
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Autocompletion algorithm for simple
trajectories

An algorithm that will automatically complete a
simple demonstrated trajectory

TAN Wei Xin

Supervisor: Mgr. Radoslav Škoviera, Ph.D.
Supervisor–specialist: Mgr. Karla Štěpánová, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Cybernetics and Robotics
May 2019

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

471886Personal ID number:Tan Wei XinStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Autocompletion algorithm for simple trajectories

Master’s thesis title in Czech:

Algoritmus pro automatické doplňovaní jednoduchých trajektorií

Guidelines:
The goal of this thesis is to propose, implement, and test an algorithm that will automatically complete a simple demonstrated
trajectory. The motivation for this algorithm comes from an assemly process aided by a robotic arm. For example, if a glue
is to be applied to an object, the operator would simply start demonstrating where the glue should be applied. Instead of
tracing the entire object the algorithm would recognize the trajectory pattern (e.g., wave-like) and the relation of the trajectory
with respect to the object (e.g., 5mm inwards from the border of the object). The algorithm would then complete the
trajectory, thus it can be used by the robot to apply the glue. The demonstrated trajectory should then be transferable onto
other objects of the same shape.
The following steps should be carried out in order to complete the thesis:
1. Create or search for a suitable dataset containing trajectories and accompanying visual information.
2. Preprocess the trajectory data (e.g., filtering) and employ an existing trajectory classification algorithm to detect the
trajectory pattern.
3. Preprocess the visual data and employ an existing object recognition algorithm to detect objects present on the scene
and their properties (such as shape).
4. Develop an algorithm for autocompletion of the trajectory.
a. First, propose a simple path,
b. then, superimpose the demonstrated pattern on the path
5. Evaluate and demonstrate (i.e. in simulation or on a real robot) the proposed algorithm

Bibliography / sources:
[1] Thrun, Sebastian and Burgard, Wolfram and Fox, Dieter: “Probabilistic robotics.”, MIT press, 2005.
[2] Berio, Daniel, Sylvain Calinon, and Frederic Fol Leymarie. "Generating Calligraphic Trajectories with Model Predictive
Control." 2017.
[3] Faraway, Julian J., Matthew P. Reed, and Jing Wang. "Modelling three�dimensional trajectories by using Bézier curves
with application to hand motion." Journal of the Royal Statistical Society: Series C (Applied Statistics) 2007
[4] Gallier, Jean, and Jean H. Gallier. Curves and surfaces in geometric modeling: theory and algorithms. Morgan Kaufmann,
2000.
[5] Duda et al. "Pattern classification." NY, USA 2001.

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Mgr. Radoslav Škoviera, Ph.D., Robotic Perception, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Mgr. Karla Štěpánová, Ph.D., Robotic Perception, CIIRC

Deadline for master's thesis submission: 24.05.2019Date of master’s thesis assignment: 28.01.2019

Assignment valid until:
by the end of summer semester 2019/2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Mgr. Radoslav Škoviera, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements
First and foremost, I would like to

thank my supervisors, Mgr. Radoslav
Škoviera, Ph.D. and Mgr. Karla
Štěpánová, Ph.D., for providing me with
the opportunity to pursue this topic.
Without their prior work on the Asus
XTION PRO 3D sensor, the HTC Vive
virtual reality system and the trajectory
dataset, this thesis would have not gotten
to the level it is at right now. Their
guidance has also been important in
allowing me to finish this piece of work
in a timely manner.

Besides that, I would also like to thank
Markus ’斯斯’ Stroot for his ingenuity
and his suggestions related to the field of
computer vision – without him this thesis
may have ended up stuck forever on the
image processing part. Many thanks also
goes Felix ’菲菲’ Staudigl for introducing
me to the wonders of feature selection
and for his infectious optimism which
has kept me going even when all hope
seemed lost. On top of that is Flavio
’弗弗’ Kreiliger who I have to thank for
being one of the best workmates I’ve ever
had as well as Jasna Petric for always
being a fun person to work with.

I would also like to thank 熊貓 for
leaving her comfort zone and staying by
me for so long as well as for being willing
to support me however she can. Finally,
last but not least, many thanks go to my
family for placing so much of their trust
in me. Without their advice, love and
support, I would have never made it as
far as I have today.

Declaration
I declare that the work presented in this
thesis was developed independently and
that I have listed all relevant sources of
information used within according to the
guidelines on observing ethical principles
in preparation of university theses.

Prague, 23. May 2019

. .
TAN Wei Xin

v

Abstract
Motion planning is one of the core

problems that is being studied extensively
by robotics researchers in the present day.
Among the many techniques available,
planning via automatic path/trajectory
generation is one of the most widely
used approaches. This thesis has
implemented a system using tools from
computer vision, computer graphics
and supervised machine learning which
can ’autocomplete’ a user demonstrated
trajectory segment on differently shaped
blocks. This means that the final
trajectory generated will be based on
the shape of the block with the user’s
demonstration superimposed on it. The
aim is for the trajectory to be utilized
in planning the motions of an industrial
robot. In the process of developing
this system, this thesis provides a
comprehensive review of the subject fields
utilized and covers the basic intuition
behind the algorithms used in the system.

The final results of this thesis show that
it is possible to automatically generate
smooth and continuous trajectories that
are non-photorealistic using information
from a human made trajectory segment.
Although the system is functional, it
should be considered as a proof of
concept rather than as an industrial
level implementation. There is much
improvement to be made to this thesis’
system before it can be considered fit
enough to be deployed in an industrial
setting.

Keywords: trajecory generation, digital
image processing, shape recognition,
computer graphics, non-photorealistic
rendering, machine learning, trajectory
classification

Supervisor: Mgr. Radoslav Škoviera,
Ph.D.
B-611a
Jugoslavskych partyzanu 3
160 00 Praha 6

vii

Contents
1 Introduction 1
1.1 Motivations 1
1.2 Goals . 2
1.3 Contribution of thesis 2
2 Related Work 5
2.1 Vision based trajectory generation 5
2.2 Non-photorealistic rendering
(NPR) . 6
2.3 Trajectory classification 8
3 Materials and Methods 11
3.1 Dataset . 11
3.1.1 Data collection 11
3.1.2 Data types 12
3.1.3 Trajectory segmentation 14

3.2 Vision based trajectory generation 14
3.2.1 Not a Numbers (NaNs) in
digital image processing 14

3.2.2 Grayscale images 15
3.2.3 Canny edge detection 16
3.2.4 RGB and depth image fusion 19
3.2.5 Mathematical morphology . . . 20
3.2.6 Median filtering 22
3.2.7 Contour detection 23

3.3 Non-photorealistc rendering
(NPR) . 24
3.3.1 Scaling 24
3.3.2 B-splines 24
3.3.3 Non-photorealistc trajectories
(NPT) . 30

3.4 Trajectory classification 39
3.4.1 Supervised learning 39
3.4.2 Feature selection 43
3.4.3 Cross-validation 44
3.4.4 Feature extraction 45

4 Experimental Results 49
4.1 Final system architecture 49
4.2 Classifier results 49
4.3 NPT prediction and generation . 51
5 Discussion and Conclusion 57
6 Future work 61
A Algorithms 63
B Glossary 65
C Bibliography 67

ix

Figures
2.1 Example of curve results from
[HOCS02], A : B :: A′ : B′ 7

3.1 Setup of devices 11
3.2 Example of unprocessed visual
information from dataset 13

3.3 Example of unprocessed trajectory
data from dataset 13

3.4 Example of cropped images with
no NaN pixels 15

3.5 Example of converting RGB and
depth images to grayscale 15

3.6 Example of Gaussian blur effect 17
3.7 Example of edge gradients of
grayscale version of RGB and depth
images . 17

3.8 Example of non-maximum
suppression applied to edge gradient
images . 18

3.9 Example of Canny edge detection
results . 19

3.10 Example of mask made from
Canny edge detection results of depth
image and its effect when applied to
Canny edge detection results of RGB
image . 19

3.11 Example of dilating the mask
made from Canny edge detection
results of depth image and its effect
when applied to Canny edge
detection results of RGB image . . . 21

3.12 Example of morphological closing
and erosion operations 21

3.13 Example of median blurring and
contour detection 22

3.14 Example of 4 and 8 neighborhood
connectivity . 23

3.15 Example of contour hierarchy . 24
3.16 Example of contour scaling and
generation of a 2D B-spline
trajectory from it 25

3.17 The effects of knot insertion on a
p = 5 degree B-spline 27

3.18 Example of difference in
smoothness and continuity for the
contour and B-spline trajectories in
Figure 3.16b 29

3.19 Example of sine NPTs 30
3.20 Example of the conchoid de Sluze
curve with different parameters . . . 31

3.21 Example of an approximation
curve for a region of the conchoid . 32

3.22 Example of applying affine and
similarity transformations on a region
of the conchoid (blue) 35

3.23 Detrimental example of applying
affine and similarity transformations
on a region of the conchoid (blue) . 36

3.24 Example of NPTs created from
the conchoid of de Sluze 37

3.25 Example of dotted and dashed
trajectories in 3D 38

3.26 Comparison of supervised
classifiers without the use of
cross-validation on xyz features . . . 44

3.27 Comparison of supervised
classifiers with the use of 5-fold
stratified cross-validation on xyz
features . 45

3.28 Comparison of supervised
classifiers with the use of 5-fold
stratified cross-validation on CDF, κ
and τ features 46

3.29 Comparison of supervised
classifiers with the use of 5-fold
stratified cross-validation on xyz,
CDF, κ and τ features 46

4.1 Diagram of final system developed
by this thesis 49

4.2 Accuracy scores for voter..1. . . . 50
4.3 Accuracy scores for voter..2. . . . 50
4.4 Trajectory outputs of system for
line input 4.4a in 2D and 3D for
blocks with different shape 51

4.5 Trajectory outputs of system for
dashed input 4.5a in 2D and 3D for
blocks with different shapes 52

4.6 Example of dotted NPTs for blocks
with different shapes 52

4.7 Trajectory outputs of system for
low frequency wave input 4.7a in 2D
and 3D for blocks with different
shapes . 53

xi

4.8 Example of inward conchoid NPTs
for blocks with different shapes . . . 53

4.9 Trajectory outputs of system for
high frequency wave input 4.9a in 2D
and 3D for blocks with different
shapes . 54

4.10 Example of outward conchoid
NPTs for blocks with different
shapes . 54

4.11 Example of sawtooth NPTs for
blocks with different shapes 55

5.1 Example of unresolvable depth
image for a thin block 58

5.2 Example of NPT that system 4.1
cannot generate 59

Tables
3.1 Number of trajectory samples after
segmenting originals 14

3.2 Summary of 2D transformation
types and properties 34

3.3 Fourier coefficients for some
common waves 38

xii

Chapter 1
Introduction

In the modern era, people have become increasingly reliant on automation
and robotics which means that there is a need for these machines to have a wide
variety of capabilities at their disposal. The number of human robot interactions
have also been on the rise which means the design of future robotic systems will
have to be more accommodating towards humans. In addition, there is also a
need for robots that can perform highly monotonous work such as applying glue
with a glue gun in order to free up people’s time to tackle more difficult tasks.

1.1 Motivations

The planning of robot motion is a very large field. It has many existing
solutions[LaV06] and yet, is still filled with challenges especially in an industrial
setting[KC]. The classical approach to motion planning for industrial robots is
designing joint position, velocity or even torque profiles using programming by
demonstration (more well known as imitation learning)[BCDS08]. A human
instructor moves the industrial robot in a desired manner and stores the
corresponding actuator information thus ’teaching’ the robot in a kinesthetic
manner. This approach is especially ideal for repetitive tasks. If some sort of
visual system for object recognition is included, the robot can behave flexibly
under many different conditions.

The downside of imitation learning is that it is usually difficult to scale scale a
task and/or transfer it to a different robotic setup. This means that every single
case must be considered and that the human instructor must guide the robot
through the entire process perfectly. Hence, human instructors have to be experts
at the task being taught. Furthermore, imitation learning also requires them to
come into physical contact with the robot. This type of human-robot interaction
is not without its risks[KC05]. As such, all of this makes it more difficult for the
robot to learn new processes. Due to these issues, industry has begun to utilize
a number of different technologies such as virtual[FR99] and augmented[OGL08]
reality. This is expected to reduce physical human-robot interaction as well as to
reduce the reliance on expert human instructors.

1

1. Introduction
Since the user is not expected to be an expert and human-robot contact

should be minimized, there is a need for the robot to deduce the user’s intentions.
This means that not only should the robot determine what its operator would
like it to do but also, that the robot should filter any ’distorted’ commands. This
is due to the fact that non-expert users should only be able to imagine a task in
being performed in an ’ideal’ manner. They should not have the skill to replicate
their own thoughts exactly. This ability to ’autocomplete’ a human operator’s
intentions would make an industrial robot more adaptive and useful since it would
require less training and supervision.

