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Abstrakt

Tato prace se zaméfuje na pouziti kryptografie v aplikaci s verejnym zdro-
jovym kédem jménem 7-zip. 7-zip slouzi k ukladani dat do digitalnich archiv.

V préci si nejdiive rozebereme jak je 7-zip strukturovany a jak ho zkom-
pilovat. Poté otestujeme implementaci sifry AES v 7-zip tak, Ze jeji vystupy
porovname s vystupy z knihovny OpenSSL. Déle se zamétime predevsim na
pouzitou key-derivation-function (funkce-pro-odvozeni-klice) ktera na zakladé
uzivatelského hesla tvori klice pro AES. Zjistime, Ze tato funkce je pred kom-
pilaci znacné prizpusobitelnd, jenze dekddovaci ¢ast 7-zipu podporuje i dost
slabé varianty. Kvili tomu by bylo mozné sestavit 7-zip, ktery by mél naschval
velmi oslabené Sifrovani, nicméné nim produkované archivy by stale byly ko-
rektni a zpracovatelné béznou instalaci 7-zipu. Belo by ale mnohem snazsi
jejich Sifrovani prolomit.

Nésledné predvedeme jak vlastné takovy ttok hadajici hesla od archivua
vypadd, s pomoci dalsi opensource aplikace jménem hashcat. Nakonec jesté
sepiseme par kuriozit a vlastnosti, kterych jsme si povsimli béhem nasi analyzy,
a které by se za urc¢itych situaci mohly projevit jako problematické z hlediska
bezpecnosti. Praci zakon¢ime shrnutim a nékolika ndvrhy na dalsi analyzu v
ramci 7-zipu.

Klic¢ova slova 7-zip, AES, funkce-pro-odvozeni-klice, heslo, KDF, krypto-
grafie, archiv, 7z
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Abstract

This thesis focuses on the use of cryptography in the open source file archiver
7-zip.

We first discuss a bit about how 7-zip is structured and how it is com-
piled. We then take a look at the included AES implementation and compare
its outputs with outputs from the OpenSSL library. After that we mostly fo-
cus on the key-dervation-function which transforms user-supplied passwords
into AES keys. We find that the key-dervation-function is customizable be-
fore compilation, however the decoding part of 7-zip supports even very weak
variations. This means a purposefully weak 7-zip build would still produce
valid archives — only they would be much easier to crack.

After that we demonstrate how password guessing attacks take place with
the help of another open source application called hashcat. Finally we list a
few interesting curiosities and properties we noticed along the way, which may
or may not prove problematic from a security perspective. We conclude the
thesis by a summary and suggestions for future exploration.

Keywords 7-zip, AES, key-derivation-function, password, KDF, cryptogra-
phy, archive, 7z
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Introduction and goals

This bachelor thesis is about the 7-zip application. 7-zip is a file archiver —
a program used for creating digital archives which enables easy data storage.
These archives are usually compressed and can also be encrypted for storage
of sensitive or secret data.

We picked 7-zip specifically because it is open-source and therefore can be
analyzed reasonably well without resorting to reverse-engineering. Moreover,
it is very widely used — not only as the actual application, where people install
7-zip on their PC and use it to store, backup or encrypt their data but also
as part of other applications and programs. This is achieved either by using
pieces of 7-zip code directly in another program or by using the compiled
underlying 7z.d11 library.

We aim to analyze the use of cryptography in 7-zip. We will pursue several
goals — inspect the software architecture and internal workings of the applica-
tion, analyze the implementation of the cryptographic and related algorithms
and also compare the results of these algorithms to an existing widely ac-
cepted solution — the OpenSSL library. Furthermore, we will inspect how
the application actually uses the user-supplied password for encrypted archive
creation.

Finally, we will use 7-zip to create several encrypted archives and we will
use external cracking tools in an attempt to break the encryption. We will
conclude the thesis by discussing the results of our analysis.

On the other hand, we do not aim to try and break AES itself or any other
theoretical underlying cryptographic algorithms.






CHAPTER 1

Theoretical background

In this chapter, we will first discuss the need to store digital data either as-is
or in encrypted form. After that we will steer our attention towards the 7-zip
application — we will talk about its uses and a bit about its history.

1.1 Data storage and encryption

People need to store ever-increasing quantities of digital data, this has been
a trend for more than a decade. The hardware used for such storage also
increases in its capacity following this trend. Lately, people also started using
“cloud” services, where they do not store their digital data locally but on a
remote server.

To be able to store or send data which may be really sizable or contain
a large number of files we started using file archivers. These are applications
which can take many input files and create either one or several digital archives
out of them. A usual feature of these is also compression, where we can make
use of specialized algorithms and compress the digital data to save space.

We recognize two main types of compression: lossy and lossless. Lossy
compression is used almost exclusively with multimedia where we can trade
smaller digital size of the data for image quality, sound quality, etc. On the
other hand, lossless compression shrinks the supplied data without actually
losing any contained information. Of course, such operation has limitations
— you can’t compress the data indefinitely and there usually is a trade-off
between having a smaller compressed file but needing more resources and/or
time during the compression/decompression.

Except for compression, another use-case of archivers soon emerged. Some-
times people want to store their data in an encrypted form — it might be com-
pany documents, personal files or anything else, the goal is the same — store
the data in such a way that only you can read it, even if another person has
physical access to the hardware medium that they are stored on. The most

3



1. THEORETICAL BACKGROUND

common solution to this problem is using encryption — we can use a symmetric
cipher to encrypt the data using a key that only we know. Without the key,
the encrypted data is not readable.

Specifically nowadays, the cipher used will often be AES — Advanced En-
cryption Standard, standardized by the Federal Information Processing Stan-
dards [1]. AES is a symmetric block cipher with a key length of either 128,
192 or 256 bits [2]. Usually, a block cipher, such as AES, is not used in its
raw form (ECB — or Electronic Codebook — mode of operation) but rather in
one of the other modes of operation which often enable them to behave like
stream ciphers in some sense and also provide them with better properties [3].
The modes used in 7-zip are CBC (Cipher-Block-Chaining) when handling
encrypted .7z files and CTR (Counter) when handling AES-encrypted .zip
files — more on this in Section 2.3.

Depending on the key length we want to use and the specific use-case,
we often need a Key Derivation Function (KDF). This is a function that will
calculate the secret key to be used in the cipher (AES in our case) usually
based on some input. We are interested in password-based key-derivation-
functions (PBKDF'). These take a user-supplied password and process them
in a well-defined way to produce a key of the correct length.

This is the most important part of a KDF however it is not the only one —
a good KDF will also ensure that the key has some “good” properties — what
properties are “good” might differ between ciphers and use cases. We are
mainly interested in “key stretching” — this is a technique that enhances the
encryption in a certain sense. The basic premise is that human-made password
or passphrases are often easily guessable, so we introduce the PBKDF and we
make the transformation from password to key somewhat computationally
slow — that way we can limit the number of possible password guesses per
second in a brute-force attack.

In a brute-force attack, we simply try to guess the password one by one.
Trying all possible combinations of a certain length and a certain character
set ensures that we will eventually find the correct password, provided that
the number of tries isn’t somehow limited and that the password actually falls
within this search-space. To further make this attack as inefficient as possible
for the attackers, the way the guessed password is verified also shouldn’t be
as fast as possible but rather quite slow. Finally, of course, the password itself
shouldn’t be too simple or too short.

There are more elaborate versions of the brute-force attack, such as the
dictionary attack. Instead of trying every possible password we only try a
certain subset, usually supplied via a simple text file containing the passwords
to test — a “dictionary” (hence the name). These dictionaries can further be
generated by specialized programs or combined together, etc.

Depending on how we actually receive the information whether our pass-
word guess is correct there might be more nuances to this. For example, in
the case that somewhere along the way a one-way function — usually a hashing
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1.2. 7-zip

function — is used, we can calculate large lookup tables containing all possible
passwords (of a certain length and character set) as the input into this func-
tion. Such tables can either be literal one-to-one (as in one entry per password
and its hash) lookup tables or the more elaborate “rainbow tables” invented
by Philippe Oechslin?.

If we know the hash of the correct password we can just use these tables to
look the password up, instead of using the brute-force attack. It’s essentially
a time/space trade-off — the tables still have to be calculated however after
that is done, they could be distributed and people can use them to reverse the
given function much faster than going through the possibilities again. And
indeed this has been done with some widely used hashing functions and there
are tools readily available online to be used for this purpose?.

This type of attack is countered by a technique called “adding crypto-
graphic salt”. This usually just means that we append the input for the hash
function with a randomly generated* sequence of a certain length (this se-
quence is what is referred to as the “salt”)) and then we save this sequence in
plain text to later be used again during the password verification. Since the
salt will always be different it becomes computationally (both time-wise and
storage-wise) virtually impossible to pre-calculate the lookup tables.

1.2 T7-zip

One example of a file archiver is 7-zip [4]. It is a multiplatform open-source
application originally released in 1999 and written and maintained by a Rus-
sian developer Igor Pavlov [4]. Since then the application has gone through
many changes and the version that we will focus on in this thesis is 18.05.

