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Abstrakt

Táto bakalárska práca sa zameriava na kompresné algoritmy založené na
Burrows-Wheelerovej transformácíı. Ciel’om tejto práce je analýza, implemen-
tácia a testovanie Burrows-Wheelerovej transformácie a súvisiacich algorit-
mov. Implementácia je súčast’ou open-source knižnice Small Compression Tool-
kit, ktorá je vyv́ıjaná v programovacom jazyku Java. Funkčnost’ novo imple-
mentovaných algoritmov je overená pomocou skúšobných merańı. Tieto me-
rania zahŕňajú sledovanie kompresného pomeru a času potrebného pre kom-
presiu a dekompresiu dát.

Kĺıčová slova kompresia, dekompresia, Java, Burrows-Wheelerová trans-
formácia, Move-to-front transformácia, Run-length kódovanie, Aritmetické
kódovanie, Huffmanovo kódovanie

Abstract

This thesis focuses on the topic of data compression, particularly on Burrows-
Wheeler compression and its variants. The goal of this thesis is to analyse,
implement and test Burrows-Wheeler transform and all related algorithms.
These algorithms are: The implementation is done as a part of the Small
Compression Toolkit library. All newly implemented features are verified by
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experimental measurements. This verification measures the compression ratio
and time needed to compress and decompress data.

Keywords compression, decompression, Java, Burrows-Wheeler transform,
Move-to-front transform, Run-length encoding, Arithmetic coding, Huffman
coding
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Introduction

Motivation

Use of computers on a regular basis in our life is very important. Comput-
ers are used to convert raw facts and data into meaningful information and
knowledge. In order to be as efficient as possible in storing and transferring
these data, many compression algorithms have been invented. However, only
a few of them are so efficient in the matter of speed, reliability and memory
efficiency that they became standardized and widely used. Example of such
algorithms would be LZ77, LZ78, LZW, RLE or Huffman and Arithmetic cod-
ing. These algorithms can standalone achieve great compression ratios with
adequate time, but by providing more-easily-compressible data as input for
these algorithms, even better performance can be achieved.

Burrows-Wheeler compression (BWC for short) is a general name for com-
pression method which is based on Burrows-Wheeler transform (BWT from
now on). The BWT is an algorithm used to prepare data for use with data
compression techniques such as Huffman and Arithmetic coding. It was in-
vented and described by Michael Burrows and David Wheeler in 1994. It is
based on a previously unpublished transformation discovered by Wheeler in
1983[1]. The transform is done by creating a table of all the circular shifts of
data bytes, followed by lexicographical sort and by extracting the last column
and the index of the original data in the set of sorted permutations. The re-
markable thing about the BWT is not that it generates a more easily encoded
output, an ordinary sort would do that, but that it is reversible, allowing the
original data to be regenerated from the transformed data.

Basic and the most common version of the BWC is the one where BWT
is followed by Move-to-front transform (MTF from now on), Run-length en-
coding (RLE for short) and some entropy coder, such as Huffman coder (HC)
and Arithmetic coder (AC). Enhanced implementation of this version is used
by bzip and bzip2 compression programs[2].
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Introduction

Main goals

The main objective of this thesis is to analyse, design and implement BWC
as part of the Small Compression Toolkit (SCT for short) library. The SCT
library is developed at the Faculty of Information Technology at Czech Tech-
nical University in Prague and contains multiple compression algorithms[3].
The programming language of the library is Java. After the integration to
the SCT library is done, the next challenge will be performance testing of this
implementation. The BWC implementation will be tested on multiple corpora
and time, and the compression ratio will be measured.

Since BWC is not strictly defined and refers to a wide group of algorithms
based on BWT, it was decided that SCT library will be enriched by its most
common version. This version consists of BWT, MTF, RLE and the entropy
coder. Huffman and Arithmetic coders were chosen for this task.

Thesis structure overview

This section briefly explains what is covered in particular chapters and what
information can be found.

Chapter 1 is devoted to defining basic notions important for further chap-
ters.

Chapter 2 analyses and explains the algorithms implemented in this thesis.
Each algorithm is accompanied by its pseudocode and an example of use.

Chapter 3 is dedicated to the implementation of algorithms mentioned in
Chapter 2. Each implemented algorithm is referenced to its pseudocode, and
UML class diagram is shown.

Chapter 4 focuses on performance testing. In this chapter, it is shown
what compression ratios can be achieved on real data.
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Chapter 1
Basic notions

This chapter is dedicated to defining and describing basic terms which are
relevant to the topic of this thesis. Most of the definitions in this chapter
are referencing to the book The Data Compression Book written by Mark
Nelson[4].

1.1 Symbol

Symbol is an element from the alphabet. In the scope of this thesis, one symbol
in equal to one byte. Since the size of one byte is eight bits, a symbol has 256
values ranging from 00000000 to 11111111.

1.2 Alphabet

Alphabet is a finite set of distinguishable symbols. In the scope of this thesis,
the alphabet of 256 symbols will be used. This is equal to the Extended ASCII
table[5]. It is assumed that after applying lexicographical sort, values of the
symbols from the alphabet will be sorted from 00000000 to 11111111.

1.3 String

String is a finite sequence of symbols from the alphabet. In the scope of this
thesis, string refers to a finite sequence of bytes.

1.4 Codeword

Codeword is a sequence of bits. In other words, a codeword is a string over
the binary alphabet.
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1. Basic notions

1.5 Code

Code is a system of rules to convert information, such as a symbol or string,
into another form or representation. Code substitutes string with codeword
from the binary alphabet for the purpose of converting the original informa-
tion.

1.6 Data compression

Data compression or encoding is a process of transforming the input string to
the output string of different format, which in most cases has a shorter length.
This can be very useful because it reduces the resources required to store
and transmit the data. Data compression can be lossless or lossy. Lossless
compression allows the original data to be entirely reconstructed from the
compressed data, while lossy compression reduces the size of compressed data
by removing unnecessary or less important information[6]. Data compression
is subject to a space-time complexity trade-off, meaning it involves trade-offs
among various factors, such as the degree of compression, time complexity and
the computational resources required to compress and decompress the data[7].

1.7 Data decompression

Data decompression or decoding is the action of reversing data compression
which transforms compressed data to their original uncompressed form. When
using lossy compression, it is not possible to entirely reconstruct original data
since some information has been omitted while doing data compression.

1.8 Compression algorithm

Compression algorithm or encoding algorithm is a finite sequence of steps
needed for data compression[6].

1.9 Decompression algorithm

Decompression algorithm or decoding algorithm is a finite sequence of steps
needed for data decompression[6].

