CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Jasna Petrié

Mission planning for cooperative construction by a
team of unmanned aerial vehicles

Department of Cybernetics

Thesis supervisor: Dr. Martin Saska

cTu MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
4 N\
Student's name: Petric Jasna Personal ID number: 471712

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering
Study program: Cybernetics and Robotics

Branch of study: Cybernetics and Robotics

Il. Master’s thesis details
4 ™\
Master’s thesis title in English:

Mission planning for cooperative construction by a team of unmanned aerial vehicles
Master’s thesis title in Czech:
Planovani mise vice autonomnich helikoptér pro kooperativni stavbu zdi

Guidelines:

The goal of the thesis is to design, implement and experimentally verify a high-level mission planning approach for
construction of a wall by a team of cooperating unmanned aerial vehicles (UAVs). The task is motivated by the second
challenge of the MBZIRC 2020 competition, https://www.mbzirc.com/challenge/2020.

1) Design and implement a realistic environment in a Gazebo simulator under ROS for experimental verification.

2) Specify the cooperative wall assembly as a task-allocation or multi-objective optimization problem to minimize overall
time of the mission, to maximise its reliability, and to maximize the overall reward obtained in the MBZIRC competition.
3) Implement the mission planning method and verify it in the simulator with 3 UAVs.

4) Compare different solutions designed for solving the task with communication available and without communication.

Bibliography / sources:

[11V Spurny, T Baca, M Saska, R Penicka, T Krajnik, J Thomas, D Thakur, G Loianno and V Kumar. Cooperative
Autonomous Search, Grasping and Delivering in a Treasure Hunt Scenario by a Team of UAVs. Accepted in Journal of
Field Robotics, 2018.

[2] LaValle, S. M.. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.
Name and workplace of master’s thesis supervisor:

Ing. Martin Saska, Dr. rer. nat., Multi-robot Systems, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 13.02.2019 Deadline for master's thesis submission: 24.05.2019

Assignment valid until:
by the end of summer semester 2019/2020

Ing. Martin Saska, Dr. rer. nat. prof. Ing. Michael Sebek, DrSc. prof. Ing. Pavel Ripka, CSc.

Supervisor’s signature Head of department’s signature Dean’s signature

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others, A
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Prohlaseni autora prace

Prohlasuji, Ze jsem pfedloZenou prici vypracoval samostatné a Ze jsem uvedl veskeré pouZité
informacni zdroje v souladu s Metodickym pokynem o dodrZovan{ etickych principt pii piipraveé
vysokoskolskych zdvéreénych praci.

VPraze dne ...ccocvvvvviiiiiiiiiiiiniceiee e
podpis autora prace

Author statement for undergraduate thesis
I declare that the presented work was developed independently and that I have listed all sources

of information used within it in accordance with the methodical instructions for observing the
ethical principles in the preparation of university thesis.

Prague, datecccovciiiiiiiiiieies e
Signature

vi

Acknowledgements

I would like to thank my supervisor Dr. Martin Saska for his advices and guidance
throughout this thesis. Also, many thanks to Vojtéch Spurny for his valuable insights,
numerous long discussions, and sharing his comments and ideas, and to everybody from
the MRS group for help during the work on this thesis.

Further, I would like to express deepest gratitude to my devoted father Dragoljub,
my siblings, my little nephews Masa and Lazar, and my friends, for their unconditional
love and support throughout my Master studies. Last but not least, I am grateful to my
beloved mother Marina, whose presence, though short, was very precious and made me
who I am today.

Abstract

This thesis aims to solve the task of high level motion planning for a
group of unmanned aerial vehicles (UAVs). UAVs are tasked to build a
pre-defined wall structure using different types of brick shaped objects.
The main focus of this work is to solve the problem of efficient and suc-
cessful wall construction. The goal is to find the best sequence which
defines the order in which the bricks will be placed while building the
wall. A mission planner provides the hierarchically ordered states, repre-
senting the actions that the UAV is supposed to do. For a successful co-
operation of the UAVs, it is important to have a proper communication.
Communication can be established by WiFi, but even if the communi-
cation channel cannot be established, the approach of time windows is
proposed. This thesis contributes to a solution to a task in the Mohamed
Bin Zayed International Robotics Challenge (MBZIRC), that will be or-
ganized in 2020. The developed system is tested in Gazebo simulator,
but part of the thesis is tested on a real UAV setup in an actual real
word environment.

Keywords: unmanned aerial vehicle, multi-robot planning, aerial object
manipulation

Contents

[List of Figures|

[List of Tables|

I__Introduction|

2 Related workl

[2.2 Path planningl

[2.2.1 Graph and tree search|

[2.2.2 Cooperative path planning

[2.3 Object manipulation| . .

[2.3.1 Grasping objects|

[2.3.2 Dropping objects|

[3 Cooperative wall building|

[3.1 Processing the wall image|

ix

xi

S W NN

© oo N N

10
10
10
11

viii Contents
[3.3.4 Improved greedy algorithm|. 19

[3.4 Approaches comparison|.o 22

[4 Motion planning| 25
4.1 Arena description| 25
4.2 Mission planner|o 26
4.3 Communication between UAVS, 29

[> Experiments| 31
6.1 Validation in simulation] oo 31
[>.1.1 Software system structure| 31

H.1.2 Simulations 32

[>.2 Hardware experiments| L. 32

[6 Concluding remarks and future work| 41
(Bibliography| 43
Append 49
[Appendix List of abbreviations| 53

List of Figures

(1.1 Example of drone used tor last MBZIRC competition.|. 2
(1.2 Scheme of the task solution for Challenge 2 of MBZIRC 2020, 3
(1.3 The prototype of the drone built for MBZIRC 2020.| 4
[1.4 Red and orange brick shaped objects.|.)
(1.5 Blue and green brick shaped objects. |. 5
[3.1 On the left image 1t can be seen example ot wall image, and on the right |
| image is a 2d array of ids representing the type ot the bricks in the wall. | . 15
[3.2 All bricks in the wall assigned with theirids.|. 16
[3.3 The exploration of the tree representation of the wall on example shown in |
| Figure [3.21 o 16
(3.4 The different cases of delivery of objects. Considered situations: (the top
| left) there is no bricks placed yet, (the top right and the bottom left) there
| 1s one brick placed around the place the following brick should be placed, |
and (the bottom right) the following brick should be placed between two |
bricksl 18
4.1 Sketch of arena decomposition on the left side and arena decomposition from |
| the simulator on the right side.f 26
[4.2 General state representation with possible outcomes.| 27
4.3 Main state machine representing mission planner.| 28
4.4 The wall waiting positions for UAVs are shown.| 30
4.5 The division of time window. Time slots assigned to each of the UAVs in |
| case of communication lack or failureo 30
.1 UAVs in their start positions in Gazebo simulator.| 33

List of Figures

(5.2 UAVs in their initial waiting position close to the spot with color objects |
| they are assigned to carry, are shown on the lett images. On the right images |
| UAVs grasping the color objects are shown. | 34

[>.3 UAVs in their waiting positions in front of the wall space, waiting to enter |
| in the wall zoneld. 35

[>.4 UAVs placing bricks in thewall. | 35

[>.5 The final wall, built by team of three UAVs following the planner provided |
| order of placing bricks.| oo oo 36

[>.6 The drone and bricks objects used for experiments. | 37

5.7 The UAVs flying to get brick shaped objects.| 37

[>.8 The UAVs attempting to grasp the blue and red colored bricks. On the |
| corners of images, the views from the cameras on UAVs can be seen.|. . . . 38

(5.9 The UAVs in the waiting positions in front of the wall. The UAV that will |
| enter the wall zone first 1s carrying the object of the color defined by planner |
| to be placed as the next one in thewall| 38

[>.10 On the top image, UAV with priority of the color of the object that is

carrying, defined by the planner, is entering the wall to deliver the object.

After the first UAV lett the wall zone, the second UAV 1s entering the zone.

On the left corner of the bottom image can be seen the view from the camera

on the dronel

List of Tables

[3.1 'T'he specifications of the brick shape objects.|. 14

[3.2 Time needed for taking particular actions with bricks.|. 17

[3.3 The algorithms comparisons for the case of the small wall shown on the |
| Figure [3.2l Relative speed denotes relative improvement compared to the |
| brute force algorithm.. oL 23

[3.4 The algorithms comparisons in case of the wall dimensions [= 5, where |
| number of wall levels is denoted as [, and maximum number of bricks in |
| level is B.J. 24

[3.5 The algorithms comparisons in case of the wall dimensions [= 5, where |
| number of wall levels is denoted as [, and maximum number of bricks on |
I each level 1s 10 24

[>.1 The algorithms comparisons for the case ot the final wall shown on the Figure |
| [5.5. Wall 1s built by 3 UAVs with established communication.| 33

xil

List of Tables

Chapter 1

Introduction

Contents
1.1 competition|. 000000000 2
1.2 Problem ment| e e e e e e e e e e e e e e e 3
1.3 Structure of the thesis| 6

Unmanned aerial vehicles (UAVs), also known as drones, have demonstrated excep-
tional technological advantages and the broadness of ways in which they can be applied
is constantly increasing [1]. Control of UAV platforms can be done remotely by a human.
Or, it can be done autonomously. Autonomous flights can be achieved using intelligent
systems with on-board sensors. In this thesis, a fully autonomous system using onboard
computational resources and sensors is presented.

The benefit of using drones is mainly for their ability to reach the locations that
are not accessible for other types of robots. This implies their possible huge impact in the
military development, photography and delivery industry [2] B 4]. The advance in UAV
technology allows us to consider using even multiple cooperating robots simultaneously,
which further increases their potential application.