1.2 Goals

This thesis aims to propose a system which will ’autocomplete’ trajectories
based on a human demonstrated one. This will allow an industrial robot with a
glue gun attached to its end-effector to use these trajectories for path planning
without the need for physical human-robot interaction. More specifically, with
the use of a 3D sensor and a virtual reality system, the goals of this thesis are
the following...1. Detect the shape of a target using the 3D sensor..2. Classify the type of trajectories recorded by the virtual reality system..3. Determine the ’ideal’/non-distorted version of the trajectory classified in..2...4. Generate a new trajectory that contains the trajectory found in..3.

superimposed over another trajectory based on the shape detected in..1.
In the case of..2. , the trajectories should be identified without needing the user

to ’complete’ it. This means that drawing any pattern along the path of a circle
should only require one segment of the pattern for the system to ’autocomplete’
the rest of trajectory. On top of that, the pattern need not be perfect as..3.
should filter out any distortions e.g. a wave pattern with inconsistent periods and
amplitudes should become a sine wave with constant periods and amplitudes.

1.3 Contribution of thesis

The main contribution of this thesis is a method for procedurally generating
trajectories that contains complex curves superimposed on another simpler curve.
The complex one is based on user demonstration while the simpler one is based
on shape detection. This includes:..1. a computer vision algorithm that preprocesses visual as well as depth images

and determines the shape/edges of the target from them..2. a supervised machine learning algorithm that preprocesses 3-dimensional
trajectory data consisting of xyz coordinates and classifies them according
to type

2

.................................1.3. Contribution of thesis..3. a computer graphics algorithm that generates ’ideal’ versions of trajectories
using mathematical equations and superimposes them onto another trajectory

This thesis is structured as follows. Chapter 1 lists the motivations for this
thesis’ topic and what this thesis hopes to achieve. Chapter 2 explores the
relevant work in the areas that this thesis employs. Chapter 3 elaborates upon the
methods used by this thesis to achieve its goals. Chapter 4 goes on to present the
results of implemented system on the dataset collected for this thesis. Chapter 5
examines in more detail the system and results of this thesis. Chapter 6 analyzes
the aspects of this thesis that could be developed further. Appendix A provides
the pseudo-code that made this thesis’ results possible. Appendix B contains a
glossary of the acronyms and symbols used while Appendix C lists the references
utilized in this thesis.

3

Chapter 2
Related Work

The work presented in this thesis is closely related to 3 distinct subfields.
These are vision based trajectory generation, non-photorealistic rendering (NPR)
and trajectory classification. All three have been researched extensively and
there have been a number of works on NPR robotics[LMPD15][SSGG19]. These
works have utilized ideas from all 3 subfields although mainly for painting/picture
reproduction purposes. This thesis, on the other hand, is more focused on
path/trajectory planning in an industrial setting. As such, this thesis draws upon
many previously used approaches and integrates them to develop the final system.

2.1 Vision based trajectory generation

In robotics, trajectories are smooth functions of time which specify the
robot’s and/or its end-effector’s position[LP17]. Very often, trajectories are
designed to satisfy constraints such as positional waypoints or
workspace/velocity/acceleration/torque limits. Trajectory generation also has to
take into account obstacle avoidance. Since trajectories should be smooth, they
are usually approximated by polynomial functions.

For useful trajectories to be generated, at least part of a robot’s workspace
must usually be known. This information can be obtained in many ways. One of
the most common is through the use of vision systems. In the case of [ANSL03],
their system was developed to automate the cutting of embroidered material.
Using a digital camera equipped with an ambient light filter and a laser diode,
they were able to detect a difference in light intensity where the seam of the
embroidery occurred. They used this information to generate a trajectory which
they smoothed using either a moving average filter or a Recursive least square
filter. Their approach, however, was very specific to their task. The edges their
system were detecting were of non-negligible thickness which is why their use
of a laser diode was effective. Also, their camera was mounted close to the
end-effector of the robot unlike in this thesis’ case. The vision system used in
this thesis was stationary.

Another related work is [GVPS12] where the system was developed for spray
painting. In their case, a barrier sensor was used to obtain the edge and surface

5

2. Related Work.....................................
primitives/lines of the object (the algorithm behind this process was not elaborated
on). Then, an Eulerian trajectory was determined so that every primitive/line
was visited once. Although their approach is particularly useful for generating
trajectories with no overlap, it presumes that the object edges are already well
known. Also, image processing was not discussed which is not the case for this
thesis.

[MPW14] is another work of interest. They utilize image edge detection to
generate a trajectory for applying sealant to engine blocks. Here, the authors
use a single digital camera and apply Canny edge detection to the images
that they acquire. Using integral projection functions, they then proceed to
determine the engine block’s outermost edge. After that, they filter it to remove
jumps/skips between pixels before using it as a trajectory. This thesis uses a
similar methodology for shape recognition although there was not as much control
over experimental area’s lighting.

Finally, there is [SL17] which was developed for drawing pictures using a
differential drive robot. They also use Canny edge detection as the basis of their
trajectory. They go further by approximating these edges with cubic B-splines
which results in continuous joint positions, velocities, accelerations and even
jerk. Although their work did not utilize other image processing methods besides
Canny edge detection, their use of B-splines demonstrated its usefulness for robot
trajectory generation.

2.2 Non-photorealistic rendering (NPR)

In traditional computer graphics, the aim of rendering is usually photorealism
i.e. the reproduction of an image or scene such that it resembles the output of
an actual camera. NPR, on the other hand, is more subjective in that it aims
to create an artistic representation[SS02]. Although NPR encompasses many
techniques ranging from classical graphics rendering to sketch-based modelling,
this thesis will be primarily exploring the statistical and mathematical modelling
approaches to curve synthesis – the creation of output curves that are similar
but contain information that is not present in their inputs.

The multiresolution approach to curve synthesis is used by [FS94], where
the idea of decomposing curves into multiple levels of detail using wavelets was
introduced. [BSS07] improved and extended it further to cover different sketch
styles. Curve decomposition is done by using two matrices known as analysis
filters. One downsamples/coarsens the input curve while the other preserves the
features removed by the previous matrix. Curve synthesis is then performed by
utilizing another 2 matrices known as synthesis filters. They reverse the effects
of the analysis filters. This process is done iteratively and generates what the
authors call a ’filter bank’. The ’bank’ contains filter matrices for every level of
detail. Even though this method was considered, it was determined to be more
complicated than necessary for the purpose of this thesis. Nevertheless, it is

6

...........................2.2. Non-photorealistic rendering (NPR)

possible that their approach may be quicker for longer and/or more complicated
curves. Further studies will have to be done to ascertain this.

Another approach to curve synthesis has been explored by [HOCS02]. The
authors also treat curves as decomposable into multiple levels of details like
[FS94]. Feature extraction and reconstruction, however, is performed using local
transformations. This synthesis of curve analogies is done by first finding the rigid
transformation between curve A (base) and curve B (input). This transformation
is then applied to curve A′ (style) and the result is split into multiple segments.
A cost function, E(B′), that characterizes the difference between:. the shape of A′ and B′,. the shape relationship of A to A′ and that of B to B′,. the relative position and orientation relationship of A to A′ and that of B

to B′,

Figure 2.1: Example of curve results from [HOCS02], A : B :: A′ : B′

is then defined. For every segment, a rigid transformation around the center
of mass of the B′ segment that minimizes E(B′) is computed. This thesis’
approach is similar and has the advantage of allowing for patterns that had no
overlap unlike in that seen in Figure 2.1.

There is also a statistical approach to curve synthesis as seen in the works of
[KMM+02]. The authors use a Markov random field (MRF) to synthesize curves
based on several user provided example curves. Another one is [SD04] where
Hidden Markov Models (HMM) are used to synthesize appropriate curves onto
new illustrations. In the case of [KMM+02], user provided curves are stored as a
spline and vectors perpendicular to the spline. These are used to characterize the
curve’s features. The MRF is then used to map similarities of a curve segment

7

2. Related Work.....................................
to the probability of that segment being added to the new, synthesized curve.
For [SD04], their HMM is trained on multiple sets of detailed and non-detailed
’control’ curves. This is to determine the correspondence between them. From
that, detailed curves are then synthesized from non-detailed user drawn curves.
The key to their approaches’ success is the use of large training datasets which
this thesis did not have. Also, the method used in this thesis only requires the
user to demonstrate part of the desired trajectory. The system being developed by
this thesis is not aiming to replicate the user’s input completely but to generate
an ’ideal’/non-distorted version of it. As such, statistical modelling was used not
in the curve synthesis portion of the thesis. Instead, it was used in the trajectory
classification portion which is elaborated in Section 3.4.1.

2.3 Trajectory classification

Much of the work on trajectory classification is centered around 2-dimensional
cases. 2D trajectories are usually categorized based on spatial and temporal
features i.e. position, velocity etc. Many of those approaches, however, can
be extended to the 3-dimensional case. Though in 3D, the importance and
relevance of the 2D features need to be re-evaluated. Also, new features need
to be determined in 3D to aid classification. This is what happens in [BKS06]
where the authors explore classifying 3D trajectories created from the Australian
Sign Language (ASL). By developing affine-invariant features from trajectory
coordinates, the authors were able to use HMMs to recognize ASL words not
oriented in the same manner i.e. the signs for the same word could be rotated
or stretched. These new features are the centroid distance function (CDF) and
curvature scale space (CSS). Both were adopted by this thesis in order to improve
classification results. Unlike [BKS06] though, the trajectory datasets collected
for this thesis were constrained to the same area of the coordinate space since
they were all performed on the surface of the targets. This meant that the
xyz coordinates could be used together with the CDF and CSS for training the
classifier used in this thesis.

TraClass[LHLG08], on the other hand, uses region and movement pattern
clustering to tacklet the 2D trajectory classification problem. This framework
allowed the authors to approach trajectory classification in a hierarchical manner.
It sorted the detected features and gave preference to higher level ones for
classification. The procedure behind TraClass can be described in 4 general steps..1. Each trajectory is split into line segments based on their change in direction

using the minimum description length principle[GMP05]. Segments from
similar trajectories as well as those from similar classes end up grouped
together...2. The groupings are used to identify regional clusters via a grid structure. A
regional cluster is one where there are relatively many trajectories of one
class in comparison to other classes. This is done recursively with..1. to
ensure as many clusters as possible are found.

8

................................ 2.3. Trajectory classification..3. The groupings are also utilized to establish movement pattern clusters within
a user-specified neighborhood. Each group must contain segments from the
same class otherwise they are treated as noise. This is also done recursively
with..1. to ensure as many clusters as possible are found...4. Both clusters based on region and on movement pattern are merged for
class identification. Regional clusters are given higher priority compared to
movement pattern clusters.

TraClass’ approach was effective at performing classification on ’top-down’
trajectory data. Nevertheless, it was not suitable for this thesis’ dataset as
most of the 3D trajectories recorded did not have significant regional differences.
Movement pattern based clustering may have been suitable but seemed unlikely.
This is because TraClass’ experiments were shown to work well on trajectories
generated by different sources (e.g. deer vs cow) whereas the trajectories for this
thesis were performed by one subject multiple times.

Another work dealing with trajectory classification is [PMF08]. The use of
Support Vector Machines (SVM) for abnormal trajectory detection is examined
by the authors. Here, they introduce an improved approach to tuning SVM
parameters. SVMs have been previously used for trajectory classification and is
also one of the classifiers used by this thesis. The authors’ method of selecting
optimal parameters, however, is more applicable for outlier detection. It is less
relevant for this thesis compared to multiclass identification as there were more
than 2 types of trajectories present in this thesis’ dataset.

Similar to [BKS06] is the work of [FD09]. It addresses the classification of
hand movement and orientation. In order to label analogous motions correctly,
the authors of [FD09] did not take into consideration temporal information of
the trajectory (otherwise fast and slow motions would be classified differently).
They also normalized trajectory length so that it would not affect classification.
Also, they smoothed and divided the trajectory into discrete parts. Then, they
use spherical and cylindrical coordinates to compute orientation features. After
building a learning table from those features, they then utilize it to develop a
classifier based on Bayes’ theorem. They also use Shannon entropy to further
improve results. Although similar preprocessing was performed (such as data
smoothing and resampling), it was determined that their method of calculating
orientation features was not appropriate for this thesis. This is because trajectory
coordinates in the dataset corresponded to the tip of a glue gun instead of the
position and orientation of a human hand. Moreover, this thesis’ dataset came
with its own orientation profiles but it was determined that they varied too much
to be useful for training the final classifier.

