
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 22, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Comparison of Haskell and F# Programming Languages for Enterprise Applications

Development
 Student: Nasiha Maleškić

 Supervisor: Ing. Robert Pergl, Ph.D.

 Study Programme: Informatics

 Study Branch: Information Systems and Management

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

The goal of the thesis is to compare two significant functional programming languages: F# and Haskell with
the respect to enterprise applications development.
1. Acquaint yourself with principles of pure functional programming paradigm, F# and Haskell (and possibly
similar languages) in the context of enterprise applications.
2. Select a suitable case study of a project realised in F# and perform a comparison with a hypothetical
Haskell implementation:
 a. Comment on the languages themselves.
 b. Analyse the ecosystems of the languages.
 c. Analyse other aspects such as tools support, community, documentation, etc.
3. Formulate conclusions of your analysis, especially strong and weak points of Haskell as opposed to F#.

References

Will be provided by the supervisor.

Bachelor’s thesis

Comparison of Haskell and F#
Programming Languages for Enterprise
Applications Development

Nasiha Maleškić

Department of Software Engineering
Supervisor: doc. Ing. Robert Pergl, Ph.D.

May 15, 2019

Acknowledgements

I want to thank my supervisor doc. Ing. Robert Pergl, Ph.D. for his guidance
and valuable advice. I express the deepest gratitude to my family for the
constant encouragement and support I never cease to receive from them. I also
thank my partner for his love and support. I want to thank Filippo Ghibellini
for his help regarding Haskell and thank Roman Provaznik for sharing his
knowledge of F#.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 15, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Nasiha Maleškić. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Maleškić, Nasiha. Comparison of Haskell and F# Programming Languages
for Enterprise Applications Development. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2019.

Abstrakt

Tato práce porovnává dva funkcionální jazyky Haskell a F#. Oba jazyky
jsou analyzovány na základě kritérií, které by byly použity při výběru nej-
vhodnějšího jazyka pro vývoj podnikové aplikace. Práce také vysvětluje event
sourcing a jeho implementaci v obou jazycích. Dǔvodem, proč je Haskell
oproti F# lepší pro event sourcing je, že je referenčně transparentní. Dále
práce vysvětluje, že je jednodušší psát frontend aplikace v F# ve srovnání s
Haskellem, z dúvodu toho, že F# není čistě funkcionální. V závěru se v práci
dospěje k tomu, že ve většině případǔ je F# vhodnější pro vývoj podnikových
aplikací.

Klíčová slova F#, Haskell, vývoj podnikových aplikací, porovnání funkci-
onálních jazykǔ

Abstract

This thesis compares two functional languages Haskell and F#. Both lan-
guages are analyzed based on the criteria that would be used in order to
choose the most suitable language for developing an enterprise application.
It explains event sourcing and its implementation in both of the languages
and why Haskell is better for event sourcing due to the fact it is referentially

vii

transparent. It explains how it is easier to write F# frontend applications
compared to Haskell, due to its impurity. It concludes that it seems, that in
most of the cases, F# is more suitable for enterprise application development.

Keywords F#, Haskell, enterprise applications development, functional lan-
guages comparison

viii

Contents

Citation of this thesis . vi

Introduction 1

1 Goals and approach 3

2 Review 5
2.1 Functional languages . 5

2.1.1 Introduction . 5
2.1.2 Immutable data . 6
2.1.3 Referential transparency 6
2.1.4 Lazy evaluation . 6
2.1.5 Higher-order functions 6

2.2 Examples of languages that influenced Haskell 7
2.2.1 Miranda . 7
2.2.2 ML . 8

2.3 Examples of languages influenced by Haskell 8
2.3.1 Agda . 8
2.3.2 Idris . 9

2.4 Haskell . 9
2.4.1 Syntax . 9
2.4.2 Haskell in industry . 10

2.5 F# . 11
2.5.1 Syntax . 11

3 Analysis 13
3.1 Haskell development tools analysis 13

3.1.1 Compiler . 13
3.1.2 Testing . 13
3.1.3 Debugging . 15
3.1.4 Documentation . 15

ix

3.2 Using Haskell in a company . 16
3.2.1 Community . 16
3.2.2 Human resources . 17
3.2.3 SWOT Analysis . 17

3.3 F# development tools analysis 19
3.3.1 Testing . 19

3.4 Using F# in a company . 20
3.4.1 SWOT Analysis . 20
3.4.2 Improved readability . 21

3.5 Haskell vs F# . 23
3.5.1 Active development . 23
3.5.2 Language documentation 24
3.5.3 Library ecosystem . 25
3.5.4 Versatility . 25
3.5.5 Evaluation model . 26
3.5.6 Development tools . 26
3.5.7 Adopting the language 26
3.5.8 Educational materials 27
3.5.9 Community . 27

4 Case study 29
4.1 Enterprise applications development 29
4.2 Real world application parts . 29

4.2.1 Event sourcing . 30
4.2.2 Frontend . 40

Conclusion 45

Bibliography 47

A Acronyms 53

B Contents of enclosed CD 55

x

List of Figures

xi

Introduction

State of enterprise applications development is such that the majority of de-
velopment is in object-oriented languages. Projects written in functional lan-
guages pique the question of whether this could be a more efficient way for
development. With functional languages on the rise, and after working for six
months as an F# developer, I was motivated to research more about them.

Research is focused on functional languages and their specific character-
istics. The analysis is focused on comparing two significant functional lan-
guages: F# and Haskell. I analyze whether using functional languages (and
more specifically which ones) in enterprise applications development is ben-
eficial or the contrary. In the last chapter, I take a look at the case study
project written in F# from a real company. I compare the F# approaches
to hypothetical Haskell implementation and comment on the difference. This
further helps us gain better insight.

I specifically compare Haskell and F#. Haskell is chosen due to the fact it
is the most popular purely functional language. F# was chosen, not only for
personal reasons but also because it is one of the biggest functional languages
on the rise. It is also one of the best-payed technologies in the last few years.

Deciding on a language to use in enterprise applications development can
be difficult. Choosing the right language for your needs can be extremely
beneficial in terms of time spent in development, software bug reduction, de-
veloper’s motivation and client satisfaction.

This bachelor thesis intends to present the advantages and disadvantages
of one language and the other, as well as demonstrate their differences and
their suitable applications. This can help developers make a more informed
decision during the process of choosing the programming language for their
needs.

1

Chapter 1
Goals and approach

The goal of this thesis is to compare two significant functional programming
languages: F# and Haskell with respect to enterprise applications develop-
ment.

I perform a review of the functional programming paradigm, as well as
some of the languages that have influenced Haskell and some of those that
were influenced by Haskell. Furthermore, I review Haskell and F#. I analyze
the development tools from both Haskell and F#, as well as what it is like to
use those languages in an enterprise environment. I finish the Analysis chapter
with a comparison of Haskell and F# in regards to specific elements that can
be crucial when choosing a language for enterprise applications development.
In the final chapter, I take a look at a real-world application built in F# and
its implementation, comment on it and compare it with a hypothetical Haskell
implementation. The focus is on desktop applications, whereas frontend was
chosen due to the fact that it provides a nice contrast to event sourcing.

3

Chapter 2
Review

2.1 Functional languages

In the following paragraphs, I will explain basic ideas behind the functional
programming paradigm as well as introduce characteristics that are common
for all functional languages. Features we will focus on are those that may be
of the greatest benefit for the enterprise applications development.

2.1.1 Introduction

Functional programming paradigm is called that way because the programs
consist entirely of functions. These are called first-class functions since they
can be treated just like any other value (integer or string for example). They
can be passed as arguments or returned as a result of a function. The dis-
tinguishing characteristic of the functional programming paradigm lies in fo-
cusing on what needs to be done, rather than on how it needs to be done.
Functional languages are usually divided into pure and impure ones. Gener-
ally accepted definition is that those functional languages that allow for side
effects are impure.

Haskell is a purely functional language, meaning it does not allow any
side effects at all. There are still discussions as to what is considered a pure
functional language and what impure. For our purposes, we need not dive into
those discussions, as we will focus on the elements of functional programming
that are beneficial for enterprise applications development. F# is a multi-
paradigm language, allowing for imperative and OOP elements as well.

Common features of all functional languages: immutable data, referential
transparency, higher-order functions and lazy evaluation.

5

2. Review

2.1.2 Immutable data

Instead of altering the original values, copied values are altered. Purely func-
tional programs typically operate on immutable data.[1] When modifying an
immutable data structure, we expect that the old and the modified version
will be available for further processing. We take the old data structure, copy
it and modify the new version. Data structures that allow multiple versions
are called persistent.[2]

2.1.3 Referential transparency

An expression always evaluates to the same result. We use [referential trans-
parency] to refer to the fact of mathematics which says: The only thing that
matters about an expression is its value, and any subexpression can be replaced
by any other equal in value. Moreover, the value of an expression is, within
certain limits, the same whenever it occurs.[3]

2.1.4 Lazy evaluation

Lazy evaluation means that functions are evaluated only when needed. Lazy
evaluation is also called call-by-need evaluation because the evaluation of an
expression is done only when needed as opposed to eager evaluation (also
called call-by-value) where the value of an expression is evaluated immediately
as it is assigned to the variable.[4] The latter is more widespread, but both
of them have their advantages as well as disadvantages. Laziness can be less
efficient and less predictable, the latter one being true even for experienced
programmers.[5]

2.1.5 Higher-order functions

Higher-order functions are functions that take other functions as their argu-
ments. Some of the most common higher-order functions in functional lan-
guages (some of them are implemented even in non-functional languages) are:
reduce, filter, find and map. An example of a higher order function in F#
is List.map. List.map in F# is used to transform a list into a new list by
applying the function onto each element of the list.[6]

let increaseByOne x = x |> List.map (fun x -> x + 1)
printf "%A" ([1; 2; 3; 4] |> increaseByOne)

Listing 1: List.map example

6

2.2. Examples of languages that influenced Haskell

2.2 Examples of languages that influenced Haskell

I have chosen to research and describe the following languages because ac-
cording to the developers they are the ones that have had the most influence
on Haskell development.[5] From these languages, we can also see what some
of the features that the committee working on Haskell decided to include as
they were, those that they changed and those that they completely left out.
It also gives an insight into the history of how Haskell came to be.

