,s) < 6)
rEcluster
28: add representative to representatives;

29: end for
30: while representatives; = representatives; 1

20

2.4. Algorithms Relevant for Topological Space

2.4.6 0-Medoids Modified

The algorithm §-Medoids Full does not have any restriction for the number of
representatives it selects for each cluster. Results in Chapter |4] show that the
full algorithm can select up to a third of a big complex cluster which does not
satisfy the Criterion 1 from Section properly. To reduce the number of
representatives a subroutine ReduceClusters was introduced as a modification
to the original algorithm. The subroutine is shown ReduceClusters shown in
Algorithm

The basic idea behind this modification is to get rid of representatives that
cover a small portion of the whole dataset by either merging them with similar
representatives or dropping them entirely. If a representative does not cover
at least 1% of the cluster, the routine tries to add it to the coverage of the
representative that is the most similar. If no such similar representative exists,
it is considered noise and the representative is dropped from the cluster.

Algorithm 4 ReduceClusters
Input: m subclusters X = x;,...,x,,; their representatives R = rq, ..., m;
whole cluster sizes; constant s

1: threshold = 0.01s

2: Initiate : =0

3: if |X| > K then

4: while i <m do

5: if |x;| < threshold then
6: j = index the most similar representative from R
7 if no such j exists then
8: Drop x; from X

9: else
10: Merge z; and x;.
11: end if
12: Drop r; from R
13: end if
14: end while
15: end if

Figure shows that J-Medoids Modified is a bit faster than the version
full version. This combined with the fact that it selects lower number of
representatives shows that the modification improved its performance for this
thesis’s use case.

21

2.

THEORETICAL OVERVIEW AND STATE OF THE ART

time (s)

22

® Delta Medoids Modified °
@ Delta Medoids Full °
w01 @ Random Selection ®
L]
800
®
]
600
°
400
200 ®
®
®
| wee § ° ° ° ° ° e o
6 EUICID IJUICIU EUICID EJIUO lUC;DD
cluster size

Figure 2.3: Comparing run times of §-Medoids and Random Selection

CHAPTER 3

Datasets

The task of cluster representation in non-metric spaces generally is not neces-
sarily connected only to the security field. Before moving to a dataset collected
from a real network, the selected algorithms were first tested on artificially
created datasets and well-labeled datasets found in the literature.

Below, the datasets used in this thesis are presented. Three types of
datasets were used: artificially created, image recognition and real network
security dataset. Fach section corresponds to one of the listed dataset types.

3.1 Datasets Created for this Work

These datasets were created to test the specific properties of tested methods.
They were made by using the Scikit-Learn library for Python 3 [I3]. The
datasets created are the following:

e Blobs 3D
e Overlap

e Circles 3D
e Moons

All of these datasets are in a metric space of two or three dimensions. They
can be easily visualized on graphs and show some of the specific properties of
implemented algorithms.

The Blobs 3D dataset consists of three clusters that are scattered ran-
domly around a center point. This dataset was selected to test what samples
will be selected by methods explained in Chapter [2| in clusters that can be
easily represented by a centroid. The Overlap dataset consists of 3 clusters in
shapes of blocks. These blocks overlap partly to test how selected algorithms
cope with overlapping clusters. Circles 3D and Moons are one of the hardest

23

3. DATASETS

Blobs 3D Overlap

Moons
Circles 3D
ey
100 - .
TR
075 --

Figure 3.1: Graphs of all datasets

datasets to represent even by methods that are designed specifically for the
metric space. These two datasets were chosen to test the resistance to noise
in selecting representatives. All of these datasets are shown in Figure [3.1]

3.2 Image Recognition Datasets

One of the best-documented application domains for clustering is image recog-
nition. Therefore, two datasets from this area were chosen for measuring the
precision of each method. The first one is a labeled dataset of features col-
lected from handwritten digits. The other one consists of annotated black and
white pictures of clothing, shoes, and handbags.