9

Chapter 3
Materials and Methods

3.1 Dataset

3.1.1 Data collection

(a) : Diagram of data
collection setup

(b) : HTC Vive controller
(green) strapped to

glue gun (red)

Figure 3.1: Setup of devices

The spatial and visual data used in this thesis was obtained with the use of
a HTC Vive virtual reality system paired with an Asus XTION PRO 3D sensor.
As seen in Figure 3.1a, the camera (light blue) was mounted over a target (red,
left) on a table. This produced RGB and depth images as seen in Figure 3.2.
The checkerboard pattern in the background was used for calibrating the HTC
Vive’s controller. The controller (green) was attached to a glue gun (red, right)
as seen in Figure 3.1b. The position of the glue gun’s nozzle was determined
using a known transformation matrix on the controller’s internal position. All of

11

3. Materials and Methods
the data collected was saved in rosbag files which this thesis utilized to develop
the final system.1

3.1.2 Data types

1 path : 66 _SmallCircle_line_ontop . bag
2 v e r s i o n : 2 . 0
3 d u r a t i o n : 2 4 . 0 s
4 s t a r t : Jan 28 2019 1 2 : 1 3 : 4 4 . 2 5 (1 5 4 8 6 7 4 0 2 4 . 2 5)
5 end : Jan 28 2019 1 2 : 1 4 : 0 8 . 2 3 (1 5 4 8 6 7 4 0 4 8 . 2 3)
6 s i z e : 8 7 4 . 6 MB
7 messages : 36916
8 compress ion : none [718/718 chunks]
9 types : geometry_msgs /PoseStamped [d3812c3cbc69362b77dc0b19b345f8f5]

10 sensor_msgs / CameraInfo [c9a58c1b0b154e0e6da7578cb991d214]
11 sensor_msgs / CompressedImage [8 f7a12909da2c9d3332d540a0977563f]
12 sensor_msgs /Image [060021388200 f 6 f 0 f 4 4 7 d 0 f c d 9 c 6 4 7 4 3]
13 tf2_msgs /TFMessage [9 4 8 1 0 edda583a504dfda3829e70d7eec]
14 t o p i c s : /XTION3/ camera / depth / camera_info 717 msgs :
15 sensor_msgs / CameraInfo
16 /XTION3/ camera / depth / image_rect / 717 msgs :

sensor_msgs /Image
17 /XTION3/ camera / rgb / camera_info 715 msgs :

sensor_msgs / CameraInfo
18 /XTION3/ camera / rgb / image_rect_color / compressed 716 msgs :

sensor_msgs / CompressedImage
19 / c o n t r o l l e r 1 1440 msgs :

geometry_msgs /PoseStamped
20 / end_point 1440 msgs :

geometry_msgs /PoseStamped
21 / t f 7481 msgs :

tf2_msgs /TFMessage

Listing 3.1: Dataset as seen using rosbag info

Listing 3.1 is an example of the contents in the rosbag files obtained from
Section 3.1.1. Of primary importance are the topics. /XTION3/camera/depth/image_rect/ which contains ROS messages related

to the depth image being captured. /XTION3/camera/rgb/image_rect_color/compressed which contains ROS
messages related to the RGB image being captured. /end_point which contains ROS messages related to the pose of the glue
gun’s nozzle

Unlike the pose information, only the first message from the depth and RGB
topics was required. This is due to the assumption that the target would be
static. Furthermore, it was assumed that there was nothing between the target
and the 3D sensor that would obscure the target. This made shape identification
easier as seen in Figure 3.2.

In comparison, every message of the glue gun’s nozzle’s pose information was
required. Four types of user input trajectories were recorded – straight, dashed,
low and high frequency wave trajectories. Each rosbag file containing 3 ’laps’ of
each trajectory on six differently shaped targets.

1Rosbags are the primary mechanism in Robot Operating System(ROS) for data logging,
http://wiki.ros.org/Bags

12

....................................... 3.1. Dataset

(a) : Raw RGB image for
circular block

(b) : Raw depth image for
circular block

Figure 3.2: Example of unprocessed visual information from dataset

Figure 3.3: Example of unprocessed trajectory data from dataset

13

3. Materials and Methods
3.1.3 Trajectory segmentation

Trajectory type
Number of

training
samples

Number of
testing
samples

Total
number of

samples

Straight 29 29 58
Dashed 45 45 90

Low frequency wave 28 28 56
High frequency wave 54 54 108

Table 3.1: Number of trajectory samples after segmenting originals

In total, there were 6 of each input trajectory type which gave a total of
24. If each were to be considered a single training sample, then the dataset
would definitely be considered too small[Alp09]. As the assumption was that
users would only need to demonstrate a part of the trajectory and the system
should predict the rest, it made sense to split up the 24 trajectories into smaller
segments. This should not affect classification as the amount of features that
would matter should still be obtainable. As such, the number of trajectory
instances was increased by segmenting the original user made trajectories by
length. It was empirically determined that about 0.25m of a trajectory contained
a sufficient number of features to determine trajectory type. This allowed for
312 trajectory segments/instances to be obtained from the original 24. The
trajectories were then split into training and testing sets, half for each set with
the ratio of classes in both sets being equal. The number of samples from each
class can be seen in Table 3.1. Some classes have more samples due to the fact
that some trajectory types, like the dashed and high frequency wave, were longer.
This is because trajectory length was computed using the euclidean distance
between each coordinate point.

3.2 Vision based trajectory generation

From the data seen in Section 3.1.2, it was clear some method was required
to extract the shape of the target. In order to do so, a number of digital image
processing techniques were used. These approaches and the basic intuition behind
them are detailed below.

3.2.1 Not a Numbers (NaNs) in digital image processing

Since digital image processing methods are fundamentally the manipulation of
numbers, it would be problematic if pixels in an image contained NaNs. This was
the case as seen in Figure 3.2b where the black pixels mean that the Asus XTION
PRO’s depth sensor failed to assign a numeric value to them. Thus, although
trivial, image cropping was crucial in making sure these pixels were removed from

14

........................... 3.2. Vision based trajectory generation

(a) : Cropped RGB image for
circular block

(b) : Cropped depth image with
no NaNs for circular block

Figure 3.4: Example of cropped images with no NaN pixels

the image. This also meant cropping Figure 3.2a in the same manner to ensure
pixel correspondence. Furthermore, a simple filter was applied to any NaN pixels
where they were assigned the mean value of their 8 neighboring pixels. If other
pixels in the neighborhood also had NaN values, those pixels were ignored in the
computation of the mean.

3.2.2 Grayscale images

(a) : Grayscale conversion of
RGB image

(b) : Grayscale conversion of
depth image

Figure 3.5: Example of converting RGB and depth images to grayscale

15

3. Materials and Methods
Once NaNs were removed from the images, it became possible to apply

further digital image processing methods to them. To determine the shape
of the target, there was a need to detect the difference in magnitude of pixel
intensities which should occur at the edges of a target[WR00]. This, however, is
applicable only to grayscale images. While converting RGB images to grayscale
is well-known[Sze10], converting depth images to grayscale is slightly different. It
results in a rescaling of pixel values so that they fall within the grayscale range of
0 to 255. This effect can be seen in Figure 3.5b where the outline of the target
becomes much more defined compared to Figure 3.4b. There is a limitation to
how thick the target must be for this approach to work and this is discussed in
Chapter 5.

3.2.3 Canny edge detection

In order to extract the features in Figure 3.5 for shape recognition, edge
detection was utilized. One of the best performing algorithms is the Canny edge
detector[MPW14]. Canny edge detection is a 5-stage process that uses filtering,
intensity gradients as well as thresholding in order detect significant edges in a
scene...1. Canny edge detection first begins with the application of a Gaussian filter to

remove noise from an image. A Gaussian filter is effective at this because
it acts like a lowpass filter by decreasing the number of high frequency
components in an image[NA12]. This results in blurring as seen in Figure
3.6. To perform Gaussian filtering in digital image processing, a Gaussian
kernel must first be created before an image is convolved with it. This makes
Gaussian blurring a linear filter. In 2 dimensions, the Gaussian function is
expressed as seen in Equation 3.1. From that, a square Gaussian kernel of
dimension m can be constructed as seen in Equation 3.2.

G(x, y) = 1
2πσ2 e

−x
2+y2

2σ2 (3.1)

Kij = 1
2πσ2 exp

(
− (i− (k + 1))2 + (j − (k + 1))2

2σ2

)
where k = m− 1

2 , i ≥ 1, j ≤ (2k + 1) (3.2)..2. Next, the intensity gradient of the image is obtained. Using edge detection
operators such as the Sobel operator, the edge gradient of the image can
be obtained using Equation 3.3

Igrad =
√
Ix

2 + Iy
2 (3.3)

where Ix is the image’s first derivative in the x direction while Iy is in the y
direction. This results in thick edges as seen in Figure 3.7...3. Although thick edges are easier to identify with the human eye, digital image
processing considers this erroneous. This is due to the Canny’s goal of one-
to-one mapping of edge pixels to actual edges in the target image[Can87].

16

........................... 3.2. Vision based trajectory generation

(a) : Gaussian blur applied
to grayscale version

of RGB image

(b) : Gaussian blur applied
to grayscale version

of depth image

Figure 3.6: Example of Gaussian blur effect

(a) : Edge gradient of grayscale
version of RGB image

(b) : Edge gradient of grayscale
version of depth image

Figure 3.7: Example of edge gradients of grayscale version of RGB and depth
images

17

3. Materials and Methods
As such, edge thinning is required. The Canny edge detector achieves this
by using non-maximum suppression. By determining the orientation of the
edges using the image’s first derivative as seen in Equation 3.4,

θ = arctan2(Iy, Ix) (3.4)

pixels are able to be compared locally only by the direction specified by θ.
Non-maximum suppression then suppresses a pixel (i.e. sets it to zero) if
there are pixels in the specified direction which have greater intensity than
it. Otherwise, the original value is kept. This yields the thinner edges as
seen in Figure 3.8.

(a) : Non-maximum suppression
applied to edge gradient of

grayscale version of RGB image

(b) : Non-maximum suppression
applied to edge gradient of

grayscale version of depth image

Figure 3.8: Example of non-maximum suppression applied to edge gradient
images..4. Although the remaining edge pixels are very representative of the edges in

the actual image, they are not all of the same intensity values. This means
that some of them may be still due to noise. The pixels are then classified
as strong or weak in a process known as double thresholding. After choosing
a high and low threshold value (usually decided automatically using Otsu’s
method[NA12]), pixels with intensities greater than the higher threshold are
labeled as strong pixels. Those that fall between the high and low threshold
values are considered as weak ones. Anything under the low threshold is not
considered an edge and the strong-weak classification is used in the next
step...5. Finally, the Canny edge detection algorithm performs edge tracking by
hysteresis. This means that if any of the 8 pixels surrounding a weak pixel
is classified as strong, the pixel’s intensity is changed to that of a strong
pixel. Otherwise, it is changed to zero i.e. considered not part of an edge.

18

........................... 3.2. Vision based trajectory generation

This final procedure then allows the edges in the image to be identified as
seen in Figure 3.9.

(a) : Canny edge detection
results for grayscale
version of RGB image

(b) : Canny edge detection
results for grayscale

version of depth image

Figure 3.9: Example of Canny edge detection results

3.2.4 RGB and depth image fusion

(a) : Edge of depth image
to be used as mask

(b) : Result after using depth
image edge as mask

Figure 3.10: Example of mask made from Canny edge detection results of
depth image and its effect when applied to Canny edge detection results of RGB
image

19

3. Materials and Methods
Looking at Figure 3.9b, it can be seen that Canny edge detection picked up

the rough shape of the target only. In Figure 3.9a, however, the edges detected
form a more accurate representation even though the checkerboard pattern was
also detected. Although it was possible to simply use Figure 3.9b for shape
detection, a better approach was devised in this thesis. By using it as a mask
to filter out the unnecessary information in Figure 3.9a, more accurate edge
results were possible. As such, small artefacts in Figure 3.9b were removed using
Gaussian filtering. Then it was applied as a mask to Figure 3.9a.

3.2.5 Mathematical morphology

As seen in Figure 3.10b, the results are discontinuous since Canny edge
detection produces thin edges. This means that when used as a mask, many
relevant edge pixels are lost. Thus, there is a need to thicken the edges. This
can be achieved via morphological operations.

In mathematics, morphology is the study of spatial/geometrical structures
using set theory. In the domain of digital image processing, morphological
operators are limited to 2-dimensions thus, they filter images and/or analyze its
geometry using structuring elements[WR00]. A structuring element is simply a
boolean image kernel that determines which neighborhood pixels are affected by
a morphological operator. The most basic morphological operators are dilation,
which expands the shapes in an image, and erosion, which does the opposite.

A⊕B =
⋃
b∈B

Ab (3.5)

Dilation, usually denoted as ⊕, is defined as seen in Equation 3.5. A is the
set being analyzed, B is the structuring element and Ab is the translation of
A by b. This means that the dilation of A by B, would result in all the points
covered by B when its center iterates through every point in A. This assumes
that structuring element B is centered at its origin. The operation yields a ’fatter’
shape as seen in Figure 3.11a.

A	B =
⋂
b∈B

A-b (3.6)

Erosion, on the other hand, is the ’opposite’ of dilation. Usually denoted as
	, it is expressed as seen in Equation 3.6. The erosion of A by B yields all the
points covered by the centroid of B while it iterates through points in A that
would not result in any point in B leaving the area covered by A. This also
assumes structural element B is centered at its origin. This operation’s effects,
when utilized with an elliptical structural element, can be seen in Figure 3.12b.
The shape is shrunk after morphological closing operations to better represent
the size of the target’s shape.