2.2.1 Miranda

Miranda is a non-strict, purely functional programming language with poly-
morphic types. Non-strict semantics allows your language only to evaluate
the things it needs to.[1] Non-strict semantics can hurt performance because
the program needs to decide in advance what needs to be evaluated and what
does not. The advantage it gives us is cleaner code, one example of this being
that unnecessary arguments will not be evaluated.

It supports pattern matching, currying, list comprehension, polymorphic
strong typing, user-defined types and much more.

Miranda is a strongly typed language. There are three mechanisms for
user-defined types: type synonyms, algebraic types and abstract types. Type
synonyms permit the user to define a name for an already existing type. The
symbol == is used. Algebraic data types are used when introducing a new
concrete data type. The symbol ::= is used.[7]

2.2.1.1 Miranda and Haskell

Back in 1987, when it came to deciding whether to write a new programming
language completely from scratch or to take another one as the basis for im-
plementation - all eyes were on Miranda. It was developed by David Turner’s
company called Research Software and as such was a commercial language.
Pure, well-designed with robust implementation and lazy evaluation it seemed
like the perfect starting point for this new language that was later to be named
Haskell. David Turner had declined, since this new language was to be used
differently than Miranda, the main difference being that Haskell would not be
commercial. Nevertheless, Haskell owes a considerable debt to Miranda, both
for general inspiration and specific language elements that we freely adopted
where they fitted into our emerging design.[5]

Haskell was aspiring to be many things that Miranda already was. There-
fore there are numerous similarities between the two languages. Haskell gained
more popularity over Miranda for several reasons. Miranda was not a part of
the public domain, and it remained a commercial language, whereas Haskell
was available for free for everyone. Miranda ran only on Unix, whereas Haskell

7

2. Review

ran on Windows as well. Alongside the new ideas, Haskell implementations
were also rapidly improving which is why it eventually displaced Miranda.[5]

2.2.2 ML

ML stands for Meta Language, which is a term used for a form of a language
or a set of terms used for describing and analyzing other languages.[8]

When talking about ML, it is essential to mention the two distinct phases
of program execution. First one is the static phase, determining whether
the program is well-formed before it is run.[8] The second phase is the dy-
namic phase when the program is run. In Standard ML there is also a third
phase, which comes before the two. It is called parsing, and it determines
the grammatical form of a declaration.[9] Another crucial characteristic is the
language structure. It consists of three levels. The lowest level is called Core,
which provides many phrase classes. The middle-level concerns with program-
ming larger applications, called Modules. The very small upper level is called
Programs.[8]

Its two dialects are Standard ML and Caml (Categorical abstract machine
language) with OCaml as its main implementation.

2.2.2.1 Standard ML

Standard ML is a type-safe programming language. It encourages functional
paradigm, but imperative style can be used where needed. Therefore it is not
considered a pure functional language. It is a statically typed language and
as such does the verifying and type constraints enforcing at compile time. It
has an extensible type system and supports polymorphic type inference.[10]

2.3 Examples of languages influenced by Haskell

I have chosen to research and write about Agda and Idris primarily for their
research value. They are an insight into what the languages of the future might
look like. Idris very young, but it is built on top of Haskell, and it provides
us with features that can be considered improvements over the greatly more
popular Haskell.

2.3.1 Agda

Agda is a dependently typed programming language and proof assistant.[11]
Dependent type is a type whose definition depends on a value. In depen-

dently typed languages, the distinction between values and types is not always
clear. In Hindley-Milner style languages, such as Haskell and ML, there is a
clear separation between types and values. In a dependently typed language,

8

2.4. Haskell

the line is more blurry types can contain (depend on) arbitrary values and
appear as arguments and results of ordinary functions.[12]

Hindley-Milner is a type system named after the logician J. Roger Hind-
ley, who first described it and Robin Milner, a computer scientist who later
rediscovered it. It is a type system that has an algorithm for inferring types
without them being previously declared.

Function definitions must cover all possible cases, and they have to be
terminating. Naming in Agda is very liberal, all nonwhite Unicode characters
are allowed, few exceptions being parentheses and curly braces.[12]

2.3.2 Idris

Idris is a general purpose pure functional programming language with depen-
dent types.[13]Like Agda, it can be used for writing programs as well as proofs.
The main difference between the two is the fact that Idris was developed for
general purpose programming from the early start, whereas Agda started as
a tool for proving theorems. Even so, at the moment it is primarily used for
research, and according to the developers, it is yet to be made into a system
that could be used in production.[13]

2.3.2.1 Eager evaluation

The main difference between Haskell and Idris is the fact that Idris has eager
evaluation. Idris does encompass opt-in laziness. This can be seen as an
advantage over Haskell since laziness can lead to problems with performance
and it can make it difficult to reason about the predictability of a program.[14]

One of the many other differences, which some may consider as improve-
ments, is the fact that Idris strings are not lists. Haskell string is a list of
characters, but in Idris String is a built-in.

2.4 Haskell
Haskell is a general-purpose, purely functional language. Haskell is statically
typed and has a type system that encompasses type inference. Its main im-
plementation is Glasgow Haskell Compiler.[1]

2.4.1 Syntax

Haskell wanted to distinguish itself from the imperative languages even in the
syntax of the language. Instead of using braces, Haskell uses indentation for
delimiting blocks, and instead of semicolons, a newline is used as a separator.
The developers have left the ability to override the layout rules in order to
give more freedom to the users. Haskell has 21 keywords that cannot be used
as variable names.[5]

9

2. Review

2.4.2 Haskell in industry

In the following paragraphs, I will give examples of three projects within big
companies that were done in Haskell.

2.4.2.1 Fighting spam at Facebook

Sigma is a system at Facebook used for fighting against malicious actions on
the famous social network. For every action, whether it is a post, a like or
a message sent - the system checks the policies regarding that very action to
prevent spam, phishing and other similar actions before they can harm the
users.

At first, the system was written in in-house FXL language, but then they
started looking for something better. On the list of their requirements was
that the language was to be purely functional and strongly typed. This was
needed in order for policies not to inadvertently affect each other and so that
they are easier to test in isolation.

Implicit concurrency employment should be easy, so that engineers writing
policies can concentrate on fighting spam and not worry about concurrency. All
existing concurrency implementations in Haskell are explicit, so they looked
for different options. Automatic batching and concurrency were to be ad-
dressed by The Haxl framework. The Haxl framework is a Haskell library
that simplifies access to remote data; it can batch multiple requests to the
same data source and request data from multiple data sources concurrently.

Developer team working at Facebook’s Sigma project wanted to create a
tool that had a fast performance, was efficiently handling the requests and
correctly applying the rules. On top of that, they wanted to have clean, easily
readable code. That is the short story of how they have come to choose
Haskell.[15]

2.4.2.2 Googles tool for clusters of virtual machines

Ganeti is a management tool that was developed under Google’s IT system
administration group. Before adding Haskell to it, the entire project was
written in Python. Their goal was to develop tools that can automate the
layout computation in order to best use the resources of each physical machine.
Since actual policies for the layout of a virtual machine can differ according
to different site policies, they decided to leave that to the external scripts
and that the Ganeti itself should just implement the mechanism. They have
decided to write a so-called cluster balancer, that takes the current state of
the cluster and decides on the next best state.

There are two main reasons why the developers have decided to write
this component in Haskell. All of the problems they are trying to solve are
numerical, and those kind of problems are easy to model in a pure domain.

10

2.5. F#

Another thing that the developers have praised is how short the code base is.
The learning curve for Haskell is a rather steep one, but once you master it,
you can write short code that does a lot.[16]

2.4.2.3 IMVU goes from PHP to Haskell

At IMVU, an avatar-based social platform, they have made a switch in 2013
from PHP to Haskell to build several of the REST APIs. At the beginning of
the company, they have used PHP as the application server language. Even-
tually, the client base grew a lot bigger, and the company was looking for al-
ternatives in order to improve the performance. They started experimenting
with Haskell. They have faced the same concerns many have when choos-
ing not to use Haskell for their projects. Training developers is one of them,
Haskell being infamous for its steep learning curve. They say that training
someone to be productive in Haskell was no harder than in PHP, especially if
they have already had some prior functional programming experience. They
have praised ease of deployment and refactoring.

2.5 F#
F# is a strongly typed, first-class .NET programming language designed by
Don Syme and others at Microsoft Research.[17] It is a functional-first lan-
guage, meaning that it encourages the use of functional paradigm but allows
for imperative and OOP methods as well.

F# is interoperable with C#, and it natively supports all of the .NET
classes, interfaces, and structures. That is one of the reasons why it can be an
excellent way for companies to start adopting or transitioning to functional
paradigm slowly. You can use the existing code in C# and on top of it start
adding F# code.[18]

2.5.1 Syntax

F# syntax is simple and straightforward. Indentation is used for delimiting
blocks of code. There are no needless brackets. Operators greatly improve
readability, the three most important ones and the ones used most frequently
being: pipe forward operator, pipe backward operator and composition oper-
ator. With proper variable naming and proper operator usage - it can often
be quite clear what the code does just from looking at it. We read the code
from left to right, just as we are used to doing from the natural languages.
This can be very beneficial when the developers are trying to explain their
code to someone who has no experience programming.