24

3.3. Network Security Dataset

The Pen-Based Recognition of Handwritten Digits Data Set [14] consists of
10922 samples. A sample represents 16 features collected from a handwritten
digit. For each digit, there is a little more than a thousand samples. Features
represent coordinate information about the digits as they were written on a
500 x 500 pixel frame. This dataset is split to train dataset (70%) and test
dataset (30%).

The MNIST Fashion dataset [I5] consists of a training set of 60,000 samples
and 10,000 test samples. A sample from this dataset is a grayscale image of
a piece of clothing, a shoe or a handbag. Each sample belongs to one of 10
classes. This problem is more complicated than handwritten digits from the
previous dataset. It is a current benchmark dataset for classification problems.
The MNIST Fashion dataset was introduced quite recently, in 2017.

3.3 Network Security Dataset

Real network traffic captured from a company with approximately 20 thou-
sand employees. The capture is from more than 24 hours of a working day and
consists of 33.5 million flows. Hosts that appeared in that capture were clus-
tered using the method explained in Section There are 16 clusters with
sizes ranging from less than a hundred to several thousand. These clusters
with all hosts labeled were used as real network dataset in this thesis. La-
bels provided for this dataset are the output of community-based clustering
in Cognitive Targeted Anomaly Detection Framework. Similarity threshold
used for the clustering was 0.8.

Each sample represents one device on the network. For such a big network
the behaviors of devices are very diverse. This leads to heterogeneous clusters
with behavior that changes over time. Only a pair-wise similarity between
each host pair exists. Representation of cluster created is a complex problem,
suitable for testing the properties of algorithms selected in this thesis.

25

CHAPTER 4

Experiments

In this chapter, all performed experiments are described. Each section repre-
sents one experiment with its motivation, experimental setup and results.

All experiments were made in Jupyter Notebook technology using Python
3.7 kernel. For loading data from files and storing them in memory the Pandas
library version 0.23.4 was used [16].

There are two main criteria for evaluating the result of each experiment
corresponding with the definition of the problem in Section One is the
number of selected samples. The other one is the coverage provided by these
representatives. The coverage represents the percentage of samples from the
whole cluster that are closer than § to one of the selected representatives. A
table with these two measures is presented for each experiment.

For testing the ability to assign new samples to its corresponding cluster
a part of each dataset was separated as test data. The algorithms K-Nearest
Neighbors with K = 1 was then used to classify the test data based on the
cluster prototypes created by selected algorithms. For each dataset, a confu-
sion matrix was created to visualize the results of the classification test.

4.1 Test on Visualizable Datasets

The first experiment was run on the visualizable datasets created explicitly for
this thesis. Seeing clustering results on visualizable datasets provides insight
into algorithms performance.

The methods that were explained in Section [2.4] are usable on metric space
with a distance measure as metric space is a special case of a topological space
for which they are designed. Using them on visualizable benchmark datasets
designed to address specific problems helped to determine their properties
such as how many representatives each algorithm selects and how well does
the representatives work in classification in newly added samples.

27

4. EXPERIMENTS

4.1.1 Experimental Setup

Datasets used for this experiment were:
e Blobs 3D
e Overlap
e Moons
e Circles 3D

All five algorithms were run. The § was estimated as 5% quantile of
distances from one random point in the data to all of the others. This choice
was made because the desired number of samples selected is around 20. The
similarity measure used in these datasets was Euclidean distance.

This experiment was performed in five runs using cross-validation. Each
dataset was split into five 20% parts. In each run, four parts were combined
to form the training data, and the remaining part was used to simulate newly
added samples to be classified to their corresponding cluster.

4.1.2 Results

The results for each dataset are listed below. A table with the number of
representatives selected from each cluster is presented as well as confusion
matrix with correct and incorrect classifications of each test sample.