1.10 Compression method

Compression method is a common name used to label a particular compression
algorithm together with its related decompression algorithm[6].

4



1.11. Model

1.11 Model

Model is an internal structure used by compression method which holds in-
formation about currently processed input. In order for the decompression
algorithm to be successful, it has to use the same model as the compression
algorithm. Otherwise, it won’t be able to output the same string as was the
input for the compression algorithm.

1.12 Adaptive compression method

Adaptive compression method adapts data model used during compression in
accordance with the compressed data. The compressed data has not to contain
the data model. The decoder creates the same model as the encoder. Both
the encoder and decoder begin with a trivial model, yielding poor compression
of initial data, but as they learn more about the data, performance improves.
The encoder compresses the next data unit first and then adapts the model in
accordance with this unit. This order enables the decoder to create an identical
model. If the encoder changes the model before it compresses the unit, the
decoder cannot decompress the data because the next unit is compressed using
an unknown data model. Many of commonly used compression methods are
adaptive[8].

1.13 Compression ratio

Compression ratio is the amount of data reduction gained by the compression
algorithm. This compression ratio is a ratio of the length of compressed data
to the original size of data (Formula 1.1)[9].

Compression ratio = Length of compressed data
Length of original data (1.1)

For instance, the compression ratio of 0.75 means that data compression
was able to shrink the compressed file size to 75% of its original size. If the
result of this equation is greater than 1, it means compression of the input
data resulted in negative compression.

1.14 Entropy

Entropy in data compression denote the randomness of the data that are
subject to the compression with the compression algorithm. The more the
entropy, the lesser the compression ratio. That means the more random the
data are, the lesser you can compress it[10].
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1. Basic notions

1.15 Redundancy

Redundancy is a fraction of data which is unnecessary and hence repetitive in
the sense that if it were missing, the data would still be essentially complete,
or at least could be completed[11]. Redundancy is related to the extent to
which it is possible to compress the data. What lossless data compression
does is reduce the number of bits used to encode a message by identifying and
eliminating statistical redundancy. Data compression is a great way to reduce
or eliminate unwanted redundancy[12].

1.16 Corpus

Corpus is a collection of text and binary data files, commonly used for com-
paring data compression algorithms[13]. Corpora are intended for use as a
benchmark for testing lossless data compression.

6



Chapter 2
Analysis

This chapter is partly dedicated to definition and analysis of algorithms used
in BWC, namely BWT, MTF, RLE, AC and HC. It is essential to examine
and explore these algorithms in order for later implementation to be successful
and effective.

After the part dedicated to algorithms, special attention is given to the
relation between BWC and bzip algorithms which are widely used compression
algorithms vastly related to the topic of this thesis.

Another part of this chapter focuses on specifying functional and non-
functional requirements resulting from the assignment of this thesis. Focus is
going to be given on application requirements and explain what is required
and expected from the final product.

Last part of this chapter is committed to related work associated with the
topic of this thesis.

2.1 Algorithms

2.1.1 Burrows-Wheeler transform

The BWT, or also called block sorting, is an auxiliary algorithm used in data
compression techniques described by Michael Burrows and David Wheeler
in 1994. It doesn’t compress the data on its own but rather rearranges the
symbols from the input so that that there are lots of clusters with repeated
symbols, but in such a way that it is still possible to recover the original
input[14]. The transform is done by sorting all the cyclic rotations of input
in lexicographic order and by extracting the last column and the index of
the original string in the table of sorted permutations of the input string.
The BWT requires that additional information is stored, therefore making
the transformed data slightly larger than its original form. However, that is
only a small space-time tradeoff for improving efficiency and performance of
further compression techniques. The BWT is useful for following compression
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2. Analysis

methods since it tends to be easier and faster to compress a string that has runs
of repeated symbols by techniques such as MTF or RLE. This characteristic
of the BWT has another side effect. It means that, in general, the bigger the
block size, the better the compression ratio because bigger blocks will generate
longer runs of repeated symbols, leading to the improved compression ratio of
the following compression methods[15]. The obvious downsides to large blocks
are that blocks must be stored somewhere, so you need enough memory to
hold the block, and it’s cyclic rotations. The cyclic rotations are also sorted,
and sorting is not a linear operation. Thus larger blocks will also take more
time. Potential optimizations to overcome these issues will be explained later.

The BWT works by firstly making all cyclic rotations of the input string
and numbering them. Then, the lexicographical sort is applied to the resulting
phrases, and the number of the line containing the input string is remembered.
Now, last symbols from lexicographically sorted phrases are concatenated to-
gether to create the output string, and by appending remembered index, the
output of the BWT is created[8]. The BWT algorithm is described in Algo-
rithm 1.

Algorithm 1 BWT encode
1: procedure BWT(input)
2: tab← table of all cyclic rotations of input
3: lexicographically sort cyclic rotations in tab
4: idx← the number of the line containing input in sorted tab
5: str ← last column of tab
6: output str, idx
7: end procedure

Time and space complexity highly depends on several optimizations which
can make the BWT more time and space efficient. Algorithm 1 requires to hold
a table of all cyclic rotations which leads to polynomial space complexity of
O(n2), where n is the length of the input string to be encoded. However, there
is no need to hold the whole table, and every cyclic rotation can be represented
as an index to the input string. Therefore, we reduce space complexity to
O(n), where n is the length of the input string to be encoded. Time complexity
highly depends on the chosen sorting algorithm. As Burrows and Wheeler
suggest, time complexity can be reduced from O(n ∗ logn) to O(n), where
n is the length of the input string to be encoded. This improvement can be
achieved by using suffix trees and suffix arrays for the sorting procedure. It
is done by building a suffix tree, which then can be walked in lexicographical
order to recover the sorted suffix array in linear time[1].

The inverse BWT transform is a little bit complicated. It is possible to
reconstruct the original table of all cyclic rotations used in the encoding. In
the beginning, take the input string and insert this string as a column to the
table from the left and lexicographically sort rows of the table. These two

8



2.1. Algorithms

steps are repeated as many times as there are symbols in the input string.
Since the input to the inverse BWT also includes the index of the output
string in the table of sorted permutations, we can simply retrieve this string
by looking at the row in the restored table pointed by this index. The inverse
BWT algorithm is described in Algorithm 2.