11

Chapter 3
Analysis

3.1 Haskell development tools analysis

3.1.1 Compiler

Glasgow Haskell Compiler (GHC) is an interactive, open-source compiler for
Haskell. It is written in Haskell, but the runtime system is implemented in
C and C–.[1] It consists of two main components: the batch compiler and
the interactive environment called GHCi. With GHCi you can interactively
evaluate expressions and interpret the program.[19]

GHC provides support for parallel and concurrent programming. As a
way for handling concurrent threads, an abstraction called Software Transac-
tional Memory (STM) was added to GHC 6.4. The main benefits of STM are
composability and modularity.[1] In order to use STM, the programmer needs
to guarantee atomicity and isolation.[20] This is ensured by the atomically
combinator. Once the block of actions of transactions is entered it cannot be
affected by other threads nor can we see the modifications made until we exit.
Upon exiting, if no one else was modifying the same data, our changes will be
immediately visible. Otherwise, our actions will be discarded.[21]

3.1.2 Testing

Testing is an integral part of the software development life cycle. Testing is
carried out in order to detect any software defects in order to correct and
remove them before deployment.[22] Haskell has the expressive type-system,
which allows for complex invariants to be enforced statically making it im-
possible to write code violating chosen constraints.[23] Apart from this, two
main testing mechanisms are the standard unit testing (via the HUnit library)
and the more sophisticated type-based property testing (via the QuickCheck
framework).[23] It is essential to mention HSpec, a testing framework which
integrates with both QuickCheck and HUnit, as well as SmallCheck.

13

3. Analysis

3.1.2.1 Property based testing with QuickCheck

In property-based testing, we tell the program how the output should look
like based on the input. The program then generates a large number of cases
to test that. When writing property-based tests, we have to think carefully
about the specifications. What kind of input is supported and what kind of
output is expected. With property-based testing, we can cover a more sub-
stantial amount of tests, compared to writing them by hand. We are also
able to discover problems with subtle corner cases we could have otherwise
forgotten.[23] QuickCheck is a Haskell library that generates test cases (ac-
cording to the given specifications) to test program properties.[24]

Following is an example of Bubble Sort algorithm written in Haskell. Ord
is a typeclass for types that have an ordering. x:xs represents a list where x is
the first element (head), and xs is the rest of the list (tail). x:y:xs is a pattern
that says that this is a list with at least two elements x and y. The remaining
sublist is xs, and it may be empty.

module Main where

bubbleSort' :: Ord a => [a] -> [a]
bubbleSort' (x:y:xs) =
if x > y then y:bubbleSort' (x:xs)
else x:bubbleSort' (y:xs)

bubbleSort' xs = xs

bubbleSort :: Ord a => [a] -> [a]
bubbleSort [] = []
bubbleSort lst =
let t1 = bubbleSort' lst
in bubbleSort (init t1) ++ [last t1]

main :: IO ()
main = do
putStrLn $ show $ bubbleSort [1,3,5,2,4,0]

Listing 2: Bubble Sort in Haskell[25]

To demonstrate property-based testing in Haskell we will use previously
mentioned QuickCheck library. We need to import it first.

import Test.QuickCheck

14

3.1. Haskell development tools analysis

When writing property-based tests, we need to think about the properties
of the function that we want to test. We are testing a sort algorithm. There-
fore the first and the most obvious property is that the algorithm needs to
sort numbers properly. We will test against the standard sort library. This
is known as testing against the model implementation. We know that the
standard sort library is a model that works and therefore we can confidently
test our function against it.

When writing QuickCheck tests, it is a convention to start them with
prop_ to distinguish them from the rest of the code.

prop_sort_model xs = sort xs == bubbleSort xs

3.1.2.2 Haskell Program Coverage

HPC (Haskell Program Coverage) is an extension to the compiler that can
tell us the exact percentage of the code that was executed when the tests are
run. It can also tell us precisely which parts of the program were executed. It
comes with a utility that can generate visual coverage display; for example, it
can create an HTML file with pretty graphs that make it simple to see which
functions were left untested. It is useful because that way we know exactly
which tests to add.[23]

3.1.3 Debugging

A read-eval-print loop (REPL) is a simple environment that takes a single
expression, evaluates it and returns the result. In the case of Haskell REPL is
GHCi, the GHCs the interactive environment. If separate functions are tested
in REPL before being added to the modules, the developer can catch a lot of
bugs here. GHCi also contains a debugger that can be used to find bugs that
are more difficult to see. In this debugger, you can set breakpoints and stop
the computation and examine the value of variables.[26] Breakpoints can be
nested so that one breakpoint can trigger the second one. It also enables for
the execution to be single-stepped, which would be like setting a breakpoint at
every point in the program.[26] Debug.trace are functions for so-called "printf
debugging" where we choose to output information at critical points in the
program which help to indicate us where the problem is. The trace function
outputs the trace message given as its first argument, before returning the
second argument as its result.[27]

3.1.4 Documentation

Haddock is a tool for automatically generating documentation from Haskell
source code. Despite being primarily developed for Haskell libraries, it can be

15

3. Analysis

helpful when documenting any code. It supports several formats with HTML
and partial support for generating LATEX.[28]

3.2 Using Haskell in a company
Before deciding on using Haskell in a company or for a project one needs to
consider a wide array of criteria. Sorting a list of criteria by the importance is
an impossible task since they are all relative to each other. Projects application
domain could be perfectly suitable for Haskell, but if you do not have the
developers with the necessary expertise, it can not help. You may have a team
of expert Haskell developers, but using Haskell to build a mobile application
would be pointless considering the alternatives.

The majority of criteria applies to both new companies and projects as
well as the already established ones. In case of an established company, one
has to consider the current company structure and its employee’s skill set,
the existing languages used at the company and how productive the transfer
from the current technology to Haskell would be. Those participating in the
decision process need to calculate the total cost of using new tools, educating
the employees or hiring new ones, rewriting the code and the impact it will
have on the company culture.

3.2.1 Community

Haskell is 40th on the TIOBE Programming Community index for September
2018 (indicates how popular a programming language is) list with 0.218%
ratings. Top 18 programming languages on the list all have a rating above
1%.[29] It shows us that Haskell is not a prevalent language overall, but in
the following paragraphs, I will give a list of examples of a growing Haskell
community and its increasing potential for popularity.

Haskell is repeatedly on StackOverflow Developer Survey lists as one of
the most loved and the most wanted technologies on the global scale. Haskell
community is large and highly active on several mediums, such as mailing lists,
IRC and StackOverflow.[30] There is even a special group dedicated to com-
panies and everyone else who is either already using or looking to use Haskell
commercially. The commercial Haskell group is meant for those willing to
collaborate, improve the quality of tools and libraries to meet commercial
standards and acquaint the greater public about the tools and discoveries
through better documentation and tutorials.[31] FP Complete is an engineer-
ing company that will help you with commercial development using Haskell.
They do so by offering you their expertise and consulting. They can help you
build your product either partially or entirely. Some of the services they offer
are providing the educational materials, tutoring your employees, writing the
code and delivering the product.[30]

16

3.2. Using Haskell in a company

3.2.2 Human resources

One of the most important factors is whether actual people are willing to work
with the given language or technology. Taking into account the companys
flexibility we could look at not only local but also global talent pool. Haskell
is generally criticized for having a steep learning curve.[32] Steep enough, that
one would probably take at least a year to be productive in it and a few years
to become an expert.

Considering the steep learning curve, one needs to expect higher salaries.
According to the StackOverflow Developer Survey 2018, Haskell came out as
the 13th top paying technology on a global scale.[33]

In Prague, all introductory programming courses are taught with object-
oriented programming. None of them even have functional programming
classes obligatory with one exception (Charles University - Faculty of Mathe-
matics and Physics).

3.2.3 SWOT Analysis

3.2.3.1 Strengths

Testing Due to the fact that Haskell has an expressive static type system it
allows for complicated invariants to be enforced statically. This makes
it impossible to write code that would violate chosen constraints. That
leads to having to test for fewer things than in other languages. Purity
and polymorphism encourage writing modular, refactorable code that
is easy to test. On top of it all, we also have previously mentioned
framework QuickCheck and HUnit library that helps us build precise
programs.[23]

Speed and parallelism GHC implements some major extensions to Haskell
to support concurrent and parallel programming.[19]

Refactoring Refactoring is a disciplined technique for restructuring an ex-
isting body of code, altering its internal structure without changing its
external behavior.[34] By refactoring the code, we can produce clean
code that is easier to read and maintain. Code smells are any parts of
the program that may indicate more significant problems. Code smells
can be subjective. There are various norms and standards for different
programming languages and styles as to what a code smell is. Redun-
dant boolean check, unnecessarily long lines of code and duplicate code
are examples of code smells in Haskell.[35]

HaRe is a refactoring tool for automated refactoring of Haskell code. It
is still in development, but it currently supports several features, such
as renaming, duplicating definitions and converting an if statement to a
case statement.[36]

17

3. Analysis

Following snippets demonstrate code before and after removal of a re-
dundant Boolean check, which can be achieved with HaRe.

Before refactoring:

funcBoolReturn :: Bool -> Bool
funcBoolReturn p = p == True

Listing 3: Before refactoring

After refactoring:

funcBoolReturn :: Bool -> Bool
funcBoolReturn p = p

Listing 4: After refactoring

3.2.3.2 Weaknesses

Learning curve Haskell has a steep learning curve, and it takes a long time
for the developer to feel capable in the language.

Hiring Haskell wards developers off with its steep learning curve. It is consid-
ered a relatively obscure language which is another reason that develop-
ers are not tempted to learn it. Haskell is generally not taught in schools.
These are some of the causes that lead to a significantly smaller pool
of potential hires, especially when compared to already well-established
languages such as Java. That is why finding the right people can be a
challenge. Even after you find them hiring is a challenge as well, since
salaries are more competitive than in mainstream languages.