Blobs 3D

Cluster Training Greedy 6-Medoids 6-Medoids 6-Medoids Random

Samples Selection One-Shot Full Modified Selection
A 400 21 (100%) 23 (100%) 25 (100%) 16 (96.75%) 16 (86.25%)
B 400 17 (100%) 20 (100%) 23 (100%) 20 (99%) 20 (92.75%)
C 400 19 (100%) 20 (100%) 22 (100%) 20 (99.25%) 20 (92%)

Table 4.1: Number of selected representatives with coverage in percent for the
Blobs 3D dataset

For the Blobs dataset, which is a straightforward representation problem, all
algorithms were able to cover the dataset almost entirely. Lower coverage for
Random Selection can be seen, but the density and distribution of samples still
make it cover most of the cluster. It is expected of the d-Medoids Modified not
to cover the extreme borders of the dataset which are expected to represent
up to 5% of the dataset. Even though the coverage is not 100%, the clusters
are represented sufficiently for new samples to be classified correctly. It is a
useful feature, as the algorithm is not expected to cover samples that are too
distant from the rest of the cluster.

The number of representatives selected is approximately 20 that highly
corresponds with the choice of . This is not a problem as the number is still

28

4.1. Test on Visualizable Datasets

relatively small (less than 10% of the dataset). Also, in Cognitive Targeted
Anomaly Detection Framework, clusters do dynamically change, and around
20 representatives are requested to keep track of the cluster over time.

The confusion matrix of classification test can be seen in Figure [4.1

Delta-Medoids Modified

Random Selection

Figure 4.1: Confusion matrices for Blobs 3D dataset

Delta-Medoids Full

Greedy Selection

Delta-Medoids One Shot

A A A
B [B
of c c
A g c A § c Iy B c

Overlap
Cluster Training Greedy 0-Medoids 0-Medoids 0-Medoids Random
Samples Selection One-Shot Full Modified Selection
A 800 25 (100%) 23 (100%) 23 (100%) 23 (99.75%) 23 (87.88%)
B 960 26 (100%) 21 (100%) 23 (100%) 21 (100%) % 21 (81.15%)
C 640 22 (100%) 24 (100%) 24 (100%) 24 (99.84%) 24 (88.6%)

Table 4.2: Number of selected representatives with coverage in percent for the

Overlap dataset

In the Overlap dataset, the average fit of the data remains similar to the
Blobs 3D dataset as it is calculated for each cluster separately. Therefore, the
number of representatives selected remains determined only by choice of 4.
The results of the classification test show that classifying border samples
from overlapping clusters is not a simple task. Confusion matrices present
slightly better results with the representatives selected by d-Medoids modified.
However, the number of misclassified samples for each dataset is not significant

29

4. EXPERIMENTS

when compared to the number of samples in the cluster. The confusion matrix
can be seen in Figure 4.2

Delta-Medoids Modified Delta-Medoids Full Delta-Medoids One Shot

Random Selection Greedy Selection

A 1 1

Figure 4.2: Confusion matrices for Overlap dataset

Moons and Circles 3D

Cluster Training Greedy 6-Medoids 6-Medoids 6-Medoids Random

Samples Selection One-Shot Full Modified Selection
A 600 22 (100%) 21 (100%) 22 (100%) 21 (100%) 21 (88.67%)
B 600 21 (100%) 24 (100%) 25 (100%) 24 (100%) 24 (67%)

Table 4.3: Number of selected representatives with coverage in percent for the
Moons dataset

Cluster Training Greedy 6-Medoids 6-Medoids 6-Medoids Random

Samples Selection One-Shot Full Modified Selection
A 600 15 (100%) 13 (100%) 13 (100%) 13 (100%) 13 (87.5%)
B 600 6 (100%) 8 (100%) 8 (100%) 8 (99.83%) 8 (83.5%)

Table 4.4: Number of selected representatives with coverage in percent for the
Circles 3D dataset

Selecting representatives both Moons and Circles 3D datasets is a harder
problem than for the compact clusters in Blobs 3D and Overlap datasets.