Algorithm 2 BWT decode
1: procedure BWT(input, idx)
2: tab← empty table
3: len← length of input
4: for i← 0 to len− 1 do
5: insert input as a column to tab from the left
6: lexicographically sort rows of tab
7: end for
8: output row from tab on idx position
9: end procedure

However, this version of the inverse BWT algorithm is highly ineffective.
To determine the position of a symbol in the output given its place in the
input, we can use the knowledge about the fact that the output is sorted.
Each symbol will show up in the output in position, where the position is the
sum of all symbols in the input string that precedes symbol in the alphabet,
plus the count of all occurrences of symbol previously in the input string.
First, we calculate the running totals for all the symbols in the alphabet.
That satisfies the first part of the equation needed to determine where each
symbol will go in the output string. When the running totals array is filled
in, we have half the information needed to position each symbol. The next
piece of information is the number of the same symbol that appears before
this symbol in the input string. We keep track of that information in the
separate array as we go. By adding those two numbers together, we get the
destination of each symbol, and that allows us to fill in all the positions in the
transformation vector. Once the transformation vector is in place, writing the
output string is just a matter of following the indices[15]. Improved version
of the inverse BWT algorithm is described in Algorithm 3. This version takes
the same transformed string as Algorithm 2, but instead of the index of the
output string in the table of sorted permutations, we only need to pass an
index to the first symbol of the original input data before BWT took place.

Calculating the running totals for all the symbols in the alphabet, finding
the number of the same symbol that appears before the current symbol in
the input string and filling the transformation vector can all be done in linear
time and space. Thus, we can safely say that time, and space complexity of
the inverse BWT algorithm presented in Algorithm 3 is O(n), where n is the
length of the input string to be decoded.

An example will shed some light on how the BWT works. To make this

9



2. Analysis

Algorithm 3 BWT decode
1: procedure BWT(input, idx)
2: len← length of input
3: CA← count array for symbols from alphabet
4: RT ← running total
5: TV ← transformation vector
6: FillCA(CA, input)
7: FillRT(RT,CA, input)
8: FillTV(TV,RT,CA, input)
9: for i← 0 to len− 1 do

10: output input[idx]
11: idx← TV [idx]
12: end for
13: end procedure
14: procedure FillCA(CA, input)
15: CA← initialised to 0
16: len← length of input
17: for i← 0 to len− 1 do
18: j ← position of input[i] in alphabet
19: CA[j]← CA[j] + 1
20: end for
21: end procedure
22: procedure FillRT(RT,CA, input)
23: sum← 0
24: k ← number of symbols in alphabet
25: for i← 0 to k − 1 do
26: RT [i]← sum
27: sum← sum+ CA[i]
28: CA[i]← 0
29: end for
30: end procedure
31: procedure FillTV(TV,RT,CA, input)
32: len← length of input
33: for i← 0 to len− 1 do
34: j ← position of input[i] in alphabet
35: TV [CA[j] +RT [j]]← i
36: CA[j]← CA[j] + 1
37: end for
38: end procedure

10



2.1. Algorithms

example simpler, the demonstration of the RLE algorithm will be shown using
the English alphabet consisting of 26 symbols instead of using the alphabet
of size 256, which the implementation will be later working with. An example
of encoding with the input string S = mississippi is shown in Table 2.1 using
Algorithm 1.

Table 2.1: Example of the BWT algorithm

Index All cyclic rotations Lexicographically sorted rotations
0 mississippi imississipp
1 ississippim ippimississ
2 ssissippimi issippimiss
3 sissippimis ississippim
4 issippimiss mississippi
5 ssippimissi pimississip
6 sippimissis ppimississi
7 ippimississ sippimissis
8 ppimississi sissippimis
9 pimississip ssippimissi
10 imississipp ssissippimi

After using Algorithm 1 on the input string S = mississippi, we get
a pair of string and value S′ = (pssmipissii, 4). This pair is used as an
input for Algorithm 2. But since Algorithm 2 is highly ineffective, example
of decoding is shown using Algorithm 3. However, Algorithm 3 operates with
a pair consisting of encoded string and the index to the first symbol of the
original input data before BWT took place. This means using pair S′ =
(pssmipissii, 3) which is gathered from Table 2.1. An example of decoding
using Algorithm 3 with the input pair S′ = (pssmipissii, 3) is as follows:
symbols counts are in Table 2.2, symbols running totals are in Table 2.3 and
transformation vector is shown in Table 2.4.

Table 2.2: Computed symbols counts for a given example using Algo-
rithm 3. We have alphabet consisting of 4 symbols i,m, p, s and input string
pssmipissii.

Index Symbol Symbols count value
0 i CA[0] = 4
1 m CA[1] = 1
2 p CA[2] = 2
3 s CA[3] = 4

Now, using Table 2.3 and Algorithm 3, we can easily assemble decoded
string S′′ = mississippi. And because S = S′′, we can safely say that we have
successfully shown the use of the BWT algorithm and its inverse version.
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2. Analysis

Table 2.3: Computed running totals for a given example using Algorithm 3.
We mustn’t forget to reset symbol count for every symbol after this step.

Index Symbol Symbols running total value
0 i RT[0] = 0
1 m RT[1] = 4
2 p RT[2] = 5
3 s RT[3] = 7

Table 2.4: Computed transformation vector for a given example using Algo-
rithm 3.

Index Value
0 TV[0] = 4
1 TV[1] = 6
2 TV[2] = 9
3 TV[3] = 10
4 TV[4] = 3
5 TV[5] = 0
6 TV[6] = 5
7 TV[7] = 1
8 TV[8] = 2
9 TV[9] = 7
10 TV[10] = 8

2.1.2 Move-to-front transform

The MTF is an algorithm used to improve the performance of techniques of
compression by decreasing information entropy[16]. It doesn’t compress data,
but instead transforms input data to help following algorithms, such as RLE,
with more efficient compression[8]. This algorithm, as the name suggests,
uses a list of possible symbols and modifies this list at every cycle (moving
one symbol, the last used). Long sequences of identical symbols are replaced
by as many zeros, whereas when a symbol that has not used in a long time,
it is replaced with a large number. Thus at the end, the data is transformed
into a sequence of integers; if the data exhibits a lot of local correlations,
then these integers tend to be small. This algorithm is designed to improve
the performance of entropy encoding techniques of compression[17][18]. The
MTF algorithm is described in Algorithm 4.

The time complexity of the MTF algorithm is O(nk), where n is the length
of the input string to be encoded, and k is the number of symbols in the
alphabet. This is because, for every symbol from the input string, we need
to find its position in the list of all the symbols from the alphabet and then
reorder alphabet order. Since we only need to hold current order of all the
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Algorithm 4 MTF encode
1: procedure MTF(input)
2: alphOrder ← default symbol order in alphabet
3: while input 6= EOF do
4: currSymbol← read symbol from input
5: idx← position of currSymbol in alphOrder
6: output idx
7: MoveToFront(currSymbol, alphOrder)
8: end while
9: end procedure

symbols from the alphabet, we can easily say that space complexity of the
MTF algorithm is O(k), where k is the number of symbols in the alphabet[19].