7-zip supports a multitude of archive formats. Each of these formats sup-
ports at least one “filter” to choose from, these filters are mostly compression
methods and encryption methods. The way this is implemented makes it pos-
sible to later add more custom filters. Among the supported archive types in
7-zip are the widely used .zip format, its native .7z format, a proprietary
.rar format (decompression only) and more. We will focus on the .7z archive
format since its native to the 7-zip application and it is the format of choice
when using the default options for archive creation.

During the writing of this thesis, two new versions of 7-zip were released —
18.06 and 19.00 [5]. There weren’t any changes concerning security in 18.06,
but there was a major security update in 19.00, which addresses one security

2Check out https://link.springer.com/chapter/10.1007/978-3-540-45146-4_36 for
more information on rainbow tables

3For example, https://crackstation.net/, https://www.onlinehashcrack.com/,
https://hashkiller.co.uk/, etc.

4preferably using a Cryptographically secure pseudorandom number generator
(CSPRNG)
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problem that is present in 18.05 (and 18.06 and prior versions) — we will discuss
this problem in Section 2.3.

There have been some security problems with 7-zip before. The full list
of published vulnerabilities is available in the CVE (Common Vulnerabilities
and Exposures) database®.

A notable one is, for example, the vulnerability concerning .rar archives
decompression 7-zip 18.03 (and earlier). The state of internal decoding objects
can be largely uninitialized and one could then create specially crafted .rar
archives which would cause the usage of uninitialized memory leading either to
a crash or possibly a code execution attack. The vulnerability was introduced
on an internet blog concerning computer security by “ladave” (authors real
name is David, the surname is unknown) [6].

Shttps://www.cvedetails.com/vulnerability-1list/vendor_id-9220/7-zip.html


https://www.cvedetails.com/vulnerability-list/vendor_id-9220/7-zip.html

CHAPTER 2

Analysis of 7-zip

In this chapter, we will focus on our own analysis of 7-zip, with emphasis on
the use of cryptography. We mostly analyze version 18.05 of 7-zip — it is as
of now out of date, but its source code can still be downloaded from the 7-zip
SourceForge page along with most of the released versions [7]. Throughout this
chapter we will be making references to the 18.05 source code — it will be avail-
able on the attached SD card in the directory Sources\7z1805-src, but if the
reader doesn’t have access to it, we encourage them to download the source
code. Even though we will also place certain important outtakes and snippets
directly into this thesis. Figure 2.1 shows the contents of the extracted direc-
tory. We will consider this directory to be our root in this chapter, when we
talk about specific files in the source code (i.e., CPP\7zip\Crypto\7zAes.cpp)
unless stated otherwise.

Inside the root directory, there is a subdirectory named myLogs which is
not a part of the 7-zip source code. It contains a tool for simple thread-safe
logging to files, which we wrote to help us during the analysis of 7-zip. We
included it since it might prove useful if the reader wishes to conduct their
own tests or debugging tasks on the 7-zip source code. The tool consists
of the header file myLogger.h which needs to be included within the files in
which we want to use the logging feature and the actual implementation in
myLogger. cpp.

The directory to which the logs will be saved can be set in myLogger.h

Figure 2.1: The source code root directory

Asm ...l (The optimized algorithms written in assembler)
Covviiiennnnn (The source code of the low-level parts of 7-zip, and more)
CPP it (The C++ part of the source code)
DOC ettt (7-zip’s documentation)
MYLOES «ttteteii e (Not part of 7-zip. See chapter 2)



2. ANALYSIS OF 7-ZIP

by redefining the preprocessor macro PATH_TO_LOGS on line 15. Finally, there
is a file called StdAfx.h which is needed because of the precompiled headers
when using the logger with 7-zip — it is the same StdAfx.h which is included
in all 7-zip source files.

To use the logger in 7-zip we need to modify the CPP\7zip\7zip.mak file —
this is a file that is part of the 7-zip makefile structure and is used in building
all the actual binaries (both .d11 files and .exe files). We just need to add

\$0\myLogger.obj
after the second row of the original file and add

../../../../mylLogs.cpp$0.0obj::
$ (COMPLB)

after the 176th row.

This will make sure that when building the binaries our logger gets built
and linked to them as well. We will learn how to compile 7-zip in the following
section.

The actual usage of the logger is as follows: in the myLogger .h file there is
preprocessor macro LOG(name, msg) — this is what we will use for the logging
(no semicolon is needed after the macro invocation).

The first parameter (name) specifies the name of the logging file without
the path and without the extension (the .log extension is appended automat-
ically). The file name is expected to be given as a std::string or a value
that can be implicitly converted to it (i.e. a C string literal). Each file is
treated as a separate thread-safe logger. This means each time the LOG macro
is called on the same file name we can be sure that the order of the messages
written in it is well defined and the messages won’t be overlapping. When the
log file is first opened it is truncated — when re-running the application and
logging to the same file the old log gets deleted.

The second parameter (msg) is the actual message that we want to log.
The message is automatically prepended by a number indicating the order of
the messages (beginning with a 0) and appended by a newline. It is expected
to be given as a std::string or a std::wstring or any values that can
be implicitly converted to one of these (for std::wstring the literal can be
written as L"the text" in C++).

Finally, to gracefully close the logging files and delete their structures from
memory we should place the preprocessor macro CLEAR_LOGGERS (also defined
in myLogger .h) somewhere in the code where it will surely be called (not called
as in CLEAR_LOGGERS () — the macro is defined without the parentheses). In
the case of the console version of 7-zip this will probably mean placing it in
CPP\7zip\UI\Console\MainAr.cpp in the main function before every possible
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2.1. Software architecture

return statement, to make sure it gets called even when exceptions arise and
the catch clauses are invoked.

2.1 Software architecture

The compiled 7-zip application normally consists of several components. The
7z.d11 library which provides the actual functionality of compression and
decompression, encryption and decryption, etc. This library can of course
also be used by other applications and programs than 7-zip.

Then there is 7z.exe which is the console version of 7-zip — it can be
used from the terminal and accepts command line parameters through which
the action (add to archive, extract from archive, etc.) and different options
can be specified. We will mainly be using this executable in this thesis. An
alternative is the 7zG.exe which also accepts parameters but the output is
graphical. It is mostly used either by the shell extension (using 7-zip from
mouse right-click in Windows Explorer) or by the third executable which is
7zFM.exe. This is a built-in file manager which can be used instead of the
Windows Explorer (or a different shell when running a different OS).

Finally, there is 7-zip.dll (and 7-zip32.dll when 64-bit 7-zip is installed).
This is used by the shell extension (for usage of 7-zip from Windows Explorer
— we get several 7-zip commands in the mouse right-click menu).

What we described is the default installation but 7-zip is very modular and
can be compiled in different ways. You can, for example, compile a standalone
7z.exe containing all the functionality of 7z.d11 or compile a 7z.d11 that is
reduced in size and supports only specific archive formats etc.

7-zip is written in both pure C and C++ and also some minor parts are
even re-written directly in assembler (specifically x86 and ARM assembler) —
these might be used during compilation instead of the C/C++ code depend-
ing on the platform and compilation options and can provide an increase in
performance.

Judging from the DOC\readme . txt file and the presence of .dsp and .dsw
files, Mr. Pavlov uses Microsoft Visual C++ 6.0 (MSVC6) to compile 7-zip.
We will be using the command line tools included in the Microsoft Visual Sudio
2017 (MVS). To set up the environment we first need to execute the batch
file Common7\Tools\VsDevCmd.bat located in the MVS installation directory
from the cmd.exe (Command line). With a default MVS installation, we can
also use a prepared shortcut from the start menu called Developer Command
Prompt for VS 2017. In this environment, we have access to nmake which is
Microsoft’s implementation for the handling of makefiles.

For the build to succeed on this newer environment we either have to define
a makefile macro named NEW_COMPILER or we have to delete/comment out the
-0PT:NOWIN98 option on line 33 in the CPP\Build.mak file.
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The individual binaries that we talked about can be compiled separately.
When we go through the source code directory tree we will find files called
makefile — when such a file is present we can run nmake in that directory
and appropriate parts of 7-zip will get built. All the makefiles in 7-zip actu-
ally include the already mentioned 7zip.mak file which in turn includes the
Build.mak file. The latter one sets up the correct compiler, assembler, linker,
their options and environment in general, and the first one then uses these
tools to build what was passed from the actual individual makefiles.

We will mainly be interested in building the console version of 7-zip — the
7z.exe and the accompanying 7z.d11l. To build the executable we simply
have to navigate to the CPP\7zip\UI\Console directory from our already set
up terminal and execute the nmake command. A subdirectory named simply
0 will be created and it will contain object files and other files created during
compilation and also the resulting executable file.

Building the library is very similar — this time we need to navigate to the
CPP\7zip\Bundles\Format7zF directory and there we again execute nmake.
The Bundles directory contains several different versions to compile (inde-
pendent executables, reduced functionality libraries, SFX modules) and we
will use the Format7zF — this is the 7z.d11 containing all compression and
encryption capabilities of 7-zip without the use of external filters. Again we
will get the 0 subdirectory containing the resulting library.