30

4.1. Test on Visualizable Datasets

Clusters in the Moons dataset are not easily represented by one centroid. The
results show that medoid selection is a good option for representing this type
of clusters. Each method, excluding Random Selection, was able to cover
the whole cluster. Randomly selected representatives suffer from the uneven
distribution of samples in the space, thus covering a lower portion of the
cluster. On these two datasets, the Random Selection algorithm performs
worse as can be seen in the corresponding confusion matrices. The confusion
matrix for the Moons dataset can be seen in Figure for the Circles 3D
dataset in Figure [4.4]

Delta-Medoids Modified Delta-Medoids Full Delta-Medoids One Shot
A A A
8 8 8
W 5 R 8 A 8
Random Selection Greedy Selection

Figure 4.3: Confusion matrices for Moons dataset

From the results listed the difference between J-Medoids Full and Modified
are not easily distinguishable. The difference between these two algorithms
can be seen in Figure The full version of the algorithm tends to select
the border samples of a dataset as representatives. In these datasets, the
results do not show this because they are relatively dense and have a normal
distribution.

31

4. EXPERIMENTS

Delta-Medoids Modified

Random Selection

Delta-Medoids Full

Figure 4.4: Confusion matrices

Delta-Medoids Full

12

11

10

10

12

11

10

Delta-Medoids One Shot

Greedy Selection

for Circles 3D dataset

Delta-Medoids Modified

Figure 4.5: Difference between d-Medoids Full and Modified

32

10

4.2. Test on Image Recognition Datasets

4.2 Test on Image Recognition Datasets

The motivation for this experiment was to test the algorithm results on well-
explored and well-annotated datasets commonly used as a benchmark for clus-
tering. Samples in these datasets are distributed more sparsely, and the clus-
ters overlap. This experiment intended to see the difference in numbers of
representatives selected by the §-Medoids One-Shot and the §-Medoids Mod-
ified algorithms. Also, how this difference influences the classification tests.

4.2.1 Experimental Setup
Datasets used for this experiment were:
e Pendigits

e MNIST Fashion

In this and the following experiments, the d-Medoids Full algorithm was
not used, and only the Modified algorithm was tested. The ¢ was estimated
as 5% quantile of distances from one random point in the data to all of the
others. The similarity measure used in these datasets was Euclidean distance.

4.2.2 Results

The results for different methods are listed below.

Pendigits
Cluster All Greedy 6-Medoids 6-Medoids Random
Samples Selection One-Shot Modified Selection
0 780 33 (100%) 33 (100%) 33 (100%) 33 (93.46%)
1 779 33 (100%) 41 (100%) 41 (100%) 41 (94.48%)
2 780 17 (100%) 15 (100%) 15 (100%) 15 (95.71%)
3 719 12 (100%) 9 (100%) 9 (100%) 9 (94.64%)
4 780 25 (100%) 24 (100%) 24 (100%) 24 (93.59%)
5 720 25 (100%) 27 (100%) 27 (100%) 27 (93.89%)
6 720 16 (100%) 16 (100%) 16 (100%) 16 (97.3%)
7 778 22 (100%) 20 (100%) 20 (100%) 20 (94.24%)
8 719 75 (100%) 77 (100%) 15 (100%) 15 (91.24%)
9 719 50 (100%) 52 (100%) 13 (100%) 13 (92.65%)

Table 4.5: Number of selected representatives with coverage in percent for the
Pendigit dataset

The results for Pendigits dataset show that the §-Medoids algorithm was able
to represent the whole dataset with perfect precision. The Random Selection
lacks behind in percentage. The confusion matrix in Figure shows that
the clusters partly overlap (i.e., digits 1 and 7). Even with these overlaps, the

33

4. EXPERIMENTS

Delta-Medoids Modified Delta-Medoids One Shot

i] 2 8

Figure 4.6: Confusion matrices for Pendigits dataset

0-Medoids algorithm works best for classification. It selects the lowest number
of representatives while getting the best results.

The Greedy Selection and §-Medoids One-Shot select the same number of
representatives, and their results are also very similar. This is interesting as
the complexity of these algorithms differs a lot, Greedy Selection being much
slower with O(n?).

MNIST Fashion

In the experiment for this dataset, the Greedy Selection algorithm was
omitted as the tests would take too long on clusters that contain 6000 samples.
Previous experiments show that the d-Medoids algorithm chooses a similar
amount of representatives while getting better coverage.

