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166 27 Prague 6
Czech Republic

Copyright c© May 2019 Bc. Adam Zizien



ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

434855Osobní číslo:AdamJméno:ZizienPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra radioelektroniky

Elektronika a komunikaceStudijní program:

Audiovizuální technika a zpracování signálůStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Plenoptické zobrazování a konverze obrazových dat

Název diplomové práce anglicky:

Plenoptic Imaging and Image Data Conversion

Pokyny pro vypracování:
Podejte přehled technik pro efektivní reprezentaci dat a konverzi mezi modalitami plenoptického zobrazování s ohledem
na současné výzkumné aktivity, zejména pak JPEG Pleno. Zpracujte přehled volně dostupných vhodných obrazových
databází a výpočetních nástrojů. Na vybraných příkladech vyhodnoťte účinnost a analyzujte omezení studovaných metod.

Seznam doporučené literatury:
[1] Ebrahimi, T., Foessel, S., Pereira, F., Schelkens, P.: JPEG Pleno: Toward an Efficient Representation of Visual Reality,
IEEE MultiMedia, 23 (4), 2016.
[2] Viola, I., Rerabek, M., Ebrahimi, T.: Comparison and Evaluation of Light Field Image Coding Approaches, IEEE Journal
on Selected Topics in Signal Processing, 11 (7), 2017.
[3] Blinder, D., Ahar, A., Bettens, S., Birnbaum, T., Symeonidou, A., Ottevaere, H., Schretter, C., Schelkens, P.: Signal
processing challenges for digital holographic video display systems, Signal Processing: Image Communication, 70, 2019.
[4] Ng, R.: Digital Light Field Photography, PhD dissertation, Stanford, 2006.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Karel Fliegel, Ph.D., katedra radioelektroniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 24.05.2019Datum zadání diplomové práce: 08.02.2019

Platnost zadání diplomové práce: 20.09.2020

_________________________________________________________________________________
prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
prof. Mgr. Petr Páta, Ph.D.
podpis vedoucí(ho) ústavu/katedry

Ing. Karel Fliegel, Ph.D.
podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1



Declaration

I hereby declare I have written this master thesis independently and quoted all the sources
of information used in accordance with methodological instructions on ethical principles
for writing an academic thesis. Moreover, I state that this thesis has neither been sub-
mitted nor accepted for any other degree.

In Prague, May 2019

............................................
Bc. Adam Zizien

iv



Abstract

More and more data is captured in today’s world, with sophisticated devices. Having
multiple cameras in a new smartphone is almost a given. Different techniques with differ-
ent intentions in mind were developed to acquire as much information about a scene as
possible and further leverage that information in many ways. In this work, three imaging
modalities are presented, that being Light field, Point-cloud and Holography.

General principles for each modality and the connections they have to the plenoptic
function are mentioned. The current techniques for conversion between the modalities
are explored. So are compression approaches.

The effects of light field image compression with state-of-the-art encoders on disparity
estimation are evaluated and discussed. Video encoders showcase better performance than
still image encoders, thanks to temporal coding. However, all tested encoders exhibit scene
dependent behaviour.

There is no existing standard for compression of plenoptic images nor for conversion
between the different representation as JPEG Pleno is still in development. Existing
algorithms are showing promise, both in terms of compression and conversion. However,
further research still needs to be done.

Keywords: light field, digital holography, point cloud, compression, conversion, image
processing.
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Abstrakt

Dnešńı sofistikované př́ıstroje zaznamenávaj́ı stále v́ıce obrazových dat. Prakticky každý
nový mobilńı telefon je vybaven v́ıce než jedńım fotoaparátem. Pro zachyceńı a zpracováńı
dat, a to pro r̊uzné účely, bylo vyvinuto mnoho technik. V této práci jsou prezentovány
tři zobrazovaćı metody – light field, point cloud a holografie.

Jsou zmı́něny obecné zásady každé modality společně s vazbami na plenoptickou
funkci. Dále jsou zkoumány současné postupy konverze a komprese.

V práci je diskutován vliv komprese light field obrazových dat na odhad disparity.
Zkoumané video kodeky vykazuj́ı lepš́ı výsledky než metody určené čistě pro kompresi
statických sńımk̊u, protože lépe využij́ı podobnost jednotlivých sńımk̊u. Avšak všechny
kodeky vykazuj́ı závislost na testovaných datech.