We can then copy both the executable and the library into any directory
together and they should be fully functional.

More information about compilation of 7-zip, the individual compiled bi-
naries and the source code can be found in the DOC directory specifically in the
DOC\readme. txt file and also in the readme.txt file inside the the directory
where 7-zip is installed when using one of the installers (these two files despite
their name contain different information).

2.2 Coding style

The source code of 7-zip is quite interesting and quite complex. There is ac-
tually a lot of functionality coded from scratch that could be used from some
widely used solutions — be it from an external library (i.e., OpenSSL) or even
the C++ standard library. The reason behind this is probably a concern for
extreme in-RAM space effectiveness and multiplatform performance optimiza-
tion. A few examples of what is created from scratch are containers and types
such as a vector or a map, simplified COM interfaces and most importantly
for our thesis, the cryptography.

Specifically, in the case of cryptography, this is usually not a recommended
approach. With widely used existing solutions (such as the OpenSSL library)
we can be reasonably sure that there are no major security problems — because
the library has been tested so thoroughly — and if some are discovered they
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2.3. Cryptography implementation

will swiftly be fixed. A custom implementation may introduce hidden or
unexpected security problems.

To further push the optimization Mr.Pavlov defines a lot of makefile
macros and C++ preprocessor macros, often nested, which results in some
parts of the code actually being different depending on CPU architecture, OS,
etc.

Arguably there are a few problematic things about the source-code itself,
C and C++ coding conventions are somewhat mixed together here and the
encapsulation used while using the objective style of coding is sometimes not
respected well. Another might-be-problem is the frequent usage of global vari-
ables and sometimes using very long functions — while this might be just a
cosmetic problem at first it might prove difficult to deal with later. Global
variables can sometimes introduce unexpected problems in the code and long
functions make the code much harder to read and understand for other devel-
opers.

2.3 Cryptography implementation

As was already mentioned 7-zip uses cryptography for the creation of en-
crypted archives. This is not the default option when creating an archive
through 7-zip and so has to be explicitly asked for when creating the archive.
7-zip can in the default installation create encrypted .zip archives where it
can either use the “ZipCrypto” or AES-256 encryption (with CTR mode of
operation) and .7z archives where AES-256 (with CBC mode of operation) is
always used. It can also extract encrypted .rar archives, but it cannot create
them (this is because .rar is a proprietary closed source format). We will be
focusing on the .7z archive format.

2.3.1 AES implementation

This subsection focuses on the implementation of AES in 7-zip. AES is a good
choice for data encryption since it is very widely used and therefore thoroughly
tested — it is secure and fast, provided that it is implemented correctly.

AES isn’t ever used in the raw ECB mode in archives created by 7-zip it is
always used either in the CBC mode or the CTR mode. .7z archives use CBC
mode. With the goal of good cross-platform performance, there are actually
three different implementations of AES in 7-zip.

e A pure C implementation®

e A pure x86/x64 assembler implementation using the built-in AES new
instructions (AES-NI)7

Sin C\Aes.c
"in Asm\x86\AesOpt.asm

11



2. ANALYSIS OF 7-ZIP

e A C implementation using the compiler intrinsics which in turn also use

the AES-NI®

There is however only one implementation of the key expansion into en-
cryption/decryption round keys — it is pure C and is also present in Aes.cE.
This is not a security problem however it would be possible to further improve
the performance by also using the Intel AES-NI instructions for key expansion.

AES-NI is an implementation of an “AES instruction set” consisting of
several specialized instructions which are now part of the x86 instruction set.
They achieve greater encryption/decryption speeds than regular implementa-
tions and should be resistant to side-channel attacks [8].

Compiler intrinsics (sometimes called intrinsic functions) are specialized
functions which the compiler knows beforehand — they are built into the com-
piler itself. They do not need a definition within the scope of the program
[9]. They often translate directly one-to-one to an assembler instruction. The
Microsoft Visual C++ compiler recognizes several intrinsics among which are
also the ones used for AES encryption and decryption — they translate to the
aforementioned AES-NI instructions.

The three 7-zip AES implementations and the key-expansion functions in
the mentioned files assume that you already somehow generated the base AES
key and the initialization vector for the CBC mode — 7-zip does this in the
higher-level C+4 code about which we will talk later.

We will now ignore the key and IV generation in 7-zip and will test these
implementations by themselves by supplying our own key and IV and compar-
ing their results with a widely accepted cryptographic solution — the OpenSSL
library. A small C++ program for this purpose is provided on the attached
SD card in the directory Sources\AES_testing. Inside the directory are the
following files:

e 7zTypes.h, Compiler.h, CpuArch.h, CpuArch.c, 7zAsm.asm
— these files are supporting 7-zip files which are necessary for the other
ones to work.

e Aes.h, Aes.c — these files contain the basic structures for AES en-
cryption in 7-zip, the methods for key expansion, a CBC initialization
function and also the pure C AES implementation.

e AesOpt.c — this file contains the optimized AES implementation using
pure C and compiler intrinsics.

e AesOpt.asm — this file contains the optimized AES implementation using
x86/x64 assembler and the AES-NT instructions by Intel.

8in C\AesOpt.c
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e myAesWrappers.h, myAesWrappers.cpp — these files contain our wrap-
pers for 7-zip AES-CBC encryption and OpenSSL AES-CBC encryption
to make their interface as similar as possible — for easy comparison.

e mainTester.cpp — this is our main testing file. It calls the encryption
routines, compares their results, etc.

e Building instructions.txt — this file contains information about how
to build the program with the three different AES 7-zip implementations.

Our program can take several files from the directory in which it was
executed as input:

e iv.txt The initialization vector (16 bytes)
e key.txt The AES-256 key (32 bytes)
e plaintext.bin The plaintext to be encrypted (multiple of 16 bytes)

The I'V and key are supplied as plain text, where each byte is represented as
two hexadecimal digits. No white spaces are expected between the individual
bytes. The plaintext to be encrypted is supplied directly in binary form —
actual text can, of course, be written inside the file. There just isn’t any
conversion — the file is read in binary mode exactly as it is. The plaintext size
in bytes has to be a multiple of 16 (size of one AES block) because padding
isn’t implemented in these lower-level 7-zip files. 7-zip, naturally, does use
padding however this is implemented in the higher-level C++ code which we
aren’t testing with this program.

None of these files are mandatory — in the case of some of the files missing
there are default hard-coded alternatives (see default_iv, default_key and
default plaintext in mainTester.cpp).

Since there are three different AES implementations in 7-zip (however not
all three can work on every platform) we made it so that our program can be
compiled against all of these, thus we can check their functionality separately.
We have therefore six different variants since we also test the 32-bit and 64-bit
version separately.

For compilation, we will again be using the command-line tools made by
Microsoft which are included with an MVS installation. The specific tools
we will be using are cl (this is a program containing both the C and C++
compiler and the linker), m1 and m164 (these are the x86 and x86-64 assemblers
respectively).

For compilation of the 32-bit versions, we will open the cmd.exe and run
the vevars32.bat script included in the MVS installation — this initializes
the environment. Within the MVS installation directory we can find this
file in the VC\Auxiliary\Build subdirectory, however, this might differ in
different MVS versions. An easier approach is using the shortcut which is

13
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created in the Start menu by the default installation — it is called x86 Native
Tools Command Prompt proVS 2017 and does what was just described for
us. For the 64-bit version, the setup process is the same except we will
use the vevars64.bat (or the x64 Native Tools Command Prompt pro VS
2017 shortcut).

The file Building_instructions.txt describes how to compile these dif-
ferent variants of our program. Every source file (.asm, .c or .cpp) has at
least 2 variants — 32-bit and 64-bit versions and some have more because of the
different AES implementations. These variants are indented. After the colon
character, there is a command to copy to the respective building environment
and execute as-is to build the desired variety.

The AesOpt.c compiles into four different object files:

e AesOpt_PURE_C_x86.0bj or AesOpt_PURE_C_x64.0bj for the pure C AES
implementation

e AesOpt_intrin C_x86.0bj or AesOpt_intrin C_x64.o0bj for the C with
compiler intrinsics implementation.

The latter differs in the compilation by having the preprocessor macro
intrin defined through the compilation command line parameters (this is
done as /Dintrin in c1). We have modified the original AesOpt . c from 7-zip,
so that it chooses the implementation based on the intrin macro either being
or not being defined — originally the choice is determined based on the target
platform (compiler version and CPU architecture).

The mainTester. cpp and myAesWrappers. cpp are compiled together and
linked with the other object files and with the necessary OpenSSL libraries.
The names of the resulting executables and commands to build them are also
provided in the Building instructions.txt file.

For our program to build and work we also need to install the OpenSSL
library first. It is best to download the official sources? and compile them our-
selves so that they work correctly on our version of Windows, CPU architec-
ture, etc. The downloaded sources come with files describing the installation
process somewhat, however, we will in short try to describe it step-by-step
here for the convenience of the reader. These steps apply when installing
OpenSSL on a Windows machine. We will be using the same compilation en-
vironment as when compiling 7-zip — run Common7\Tools\VsDevCmd.bat from
the MVS installation directory in cmd, or the shortcut Developer Command
Prompt for VS 2017.