34

4.3. Test on Network Security Data

Cluster All 0-Medoids 0-Medoids Random
Samples One-Shot Modified Selection
0 6000 859 (100%) 23 (100%) 23 (93.41%)
1 6000 176 (100%) 16 (100%) 16 (95.58%)
2 6000 845 (100%) 20 (100%) 20 (93.37%)
3 6000 616 (100%) 22 (100%) 22 (95.33%)
4 6000 630 (100%) 25 (100%) 25 (94.98%)
5 6000 1622 (100%) 14 (100%) 14 (94.36%)
6 6000 1181 (100%) 18 (100%) 18 (95.06%)
7 6000 266 (100%) 19 (100%) 19 (95.12%)
8 6000 1971 (100%) 16 (100%) 16 (94.72%)
9 6000 686 (100%) 28 (100%) 28 (93.56%)

Table 4.6: Number of selected representatives with coverage in percent for the
MNIST Fashion dataset

The coverage for the MNIST Fashion shows that estimation of the § as the
5% quantile of distances from one random sample to the rest works well even
for a very complex dataset.

However, the complete coverage did not ensure accurate results it the clas-
sification test. For each method the number of correctly classified samples out
of 10000 is listed below as the difference between algorithms is not noticeable
on first sight from the confusion matrix in Figure [4.8] It represents the sum
of numbers on the diagonal of the matrix. For Random Selection the number
of correctly classified samples is 6520, meaning 65.5% of test samples were
classified correclty. For 6-Medoids One-Shot it is 6826 (68.26% classified cor-
rectly) and for 6-Medoids Full it is 7053 (70.53% classified correctly). These
numbers confirm that selecting the correct representatives can improve the
classification results, especially when the Modified and One-Shot version of
0-Medoids are compared. The Modified algorithm was able to get better re-
sults with a much lower number of representatives. In some cases the number
of representatives selected is for 6-Medoids Modified is less than 1% of the
number selected with the One-Shot version.

4.3 Test on Network Security Data

This experiment tests the functionality of selected methods as if they were
plugged into the toolchain of Cognitive Targeted Anomaly Detection described
in Section [L4l The data for it was collected from the framework.

4.3.1 Experimental Setup

Clustered hosts from a real network were used for this experiment. This
dataset is explained in greater detail in Section From this dataset traffic

35

4. EXPERIMENTS

Delta-Medoids Modified

0 27 49 26 101 2 15 1
1 4 41 11 1 7 2
24101 9 186 4 166 1 2 3
3{95 9 32 4
4{36 1
5117
6249 1 145 34 140 11
7 53
8182 3 5 22 19
9{ 6 3 1 4 23

o 1 2 3 4 s

Random Selection

0 3 13 42 28 1 116 1 14 4
1158 15 69 27 7
2130 255 9
3{91
PRI | 1
51 1 300
6219 1 129 24 159 1
7 73 2 208
8{24 1 48 41 28 26 103 26
915 16 6 3 17 5 31

T

1 2 3 4 5 6 7

8 9

Delta-Medoids One Shot
12 43 39 49 1 287 3 8

45 2 19 4 11 5
7 196 187 5

109 2 12

53 2 208 21 175

2 2 83 2 40
175 5 179 40 153
1 1 138 108

14 11 7 15 5 38 12

32 1 126

o 1 2 3 4 s 6 7 8 9

Figure 4.7: Confusion matrices for MNIST Fashion dataset

for 24 hours was used for training the model. Data from the following 4 hours
was used for testing the representatives selected. The similarity measure from
Section [[.4] was used.

Three algorithms were run, §-Medoids Full and Greedy Selection were
omitted for reasons listed in the previous section. The § was set to 0.8 as was
the threshold used in community-based clustering for their creation.

36

4.3. Test on Network Security Data

4.3.2 Results

The results for different methods are listed below.