V současnosti neexistuje žádný standard pro kompresi či konverzi plenoptických dat,
jelikož JPEG Pleno je stále ve vývoji. Existuj́ıćı algoritmy vykazuj́ı slibné výsledky v
oblastech komprese i konverze. Daľśı výzkum v této oblasti je však nezbytný.

Kĺıčová slova: light field, digital holography, point cloud, komprese, konverze, obrazové
zpracováńı.
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Chapter 1

Introduction

Humans are taking and sharing more pictures than ever. To be able to capture the

world around us becomes more important each year. Gone are the days of bulky cameras

that can capture images in just black and white. The industry understands the value

of information which could be captured at any moment in a scene. Thus the jump to

colour photography was made followed by a shift from analog to digital and subsequently

computational photography. It is therefore not only about the captured data but also

about its manipulation. So came the ability to stitch images together to make a panorama

or to combine them in such a way, that a High Dynamic Range (HDR) image is created.

The next innovation was to capture more than a 2D representation of a scene. The

scene can be captured from two different positions to simulate the Human Visual System

(HVS). This 3D representation incorporates even more data about the scene, which can

be further manipulated to achieve specific goals. The next logical step to get even more

information about the scene is to acquire even more views.

Different techniques with different intentions in mind were developed to acquire as

much information about a scene as possible. Three main modalities will be introduced

and discussed in this work, that being Light field, Point-cloud and Holography. Each of

which has some advantages and disadvantages, but the information captured is in a lot

of ways similar or even the same. The conversion between the modalities should thus be

possible (depicted in Figure 1.1). One could, therefore, be able to leverage the best aspect

of each.

To understand the principles of each modality, the introduction of a plenoptic function

is first required (Chapter 2). The basics of the modalities are then described in Chapters

3, 4 and 5. Current methods of conversion between the different representations are

discussed (Chapters 6, 7, 8). So are compression approaches (Chapter 9). Available

1



CHAPTER 1. INTRODUCTION 2

Point cloudLight field

Digital holography Reconstructed hologram

Figure 1.1: Conversion between the different imaging modalities with examples2. (holog-
raphy images taken from [1]).

implementations of the techniques are mentioned together with datasets and software

used to test them in Chapter 10. In Chapter 11 the effects compression of light field

images has on disparity estimation is examined. It can be expected that some form of

compression will have to be applied to light field images before they can be stored. The

chosen compression algorithm will inevitably alter the image in a way that some amount

of distortion will appear. In Chapter 11 the effects compression of light field images has

on disparity estimation is explored. Various state-of-the-art image and video compression

algorithms are tested on several estimation methods.

2Light field image and point cloud provided as part of: http://dgd.vision/Tools/LFToolbox/ and
http://vision.middlebury.edu/stereo/code/ (used 20.5.2019)

http://dgd.vision/Tools/LFToolbox/
http://vision.middlebury.edu/stereo/code/


Chapter 2

Plenoptic function

A region of space filled with visible light, a narrow part of the whole electromagnetic

spectrum which can be viewed by the HVS, contains visual information for every point

in that space. A dense array of light rays of various intensities passes through each point

in the space. This set of rays is mathematically termed a pencil P [2]–[4].

If we position a pinhole camera at a point (x, y, z) in space, a specific pencil of rays

P (x, y, z) is captured. To describe the intensity distribution of the light, spherical coor-

dinates (θ,φ) can be used [2], [4], [5], extending the pencil definition to P (x, y, z, θ, φ).

Adding color into the mix, thus considering how the intensity varies with wavelength λ, the

pencil definition can be further extended to P (x, y, z, θ, φ, λ) [2]. Lastly a temporal dimen-

sion is added if the scene to be captured is dynamic, yielding a function P (x, y, z, θ, φ, λ, t),

which is commonly called the plenoptic function, seen in Figure 2.1 [3].

Figure 2.1: Visualization of the plenoptic function (taken from [4]).

The seven dimensions of the plenoptic function imply an enormous amount of data

to be captured and represented. It is therefore essential to reduce the dimensionality.

3
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Only a subset of the information is usually addressed in current representation models.

This subset is further sampled and quantized. For example, the number of pinhole camera

positions is defined, the full wavelength information is reduced to represent R, G, B colour

channels or the number of frames per second captured is limited, usually to the point that

only static images are acquired [3], [4].