We will also need to install some implementation of the Perl scripting
language — we recommend using ActivePerl'?. For Perl it’s enough to install
the 64-bit variant for our purposes even if we plan on compiling both 32-bit

“https://github.com/openssl/openssl
Yhttps: //www.activestate.com/products/activeperl/
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and 64-bit OpenSSL (which we should, if we want to perform all six variants
of the tests). However for NASM — an assembler — we need both the 32-bit
and 64-bit installation!'. After installing these tools we should add the paths
of their installation to the Windows environment variable PATH. This variable
contains various directories to be searched in many situations — mostly when
running utilities and programs without their full paths from the command line.
The easiest way is probably appending the 32-bit NASM installation path to
the PATH variable for the installation of 32-bit OpenSSL; then deleting it and
replacing it with the 64-bit NASM installation path for the installation of
64-bit OpenSSL.
Both variants are then built this way:

1. Launch cmd with the mentioned MVS environment with administra-
tive privileges and navigate to the directory containing the extracted
OpenSSL source code

2. Issue command Perl Configure VC-WIN32
3. Issue command nmake

4. Launch another session of the same cmd, however this time without
administrative privileges (and again navigate to the same directory)

5. Issue command nmake test

6. Finally return to the administrative command prompt and issue com-
mand nmake install

For the 64-bit variant just replace the VC-WIN32 with VC-WIN64A.

Now we are ready to build our testing program as described earlier. The
finished executable files can then be run from the cmd.exe and don’t accept
any command line parameters — only the input files described earlier. The
program first reads the input files or sets the default values if the respective
files aren’t present. Then it uses 7-zip’s AES implementation to encrypt the
plaintext. The key, iv and ciphertext_7z buffers (which belong to the sup-
plied AES key, initialization vector and the resulting ciphertext respectively)
are then checked for buffer overflows.

This check is achieved by allocating larger buffers than actually necessary
to hold these values (specifically the amount of bytes to enlarge the buffers
is defined in myAesWrappers.h and is called BUFFER_CHECK — by default the
value is 4, but this can be changed freely). These enlarged buffers are then
filled with a randomly generated value (buffer_£fill). To find out whether an
overflow did occur, we check if this value changed in any of the bytes following
the normal size of the stored value. If not we assume the buffer didn’t overflow.

"https://www.nasm.us/
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We then perform the same encryption using the OpenSSL library and
compare the resulting ciphertext to the one generated by 7-zip. The same
checks are then performed for decryption — the buffer overflow check here
also checks the decrypted_plaintext_7z buffer used to store the decrypted
plaintext generated by 7-zip in addition to all the ones that were checked after
encryption. The resulting plaintext buffers from 7-zip and OpenSSL are again
checked for a match.

The program indicates success if all the checks passed or failure if at least
one of the checks failed.

Worth mentioning is the use of the _aligned malloc and _aligned free
function. These functions are specific for MSVC (Microsoft Visual C+4)'2. It
is necessary to use them for the buffers holding the ciphertext and decrypted
plaintext from 7-zip — this is because if we use the special AES-NI assembler
instructions they require these buffers to be aligned to 16 bytes. Such an
alignment can be guaranteed by neither the C malloc nor the C++ new
operator. You can allocate buffers of static size and align them to 16 bytes (or
any other power of 2 bytes) using the C++ alignas specifier, however, this
isn’t usable for dynamically allocated buffers. We actually use the alignas in
the myAesWrappers. cpp file for the allocation of a buffer that 7-zip uses for the
storage of both the initialization vector and the expanded key (ivAes). The
16 byte alignment technically wouldn’t be necessary when compiling against
the pure C implementation however it doesn’t do any harm if it is present
even then.

All tests did pass during our testing — none of the buffers have overflown
and the AES outputs are the same from both 7-zip and OpenSSL.

Aside from the AES implementation itself, there are higher level func-
tions in 7-zip taking advantage of this implementation to create the encrypted
archives. Specifically, concerning the .7z archives, most of the interesting
code resides in the CPP\7zip\Crypto\7zAes.cpp file and its accompanying
header file CPP\7zip\Crypto\7zAes.h.

The initialization vector for AES-CBC mode is the size of one AES block
— 16 bytes. However, in 7-zip version 18.05, 18.06 and earlier only the first 8
bytes are randomly generated. The rest is always filled with zeroes as seen in
figure 2.2.

Furthermore, the random number generator (RNG) for the first 8 bytes is
not strong enough for the purposes of cryptography. It uses SHA-256 (Secure
Hashing Algorithm version 2, with output hash length of 256 bits) with a
constant salt; other inputs are system time and process ID. As seen in figure
2.3 a comment in the file CPP\7zip\Crypto\RandGen.cpp even says to use
the generator only for salt generation, however instead it is used for the IV

2https://docs.microsoft.com /en-us/cpp/c-runtime-library /reference/aligned-
malloc?view=vs-2019
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Figure 2.2: IV generation (from 7zAes.cpp)

165 for (unsigned i = 0; i < sizeof (_iv); i++)
166 _iv[i]l = 0;
167 _ivSize = 8;
168 g_RandomGenerator.Generate(_iv, _ivSize);

generation. This problem seems to have been addressed in version 19.00 — the
IV is now the full 16 bytes and the RNG was improved — in addition to the
existing inputs it now also uses the thread ID and more importantly the RNG
provided by the OS.

Figure 2.3: A comment regarding the RNG in 7-zip (from RandGen.cpp)

24
25
26

27

28

2.3.2 The key-derivation-function

This subsection focuses on the implementation of the password-based key-
derivation-function used in 7-zip. The KDF in 7-zip used with .7z archives is
implemented in the CPP\7zip\Crypto\7zAes. cpp file.

The KDF uses the hashing algorithm SHA-256. The key is derived from
the user-supplied password in this manner: the password is appended by 8
bytes that represent an endian-independent counter. Then a constant number
of iterations is performed. Depending on the version of 7-zip this number can
be different — in 18.05 there are 524 288 (or 2 to the power of 19) iterations.
One iteration consists of appending the buffer with the password and counter
again (by calling the Sha256 Update) and incrementing the counter by one.
We can see this in the code snippet in figure 2.4. In the end, we practically get
one long buffer where there are the password and counter copied over and over
with the counter going up. This long buffer is digested by the aforementioned
SHA-256 algorithm and the resulting hash is the key used for AES-256.

This means that the actual full SHA-256 algorithm only takes place once.
The Sha256 Update is, of course, called as many times as there are iter-
ations however this only simulates preparing the long buffer and then the
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Figure 2.4: .7z Key-derivation-function (from 7zAes.cpp)

51 size_t bufSize = 8 + SaltSize + Password.Size();
52 CObjArray<Byte> buf (bufSize);

53 memcpy (buf, Salt, SaltSize);

54 memcpy (buf + SaltSize, Password, Password.Size());
55

56 CSha256 sha;

57 Sha256_Init (&sha);

58

59 Byte *ctr = buf + SaltSize + Password.Size();

60

61 for (unsigned i = 0; i < 8; i++)
62 ctr[i]l = 0;
63

64 UInt64 numRounds = (UInt64)1 << NumCyclesPower;
65

66 do

67 {

68 Sha256_Update (&sha, buf, bufSize);
69 for (unsigned i = 0; i < 8; i++)
70 if (++(ctr[i]) !'= 0)

71 break;

72}

73 while (--numRounds != 0);

74

75 Sha256_Final (&sha, Key);

Sha256_Final call creates the final digest. Other KDFs (such as PBKDF2)
often actually use the output from the first hashing to salt the next hashing
round and chain them in a number of iterations [10].

Unfortunately, no cryptographic salt is used in this hashing. At the first
glance, the source-code actually seems to support using salt and would appear
to use it in the function. It even seems to contain a random-number-generator
and a code snippet that would use it for the salt generation — but this code is
commented out and never called — thus no salt is actually used.

Even though the function for key-derivation seems to prepend the buffer
with salt (see figure 2.4), the salt is actually of zero length and is empty.
The consequence of this is that the same user-supplied password will always
be transformed into the same AES key. Thus rainbow tables, mentioned in
section 1.1, could theoretically be calculated containing the AES keys and the
passwords which were used to generate them. Of course, someone (a potential
attacker for example) with access to very fast computational hardware and
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large digital storage would have to first calculate these tables. These tables
could then be used to crack 7-zip archives faster than with a traditional brute-
force attack.

However we also have to bear in mind that these tables would only be valid
for the same KDF, if it was to change, they wouldn’t work anymore since the
password-key pairs would change. The KDF in the official releases of 7-zip
changed last time with the release 4.58 beta (released in 2008). The change is
that before this version the number of iterations was 262 144 — 2 to the power
of 18 instead of 19.

The problem is somewhat mitigated by the way the password is actually
checked when trying to extract an encrypted archive (more on that in section
2.4) so a brute-force attack would likely still be fairly slow. However, it is
still a problem in principle — the code actually seems to salt the password
before hashing and so a person concerned about security quickly peaking at
the source code might think that salt is used, while it is in fact not.