Dilation and erosion are often used successively one after another. This method
gives rise to the morphological opening, denoted as ◦, and closing, denoted as •,

20

........................... 3.2. Vision based trajectory generation

(a) : Dilated edge of depth image
to be used as mask

(b) : Result after using dilated
depth image edge as mask

Figure 3.11: Example of dilating the mask made from Canny edge detection
results of depth image and its effect when applied to Canny edge detection results
of RGB image

(a) : Result of closing operation
until one shape remaining

(b) : Eroded shape after
closing operation

Figure 3.12: Example of morphological closing and erosion operations

operators as seen in Equations 3.7 and 3.8.

A ◦B = (A	B)⊕B (3.7)
A •B = (A⊕B)	B (3.8)

Both opening and closing are useful for what is known as ’salt and pepper’
noise removal[WR00]. In such a scenario, opening ’disconnects’ and ’breaks open’

21

3. Materials and Methods
blobs in an image while closing ’connects’ and ’fills’ them in. Given that the
edges seen in Figure 3.11b are less than ideal, one approach to combat the issue
is to ’fill’ in the outlines until they correspond to the known number of targets
(in this case, just one). This can be seen in Figure 3.12a where multiple closing
operations would have filled in the gaps between the target’s actual edges and
any other edge due to noise. As such, erosion was used to shrink it down to
account for the increase in size.

3.2.6 Median filtering

(a) : Result of median
blurring eroded shape

(b) : Contour detection
results of 3.13a

Figure 3.13: Example of median blurring and contour detection

As it can be observed in Figure 3.12b, the edges of the final shape after
multiple morphological closing and eroding operations were very jagged. This
did not represent the target’s actual shape very well. As such, some form
of filtering/blurring is required to smooth them. One suitable approach is
the use of median filtering. Unlike the linear Gaussian filter, it is capable of
removing/smoothing noise while still preserving edges[WR00]. The concept
behind this non-linear filter is straightforward. All that is required is the sorting
of the pixel values as specified by a kernel before determining the median value.
Implementation, however, can be difficult for large amounts of images as sorting
algorithms have non-negligible computation times. Nevertheless, it is useful in
this particular case as the median filter also has the tendency to round sharp
corners[Sze10]. This is helpful for generating smooth trajectories and can be
seen in Figure 3.13a.

22

........................... 3.2. Vision based trajectory generation

3.2.7 Contour detection

(a) : 4-neighborhood
connected contour

(b) : 8-neighborhood
connected contour

Figure 3.14: Example of 4 and 8 neighborhood connectivity

Similar to edge detection, contour detection/tracing is the identification and
drawing of the boundaries of an object or a segment in an image. This means
that the definition of a contour is far more constrained than that of an edge
which is any pixel where the difference in intensity is significant. Also, in most
cases, contours are defined as closed boundary curves. This is due to the fact
that the presence of an object or an obvious segment in an image should take
up a specific area of it[Sze10]. As such, contour detection can also be used to
count the number of objects or segments in an image.

Contours in a binary image can have two different types of border pixel
connectivity as seen in Figure 3.14. They are traced using a number of different
algorithms[AMFM11]. The most commonly implemented ones generally behave
according to the following steps:..1. Iterate through the image until the first border pixel is detected...2. Label that border pixel, pcount = 1, and backtrack to the previous pixel..3. Iterate clockwise through the 8-neighborhood of the first border pixel and

label the next border pixel detected, pcount = 2, before backtracking again
to the previous pixel...4. Continue until the last border pixel detected is in the same position as
the first border pixel in which case a complete contour has been detected,
pcount = n..5. If there are no border pixels detected in..3. , stop the process, pcount = 0,
and move on to the next pixel after the one in..1. before repeating Steps..1. to..4. again.

23

3. Materials and Methods

Figure 3.15: Example of contour hierarchy

With a number of conditions such as labelling any non-border pixel found in
Steps 3 as part of a ’hole’[S+85] within a contour, it then becomes possible for
contours to be arranged in a hierarchical manner. This can be seen in Figure 3.15
where the red contour is a child of the blue contour. In the case of Figure 3.13b,
the outermost contour was the only one of interest and hierarchy sorting made it
easier to discard everything else. Hierarchy sorting and counting is expected to
play a larger role in the case of multiple targets being present.

3.3 Non-photorealistc rendering (NPR)

Even though the shape of the target object had been detected as seen in
Figure 3.13b, there was still no guarantee that the contour was smooth i.e. had
Cm continuity. Furthermore, for applications such as applying glue with a glue
gun, the trajectory should be within the target rather than at its edges. These
issues were tackled with the use of B-splines and scaling.

3.3.1 Scaling

Since the pixels that made up the contour of the target were all of equal
importance, scaling it was not a complicated procedure. By determining the
centroid of the contour, it was possible to then translate the entire contour so
that it was centered around the origin, scale it by a user specified scaling factor
and then translate the contour back to its original position. This yielded the
change in size as seen in Figure 3.16a.

3.3.2 B-splines

The contour alone, however, was not enough to generate a trajectory as it only
contained pixel positions. On top of that, the way that contours were generated

24

........................... 3.3. Non-photorealistc rendering (NPR)

(a) : Original contour (red)
scaled down (green)

(b) : 2D B-spline (blue)
from scaled contour (green)

Figure 3.16: Example of contour scaling and generation of a 2D B-spline
trajectory from it

meant that it was not necessarily Cm continuous. The contour’s change in
position, velocity and acceleration, jerk etc. was not necessarily smooth. As such,
there was a need to approximate the contour using continuous curves. Two of
the most popular are Bezier curves and B-splines.

Although Bezier curves are mathematically less complicated in comparison
to B-splines, they have a fundamental downside. This downside is that for
n + 1 control points, a Bezier curve of degree n must be used[AK03]. This
makes it computationally expensive to fit a Bezier curve to a large number of
control points as the number of coefficients (i.e. Bernstien polynomials) that
need to be determined will also be large. One way to overcome this limitation
is by connecting multiple lower degree Bezier curve segments together. This,
however, has another issue where the continuity at the points of linkage are
not naturally Cm (they can be constrained to have Cm continuity but this also
requires computation time).

B-splines, on the other hand, have the advantage of their degrees being
completely independent from their number of control points. This is because
they are the interpolation of multiple Bezier curve segments rather than the
interpolation of multiple points. Thus, B-splines can have all the benefits of
Bezier curves without the continuity and coefficient computation issues. The
major downside with B-splines is that it is not intuitive to use as its naive
implementation does not pass through any of its control points. Nevertheless,
this is not a big factor for the approximation of the contour via curve fitting. This
is due to the fact that control points would be computed rather than provided

25

3. Materials and Methods
by a human user.

B(u) =
n∑
i=0

PiNi,p(u) where P are the control points and

Ni,0(u) =
{

1 if ui ≤ u ≤ ui+1

0 otherwise
(3.9)

Ni,p(u) = u− ui
ui+p − ui

Ni,p−1(u) + ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

The simplest way to determine the coefficients of a p degree B-spline with
n+ 1 control points and m+ 1 knots is using Equation 3.9. Knots are the points
where the Bezier curve segments that make up the B-spline are joined. They have
the special property where if a knot is inserted at u in the curve B(u) multiple
times (i.e. increasing the knot multiplicity), the control point associated with the
p-th knot becomes part of the B-spline. This can be seen in Figure 3.17 where
the original control points (blue) are altered by knot insertion (green) without
changing the B-spline (red). As it can be observed in Figure 3.17d, the yellow
triangle highlights the interpolation of the control point by the B-spline after the
5th knot insertion.

It is important to note, however, that a B-spline is only Cp−k continuous at
knot points with multiplicity k. This means that knot insertion alone can only
guarantee C0 continuity. In order to achieve knot points with greater continuity,
it is then required to perform global B-spline interpolation[Die95]. This can be
formulated by rewriting Equation 3.9 in matrix form as seen in Equation 3.10. Q
is the vector of the known data points to be fitted and P is the vector of the
control points that would allow the B-spline interpolate through all the points in
Q.

Q = B(uj) =
n∑
i=0

Ni,p(uj)Pi = NP (3.10)

where Q =


Q0
Q1
...
Qn

 , P =


P0
P1
...
Pn

 , (3.11)

N =


N0,p(u0) N1,p(u0) N2,p(u0) . . . Nn,p(u0)
N0,p(u1) N1,p(u1) N2,p(u1) . . . Nn,p(u1)

...
...

...
N0,p(un) N1,p(un) N2,p(un) . . . Nn,p(un)

 (3.12)

Note that N is a n× n matrix and in general, u0 = 0 while un = 1. This means
that the first and last rows of N will be filled with zeros with the exception of
the first and last columns.

26

........................... 3.3. Non-photorealistc rendering (NPR)

Equation 3.10 is a solvable linear system of equations where the size of
matrix N is independent from the degree, p, of a B-spline. This is what allows
B-splines to be more efficient in comparison to Bezier curves for curve fitting.
Parameterizing the contour coordinate results in Figure 3.16a into equidistant
segments of u and applying global interpolation then gives the result in Figure
3.16b. It contains a trajectory that is smooth and continuous compared to the
contour detection results which only determine integer pixel positions. This can
be seen in Figure 3.18 where the B-spline values (blue) are shifted slightly due to
computation but essentially represent the same shape as the contour (orange)

(a) : 5th degree B-spline with
no knot multiplicity

(b) : 5th degree B-spline with
knot multiplicity of 1 at B(0.1)

(c) : 5th degree B-spline with
knot multiplicity of 3 at B(0.1)

(d) : 5th degree B-spline with
knot multiplicity of 5 at B(0.1)

Figure 3.17: The effects of knot insertion on a p = 5 degree B-spline

27

3. Materials and Methods

(a) : Profile of position (x component only) for
contour (orange) and B-spline (blue) trajectories

(b) : Profile of first derivative (x component only) for
contour (orange) and B-spline (blue) trajectories

28

........................... 3.3. Non-photorealistc rendering (NPR)

(c) : Profile of second derivative (x component only) for
contour (orange) and B-spline (blue) trajectories

(d) : Profile of third derivative (x component only) for
contour (orange) and B-spline (blue) trajectories

Figure 3.18: Example of difference in smoothness and continuity for the contour
and B-spline trajectories in Figure 3.16b

29

3. Materials and Methods
results. Another interesting point to note is that the generated trajectory is
closed i.e. it is a periodic B-spline. Periodic B-splines of degree p are a special
case where their first and last p control points are exactly the same. This means
the difference between their first and last p+ 1 knot values (their knot intervals)
must also be the same.

3.3.3 Non-photorealistc trajectories (NPT)

Assuming the trajectory has a constant height, the method used in Section
3.3.2 was enough to generate a photorealistic (i.e. represents information in the
image) trajectory in 3 dimensions. Nevertheless, the main goal of this thesis was
to generate trajectories containing information that was not necessarily present
in the image frame. One example is the generation of a sine wave pattern along
the photorealistic B-spline (blue) as seen in Figure 3.16b. Since a sine wave
is defined mathematically and is periodic, it was possible to generate one that
followed a B-spline path created from a target’s shape using Equation 3.13. A is
a specified amplitude and np is a specified number of points per period. This
was performed by calculating the relevant waypoints and then interpolating them
with the global B-spline method mentioned in Section 3.3.2. This can be seen in
Figure 3.19 where the NPTs are smooth and continuous.

vsine = vpath +A sin
(2π
np

)
v̂⊥ where v̂⊥ = v⊥

‖v⊥‖
and v =

[
x
y

]
(3.13)

(a) : Low frequency sine
trajectory example

(b) : High frequency sine
trajectory example

Figure 3.19: Example of sine NPTs

Equation 3.13 demonstrates that it is relatively trivial to generate NPT
using mathematical functions that are periodic in nature. Many functions,
however, do not have this convenient property. One example is the conchoid

30

........................... 3.3. Non-photorealistc rendering (NPR)

of de Sluze which is a family of mathematical curves studied in the 1600s. It
is described parametrically using Equation 3.14. As seen in Figure 3.20, the
conchoid is an anallagmatic (i.e. self-intersecting) curve when a < −1. If an
NPT were to be generated from a region of the conchoid of de Sluze, that
region would first need to be approximated in some manner. This is because it
is not feasible to determine the correspondence between an anallagmatic curve
and a non-anallagmatic B-spline. Once that approximation is determined, a
transformation that minimizes the difference (the most common metric would
be the sum of the squared error between points) between the approximation
and the non-anallagmatic B-spline could then be computed. Applying that
same transformation onto the conchoid’s region of interest should result in a
reasonable estimate of how an NPT containing multiple conchoids should look
like. Thus, there was a need to look into methods to create an approximation of
a complicated curve and to explore the type of transformation to use.

xconchoid = cos (sec(t) + a cos t)
yconchoid = sin (sec(t) + a cos t)

(3.14)

Figure 3.20: Example of the conchoid de Sluze curve with different parameters

A straightforward method to approximating a complex curve was formulated
in this thesis. Working on the assumption that all its points are weighted equally,
it was noticed that an approximation could be made by drawing another simpler
curve which passed through the centroid of the complex curve. As seen in Figure
3.21, by:

31

3. Materials and Methods
. generating a simpler curve (green) using the endpoints of the complex curve

(blue) and,. translating (yellow) the simpler curve towards the centroid of the complex
curve,

it became possible to create an approximation curve (pink). The red markers
were computed using Equation 3.14 and used as interpolation points for
Equation 3.10 which resulted in the blue points. It was now possible to
determine the transformation H that would result in the least square error
between the approximation curve (pink) and a second B-spline (cyan). This can
be seen in Figure 3.21.