Different sensors and camera systems are used to acquire some version of the plenoptic

function. Metadata may also be acquired or inserted. The information captured may

then be converted to a different representation format, which can include [3]:

• omnidirectional content often captured by a single camera or multiple cameras as a

360◦ panorama or a complete sphere mapped to a 2D image,

• depth-enhanced content extracted from multiple images captured with a digital

camera or acquired with depth-sensing cameras or structured light systems,

• point cloud content commonly generated by a 3D scanner or a Lidar (Light Detection

and Ranging) scanner. The information, in this case, must often be combined with

additional modalities, so that a more complete plenoptic representation of the real

world is characterized,

• light field content captured with an array of cameras or a single camera equipped

with a microlens structure,

• holographic content that is computer-generated, and thus called Computer Gener-

ated Hologram (CGH), or acquired using interferometry. If the time dimension is

omitted, the full plenoptic function can then be portrayed to a 2D map [4].



Chapter 3

Light field

Having one digital camera lets us capture one view of a specific scene. Adding a second

camera with a slight offset from the first one, thus simulating HVS, gives us a stereoscopic

view of the scene, therefore providing additional information about the scene. This con-

figuration of cameras meets the common definition of a 4D light field, derived from the

plenoptic function, as P (x, y, θ, φ).

3.1 Light field acquisition

The goal of light field photography in comparison to traditional photography is to capture

additional spatial information about the scene. There are many ways of achieving this

goal. This section gives a brief overview of the most common techniques of acquisition.

3.1.1 Single Lens Stereo

The first method is single lens stereo. The most straightforward way to capture additional

angular information about the scene is to capture the scene from two nearby viewpoints,

thus simulating HVS [5]. This system, sometimes referred to as a binocular stereo system,

can be highly effective in some situation, but like any other system, it also suffers from

difficulties, mainly with camera calibration [6].

3.1.2 Camera array

An improvement on single lens stereo is a camera array. Instead of using just two cameras

to capture the scene, the camera array uses multiple cameras usually positioned in a

grid. A variety of viewpoints can be captured this way, thus acquiring additional angular

information about the scene. Synchronization and calibration of the array are crucial in

this instance. The output of the system is an array of images, which are shifted slightly

5
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horizontally, vertically or both from each other, creating a parallax. Data processing is

then needed to visualize the scene [5].

3.1.3 Plenoptic camera

A plenoptic camera differs from the camera array in that it can capture all of the images

in a single snapshot on one photodetector element (for example a charge coupled device,

also called a CCD) [6]. There are two main ways of doing so, both derived from a proposal

made in 1908 by Gabriel Lippmann to use microlenses in front of the image plane [7].

The two approaches are called Plenoptic 1.0 and Plenoptic 2.0.

In the Plenoptic 1.0 approach, first implemented by Ren Ng in 2006 [8], a microlens

array is added to the usual camera design of a digital sensor, main optics and an aperture.

The array is placed precisely at the focal length from the sensor, in the focal plane of the

primary lens. The incoming light is then split by the microlens array according to the

direction it is coming from [7]. One point viewed from different angles will appear under

each microlens. The image under each microlens will thus appear blurry, which can be

seen in Figure 3.2 [5]. The size of the microlenses is determined by the aperture of the

main optics and should be neither too big, nor too small so that the sensor area is not

wasted or the adjacent images under the microlenses do not overlap. The number of

microlenses further determines the spatial resolution of the rendered view.

Figure 3.1: The different position of microlenses in a) Plenoptic 1.0 and b) Plenoptic 2.0
(taken from [5]).

The difference between the Plenoptic 1.0 design and the Plenoptic 2.0 design is the posi-

tion of the microlenses, as seen in Figure 3.1. The latter also called the Focused Plenoptic

design, places the microlens array at a specific distance m, so that the microlenses are
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focused on the image plane of the primary lens. One can then visualize each microlens as

a pinhole camera, which observes a fraction of the virtual image inside the camera from

a particular position. Under each microlens is, therefore, a sharp inverted low-resolution

image, as seen in Figure 3.2. This approach achieves high spatial resolution [5], [7].

Figure 3.2: The different microimages in Plenoptic 1.0 (left) and Plenoptic 2.0 (right) 1.