One of the most common tasks in multi-robot systems is coordination of the robots
and their motion planning. The definition and implementation of the motion planning task
for a UAV platform is challenging. It involves dealing with uncertainty in the vehicle state
and restricted knowledge about the environment caused by the limited sensor capabilities.

Using a group of UAVs raises the difficulty when the drones collaborate together
while sharing the same workspace. This means that the task allocation between robots has
to be included as well.

2 Chapter 1. Introduction

Figure 1.1: Example of drone used for last MBZIRC competition.

1.1 MBZIRC competition

The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) is an interna-
tional robotics competition, that have been organized in Abu Dhabi, UAE [5]. The next
MBZIRC competition is scheduled for February 2020.

MBZIRC aims to inspire future robotics through innovative solutions and technologi-
cal excellence. MBZIRC provides an ambitious set of challenges. The competition challenges
include robots working more autonomously in dynamic and unstructured environment,
while collaborating and interacting together.

MBZIRC 2020 will consist of three individual challenges focused on robotics solutions
based on autonomous aerial and ground robots, accomplishing navigation and manipulation
tasks, in outdoor and indoor environments. The challenge focus will be on the areas of safely
neutralizing stray drones, construction automation, and urban fire-fighting:

e In Challenge 1, team of up to 3 UAVs is used to autonomously locate, track and
interact with a set of objects moving in space. Challenge 1 is motivated by UAV
safety.

e In Challenge 2, a team of robots containing three UAVs and one unmanned ground
vehicle (UGV) will be used to solve the task that aims this team to collaborate and
autonomously locate, pick, transport, and assemble different types of brick shaped
objects to build pre-defined structures in an outdoor environment. This challenge is
motivated by construction automation.

1.2. Problem statement 3

BRICK DETECTION

l

BRICK ESTIMATION

l

GRASPING AND
DELIVERING OBJECTS

l

HIGH LEVEL MOTION
PLANNING

Figure 1.2: Scheme of the task solution for Challenge 2 of MBZIRC 2020.

e In Challenge 3 team of up to three UAVs and an UGV is required to collaborate to
fight fire in a simulated high rise building.

1.2 Problem statement

This thesis contributes to the Challenge 2 of Mohamed Bin Zayed International
Robotics Challenge. The task that is being solved, is high level motion planning for a
group of aerial vehicles meant to build a pre-defined structure using different types of brick
shaped objects [6]. For MBZIRC 2020 this is a part of preliminary work of a team com-
posed from Czech Technical University (CTU), University of Pennsylvania and New York
University. Only aerial vehicles are considered in this thesis.

The goal of this thesis is to deal with collaboration of the UAVs. Hence, collaboration
of three UAVs will be studied. The brick shaped objects have following colors: blue, green,
orange, and red, and different sizes and weights, see Figures and [1.5] In the case of red,
blue, and green bricks, grasping and delivering of the objects can be done individually, by
one drone.

The complexity of the task solution involves connection of four sub-tasks. These sub-
tasks are: brick detection, brick estimation, object grasping and delivering; and high-level
motion planning task. Figure|l.2|illustrates a scheme of the challenge solution steps. Except
for the high-level motion planning task, the rest of the scheme sub-tasks are not solved
as a part of this thesis, but as they are used in mission planning, they will be described
briefly.

Brick detection is a vision detection part of the task. It allows the drone to be able

4 Chapter 1. Introduction

Figure 1.3: The prototype of the drone built for MBZIRC 2020.

to find the brick objects on the ground. It is programmed to detect objects using known
colors and shapes of the objects.

A continuation of brick detection is brick estimation task. Once the brick is detected
in the space, the estimation part will try to estimate its position and orientation. So, not
just that estimation provides the location of the object, it also allows the drone to detect
the orientation of the brick. This feature facilitate the next steps in the solution scheme.

Grasping part is done such that once the positions of the bricks are known by drone it
aligns with the nearest brick and picks it up with a magnet. On the other hand, delivering
of the objects is done by descending to an altitude above a position where the bricks should
be placed and then by deactivating the magnet and dropping the object.

High-level motion planning task is the main topic of this thesis. In addition to the
mission planner, the aim of this thesis is to design a communication link among the robots.
This communication package is enabling the exchange of the information about performing
actions between the robots, but it also provides the solution in the case when the com-
munication between the UAVs is not available, due to the lack of WiFi connection. The
planner is providing the paths for each UAV of the team.

This thesis will be focused on manipulation of the payload that involves operations
that can be done by a single drone. The most important part of the thesis is dealing with
the wall construction. The wall construction is based on a search for the sequence that
defines how to place all the bricks. The achieved solution should give order of placing
bricks on the wall, that will satisfy the constraints given on the time for the operation
execution and the amount of bricks to be placed. Hereby, the brick placing order should be
the solution that will provide wall building in the shortest time, and ensure that in every
moment if a drone failure happens, the number of bricks placed until that moment will be
maximized.

The solution presented in this thesis is based on research that is done at Multi-robot

systems group (MRS) of CTU in Prague [7], [8], [9], [10], [11], [12], [13]. It is continuation
on the research approaches that were done by the MRS group for previous MBZIRC com-

1.2. Problem statement

/‘__’__,
7

Figure 1.4: Red and orange brick shaped objects.

Figure 1.5: Blue and green brick shaped objects.

6 Chapter 1. Introduction

petition in 2017. The work done in the thesis is related to the solution done for the Treasure
Hunt task of MBZIRC 2017. The Treasure Hunt task requires addressing the problems of
cooperative localization, grasping and delivering of colored ferrous objects by the team of
UAVs.

1.3 Structure of the thesis

e The related work is described in the Chapter[2l Most of the cited research work focus
on the topics related to motion planning. Firstly, task allocation is described, i.e. how
the distribution and division of tasks can be done between the robots. Furthermore,
path planning approaches are described, with most attention dedicated to graph
search and cooperative path planning. Moreover, the work done on the topic of the
robot manipulation is described, particularly grasping and dropping of the payload.

e Chapter |3| presents the tree search approach for finding the wall building order. It
introduces the constraints for defining costs of placing bricks in the wall. To find the
optimal solution to go through the tree representation of the wall and achieve the
sequence that ensures building the wall in the shortest time following algorithms are
used and compared: brute force algorithm, greedy algorithm and improved greedy
algorithm. This chapter also deals with the case of a drone failure, so the bricks with
the smallest costs will be placed in the beginning, in order to maximize the reward.

e Chapter (| puts additional focus on the planning and the communication part between
the UAVs. It describes motion planer representation in the form of the state machine.
Moreover, it describes how and which messages are exchanged between the UAVs,
and what will happen if the communication can not be established.

e Chapter [9] introduces and gives details about the software that is used to test the
approaches presented in this thesis. For verification of the results Gazebo simulator is
used [I4]. The results that are achieved in the simulator are described and depicted,
as well as the experiments that are done in the real world environment on real drones.

e Finally, Chapter [6] provides concluding remarks for the work done so far. Also, it
discusses the future work, which gives pointers on how to extend and further develop
this topic and solutions of the same problem.

Chapter 2

Related work

Contents

2.2 Path planning] 0000000,

2.3 Object manipulation| 10

First, the task allocation problem is considered in Section 2.1 defined as a decom-
position of the task among a given number of robots. Next, path planning is described
in Section as a general planner of path connecting a set of points. Path planning is
mostly based on the work done in the branch of graph and tree search, and cooperating
path planning algorithms. Finally, Section is focusing on the work related to the object
manipulation. Specifically, in Section 2.3 methods related to the subjects of grasping and
dropping the payload are presented.

2.1 Task allocation

Task allocation can be defined as a mapping between robots and tasks. In other words,
how to optimally assign a set of robots to a set of tasks in such a way that optimizes the
overall system performance [15] [16]. Task allocation is one of the core issues in exploring
the capabilities of cooperation of a team of UAVs. The decomposition of a overall mission in
independent sub-tasks , hierarchical trees or just sequence of roles provided by the general
planner is included in task allocation. Independent sub-tasks can be done simultaneously,
but in the case of trees, sub-tasks are executed based on their interdependence [17]. Solution
to task allocation problem can be split to centralized and distributed approaches.

Centralized approaches are trying to optimize a global cost function. They are char-
acterized by a single control agent. The centralized allocation is the task allocation where

8 Chapter 2. Related work

all decisions regarding the task are made by one single agent with global view of the
system [I6] [I8]. The main advantage of centralized approach is the ability to produce
an optimal planning since a decision making agent utilizes the relevant information from
all robots. This method is suitable for time-optimal task allocation. The centralized ap-
proach, also, has some disadvantages, mainly because it needs full communication between
the agent and the rest of the team constantly, and in most of the cases this is difficult to
achieve. Moreover, the agent should be informed all the time about the progress of each
team member, and he needs to keep the track of the changes. Also, these systems are too
sensitive to the failure of any small part [19, 20].

Distributed approach, on the other hand, is assuming allocation based on decen-
tralized collection of knowledge sources [21]. Its advantages compared to the centralized
approach are manifold. It means each of the UAVs, or in general agents, is allocating itself
alone tasks. It is not sensitive to single failures, and does not requires constant communi-
cation between agents. Most important there is no global control, neither global storage. It
is faster, more reliable, with higher tolerance in uncertain data. But on the other side, not
all problems can be decomposed well. Also, plans made for robots are based only on local
information, and the solutions of the decentralized approach are often highly suboptimal
[19, 22, 20].

In this thesis, centralized approach is firstly used for offline finding of the optimal
sequence of bricks to be placed in the wall. This sequence is common and shared between
all UAVs. Further, the task allocation for each UAV is done separately, leading to the
distributed approach.