Cluster All 6-Medoids 6-Medoids Random
Samples One-Shot Modified Selection
A 72 7 (100%) 7 (100%) 7 (90.27%)
B 127 23 (100%) 27 (100%) 27 (90.55%)
C 2263 1480 (100%) 46 (28.94%) 46 (8.13%)
D 124 76 (100%) 17 (56.45%) 17 (54.03%)
E 89 68 (100%) 16 (41.57%) 16 (38.2%)
F 54 38 (100%) 38 (100%) 38 (87.04%)
G 87 41 (100%) 42 (100%) 42 (80.46%)
H 1149 503 (100%) 34 (62.92%) 34 (53.61%)
1 60 53 (100%) 12 (33.33%) 12 (30%)
J T 73 (100%) 14 (23.37%) 14 (20.78%)
K 2692 912 (100%) 25 (66.12%) 25 (51.98%)
L 137 109 (100%) 22 (36.5%) 22 (33.57%)
M 53 35 (100%) 35 (100%) 35 (77.34%)
N 259 15 (100%) 16 (100%) 16 (98.07%)
O 76 58 (100%) 13 (39.47%) 13 (34.21%)
P 76 76 (100%) 7 (9.21%) 7 (9.21%)

Table 4.7: Number of selected representatives with coverage in percent for the
real network data

The coverage results differ significantly cluster to cluster. 6-Medoids Modified
still gets better coverage for each cluster (except for cluster P). However, a
big decrease in coverage can be seen in both §-Medoids Modified and Random
Selection algorithm. This reflects the nature of cluster creation in the modified
algorithm. Many clusters from §-Medoids One shot, which represents the basic
routine repeated in the Modified algorithm, are merged with the most similar
neighbor. This neigbor can be less similar than the ¢ given (for this experiment
§=08).

The following numbers represent the percentage of samples from test data
classified correctly. It is calculated by dividing the sum of diagonal of the
confusion matrix by the number of samples in the test data. The confusion
matrix can be seen in Figure For 6-Medoids One-Shot 77% of samples
were classified correctly. Such a high percentage is given by the fact, that the
algorithm sometimes selects even more than half of the dataset. For Random
Selection this percentage is 63%. The §-Medoids Modified algorithm surpassed
it at 79% of samples correctly assigned to their cluster in classification. Results
in this paragraph show that even with low coverage the overall accuracy of
classification is maintained. The §-Medoids Modified algorithm was able to
get better classification results with much smaller coverage and representatives
selected than the J-Medoids One-Shot. J-Medoids One-Shot algorithm shows

37

4. EXPERIMENTS

Delta-Medoids Modified Delta Medoids One Shot

Al 9 A{ 92
B 22 1 1 B 25
C 10 4 29 2 2 5 1 C 15 2 5 20 2 2 6 1
D 240 1 D 240 2
E 42 10 2 1 6 E 36 20 1 1 3
F 2 2 1 F 6 1
G{ 1 1 3B 7 2 1 4 G{ 1 2 26 17 1 3 1
H{8 4 2 17 3 39 .104 63 97 14 83 2 H{ 6 2 1 3 58 1 71 . 45 68 110 7 3 51 17
| 2 33 1 3 1 4 27 1 4 2 1
K 1 2 8 2 54 1 2 K 1 15 2 49 1 2
L 2 2 1 20 4 3 53 1 3 1 L 2 2 1 23 4 56 2
M 23 1 18 M 6 36
N 5 9 . 1 131 N 1 4 6 . 166
e} 2 1 17 1 o] 2 1 1 16 1
P 71 P 1 70
Q 1 2 6 13 2 293 Q 3 34 280

A B C D E F G H | K L M N O P Q A B C D E F G H | K L M N O P Q

Random Selection

Al 9

B 22 1 1

c 16 2 14 8 4 7 1 1

D 239 1 2

E 1 29 3 2 5 3 2 6

F 3 1

Gl 1 1 1 35 1 2 2 5 3

H{l0o 2 78 21 131-242 198 17 104 1

I 11 29 5 3

K 1 1 7 2 53 3 3

L 2 2 18 9 2 59 1 5 1

M a2

Nj L 19 10 . 12 18

o2 1 18

P 2 1 68

Qi 2 g 1 1 1 -
A B CDE F GH I K LMNO P Q

Figure 4.8: Confusion matrices for real network data

similar results in classification as the number of representatives selected by this
algorithm is significantly higher containing on average 30% of each cluster.