It is easy to see that the MTF is reversible. Simply maintain the same list
of all the symbols from the alphabet and decode by reading each index from
the encoded string, output the symbol at that index from the list and move
the symbol to the front of the list. The inverse MTF algorithm is described
in Algorithm 5.

Algorithm 5 MTF decode
1: procedure iMTF(input)
2: alphOrder ← default symbol order in alphabet
3: while input 6= EOF do
4: currIdx← read index from input
5: symbol← symbol at currIdx index in alphOrder
6: output symbol
7: MoveToFront(symbol, alphOrder)
8: end while
9: end procedure

Since both the MTF algorithm and its inverse version execute the same
instruction and use the same data structures, time and space complexity of
the inverse MTF algorithm are the same as the original MTF transform.

An example will shed some light on how the transform works. For the sake
of simplicity, the demonstration of the MTF algorithm will be shown using
the English alphabet consisting of 26 symbols instead of using the alphabet
of size 256, which the implementation will be later working with. An example
of encoding with the input string S = mississippi is shown in Table 2.5 using
Algorithm 4.

After applying Algorithm 4 on the input string S = mississippi, we get
the output sequence of integers S′ = 12, 9, 18, 0, 1, 1, 0, 1, 16, 0, 1. This
sequence is used as an input for the inverse MTF algorithm. An example of
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Table 2.5: Example of the MTF algorithm

Input Output Current order of
the symbols in alphabet

mississippi 12 abcdefghijklmnopqrstuvwxyz
ississippi 9 mabcdefghijklnopqrstuvwxyz
ssissippi 18 imabcdefghjklnopqrstuvwxyz
sissippi 0 simabcdefghjklnopqrtuvwxyz
issippi 1 simabcdefghjklnopqrtuvwxyz
ssippi 1 ismabcdefghjklnopqrtuvwxyz
sippi 0 simabcdefghjklnopqrtuvwxyz
ippi 1 simabcdefghjklnopqrtuvwxyz
ppi 16 ismabcdefghjklnopqrtuvwxyz
pi 0 pismabcdefghjklnoqrtuvwxyz

i 1 pismabcdefghjklnoqrtuvwxyz

decoding with the input sequence S′ = 12, 9, 18, 0, 1, 1, 0, 1, 16, 0, 1 is shown
in Table 2.6 using Algorithm 5.

Table 2.6: Example of the inverse MTF algorithm

Input Output Current order of
the symbols in alphabet

12, 9, 18, 0, 1, 1, 0, 1, 16, 0, 1 m abcdefghijklmnopqrstuvwxyz
9, 18, 0, 1, 1, 0, 1, 16, 0, 1 i mabcdefghijklnopqrstuvwxyz

18, 0, 1, 1, 0, 1, 16, 0, 1 s imabcdefghjklnopqrstuvwxyz
0, 1, 1, 0, 1, 16, 0, 1 s simabcdefghjklnopqrtuvwxyz

1, 1, 0, 1, 16, 0, 1 i simabcdefghjklnopqrtuvwxyz
1, 0, 1, 16, 0, 1 s ismabcdefghjklnopqrtuvwxyz

0, 1, 16, 0, 1 s simabcdefghjklnopqrtuvwxyz
1, 16, 0, 1 i simabcdefghjklnopqrtuvwxyz

16, 0, 1 p ismabcdefghjklnopqrtuvwxyz
0, 1 p pismabcdefghjklnoqrtuvwxyz

1 i pismabcdefghjklnoqrtuvwxyz

After applying Algorithm 5 on the input sequence of integers S′ = 12, 9,
18, 0, 1, 1, 0, 1, 16, 0, 1, we get the output string S′′ = mississippi. Since
S = S′′, we have successfully shown use of the MTF algorithm and its inverse
version.

2.1.3 Run-length encoding

The RLE is a simple and popular data compression algorithm that offers great
compression ratios with data that contain lots of redundant symbols[20]. The
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output of the MTF algorithm is a great example of such data with lower
entropy and high redundancy and thus, making it suitable for use with the
RLE algorithm[16]. This algorithm converts consecutive long sequences of
identical symbol runs into a code consisting of the symbol and the number
marking the length of the run. The longer the run, the better the compression
ratio[21]. The RLE algorithm is described in Algorithm 6.

Algorithm 6 RLE encode
1: procedure RLE(input)
2: lastSymbol← last symbol read
3: runLen← 0
4: while input 6= EOF do
5: currSymbol← read symbol from input
6: if currSymbol = lastSymbol then
7: runLen← runLen+ 1
8: else
9: output currSymbol, runLen

10: runLen← 0
11: end if
12: lastSymbol← currSymbol
13: end while
14: output currSymbol, runLen
15: end procedure

The time complexity of the RLE algorithm is O(n), where n is the length
of the input string to be encoded. This is because we need to iterate through
every symbol from the input string and as we access the symbol, we either
increase the symbol run length or output the symbol followed with its run
length. Since we only need to maintain a few additional variables, we can
safely say that the space complexity of the RLE algorithm is O(1), meaning
constant memory usage[21].

It is undeniable to notice that the RLE is easily reversible, considering we
only need to expand symbols run lengths. We iterate through the encoded
string, read symbols followed by their run lengths and output symbol n times,
where n is the symbols run length. The inverse RLE algorithm is described
in Algorithm 7.

Same as the RLE algorithm, its inverse version also needs to iterate through
entire string, meaning time complexity is O(n), where n is the length of the
input string to be decoded. While decoding the input string with the inverse
RLE algorithm, we only need to hold few additional variables, and there-
fore we can say that space complexity of the inverse RLE algorithm is O(1),
meaning constant memory usage[21].

For the sake of simplicity, the following demonstration of the RLE al-
gorithm will be shown using the English alphabet consisting of 26 symbols
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Algorithm 7 RLE decode
1: procedure iRLE(input)
2: while input 6= EOF do
3: currSymbol← read symbol from input
4: runLen← read symbols run length from input
5: while runLen ≥ 0 do
6: output currSymbol
7: end while
8: end while
9: end procedure

instead of using the alphabet of size 256, which the implementation will
be later working with. An example of encoding with the input string S =
aabbbbbcdddeeeeff is shown in Table 2.7 using Algorithm 6.