2.2 Path planning

Path planning is one of the open problems that is constantly attracting a lot of atten-
tion, and new solutions are appearing often [23]. The path planner generates one or more
paths between given number of points. Path planning is a complex problem that involves
dealing with physical constraints of UAVs, environment constraints and other requirements
dependent on the current task. One of the surveys of motion planning algorithms for the
case of autonomous UAVs is presented in [24]. Generally, for mobile robots, a large amount
of research is done [25], 26 27, 28, 29]. Path planning algorithms should give the best
possible path, preferably path of minimal length. Also, the optimal path has to avoid colli-
sions, and satisfy cooperative properties envisioned for the drone. Moreover, path planning
should be implemented to be time computationally efficient so that it can run in real-time,
and allow UAVs to rebuild their paths, if necessary.

2.2. Path planning 9

2.2.1 Graph and tree search

Graph and tree search are described in many books and papers including [30, 31].
Graph and tree search may be used as one of the possible solutions of path planning

problems for UAVs.

A graph G(v,e) is defined as a set of vertices v that are connected by a set of edges
e. In case of robotic path-planning tasks, discrete points in space are assigned as vertices
and edges that are connecting them may be used to describe properties of travelling from
one point to another, containing the awards for their traversal.

Graph based solution usually suffers from the problem of computation complexity,
which is even more pronounced when the complexity of the task is high. One of the ways
to avoid the dimensionality problem is to use a sequence of graphs. More specifically, find
the optimal solution for each sequence, and then, in the neighborhood of this optimal
solution, build a new graph to search for new optimal solution [32]. This is repeated until
the final point is reached. In [32], Voronoi polygons are used for constructing such graph.
The Voronoi diagrams are considered as graphs, with Voronoi points as vertices and edges
connecting them assigned with some weights. Once the weights are assigned, the optimal
path is found.

Nowdays, many approaches can be found in literature that are dealing with the path
planning task. In [33, [34], visibility graphs are used to plan the paths for mobile robots in
combination with the well known A* algorithm. Also, A* is used in [27, [35]. Algorithms,
like rapidly-exploring random tree (RRT) can be used as well, with all their amendments,
[36], 137, 138]. Also, potential field approach is widely used in this problem statement [39] [40].

A tree is a directed graph that is connected and does not contain cycles [411 42} [43].
A tree is a structure of hierarchically linked nodes where each node represents a particular
state. Nodes have none, one or more child nodes. Tree search algorithms attempt to find
a solution by traversing the tree structure starting from the root node and expanding the
child nodes in a systematic way. These algorithms are split in two groups: blind search
algorithms and best-first search algorithms.

The blind algorithms are also known as uniformed algorithms. They work only with
information to distinguish the goal state from non-goal states. All information available to
blind search algorithms is the state, the successor function, the goal test, and the path cost.
Different algorithms from this group differ only by the way how they expand the nodes,
and that can influence the performance dramatically. In this group are: Depth-First search
algorithm (DFS) [44] [45] and Breath-First search (BFS) algorithm [44], 46].

The best-first search algorithms are known as informed search algorithms. The algo-
rithms from this group use heuristics to decide which adjacent is most promising and then
explore. These algorithms are done with the priority queues. These priority queues are
typically used to store the costs of the nodes. Best-first search algorithms are often used
for path finding in combinatorial search studies. Between these algorithms are Greedy
algorithm [47] and A* algorithm [27], 35] .

10 Chapter 2. Related work

This manuscript uses a tree search approach. For traversing the tree and finding
the optimal solution, following algorithms are used: brute force, greedy algorithm, and a
proposed improved greedy algorithm.

2.2.2 Cooperative path planning

The general advantage of coordination between UAVs is their benefit in decreasing
the period of the time needed to accomplish some task. Moreover, if a damage happens
on a single UAV, it will not necessarily cause the whole mission to fail [48]. Different path
planning algorithms for a team of UAVs were studied, and tested in various environment.
Between them, most notable are: Dijkstra’s algorithm, and A* algorithm. They were com-
pared so that there can be monitored and established the path for communication. The
best results were given by A* algorithm, with guarantees to achieve the goal and find the
shortest path.

There are many studies dealing with the simultaneous arrival of a group of UAVs
on the target position. In [49], the main task is to achieve the flyable and safe paths. The
trajectory for each of the UAVs is introduced with constraints to achieve the safety in
path following as minimum distance between the non-intersecting paths and in the end to
achieve the target positions by paths of the same length .

The wall task in this work is defined as a tree search problem. Three UAVs are used
to build the wall structure. The successful cooperation is ensured by having a reliable
communication channel. Otherwise, when the communication is unavailable, a fallback
routine is used, that does not depend on establishing the communication channel.

2.3 Object manipulation

In this section the topics of grasping and delivering of the objects will be discussed.
These parts are not directly developed in the thesis, but they are considered as important
step in motion planning task definition thus they will be described in following sections.

2.3.1 Grasping objects

This grasping task is defined as a unity of three sub-tasks [50]. It involves detection
and estimation of objects, and finally the grasping. Object recognition is a wide field of
a machine learning and computer vision research area. Some of the authors use neural
networks [51], for detection based on the prior knowledge of environment, as well as on the
sensor data. To estimate position of the object, authors in [52, [53] use depth information
received from the depth sensors. Also, online detection and estimation of objects position
based on features from images is proposed in [54] 55].

2.3. Object manipulation 11

Generally, the grasping by the aerial robots is done when some of the features are
known, such as color, some pre-defined mark [56], or even known object position. The ability
to pick up and transport payload is valuable for aerial vehicles, and it is consistent on many
difficulties. There are increasing number of examples of interaction between aerial vehicles
and objects. We have some examples of slung load attachments that could be transported
individually or cooperatively [57, 58, [59]. The objects are not attached automatically.

The grasping grippers are depending on the material of the interacting objects. So
there could be two possible ways: to attach a magnet on the probe in the case of ferro-
magnetic objects; or to use a hook to take the object. In [60], the quadrotor helicopters
with several grippers and the ability to grasp and manipulate number of items are shown.
They used recursive least-square methods to identify the mass of the object, center of the
mass-offset, and the moment of inertia.

The grasping part is done based on the solution proposed by our team from the previ-
ous MBZIRC 2017 [7]. There, from the known object size, color and camera parameters, the
relative positions of the objects to the drone are calculated. Furthermore, these positions
are transformed in the global frame. All these positions are added to the map. After the
map of the objects is created, the trial to grasp is attempted. The difference compared to
the previous MBZIRC challenge is that the positions of the spots with objects are known,
and all the brick objects are static. In MBZIRC 2017, the task was dealing with static and
dynamic objects, located on unknown positions.

2.3.2 Dropping objects

Nowadays, UAVs should be able to autonomously and precisely deliver object on a
given position. The dropping objects task is based and implemented similarly as landing
approaches. The precision of landing task solutions is indispensable for autonomous mis-
sions that involve carrying objects. There are different situations that are investigated on
the topic of delivery payload on given position. In the paper [61], authors are presenting
the aircraft sliding the payload along the cable down to the ground, while aircraft stays in
the air.

Probably the easiest method is to release the object from an UAV, when the UAV
is above its target position, without taking care about precise positioning, letting it fall
unguided close to the ground position. This is done in [62], a work describing the payload
delivery on an iceberg. They released the object when they were certain that the iceberg
is under the aircraft.

The part related to the delivery of the objects is done based on the solution proposed
by MRS team in [7]. Compared to the previous MBZIRC 2017, where the objects were
dropped above the known position (inaccuracy in dropping position ~ 0.5m did not have
impact on the result), the proposed solution needs to place the objects on the precise
positions.

12

Chapter 2. Related work

Chapter 3

Cooperative wall building

Contents
[3.1 Processing the wallimage| 13
B.2 Treebuild, 15
3.3 Best pathsearch|00.0.0.0.. 17
[3.4 Approaches comparison|. 0000 e e 22

Approaches designed to efficiently solve the wall building task are described in this
chapter. The goal is to achieve the order of placing bricks that will result in a solution
with the smallest cost in total. This approach assumes that each action related to the
manipulation with a brick assigns a cost to the brick. This cost is defined as difficulty of
action execution and time that particular action takes.

Firstly, wall building as a tree search problem, and procedures to build and search
such a tree are explained. Further, the cost assigned for each brick is introduced. Finally,
approaches for finding the best path to traverse the tree representation of the wall are
described. The best path represents the solution and the order in which the wall will be
built.

3.1 Processing the wall image

It is assumed that shortly before each competition trial an image of the required wall
shape will be provided by organizers. This image has to be processed to obtain the shape
of the wall. Therefore, the initial phase of our proposed system is an image processing
algorithm that automatically transfers the provided image into a 2d array. This array
contains indexes of bricks depending on their color. As it was mentioned before, the bricks

14 Chapter 3. Cooperative wall building

differ by their color ¢, but also by their weight m and size len. The specification of each
brick type is shown in the Table [3.1} Orange bricks will not be considered here, as we only
consider brick actions performed by a single UAV in this thesis.

By applying the indicators type according to the Table on the wall image we
can get the processed image that is easily represented. See Figure for an example. On
the left side, an example of a wall image can be seen. On the right side, the final wall
representation in the form of a 2-d array of brick color ids is shown.

Firstly, in our image processing procedure, the image is expressed by RGB color
values. The whole image is thus presented as a 2d array of pixels P, where each pixel is
represented using 3 values. Let P[i][j] be one pixel in array P. Further, pixel is assigned
to be the type of object by its color. The classification can be done using Algorithm [1}

Algorithm 1 Pixels to object_types indexes representing colors of the bricks.