3.2 Data representation of light fields

There are various ways of representing light field data. The first and most straightforward

way of representing light field data is a lenslet structure. In this method, the images

under each microlens are shown and a lenslet image is made (Figure 3.3). In the case of a

Lytro camera2, the images under each microlens have a resolution of 15×15 pixels. These

images are then arranged into a 625×434 lenslet array. The array has the same shape

as the microlenses and thus is circular. What is also noticeable is that some information

is missing under the microlenses. This is due to the circular shape of the microlenses,

thus the construction of the camera. There are some methods of filling in the missing

information [5].

Figure 3.3: A lenslet structure (taken from [5]).

1Source: http://www.tgeorgiev.net/EG10/Focused.pdf (used 23.10.2018)
2Lytro Illum to be exact. More info about the camera can be found for example in https://doi.

org/10.1007/s00138-019-01013-z.

http://www.tgeorgiev.net/EG10/Focused.pdf
https://doi.org/10.1007/s00138-019-01013-z
https://doi.org/10.1007/s00138-019-01013-z
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Another way of representing light field data is with sub-aperture images, shown in

Figure 3.4. These images are constructed by extracting the same pixel in terms of the po-

sition under each microlens, thus reconstructing one specific view of a scene. Considering

all the views, an array of sub-aperture images can be constructed. For the above men-

tioned Lytro camera, the array will have a size of 15×15 individual sub-aperture images

[5].

Figure 3.4: An array of sub-aperture images (taken from [5]).

EPIs are a third way of representing light field data. To understand this method, we

must first introduce another way the plenoptic function can be described. If we consider a

light ray passing through two planes, which are positioned some specified distance apart,

then because the light ray remains constant through free space, we acquire additional

information about the angle in which the light ray intersects both planes (Figure 3.5).

15

15 62
5

43
4

Figure 3.5: Capturing angular information about a light ray with the use of 2D planes.
Dimensions represent the spatial and directional resolutions for the Lytro Illum camera
(edited image from [5]).

In the EPIs, v and y stay fixed, while u varies horizontally and x vertically. This gives

each EPI a spatial resolution of 434 pixels and a directional resolution of 15 pixels, for

the Lytro camera in question. The depth of the scene can then be estimated based on

the slopes of each EPI, see Figure 3.6 [5].
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Figure 3.6: Epipolar images (taken from [5]).

3.3 Displaying light fields

To display light field content one can use a variety of different viewing devices, having

drastically different experiences with each. Using a 2D system is not ideal in the sense

that only a subset of the content can be displayed. A conventional 3D systems can be

bothersome, for most the user needs 3D glasses, wearing which may lead to visual fatigue.

Autostereoscopic displays, which do not require those glasses, can be preferable for the

user. Two types of displays satisfy all the human vision depth cues, a light field 3D display

(LFD) and a holographic display. Both can reproduce horizontal and vertical parallaxes

[9].

An LFD does, ideally, the perfect inversion of the light field acquisition. Therefore

the light rays captured in the scene are reproduced with the correct intensity, colour and

direction. The original discovery, known as integral photography, was made by Lippmann

in 1908 [10]. The digital realization of this technology is usually referred to as integral

imaging, with the display being called an integral display. Another way of reproducing

light fields is with so-called multiview 3D displays. They can be considered as LFD if the

number of views one can observe is sufficiently large. Lastly, holographic stereograms,

which are based on wavefront reconstruction rather than light rays, can also be used [9].



Chapter 4

Point cloud

A point in geometry specifies a unique location in space, commonly characterized by

Cartesian coordinates (x, y, z). Spherical coordinates may also be used, in which case,

each point is represented by the horizontal and vertical angles, θ and φ, together with a

measured distance r [11]. In both cases, a parallel to the plenoptic function can be drawn.

A point also has no length, area or volume. A point cloud represents a set of these multi-

dimensional points (see Figure 4.1). Additional information about each point such as

colour information, transparency, time of acquisition and reflectance can be captured as

well [12], [13].

Figure 4.1: Example of a point cloud. A set of points in space can be seen, with noticeable
gaps between them.

10



CHAPTER 4. POINT CLOUD 11

4.1 Point cloud acquisition

The acquisition of point cloud was extensively discussed and researched over the past

decades. One can categorize the different techniques based on the measurement principle.