Also, it doesn’t really make much sense not to use the salt when the code-
base is ready to use it. There is a SourceForge discussion thread originally from
2005 asking about other encryption options beside AES in 7-zip, which evolved
into a discussion about the usage of cryptographic salt. The interesting part
of the discussion took place in 2008 mostly between Mr. Pavlov (author of
7-zip) and two 7-zip users with nicknames Hitcher and Marco Certelli. This
discussion shows that Mr. Pavlov is aware of what the missing salt means,
however, he doesn’t think it is a major security problem. Mr Pavlov writes:

“7-Zip’s AES decoder supports salt. But it’s disabled in encoding
code. I still think that there is no big gain from salt using.”

and

“Salt can help from dictionary attack. But if password is random
(small latin characters + digits), you need too big dictionary:

5 characters in password: 1 GB dictionary

6: 30 GB

7: 1 TB

8: 30 TB

9: 1000 TB”

and

“7-Zip uses random AES-CBC init vectors. So probably it’s pretty
strong even without salt.”

and

“Note, that you still need SHA calculation Hardware to create
that dictionary. Salt can prevent some complex attacks when some

19



2. ANALYSIS OF 7-ZIP

orginization with big budget creates really big dictionary (lets sup-
pose 10000 TB). And then it uses that big dictionary to check big
number of .7z archives. So the cost of crack per archive will be re-
duced. But if there is such big organization, they can invest same
money to fast SHA-calculation hardware (that can be probably
100 times faster). In that case they don’t need big dictionary. So
32 bytes (key size) of HDD can be more expensive than 2560003
iterations of SHA-256 in some cases.”[11]

It is not quite clear from the discussion why Mr. Pavlov decided to actually
code the parts necessary for salt usage but then they aren’t used in archive
creation in a normal release 7-zip installation.

He also mentions random initialization vectors as an answer to a users
question regarding cryptoanalysis — it is true that different IVs mean that the
resulting ciphertext will always be different even for the same encrypted data
and the same AES key used. This point is a bit undermined by the fact that
this discussion took place in 2008, but as we already pointed out in 2.3 up
until version 19.00 (which was released in 2019) the IV used in .7z is also
quite problematic.

We can successfully create archives which do use salt by modifying the code
on line 197 in CPP\7zip\Crypto\7zAes.cpp. This line is normally commented
out as seen in figure 2.5. If we uncomment this line and build 7-zip the KDF is
the same except the buffer that is copied over and over and then hashed now
consists of the salt 4+ the password + the coutner. This means now the same
password won’t generate the same AES key and thus rainbow tables cannot be
used to speed up a potential password guessing attack. We can even change
the size of the salt used by changing the number 4 to the desired number of
bytes, however, the maximum size is 16 bytes (which is more than enough).

Figure 2.5: CEncoder constructor (from 7zAes.cpp)

195 CEncoder::CEncoder ()
196 o
197

198

199 _key.NumCyclesPower = 19;

200 _aesFilter = new CAesCbcEncoder (kKeySize) ;
201 %}

In figure 2.5 we should also notice an initialization of a data member
called NumCyclesPower. On line 198 the member would be initialized with

13At the time this discussion took place only 262 144 iterations were performed in the
KDF
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the hexadecimal value 3F but the initialization is commented out. On line 199
the actual initialization takes place with the decimal value 19. This is very
important — this value represents the power to which we raise the number 2
and the result is the number of iterations used during the KDF (the number
of times we copy the prepared buffer before hashing it). This value can also
be changed and after the compilation of such modified 7-zip we would have a
different number of iterations. The maximum power that we can use is 24 as
defined on line 25 of the same source file.

Both the salt and the NumCyclesPower are actually saved in the resulting
archives and if we modify 7-zip in this way, it still creates valid .7z archives.
Other installations and versions of 7-zip will be able to open, extract and
modify the archives since they read the values from the archives first and set
up their decoding to match these values.

This can, on one hand, be really good — we can actually use salt if we want
and by increasing the NumCyclesPower value we can slow the KDF function
down even more — this way we can create very safe encrypted archives, which
will still be working perfectly even with unmodified installations of 7-zip but
will be virtually uncrackable (assuming the underlying algorithms AES and
SHA-256 will not be broken in the future).

It is also, however, a double-edged sword. We could use this to lower the
security of 7-zip and then distribute this maliciously modified installation or
perhaps the 7z.d11 library between would-be victims. This could be at first
glance achieved by lowering the number of iterations performed in the KDF.

However, there is a much bigger problem. The commented line assigning
the 0x3F to NumCyclesPower isn’t there by accident. If we use this value
instead, the KDF changes entirely and the security is dramatically reduced.
As seen in figure 2.6 when NumCyclesPower is equal to 0x3F the KDF actually
doesn’t use the hashing algorithm at all. Instead the AES key is created
directly in this way: first, the salt (which is usually empty) gets copied over
to the key buffer, then the user-supplied password and the rest of the AES
key is filled with zeroes.

7-zip uses two bytes for storage of every character, thus allowing Unicode
characters in passwords. This means that a 16 character password can fit in
this 32 byte AES key in this weakened KDF. If a user inputs a longer password
than 16 characters only the first 16 are used, the rest is disregarded and 7-zip
doesn’t give any indication of that happening.

We can further weaken the KDF even more by intentionally using salt of
the maximum size — 16 bytes. As can be seen in figure 2.6 the salt is then
going to populate half of the AES key and we only have 16 more bytes for
the password, resulting in a password of maximum 8 characters. Most people
still use passwords consisting only of ASCII characters, this makes it likely at
least half of the remaining 16 bytes are filled with zeroes. In conclusion, if we
want to attack an archive which used this KDF, we already know 24 bytes of
the 32 byte AES key — the salt is stored in plaintext in the archive and half
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Figure 2.6: Beginning of the CalcKey function (from 7zAes.cpp)

39 if (NumCyclesPower == 0x3F)

40 {

41 unsigned pos;

42 for (pos = 0; pos < SaltSize; pos++)

43 Key [pos] = Salt[pos];

44 for (unsigned i = 0; i < Password.Size() &&
pos < kKeySize; i++)

45 Key [pos++] = Password[i];

46 for (; pos < kKeySize; pos++)

47 Key [pos] = 0;

48 }

49 else

50 {

51

of the password bytes are zeroes (assuming the user chose ASCII characters
for their password).

This is a major problem. The vulnerability doesn’t lie in just the ability
to weaken the source code and then compile a compromised 7-zip library/ex-
ecutable — that could arguably be done with most open source applications.
The problem here is, that the decoding part of 7-zip is prepared for these
changes and accepts them normally, even in the release version, without any
indication to the user. So if we create these weakened archives where the KDF
is for all intents and purposes instantaneous, they will behave like any other
archive in any 7-zip installation — the only difference is that only the first
n'* characters from the password the user chooses actually get used. When
the user then tries to extract the archive the password will be evaluated as
correct every time these first n characters are correct. Very observant users
might perhaps notice this. However, data can be extracted as expected and
we can even add more files to the archive (even though if we add them with
an unmodified 7-zip installation the added files will again have the stronger
encryption thanks to the normal KDF). Password guessing on archives created
with this version of the KDF will be much faster.

In the same manner, we could also weaken the initialization vector — we
could even hard code it to always be the same. This would weaken the en-
cryption as well and unmodified versions of 7-zip again wouldn’t have any
problems handling such archives. However this problem is difficult to avoid,
the IV has to be saved in the archive for proper decryption anyway. Unlike
the problem with the weakened KDF which just shouldn’t be present in the

My = (32 — SaltSize) /2
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application in the first place.
We will see some examples of archives with the modified and original values
and attempts at cracking them in the last subsection of section 2.4.

2.4 Archive cracking

In this section we will first briefly describe how a .7z archive is structured and
how the password verification process works. Then we will setup our work-
ing environment to perform password guessing attacks against .7z archives.
Finally we will attempt these attacks and talk about the results.

2.4.1 Archive structure

The .7z archives contain ‘folders’ or ‘blocks’. These are continuous streams of
data which are processed by the same methods. This means that an archive
can contain several of these blocks and each might be using different meth-
ods. These can be set up manually by using command line parameters when
running 7-zip. This is described quite well in an external document written
by one of the 7-zip users called “Understanding 7z Compression File Format”
[12]. Unfortunately the document was never finished, but the information in
it is still useful.

If we do not specify any blocks in this way 7-zip does it automatically,
choosing usually to compress everything with the LZMA2 compression method
(also developed by Mr. Pavlov [13]) and when handling either .d11 files or .exe
files also first applying the BCJ/BCJ2 filter which can then allow for better
compression. Also, a new block is always created when new files are added to
the archive after it has been created.

The encrypted .7z archives by default don’t have the headers encrypted,
that means the directory and filenames and some metadata within the archive
can be viewed even without knowing the password.