1. pizel < P[i[j] > Pli][j] = (r,g,b)
2. red = P[i][j][0] , green = PYi][j][1], blue = P[i][j][2]

3: if ((red > 2 - green) and (red > 1.5 - blue)) then

4: object type = 1

5: else if ((green > 1.5-red) and (green > 1.5 - blue)) then
6: object type = 2

7. else if ((blue > 1.5 - red) and (blue > 1.5 - red)) then

8: object_type = 3

9: else

10: object type = -1

11: end if

The advantage of this method is that the background and borders between bricks
are as well identified. They are used to define how many pixels represent each brick. In
other words, every time that pixels with object type = —1 are detected, that would mean
the brick is found and can be saved. After the pixels are connected to the bricks, all pixels
with this object_type value are not further processed.

Table 3.1: The specifications of the brick shape objects.

| Bricks | weight [kg] | size [m] | color id | rgb value |
Redbrick <1 0.3 1 (255, 0 ,0)
Greenbrick <1 0.6 2 (0, 255, 0)
Bluebrick <15 1.2 3 (0, 0, 255)
Orangebrick <2 1.8 4 (255,165,0)

3.2. Tree build 15

3 1 1 2 3

Figure 3.1: On the left image it can be seen example of wall image, and on the right image
is a 2d array of ¢ds representing the type of the bricks in the wall.

3.2 Tree build

Each position for a brick in the tree is assigned by identification number (id) . The
id is counted as a order from left to right, based on level [of the wall in which the slot for
a brick is located and based on position p in this level as:

id = 1001+ p, (3.1)

where 100 is taken as the smallest number that is a power of 10, but it is higher than
the maximum number of bricks that can appear in any level. In the Figure [3.2] the wall
representation example shows how the ids are assigned to each brick.

Each of these slots for bricks in the wall is presented as a node in the tree. Every
node is containing information about the color of the brick, ¢d of a brick that was one
step placed before, and ids of bricks that need to be placed before this brick. Having these
nodes that contain all important information about bricks that have to be placed in each
slot in the wall, the tree structure is achieved. For every node in the tree it is known its
children ids and ids of all bricks that have to be places before the brick which is relevant
to the node.

Root node is assigned as empty node, not containing any brick, whose children are
all nodes that represent the bricks on the first level in the wall. Therefore, the first brick
that can be placed in the wall can be any of the bricks from the first level, Figure [3.3] As
the leaf node, tree can have any of the nodes representing bricks located in the last level
in the wall. There is not precisely specified which from the nodes from the last level needs
to be the leaf node.

The approach of not specifically assigning the root node and leaf node guarantees
that every possible path through the tree will be explored, knowing that the path can start
from any node in the first level and end in any node in the last level.

Additionally, all the nodes relevant to the bricks that are placed before the current
one are saved as its predecessors in the parents list. Children of each node are the children
of the current node, but also the children of all predecessors nodes that are not contained
in a parent list. This gives us tree structure as it is shown on Figure [3.3] for example of
the wall shown of Figure [3.2]

16 Chapter 3. Cooperative wall building

Figure 3.2: All bricks in the wall assigned with their ids.

Figure 3.3: The exploration of the tree representation of the wall on example shown in

Figure

3.3. Best path search 17

3.3 Best path search

In this section will be shown the solution of the tree search that ensures achievement
of the best path through the tree. The best path gives the sequence of the order how the
bricks should be placed in the wall, in the shortest time period.

First, the cost definition is described in Section After, algorithms for tree search
are explained: brute force, greedy algorithm, and an improved version of greedy algorithm.
In the end, all of the methods are compared and results are shown in Section [3.4]

3.3.1 Cost formulation

Lets define cost ¢ as a sum of grasping cost t,, flying cost t;, and delivery cost t4.
Cost t, represents time necessary for grasping of the object, ¢; represents time necessary
for flying with the object, and t; represents time necessary for dropping the object. As the
bricks have different weights and dimensions, and they are as well placed in different spots
on the wall, time that takes particular action with the brick will differ based on the brick
color.

Thus the proposed cost that defines cost of placing one brick is formulates as follows:
c=(1+e) (ty+t; +ta), (3.2)

where o parameter controls how big the decay of exponential function will be, and it is set
to be a = 0.1. Parameter [is denoted as the level where the brick is placed.

In the Table it is shown how much time in average takes to grasp each type of the
bricks object in simulation. Moreover, the grasping cost ¢, can be influenced by detection
of the bricks. The UAV can easily manage to detect the brick and go to take it, but it
can happen as well that during the grasping maneuver it will lose it from its view. It can
happen that the drone does not manage to grasp the brick. In this case, drone will repeat
the grasping action again. Let n be the amount of drone repetition of doing the grasping
action on the same brick. This means the grasping cost should be computed as n-t,, which
represents the worst case. This could make the cost of grasping the brick really high.

The flying cost is the time that takes for the drone to carry object from one point in
the space to another. It contains the time to go for a object, and once an object is grasped,

Table 3.2: Time needed for taking particular actions with bricks.

’ Brick ‘ Grasping time |[s] ‘ Flying time [s] ‘ Dropping time [s] ‘
Red 14 22.5 8

Green 26 18.5 9
Blue 16 22.5 15

18 Chapter 3. Cooperative wall building

Figure 3.4: The different cases of delivery of objects. Considered situations: (the top left)
there is no bricks placed yet, (the top right and the bottom left) there is one brick placed
around the place the following brick should be placed, and (the bottom right) the following
brick should be placed between two bricks.

it is measured what is the duration of the flight from spot with bricks, to the drones waiting
positions in front of the wall. This component is also dependent on the type of the brick
that drone is carrying, see the Table

The delivery-cost is defined as the time that dropping action takes. Cost of delivering
objects is measured from the moment UAV enters the wall space until it drops the object
on certain position. This parameter is mostly dependent on the position of the brick, where
brick should be placed in the wall. There are considered cases such that, i.e., there are no
bricks around the slot the carried brick should be placed, there is one brick next to it,
and that the brick need to be placed into slot between two bricks. Figure |3.4] shows these
situations.

Another aspect that needs to be considered in the competition is to maximize the
amount of bricks with the smallest cost that will be placed in the beginning. There can
be many solutions for finding the optimal path through the tree that have the same costs
in total. But some of these solutions can give the sequence of order for placing the bricks
such that in the beginning are placed bricks with higher costs and after the bricks with
smaller costs. This is situation that should be avoided, especially if there is considered the
application of the solution will be with real UAVs. Basically, the aim is to achieve in the
competition as high score as the possible. The grading of the achievements will be based
on the amount of bricks that are placed, in other words the area of the wall that is built.
Due to there is possibility of drones failure, goal is to start with placing bricks with the

3.3. Best path search 19

smallest cost. Because of this issue, the exponential part in equation (3.2)) is emphasizing
the costs at lower levels, while decreasing the importance of costs at higher levels.

3.3.2 Brute force

The total cost of building the wall is sum of the costs of traversed nodes. So, total sum
of the cost for traversing the tree choosing particular path from any of the root children
nodes to any of the leafs, can be calculated. For all possible ways of going through the tree,
the final sum of the node costs is saved. The cheapest path to go through a tree is selected
as the best path. The algorithm is working as it is shown in Algorithm

The algorithm is done in form of recursive function brute_force. Current node con-
tains all the nodes that were placed before it, in its parents list. All nodes that can be
explored next, after the current node, are stored in the children list of the current node.
After traversing each node, the total sum of the costs is increased for the cost of the trav-
elling the current node. This function procedure is repeated for each of the children nodes
in a recursive way. If the number of nodes that are traversed is equal to the total number
of the bricks, the whole height of the tree is explored and that path is saved. In the end,
the path with smallest cost is chosen as the optimal.

3.3.3 Greedy algorithm

In greedy algorithm the growth of the tree is evaluated using some heuristic. The
cheapest children of the node is then selected and expanded. The heuristic can be based on
the distance, how close the current node is to the goal. The nodes that are considered the
closest to the goal node are traversed the first. In the case of wall build task the heuristic
can be defined by the costs of the nodes. In other words, as the next node to be visited it
is chosen the node that has the smallest cost from all the children nodes.

The greedy algorithm is shown in Algorithm [3| Firstly, for current node are saved all
the predecessors, and found the children. Then, the child with the smallest cost among chil-
dren is found and recursive function greedy_algorithm is then executed for this child. The
greedy algorithm provides only one path as final way of the traversing the tree representing
the wall.

3.3.4 Improved greedy algorithm

Improved greedy algorithm is a combination of the standard greedy approach and
the brute force solution. This approach allows to choose how many children nodes will be
explored. For example, brute force explores every child of the current node, while greedy
picks only the best. In order to satisfy the condition that the bricks at the bottom levels
are more important because they are easily built, we choose to only explore one child in the

20 Chapter 3. Cooperative wall building

Algorithm 2 Brute force algorithm

1: procedure FIND BEST PATHS

2 brick < node

3 cost_sum < 0

4: n < number of bricks

5: final_paths <[]

6 parents_list < []

7 function BRUTE_FORCE (BRICK, PARENTS_LIST, FINAL_PATHS = [])
8 copy parents_list in my_parents_list

9 expand my_parents_list with brick.id

10: cost_sum = cost_sum + brick.cost

11: children = find_children(brick)

12:

13: if length of my _parents_list equal to n then

14: expand final paths with (my_parents_list, cost_sum)
15: end if

16: for child in children do

17: brute_ force (child, my_parents_ list, final_paths)
18: end for

19: return final paths

20: end function

21: final_paths = brute_force(root, [|, [])

22: find path of minimum cost in final_paths

23: end procedure

3.3. Best path search

21

Algorithm 3 Greedy algorithm

1: procedure FIND BEST PATH

2 brick < node

3 cost_sum < 0

4: n <— number of bricks

5: final_path < []

6 parents_list < []

7 function MIN_COST(CHILDREN)
8 for child in children do
9: find child with min_cost
10: end for

11: end function

12: function GREEDY_ ALGORITHM (BRICK, PARENTS_LIST, FINAL_PATH = [])
13: copy parents_list in my_parents_list

14: expand my_parents_list with brick.id

15: cost_sum = cost_sum + brick.cost

16: children = find_children(brick)

17 if length of my_parents_list equal to n then

18: expand final_path with (my_parents_list, cost_sum)
19: end if

20: ¢ = min_cost(children)

21: greedy_algorithm (¢, my_parents_ list, final path)

22: return final_path

23: end function

24: final_path = greedy_algorithm(root, [], [])
25: end procedure

22 Chapter 3. Cooperative wall building

first n levels of the wall, and then, for the levels higher than n, we can explore k children
with the lowest cost. In this manner, we will avoid costly full tree exploration that the
brute force does, but we will still explore more solutions than just a single one that greedy
does.