Table 2.7: Example of the RLE algorithm

Input Output
aabbbbbcdddeeeeff a2

bbbbbcdddeeeeff b5
cdddeeeeff c1
dddeeeeff d3

eeeeff e4
ff f2

After applying Algorithm 6 on the input string S = aabbbbbcdddeeeeff ,
we get the output string S′ = a2b5c1d3e4f2. We can see that the RLE
algorithm was able to shrink string size from 17 symbols to just 12, however
for symbol c, the size was doubled from 1 symbol in S, to 2 symbols in S′. It
is obvious from this example why is a specific type of data so important for
great compression ratio and why data encoded with the MTF algorithm are
such a great candidate for this role. String S′ can be now used as an input
for the inverse RLE algorithm. An example of decoding with the input string
S′ = a2b5c1d3e4f2 is shown in Table 2.8 using Algorithm 7.

After applying Algorithm 7 on the input string S′ = a2b5c1d3e4f2, we get
the output string S′′ = aabbbbbcdddeeeeff . We can see that S = S′′, therefore
we have successfully shown use of the RLE algorithm and its inverse version.
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Table 2.8: Example of the inverse RLE algorithm

Input Output
a2b5c1d3e4f2 aa

b5c1d3e4f2 bbbbb
c1d3e4f2 c

d3e4f2 ddd
e4f2 eeee

f2 ff

2.1.4 Adaptive Arithmetic coding

Arithmetic coding is a form of entropy encoding used in lossless data compres-
sion, that allows each symbol to be coded with a non-whole number of bits
(when averaged over the entire data), thus improving compression ratio[22].
Arithmetic coding represents the current data as a range, defined by lower
and upper bounds and encodes the entire data into a single number from this
interval, an arbitrary-precision fraction n where 0 ≤ n < 1[23]. Starting with
the interval 〈1, 0), each interval is divided into several subintervals, which sizes
are proportional to the current probability of the corresponding symbols of
the alphabet. The subinterval from the currently coded symbol is then taken
as the interval for the next symbol. The output is a number from the interval
of the last symbol.

One of the most important advantages of AC is its flexibility and the fact
that it can be used in conjunction with any model that provides a sequence of
event probabilities. This advantage is quite important because great compres-
sion ratios can be obtained only through the use of sophisticated models of
the input data. Another significant advantage of AC is its optimality. When
the probability of some single symbol is close to 1, AC does give considerably
better compression ratio than other compression methods. So the bigger the
probability of symbols, the more efficient the arithmetic coding is. A minor
disadvantage is the need to indicate the end of the file[24].

Adaptive AC is an adaptive compression method which starts with flat
probabilities of symbols and updates them after each symbol is processed,
thus making it reflect the statistics of the data being compressed[22]. When
the coder encodes the data, it counts the frequencies of the symbols that have
occurred so far in order to obtain a model of the probabilities for the future
symbols. The coder is called adaptive because the model evolves gradually
while the coder scans its input[25]. The Adaptive AC is described in Algo-
rithm 8.

The time complexity of the Adaptive AC encode algorithm is O(k + n),
where n is the length of the input string to be encoded, and k is a number of
different input symbols. Space complexity depends on a number of different
input symbols; therefore we get O(k), where k is the number of symbols in
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Algorithm 8 Adaptive AC encode
1: procedure AACEncode(input)
2: n← size of the alphabet
3: prob← set probabilities of all symbols to 1

n
4: I ← interval 〈1, 0)
5: divide I according to the probabilities of all symbols
6: while input 6= EOF do
7: currSymbol← read symbol from input
8: I ← subinterval I corresponding to currSymbol
9: prob← update the probabilities of all symbols

10: divide I according to the probabilities of all symbols
11: end while
12: output arbitrary-precision fraction from I
13: end procedure

the alphabet[8]. An example of probabilities and interval division is shown in
Figure 2.1.

Figure 2.1: Example of Arithmetic coding with the input string S = aca and
alphabet consisting of symbols a, b, c with probabilities P (a) = 0.5, P (b) =
0.2, P (c) = 0.3[24].

2.1.5 Adaptive Huffman coding

Huffman coding is an algorithm of entropy coder based on the probabilities of
the data occurring in the sequence. HC encodes symbols into variable length,
depending on the probability of each symbol. The symbols which occur more
frequently will need fewer bits than symbols with less frequency[17]. First, the
algorithm counts frequencies (probabilities) of all single symbols in the input
alphabet. According to these frequencies, it generates a binary tree, which

18



2.1. Algorithms

has edges with value 0 or 1 and in its leaf nodes there are symbols of input
alphabet. Likewise, it holds that the highest is a probability of symbol; the
nearer is the appearance of a node to the root of the tree. Then these symbols
are replaced with binary code, which corresponds to concatenation of values
of edges, which we pass on the way from the root to the given leaf node. Since
one of the values 0 or 1 always appears on edges leading to the right successor
(the other to the left successor) and symbols of input alphabet are located
only in leaf nodes, the resulting code is a prefix. It is necessary to attach
this tree or at least the information about frequencies of appearance of single
symbols in input data to the resulting sequence. Then the decompression is
available[8].

Adaptive HC is an adaptive compression method which involves calculat-
ing the probabilities dynamically based on recent actual frequencies in the
sequence of source symbols, and changing the coding tree structure to match
the updated probability estimates. The coder is called adaptive because the
binary tree is changing simultaneously with processed data in order for the
coder to remain optimal for the current probability estimates. Since it per-
mits building the code as the symbols are being transmitted, having no initial
knowledge of source distribution, only one pass over the data is required. An-
other benefit of the one-pass procedure is that the source can be encoded in
real time. The Adaptive HC is described in Algorithm 9[8].

In the worst case (coding tree needs to be changed after each single symbol
in the input string on all levels) is estimated time complexity O(n ∗ log k),
where n is the length of the input string to be encoded, and k is a number
of different input symbols in the alphabet. The coding tree has k leaf nodes,
and depth is roughly log k (though the tree needn’t be balanced, this could
do as an estimate). Therefore its size is about 2 ∗ k and we can tell that the
space complexity is O(k)[8]. An example of the created coding tree from given
symbols and frequencies is shown Figure 2.2.
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Algorithm 9 Adaptive HC encode
1: procedure AHCEncode(input)
2: ZERO ← create node ZERO
3: while input 6= EOF do
4: currSymbol← read symbol from input
5: if first read of currSymbol then
6: output ZERO, currSymbol
7: newNode ← new node with next nodes ZERO and new node
currSymbol

8: UpdateTree(newNode)
9: else

10: output currSymbol
11: UpdateTree(currSymbol)
12: end if
13: end while
14: end procedure
15: procedure UpdateTree(inNode)
16: while inNode 6= ROOT do
17: if exist node N with same value and greater order then
18: change inNode and N
19: end if
20: inNode← increment value
21: inNode← parent(inNode)
22: end while
23: inNode← increment value, update leaf nodes
24: end procedure