In this mode, the archive contains the decompressed size and the decom-
pressed CRC32 (cyclic redundancy check — a checksum) of the first file in each
block. This means that in order to verify a password used to encrypt one of
the blocks, at least as much data as the uncompressed size of the first file in
that block must be extracted. We can then calculate the CRC32 of the de-
compressed file and compare it with the one stored in the archive, thus finding
if the password was correct or not.

This is the reason why brute-forcing the password might be pretty slow.
Extracting the file actually consists of decryption and decompression and de-
pending on the specific file used this could potentially be a very costly opera-
tion. It also means that the speed of the attack actually depends on what files
are stored in the archive and in which order 7-zip places them in the blocks
since some files will take longer to decompress then others.
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How the information is structured inside the .7z archives is described in
DOC\7zFormat . txt and also in the already mentioned external document [12].

2.4.2 Cracking setup

We will demonstrate possible attacks on the encrypted archives using an exter-
nal open source program called hashcat (the authors themselves write it with
a lower-case 'h’ so we will too). There are other utilities out there capable of
password-guessing attacks however hashcat is nowadays the most widely used
and it is very well optimized. It uses the GPU (graphical processing unit) of a
computer to achieve very high parallelization [14]. We can download or clone
hashcat source code from the official GitHub page'® and it is also included on
the attached SD card in the Sources\hashcat directory. When we mention
files and paths in this section, we consider the root directory to be the hashcat
source code directory, unless stated otherwise.

Hashcat can take input in more ways, however, we will use input files which
contain something that in the hashcat community is referred to as a “hash”. It
doesn’t have to be an actual hash as in output from a hashing function though
(and it isn’t in the case of 7-zip) — hence the quotation marks. It is simply
an input containing just enough information so that the program can guess
passwords and verify whether they are correct or not. In this section when we
use the word hash we mean this input for hashcat unless stated otherwise.

There are many ways to set up the actual guessing and we will not talk
about them in great detail. All the necessary information is available on the
hashcat wiki and forum 6, but at least in short: with hashcat we usually do
not use a pure brute-force attack but rather a so-called “mask attack”. We
supply hashcat with a mask which is a string describing what the password
should look like — the mask and parameters can be set up in such a way that
we do actually get back to the classic brute-force and try every combination
possible, but we can also set it up to be more specific. For example, if we
know how long the password is, what character types (lower-case characters,
upper-case characters, numbers, special symbols, ...) are used (even in specific
positions in the password that is being guessed) we can specify that with the
mask.

Also, a classic brute-force attack for example in the case of a five letter
password made up of lower-case letters would proceed lexicographically guess-
ing first aaaaa, then aaaab, aaaac and so on until reaching zzzzz. Hashcat
also goes through all possibilities specified by the mask, however, the order
is different. There are some very advanced thoughts behind the algorithms
that choose which combinations to try sooner than others and we will not
be describing them in this thesis, however for the interested reader a good

https://github.com/hashcat/hashcat
https://hashcat.net/wiki/, https://hashcat.net/forum/

24


https://github.com/hashcat/hashcat
https://hashcat.net/wiki/
https://hashcat.net/forum/

2.4. Archive cracking

starting point for studying would be Markov chains and learning how hashcat
uses them.

In addition to the mask attack, there is, of course, the possibility of using
a dictionary attack. There are also tools, included with hashcat, that can
help generate large dictionaries by combining words from other dictionaries,
changing letter case, appending or prepending numbers or symbols, replacing
letters for numbers which visually resemble said letters and so on.

All-in-all hashcat is a very advanced password recovery tool. The team de-

veloping it regularly attends password cracking competitions and often wins!”.

Hashcat uses so-called “modules” — these describe how to attack different
types of hashes. We will be using module 11600 which is the 7-zip module
designed to help crack the .7z archives. The module expects a certain format
for the input hash. To get this hash from an existing .7z archive we will
use a Perl script 7z2hashcat.pl developed by one of the hashcat developers
Philipp “philsmd” (the surname is not publicly known). We can download
this script from the authors public GitHub page'® and it is also included on
the attached SD card in the Sources directory.

The script itself is quite clever as well — if there are more encrypted blocks
in the archive it finds the one which has the smallest first file — thus ensuring
faster cracking. Because of the way 7-zip verifies passwords the hash produced
actually contains the encrypted (and possibly compressed) data from that file.

We can either use the release version compiled into a binary executable
if we use Windows, or the Perl script itself either on a Linux system (or any
Unix-like system) or on Windows as well. For the latter variant we need Perl
installed and a Perl module Compress: :Raw: :Lzma. While making this thesis
we used the Perl script as-is from the Windows subsystem for Linux (WSL
— an emulator layer translating Linux API calls to WinAPI calls — allows for
usage of Linux tools from Windows). We used WSL instead of a Windows
Perl implementation because it is easier to install the Compress: :Raw: :Lzma
module for it — on a Debian based distribution we just use the apt pack-
age manager to install the 1ibcompress-raw-lzma-perl package and we are
ready.

As for hashcat, itself we also can use the released compiled binaries or
compile them ourselves from source. We did the latter since we want to be
able to modify the code. There are more ways to build hashcat — we decided
to use WSL and the cross-compiler x86_64-w64-mingw32-gcc to compile for
Windows (hashcat doesn’t seem to officially support compilation by the MSVC
tools).

The compilation instructions are included with the hashcat source code

"docs\team.txt
"8https://github.com/philsmd/7z2hashcat
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in the file BUILD.md and also in the comments of the makefile!? itself (line
549-552). According to these comments we also need to build and install
win_iconv which is a hashcat dependency. We can download or clone the
source of win_iconv from its GitHub page? and it is also included on the
attached SD card in the Sources\win-iconv directory.

To cross-compile hashcat for Windows from a Linux system:

1. Use apt to install the package g++-mingw-w64

2. Download/git clone the source code from https://github.com/win-
iconv/win-iconv

3. Use the Linux tool patch to patch the Makefile included with the down-
loaded source code with the tools\win-iconv-64.diff file included
with hashcat

4. Issue the command make install from the win_iconv source code di-
rectory.

5. Restart bash and issue the command make win from the hashcat source
code root directory.

When modifying the source code of hashcat we only need to re-do the last
step to build the binaries with our changes.

To extract the “hash” from an existing .7z archive we simply need to run
the 7z2hashcat.pl script and pass the name of the archive in question as
the first parameter. The hash is then written to the standard output, so we
usually redirect it to a file that we can later use with hashcat?!.

Hashcat can handle different values of the NumCyclesPower variable de-
scribed in section 2.3 well, as long as the values lie within the range 0-24.
However if we use value 0x3F therefore using the weak KDF (also described
in section 2.3) hashcat won’t handle it correctly — it will actually treat it just
like any other value thus setting the number of iterations to compute in the
KDF to 2 to the power 0x3F (0x3F is 63 in decimal). This would of course
be a very large number of iterations which would render the attack compu-
tationally impossible, but even if we somehow could do such calculations in
a reasonable time, they would be wrong anyway. As was already discussed
no iterations are actually used in the KDF when NumCyclesPower is equal to
0x3F instead the password is just copied over to the AES key (prepended by
a salt, if present) and the rest of the key is filled with zeroes.

Hashcat isn’t prepared for this, however, we managed to modify the source
code so that it could crack such archives as well. The modifications are what

Ysrc\Makefile, not the Makefile in the root dir
2Ohttps://github.com/win-iconv/win-iconv
leg., 7z2hashcat.pl test_archive.7z > test_archive_hash.hash
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could be described as “crude hacks” they in fact very much break the normal
functionality of hashcat and only make it usable to crack these type of archives.
This could be fixed with more work and probably optimized better than we
did, however these modifications are just for demonstration purposes — to show
the difference in cracking speed. We need to modify 2 files for this purpose:
src\modules\module_11600.c and OpenCL\m11600-pure.cl. The latter is in-
cluded in its modified form on the attached SD card in the Sources directory.
This file normally handles the whole KDF. In our modified file we commented
out most of the code because it is not necessary for the weaker KDF (no hash-
ing is performed). We left the data structures and the m11600_comp function
at the bottom as is, commented out all functionality of the other functions
and added new code to the m11600_hook23 function. This code can be seen
in figure 2.7 and basically just copies the password characters to the AES-key.