Two parameters can be adjusted here, n and k, both allowing algorithm to be faster
at the cost of less optimal solution, or, if we want, choosing stricter values to get more
optimal solution by paying the price of traversing a bigger part of the tree. This is an
additional benefit, as we might have more time to spend on tree search at the beginning
of the challenge, but less towards the end, if new paths need to be found.

Hence, due to unfeasibility of current solution (decreased number of drones for ac-
complishing the mission due to technical error), the ability to set different values depending
on how far we are in the challenge, is another positive aspect of this approach.

3.4 Approaches comparison

The approaches used for finding the best path are compared based on the time for
execution of the algorithm, and based on the total cost of the optimal path that defines the
order in which bricks are placed in the wall. We experiment with two different wall setups,
that have different complexities. A simple toy example is the wall depicted in Figure [3.2]
that has 2 levels and 10 bricks in total. Additionally, we perform detailed analysis and
comparison on the wall that has 5 levels and 25 bricks in total; 5 levels and 50 bricks in
total. The second and third wall examples are more realistic and closer to the one used in
the challenge.

Brute force algorithm executes every possible path to go through the tree of wall
representation. Based on that fact that it explores every possible solution, brute force will
find optimal solution always. The drawback of this algorithm is that is slow and takes time
to go through all possible solutions, especially if there is larger number of bricks in the
wall.

The main advantage of the Greedy algorithm is the speed of its execution. This
algorithm gives the solution in the shortest amount of time from all compared algorithms.
But the solution may not be the optimal one in most of the cases. The solution achieved
with greedy algorithm is not even in the best 10 solutions of the brute force algorithm.
This approach does not guarantee to find the shortest path solution, and may happen that
it will not traverse all the nodes in the tree.

Improved greedy algorithm is dependent on the desire if the algorithm is wanted to
be faster or to be more optimal. The price of the choosing the algorithm to be faster is
that solution will be less optimal, and opposite, if it is wanted to achieve more optimal
solution, the algorithm will be slower based on the number of nodes it considers in each
of the next steps. The approach will still give better solution than greedy algorithm and
faster comparable to brute force algorithm.

3.4. Approaches comparison 23

The results of the comparison of these approaches for the example of the wall shown
on Figure are presented in Table [3.3] Comparison is done relative to the brute force
algorithm. The algorithms time of execution in relative and absolute values is presented in
a table. Furthermore, it is presented the total cost of the best path found by the algorithms.
The improved greedy algorithm, is done such that on the first level is chosen as the next
node the node with the smallest cost, n = 1, and on the second level cases k = 2, k = 3,
k =4, k =5 are considered.

The Table shows the result of the comparison of the described approaches for
the wall containing 5 levels and 25 bricks in total. The brute force algorithm takes more
than 10 minutes to find a solution and based on that it is not considered for comparison. It
can be proofed, the algorithm is good for problems of smaller task complexity, but in case
of higher task complexity it takes too long to find a solution. The results from the greedy
algorithm, as well the improved greedy algorithm for different cases of n and k parameter
are presented.

Last Table shows the result of the comparison of the approaches for the wall
containing 5 levels and 50 bricks in total. The brute force algorithm is not included in
comparison again because the solution could not be found up to 10 minutes. The results
from greedy algorithm and the improved greedy algorithm for considering different cases
of n and k parameters again are presented.

Table 3.3: The algorithms comparisons for the case of the small wall shown on the Figure
. Relative speed denotes relative improvement compared to the brute force algorithm.

| Algorithm | Relative speed | Absolute timels] | Total cost |
Bruteforce x1 1.5914 336.22
Greedy algorithm x3183 0.0005 341.16
Improved greedy [n =1,k = 2] X758 0.0021 340.03
Improved greedy [n =1,k = 3] x408 0.0039 339.55
Improved greedy [n =1,k = 4] x408 0.0039 338.87
Improved greedy [n =1,k = 5] x398 0.0040 338.87

24 Chapter 3. Cooperative wall building

Table 3.4: The algorithms comparisons in case of the wall dimensions [= 5, where number
of wall levels is denoted as [, and maximum number of bricks in level is 5.

| Algorithm | Absolute time[s] | Total cost |
Bruteforce — -

Greedy algorithm 0.0020 1546.99
Improved greedy [n =4,k = 2] 0.0028 1545.32
Improved greedy [n = 4,k = 3] 0.0033 1543.76
Improved greedy [n = 3,k = 3] 0.1902 1536.75
Improved greedy [n = 3,k = 4] 0.2876 1533.41
Improved greedy [n = 2,k = 2] 1.7343 1533.27
Improved greedy [n =2,k = 3] 44.1548 1522.89
Improved greedy [n = 2,k = 4] 108.5388 1522.89

Table 3.5: The algorithms comparisons in case of the wall dimensions [= 5, where number
of wall levels is denoted as [, and maximum number of bricks on each level is 10.

| Algorithm | Absolute time[s] | Total cost |
Bruteforce - =

Greedy algorithm 0.0100 3061.80
Improved greedy [n = 4,k = 2] 0.1622 3059.22
Improved greedy [n = 4,k = 3] 0.6459 3054.39
Improved greedy [n =4,k = 5] 1.7765 3048.39
Improved greedy [n =4,k = 10| 1.8965 3048.39
Improved greedy [n =3,k = 2] 199.6822 3036.63
Improved greedy [n = 3,k = 3] 220.7225 3033.84

Chapter 4

Motion planning

Contents
4.1 Arenadescription| v i ittt 25
[4.2 Mission planner| e 26
4.3 Communication between UAVs 29

The chapter is organized such that the arena that was used as a testing environment is
first introduced in Section 4.1} In the next section, the motion planner presented in the form
of the state machine it is described, paying attention on execution of every state in the state
machine. As the last part, the task allocation between the UAVs is explained . Especially,
two approaches are considered. The first approach is describing the communication channel
if the WiFi connection is available. The second approach is telling about the backup plan
if communication link can not be established or it failed.

4.1 Arena description

The operating area is divided in six parts. The first part is reserved for drones start
positions. Then, four square spots are reserved for the bricks shaped objects. Each of the
brick spots is containing just bricks of one color. And the last part of the arena is related
to the place where the wall construction is supposed to be built. On the Figure |4.1] can be
seen on the left side the sketch of the arena decomposition, and on the right side is shown
how the decomposition of the arena looks in the Gazebo simulator.

In the work presented in this thesis, for each UAV is reserved position in which
drone can safely wait for performing some action. Namely, in front of the each spot with
bricks there is assigned a initial position for drone where it can fly first and hover until it
makes a decision about doing the next action. Once the planner for building wall is run

26 Chapter 4. Motion planning

Figure 4.1: Sketch of arena decomposition on the left side and arena decomposition from
the simulator on the right side.

the sequence of the bricks how they should be places is known. Based on this sequence of
bricks, each UAV knows the brick of which color it is going to take. And flies firstly to
initial position close to the spots with objects of that color. Moreover, the wall is shared
part for all UAVs. Drones can not operate on the construction at the same time. To be
ensured that the collisions of UAVs will be avoided, there are assigned specific position
close to the wall for each UAV. These waiting positions in front of the wall are meant to
be spots where drones can safely wait for their turn to release the payload. In the Section
will be minutely described when the drones are allowed to enter in the space of the
wall construction.

4.2 Mission planner

Mission planner is done in the form of the state machine. To build a state machine
SMACH is used. SMACH is a ROS Python library, that is integrated in the ROS framework
[63]. It is allowing the task to be split in finite amount of sub-tasks. SMACH is designed
as a set of states. Each state represents a step of execution with some set of potential
outcomes. On the Figure [4.2]is shown how one state is presented with its possible outputs.

State machine can be described as graph or diagram. Each state of executions is one
node. It means that each node is some action that robot is supposed to do. To be able to
traverse from one state to another there are edges connecting all states. Edges are used
to express the outcome from the current state. Next state in the state machine will be
executed based on the outcome from the current state.

The mission planner of this thesis is presented as a hierarchical state machine. The
scheme of the planner is shown on the Figure The square blocks are representing the

4.2.

Mission planner 27

STATE

succeeded aborted preempted

Figure 4.2: General state representation with possible outcomes.

states, and arrows are used to represent possible transitions from one state to the another

state.

1.

The state machine execution starts with the checking of the state of the UAV. Once
the drone is ready to be launched, automatic take off is called. This means the drone
is successfully performed the action assigned by this state and it can proceed to the
next step.

The next state in the planner is reserved for the selection of the color of the object
which drone is going to take. Namely, the solution for building a wall explained in
the Chapter [3] is used here. That solution provides 2d array of bricks ids in which
order they should be placed in the wall. Each UAV is assigned for one element of
that array. Based on the id of the brick that drone is going for, the color is checked.
From this moment UAV is responsible for placing brick of that particular color in
the wall, and execution of this state is done.

Drone is flying to the position where the bricks, of the color him assigned, are located.
Here, first the detection of the bricks is done. The bricks are detected based on the
color, shape, and their size.