Figure 2.2: Example of Huffman coding tree with the alphabet of size 9 and
symbols input frequencies {1, 1, 1, 1, 3, 3, 3, 3, 7}. Assigned codeword for every
symbol can be easily gathered by following the path from the root of the
Huffman coding tree to the desired leaf[26].
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2.2 Burrows-Wheeler transform and bzip
algorithms

Bzip and its more popular ancestor bzip2 are open source lossless data com-
pression programs which are based on Burrows-Wheeler transform. These
algorithms use the BWT, MTF and RLE algorithms as the main parts of
their schemes. Excluding special optimization steps, these algorithms em-
brace the same compression and decompression schemes as a program created
as a part of this thesis. Original bzip, made first public in 1996, used AC
but due to the acquisition of patents by IBM switched to HC and thus, bzip2
was created[8]. As per the information published by the developer, bzip2 is
capable of compressing files down to 15% or 10% of other available techniques
and operates at twice the compression speed and six times the decompression
speed than another popular compression algorithm, gzip. The bzip2 program
processes data in blocks ranging from 100 to 900 kilobytes in size with the
default block size of 900 kilobytes. Performance of bzip2 is asymmetric, as
decompression is relatively quick[2].

2.3 Non-functional requirements

Non-functional requirements refer to constraints and behavioural properties of
the system. They specify criteria that can be used to judge the operation of a
system, rather than specific behaviours. A typical non-functional requirement
contains a unique name and number and a brief summary. This information
is used to better understand why the requirement is needed and can be used
to track the requirement through the development of the system.

• N1 SCT library - Implementation has to be done as a part of the
Small Compression Toolkit library. The SCT library is developed at
th Faculty of Information Technology at Czech Technical University in
Prague and already contains multiple compression algorithms[3].

• N2 Java programming language - Implementation has to be done
in Java programming language which is the programming language used
to develop SCT library.

• N3 Integrability - Implementation has to provide an interface which
makes it possible to integrate new components later.

• N4 Documentation - Implementation has to be appropriately and
sufficiently documented, and this documentation has to be compliant
with documentation standards for Java programming language.

• N5 Readability - The created code has to be easily readable and has
to follow Java programming language conventions.
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2.4 Functional requirements

Functional requirements specify a function that a system or system component
must be able to perform. They refer to services that the system should provide.
A typical functional requirement contains a unique name and number and
a brief summary. This information is used to better understand why the
requirement is needed and can be used to track the requirement through the
development of the system.

• F1 BWT implementation - Implement Burrows-Wheeler transform.
This implementation must be compliant with standards set for method
interfaces in the SCT library.

• F2 MTF implementation - Implement Move-to-front transform. This
implementation must be compliant with standards set for method inter-
faces in the SCT library.

• F3 RLE implementation - Implement Run-length encoding. This
implementation must be compliant with standards set for method inter-
faces in the SCT library.

• F4 AC implementation - Implement Arithmetic coding. This imple-
mentation must be compliant with standards set for method interfaces
in the SCT library.

• F5 HC implementation - Implement Huffman coding. This imple-
mentation must be compliant with standards set for method interfaces
in the SCT library.

• F6 Client - Implement client which can be used to run the program
from the command-line interface. The functionality of this client can be
controlled by parameters.

2.5 Related work

As already mentioned, bzip and bzip2 heavily rely on the BWT, MTF and RLE
algorithms. Apart from these programs, there are many other compression
tools containing the BWT algorithm, such as ZZip or ZPAQ. Another usage
of the BWT algorithm can be found in the sequence alignment and sequence
analysis in bioinformatics. Bowtie is an ultrafast, memory-efficient alignment
program for aligning short DNA sequence reads to large genomes. For the
human genome, the BWT indexing allows Bowtie to align more than 25 million
reads per CPU hour with a memory footprint of approximately 1.3 gigabytes.
Bowtie extends previous Burrows-Wheeler techniques with a novel quality-
aware backtracking algorithm that permits mismatches. Multiple processor
cores can be used simultaneously to achieve even greater alignment speeds[27].
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2.6 Associated theses

There have already been four theses dedicated to implementing compression
algorithms as a part of the SCT library. Thesis Implementation of the ACB
compression method improvements in the Java language written by Jǐŕı Bi-
can laid the foundation for SCT library and added the ACB algorithm as
the first of many to come[24]. Jakub Novák with his thesis Implementace
kompresńı metody DCA v jazyce Java contributed by implementing the DCA
algorithm[28]. The LZ77, LZ78 and LZW algorithm were implemented by
Ladislav Zemek in his thesis Implementace kompresńıch metod LZ77, LZ78,
LZW v jazyce Java[29]. The last contribution was made by Ján Bobot and his
thesis Implementace kompresńıch metod LZY, LZMW a LZAP v jazyce Java
when he implemented the LZY, LZMW and LZAP algorithms[30]. Apart from
these algorithms, the SCT library also involves tools for manipulation with
input and output files.
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Chapter 3
Design and implementation

This chapter is dedicated to the implementation of required functionality with
special attention given to meet functional and non-functional requirements.
Assignment of this thesis was the implementation of the BWC compression
method and its variants in Java programming language. This chapter deals
with this process and explains the steps needed to implement it.

3.1 Overview

The functionality was implemented as a part of the SCT library which is
developed in Java programming language. Since the SCT library is already
using Git, the choice of a version control system (or VSC for short) used to
track changes in source code during development is clear and obvious[3]. A
handy tool for software development is an integrated development environment
(IDE for short) which can provide many useful utilities to make work more
productive, such as integrated VCS, UML class diagram generator or built-
in build automation tool like Apache Maven. IDE chosen for this task was
IntelliJ IDEA developed by JetBrains.

3.2 External libraries

Two main libraries are used to provide support for the main functionality.
These libraries don’t affect dataflow itself but rather help with support pro-
cesses such as logging or parsing the input from the command line.

• Apache Commons CLI - This library provides an API for parsing
command line options passed to program. It’s also able to print help
messages detailing the options available for a command line tool.

25



3. Design and implementation

• Apache Log4j 2 - This utility is one of the most widely used logging
frameworks used in the Java programming language. It allows fast and
efficient management of the logging files.

3.3 Dataflow in application

The critical task to do is to ensure that data can flow freely and no component
creates a bottleneck for data processing. The SCT library already contains
tools for such a task. The component chaining is done by ChainBuilder class
which provides methods for creating dataflow stream. This class ensures that
every component is fully responsible for handling the given data. The only
requirement made for a component in order to be added to the dataflow chain
is that the component must take input from the preceding segment as an input
and provide an output which can be processed by the following chain segment.
The UML class diagram for ChainBuilder is shown in Figure 3.1.