3.2.3.3 Opportunities

Large companies Large companies such as Facebook and Google are doing
projects in Haskell. Clients are more likely to accept a particular (even a
novel) technology for their project if they are given a proof that similar
(or at least big and stable) projects have already been done with that
very technology.

3.2.3.4 Threats

Already popular languages Haskell may never become mainstream. No
one can see the future, but we can look at the past. Languages that
have worked in the past still work for us, there is a more significant

18

3.3. F# development tools analysis

and more substantial code base, more tutorials, more support and more
experience with those languages than with the relatively new Haskell.
That is why many feel reluctant using a new language that may not even
stay for good.

Multi-paradigm languages One of the threats to Haskell is programming
languages that encompass several programming paradigms (including
functional) such as F#. Developers are given more freedom to decide
for themselves whether they feel more comfortable or confident to write
a particular piece of code in imperative, object-oriented or functional
style. It leads to more possibilities and therefore bigger interest.

Haskell reputation Haskell comes from an academic environment, and it is
generally deemed as an academic and a challenging language to learn
with its abstract, mathematical notations. Reputation takes time to
build and also takes time to change. Haskellers, in particular, are not
even very keen on improving the reputation, and thats what makes it a
threat. If the Haskell community wants Haskell to become more main-
stream, they will have to change their approach.

3.3 F# development tools analysis

One of the disadvantages is convincing the clients that a big project can be
written in a functional language, which is still relatively unheard of, at least in
mainstream circles. That is why when compared to other functional languages
its interoperability with C# and native support of .NET come as an advantage.

3.3.1 Testing

Following is an example of Bubble Sort algorithm written in F#.

let bubbleSort (lst : list<int>) =
let rec sort accum rev lst =

match lst, rev with
| [], true -> accum |> List.rev
| [], false -> accum |> List.rev |> sort [] true
| x::y::tail,

_ when x > y -> sort (y::accum) false (x::tail)
| head::tail, _ -> sort (head::accum) rev tail

sort [] true lst

Listing 5: Bubble Sort in F#[1]

19

3. Analysis

Similar to QuickCheck, FsCheck is a tool for testing F# (.NET) programs
automatically. We will test the following properties that should be true for
any sorting algorithm. Sorting the same list twice should always yield the
same sorted list.

let ``sort should be same as sort`` sortFn aList =
let result1 = aList |> sortFn
let result2 = aList |> sortFn
result1 = result2

Check.Quick (``sort should be same as sort`` bubbleSort)

Listing 6: FsCheck: Sorting the same list should always return the same result

Applying the sort function twice should yield the same result as applying
the sort function once.

let ``sort once should be same as sort twice`` sortFn aList =
let result1 = aList |> sortFn
let result2 = sortFn (aList |> sortFn)
result1 = result2

Check.Quick (``sort once should be same as sort twice``
bubbleSort)

Listing 7: FsCheck: Applying sort function twice

3.4 Using F# in a company
F# is also one of the languages influenced by Haskell. Earlier mentioned
Agda as well as Idris are used purely for research purposes. F#, on the other
hand, is also used in various commercial business purposes, with its popularity
constantly increasing. According to the 2016 StackOverflow Developer Survey,
it came out as the most paid tech worldwide.[37] F# is 69th on the TIOBE
Programming Community index for September 2018.[29]

3.4.1 SWOT Analysis

3.4.1.1 Strengths

F# has behind itself Microsoft, the prominent and well-known corporation
that does provide some pressure so that the language would spread more.
The .NET platform is well-known and has a large user base. F# developers

20

3.4. Using F# in a company

can use .NET core, which is very fast and carefully developed. F# applications
can run on Windows, Linux or Mac.

3.4.1.2 Weaknesses

All the while, F# remains language number two at Microsoft. First one is
C#, and therefore it receives better tooling and better support. Tooling is
steered by the community. It is in no way unified, and the contributors create
the tools according to what they believe to be correct. It has its advantages,
as in giving more freedom and more possibilities. It also has its disadvantages,
such as not having unified tools and well-defined standards.

3.4.1.3 Opportunities

Company Jet.com which runs exclusively on F# was bought by Walmart.
This gives exposure to the language. The frontend is another place where we
can see some improvement and many opportunities. Frontend languages and
the development tends to towards the functional style. This will be explained
more into detail in the case study.

3.4.1.4 Threats

C# has already begun to implement certain features from the functional
paradigm. For beginners, this can be an advantage; they can use the avail-
able features and may not feel the need to go to F#. There are also certain
features that .NET community has gotten used to with C#, such as nameof
and string interpolation, which are not available in F#. Luckily, F# does not
have any other functional programming language that would be its opponent
on the .NET platform.

3.4.2 Improved readability

In the first chapter I have written about operators that improve readability.
The three most important ones are: pipe forward operator, pipe backward
operator and composition operator. In the following examples, I will demon-
strate how the mentioned operators improve code readability.

21

3. Analysis

Pipe forward operator
We have a list of tuples where we want to extract only those where the first

element is 1 and then increase the second element by one. Pipe forward oper-
ator |> is used to pass the intermediate result to the next function. List.map
enables us to take a function and apply it to each element in the list and put
the results into a new list. List.iter would do the same except for creating a
new list. List.filter takes a Boolean condition as a parameter and produces a
new list with the elements that satisfy the given condition.

let res =
[(1,2);(1,3);(3,2);(4,3);(5,2)]
|> List.filter(fun (a, b) -> a = 1)
|> List.map(fun (a, b) -> (a, b + 1))

printfn "%A" res

Listing 8: Pipe forward operator

Pipe backward operator
Pipe backward operator takes a function on the left and applies it to the

values on the right. Pipe backward operator may seem unnecessary, but it
plays an important role in improving the code readability. It enables us to
change operator precedence without adding parentheses.

Instead of:

let addTwo (n : int) = n + 2
printf "%A" (addTwo 2)

Listing 9: Without the pipe backward operator

We can remove parentheses:

let addTwo (n : int) = n + 2
printf "%A" <| addTwo 2

Listing 10: With the pipe backward operator

22

3.5. Haskell vs F#

Forward composition operator
Forward composition operator allows us to compose several functions into

one another. There is also a backward composition operator, which is an
inversion of the forward one.

let square a = a ** 2.0
let addFive n = n + 5.0
let squarePlusFive = square >> addFive
printf "%A" <| squarePlusFive 3.0

Listing 11: Forward composition operator

3.5 Haskell vs F#

When choosing the language for enterprise applications development, one
needs to consider an array of criteria. In section Active development we an-
alyze whether the language will still be there in ten years or is it just a fad,
as well as how active the development of the language is and who is behind
it. Are the language and the libraries well documented, is there a substantial
base of libraries we can use in production? These will be answered in sections
Language documentation and Library ecosystem. The answers to what kind
of application domains is the language suitable for can be found in the Versa-
tility section. After that, we will take a look at the features of the languages.
In Development tools, we compare IDEs and other tools that the developers
use daily. How will the developers adopt the language? Are there quality
educational materials and what is the community like? These questions are
also analyzed as they are also important factors when choosing a language for
enterprise applications development.

3.5.1 Active development

When choosing a language for an enterprise application, it is important to
consider whether language will still be there in a few years. An indication of
this can be the number of people that are involved in language development.
If there are a lot of people invested in the development, it may not necessarily
guarantee better quality, but it is more likely that such a language will last
longer. One example of a language that from a technical point of view looks
very promising and exciting, but because only one person is working on its
development is Purescript. This can dissuade companies from using such a
language. Investing their time and money into working on a project that is

23

3. Analysis

developed in a language that may not continue its development or may not
even be there in a few years, does not sound tempting.

F# started in Microsoft Labs and was a Microsofts product. In 2013
they had decided to go open source and created the F# Software Foundation.
It maintains the core open-source F# code repository. They maintain F#
compiler, F# language specification, the F# core library, and the tools. F#
Software Foundation acknowledges the role of Microsoft as the current pri-
mary developer of the language.[38] The F# Compiler, Core Library & Tools
is the GitHub repository maintained by the F# Software Foundation. It has
179 contributors.[39] The F# Language, Library, and Visual F# Tools Repos-
itory is the GitHub repository maintained by Microsoft. All of the changes
made here are eventually propagated to all packagings in F#. It has 144
contributors.[40] At the source tree of The Glasgow Haskell Compiler, we can
see that they currently have 465 contributors. GHC has a large number of
volunteer contributors. [41]

F# is the only functional language on the .NET platform, and that has
its advantages. Even though Microsoft still favors C# over F#, and that can
also be seen in terms of C# language getting upgraded tools and new libraries
before F#. It is also more actively developed. For Microsoft, F# is still the
language number two, but in terms of functional languages, it is number one.
Haskell has an enthusiastic community, which can be seen from a much larger
base of contributors. Neither of these languages can be seen as a fad, and it
is very likely both of them will continue to grow and will stay here for a long
time.

3.5.2 Language documentation

F# language reference provides a comprehensive and easy to read explanation
of core language concepts and keywords.[6] On the other hand, official Haskell
documentation provides links to many other websites. Therefore, the user
needs to gather data from various sources to get the full picture. It can be
cumbersome for first-time users to start using the language if it is difficult to
find a place where the basic concepts of the language are well explained. The
Haskell community does help a great deal since they have put together Haskell
Wiki which has explanations of many core concepts. Unfortunately, the user
needs to know what they are looking for to find it.[1]

I would say that when comparing these two, we see a significant differ-
ence. Microsoft provides the standard, straightforward documentation for
F#. Haskell provides links to numerous tutorials, most of which are created
by the passionate users of Haskell. Both seem sufficient, but F# seems more
intuitive and more beginner friendly.