A good improvement can be seen in results for cluster H. The -Medoids
algorithm was able to represent it the best with 1337 samples classified cor-
rectly. Even for clusters with several thousands of samples, few samples were
selected a while retaining dominant properties for assigning points to clusters
properly.

Another result worth noticing is that the §-Medoids Modified algorithm
gives the means to find the number of representatives needed to represent the
cluster. In random selection, a constant is needed which is hard to guess with-
out prior knowledge about the cluster. For some clusters, 20 representatives
might be enough, and for others, a higher number might be needed. Selecting

38

4.4. Fit of the Data

Average fit of data

B0%

8
=

Percentage
]
]

20%
10% /

) 5 10 5 20 5 Y s
Number of representatives

—— Random selection
Delta-Medoids Modified
—— Delta-Medoids Full

Figure 4.9: Average fit of representatives in one cluster

a higher number without justification could lead to unwanted computational
overhead.

4.4 Fit of the Data

In this experiment the data fit as defined in Section [2.3] was tested. The mo-
tivation was to test how many samples are covered by each added sample and
whether on average the §-Medoids algorithm performs better than Random
Selection and d-Medoids Full algorithm on large clusters with high diversity.

4.4.1 Experimental Setup

In this experiment, one complex cluster (cluster K) from Network Security
Dataset was represented by d-Medoids, J-Medoids Full and Random Selection
algorithms. After the representatives were selected, the percentage of coverage
by each representative was calculated and plotted into a graph.

4.4.2 Results

The results of this experiment are presented in Figure [4.9

39

4. EXPERIMENTS

On average, the §-Medoids Modified algorithm covers the cluster better.
It can be seen from the increasing distance of lines by each representative
added. In some places, the slope of the Random Selection line is the same as
of §-Medoids Modified. In these places, the algorithm selected a good represen-
tative by chance, similar to the ones chosen by a more sophisticated method.
The line for §-Medoids Full shows that the algorithm chooses representatives
from smaller subclusters. It does not mean that the algorithm does not fit the
dataset well. Only the first 34 representatives are shown to match the other
algorithms. The full algorithm selected 532 samples as representatives, which
is approximately half of the dataset. With all of these representatives, the
coverage would is 100%.

Results confirm that d-Medoids Modified algorithm achieves the best cov-
erage of the cluster with the least samples selected as representatives.

40

Conclusion

Methods that are relevant for creating cluster prototypes in a non-metric space
were studied. Several methods including Random Selection, Greedy Selection
and 6-Medoids algorithms were chosen from prior art. Furthermore, a new
algorithm é-Medoids Modified was introduced by modifying the d-Medoids
Full algorithm. Implementation of each algorithm was written and tested
on artificially created benchmark datasets. All algorithms were then further
tested on image recognition datasets Pendigits and MINIST Fashion. Finally,
the methods were fine-tuned and tested on a real Network Security Dataset
captured in a medium-sized company.

The results presented in this thesis show that the modification made on
d-Medoids Full improves its performance on network security datasets. The -
Medoids Modified algorithm can find a small number of representatives with
decent coverage of the whole dataset. Furthermore, it runs faster than J-
Medoids full while fulfilling criteria for representative selection. It is also able
to choose the number of representatives based on the properties of the cluster
rather than just guessing the right number of representatives, which is what
happens in Random Selection. Representatives selected this way to fit the
dataset on average better than selecting them randomly, which is the method
currently used.

The method to represent clusters in non-metric space by a small subset
of the whole cluster was implemented and tested in this thesis. This method
was adjusted so that it can be incorporated into Cognitive Targeted Anomaly
Detection Framework.

41

Bibliography

HRON, Martin. The 10 Biggest Data Breaches in 2018. In: Awast Blog
[online]. Avast Software s.r.o., 2018. [2019-04-05]. Avaiable at: https:
//blog.avast.com/biggest-data-breaches

MUKHERJEE, Biswanath; HEBERLEIN, L. Todd; LEVITT, Karl N.
Network intrusion detection. IEEFE network, 1994, 8.3: 26-41.