Based on [HZ03], 2D transformations can be classified into 4 types. Each type
has an increasing number of degrees of freedom (dof). The first type is isometries
or rigid transformations which include translation, rotation and reflection. They
are described by the homogeneous Equation 3.15 where ε = ±1 determines
whether the image is reflected, θ determines how much the image is rotated by
and ∆t determines how much the centroid of the image is translated by. This
means that in 2-dimensions, isometric transformations have 3 dof – 1 for rotation
and 2 for translation. This makes them useful for rigid correspondence problems
where scaling, shearing etc. are undesirable.

P ′ =

x′y′
1

 =

ε cos θ − sin θ ∆x
ε sin θ cos θ ∆y

0 0 1


xy

1

 =
[
R(θ) ∆t

0 1

]
P (3.15)

Figure 3.21: Example of an approximation curve for a region of the conchoid

32

........................... 3.3. Non-photorealistc rendering (NPR)

The next type is known as similarity transforms which adds a uniform scaling
factor, s, to the rigid transform as seen in Equation 3.16. The scaling adds
an extra degree of freedom which makes the similarity transform effective at
preserving the general ’shape’ of an image/curve.

P ′ =

x′y′
1

 =

s cos θ −s sin θ ∆x
s sin θ s cos θ ∆y

0 0 1


xy

1

 =
[
sR(θ) ∆t

0 1

]
P (3.16)

In comparison to isometric and similarity transforms, affine transformations
require at least 3 coordinates/points instead of 2 in order to determine
correspondence. This is due to the fact that affine transformations have 6 dof,
as seen in Equation 3.17. These include shear and non-uniform scaling on top of
translation, rotation and scaling. With the additional dof, affine transformations
are suitable for cases where line parallelism and length ratios have to be
maintained.

P ′ =

x′y′
1

 =

a1,1 a1,2 ∆x
a2,1 a2,2 ∆y
0 0 1


xy

1

 =
[
A ∆t
0 1

]
P (3.17)

Finally, the last type of 2D transformation is projective transformations
which adds on another 2 dof to give it a total of 8 dof. The new dof enables
it to rotate an image ’inwards’ around both the x and y axes thus allowing
for the creation of vanishing points in images. This is a useful property for
perspective projection which is the projection of a 3D object onto a 2D surface.
This means that 4 instead of 3 coordinates/points are required for projective
transformations to determine correspondence. This is due to the fact that 2D
projective transformation matrices can be any arbitrary 3× 3 matrix as seen in
Equation 3.18. Here, the only property of the original image that is preserved is
that straight lines remain straight.

P ′ =

x′y′
1

 =

a1,1 a1,2 ∆x
a2,1 a2,2 ∆y
v1 v2 v


xy

1

 =
[
A ∆t
v v

]
P (3.18)

Based on Table 3.2, it was inferred that isometric transformations would
be too constrained to help generate NPTs. This is because the values of the
approximation curve may be scaled differently compared to the non-anallagmatic
B-spline path. Projective transformations, on the other hand, would not retain
enough of the complex curve’s properties for the transformed result to be ’faithful’
to the original. Of the remaining two, the similarity transform was considered the
more promising solution. Nevertheless, there was still the issue of whether it could
handle determining the correspondence between 2 curves that had significantly
different shapes. In order to determine the affine transformation that would
result in the least square distance between the approximation curve (pink) and
second B-spline (cyan), Equation 3.17 was rewritten into the system of equations
seen in Equation 3.19. This was valid since the last row of matrix H should

33

3. Materials and Methods
Transformation type DOF Properties

Isometric 3 Translation, rotation and reflection
Retains size and shape

Similarity 4 Adds scaling
Retains shape

Affine 6 Adds shearing and non-uniform scaling
Retains line parallelism and length ratios

Projective 8 Adds perspective projection
Retains line straightness

Table 3.2: Summary of 2D transformation types and properties

always be [0 0 1] for an affine transformation. From it, the system of equations
for the least square error similarity transform could also be obtained. This is
because removing the extra 2 dof controlling shear and non-uniform scaling is
equivalent to constraining A so that both vectors are orthogonal to each other
i.e. a2,1 = −a1,2 and a2,2 = a1,1. This then simplifies Equation 3.19 to Equation
3.20. The elements of T could then be computed by using the pseudo-inverse of
rectangular matrix M as seen in Equation 3.21.

P =



x′0
y′0
x′1
y′1
...
x′n
y′n


=



x0 y0 1 0 0 0
0 0 0 x0 y0 1
x1 y1 1 0 0 0
0 0 0 x1 y1 1

...
xn yn 1 0 0 0
0 0 0 xn yn 1





a1,1
a1,2
∆x
a2,1
a2,2
∆y


= MT (3.19)

P =



x′0
y′0
x′1
y′1
...
x′n
y′n


=



x0 y0 1 0
y0 −x0 0 1
x1 y1 1 0
y1 −x1 0 1

...
xn yn 1 0
yn −xn 0 1




a1,1
a1,2
∆x
∆y

 = MT (3.20)

T = M †P = ((MTM)−1MT)P (3.21)

Reorganizing the solved terms in T into transformation matrixH then resulted
in a 2D transformation matrix. This could then be applied to the region of interest
on the conchoid de Sluze curve as seen in Figure 3.22. The approximation (pink)
and complex (blue) curves on the left are before transformation while those on
the right are after transformation. As it can be observed in Figure 3.22a, the
affine transformation results yielded an approximation curve (pink) that more

34

........................... 3.3. Non-photorealistc rendering (NPR)

(a) : Least square error affine transformation between approximation curve (pink)
and 2nd B-spline (cyan) applied to complex curve (blue)

(b) : Least square error similarity transformation between approximation curve
(pink) and 2nd B-spline (cyan) applied to complex curve (blue)

Figure 3.22: Example of applying affine and similarity transformations on a
region of the conchoid (blue)

35

3. Materials and Methods

(a) : Least square error affine transformation between approximation curve (pink)
and 2nd ’straighter’ B-spline (cyan) applied to complex curve (blue)

(b) : Least square error similarity transformation between approximation curve
(pink) and 2nd ’straighter’ B-spline (cyan) applied to complex curve (blue)

Figure 3.23: Detrimental example of applying affine and similarity
transformations on a region of the conchoid (blue)

36

........................... 3.3. Non-photorealistc rendering (NPR)

closely ’fits’ the second B-spline (cyan). This was less the case in Figure 3.22b.
On the other hand, the affine transformed complex curve (blue) was ’stretched’
significantly more compared to the similarity transformed case. This can be
attributed to the affine transformation’s ability to shear and scale non-uniformly.
Although this effect was not necessarily a downside in the example shown in
Figure 3.22, it became detrimental when the second B-spline was ’straighter’
as seen in Figure 3.23. Here, the affine transform’s extra 2 dof ’squashed’ the
complex curve until most of its shape was lost.

(a) : Inward facing trajectory
generated from

conchoid of de Sluze

(b) : Outward facing trajectory
generated from

conchoid of de Sluze

Figure 3.24: Example of NPTs created from the conchoid of de Sluze

Based on the results seen in Figure 3.23, the similarity transform was utilized to
generate the NPT (yellow) seen in Figure 3.24. This transformation was repeated
segment by segment across the entire photorealistic B-spline path (blue) in Figure
3.24. This resulted in what could be considered as the ’ideal’/non-distorted version
of the trajectory since each self-intersecting loop is generated mathematically.
Another further benefit of using this process is that the NPT’s orientation could
be flipped so that it would ’face’ inwards or outwards.

Even though all results until now have assumed that the generated trajectory
would have constant height, there are some simple cases where this would be
erroneous such as dashed trajectories. For such trajectories, the height (i.e.
z-values) should vary over time as the tip of the glue gun approaches and
distances itself from the surface of the target. An efficient approach to generating
such trajectories is with the use of Fourier series. The Fourier series is the
estimation of a periodic function using the linear combination of sinusoids and is
described as seen in Equation 3.22. a0, an and bn are Fourier coefficients while T
is the length of one period. Based on [Han14], the Fourier coefficients for some

37

3. Materials and Methods

(a) : 3D dashed trajectory after
applying half-rectified sine wave

to 2D trajectory

(b) : 3D dotted trajectory after
applying full-rectified sine wave

to 2D trajectory

Figure 3.25: Example of dotted and dashed trajectories in 3D

Wave type a0 an bn

Half-rectified sine 2A
π


−2A

π(1−n2) for mod(n,2) = 0
0 for mod(n,2) 6= 0

{
A
2 for n = 1
0 for n > 1

Full-rectified sine 4A
π


−4A

π(1−n2) for mod(n,2) = 0
0 for mod(n,2) 6= 0

0

Sawtooth/ramp A 0 − A
nπ

Table 3.3: Fourier coefficients for some common waves

38

................................ 3.4. Trajectory classification

common waves are as seen in Table 3.3. Of interest are the rectified sine waves
were as they could be used to determine the behavior of a dashed trajectory.
Applying the relevant coefficients to Equation 3.22 results in Equations 3.23 and
3.24. They could then be applied to the 2D B-spline trajectory generated in
Figure 3.16b after paramterizing it by length. This yielded the 3D version as seen
in Figure 3.25.

f(t) = a0
2 +

∞∑
n=1

[
an cos (ωnt) + bn sin (ωnt)

]
(3.22)

where an = 2
T

T∫
0

f(t) cos (ωnt)dt,

bn = 2
T

T∫
0

f(t) sin (ωnt)dt,

ω = 2π
T

zhalf = A

π
+ A

2 sin (ωt)− 2A
π

∞∑
n=1

cos (2nωt)
4n2 − 1 (3.23)

zfull = 2A
π
− 4A

π

∞∑
n=1

cos (nωt)
4n2 − 1 (3.24)

3.4 Trajectory classification

With a method to generate NPTs, there was now a need to associate user
inputs (i.e. human drawn curves) with the NPTs that were considered the most
similar. Although the HTC Vive system has a consistent sampling rate[NLL17],
the inconsistency in the speed of human motion and the type of trajectory being
drawn made the number of coordinate points for every trajectory segment of fixed
length non-equal. This was an issue as correspondence between coordinates of
different trajectories (which this thesis uses as part of the feature vector) would
be unknown to the classifier being trained[LKP07]. In order to overcome this
issue, the global interpolation method for B-splines in Section 3.3.2 was used
to resample the trajectory segments. This was so that each would contain the
same number of coordinate points which would allow correspondence between
trajectory points to be determined naturally.

3.4.1 Supervised learning

Supervised learning is generally about the learning of the mapping between
data and their respective labels. After being trained, the classifier is utilized to
predict the labels i.e. the new data’s class. Supervised learning is very common
in cases like spam filtering and is usually very simple to implement. It, however,
suffers from the downside that the number of classes must be known and that

39

3. Materials and Methods
all training data instances need to be labelled beforehand which can be very time
consuming[MRT18]. In this thesis’ case, data instances are never expected to
number more than a few thousand and all class labels are known which makes
the supervised learning approach suitable for the classification problem.

Classification algorithms can be split into two general types, parametric and
non-parametric[Alp09]. In the parametric case, it is assumed that the dataset
being used has a known distribution (usually Gaussian). This allows the parametric
model to base itself on the mixture of probability distributions. This means that
parametric learners have a fixed structure which means fixed complexity and
number of parameters. Their optimal parameters (e.g. mean and variance)
can usually be determined using approaches like maximum likelihood estimation.
Some examples of parametric learners are linear regression and SVMs with linear
kernels which could be used for multiclass problems.

Non-parametric models, on the other hand, can have potentially infinite
parameters due to the fact that the structure and the complexity of the model
grows as the amount of training data increases. This means that non-parametric
models are appropriate for datasets where no assumption can be made about their
structure which is the case for this thesis. The downside to using a non-parametric
model is that it is memory-based, all training instances have to be stored before a
final prediction model can be built from them. This is different from parametric
models which only require the computation of the optimal parameters to build
their prediction model. Examples of non-parametric learners include decision
trees, k-nearest neighbor (KNN) and SVMs with the radial basis function (RBF)
kernel. All of these were used in the classification of this thesis’ trajectories.