24

3.5. Haskell vs F#

3.5.3 Library ecosystem

The following data is gathered from the website Libraries.io, which monitors
open source packages across different package managers. There is a total of
1,806 packages in F#. There are over 8,488 packages available in Haskell.
That is almost five times more packages than in F#. It is an indicator that
the Haskell community is more active. It is also an indicator of how likely you
will be to find the package that could help you in developing your project.
Even when taking into account that Haskell has been around for 15 years
before F#, hypothetically Haskell developers have been producing twice as
many packages per year compared to F#. Of course, the course of develop-
ment of these packages would need to be taken into account. Maybe Haskell
package production was also slower in the beginning and received a boost in
the meantime. Taking that into account, the same thing may happen with
F# as well.[42]

It is important to bear in mind that a bigger number of packages does not
necessarily mean better quality. Haskell does win size wise, but the quality of
its packages compared to F# would be difficult to measure.

3.5.4 Versatility

Both languages are used in many different types of applications. They excel
at some domains and tasks, are good just enough for others and for some
domains they are not suitable at all. A versatile language can be beneficial to
a programmer since they can use their knowledge for different programming
domains.

When it comes to writing a compiler, maintenance, single-machine concur-
rency, type-driven development, and parsing, Haskell is considered to be the
best language for it.[43] According to Microsoft, F# has particular strengths
in data-oriented programming, parallel I/O programming, parallel CPU pro-
gramming, scripting, and algorithmic development.[44] Haskell is not suitable
for mobile development. On the other hand, F# is supported by Xamarin.
Xamarin is a platform that lets you create native Android, iOS and Windows
mobile applications with a single .NET code base. Thanks to this, developers
can use F# to build mobile applications.[45]

Mobile applications are in great need nowadays, and the majority of en-
terprise applications are expected to have a mobile version as well. This is
what gives F# an advantage over Haskell. But this can be considered only a
small part of the whole enterprise applications development process and may
not always play an important role. Both languages have their strengths and
weaknesses, and according to what one is building, both choices should be
considered.

25

3. Analysis

3.5.5 Evaluation model

Previously, we have mentioned the advantages and the disadvantages of lazy
evaluation, the former being not evaluating unless necessary and the latter
less predictability. F# is a strict language, but we can use the keyword lazy
to create a lazy expression. Haskell is a lazy language by default. Turning off
laziness is not as straightforward as using a keyword, but there are ways to go
around it. One example is enabling the Strict module in your code, which then
switches functions to be strict by default, also allowing for optional laziness.[1]

3.5.6 Development tools

Visual Studio is a fully-featured integrated development environment (IDE)
on Windows for building every type of .NET application, including F#. There
is also Visual Studio for Mac for building native Android, iOS, macOS, and
Windows apps with Xamarin. Visual Studio Code runs not only on Windows
and macOS but also on Linux. There is a specific Ionide F# extension for
Visual Studio Code, as well as Atom.

Linter (or just lint) is a tool that analyzes source code to highlight pro-
gramming errors, bugs, and stylistic errors. HLint is such a tool for Haskell
that provides suggestions when writing code. It can be integrated with dif-
ferent IDEs, such as Emacs or Atom. There are also linter tools for F#,
although not widely used. There are numerous IDEs with packages specifi-
cally for Haskell such as KDevelop, Visual Studio Code, and Vim. Leksah is
an IDE written in Haskell for Haskell.

Both programming languages have not only sufficiently developed tools,
but also many options for the developer to choose.

3.5.7 Adopting the language

F# remains a language relatively unheard of, whereas there is an increasing
number of universities that are adding Haskell to their curriculum. Even so,
Haskell is considered to have a steeper learning curve. For experienced C#
developers transition to F# is easy. Because of interoperability with C#,
companies can still use the existing code base, while allowing the developers
to implement some parts in F#. Therefore for already established companies
and the before said reasons using F# over Haskell would be an advantage.
For startups that are yet to write their first programs, both choices would be
just as good.

Both F# and Haskell have large communities interested in improving and
spreading the languages. According to the data from the review, Haskell
ranks first in terms of popularity. Although this should not be considered
discouraging since Haskell is an older language and has had more time to gain
its popularity. Behind F# we have Microsoft, which can be helpful for proving

26

3.5. Haskell vs F#

to management (those deciding on which technologies will be used) that F#
is not just a new fad that will be dead in a few years.

Despite the fact that F# has less popularity, it still may be a better
choice for enterprise applications development in regards to language adop-
tion. Haskell does not have a gradual path for migration, which may be great
for learning functional programming, but is not advisable for enterprises. Be-
cause of that, F# is more suitable for adoption.[46]

3.5.8 Educational materials

Often mentioned Haskells steep learning curve might not be due to the diffi-
culty of the language, but because it lacks quality learning materials. Haskell
learning materials are not systematic, so one has to look at several different
sources to find what they need.

F# allows a smoother transition (due to it not being purely functional),
but this may mean that the developer will not be using pure functional con-
structs but rather often relying on the imperative programming style. This
can lead to not taking complete advantage of the functional paradigm.

3.5.9 Community

F# first appeared in 2005, whereas Haskell first appeared in 1990. It gives
Haskell 15 years of advantage in building a larger community and increasing
its popularity. It is on the 40th place in TIOBE Programming Community
index, while F# is on the 69th, falling 29 places under.

There are 45,337 repository results with tag Haskell in GitHub, compared
to meager 15,703 repository results when searching for tag F#.[41] There
are 40,417 questions on StackOverflow using tag Haskell, compared to 13,621
questions using tag F#.[47]

Both communities are very active, but Haskell is, simply put, more popu-
lar.

27

Chapter 4
Case study

4.1 Enterprise applications development

Enterprise applications are complex systems developed specifically for the
needs of an enterprise. Enterprise applications will almost always involve
two things: persistent, large amounts of data and business logic.

Persistent data is defined as data that does not change. The data usually
needs to be available all the time, for the years to come. The data is accessed
by multiple users with different level of clearance at the same time. The users
can edit the data at any time. Therefore the data transactions and updates
in the database need to be fast. This also leads to the need for multiple user
interfaces. Data needs to be kept secure. Business rules are determined by
the enterprise, and the application needs to behave in accordance with them.
We need to consider the integration as well. Often, the application needs to
interact with other, already existing systems.

Enterprise applications need to be scalable. In case the enterprise encoun-
ters a rapid growth in either the number of users or the amount of data, the
application should be able to support this. It needs to be able to overcome or
to quickly retrieve from any kind of malicious (intentional or not) behavior it
may come across. All of this leads to increased complexity.[48]

4.2 Real world application parts

In the following pages, we will look at certain parts of an application developed
in F#. The parts we will look at are those that are used repeatedly in different
enterprise applications. We will explain the usage, the implementation and
the hypothetical Haskell implementation and comment on the differences.

29

4. Case study

4.2.1 Event sourcing

One of the components that almost every application will have is event sourc-
ing. We have talked about immutability before and event sourcing is a great
example of it being done properly and the advantages it can provide us with.
Event Sourcing is storing the system changes itself instead of result of such
changes. Instead of storing the current state of an object each time an update
is made, we store the fact that there was an event making an update. In order
to get the current state, we go through the sequence of events and apply all
of them one by one. This way, we can for example go to a certain date and
look at the state of the application at that time.

We can look at the following example to understand the advantages of
event sourcing. Customer has an e-shop application and just like any other
regular one, there is the basket to which you add your items. You can add
them, as well as remove them from the basket and add them later. Marketing
can come up with the idea that in order to improve sales, they would like
to know how much time is spent between the customer adding and removing
the item from the basket or vice versa. Instead of just knowing the current
state, that is whether the item is in the basket or not, with event sourcing
we can also take a look at the events from the history and create insights.
This is often added to application, even without customer explicitly asking
for it, because in the future they may become interested in things they were
not before.

One of the disadvantages is that when there is a large number of changes,
this means there will be a long sequence of events that the application needs
to go through. Usually, this is solved by deciding at a certain moment to
only go a certain number of events back, or always start from a certain event.
This way, we can improve the performance. Another thing to bear in mind
is that the complexity of application. Compared to simple CRUD((create,
read, update, delete) against SQL table it is more complex to implement.

4.2.1.1 F#

In the following snippets I will demonstrate how Event Sourcing works in F#.
We will take a look at a simple example application of a basket in an e-shop.

Command is an instruction to your system than can lead to new Events.

type Command =
| AddProduct of CmdArgs.AddProduct
| RemoveProduct of CmdArgs.RemoveProduct
| RemoveAllProducts
| OrderBasket of CmdArgs.OrderBasket

Listing 12: Event Sourcing: Command Union Type

30

4.2. Real world application parts

Because each case contains event-specific data it needs to be defined in a
different module:

module CmdArgs =
type AddProduct = {

Id : int
Name : string
Price : int

}
type RemoveProduct = {

Id : int
}
type OrderBasket = {

Id : int
Price : int
DeliveryDate : DateTime option

}

Listing 13: Event-specific data defined

Event is fact that happened in past. One more thing we can notice here
is the domain driven design approach. The verbs are now in the past tense
because they are part of the ubiquitous language. Ubiquitous language is a
term Eric Evans uses in Domain Driven Design, explaining that the business
domain language should be used throughout the all development process and
even in the source code, which is our example here.

type Event =
| AddedProduct of CmdArgs.AddProduct
| RemovedProduct of CmdArgs.RemoveProduct
| RemovedAllProducts
| BasketOrdered of CmdArgs.OrderBasket

Listing 14: Event Sourcing: Event Union Type

31

4. Case study

State is structural view of impact of Events.

type Product = {
Id : int
Name : string
Price : int
isSold : bool

}
type State = {

Products : Product list
}

with static member Init = { Products = [] }

Listing 15: Event Sourcing: State

Execute function is the place where Events are created based on Com-
mands. This function can throw an exception.