COOPER, Stephen. 2019 Best Intrusion Detection Systems (10+
IDS Tools Reviewed). In: comparitech [online]. Comparitech Limited,
2019. [2019-04-27]. Available from: https://www.comparitech.com/net-
admin/network-intrusion-detection-tools/

LIAO, Hung-Jen, et al. Intrusion detection system: A comprehensive
review. Journal of Network and Computer Applications, 2013, 36.1: 16-
24.

BROWNLEE, N.; MILLS, C.; RUTH, G. Traffic Flow Measurement:
Architecture. RFC 2722, October 1999.

GRILL, Martin. Combining network anomaly detectors. Praha, 2016.
Doctoral Thesis. Czech Technical University in Prague. PEVNY, Tomas;
REHAK, Martin.

KOPP, Martin; GRILL, Martin; KOHOUT, Jan. Community-based
anomaly detection. In: 2018 IEEE International Workshop on Informa-
tion Forensics and Security (WIFS). IEEE, 2018. p. 1-6.

GUTTAG, John. Introduction to Computation and Programming Using
Python: With Application to Understanding Data. Second. Cambridge,
MA: MIT Press, 2016. ISBN 978-0-262-52962-4.

CHOUDHARY, B. The Elements of Complex Analysis. New Age Inter-
national, 1993. ISBN 9788122403992.

43

https://blog.avast.com/biggest-data-breaches
https://blog.avast.com/biggest-data-breaches
https://www.comparitech.com/net-admin/network-intrusion-detection-tools/
https://www.comparitech.com/net-admin/network-intrusion-detection-tools/

BIBLIOGRAPHY

[10]

[11]

[12]

44

STAHL, Saul and Catherine STENSON. Introduction to Topology and
Geometry [online]. Somerset: John Wiley & Sons, Incorporated, 2014.
ISBN 9781118108109.

TAN, Pang-Ning; STEINBACH, Michael; KUMAR, Vipin. Introduction
to data mining. Harlow: Pearson, 2014. ISBN 9781292026152.

LIEBMAN, Elad; CHOR, Benny; STONE, Peter. Representative Selec-
tion in Nonmetric Datasets. Applied Artificial Intelligence, 2015, 29.8:
807-838.

PEDREGOSA, Fabian, et al. Scikit-learn: Machine learning in Python.
Journal of machine learning research, 2011, 12.0ct: 2825-2830.

Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available
from: http://archive.ics.uci.edu/ml

XTAO, Han; RASUL, Kashif; VOLLGRAF, Roland. Fashion-mnist: a
novel image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiw:1708.07747, 2017.

MCKINNEY, Wes, et al. Data structures for statistical computing in
python. In: Proceedings of the 9th Python in Science Conference. 2010.
p- 51-56.

http://archive.ics.uci.edu/ml

APPENDIX A

AD Anomaly Detection

DDoS Distributed Denial of Service

DPI Deep Packet Inspection

IDS Intrusion Detection System

NBAD Network-Based Anomaly Detection
NIDS Network Intrusion Detection System

RFC Request for Comments

45

Abreviations

APPENDIX B

Contents of attached USB disk

readme.tXt...covveriiiinenennnn.. the file with disk contents description
= o o P the directory of source codes
datasetS......cceviiiernnnnn.. the directory of datasets used in thesis
experiments............ the directory of source codes of experiments
thesis....ovvve.... the directory of IXTEX source codes of the thesis

I =5 P the thesis text directory
Lthesis.pdf the thesis text in PDF format

	Introduction
	Goals
	Intrusion Detection System
	Types of Intrusion Detection Systems
	Network Anomaly Detection
	Challenges of Real-Time Anomaly Detection
	Cognitive Targeted Anomaly Detection Framework

	Theoretical Overview and State of the Art
	Introduction to Clustering
	Clustering in Topological Space
	Representative Selection
	Algorithms Relevant for Topological Space

	Datasets
	Datasets Created for this Work
	Image Recognition Datasets
	Network Security Dataset

	Experiments
	Test on Visualizable Datasets
	Test on Image Recognition Datasets
	Test on Network Security Data
	Fit of the Data

	Conclusion
	Bibliography
	Abreviations
	Contents of attached USB disk