Firstly, we can look at the distinction between active and passive techniques. The latter

focuses on collecting information from scenes with reasonable ambient lighting, while the

former actively manipulates the scene itself. For passive techniques, a further distinction

of single view or multiple views of a scene can be drawn. Active techniques may be further

divided into monostatic and multistatic sensor configurations, based on the position of

the emitter and receiver component [13]. In practice, point cloud content is typically

captured with either a 3D scanner or a Light Detection and Ranging (Lidar) scanner or

computed from an array of images, each depicting the scene from different viewpoint [4].

4.1.1 Passive techniques

Point cloud generation based on passive techniques relies only on radiometric information,

which is represented by 2D imagery, in the form of simple intensity measurements per

pixel. There are two main strategies for the reconstruction of 3D structures from the

captured intensity images. In the first strategy, the acquisition of multiple images of a

scene is exploited. For this purpose, either multiple cameras or a single moving camera

can be used. Stereo matching techniques are then applied to estimate the respective 3D

structure of the scene, by finding points of corresponding intensity in the images and

converting their 2D locations into 3D depth values. The goal of the second strategy is

the simultaneous recovery of both the 3D structure of the scene and the location of the

image, which correspond to the camera pose. Structure-from-Motion techniques are used

for this [13].

4.1.2 Active techniques

Instead of relying on simple intensity measurement per pixel for each scene, active tech-

niques actively manipulate it. This involves emitting signals and recording the observa-

tions in the scene. The emitted signal may be a coded structured light pattern in either

the visible or infrared spectrum, or electromagnetic radiation in the form of laser light.

In the former case projected light patterns manipulate the illumination of the scene, so

that particular projected labels can be easily decoded in the captured images. Triangu-

lation is then used to recover the 3D coordinates. A further classification based on the

used pattern codification strategy can be made, as is mentioned in [13], namely: Direct

codification, Time-multiplexing and Spatial neighbourhood codification strategies.
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4.2 Point cloud representations

Whereas laser scanners record the geometric and radiometric information from the scene

by successively considering points on a discrete, regular raster, range cameras use an

internal sensor array for simultaneous consideration of all points on the same discrete,

regular raster. Thus, acquisition of a dynamic scene can be performed with a sufficiently

fast range camera [13].

A specific scene can have a high number of points, posing significant memory demands.

To store and represent this data, special data structures are used, including tree structures,

such as the k-d tree and octree, or methods utilizing the grid map method. In the latter

case, the captured data are represented with depth images generated from point clouds,

mapping 3D coordinates onto 2D image coordinates [11].

Figure 4.2: Definition of the environment: a) k-nearest neighbours and b) angle criterion
(taken from [14]).

The connectivity of triangular meshes, which contain faces or surfaces, is replaced by the

environment of each point in the point cloud representation. We assume that the nearest

neighbours of a point contribute to the environment. We can then define the environment

of a point by its k-nearest neighbours. This is not an optimal choice, because the k-nearest

neighbours do not have to cover the whole environment, as can be seen in Figure 4.2. It is

better to select k-neighbours which are distributed all around the point by introducing an

angle criterion. The environment can then be visualized by a triangle fan and the whole

point cloud by the rendering of all the triangle fans [14].

Two major problems have to be solved before applying a specific visualization method,

that being the handling of a large amount of data and distortion. In the case of over-

sampling, thus having a high sample rate, the point cloud contains redundancy. We can

then consider each point to have a certain amount of information content, which gives

information about the captured scene. The deletion of points of low information content,

thus low entropy, leads to the reduction of data. What is also useful, for example in
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networking, is to store separately general low-resolution information about the scene and

detail information, in the form of vectors. When displaying a complex object, the low-

resolution part is first shown and then progressively improved by the detail information.

Storing the detail information in vectors is also beneficial in terms of interactive editing

of the scene. The user can edit the global shape or structure of the scene while leaving

the small detail unchanged in a process called multiresolution editing, as can be seen in

Figure 4.3.

Figure 4.3: Multiresolution editing (taken from [14]).

Smoothing is used to eliminate distortion. Several smoothing methods exist, including

various smoothing operators and filters. Some operators try to make edge lengths as

uniform as possible, which can be problematic. For example in the case of modelling pur-

poses, it is important to use such smoothing operators which do not affect the geometrical

aspects of the scene in question, as is shown in Figure 4.4.

Figure 4.4: Application of different smoothing operators (taken from [14]).