The function signature is

′state− >′ command− >′ eventlist

let execute state command =
let event =

match command with
| AddedProduct args ->

args.Id
|> onlyIfNotAdded state
|> (fun _ -> AddedProduct args)

| RemovedProduct args ->
args.Id
|> onlyIfAdded state
|> (fun _ -> RemovedProduct args)

| RemoveAllProducts -> RemovedAllProducts
| OrderBasket args ->

args.Id
|> onlyIfNotEmpty state
|> (fun _ -> BasketOrdered args)

event |> List.singleton //we must return list of events

Listing 16: Event Sourcing: Execute function

32

4.2. Real world application parts

Defining the validation functions.

let onlyIfNotAdded (state:State) i =
match state.Products

|> List.tryFind (fun x -> x.Id = i) with
| Some _ -> failwith "Product already added"
| None -> state

let onlyIfAdded (state:State) i =
match state.Products

|> List.tryFind (fun x -> x.Id = i) with
| Some product -> product
| None -> failwith "Product not added"

let onlyIfNotEmpty (state:State) =
match state.Products

|> List.isEmpty with
| true -> failwith "No products in basket"
| false -> state

Listing 17: Event Sourcing: Validation functions

In apply function we affect the State by applying each change on State.
This function must never throw an exception. The signature of Apply function
is

′state− >′ event− >′ state

let apply state event =
match event with
| AddedProduct args ->

let added = {
Id = args.Id
Name = args.Name
Price = args.Price
isSold = false

}
{ state with Products = added :: state.Products}

| RemovedProduct args ->
{ state with Products = state.Products

|> List.filter
(fun x -> x.Id <> args.Id) }

Listing 18: Event Sourcing: Apply function

33

4. Case study

| RemovedAllProducts -> { state with Products = [] }
| BasketOrdered args ->

let product =
state.Products
|> List.find (fun x -> x.Id = args.Id)
|> (fun t -> { t with isSold = true })

let otherProducts = state.Products
|> List.filter

(fun x -> x.Id <> args.Id)
{ state with Products = product :: otherProducts }

Listing 19: Event Sourcing: Apply function

Event store is a special, append-only database designed for storing (ap-
pending) Events. One can either implement their own or use an already ex-
isting library. Event Store or In this example, we will use CosmoStore which
is an F# Event Store library for various storage providers.

let store = CosmoStore.CosmosDb.EventStore.getEventStore myC

Listing 20: Create Event Store

Event Store Command Handler has two dependencies partially applied as
parameters: Event Store implementation and Aggregate type with Init, Exe-
cute and Apply functions. In the following snippet, we define the Aggregate
type.

type Aggregate<'state, 'command, 'event> = {
Init : 'state
Apply: 'state -> 'event -> 'state
Execute: 'state -> 'command -> 'event list

}

let productsAggregate = {
Init = State.Init
Execute = execute
Apply = apply

}

Listing 21: Aggregate type with Init, Execute and Apply functions

34

4.2. Real world application parts

let getCurrentState () =
store.GetEvents "Products" EventsReadRange.AllEvents
|> Async.AwaitProduct
|> Async.RunSynchronously
|> List.map (fun x ->

Mapping.toDomainEvent (x.Name, x.Data))
|> List.fold productsAggregate.Apply

productsAggregate.Init

let append events =
events
|> List.map Mapping.toStoredEvent
|> List.map (fun (name,data) ->

{ Id = Guid.NewGuid();
CorrelationId = Guid.NewGuid();
Name = name; Data = data;
Metadata = None })

|> store.AppendEvents "Products" ExpectedPosition.Any
|> Async.AwaitProduct
|> Async.RunSynchronously
|> ignore

let handleCommand command =
let currentState = getCurrentState()
let newEvents = command

|> productsAggregate.Execute currentState
newEvents |> append
newEvents

Listing 22: Event Sourcing: Apply function

35

4. Case study

4.2.1.2 Haskell

In the following snippets I will demonstrate how Event Sourcing works in
Haskell.

data AddProduct
= AddProduct
{ addProductId :: Int
, addProductName :: String
, addProductPrice :: Int
} deriving (Generic, Show, ToJSON, FromJSON)

data RemoveProduct
= RemoveProduct
{ removeProductId :: Int
} deriving (Generic, Show, ToJSON, FromJSON)

data OrderBasket
= OrderBasket
{ orderBasketId :: Int
, orderBasketPrice :: Int
, orderBasketDeliveryDate :: Maybe UTCTime
} deriving (Generic, Show, ToJSON, FromJSON)

Listing 23: Entities

data Command
= AddProductCmd AddProduct
| RemoveProductCmd RemoveProduct
| RemoveAllProductsCmd
| OrderBasketCmd OrderBasket

Listing 24: Command

data Event
= AddedProduct AddProduct
| RemovedProduct RemoveProduct
| RemovedAllProducts
| BasketOrdered OrderBasket
deriving (Generic, Show, ToJSON, FromJSON)

Listing 25: Event

36

4.2. Real world application parts

data Product
= Product
{ productId :: Int
, productName :: String
, productPrice :: Int
, productIsSold :: Bool } deriving Show

data State
= State
{ stateProducts :: [Product] } deriving Show

state0 :: State
state0 = State []

Listing 26: State

execute :: State -> Command -> IO [Event]
execute state cmd = case cmd of

AddProductCmd args -> do
let pid = addProductId args
let products = stateProducts state
case find (\p -> productId p == pid) products of

Just _ -> error "Product already added"
Nothing -> pure [AddedProduct args]

RemoveProductCmd args -> do
let pid = removeProductId args
let products = stateProducts state
case find (\p -> productId p == pid) products of

Just _ -> pure [RemovedProduct args]
Nothing -> error "Product not added"

RemoveAllProductsCmd -> pure [RemovedAllProducts]

OrderBasketCmd args -> do
let products = stateProducts state
case products of

[] -> error "No products in basket"
_ -> pure [BasketOrdered args]

Listing 27: Execute function

37

4. Case study

apply :: State -> Event -> State
apply state evt = case evt of
AddedProduct args ->

let addedProduct
= Product
{ productId = addProductId args
, productName = addProductName args
, productPrice = addProductPrice args
, productIsSold = False
}

in state {stateProducts=addedProduct:(stateProducts state)}
RemovedProduct args -> let pid = removeProductId args

in state { stateProducts = filter
(\p -> productId p /= pid)
(stateProducts state) }

RemovedAllProducts -> state { stateProducts = [] }
BasketOrdered args ->

let pid = orderBasketId args
newProducts = map (\p -> if productId p == pid

then p { productIsSold = True }
else p) (stateProducts state)

in state { stateProducts = newProducts }

Listing 28: Apply function

data Aggregate state command event
= Aggregate
{ aggregateInit :: state
, aggregateApply :: state -> event -> state
, aggregateExecute :: state -> command -> IO [event]
}

productsAggregate :: Aggregate State Command Event
productsAggregate

= Aggregate
{ aggregateInit = state0
, aggregateApply = apply
, aggregateExecute = execute
}

Listing 29: Aggregate

38

4.2. Real world application parts

productsStreamName :: Text
productsStreamName = "products"

eventName :: Event -> Text
eventName (AddedProduct _) = "added-product"
eventName (RemovedProduct _) = "removed-product"
eventName (RemovedAllProducts) = "removed-all-products"
eventName (BasketOrdered _) = "basket-ordered"

getCurrentState :: Connection -> IO State
getCurrentState conn = do

let eventStoreStream = throwOnError
(readThroughForward conn
(StreamName productsStreamName)
ResolveLink streamStart Nothing Nothing)

let productEventsStream =
S.map ((fromJust . recordedEventDataAsJson) .

fromJust . resolvedEventRecord) eventStoreStream
S.fold_ (aggregateApply productsAggregate)

state0 id productEventsStream

append :: Connection -> [Event] -> IO WriteResult
append conn evts = do

let eventStoreEvents = map toEventStoreEvt evts
wait =<< sendEvents conn

(StreamName productsStreamName)
anyVersion eventStoreEvents Nothing

where
toEventStoreEvt evt =

let evtName = eventName evt
in createEvent (UserDefined evtName)

Nothing (withJson evt)

handleCommand :: Connection -> Command -> IO [Event]
handleCommand conn cmd = do

currentState <- getCurrentState conn
newEvents <- (aggregateExecute productsAggregate)

currentState cmd
append conn newEvents
pure newEvents

Listing 30: Event store operations

39

4. Case study

4.2.1.3 Comparison

Due to the fact that Haskell is a pure language, by looking at the implemen-
tation of event sourcing in both of the languages, this is where Haskell wins.
Since F# is not a pure functional language, it is up to the programmer to
ensure referential transparency.

The Haskell code has been written with the goal of being as close as possi-
ble to the F# source. As we can see the difference is minimal. A big difference
can be spotted on the ‘apply‘ function. While the F# implementation states
that its type is ‘state -> event -> state‘ and that it shall not throw an excep-
tion, this is not exactly accurate. The ‘apply‘ function is actually not supposed
to perform any side effects, i.e., the computation for the following state should
be its only purpose, and it should use only its inputs to accomplish this task.
The reason for this is easy to understand. An implementation that would
fail to satisfy this property could compute a different sequence of states when
applied to the same sequence of events. In many cases, the events would then
not even be possible to apply as they are consequences of the previous states.

The same function signature in Haskell has a very different meaning. The
type ‘state -> event -> state‘ itself constrains the implementation to satisfy
the above-listed properties. If it wanted to perform any side-effects, this would
have to be expressed in the return type. The ‘execute‘ function which is free
to perform any side-effects returns a value of type ‘IO [Event]‘ which signals
that, while the result of running such a program is a list of ‘Event‘s it is indeed
an effect-full operation.