Decision Tree

One of the earliest non-parametric models for supervised learning is the
decision tree algorithm[Bel59]. It is hierarchical in nature and has branches that
grow in number as more training data is provided. A decision tree consists of
decision nodes, Q, that branch into two other decision nodes until the branches
terminate at leaf nodes which contain the data classes. At every decision node,
a test function Q(θ) is applied to the input. The results determine which branch
to follow and this repeats until a leaf node. Every decision node recursively splits
the data space into left and right subsets as seen in Equation 3.25. This is done
until all data with the same labels are grouped together.

Q(θ) =
{
Qleft(θ) for xj ≤ tm
Qright(θ) otherwise

(3.25)

where x is the training vector, θ = (j, tm) is the decision split containing feature
j and the decision threshold at the m-th node, tm. The impurity (i.e. the
frequency of a randomly chosen data from the training set being randomly labeled
incorrectly) of node m can then be determined by Equation 3.26.

G(Q, θ) = nleft
Nm

I(Qleft(θ)) + nright
Nm

I(Qright(θ)) (3.26)

40

................................ 3.4. Trajectory classification

where nleft and nright are the number of data samples in each subset, Nm is the
total number of data samples at node m i.e. nleft + nright and I is the impurity
metric which in this thesis’ case is according to Equation 3.27.

I(Xm) =
∑
k

p(k|m)(1− p(k|m)) (3.27)

Here, p(k|m) is the probability of observing a data sample from class k in
node m. With G(Q, θ) known, the decision splits that will minimize impurity
metric I can then be obtained from Equation 3.28. In this manner, Equations
3.25 to 3.28 are performed recursively so that the optimal split, θ∗, at every
decision node is determined.

θ∗ = arg min
(
G(Q, θ)

)
(3.28)

K-nearest neighbor (KNN)

Another early non-parametric learner is the KNN algorithm[CH+67]. In the
KNN, the class of some input data is determined by a majority vote of the k-nearest
neighbors to it. This makes the algorithm’s efficiency dependent on the size of its
training set. This is due to the fact that it has to store every single training data
in order make predictions about new data by computing the distances between
them. The distance used is usually the euclidean distance and the parameter
k determines the amount of smoothing between class boundaries[Alp09]. This
is due to the fact that having multiple neighbors reduces the effect of noise on
class borders.

Support Vector Machine (SVM)

In contrast to the decision tree and KNN algorithms, SVMs are very
recent[CV95]. They have been used to great effect on non-linear classification
due to the SVMs’ ability to map data into higher-dimensional space. The
purpose of this mapping is so that data, that is not linearly separable in its
original dimensions, may be transformed and separated by a hyperplane in higher
dimensions. Even if the data is linearly separable, SVMs can improve upon the
separation by determining what is known as the maximum-margin
hyperplane[MRT18]. This means that the distance from the nearest point to the
class boundary is maximized. Assuming binary classes, the maximum-margin
hyperplane consists of the points x, known as support vectors, that satisfy
Equation 3.29. w is the normal vector to the hyperplane and b is a scalar that is
part of the parameter b

‖w‖ which describes the hyperplane’s offset from the
origin in the direction of w.

w · x− b = 0 (3.29)

If linearly separable, two parallel hyperplanes should be found at Equation
3.29 equal to 1 and −1 (assuming binary classes) instead of 0. These parallel
hyperplanes should contain the data points closest to the class border. Hence,

41

3. Materials and Methods
the convex optimization problem in Equation 3.30 has to be solved in order to
find the parallel hyperplanes that have maximum distance between them. This is
because the distance between both is equivalent to 2

‖w‖ .

min
w,b

‖w‖2 (3.30)

subject to: yi(w · xi − b) ≥ 1, ∀i ∈ [1, n]

where yi is one of the binary classes (1 or −1) and n is the number of training
data. On the other hand, data that is not linearly separable requires a more
relaxed version of the constraint seen in Equation 3.30. This is introduced by
using slack variables, ξi. Their values are usually determined by the hinge loss
function[MRT18] as seen in Equation 3.32.

yi(w · xi − b) ≥ 1− ξi, ∀i ∈ [0, n− 1] (3.31)
where ξi = max(0, 1− yi(w · xi − b)) (3.32)

The new constraints in Equation 3.31 then transforms Equation 3.30 into the
convex optimization problem as seen in Equation 3.33. λ ≥ 0 acts as a weight
to control the effect of the slack variables, ξ.

min
w,b,ξ

‖w‖2 + λ
n−1∑
i=0

ξi (3.33)

subject to: yi(w · xi − b) ≥ 1− ξi, ∀i ∈ [0, n− 1]

where ξi ≥ 0 and ξ =

ξi...
ξn


Although Equation 3.33 allows for the determination of a linear classifier,

a non-linear classifier is required in many other cases. Linear SVMs can be
adapted for non-linear classification through the use of the kernel trick[BGV92].
First, data is mapped into a higher dimensional space as usual. Then, it is
transformed non-linearly via a kernel so that the resulting support vectors form a
linear hyperplane in that non-linear space. This is useful as the hyperplane may
turn out to be non-linear in the original space. w is mapped by x as seen in
the left of Equation 3.34 where the support vectors consist of some weighted
(indicated by ai) linear combination of kernel transformed x. The kernel trick
can be applied by adding an extra dot product operation to w giving the right
side of Equation 3.34.

w =
n−1∑
i=0

αik(xi,x) ⇒ w · ϕ(x) =
n−1∑
i=0

αiyik(xi,x) (3.34)

where ϕ(x) = y, k(xi,xj) = ϕ(xi) · ϕ(xj), ∀(i, j) ∈ [0, n− 1]
One of the most popular kernels used in SVMs is the Gaussian or radial basis

function (RBF) kernel[MRT18]. This is defined in Equation 3.35 and allows for
class boundaries that form closed curves or surfaces in the original feature space.

k(xi,xj) = exp
(
− ‖xi − xj‖

2

2σ2

)
(3.35)

42

................................ 3.4. Trajectory classification

Even with non-linear kernels, SVM is still a binary classifier. Despite it
being possible to formulate multiclass SVM classification as a single optimization
problem[MRT18], most implementations overcome this limitation by reducing the
multiclass problem to a binary one. By treating all classes except one as a single
class, a binary SVM classifier is then trained to discriminate between data in
that one class and data from the rest of the other classes hence the name of this
method, "one-versus-rest". This results in as many classifiers as there are classes
being trained and have an associated confidence score. They are then aggregated
into the final model where the individual classifier with the greatest confidence
score determines the class of the input data for the multiclass problem.

3.4.2 Feature selection

Before the classifiers in Section 3.4.1 can be utilized, there is a need to select
features in the dataset. This is because prediction accuracy can be improved
by removing noisy/redundant features. This also reduces the dimensions of
the problem and speeds up the training process. Some of the methods to
determine which subset of features to use include statistical evaluations such
as the chi-squared, χ2, test and the analysis of variance (ANOVA) F-test. The
χ2 test is among one of the most common statistical metrics[For03]. In a
machine learning context, it is used to determine which features are least likely to
contribute to classification. It establishes this by evaluating the likelihood of them
being class independent. It is defined in Equation 3.36 where N is the number of
data samples, K is the number of classes, Oi,j is the number of observations of i
from class j while Ei,j is the expected number of observations of i from class j.
A greater χ2 value means more statistically significant data that would provide
more information for a classifier to make a prediction.

χ2 =
N−1∑
i=0

K−1∑
j=0

(Oi,j − Ei,j)2

Ei,j
(3.36)

The χ2 test is, however, meant for frequency and boolean based datasets
which makes it incompatible with this thesis’ dataset since it contained trajectory
coordinate values. The ANOVA F-test[EIO14], on the other hand, was suitable
as it would determine the ratio between:. the variance of the means between classes and. the variance of the sample means within a class

as seen in Equation 3.37. K is the number of classes, ni is the number of data
points in the i-th class, Ȳi is the mean of the data in class i, Ȳ is the mean of all
data in all classes, Yi,j is the j-th data in class i and N is the total number of
data points in all classes. This allowed the ANOVA F-test to identify features that
were very similar to each other and eliminate them from the dataset. This was
helpful as high F value features would ensure each class had very little overlap

43

3. Materials and Methods
in distribution and hence, clearer class boundaries.

F =

K−1∑
i=0

ni
(Ȳi−Ȳ)2

K−1

K−1∑
i=0

ni∑
j=0

(Yi,j−Ȳi)2

N−K

(3.37)

Figure 3.26: Comparison of supervised classifiers without the use of cross-
validation on xyz features

3.4.3 Cross-validation

Using the feature selection metric in Equation 3.37, the training half of the
trajectory dataset containing xyz coordinates was trimmed. Then, it was utilized
to train the classifiers mentioned in Section 3.4.1 which yielded the accuracy scores
seen in Figure 3.26. Different fractions (e.g. if the total number of features
was 100, then 0.1 would mean only 10 features were being used in training
and classifying) as well as a grid (i.e. brute-force) search for hyper-parameter
selection[BBBK11] were used. This was because it was uncertain how much the
training set should be trimmed by and which hyper-parameters to choose for the
classifiers in order to obtain the best results. On first glance, the scores were very
worrisome especially for the KNN algorithm as a 100% accuracy score on a dataset
as small as this thesis’ usually indicated that overfitting had occurred[Alp09].
One way to overcome this was with the use of k-fold cross-validation[Alp09].
Cross-validation is where a training set is split into k equal subsets and k − 1
subsets are used for training while the subset left out is utilized for testing. This
process is repeated k times with a different subset being used for testing each
time and the mean accuracy for all folds is then used as the final score. Another

44

................................ 3.4. Trajectory classification

Figure 3.27: Comparison of supervised classifiers with the use of 5-fold stratified
cross-validation on xyz features

point to note is that the class distributions are unbalanced as seen in Table 3.1
so stratified splits[Alp09] had to be used. This ensured that the ratio between
classes in all k subsets were the same. This resulted in a more general model and
realistic scores as seen in Figure 3.27. The decision tree and KNN algorithms
performed better on a smaller fraction of ANOVA F-tested features while the
RBF SVM did better on a larger fraction.

3.4.4 Feature extraction

From Figure 3.27, it can be seen that the highest score for any one of the
algorithms was slightly above 70%. This meant that at least 40 of the 156
training samples were being misclassified. One simple way to boost the accuracy
was by the extraction of features as seen in [BKS06]. They determine the view
invariant features, CDF and CSS, of their trajectories. The 3D equivalent that
was used in this thesis was formulated as seen in Equations 3.38 and 3.39. CDF,
d, was determined by computing the distance between all points and the centroid
of the trajectory. Curvature, κ, and torsion, τ ,[ASG17] was determined using the
derivatives of the trajectory.

d =
√

(x− xc)2 + (y − yc)2 + (z − zc)2 (3.38)

where xc = 1
N

N−1∑
i=0

xi, yc = 1
N

N−1∑
i=0

yi, zc = 1
N

N−1∑
i=0

zi

κ = ‖v̇ × v̈‖
‖v̇‖3

, τ = (v̇ × v̈) · ...v
‖v̇ × v̈‖2

where v =

xy
z

 (3.39)

45

3. Materials and Methods

Figure 3.28: Comparison of supervised classifiers with the use of 5-fold stratified
cross-validation on CDF, κ and τ features

Figure 3.29: Comparison of supervised classifiers with the use of 5-fold stratified
cross-validation on xyz, CDF, κ and τ features

46

................................ 3.4. Trajectory classification

With the extracted features, the same training process that yielded Figure
3.27 was applied and this gave Figure 3.28. As it can be seen, there was an
obvious decrease in classifier accuracy when a larger fraction of the features were
used. This meant that a majority of the information provided by CDF, κ and τ
was actually redundant. So, removing them using the ANOVA F-test actually
helped classification. Nevertheless, accuracy results were not as high as when
only the trajectory xyz coordinates were used for training as seen in Figure 3.28.
When CDF, κ and τ were used on top of the xyz features, however, the same
training method resulted in Figure 3.29. This time, there was an improvement
in accuracy when using the half or less of the total features for all classifiers.
The only exception was the decision tree classifier which had almost the same
accuracy regardless of the fraction of features used. Although the algorithms all
had similar accuracy scores, this did not mean that all of them were misclassifying
the same cross-validated samples. As such, a linear combination of each classifier
was made. This is known as a voter[Alp09] where each classifier’s predictions are
taken into account before the final prediction is made. This was similar to the
SVM "one-versus-all" approach for multiclass problems. There are two types of
voters:. hard voters which take into account only the number of predictions by

multiple classifiers and assigns the final prediction as the prediction with the
greatest frequency,. soft voters which take into account not only the prediction frequency but
also the probability of the predictions made by each classifier.

Both were utilized on the final system with the testing half of the trajectory
dataset as seen in Chapter 4.