Once the bricks are detected, their position are estimated. This is done by using
known position of the drone in global frame and by projection of detected object from
camera to the ground level. Estimation thus provides position of detected object in
global frame in which the drone is also controlled.

When the drone succeed to estimate the position of the closest brick it flies above it.

In the moment when the drone is above the closest brick it is going to grasp it. The
grasping itself is a separate state machine, that is using the same strategy as in [7].

Basically, it is working such that a drone is trying first to align with the object it is
trying to grasp. Once UAV is aligned with the object it is descending to the altitude,
trying to align again, and slowly descend to the altitude until the magnet is not
attached on the object. Once the object is attached, drone can pass to the next step,
and perform next action.

In case the drone does not manage to grasp the object it is going back to the step 3
and does the procedure again.

28

Chapter 4. Motion planning

succeded
~——

Prepare UAV and TakeOff

aborted

Brick color selection

l succeded

Fly above the place with bricks

—

l succeded

Get the position of the bricks

l succeded

Fly above the brick

l succeded

abbrted
\?_

Grasp the brick

l succeded

Fly to the wall waiting position

l succeded

Wait for the free wall space

l succeded

Drop the brick on the wall

777777777

aborted

Figure 4.3: Main state machine representing mission planner.

4.3. Communication between UAVs 29

6. When the drone managed to grasp the object drone is flying to the waiting position
in front of the wall, see Figure [4.4]

If the wall is occupied by other UAV, drone keeps waiting in this position until is
free. More details about this step in the Section [4.3]

7. Once the wall is not occupied, drone is flying into the wall space and drop the brick.
That is done by slowly decreasing the altitude. Once it is on the precised height
above the desired location for brick placement it deactivates the magnets and drops
the brick.

If the UAV managed to succeed to finish this step and there is still more bricks to
be placed it is going back to step 2, and repeats the procedure. If there are no more
bricks the outcome of the state will be aborted and drone will safely land. Aslo, if
any step in the state machine went wrong so that is not possible to continue with
the mission, safe land is called.

4.3 Communication between UAVs

In order to achieve a cooperation of the UAVs, it is necessary to have reliable commu-
nication channel. Having available communication link is especially important in situations
when the UAVs are sharing common space, as in our case the wall construction spot, see
Figure [4.4] With the available communication link, drones are able to send the messages
and share the information. The information that are shared in the exchanged messages are
containing: the position of the drone in global coordinate system, the state in the state
machine the drone is, and the planned trajectory.

Once the UAV reaches the waiting position in front of the common zone, drone
remains hovering until the moment when there is no other UAV in the zone. If the WiFi
communication is available, the preference of going into the zone is based on the queue of
the UAVs already being in their waiting positions and the brick color the UAV is carrying.
The color of the brick that should be placed as the next one is assigned by the wall building
bricks sequence. In other words, if this condition is satisfied and the zone is not occupied,
the UAV is allowed to access the zone.

Based on our experience from previous MBZIRC competition, it cannot be assumed
that complete communication channel will constantly be available. Therefore, it is neces-
sary to make a system able to deal with lack of WiFi communication. So, in case that
communication between drones cannot be established or it is lost they need to switch to
another strategy. The strategy should be a safe solution to prevent the possible collisions
in the case the drones are operating on the common area and cannot exchange information
between each other.

The proposed strategy is based on assigning the time windows for each of the drones.
Based on the measured time that takes to UAV to perform action of going into the common

30 Chapter 4. Motion planning

PRI

o UMV o VAV

Figure 4.4: The wall waiting positions for UAVs are shown.

02001 | 2040(s] | 40601)
UAV1 e

.\ I
UAV3 I

Figure 4.5: The division of time window. Time slots assigned to each of the UAVs in case
of communication lack or failure.

space, dropping the payload and leaving it, the time window is divided as it is shown on
the Figure 4.5

For entering, the color of the brick that drone is carrying needs to match with the
brick color defined to be placed next by wall building order. This means when the drone
reach the waiting position in front of the wall, it is allowed to enter the wall zone only if it
is its time slot provided by the time window, and a color of carried brick is defined as next
to be placed by high-level motion planner for building the wall. This approach provides a
safe strategy in case of issues with communication channel.

Chapter 5

Experiments

Contents
5.1 Validation in simulation] 31
[5.2 Hardware experiments] 32

The experimental results described in this chapter are divided in two parts. The first
part is related to the results that are achieved in the simulator, details in Section [5.1 The
second part is related to the hardware experiments on the real UAVs.

5.1 Validation in simulation

Testing the approaches that are described in a thesis are done using Robotic operating
system (ROS) and Gazebo simulator. ROS is used to enable splitting the task into separate
nodes representing subtasks and to allow the communication between the UAVs. The
Gazebo simulator is used as testbed for the proposed solution.

5.1.1 Software system structure

Robotic operating system is a flexible framework for writing robot software. ROS is a
collection of tools and libraries that aim to simplify the task of creating complex and robust
robot behavior across a wide variety of robotic platforms. Different sets of ROS-based
processes are represented in an architecture where processing tasks are placed in nodes.
So, each node represents one process running in the ROS graph.The existence of nodes
simplifies possible complex robotics tasks allowing their splitting in separate subtasks.

The communication between nodes is provided by ROS Master. Every node before
doing action first needs to be registered on ROS Master. There is a possibility to exchange

32 Chapter 5. Experiments

data publishing to a topic, so each node that is subscribing a certain topic is announced
when new messages appear on the topic. Moreover, each of the nodes can call services
of other nodes, and provide them by themselves. These messages and service calls are
not passing through the Master directly, but enables communication between all node
processes.

Moreover, to be able to verify the provided solution of the given task, the Gazebo
simulator is used as a satisfactory testbed in realistic scenarios. Simulator enables the
creation of different 3D scenarios with robots, including a physical engine for illumination,
gravity, inertia, etc. The main advantage of using the Gazebo simulator is that the changes
verified in the simulator, mostly ensure that in real hardware experiments there should not
be any serious problems, and can be expected the same behaviour.

5.1.2 Simulations

The wall that meant to be build in the simulation experiments is containing 2 levels
of bricks, with 5 bricks on each level. The algorithms developed in this thesis are tested and
the results are shown in Table [5.1] The improved greedy algorithm is run for n = 1, k = 4.
The experiments are tested in case when the communication link is available.

On the beginning of the scenario drones are spawned on start positions, Figure [5.1]
and each of the UAVs is assigned a color of the brick that should be placed on the wall
provided by offline computed plan. Based on the conditions for flying are established (oper-
ators enable autonomous model), UAVs are flying to their initial waiting positions. Initial
waiting positions are located around the spots with bricks. Once the UAV reached this posi-
tion, it performs next action. Namely, the bricks are detected, their positions are estimated,
and then UAV is going to grasp the brick, as it is shown on Figure [5.2

Once the drones managed to take the objects they are flying with them attached on
grippers to the wall waiting positions. UAV is hovering in the waiting position until it is
allowed to go inside the wall space, Figure When the UAV is allowed to go to wall
space, it is going to place the brick on the wall, Figure [5.4] This procedure is repeated
until the all objects are placed on the wall, Figure [5.5]

The video of the proposed system contains experiment done in simulator for the first
MBZIRC 2020 qualification video report. This video can be found on a link [64]. The
motion planning task is done as collaboration of two UAVs. Furthermore, the link contains
video from building the wall by the team of three UAVs.

5.2 Hardware experiments

The last part of the experiment section presents real world deployment. These exper-
iments are done with two UAVs. That is sufficient number for presenting the functionality

5.2. Hardware experiments 33

Figure 5.1: UAVs in their start positions in Gazebo simulator.

and also more UAVs were not available at the time of experiments. The UAV platforms are
previously used for MBZIRC 2017 competition. These platforms are based on hexacopter
DJI F550 frame.

Basic stabilization of the UAV is done by the PixHawk flight control unit. The pow-
erful computer running the ROS is provided on each of the drones. This computer is used
for solving the UAV coordination, detection of the objects, state estimation and motion
planning. Communication between UAVs is done using WiFi module that is embedded in
the PC. Real Time Kinetic(RTK) satellite navigation was employed to achieve high preci-
sion in localization. Furthermore, drone is equipped with camera that is providing vision
feedback for detection of the objects, and with the laser rangefinder for precise altitude
control above the ground. The drones are able to lift up to 2 kg heavy objects, that fits
into the competitions requirements.

The hardware experiments were done before the integration of all parts of the solution
for the competition (grasping and dropping were not ready). Based on that, just proposed
motion planning part is tested. The experiments were prepared in the way that the bricks
of three colors were located on three different positions, showing the spots where each type
of bricks should be grasped. Furthermore, place where the wall should be build was marked
with several objects in the row. At the beginning, the motion planning algorithm is run.
The result from the planner is used as a optimal way how to build a wall. The order of

Table 5.1: The algorithms comparisons for the case of the final wall shown on the Figure
(.5} Wall is built by 3 UAVs with established communication.

‘ Algorithm ‘ Bruteforce ‘ Greedy algorithm ‘ Improved greedy ‘
| Time[min] | 5:10 | 5:55 | 5: 40 |

34 Chapter 5. Experiments

Figure 5.2: UAVs in their initial waiting position close to the spot with color objects they
are assigned to carry, are shown on the left images. On the right images UAVs grasping
the color objects are shown.

5.2. Hardware experiments 35

Figure 5.3: UAVs in their waiting positions in front of the wall space, waiting to enter in
the wall zone.

Figure 5.4: UAVs placing bricks in the wall.

36 Chapter 5. Experiments

Figure 5.5: The final wall, built by team of three UAVs following the planner provided
order of placing bricks.

placing the bricks in the construction was defined in this case as a task for two drones.
Once the drone knows which color object it should place on the wall, it is flying to initial
waiting position close to the spot with bricks, then goes for grasping, and finally goes to
the wall waiting position. There, drone is waiting until its turn to go into the wall zone,
and drop the object. Drones are doing this procedure in loop until all bricks are placed.
The whole video of the experiments can be seen on the link [64].