This would guarantee that even a new team-member would not by accident
start performing effectfull operations as inserting any function querying the
world state would result in a compilation error.

4.2.2 Frontend

An important part of an application, furthermore a crucial one in certain
applications is frontend.

4.2.2.1 F#

Fable is a compiler from F# to JavaScript. It has so-called Elmish style,
meaning it takes certain characteristics from Elm. It follows the model view
update style of architecture, that was made famous by Elm.

How does it work? We have two data types, one of them is the union type
of message, and the other is a model that is influenced by the message type.
We always start with some defined model. Further on, we have two functions
that work with them. The first one is the update function, it has a model, it
takes the message as the parameter, and it returns a model. Its only concern

40

4.2. Real world application parts

is to update the model based on the message type that it receives. The second
function is the view function that receives the model and returns HTML.

This is a demonstration of the immutability principle, we do not change
anything in the template, we get some model, and then we call two functions
(update and view) and based on them we will get the new HTML. If the update
function has changed the model, then the view function will create the new
HTML. This way we dont need to change HTML physically. We will always
get a new version of HTML, a difference comparison will be made between
the old and the new HTML, and the result of that will be displayed.

We will take a look at a simple application that receives input, and after
clicking the button, it prints out the entered text.

module Elmish.SimpleInput
open Fable.Core.JsInterop
open Fable.Helpers.React
open Fable.Helpers.React.Props
open Elmish
open Fulma

Listing 31: Extensions needed for the Fable demo application

In the following snippet, we see two types: Model and Msg. Function init
initializes the Model values. Function update matches (pattern matching in
action) the received Msg and according to it acts.

type Model = { UserName : string; DisplayName : string }
type Msg =

| SaveName of string
| ShowName of string

let init () = { UserName = ""; DisplayName = ""}, Cmd.none
let update (msg:Msg) (model:Model) =

match msg with
| SaveName newName ->

{ UserName = newName; DisplayName = "" }, Cmd.none
| ShowName newName ->

{UserName = ""; DisplayName = newName}, Cmd.none

Listing 32: Model, Msg and Update function

The function view in the following snippet creates the HTML based on the
Model.

41

4. Case study

let view model dispatch =
div [Class "main-container"]

[input [Class "input"
Value model.UserName
Placeholder "Enter your name"
OnChange (fun ev -> ev.target?value

|> string
|> SaveName
|> dispatch)]

span []
[str "Hello, "

str model.DisplayName
str "! "]

div [Class "block"]
[button
[OnClick (fun _ -> model.UserName

|> ShowName
|> dispatch)]
[str "Click me"]]

]

Listing 33: View model function in Fable

Program.mkProgram init update view
|> Program.withConsoleTrace
|> Program.withReactSynchronous "elmish-app"
|> Program.run

Listing 34: Running the program

4.2.2.2 Haskell

Purescript is a strongly-typed functional programming language that compiles
to JavaScript. One of its most famous libraries is Halogen. Creating applica-
tion in Purescript assumes knowledge of advanced topics, such as monads and
functors. Halogen needs to know how to effectively run the monad, which is
expressed by its hoist function:

hoist
:: forall h f i o m m'

Listing 35: Purescript example

42

4.2. Real world application parts

We can see the large number of arguments that the function needs to take.
This is just one of the examples of the increased complexity when writing an
application in Halogen. The reason behind this is purity of the language.

4.2.2.3 Comparison

Using Fable is simple and straightforward. The developers can write backend
in F# and use their existing knowledge to create frontend as well. Online
REPL available on the Fable.io website is a significant advantage as well.
Developers can try Fable out without having to download or set anything up
themselves. Due to the fact that Haskell is a pure language, trying to create
frontend in such a language leads to added complexities. This is why, when
looking at the implementation of frontend in both of the languages we can see
that F# is more suitable for it.

43

Conclusion

The goal of this thesis was to compare two functional languages Haskell and
F# with regards to the enterprise applications development. I compared the
two languages from a technical, as well as a business point of view. In the
Analysis chapter, I looked at certain criteria that are taken into account when
choosing a language for an enterprise project. In the Case study chapter I
analyzed a real project written in F# and compared it with a hypothetical
Haskell implementation commenting on the differences. Based on this work I
concluded the following.

Haskell comes from the academic environment, and that is where it is
still the most suitable. Haskell enforces purity that can be crucial in such
applications as blockchain, but the majority of enterprise applications do not
require such rigorosity. Not only do they not require it, but overcoming the
steep learning curve and the transition process could be detrimental to the
business. F# allows for a smoother transition, especially when taking into
account its interoperability with C#. F# is developed and supported directly
by Microsoft, and a great number of libraries and frameworks are intended for
enterprise applications development.

It is important to carefully examine the characteristics of the enterprise
project and based on them decide which language would be better for that
specific project. If the benefits that Haskell will bring are greater than its
disadvantages, as is the example with the blockchain technologies, then one
should opt for Haskell. All of that being said and based on the review and the
analysis, it seems that in most of the cases, F# is more suitable for enterprise
applications development than Haskell.

45

Bibliography

[1] HaskellWiki [online]. [visited on 2019-28-03]. Available from: https://
wiki.haskell.org/Haskell

[2] OKASAKI, C. Purely Functional Data Structures [online]. [visited
on 2019-28-03]. Available from: http://www.cs.cmu.edu/~rwh/theses/
okasaki.pdf

[3] SONDERGAARD, H.; SESTOFT, P. Referential transparency,
Definiteness and Unfoldability [online]. [visited on 2019-28-03].
Available from: http://www.itu.dk/people/sestoft/papers/
SondergaardSestoft1990.pdf

[4] HUDAK, P. Conception, evolution, and application of functional pro-
gramming languages [online]. [visited on 2019-28-03]. Available from:
https://dl.acm.org/citation.cfm?doid=72551.72554

[5] HUDAK, P.; HUGHES, J.; et al. A History of Haskell: Being Lazy
With Class [online]. [visited on 2019-28-03]. Available from: http://
haskell.cs.yale.edu/wp-content/uploads/2011/02/history.pdf

[6] F# Language Reference. In: F# Guide [online]. [visited on 2019-28-03].
Available from: https://docs.microsoft.com/en-us/dotnet/fsharp/
language-reference/index

[7] Miranda [online]. [visited on 2019-28-03]. Available from: http://
miranda.org.uk/

[8] MILNER, R. The Definition of Standard ML (Revised). The MIT Press,
second edition, ISBN -262-63181-4.

[9] MILNER, R.; TOFTE, M. Commentary on standard ML [online]. [visited
on 2019-28-03]. Available from: https://www.semanticscholar.org

47

https://wiki.haskell.org/Haskell
https://wiki.haskell.org/Haskell
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
http://www.itu.dk/people/sestoft/papers/SondergaardSestoft1990.pdf
http://www.itu.dk/people/sestoft/papers/SondergaardSestoft1990.pdf
https://dl.acm.org/citation.cfm?doid=72551.72554
http://haskell.cs.yale.edu/wp-content/uploads/2011/02/history.pdf
http://haskell.cs.yale.edu/wp-content/uploads/2011/02/history.pdf
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/index
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/index
http://miranda.org.uk/
http://miranda.org.uk/
https://www.semanticscholar.org

Bibliography

[10] HARPER, R. Programming in Standard ML. Available from: http://
www.cs.cmu.edu/~rwh/isml/book.pdf

[11] BOVE, A.; DYBJER, P.; et al. A Brief Overview of Agda A
Functional Language with Dependent Types [online]. [visited on 2019-
28-03]. Available from: http://www.cse.chalmers.se/~ulfn/papers/
tphols09/tutorial.pdf

[12] NORELL, U.; CHAPMAN, J. Dependently Typed Programming
in Agda [online]. [visited on 2019-28-03]. Available from: http://
www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf

[13] Documentation for the Idris Language [online]. [visited on 2019-28-03].
Available from: http://docs.idris-lang.org/en/latest/

[14] Unofficial FAQ Idris [online]. [visited on 2019-28-03]. Available from:
https://github.com/idris-lang/Idris-dev/wiki/Unofficial-
FAQ#why-isnt-idris-lazy

[15] MARLOW, S. Fighting spam with Haskell [online]. [visited on 2019-28-
03]. Available from: https://code.fb.com/security/fighting-spam-
with-haskell/

[16] POP, I. Experience Report: Haskell as a Reagent [online]. [visited
on 2019-28-03]. Available from: https://k1024.org/papers/icfp10-
haskell-reagent.pdf

[17] Introduction to F# & Essential Tools. In: The F# Survival
Guide [online]. [visited on 2019-28-03]. Available from: https:
//web.archive.org/web/20110708212732/http://www.ctocorner.com/
fsharp/book/ch2.aspx

[18] WLACSHIN, S. Seamless interoperation with .NET libraries. In: F# for
fun and profit [online]. [visited on 2019-28-03]. Available from: https:
//fsharpforfunandprofit.com/

[19] Glasgow Haskell Compiler User’s Guide [online]. [visited on 2019-28-03].
Available from: https://downloads.haskell.org/~ghc/latest/docs/
html/users_guide/intro.html

[20] JONES, S. P. Beautiful concurrency [online]. [visited on 2019-28-
03]. Available from: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/beautiful.pdf

[21] O’SULLIVAN, B.; STEWART, D.; et al. Software transactional
memory. In: Real World Haskell [online]. [visited on 2019-28-03].
Available from: http://book.realworldhaskell.org/read/software-
transactional-memory.html