47

Chapter 4
Experimental Results

4.1 Final system architecture

Trajectory
dataset

HTC Vive
controller

Asus XTION
3D sensor

Preprocess
trajectory

data

Preprocess
image data

Feature
selection &
extraction

Shape
detection

Train classifier

Predict
trajectory

Generate
trajectory

Human
demonstration

Target Robot
planning

Figure 4.1: Diagram of final system developed by this thesis

With all the methods detailed in Chapter 3, the final system developed by
this thesis is structured as seen in Figure 4.1. The dotted box represents the
parts of the system where quick computation would be crucial as an industrial
level implementation would ideally not require the user to wait for long periods
of time. Classifier training, on the other hand, could take much longer as models
could be pre-trained before being deployed.

4.2 Classifier results

The classifiers in Section 3.4.1 were bundled into two voters as each voter
should ideally have an odd number of classifiers to prevent a tie. The weakest
of the 4 algorithms was determined from Figure 3.29 for specific fractions of
features and eliminated...1. (Decision tree + KNN + RBF SVM) for 0.2 and 0.3 of total features..2. (Decision tree + linear SVM + RBF SVM) for 0.3 and 0.5 of total features

Both voters were then used on the testing half of the trajectory dataset which
yielded Figures 4.2 and 4.3. It can be seen that..1. has consistently greater

49

4. Experimental Results

Figure 4.2: Accuracy scores for voter..1.

Figure 4.3: Accuracy scores for voter..2.
50

.............................4.3. NPT prediction and generation

accuracy when the xyz, CDF, κ and τ features are trimmed down to 20% of
their original numbers by the ANOVA F-test whereas..2. has similar accuracy
regardless of whether feature selection reduced the features to 30% and 50% of
their original number. Another point to note is that the choice of either voter did
not significantly impact the accuracy scores and as such,..1. with hard voting
and a fraction of 0.2 was used to generate the results in Section 4.3.

4.3 NPT prediction and generation

(a) : Line trajectory made by HTC Vive controller used as input to system

Figure 4.4: Trajectory outputs of system for line input 4.4a in 2D and 3D for
blocks with different shape

51

4. Experimental Results

(a) : Dashed trajectory made by HTC Vive controller used as input to system

Figure 4.5: Trajectory outputs of system for dashed input 4.5a in 2D and 3D
for blocks with different shapes

Figure 4.6: Example of dotted NPTs for blocks with different shapes

52

.............................4.3. NPT prediction and generation

(a) : Low frequency sine trajectory made by HTC Vive controller used as input to system

Figure 4.7: Trajectory outputs of system for low frequency wave input 4.7a in
2D and 3D for blocks with different shapes

Figure 4.8: Example of inward conchoid NPTs for blocks with different shapes

53

4. Experimental Results

(a) : High frequency sine trajectory made by HTC Vive controller used as input to system

Figure 4.9: Trajectory outputs of system for high frequency wave input 4.9a in
2D and 3D for blocks with different shapes

Figure 4.10: Example of outward conchoid NPTs for blocks with different shapes

54

.............................4.3. NPT prediction and generation

Figure 4.11: Example of sawtooth NPTs for blocks with different shapes

A selection of individual trajectory segments from the testing half of the
dataset was visualized in Figures 4.4a, 4.5a, 4.7a and 4.9a. They were used as
inputs to the system in 4.1 and their corresponding outputs were determined by
voter..1. . The voter identified the input trajectory’s class and chose the most
similar NPT to superimpose over the shape detection results. This yielded Figures
4.4, 4.5, 4.7 and 4.9. Although the system should be capable of classifying more
different types of NPTs, there was not enough time to gather more data for
training the classifiers. Thus, only their trajectories were generated as shown
in Figures 4.6, 4.8, 4.10 and 4.11. The triangular shape for all experiments
had a blank background as it was too thin for the Asus XTION PRO’s depth
sensor to detect. This meant that the technique detailed in Section 3.2.4 was not
applicable and only its RGB image was utilized. This limitation will be discussed
further in Chapter 5.

55

Chapter 5
Discussion and Conclusion

As seen in the cases of dashed and dotted trajectories, there is no difference
in the shape of the trajectory from the top-down perspective as only the height
values change over time. The sawtooth trajectory seen in 4.11 was generated
using the concept behind Equation 3.13 with the appropriate Fourier coefficients
found in Table 3.3. This reinforces the point that generating trajectories of
naturally periodic functions is trivial unlike those seen in Figures 4.8 and 4.10.
Those required the approach discussed in Section 3.3.3.

Based on Figure 4.1, shape recognition and NPT generation within the system
can be observed to be decoupled. This has the advantage of the fact that
the trajectory generated will not be drastically different from the shape of the
target even if misclassification occurred. Thus, this makes the system more
predictable/safer. This decoupling was also necessary otherwise ’autocompletion’
of the final trajectory would be far more difficult. This is due to the fact that the
shape of the target would have to be deduced from the input trajectory segments
in Section 3.1.3. Another benefit to this decoupling is that user made trajectories
would not be constrained to being performed on the surface of the target (which
is the case for this thesis). They could have been done further away from the
robot which would increase safety.

According to Section 4.2, classification accuracy was on average greater
than 85%. This meant that at least 20 of the 156 testing samples were being
misclassified i.e. half the rate associated with the training seen in Figure 3.27.
Also, utilization of a hard or soft voter structure did not have any significant
effect as mentioned in Section 4.2. Although one could make the argument
that the linear combination of multiple classifiers would allow for the check and
balance of overfitted models, more experimentation needs to be done before this
can be ascertained.

Some of the issues with the system developed by this thesis includes the bias
in the trajectory dataset used to train the supervised classifiers. As mentioned
earlier, most of the trajectory data was performed on the surface of the targets.
Thus, there was most likely a very high correlation between the xyz trajectory
coordinates of each data sample. This would explain why initial training with
those features resulted in such high accuracy values as seen in Figure 3.27.

57

5. Discussion and Conclusion
Without further experimentation, it is uncertain whether the features and training
methods used in Section 3.4 would yield results as high as Section 4.2 for more
general cases i.e. when input trajectories are performed in different areas of the
coordinate space.

(a) : Depth image for triangular
target

(b) : Grayscale version of depth
image for triangular target

Figure 5.1: Example of unresolvable depth image for a thin block

Another issue is the limitation of the RGB and depth image fusion to remove
the checkerboard pattern for shape recognition. The checkerboard pattern had
to be replaced as mentioned in Section 4.3 where all the triangular targets have a
plain background. This was due to the target being too thin (less than 1cm) which
resulted in a grayscale depth image that was too noisy for Canny edge detection
to pick up its outline. As seen in Figure 5.1b, the boundaries of the target
were less distinct compared to that in Figure 3.5b. One way to overcome this
constraint is by elevating the target by placing something else smaller underneath
it. This, however, introduces complications such as the target tipping or sliding
off the object elevating it. There is also the option using a sensor with greater
depth resolution but this may not be a cost-effective approach.

From an operator’s standpoint, the scaling process utilized by this thesis’
system is also another issue as it is controlled by a single value (e.g. 0.1 would
scale the contour down to 10% of its original size). This means that fine control
of the trajectory’s perpendicular distance from the target’s edges (e.g. 5mm
from edge etc.) is not possible. As a result, trial and error is usually required to
determine the user’s desired scaling factor. This is further complicated by the
fact that it is difficult to visually determine the exact distance in images since
they are defined by discrete pixels not continuous values.

There is also the issue of whether the 5th order B-splines used to generate the
trajectories seen in Section 4.3 map to suitable joint position, velocity, acceleration

58

................................5. Discussion and Conclusion

and jerk profiles for an industrial robot. Although the use of B-splines in the
NPTs allow for continuity in higher order dimensions, this is only for the space
where the trajectory resides. This means that within the joint space of the robot,
there is no guarantee that there will be no sudden changes in joint position,
velocity, acceleration and/or jerk. This is because the discrete points on the
B-splines are spaced equidistantly regardless of the physical limits of an industrial
robot. Thus, more study is required to determine how to best incorporate the
real-world limits of industrial robotic systems into the trajectories generated by
the system developed by this thesis.

Figure 5.2: Example of NPT that system 4.1 cannot generate

Although the approach in Section 3.3.3 yielded many appropriate looking
’ideal’ versions of NPTs as seen in Section 4.3, the method was limited to open
curves. This is due to the fact that the approximation line (pink) depended on the
endpoints of the complex curves as seen in Figure 3.21. As such, for trajectories
similar to that seen in Figure 5.2, this approach would not be applicable as a
circle starts and ends at the same position. Another technique would be required
to take into account the entire curve regardless of where its endpoints are. On
top of that, there would also be the issue of determining the profile of the height
values as the trajectory moves between the yellow circles. It would definitely not
be as straightforward as the case of dashed and dotted trajectories.

In addition, the assumption of a constant height for most of the trajectories
generated in this thesis has its downsides. One of the reasons this assumption
is valid is that the glue from a glue gun is viscous which means it will drop
downwards. Also, the best way to avoid object collision is for the user to set a
trajectory height just slightly above the target’s surface. Nevertheless, relying on
a human operator means that the chance of human error is increased[KC].

Finally, the prediction method used for this thesis’ system does not take into
account the case where a user is demonstrating a completely new pattern/complex

59

5. Discussion and Conclusion
curve unrelated to all the data used for training the classifier. One possible way
of dealing with such a scenario is with the use of prediction probabilities which
quantify the confidence level of the classifier. If the confidence level is below a
certain threshold, some 3D to 2D transform could be applied to the new input
pattern. Then, the approach in Section 3.3.3 could be utilized to create an
entirely new NPT. This idea, however, was not explored in this thesis as there
was not enough time to collect the relevant input trajectory data.

Although the system developed by this thesis was not perfect, it has set the
groundwork for the further development of ’autocompleting’ human demonstrated
NPTs that can be used for motion planning in an industrial setting. A list
containing the many improvements that can be made to adapt the system for a
larger variety of scenarios is detailed in Chapter 6.

60

Chapter 6
Future work

There are a large number of improvements and additions on top of those
mentioned in Chapter 5 that can be made to this thesis’ system in order to allow
it to encompass a greater assortment of conditions associated with automatic
glue application by an industrial robot. With some reiteration, the following list
contains descriptions and approaches to some of the work that can further what
this thesis has done.. Decrease the amount of bias in the trajectory dataset used to train the

supervised classifiers by collecting trajectory data performed in different
areas of the coordinate space (i.e. not on the surface of the target block) in
order to allow for a more general classification of NPT types.. Improve upon this thesis’ RGB and depth image fusion to detect even thinner
targets on a checkerboard pattern. As the checkerboard is necessary only
for calibrating the HTC Vive system, it does not have to be part of the
image being used for shape recognition. Nevertheless, it would be more
convenient to not have to change backgrounds. One possible approach to
enhancing the outline of a thin target is by subtracting the values in the
depth image when nothing is present from the depth image containing the
target. This idea was not pursued by this thesis due to the experimental
area being modified after the dataset in Section 3.1.1 was created making it
difficult to recreate the original experimental setup.. Improve on the precision of the scaling approach used by this thesis’ system
so that specific perpendicular distances between target edges and generated
trajectory can be specified.. Incorporate the limits of an industrial robot when generating NPTs to ensure
smooth and appropriate position, velocity, acceleration and jerk profiles in
joint space.. Improve the methodology used to generate the approximate line (pink) for
complex curves as seen in Figure 3.21 so that it encompasses a larger variety
of open and closed complex curves.. Automate the generation of trajectory height to reduce the chance of human
error. This could be done with the use of a 2nd sensor placed to the side

61

6. Future work
of the target so that a profile of its height can be determined via edge
detection.. Improve the classification algorithm to take into account prediction
probabilities. This will allow newly introduced user made trajectories which
are classified with low probabilities to leverage on the method in Section
3.3.3 for generating new NPTs.. Add an on-off profile that synchronizes the dispensing of glue from the glue
gun with the NPT so that glue is not applied on undesired locations such
as between dashes or dots.

Finally, work on intergrating the system developed in this thesis with an
actual industrial robot system should be explored. Due to the lack of time, it
was not possible to test out the performance of path/trajectory planning by an
actual industrial robot using the trajectories generated by this thesis’ system.
Nevertheless, it is acknowledged that the space in which the NPTs were generated
does not necessarily correspond to the right area in the robot’s workspace so
there would be a need to determine the correct transformation matrix either
from camera or HTC Vive calibration matrices. This and the generation of an
appropriate joint position, velocity, acceleration and jerk profile would be most
key to allowing for the demonstration of NPTs in an industrial setting to be a
success.