As the prototype of the drone for the MBZIRC 2020, was not ready yet for the
experiments, the bricks attachment to drone cannot be seen. The aim of the experiment
was to show the functionality of motion planner, and to show that drones are satisfactory
following the plan mission (given sequence of bricks), and as well execution of the mission.

5.2. Hardware experiments

37

Figure 5.6: The drone and bricks objects used for experiments.

Figure 5.7: The UAVs flying to get brick shaped objects.

38 Chapter 5. Experiments

Figure 5.8: The UAVs attempting to grasp the blue and red colored bricks. On the corners
of images, the views from the cameras on UAVs can be seen.

Figure 5.9: The UAVs in the waiting positions in front of the wall. The UAV that will
enter the wall zone first is carrying the object of the color defined by planner to be placed
as the next one in the wall.

5.2. Hardware experiments 39

Figure 5.10: On the top image, UAV with priority of the color of the object that is carrying,
defined by the planner, is entering the wall to deliver the object. After the first UAV left
the wall zone, the second UAV is entering the zone. On the left corner of the bottom image
can be seen the view from the camera on the drone.

40

Chapter 5. Experiments

Chapter 6

Concluding remarks and future work

This thesis deals with a problem of high-level motion planning for a group of UAVs
that are employed to build a wall structure. Wall structure is composed from different types
of brick shaped objects, also denoted as bricks throughout the thesis. Mission planner for
such a task is done in a form of a state machine. As the additional part of the mission
planner, the communication link between the robots is designed.

The approaches developed in this thesis are tested in the arena environment. Such
arena environment contains the starting spots for the drones, spots with colored brick
objects, spot where the wall is supposed to be built, and waiting spots assigned to each of
the UAVs. An example operating arena is used for the purposes of experimental validation
of the developed and proposed approaches, under the Robotics Operating System (ROS).

The wall assembly task is cast as a tree search problem in this thesis. An image of the
wall to be build is read and from it, a tree of all possible building orders is constructed. Each
node of the tree is representing a brick that will be placed in a specific order. We employ
tree search algorithms to find an optimal path from root to leafs, as such path will represent
the perfect building order. We implement several algorithms to search the optimal path in
the tree: brute force search, greedy algorithm and improved greed algorithm. We conclude
that the brute force algorithm, that traverses every path in the tree, is always finding the
best possible solution. On the other hand, this algorithms complexity exponentially grows
with the size of the wall. We experiment and validate that such an algorithm would use too
much time, that is valuable in the competition. The greedy algorithm finds the solution in
the shortest amount of time. However, it only explores one possible path in the tree, the
one in which the next step is always with smallest cost, and it doesn’t guarantee globally
optimal solution. Thus, the solution found is almost always not optimal, in fact, we observe
it is quite far from the optimal one. Finally, we propose to use the improved version of
the greedy algorithm, which will explore more than just a single path, and has adjustable
parameters. We conclude that the benefit here is twofold: (i) possibility to find a more
optimal solution at the beginning of the challenge, when we have more time available;

42 Chapter 6. Concluding remarks and future work

(ii) possibility to find a quick solution in the situations when something goes wrong, or if
a change is required towards the end of the challenge. The future work would be related
to the use of other tree search algorithms and experimenting on how much benefit they
would provide time-wise and optimality-wise.

The mission planner is implemented in the form of the hierarchical state machine.
The whole planner is tested in Gazebo simulator. The UAV explores the states in the state
machine based on the outcome of the current state as it is at the respective moment. If
any state execution fails and the drone cannot continue with the mission the safe land is
issued. The verification is done with 3 UAVs collaborating together.

In order to be able to establish a proper collaboration between the UAVs two ap-
proaches are considered. First, if the communication link using WiFi connection is suc-
cessfully established, drones are communicating by exchanging the messages between each
other. If the communication link is not available, not successfully established, or it fails
sometime during the mission, the drones switch to a safe approach of splitting time win-
dows.

The additional work, which is out of the scope of this thesis, being done while perform-
ing thesis research, is the contribution for the first MBZIRC report. The motion planning
task is implemented as a collaboration of two drones. Full report and video can be seen
n [64]. Also, hardware experiments were performed. Because the hardware experiments
were done before the full integration of all necessary parts, that are the complete solution
for the competition, we tested only the motion planning part.

Bibliography

1]

G. Pajares, “Overview and current status of remote sensing applications based on
unmanned aerial vehicles (uavs),” Photogrammetric Engineering € Remote Sensing,
vol. 81, no. 4, pp. 281-330, 2015.

D. Glade, “Unmanned aerial vehicles: Implications for military operations,” Air Univ
Press Maxwell Afb Al, Tech. Rep., 2000.

H. Eisenbeiss et al., “A mini unmanned aerial vehicle (uav): system overview and
image acquisition,” International Archives of Photogrammetry. Remote Sensing and
Spatial Information Sciences, vol. 36, no. 5/W1, pp. 1-7, 2004.

P. Grippa, D. A. Behrens, C. Bettstetter, and F. Wall, “Job selection in a network of
autonomous uavs for delivery of goods,” arXwv preprint arXiw:1604.04180, 2016.

“Mohamed bin zayed international robotics challenge (mbzirc).” [Online]. Available:
http://www.mbzirc.com

“Mohamed bin zayed international robotics challenge video descrip-
tion.” [Online]. Available: https://www.youtube.com/watch?v=15aPjTNY cpc&list=
PL1IWtPvuCDpc-sdmplfc KNISBsEH8x7eZl1

V. Spurny, T. Béaca, M. Saska, R. Pénicka, T. Krajnik, J. Thomas, D. Thakur,
G. Loianno, and V. Kumar, “Cooperative autonomous search, grasping, and deliv-
ering in a treasure hunt scenario by a team of unmanned aerial vehicles,” Journal of
Field Robotics, vol. 36, no. 1, pp. 125148, 2019.

J. Faigl, P. Vana, R. Penicka, and M. Saska, “Unsupervised Learning based Flexible
Framework for Surveillance Planning with Aerial Vehicles,” Accepted in Journal of
Field Robotics, 2018.

G. Loianno, V. Spurny, T. Baca, J. Thomas, D. Thakur, T. Krajnik, A. Zhou, A. Cho,
M. Saska, and V. Kumar, “Localization, grasping, and transportation of magnetic
objects by a team of mavs in challenging desert like environments,” IEEE Robotics
and Automation Letters, 2018.

http://www.mbzirc.com
https://www.youtube.com/watch?v=l5aPjTNYcpc&list=PL1WtPvuCDpc-s4mplf6KNI8BsEH8x7eZl
https://www.youtube.com/watch?v=l5aPjTNYcpc&list=PL1WtPvuCDpc-s4mplf6KNI8BsEH8x7eZl

44

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

M. Saska, V. Spurny, and V. Vonasek, “Predictive control and stabilization of nonholo-
nomic formations with integrated spline-path planning,” Robotics and Autonomous
Systems, vol. 75, no. Part B, pp. 379-397, 2016.

M. Saska, V. Vonasek, J. Chudoba, J. Thomas, G. Loianno, and V. Kumar, “Swarm
distribution and deployment for cooperative surveillance by micro-aerial vehicles,”
Journal of Intelligent € Robotic Systems., vol. 84, no. 1, pp. 469-492, 2016.

T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajec-
tory tracking and collision avoidance for reliable outdoor deployment of unmanned
aerial vehicles,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2018.

M. Saska, Z. Kasl, and L. Preucil, “Motion Planning and Control of Formations of
Micro Aerial Vehicles,” in 19th World Congress of the International Federation of
Automatic Control (IFAC). 1FAC, 2014.

N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3. 1EEE, 2004, pp.
2149-2154.

A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A review of the
state-of-the-art,” in Cooperative Robots and Sensor Networks 2015. Springer, 2015,
pp- 31-51.

B. P. Gerkey and M. J. Matari¢, “A formal analysis and taxonomy of task allocation in
multi-robot systems,” The International Journal of Robotics Research, vol. 23, no. 9,
pp- 939-954, 2004.

B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods for multirobot coordination,”
IEEFE transactions on robotics and automation, vol. 18, no. 5, pp. 758768, 2002.

A. Farinelli, L. Iocchi, and D. Nardi, “Multirobot systems: a classification focused on
coordination,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics), vol. 34, no. 5, pp. 2015-2028, 2004.

J. van der Horst and J. Noble, “Distributed and centralized task allocation: When and
where to use them,” in 2010 Fourth IEEE International Conference on Self-Adaptive
and Self-Organizing Systems Workshop. 1EEE, 2010, pp. 1-8.

X. Jia and M. Q.-H. Meng, “A survey and analysis of task allocation algorithms
in multi-robot systems,” in 2013 IEEE International Conference on Robotics and
Biomimetics (ROBIO). 1EEE, 2013, pp. 2280-2285.

Bibliography 45

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

H. Hanna, “Decentralized approach for multi-robot task allocation problem with un-
certain task execution,” in 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems. TEEE, 2005, pp. 535-540.

J. Bellingham, M. Tillerson, A. Richards, and J. P. How, “Multi-task allocation and
path planning for cooperating uavs,” in Cooperative control: models, applications and
algorithms. Springer, 2003, pp. 23—41.

J.-P. Laumond et al., Robot motion planning and control. Springer, 1998, vol. 229.

C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning algorithms from

the perspective of autonomous uav guidance,” Journal of Intelligent and Robotic Sys-
tems, vol. 57, no. 1-4, p. 65, 2010.