Chapter 5

Digital Holography

The word holography is a combination of Greek words ”holos” meaning complete or

entire and ”graphein” meaning to write. The term was created by Dennis Gabor in 1948

together with a method of recording and reconstructing amplitude and phase of a wave

field. A hologram is a recording of an interference pattern between a wave field scattered

from an object and a reference wave. The image contains information about the entire

three-dimensional wave field [1].

5.1 Fundamental principles

Two terms form the basis of holography, that being diffraction and interference. Diffrac-

tion is a phenomenon which occurs when light encounters an obstacle. The Huygens

principle (Figure 5.1) explains diffraction as follows:

“Every point of a wavefront can be considered as a source point for secondary

spherical waves. The wave field at any other place is the coherent superposition

of these secondary waves” [1].

Interference refers to the superposition of two or more waves in space. A term that is

closely tied to interference is coherence, which is the ability of light to interfere. There are

two aspects of coherence, spatial and temporal. The former describes the correlation of

different parts of the same wavefront, while the latter describes the correlation of a wave

with itself at different instants.

An optical set-up is usually used to record a hologram. It consists of a light source

(further details in Chapter 7.1), mirrors, and lenses. A beam splitter is used to split

the light into two partial waves. One, called the object wave, illuminates the object,

scatters, is reflected and recorded. The other also called the reference wave, illuminates

14
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Figure 5.1: The Huygens principle (taken from [1]).

the recording medium directly. The interference pattern of both waves is recorded. This

pattern is traditionally called a hologram. Reconstruction of the original object wave is

done by illuminating the recorded hologram with the reference wave. If the reference wave

has the same parameters as the one used for the recording, the reconstructed virtual image

should appear in the same position as the original object. Changing the wavelength, for

example, results in a coordinate shift and thus distortion. Both the recording and the

reconstruction can be seen in Figure 5.2.

Figure 5.2: Hologram recording (top) and reconstruction (bottom) (taken from [1]).
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5.2 Hologram acquisition

To map the displacements of rough surfaces, a method named Holographic Interferometry

is used. This method enables the comparison of stored wavefronts existing at different

times, has high sensitivity, thus high accuracy, and is non-contact and non-destructive.

The difference between this method and general holography is in the recording phase.

Two wave fields are recorded on a single photographic plate instead of one, each for a

different state of the recorded object. The object is then represented in two states, its

reference (undeformed) state and its loaded (deformed) state. When the reference wave

is then used to reconstruct the image, only one of the superimposed images is visible, see

Figure 5.3.

Figure 5.3: Holographic interferogram (taken from [1]).

In Digital Holography, the interference of the waves happens at the surface of an elec-

tronic array sensor. Therefore the hologram is recorded electronically. Purely digital

methods can then be used for the simulation and reconstruction. The recording of digital

holograms has several advantages over the recording on a holographic film. Vibrations do

not affect the recording as much, because the sensitivity of the digital imager is higher.

The imager is also linear, which is not the case for holographic film. The main issue in dig-

ital holography is with Shannon’s criterion. Specifically, the maximum fringe frequency,

which is given by the minimum inter-fringe distance on the recorded fringe pattern, must

be lower than the Nyquist frequency of the imager so that aliasing does not occur [15],

[16].

A hologram can also be produced without any optical interference. In this case, the

term Computer Generated Hologram (CGH) is used. There are three categories of CGH

algorithms, based on their basic processing unit. A point-based CGH approach assumes

that the object in question consists of multiple points. Elementary holograms for each

point can, therefore, be calculated and superimposed to acquire the final one. The plane-

based approach uses the Fourier transform to represent the wavefront propagation on
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object planes onto the hologram plane. The hologram is thus a superposition of Fourier

transforms of object planes in depth. Lastly, a mesh-based CGH is used to represent the

3D object in a more realistic way. It finds corresponding spatial frequencies between given

and reference triangles and calculates the angular spectrum of each mesh based on it [17].