48

http://www.cs.cmu.edu/~rwh/isml/book.pdf
http://www.cs.cmu.edu/~rwh/isml/book.pdf
http://www.cse.chalmers.se/~ulfn/papers/tphols09/tutorial.pdf
http://www.cse.chalmers.se/~ulfn/papers/tphols09/tutorial.pdf
http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf
http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf
http://docs.idris-lang.org/en/latest/
https://github.com/idris-lang/Idris-dev/wiki/Unofficial-FAQ#why-isnt-idris-lazy
https://github.com/idris-lang/Idris-dev/wiki/Unofficial-FAQ#why-isnt-idris-lazy
https://code.fb.com/security/fighting-spam-with-haskell/
https://code.fb.com/security/fighting-spam-with-haskell/
https://k1024.org/papers/icfp10-haskell-reagent.pdf
https://k1024.org/papers/icfp10-haskell-reagent.pdf
https://web.archive.org/web/20110708212732/http://www.ctocorner.com/fsharp/book/ch2.aspx
https://web.archive.org/web/20110708212732/http://www.ctocorner.com/fsharp/book/ch2.aspx
https://web.archive.org/web/20110708212732/http://www.ctocorner.com/fsharp/book/ch2.aspx
https://fsharpforfunandprofit.com/
https://fsharpforfunandprofit.com/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/intro.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/intro.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/beautiful.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/beautiful.pdf
http://book.realworldhaskell.org/read/software-transactional-memory.html
http://book.realworldhaskell.org/read/software-transactional-memory.html

Bibliography

[22] KHAN, M. E.; KHAN, F. Importance of Software Testing in Software
Development Life Cycle [online]. [visited on 2019-28-03]. Available from:
https://www.ijcsi.org/papers/IJCSI-11-2-2-120-123.pdf

[23] O’SULLIVAN, B.; STEWART, D.; et al. Testing and quality assur-
ance. In: Real World Haskell [online]. [visited on 2019-28-03]. Avail-
able from: http://book.realworldhaskell.org/read/testing-and-
quality-assurance.html

[24] QuickCheck: Automatic testing of Haskell programs [online]. [visited
on 2019-28-03]. Available from: http://hackage.haskell.org/package/
QuickCheck

[25] Bubble Sort in Haskell [online]. [visited on 2019-28-
03]. Available from: https://gist.github.com/zooxyt/
fbeb790f6c95fc0f78c1536a9af2beb2

[26] The GHCi Debugger [online]. [visited on 2019-28-03]. Available
from: https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_
guide/ghci-debugger.html

[27] Debug.Trace [online]. [visited on 2019-28-03]. Available from:
http://hackage.haskell.org/package/base-4.12.0.0/docs/Debug-
Trace.html

[28] haddock: A documentation-generation tool for Haskell libraries [online].
[visited on 2019-28-03]. Available from: https://hackage.haskell.org/
package/haddock

[29] TIOBE Index [online]. [visited on 2019-28-03]. Available from: https:
//www.tiobe.com/tiobe-index/

[30] FP Complete - Commercial Haskell Accelerator [online]. [visited on 2019-
28-03]. Available from: https://haskell.fpcomplete.com/

[31] The commercial Haskell group [online]. [visited on 2019-28-
03]. Available from: https://github.com/commercialhaskell/
commercialhaskell#readme

[32] How much time have you invested in order to have a good grasp on
Haskell? In: StackOverflow [online]. [visited on 2019-28-03]. Available
from: https://stackoverflow.com/questions/3750529/how-much-
time-have-you-invested-in-order-to-have-a-good-grasp-on-
haskell

[33] StackOverflow Developer Survey Results 2018 [online]. [visited on 2018-
28-12]. Available from: https://insights.stackoverflow.com/survey/
2018/#overview

49

https://www.ijcsi.org/papers/IJCSI-11-2-2-120-123.pdf
http://book.realworldhaskell.org/read/testing-and-quality-assurance.html
http://book.realworldhaskell.org/read/testing-and-quality-assurance.html
http://hackage.haskell.org/package/QuickCheck
http://hackage.haskell.org/package/QuickCheck
https://gist.github.com/zooxyt/fbeb790f6c95fc0f78c1536a9af2beb2
https://gist.github.com/zooxyt/fbeb790f6c95fc0f78c1536a9af2beb2
https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_guide/ghci-debugger.html
https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_guide/ghci-debugger.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Debug-Trace.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Debug-Trace.html
https://hackage.haskell.org/package/haddock
https://hackage.haskell.org/package/haddock
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://haskell.fpcomplete.com/
https://github.com/commercialhaskell/commercialhaskell#readme
https://github.com/commercialhaskell/commercialhaskell#readme
https://stackoverflow.com/questions/3750529/how-much-time-have-you-invested-in-order-to-have-a-good-grasp-on-haskell
https://stackoverflow.com/questions/3750529/how-much-time-have-you-invested-in-order-to-have-a-good-grasp-on-haskell
https://stackoverflow.com/questions/3750529/how-much-time-have-you-invested-in-order-to-have-a-good-grasp-on-haskell
https://insights.stackoverflow.com/survey/2018/#overview
https://insights.stackoverflow.com/survey/2018/#overview

Bibliography

[34] FOWLER, M. Refactoring - Improving the Design of Existing Code.
Addison-Wesley Professional, second edition, ISBN 978-0134757599.

[35] COWIE, J. Detecting Bad Smells in Haskell [online]. [visited on
2019-28-03]. Available from: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.114.9950&rep=rep1&type=pdf

[36] HaRe wiki [online]. [visited on 2019-28-03]. Available from: https://
github.com/RefactoringTools/HaRe/wiki

[37] StackOverflow Developer Survey Results 2016 [online]. [visited on 2018-
28-12]. Available from: https://insights.stackoverflow.com/survey/
2016

[38] F# Software Foundation [online]. [visited on 2019-28-03]. Available from:
http://foundation.fsharp.org/

[39] The F# Compiler, Core Library & Tools (F# Software Foundation
Repository) [online]. [visited on 2019-28-03]. Available from: https:
//github.com/fsharp/fsharp

[40] The F# compiler, FSharp.Core library, and tools for F# [online]. [vis-
ited on 2019-28-03]. Available from: https://github.com/Microsoft/
visualfsharp

[41] GitHub [online]. [visited on 2019-28-03]. Available from: https://
github.com/

[42] Libraries.io [online]. [visited on 2019-28-03]. Available from: https://
libraries.io/

[43] State of the Haskell ecosystem. In: GitHub [online]. [visited on 2019-28-
03]. Available from: https://github.com/Gabriel439/post-rfc/blob/
master/sotu.md

[44] F# at Microsoft Research [online]. [visited on 2019-28-03]. Available
from: https://www.microsoft.com/en-us/research/project/f-at-
microsoft-research/?from=http%3A%2F%2Fresearch.microsoft.com%
2Fen-us%2Fum%2Fcambridge%2Fprojects%2Ffsharp%2F

[45] Visual Studio Tools for Xamarin [online]. [visited on 2019-28-03]. Avail-
able from: https://visualstudio.microsoft.com/xamarin/

[46] WLACSHIN, S. Why F# is the best enterprise language. In: F# for
fun and profit [online]. [visited on 2019-28-03]. Available from: https:
//fsharpforfunandprofit.com/

[47] StackOverflow [online]. [visited on 2019-28-03]. Available from: https:
//stackoverflow.com/tags

50

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.9950&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.9950&rep=rep1&type=pdf
https://github.com/RefactoringTools/HaRe/wiki
https://github.com/RefactoringTools/HaRe/wiki
https://insights.stackoverflow.com/survey/2016
https://insights.stackoverflow.com/survey/2016
http://foundation.fsharp.org/
https://github.com/fsharp/fsharp
https://github.com/fsharp/fsharp
https://github.com/Microsoft/visualfsharp
https://github.com/Microsoft/visualfsharp
https://github.com/
https://github.com/
https://libraries.io/
https://libraries.io/
https://github.com/Gabriel439/post-rfc/blob/master/sotu.md
https://github.com/Gabriel439/post-rfc/blob/master/sotu.md
https://www.microsoft.com/en-us/research/project/f-at-microsoft-research/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fcambridge%2Fprojects%2Ffsharp%2F
https://www.microsoft.com/en-us/research/project/f-at-microsoft-research/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fcambridge%2Fprojects%2Ffsharp%2F
https://www.microsoft.com/en-us/research/project/f-at-microsoft-research/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fcambridge%2Fprojects%2Ffsharp%2F
https://visualstudio.microsoft.com/xamarin/
https://fsharpforfunandprofit.com/
https://fsharpforfunandprofit.com/
https://stackoverflow.com/tags
https://stackoverflow.com/tags

Bibliography

[48] FOWLER, M. Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, ISBN 9780133065213.

51

Appendix A
Acronyms

API Application Programming Interface

GHC Glasgow Haskell Compiler

HTML HyperText Markup Language

IDE Integrated development environment

ML Meta Language

OOP Object-oriented programming

REPL Read-eval-print loop

REST Representational State Transfer

STM Software Transactional Memory

53

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables
src.......................................the directory of source codes

wbdcm implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

55

	Citation of this thesis
	Introduction
	Goals and approach
	Review
	Functional languages
	Introduction
	Immutable data
	Referential transparency
	Lazy evaluation
	Higher-order functions

	Examples of languages that influenced Haskell
	Miranda
	ML

	Examples of languages influenced by Haskell
	Agda
	Idris

	Haskell
	Syntax
	Haskell in industry

	F#
	Syntax

	Analysis
	Haskell development tools analysis
	Compiler
	Testing
	Debugging
	Documentation

	Using Haskell in a company
	Community
	Human resources
	SWOT Analysis

	F# development tools analysis
	Testing

	Using F# in a company
	SWOT Analysis
	Improved readability

	Haskell vs F#
	Active development
	Language documentation
	Library ecosystem
	Versatility
	Evaluation model
	Development tools
	Adopting the language
	Educational materials
	Community

	Case study
	Enterprise applications development
	Real world application parts
	Event sourcing
	Frontend

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