62

Appendix A
Algorithms

Algorithm 1 Image preprocessing and shape recognition
1: Load images irgb and idepth from rosbag files and store in dictionary
2: for (irgb, idepth) in dictionary do
3: Crop and remove NaNs from (irgb, idepth) to give (nrgb, ndepth)
4: Convert (nrgb, ndepth) into grayscale, (grgb, gdepth)
5: Apply Canny edge detection to grgb to give crgb
6: Apply morphological dilation to crgb to give drgb
7: Determine contours in drgb as trgb
8: if No. of objects derived from trgb ! = user given value then
9: Apply Gaussian filter to idepth to give sdepth

10: Apply Canny edge detection to sdepth to give cdepth
11: Apply morphological dilation to cdepth to give ddepth
12: Apply ddepth as mask onto crgb to give ccombi
13: Determine contours in ccombi as tcombi
14: j = 0
15: while No. of objects from tcombi ! = user given value do
16: j + +
17: if j > user specified max then
18: break
19: end if
20: for k from 0→ j do
21: Apply morphological closing to ccombi to give lcombi
22: end for
23: Determine contours in lcombi as tcombi
24: end while
25: Apply morphological erosion to lcombi to give ecombi
26: Apply median blurring to ecombi to give mcombi
27: Determine contours in mcombi as tcombi
28: end if
29: Store tcombi in dictionary with associated (irgb, idepth)
30: end for
31: return dictionary

63

A. Algorithms......................................
Algorithm 2 Trajectory preprocessing and classification

1: Load trajectory coordinate data txyz from rosbag
2: for ti in txyz do
3: Segment by length to give ti = [s0,s1,. . . ,sn]
4: for sj in ti do
5: Convert sj to a B-spline bj with constant number of points
6: Compute CDF, κ and τ of bj
7: Assign label/class of segment as i
8: Store (bj , CDF, κ, τ , label) in dictionary dt
9: end for

10: end for
11: Initialize classifiers, clf = [c0, c1, . . . , cn]
12: Initialize relevant hyper-parameters, p = [p0, p1, . . . , pn]
13: Select best features in dt using ANOVA F-test to give dslctd
14: for ci in clf do
15: Set ci to use 5-fold CV and pi for grid search
16: Train ci using dslctd and determine best parameters pi,b
17: Set ci parameters to pi,b to give ci,b
18: Assign ci,b as an estimator in voter
19: end for
20: return voter

Algorithm 3 NPT generation
1: Load contour timg
2: Load voter v
3: Load user demonstrated trajectory u
4: Convert timg into B-spline b with n points
5: Predict trajectory type y using v on u
6: if y can be modelled using a mathematically periodic function then
7: Compute NPT waypoints, w, using appropriate function
8: else
9: Calculate a single period, r, of NPT using appropriate function

10: Convert r into B-spline br with m points
11: Determine approximation B-spline a, also with m points, of br
12: Initialize empty w
13: for j from 0→ n

m − 1 do
14: s = bi[(j ∗m) : ((j + 1) ∗m)− 1]
15: Find the similarity transformation matrix M between a and s
16: Apply M to r and append result to w
17: end for
18: end if
19: Apply low-pass filter to w to give wlow
20: Convert wlow into a NPT B-spline with 2 ∗ n points
21: return NPT B-spline

64

Appendix B
Glossary

Symbol/Abbreviation Meaning

ANOVA ANalysis Of VAriance
ASL Australian Sign Language
CDF Centroid Distance Function
CSS Curvature State Space
dof degrees of freedom
HMM Hidden Markov Models
KNN K-Nearest Neighbors
MRF Markov Random Field
NaN Not a Number
NPR Non-Photorealistic Rendering
NPT Non-Photorealistic Trajectory
RBF Radial Basis Function
RGB Red, Green, Blue
ROS Robot Operating System
SVM Support Vector Machine
Cm Curve continuity to the m-th order
κ Curvature
τ Torsion
χ2 Chi-squared
⊕ Morphological dilation
	 Morphological erosion
◦ Morphological opening
• Morphological closing

65

Appendix C
Bibliography

[AK03] Fredrik Andersson and Berit Kvernes, Bezier and b-spline
technology, Umea university Sweden (2003).

[Alp09] Ethem Alpaydin, Introduction to machine learning, MIT press,
2009.

[AMFM11] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra
Malik, Contour detection and hierarchical image segmentation,
IEEE transactions on pattern analysis and machine intelligence
33 (2011), no. 5, 898–916.

[ANSL03] S Amin-Nejad, JS Smith, and J Lucas, A visual servoing system
for edge trimming of fabric embroideries by laser, Mechatronics
13 (2003), no. 6, 533–551.

[ASG17] Elsa Abbena, Simon Salamon, and Alfred Gray, Modern
differential geometry of curves and surfaces with mathematica,
Chapman and Hall/CRC, 2017.

[BBBK11] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs
Kégl, Algorithms for hyper-parameter optimization, Advances in
neural information processing systems, 2011, pp. 2546–2554.

[BCDS08] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan
Schaal, Robot programming by demonstration, Springer handbook
of robotics (2008), 1371–1394.

[Bel59] William A Belson, Matching and prediction on the principle of
biological classification, Journal of the Royal Statistical Society:
Series C (Applied Statistics) 8 (1959), no. 2, 65–75.

[BGV92] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik,
A training algorithm for optimal margin classifiers, Proceedings
of the fifth annual workshop on Computational learning theory,
ACM, 1992, pp. 144–152.

[BKS06] Faisal I Bashir, Ashfaq A Khokhar, and Dan Schonfeld, View-
invariant motion trajectory-based activity classification and
recognition, Multimedia Systems 12 (2006), no. 1, 45–54.

67

C. Bibliography
[BSS07] Meru Brunn, Mario Costa Sousa, and Faramarz F Samavati,

Capturing and re-using artistic styles with reverse subdivision-
based multiresolution methods, International Journal of Image
and Graphics 7 (2007), no. 04, 593–615.

[Can87] John Canny, A computational approach to edge detection,
Readings in computer vision, Elsevier, 1987, pp. 184–203.

[CH+67] Thomas M Cover, Peter E Hart, et al., Nearest neighbor pattern
classification, IEEE transactions on information theory 13 (1967),
no. 1, 21–27.

[CV95] Corinna Cortes and Vladimir Vapnik, Support-vector networks,
Machine learning 20 (1995), no. 3, 273–297.

[Die95] Paul Dierckx, Curve and surface fitting with splines, Oxford
University Press, 1995.

[EIO14] Nadir Omer Fadl Elssied, Othman Ibrahim, and Ahmed Hamza
Osman, Research article a novel feature selection based on one-
way anova f-test for e-mail spam classification, Research Journal
of Applied Sciences, Engineering and Technology 7 (2014), no. 3,
625–638.

[FD09] Diego R Faria and Jorge Dias, 3d hand trajectory segmentation
by curvatures and hand orientation for classification through a
probabilistic approach, 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2009, pp. 1284–1289.

[For03] George Forman, An extensive empirical study of feature selection
metrics for text classification, Journal of machine learning
research 3 (2003), no. Mar, 1289–1305.

[FR99] Eckhard Freund and Juergen Rossmann, Projective virtual reality:
Bridging the gap between virtual reality and robotics, IEEE
Transactions on Robotics and Automation 15 (1999), no. 3,
411–422.

[FS94] Adam Finkelstein and David H Salesin, Multiresolution curves,
Proceedings of the 21st annual conference on Computer graphics
and interactive techniques, ACM, 1994, pp. 261–268.

[GMP05] Peter D Grünwald, In Jae Myung, and Mark A Pitt, Advances
in minimum description length: Theory and applications, MIT
press, 2005.

[GVPS12] Alessandro Gasparetto, Renato Vidoni, Daniele Pillan, and Ennio
Saccavini, Automatic path and trajectory planning for robotic
spray painting, ROBOTIK 2012; 7th German Conference on
Robotics, VDE, 2012, pp. 1–6.

68

..................................... C. Bibliography

[Han14] Eric W Hansen, Fourier transforms: principles and applications,
John Wiley & Sons, 2014.

[HOCS02] Aaron Hertzmann, Nuria Oliver, Brian Curless, and Steven M
Seitz, Curve analogies., Rendering Techniques, 2002, pp. 233–246.

[HZ03] Richard Hartley and Andrew Zisserman, Multiple view geometry
in computer vision, Cambridge university press, 2003.

[KC] Joonyoung Kim and Elizabeth A Croft, Trajectory planning for
robots: the challenges of industrial considerations.

[KC05] Dana Kulić and Elizabeth A Croft, Safe planning for human-
robot interaction, Journal of Robotic Systems 22 (2005), no. 7,
383–396.

[KMM+02] Robert D Kalnins, Lee Markosian, Barbara J Meier, Michael A
Kowalski, Joseph C Lee, Philip L Davidson, Matthew Webb,
John F Hughes, and Adam Finkelstein, Wysiwyg npr: Drawing
strokes directly on 3d models, ACM Transactions on Graphics
(TOG), vol. 21, ACM, 2002, pp. 755–762.

[LaV06] Steven M LaValle, Planning algorithms, Cambridge university
press, 2006.

[LHLG08] Jae-Gil Lee, Jiawei Han, Xiaolei Li, and Hector Gonzalez,
Traclass: trajectory classification using hierarchical region-
based and trajectory-based clustering, Proceedings of the VLDB
Endowment 1 (2008), no. 1, 1081–1094.

[LKP07] Chuanjun Li, Latifur Khan, and Balakrishnan Prabhakaran,
Feature selection for classification of variable length multiattribute
motions, Multimedia data mining and knowledge discovery,
Springer, 2007, pp. 116–137.

[LMPD15] Thomas Lindemeier, Jens Metzner, Lena Pollak, and Oliver
Deussen, Hardware-based non-photorealistic rendering using a
painting robot, Computer graphics forum, vol. 34, Wiley Online
Library, 2015, pp. 311–323.

[LP17] Kevin M Lynch and Frank C Park, Modern robotics, Cambridge
University Press, 2017.

[MPW14] Eka Samsul Maarif, Endra Pitowarno, and Rusminto Tjatur
Widodo, A trajectory generation method based on edge detection
for auto-sealant cartesian robot, Journal of Mechatronics,
Electrical Power, and Vehicular Technology 5 (2014), no. 1,
27–36.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar,
Foundations of machine learning, MIT press, 2018.

69

C. Bibliography
[NA12] Mark Nixon and Alberto S Aguado, Feature extraction and image

processing for computer vision, Academic Press, 2012.

[NLL17] Diederick C Niehorster, Li Li, and Markus Lappe, The accuracy
and precision of position and orientation tracking in the htc vive
virtual reality system for scientific research, i-Perception 8 (2017),
no. 3, 2041669517708205.

[OGL08] Alex Olwal, Jonny Gustafsson, and Christoffer Lindfors, Spatial
augmented reality on industrial cnc-machines, The Engineering
Reality of Virtual Reality 2008, vol. 6804, International Society
for Optics and Photonics, 2008, p. 680409.

[PMF08] Claudio Piciarelli, Christian Micheloni, and Gian Luca Foresti,
Trajectory-based anomalous event detection, IEEE Transactions
on Circuits and Systems for video Technology 18 (2008), no. 11,
1544–1554.

[S+85] Satoshi Suzuki et al., Topological structural analysis of digitized
binary images by border following, Computer vision, graphics,
and image processing 30 (1985), no. 1, 32–46.

[SD04] Saul Simhon and Gregory Dudek, Sketch interpretation and
refinement using statistical models., Rendering Techniques, 2004,
pp. 23–32.

[SL17] Ching-Long Shih and Li-Chen Lin, Trajectory planning and
tracking control of a differential-drive mobile robot in a picture
drawing application, Robotics 6 (2017), no. 3, 17.

[SS02] Thomas Strothotte and Stefan Schlechtweg, Non-photorealistic
computer graphics: modeling, rendering, and animation, Morgan
Kaufmann, 2002.

[SSGG19] Lorenzo Scalera, Stefano Seriani, Alessandro Gasparetto, and
Paolo Gallina, Non-photorealistic rendering techniques for artistic
robotic painting, Robotics 8 (2019), no. 1, 10.

[Sze10] Richard Szeliski, Computer vision: Algorithms and applications,
1st ed., Springer-Verlag, Berlin, Heidelberg, 2010.

[WR00] Joseph N Wilson and Gerhard X Ritter, Handbook of computer
vision algorithms in image algebra, CRC press, 2000.

70

	Introduction
	Motivations
	Goals
	Contribution of thesis

	Related Work
	Vision based trajectory generation
	Non-photorealistic rendering (NPR)
	Trajectory classification

	Materials and Methods
	Dataset
	Data collection
	Data types
	Trajectory segmentation

	Vision based trajectory generation
	Not a Numbers (NaNs) in digital image processing
	Grayscale images
	Canny edge detection
	RGB and depth image fusion
	Mathematical morphology
	Median filtering
	Contour detection

	Non-photorealistc rendering (NPR)
	Scaling
	B-splines
	Non-photorealistc trajectories (NPT)

	Trajectory classification
	Supervised learning
	Feature selection
	Cross-validation
	Feature extraction

	Experimental Results
	Final system architecture
	Classifier results
	NPT prediction and generation

	Discussion and Conclusion
	Future work
	Algorithms
	Glossary
	Bibliography