K. H. Sedighi, K. Ashenayi, T. W. Manikas, R. L. Wainwright, and H.-M. Tai, “Au-
tonomous local path planning for a mobile robot using a genetic algorithm,” in Proceed-
ings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753),
vol. 2. IEEE, 2004, pp. 1338-1345.

A. Ismail, A. Sheta, and M. Al-Weshah, “A mobile robot path planning using genetic
algorithm in static environment,” Journal of Computer Science, vol. 4, no. 4, pp.
341-344, 2008.

F. Duchon, A. Babinec, M. Kajan, P. Beno, M. Florek, T. Fico, and L. Jurisica, “Path
planning with modified a star algorithm for a mobile robot,” Procedia Engineering,
vol. 96, pp. 59-69, 2014.

P. Raja and S. Pugazhenthi, “Optimal path planning of mobile robots: A review,”
International journal of physical sciences, vol. 7, no. 9, pp. 1314-1320, 2012.

D.-q. Zhu and M.-z. Yan, “Survey on technology of mobile robot path planning,”
Control and Decision, vol. 25, no. 7, pp. 961-967, 2010.

A. Kaufmann, “Graphs dynamic programming and finite games,” Tech. Rep., 1967.

D. Shasha, J. T. Wang, and R. Giugno, “Algorithmics and applications of tree and
graph searching,” in Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM, 2002, pp. 39-52.

Y

S. A. Bortoff, “Path planning for uavs,” in Proceedings of the 2000 American Control
Conference. ACC (IEEE Cat. No. 00CH3633/), vol. 1, no. 6. IEEE, 2000, pp. 364—
368.

J. D. Contreras, F. Martinez et al., “Path planning for mobile robots based on visibil-
ity graphs and a* algorithm,” in Seventh International Conference on Digital Image
Processing (ICDIP 2015), vol. 9631. International Society for Optics and Photonics,
2015, p. 96311J.

46

Bibliography

[34]

[37]

[38]

[39]

[40]

[41]

T. Kito, J. Ota, R. Katsuki, T. Mizuta, T. Arai, T. Ueyama, and T. Nishiyama,
“Smooth path planning by using visibility graph-like method,” in 2003 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 03CH37/22), vol. 3. 1EEE,
2003, pp. 3770-3775.

W. Y. Loong, L. Z. Long, and L. C. Hun, “A star path following mobile robot,” in
2011 4th International conference on mechatronics (ICOM). 1EEE, 2011, pp. 1-7.

M. Kothari, I. Postlethwaite, and D.-W. Gu, “Multi-uav path planning in obstacle
rich environments using rapidly-exploring random trees,” in Proceedings of the 48h
IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese
Control Conference. TEEE, 2009, pp. 3069-3074.

M. Kothari and I. Postlethwaite, “A probabilistically robust path planning algorithm
for uavs using rapidly-exploring random trees,” Journal of Intelligent & Robotic Sys-
tems, vol. 71, no. 2, pp. 231-253, 2013.

Y. Dong, C. Fu, and E. Kayacan, “Rrt-based 3d path planning for formation landing
of quadrotor uavs,” in 2016 14th International Conference on Control, Automation,

Robotics and Vision (ICARCYV). 1EEE, 2016, pp. 1-6.

P. Vadakkepat, K. C. Tan, and W. Ming-Liang, “Evolutionary artificial potential fields
and their application in real time robot path planning,” in Proceedings of the 2000
congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol. 1. IEEE,
2000, pp. 256-263.

Y.-b. Chen, G.-c. Luo, Y.-s. Mei, J.-q. Yu, and X.-l. Su, “Uav path planning using
artificial potential field method updated by optimal control theory,” International
Journal of Systems Science, vol. 47, no. 6, pp. 1407-1420, 2016.

S. J. Rasmussen and T. Shima, “Branch and bound tree search for assigning cooper-
ating uavs to multiple tasks,” in 2006 American Control Conference. 1EEE, 2006,

pp. 6-pp.

——, “Tree search algorithm for assigning cooperating uavs to multiple tasks,” Inter-
national Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, vol. 18,
no. 2, pp. 135-153, 2008.

S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

M. A. Kaur, M. P. Sharma, and M. A. Verma, “A appraisal paper on breadth-first
search, depth-first search and red black tree,” International Journal of Scientific and
Research Publications, vol. 4, no. 3, pp. 1-3, 2014.

R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on com-
puting, vol. 1, no. 2, pp. 146-160, 1972.

Bibliography 47

[46]

[47]

[48]

[49]

[51]

[52]

[53]

[54]

[55]

[56]

M. Kurant, A. Markopoulou, and P. Thiran, “On the bias of bfs (breadth first search),”
in 2010 22nd International Teletraffic Congress (ITC 22). 1EEE, 2010, pp. 1-8.

M. Alighanbari, “Task assignment algorithms for teams of uavs in dynamic environ-
ments,” Ph.D. dissertation, Massachusetts Institute of Technology, 2004.

B. M. Sathyaraj, L. C. Jain, A. Finn, and S. Drake, “Multiple uavs path planning
algorithms: a comparative study,” Fuzzy Optimization and Decision Making, vol. 7,
no. 3, p. 257, 2008.

M. Shanmugavel, A. Tsourdos, B. White, and R. Zbikowski, “Co-operative path plan-
ning of multiple uavs using dubins paths with clothoid arcs,” Control Engineering
Practice, vol. 18, no. 9, pp. 1084-1092, 2010.

P. Ramon Soria, B. Arrue, and A. Ollero, “Detection, location and grasping objects

using a stereo sensor on uav in outdoor environments,” Sensors, vol. 17, no. 1, p. 103,
2017.

I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” The
International Journal of Robotics Research, vol. 34, no. 4-5, pp. 705-724, 2015.

N. Roy, P. Newman, and S. Srinivasa, “Recognition and pose estimation of rigid trans-
parent objects with a kinect sensor,” Robotics: Science and Systems, 2013.

M. Zhu, K. G. Derpanis, Y. Yang, S. Brahmbhatt, M. Zhang, C. Phillips, M. Lecce,
and K. Daniilidis, “Single image 3d object detection and pose estimation for grasping,”
in 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 3936-3943.

P. Ramon Soria, B. Arrue, and A. Ollero, “Detection, location and grasping objects
using a stereo sensor on uav in outdoor environments,” Sensors, vol. 17, no. 1, p. 103,

2017.

A. Collet, D. Berenson, S. S. Srinivasa, and D. Ferguson, “Object recognition and
full pose registration from a single image for robotic manipulation,” in 2009 IEEFE
International Conference on Robotics and Automation. TEEE, 2009, pp. 48-55.

M. Laiacker, M. Schwarzbach, and K. Kondak, “Automatic aerial retrieval of a mo-
bile robot using optical target tracking and localization,” in 2015 IEEE Aerospace
Conference. 1EEE, 2015, pp. 1-7.

M. Bisgaard, J. D. Bendtsen, and A. L. Cour-Harbo, “Modeling of generic slung load
system,” Journal of guidance, control, and dynamics, vol. 32, no. 2, pp. 573-585, 2009.

N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and transportation
with aerial robots,” Autonomous Robots, vol. 30, no. 1, pp. 73-86, 2011.

48

Bibliography

[59]

[60]

[61]

[62]

[63]

[64]

M. Bernard and K. Kondak, “Generic slung load transportation system using small
size helicopters,” in 2009 IEEE International Conference on Robotics and Automation.
IEEE, 2009, pp. 3258-3264.

D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar, “Design, modeling, estimation
and control for aerial grasping and manipulation,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, 2011, pp. 2668-2673.

P. Williams and P. Trivailo, “Cable-supported sliding payload deployment from a
circling fixed-wing aircraft,” Journal of aircraft, vol. 43, no. 5, pp. 1567-1570, 2006.

P. McGill, K. Reisenbichler, S. Etchemendy, T. Dawe, and B. Hobson, “Aerial surveys
and tagging of free-drifting icebergs using an unmanned aerial vehicle (uav),” Deep Sea
Research Part II: Topical Studies in Oceanography, vol. 58, no. 11-12, pp. 1318-1326,
2011.

J. Bohren and S. Cousins, “The smach high-level executive [ros news|,” IEEE Robotics
& Automation Magazine, vol. 17, no. 4, pp. 18-20, 2010.

“Video material from the experimental verification of proposed method.” [Online].
Available: http://mrs.felk.cvut.cz/theses/petric2019

http://mrs.felk.cvut.cz/theses/petric2019

Appendices

CD Content

In Table [are listed names of all root directories on CD.

Directory name Description

thesis the thesis in pdf format
thesis_latex latex source codes
source_codes implementation source codes

Table 1: CD Content

52

List of abbreviations

In Table 2] are listed abbreviations used in this thesis.

Abbreviation Meaning

UAV Unmaned Aerial Vechicle

UGv Unmaned Ground Vechicle

MBZIRC Mohamed Bin Zayed International Robotics Challenge
ROS Robot Operating System

BFS Breadth First Search

RRT Rapidly-exploring Random tree

DFS Depth First Search

Table 2: Lists of abbreviations

54

Appendix .

List of abbreviations

55

	List of Figures
	List of Tables
	Introduction
	MBZIRC competition
	Problem statement
	Structure of the thesis

	Related work
	Task allocation
	Path planning
	Graph and tree search
	Cooperative path planning

	Object manipulation
	Grasping objects
	Dropping objects

	Cooperative wall building
	Processing the wall image
	Tree build
	Best path search
	Cost formulation
	Brute force
	Greedy algorithm
	Improved greedy algorithm

	Approaches comparison

	Motion planning
	Arena description
	Mission planner
	Communication between UAVs

	Experiments
	Validation in simulation
	Software system structure
	Simulations

	Hardware experiments

	Concluding remarks and future work
	Bibliography
	Appendices
	Appendix List of abbreviations