Figure 2.7: Modified m11600_hook23 function (from m11600-pure.cl)

303 comnst u64 gid = get_global_id (0);

304

305 if (gid >= gid.max) return;

306 hooks[gid].ukey[0] = 0;

307 hooks[gid]. [1]

308 hooks|[gid]. [2]

309 hooks|[gid]. [3]

310 hooks[gid]. ukey[4]
[gid ] - ukey [5]
[gid ] ukey [6]
[gid ] ukey [7]

)

)
i
b

311 hooks|gid

312 hooks|gid

313 hooks|gid

314

315 const u32 pw_len = pws|[gid].pw_len;

316 for (u32 i = 0, idx = 0, j = 0; i < pw.len && j < 4; i +=
4, idx += 2, j += 1)

b

Il
coococoococo

)

k)

317 {

318 u32 pw_tmp = pws[gid].i[]];

319 hooks [gid | . ukey [idx+1] = ((pw_tmp & 0xff000000) >> 8)
| ((pw_tmp & 0x00£f0000) >> 16);

320 hooks[gid ]. ukey [idx ] |= ((pw_tmp & 0x0000ff00) << 8)
| ((pw_-tmp & 0x000000ff) );

321 )

The module_11600.c only needs one modification and that is changing
line 615 from salt->salt_iter = 1lu << iter; to salt->salt_iter = 1u;.
This will guarantee that hashcat will not unnecessarily try to perform many
iterations of no hashing, we only need to go through the copying code once.
When we modify the .c source files we need to re-run the make win com-
mand, however not with the .cl files. These are compiled into something
that is referred to as “kernels” by hashcat and they are built on every run,
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unless already present. In the hashcat source code directory, there will be a
subdirectory kernels (unless we didn’t yet run hashcat at all, or issued make
clean recently). When we change any of the .cl files we need to delete the
contents of this subdirectory and then re-run hashcat. The kernels will be
built again, with our changes incorporated.

With these modifications we will need to run hashcat with an additional
command-line parameter — —-self-test-disable — this is because the in-
ternal self-test isn’t prepared to work with those modifications and would
therefore always fail.

Hashcat also doesn’t support the usage of salt in .7z archives. The code
actually seems to have some basics implemented for the usage of salt, however
since 7-zip doesn’t normally use it, this functionality isn’t finished and salted
archives cannot correctly be cracked with hashcat. On the other hand, the
hash format does support it and the 7z2hashcat.pl correctly extracts both
the length and contents of the salt. Fixing hashcat to support the salted
archives would take a bit more work and is out of the scope of this thesis,
however, it definitely would be possible. This means when we test the weak
version of the KDF we will use NumCyclesPower = 0x3F but we will not be
using salt. The results would be the same anyway if we test with a password
of 8 characters or less.

Furthermore, hashcat has a built-in limitation for .7z archives — it can
only process hashes up to a certain size (specifically the encrypted data in
the hash cannot exceed 655 056 bytes. The thought behind it probably is
that since the size of the data has a significant impact on the speed of one
password guess, larger files would probably slow it down too much and render
the attack impractical.

We tried lifting this limitation by modifying the source code again but it
seems the limitation might lie somewhere deeper than just the files related
to module 11600. We did manage to turn off the checks that stop hashcat
from loading hashes that are over the size limit and enlarge some buffers in
such a way that hashcat does actually go through to the main cracking loop
and attempts to crack the larger file. However, it becomes unstable (probably
because of segmentation faults). The larger the file supplied the more likely
for hashcat to crash, though we did manage to crack files which are slightly
larger than the original size limit, so it is possible in theory.

These are the necessary modifications to lift the size limit (but with no
guarantee on the application remaining stable):

e In the file src\modules\module_11600.c on line 83 there is a declaration
of a statically allocated buffer —u32 data_buf [81882] ;. The u32 stands
for an unsigned integer 32 bits in size. This buffer needs to be enlarged
if we want to try cracking larger archives than the limit.
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e Similarly in the same file on line 135 — u32 out_full[81882];.

e In the same file in the section where the hash is parsed into tokens, there
are limits as well — on lines 404 and 410 we assign 6 into two variables
which limit the size of the ninth and tenth field of the input hash —
these represent the length of encrypted and decrypted data. To allow
for larger files we might have to increase this limit.

e Similarly with the buffer representing the actual data that need to be
decrypted to perform the password check. This is the 12th field in the
hash and its limit is initialized on line 416 (normally the limit is 655 056
hex characters — or 327 528 Bytes of data).

e In the same file still, there are some data verification checks from line
504 to line 530. We could just comment them all out, or we can just
comment out the ones that have something to do with the data length.

e In the file include\common.h on line 108 there is a macro define —
#define HCBUFSIZ_LARGE 0xb0000. We also have to increase this value.

e Finally in the script 7z2hashcat.pl on line 115:

my $PASSWORD_RECOVERY_TOOL DATA_LIMIT = 655 056;

(The script doesn’t have any problems evaluating larger .7z files, this
limit is here only because of hashcat itself having these limits. So we
can just increase this value as much as we want.)

We do not provide any specific enlargement values since it depends largely
on the size of the data that we want to use. These “hacks” aren’t very clean
anyway and they make the application largely unstable, we are just including
them for demonstration purposes. These modifications should be enough for
hashcat to get past the hash decoding part and to the cracking loop even
with files that are over the limit, however after that the behavior is unde-
fined. Sometimes the application crashes, sometimes it can actually crack
the archive. To make hashcat truly support larger files would likely be more
complex since the issue probably lies somewhere in the hashcat engine itself.

2.4.3 Cracking attempts

In this subsection, we will showcase actual attempts at cracking encrypted
.7z archives. We will use 7-zip to create several archives with different files
inside them, different password lengths and different encryption settings and
then attempt to crack them with hashcat. We will take notes about how fast
each attack is going — this is usually represented by a number of password
guesses per second, often called hashes per second (H/s).

We would like to emphasize that the actual numbers presented here, re-
sulting from our testing do not have any significance on their own. Much more
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important is how they relate to each other and their orders of magnitude — this
is because the precise value will, of course, vary depending on the hardware
used, the OS, other programs running on the system, etc.

On the attached SD card is a directory named Cracking, it includes exam-
ple files and archives, that we used for this testing. The three subdirectories
called small, medium and large each contain the original file to be encrypted
— small.bin which is 100 Bytes in size, medium.bin which is 15 000 Bytes in
size and finally large which is 320 000 Bytes in size (just below the official
supported size limit of hashcat). These files are made up of random bytes
(and therefore are also difficult to compress) and we generated them from a
bash shell like this: (for different sizes replace the number after -c)

head -c15000 </dev/urandom >/archives/medium.bin

Each file has been archived 9 times. We used three variants for the
NumCyclesPower variable in 7-zip (19 — the default value, 24 — highest pos-
sible and 0x3F (63) — the weak KDF). For every variant we encrypted each
file thrice — once with a 4 character password (“7zip”), once with an 8 char-
acter password (“7zipPass”) and once with a 10 character password (“7zip-
PassWD”). The respective archives reflect these values in their filename (for
example small 0x3f_10.7z is the encrypted small.bin using a 10 character
long password and the 0x3F variant of the KDF). The hashes generated by
7z2hashcat.pl are also included in these directories, their name only differs
in extension from their respective archives (.hash instead of .7z).

Finally, there are files with the same name and the .txt extension, these
contain the output of hashcat after a few seconds of attempting to crack the
respective files. The output contains information about how many hashes
per second we are guessing and also an estimation of when the cracking will
finish (more precisely when all the password possibilities for the given set-
tings are exhausted — of course, in reality, it isn’t very likely that we would
guess the correct password on the last try). When using the 0x3F value for
NumCyclesPower we need to use our modified version of hashcat described
earlier, for the other two we use the original files.

The command that we execute to start the cracking attempt on the ex-
ample file small_19_8.hash is:

hashcat.exe -a3 -w3 -m11600 --potfile-disable --self-test-dis-
able -1717u?d archives\small\small 19.8.hash 7171717171717171

e -a3 — This tells hashcat that we want to use the mask attack.
e -w3 — This is the optimization level, it is not necessary.
e -m11600 — This chooses the correct module for the input hash (7-zip).

e ——potfile-disable — This means that the results do not get saved to
a “potfile”. If we leave this out then cracked hashes get saved. If we
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attempt to crack the same hash again we get a message about it already
being cracked and hashcat exits.

e ——self-test-disable — As we already explained this is needed in cases
we modified the hashcat source code to the point where the self-test
would always fail.

e -1717u?d — Here we specify a custom charset number 1 which includes
the built-in charsets 1 — lowercase letters, u — uppercase letters and d —
numbers.

e archives\small\small 19_8.hash — We specify what hashfile we want
to attempt to crack.

e 7171717171717171 — This is the mask. The number of question marks
is the number of characters in the guessed password and the character
following a question mark specifies the charset for that position — we use
our charset 1 defined earlier??. For guessing a shorter password we have
to make this mask shorter?3.

For other files, we have to modify the archive name and the mask accord-
ingly.

We encourage the reader to view our results in the text files and perhaps
even perform tests with other password lengths, charsets, or with dictionaries.
With our knowledge of the underlying algorithms and now the available test
results we can summarize what impact do different values have. The time to
perform one guess (and therefore the number of guesses per second) depends
mostly on the size of data we need to extract to perform the check and on the
value of the NumCyclesPower variable. On the other hand, the total count
of the guesses we need to perform depends on the password length and the
charset(s) used in the password.

When using our charset of lowercase letters, uppercase letters and digits
it still isn’t reasonably doable to crack most archives if they use a password
of at least 8 characters, even when we use our significantly weaker KDF.
This, however, changes if we were to change the charsets, or if we were to use
dictionary attacks instead of these brute-force-like attacks. The important
number is the hashes per second in that case.