5.3 Holographic data representation

There are various ways of representing holographic data. The hologram data can be

represented by the following formats:

• intensity information or interferograms, for which the intensity of the complex wave-

field is represented by three different phase shifts of the reference wave, being I1, I2

and I3 with the shifts of 0, pi/2 and pi,

• phase shifted distances, which need only two components (D1 and D2) to represent

the complex wave field. This is due to the fact that the complex wavefield has only

two components, amplitude and phase,

• real-imaginary represents the interference wavefield using Cartesian coordinates,

therefore two components of a complex number,

• amplitude-phase is similar to the above-mentioned format, with the difference being

that in this case polar coordinates are used instead of Cartesian coordinates. This

means that the two components are now amplitude and phase [18]. The difference

between both formats can be seen in Figure 5.4.

Figure 5.4: The difference between real (a) - imaginary (b); and amplitude (c) - phase
(d) (taken from [18]).



Chapter 6

Conversion between Point cloud and

Light field

The above-mentioned modalities represent the acquired information in different ways and

are thus used in different circumstances. Each has various benefits and drawbacks. The

conversion between the different representations should be possible.

Some obvious difficulties need to be resolved, for example, what should be done about

missing information. For this reason, almost all the works are focusing on the conver-

sion from Light field, which as a modality stores, in general, more information, and

not from Point cloud. However, there already exist very detailed coloured point clouds,

which should enable the extraction of light field images. Furthermore, to create a dense

360◦ point cloud, a high number of viewpoints is necessary. This could lead to a trouble-

some acquisition process and to an increase in the amount of data that needs to be stored.

Point clouds could be a better option in those cases than light fields. This chapter gives

an overview of the different methods of conversion between Point cloud and Light field,

as seen in Figure 1.1.

As [19] mentions, we can divide the methods for converting from Light field to Point

cloud into two distinct categories, that being optimization-based and learning-based meth-

ods. Each of which can be further divided. A depth or a disparity map is largely the

output of the above-mentioned techniques, as it can be used as an intermediate step in

the conversion. The whole procedure is, in that case, split into several related steps.

18
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6.1 Optimization-based methods

This category encapsulates a host of distinct approaches with a common description.

It can be said that the works in this category are based first and foremost on theories

(mathematical, physical, etc.), thus being more general and more comfortable to build

upon or recreate. The same cannot be said about the second group, in which machine

learning techniques are applied. What can also be seen is a mostly unavoidable trade-off

between the computational time and the performance for these conventional techniques

[19].

6.1.1 EPI-based

The first subcategory of the optimization methods includes those based on epipolar plane

images (EPIs). The benefit of using EPIs is in the reduction of dimensionality compared

to the full light field image. Two main ways are used for the calculation of lines or the

orientation of the EPIs, a structure tensor or a spinning parallelogram.

The structure tensor is used to compute horizontal and vertical slopes of the EPIs. A

relation between the slope level and the depth can then be exploited. [20], for example,

formulate this problem as a variational labelling one. For the depth map estimation, they

use a global optimization framework.

A SPO can also be used to locate and calculate the lines and orientations of the EPIs,

as is shown in [21]. Their method extracts the depth information by maximizing the

distribution distances between two parts of a parallelogram window. This technique is

further extended in [22], with the use of multi-orientational EPIs (Figure 6.1).

6.1.2 Line-fitting based

The line-fitting based methods could very well be included in the EPI-based section. The

line-fitting term encapsulates techniques that use EPIs as well, but in different ways than

was mentioned above.

In [23] a fine-to-coarse strategy with further propagation is used. It uses EPIs together

with a line fitting function algorithm. A further extension of this method is in [24], which

uses the same line fitting concept with additional Semi-Global Matching (SGM) based

initialization. The focus is in this case on speed and computational complexity.
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Figure 6.1: Multi-orientional EPIs. The slopes of the lines are related to disparity (taken
from [22]).

6.1.3 Defocus and correspondence based

In this section, methods, which use defocus and correspondence as their basis for esti-

mating depth from light field images, are described. The defocus and correspondence

is an umbrella term used to label another attribute of light field images, which is being

able to focus at different depths of a scene. EPIs are mainly used for this as well. In

traditional photography, multiple image exposures or complicated apparatuses have to be

used. There are various ways of exploiting this property.

Patch-based variance measurement is used in [25] to measure the defocus. It is shown

that the combination of both cues leads to faster computations and more accurate results

than using just one of them. Their whole framework can be seen in Figure 6.2.

Another approach is to use focal stacks, sets of images focused at different distances,

to build a cost volume. In [26] four separate stacks are used. These partial focal stacks

are designed to help in the presence of occlusion. Different data costs are proposed in

[27] with the aim being better occlusion and noise handling, comparing to conventional

correspondence data costs.