Figure 3.1: UML class diagram for ChainBuilder.

Components implemented as a part of this thesis works with ByteBuffer
class. ByteBuffer is a Java class which wraps raw data bytes and provides
methods for their convenient manipulation. Since all components implemented
as a part of this thesis provide the same input and output interface, they can
be randomly and freely chained and exchanged in dataflow stream. This
possibility creates space for other experiments and opportunities for more
effective data compression. Default dataflow and component chaining used in
this thesis is show in Figure 3.2. If data are being compressed, the data flows
from left to right and for decompression its the other way around.
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Figure 3.2: Default dataflow and component chaining.

I/O BWT MTF RLE

AC

HC

I/O

3.4 Input and output

As shown in Figure 3.2, the dataflow always starts and ends in the component
responsible for file input and output. This functionality is already available in
the SCT library. Class FileIO takes care of opening files, reading from files,
writing to files and finally closing the files. FileIO class requires only one
parameter - block size. This parameter specifies how big the chunks of data
read from the input file will be. The bigger the block, the better the compres-
sion ratio but this also means higher memory usage. If a user doesn’t specify
the size of blocks, the default size of 5 megabytes is used. Unfortunately, the
previously implemented FileIO class has a little bit different interface that
is desired, and instead of using ByteBuffer class the data have to be altered
before further use. However, this only means small inconvenience and a few
additional lines of code.

3.5 Burrows-Wheeler transform

The BWT algorithm which encodes the date is described in Algorithm 1 and
implemented in BWT class. For lexicographically sorting the rotations of the
input string, Arrays.sort() with own comparator is used. This comparator
is used to specify the order in which the Arrays.sort() sorts the data. The
inverse BWT algorithm used to data decoding is described in Algorithm 3
and implemented in InverseBWT class. Special attention is given to properly
documenting the source code to make it as readable as possible. The UML
class diagram for the BWT algorithm is shown in Figure 3.3.

Figure 3.3: UML class diagram for the BWT algorithm.
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3.6 Move-to-front transform

The MTF is a fairly simple algorithm consisting of only a few steps. En-
coding with the MTF algorithm is described in Algorithm 4 and this imple-
mentation is done in MoveToFrontEncoder class. The inverse MTF algorithm
which decodes the given data is described in Algorithm 5 and implemented in
MoveToFrontDecoder class. Special emphasis is given to properly document-
ing the source code in order to make it as readable as possible. The UML
class diagram for the MTF algorithm is shown in Figure 3.4.

Figure 3.4: UML class diagram for the MTF algorithm.

3.7 Run-length encoding

The RLE algorithm described in Algorithm 6 was slightly modified for better
optimisation. Instead of writing run length after every symbol, which would
often be 1, run length is counted and written only if two or more consecutive
symbols occur in the data stream. This slightly modified version of the Al-
gorithm 6, which encodes data using the RLE algorithm, is implemented in
RunLengthEncoder class. The inverse RLE algorithm also had to be modi-
fied to some extent. This modified version of Algorithm 7 is implemented in
RunLengthDecoder class and is used to decode the given input. Appropriate
attention is given to creating readable code. The UML class diagram for the
RLE algorithm is shown in Figure 3.5.

Figure 3.5: UML class diagram for the RLE algorithm.
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3.8 Coder

Encoding and decoding process currently supports two entropy coders - Adap-
tive Arithmetic coding and Adaptive Huffman coding. Abstract classes
CoderBWC and DecoderBWC serve as wrappers for these coders and every new
coder added to the SCT library has to implement these abstract classes in
order to be sufficient for further use in the library. Both of these classes com-
municate with previously implemented FileIO class, and thus their interface
is a little bit different in order to be possible to integrate them into the library.
This can be better seen in Figure 3.6.

Figure 3.6: UML class diagram for the coder.

Both Adaptive AC and Adaptive HC are outsourced by opensource li-
brary developed by Nayuki[22, 31]. Classes AdaptiveArithmeticEncoder,
AdaptiveArithmeticDecoder, AdaptiveHuffmanEncoder and
AdaptiveHuffmanDecoder implements already mentioned abstract classes
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CoderBWC and DecoderBWC and slightly adjust data before forwarding them to
the external library. To make the source code as readable as possible, special
emphasis is given to properly documenting it. The UML class diagram for the
coder is shown in Figure 3.6.

3.9 Client

Class BWCClient is an executable program and represents client which can be
run from the command line. Its behaviour can be altered by console param-
eters. Following text summarizes the usage of implemented BWCClient. This
help message is printed if any error occurs while parsing parameters from the
command line or can be purposely printed with -h parameter.

usage: bwc.jar input output [options]
input - input file
-b <block> size of blocks in bytes - default

size is 5 MB
-cd,--coding <arg> coding used in BWC - arithmetic or

huffman (default is huffman
coding) [ar][hf]

-de,--decompress decompress input (default is to
compress)

-h,--help print this help
-l,--log-level <level> sets logging level of the

application
-m,--measure measured time and compression

ratio and print
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Chapter 4
Measurements and results

4.1 Overview

This chapter is dedicated to performance testing of the created implementa-
tion. The BWC implementation is tested on multiple corpora and time, and
the compression ratio is measured. For the purpose of evaluating the capa-
bilities of the implementation, Adaptive AC and the default block size of 5
megabytes are used. Basic overviews of the used corpora are defined in dedi-
cated sections alongside with results of performance testing. Since many other
processes can affect the performance of the used platform, the measurements
were performed multiple times and a result with the lowest time consumed
was used as a result of the measurement.

All measurements are done on the platform with the following configura-
tion:

• CPU - Intel Core i7 8750H 2,2 GHz hexa-core,

• RAM - 32 GB DDR4,

• OS - Windows 10 64-bit architecture.

4.2 Calgary corpus

The Calgary corpus is a collection of text and binary data files, commonly
used for comparing data compression algorithms. It was created by Ian Wit-
ten, Tim Bell and John Cleary from the University of Calgary in 1987 and
was commonly used in the 1990s. In 1997 it was replaced by the Canterbury
corpus, based on concerns about how representative the Calgary corpus was,
but the Calgary corpus still exists for comparison and is still useful for its orig-
inally intended purpose. It contains 18 files of 9 different types with complete
size 3,266,560 bytes[13]. Final results for this corpus are shown in Table 4.1.
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4. Measurements and results

Table 4.1: Performance testing results for the Calgary corpus.