With a normal release version of 7-zip, this should be perfectly safe. Now,
let’s return to our idea of the purposefully weaker 7-zip. We already have

22If we knew some characters exactly we could replace the question mark and charset
specifier for a certain position with a specific letter. There are much more complex ways to
execute the attack, for example, using “rules” but we will not focus on them in this thesis —
the hashcat website has all the necessary information to get started.

23Hashcat also allows for incremental masks — we can specify at least and at most how
many characters a password has and hashcat tries all the possibilities in that range
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control over the NumCyclesPower variable. Could we do something about the
data size as well, while keeping the archives valid?

We actually could. This would be a change that would be a bit more no-
ticeable, than just changing the encryption values though. We could modify
7-zip in such a way that when creating an encrypted archive, it purposefully
adds a new block, which doesn’t use compression (only encryption) and popu-
lates it with a very small file. This file could then always be used for password
verification and would make the guessing speed the same for archives of all
sizes.

This change would, of course, mean that suddenly every archive would
have one more file in it and upon extraction, it would be extracted with
all of the other files. If we wanted to develop an actual attack there could
be some smart ways around this fact to make everything look as normal as
possible. For example, we could create a plain text file called desktop.ini
which would only contain the semicolon character (;) followed by 15 other
characters including the linebreak. We would create the file with the hidden
and system attributes. Files with these attributes will be invisible in Windows
Explorer by default. Furthermore, the desktop.ini is actually generated by
Windows in directories when it needs to store additional information about
that directory (for example changed directory icons, etc.), so it wouldn’t be
that suspicious. The file cannot be empty if we want to use it in the password
verification process. This way the file is only one AES block long and still a
valid .ini file, since the semicolon is used for line comments in them.

There are probably many other ways to hide additional files into the
archives which could attempt to be inconspicuous while still upholding the
fact that the archive is a valid .7z archive, usable with any 7-zip installation.
For example, if the user uses 7-zip to compress a larger directory structure we
could hide the file deep inside the directory structure. Or we could forcefully
add the -sns command line parameter to any archive creation — this enables
NTES alternate data streams functionality in 7-zip. We might be then able
to hide the small file inside another file’s alternate stream.

This way we would actually be able to speed up the cracking process even
more since we do not actually need to decompress any data and we do not
even need to calculate the CRC32 checksum. This is because we know the
plaintext of the file. Since it’s just one AES block, the verification for every
password-guess is just decryption and then comparison to our known plaintext.

Since we have control of the initialization vector as well we could just
make it always the same. That would allow us to calculate lookup tables
which would contain password:ciphertext pairs, where ciphertext is generated
with the given password from our planted one-AES-block-sized file (this means
the ciphertext is also just one AES block in size). The lookup tables would
be calculated in advance for a certain set of passwords and then sorted lexi-
cographically by the resulting ciphertexts. Then if we wanted to check if an
encrypted archive, created by such a 7-zip build, used a password that was on
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our list, we could just search for the ciphertext of our planted file in this table
and get the password without any guesswork at all. These modifications are
however much more noticeable and tech-savvy users might notice at least one
of them, thus making them ineffective.

2.5 Other problems

In this section, we will talk about other findings which might prove problematic
from a security standpoint, not always necessarily connected to the use of

cryptography.

There is a slight problem with how the AES key and the password are
handled in memory. Both are copied around quite a lot and mostly stored
in the custom-coded string types defined in CPP\Common\MyString.h. When
we look at the destructors and methods of these string types we find that the
pointers pointing to the stored characters are eventually just deleted by using
the C++ delete operator. This, however, doesn’t guarantee that the mem-
ory where they were stored will actually be overwritten, it merely “forgets”
the pointer to that part of memory and notifies the OS to make it available
for future allocation. A better way would be to first overwrite the memory,
preferably with the WinAPT function SecureZeroMemory [15].

Furthermore, when handling sensitive information (again — key and pass-
word) we should make sure that it doesn’t get swapped to the hard disk in
plaintext, where it could potentially be read by someone unauthorized. We
can achieve this by either: using the WinAPI function CryptProtectMemory,
which encrypts part of the memory so that even if it gets swapped, it is un-
readable; or by using another WinAPI function VirtualLock. This ensures
that the data actually stays in RAM and doesn’t get swapped to the hard disk
at all. Neither of these functions is ever used in 7-zip.

7-zip does, however, support the use of large memory pages when using
the command-line parameter -slp. Since large pages are always locked in
memory, 7-zip first enables the SeLockMemoryPrivilege (which is needed for
large pages) for the user account that it is running from. This isn’t a security
feature however, instead it is supposed to speed up the compression of large
files. To enable this privilege 7-zip needs to be running from an administrator
account. From a security standpoint, this can actually be harmful instead of
helpful. The SeLockMemoryPrivilege is left enabled on the user account that
ran 7-zip even after it terminates. Since the user isn’t notified about this in
any way, they will probably leave it enabled and it could potentially result in
a “denial-of-service condition” later as described in the Microsoft docs [16].

7-zip actually supports the modification of the .7z archives after they’ve
been created and it also supports having some files encrypted, some unen-
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crypted or even different files being encrypted with a different password within
the same archive.

This creates another potential problem — a user of 7-zip might assume that
creating an encrypted archive would prevent it from being tampered with —
unfortunately this is true only when the headers are encrypted as well, but
that option is not enabled by default?*. When just the data is encrypted
but the headers are not, it is actually possible to add files to the archive in
an unencrypted form. This is probably an intended feature — when opening
such an archive in the 7zFM.exe you can see well which files in the archive
are encrypted and which are not. However often the user would just use the
“extract all” command and in such a case he would be asked for a password and
all files would be extracted, including the unencrypted ones, which were added
later. This allows for planting of malicious files into encrypted archives — even
though the unencrypted files get extracted before the password is entered, so
more observant users might notice it.

When we create encrypted archives through the GUI version, we either
check the option to make the password visible normally during the input, or
we have to type it twice — this is the classic check against typos in passwords.
However, in the command line version where we use the -p parameter to set
up a password 7-zip behaves differently. We can either specify the password
directly during the 7-zip invocation like this: —-pPASSWORD or we can specify
just —p by itself. We will then be asked to type the password, but the password
isn’t echoed and is only typed in once. If we use this together with the
-sdel parameter which makes 7-zip delete the original data after they are
compressed, we might lose the data entirely, if we make a typo in the password.

240 encrypt the headers when running console 7-zip, use the switch -mhe=on
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Conclusion

In this chapter, we will conclude this thesis, summarize what we found out
about the 7-zip application and provide suggestions for related exploration in
the future.

Summary

In its current form (version 19.00) 7-zip should be sufficiently secure for storage
of sensitive data inside its native .7z archives, under a few conditions:

e The user has to be sure that his 7-zip installation hasn’t been modified
by someone else.

e Preferably the user should build 7-zip from source and as described in
section 2.3 turn on the usage of salt and possibly even increase the
number of iterations performed in the KDF.

e When creating encrypted archives the user should also use the option to
encrypt the headers, if possible.

As we can see from the attached results of our cracking attempts, the
unmodified version of 7-zip is quite safe by itself. The modified version with
a stronger KDF (and possibly also enabled salt) creates encrypted archives
which are pretty much uncrackable with current technology and knowledge.

Future exploration

There is still much more that could be analyzed and explored concerning the
security of 7-zip. To name a few examples:

e Run fuzzing tools against input fields in the GUI version

e Look for buffer overflows in other parts of the application
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Analyze the crypto implementation for other archive formats, such as
.rar and .zip

Help improve hashcat by implementing and optimizing the necessary
code to support the usage of salt and the weaker KDF in .7z archives
and possibly archives of larger sizes.

Try to calculate rainbow tables of a certain size for the default .7z KDF

etc.
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APPENDIX A

Acronyms

AES Advanced Encryption Standard

AES-NI (Intel) AES New Instructions

CBC Cipher Block Chaining (AES mode of operation)
CRC32 Cyclic redundancy check (32 bytes output length)
CSPRNG Cryptographically secure pseudorandom number generator
CTR Counter (AES mode of operation)

CVE Common Vulnerabilities and Exposures

ECB Electronic Codebook

GPU Graphical processing unit

KDF Key-derivation function

MSVC Microsoft Visual C++

MVS Microsoft Visual Studio

PBKDF Password-based-key-derivation function

RNG Random number generator

SHA Secure Hashing Algorithm
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APPENDIX B

Contents of attached SD card

| Cracking....directory containing example archives for cracking attempts
| SOUTCES . tttttiiaaaaaaannnnn. directory containing relevant source codes
7z1805-STC..ovvviinnnniennnnn.. 7-zip 18.05 source code + my logger
AES testing ..., our AES testing program
hashcat....ooovviiiiiii i hashcat source code
TheSiS ..ottt KTEX source codes of this thesis
Win=1COnV...oovviiiiiiiiiiiiiiiiiii i win-iconv source code
7z2hashcat.pl.......... the script to help with .7z archive cracking
m11600-pure.cl...... the modified m11600-pure.cl — see section 2.4
| Assignment.pdf............... i, the assignment for this thesis
| BP_HuSek Josef 2019.pdf................. ... this thesis in PDF format
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