File name Size [B] Compr.
ratio

Compr.
time [µs]

Decompr.
time [µs]

calgary.tar 3266560 0.301 16408 1152
bib 111261 0.265 223 75
book1 768771 0.332 1143 388
book2 610856 0.282 930 244
geo 102400 0.621 209 83
news 377109 0.335 653 167
obj1 21504 0.507 86 36
obj2 246814 0.325 471 106
paper1 53161 0.334 129 57
paper2 82199 0.329 169 80
paper3 46526 0.366 109 59
paper4 13286 0.418 66 31
paper5 11954 0.431 59 28
paper6 38105 0.344 97 57
pic 513216 0.109 13488 98
progc 39611 0.336 100 50
progl 71646 0.236 148 80
progp 49379 0.235 145 61
trans 93695 0.205 222 70

4.3 Canterbury corpus

The Canterbury Corpus was published by Ross Arnold and Tim Bell in 1997.
The aim was to replace outdated Calgary Corpus and to provide more relevant
testing for new compression algorithms. The files were selected based on their
ability to provide representative performance results. In its most commonly
used form, the corpus consists of 11 files, selected as ”average” documents
from 11 classes of documents, totalling 2,826,240 bytes[32]. Final results for
this corpus are shown in Table 4.2.
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4.4. Prague corpus

Table 4.2: Performance testing results for the Canterbury corpus.

File name Size [B] Compr.
ratio

Compr.
time [µs]

Decompr.
time [µs]

canterbury.tar 2826240 0.213 16063 767
alice29.txt 152089 0.309 314 90
asyoulik.txt 125179 0.344 248 101
cp.html 24603 0.328 79 40
fields.c 11150 0.297 58 27
grammar.lsp 3721 0.38 46 12
kennedy.xls 1029744 0.111 791 192
lcet10.txt 426754 0.277 715 173
plrabn12.txt 481861 0.332 830 233
ptt5 513216 0.109 13631 97
sum 38240 0.354 135 60
xargs.1 4227 0.447 48 17

4.4 Prague corpus

The Prague corpus is specific because of its diversity. In order to keep the
corpus up to date, a methodology for regular updates of the corpus was de-
signed. Being the largest from those three corpora, this corpus contains 30
files of the total size 58,265,600 bytes[33]. Final results for this corpus are
shown in Table 4.3.

33



4. Measurements and results

Table 4.3: Performance testing results for the Prague corpus.

File name Size [B] Compr.
ratio

Compr.
time [µs]

Decompr.
time [µs]

prague.tar 58265600 0.574 185035 24950
abbot 349055 0.92 621 529
age 137216 0.43 395 89
bovary 2202291 0.266 3281 763
collapse 2871 0.464 42 11
compress 111646 0.186 283 82
corilis 1262483 0.491 77295 507
cyprus 555986 0.027 2710 102
drkonqi 111056 0.348 225 76
emission 2498560 0.098 14585 339
firewrks 1440054 0.96 2029 975
flower 10287665 0.393 11317 4503
gtkprint 37560 0.303 129 41
handler 11873 0.257 67 19
higrowth 129536 0.403 253 80
hungary 3705107 0.017 29317 428
libc06 48120 0.351 133 54
lusiadas 625664 0.308 4128 248
lzfindmt 22922 0.229 81 30
mailflder 43732 0.216 118 38
mirror 90968 0.402 216 73
modern 388909 0.333 695 218
nightsht 14751763 0.815 18354 8221
render 15984 0.26 62 32
thunder 3172048 0.792 4354 1951
ultima 1073079 0.666 1565 545
usstate 8251 0.278 56 24
venus 13432142 0.715 17433 7038
w01vett 1381141 0.053 3335 175
wnvcrdt 328550 0.042 933 66
xmlevent 7542 0.307 55 24
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Conclusion

The goal of this thesis was to implement a set of tools for data compression as
a part of the SCT library. Maximum effort was given into fulfilling this goal,
and the toolkit successfully implements all of the techniques discussed in the
Analysis chapter, such as BWT, MTF, RLE, AC and HC. The toolkit also ful-
fils all the functional requirements and satisfy all non-functional requirements.
All relevant algorithms were implemented, and they underwent performance
testing to test their compression and time efficiency. I hope somebody finds
some uses for techniques described and implemented in this thesis since they
have the potential for further use and additional improvements. Personally, I
have found this topic to be very interesting, and I hope more attention would
be given to it.

Future work

While working on this thesis, many new ideas for further improvements
emerged. The SCT library doesn’t have a unified file extension, and every
implemented algorithm uses its own. This creates a significant opportunity
for creating .sct file extension, and the required data would be written to file
header which would have unified layout. Components implemented as part
of this thesis provide the same input and output interface, allowing free and
random component chaining. This opens a lot of options for further exper-
iments and library extensions. However, previously implemented algorithms
don’t have this advantage and therefore have limited use. Changing input and
output interfaces to a unified form would greatly expand their field of use.
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Appendix A
Acronyms

BWC Burrows-Wheeler compression

BWT Burrows-Wheeler transform

MTF Move-to-front transform

RLE Run-length en-coding

AC Arithmetic coder

HC Huffman coder

SCT Small Compression Toolkit

CPU Central processing unit

RAM Random-access memory

VCS Version control system

UML Unified Modeling Language

IDE Integrated development environment

CLI Command-line interface

OS Operating system
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Appendix B
Contents of enclosed memory

card

readme.txt .............. the file with memory card contents description
src.......................................the directory of source codes
text..........................................the thesis text directory

BP Geletka Filip 2019.pdf...........the thesis text in PDF format
src ................. the directory of LATEX source codes of the thesis

43


	Introduction
	Motivation
	Main goals
	Thesis structure overview

	Basic notions
	Symbol
	Alphabet
	String
	Codeword
	Code
	Data compression
	Data decompression
	Compression algorithm
	Decompression algorithm
	Compression method
	Model
	Adaptive compression method
	Compression ratio
	Entropy
	Redundancy
	Corpus

	Analysis
	Algorithms
	Burrows-Wheeler transform
	Move-to-front transform
	Run-length encoding
	Adaptive Arithmetic coding
	Adaptive Huffman coding

	Burrows-Wheeler transform and bzip algorithms
	Non-functional requirements
	Functional requirements
	Related work
	Associated theses

	Design and implementation
	Overview
	External libraries
	Dataflow in application
	Input and output
	Burrows-Wheeler transform
	Move-to-front transform
	Run-length encoding
	Coder
	Client

	Measurements and results
	Overview
	Calgary corpus
	Canterbury corpus
	Prague corpus

	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed memory card