6.1.4 Multi-view stereo-based

Multi-view stereo-based methods mostly leverage the fact that a light field image is essen-

tially constructed from sub-aperture images. Conventional stereo-based algorithms can

then be used to estimate the depth/disparity map.
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Figure 6.2: Framework taken from [25]. The input image is converted to a set of EPIs,
to which a defocus and a correspondence analysis is performed. The output of both cues
are then combined using Markov random fields.

Figure 6.3: The stereo system used in [28] is composed of two approaches. In the first a
selection of temporal subsets by the use of spatially adaptive windows. The second uses
graph cuts as the basis for a global minimization approach to handle occlusions. (Figure
taken directly from source.)

The stereo matching problem is formulated as a Markov network consisting of Markov

random fields in [29]. In [28] a combination of shiftable windows and a dynamically se-

lected subset of neighbouring images is used to do the matching. Additionally, a global

energy minimization framework is used to label occluded pixels, thus improving the ro-

bustness of the algorithm, as can be seen in Figure 6.3. Disparity maps from specific

pairs of images are computed in [30], providing a non-dense estimation. An interpolation

method is then used to fuse them.

6.2 Learning-based methods

A different approach from the optimization methods is the learning-based approach. In

this case, machine learning, neural networks to be more specific, are mostly used to

estimate the depth maps. In comparison to other techniques, they yield better results,

while also being computationally less expensive. Excluding the time it takes to train
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them.

The method proposed in [19] can be taken as a basis of what convolutional neural

networks can do. As of writing this thesis, they score either the highest or near the top in

most tests of the 4D Light Field Benchmark1. The design of the network consists of four

separate processing streams for four angular directions of the sub-aperture images. The

network, therefore, produces meaningful representations in each direction, which are later

combined into the final product. This method is highly dependent on the training data.

To deal with the problem of insufficient data to train the network on a data augmentation

method is also proposed. The whole architecture can be seen in Figure 6.4.

Figure 6.4: Convolutional neural network architecture used in [19]. This multi-stream
network takes four viewpoints with consistent baselines into consideration. The image
stacks are separately encoded at the beginning of the network and then fed through a
number of convolutional blocks. (Figure taken directly from source.)

6.3 From a depth map to a point cloud

A depth or disparity map can be seen as an intensity image (see Figure 6.5). To calculate

the true depth of the scene, some information about the recording device must be known.

This information is often referred to as calibration data. In [31] for example, it is the

focal length, sensor size, image size, focus distance, the number of viewpoints and their

position. The structure of this information varies considerably based on the software used.

Each point can then be described based on this additional data and the intensity from

the depth map. The general algorithm can be seen in [32].

1Source: http://hci-lightfield.iwr.uni-heidelberg.de/benchmark/table?column-type=

images&metric=badpix_0070 (used 28.1.2019)
3The image used is an example provided as part of the Computer Vision Toolkit (cvkit): http:

//dgd.vision/Tools/LFToolbox/ (used 13.5.2019)

http://hci-lightfield.iwr.uni-heidelberg.de/benchmark/table?column-type=images&metric=badpix_0070
http://hci-lightfield.iwr.uni-heidelberg.de/benchmark/table?column-type=images&metric=badpix_0070
http://dgd.vision/Tools/LFToolbox/
http://dgd.vision/Tools/LFToolbox/
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Calibration
data

b) Point clouda) Disparity or depth map

Figure 6.5: Block diagram of a conversion between a) a disparity map and b) a point
cloud3. Additional data, sometimes called calibration, have to be provided.

6.4 Summary

In this chapter, methods which can be used to convert between a point cloud and a light

field are described. They can be split into two categories — more general optimization-

based approaches, based mostly on theories, and learning-based methods, which employ

neural networks.

In the former case, epipolar images are mostly used to estimate a disparity or depth

map, from which a point cloud can then be generated. A structure tensor is discussed,

as is a spinning parallelogram operator. Line fitting approaches are also described, as are

methods based on defocus and correspondence. Lastly, multi-view stereo-based techniques

are mentioned, which use conventional stereo-based algorithms.

In the latter case, algorithms which use convolutional neural networks are discussed.

These methods are highly dependent on how they are trained. Their output is a disparity

or depth map, which can be converted to a point cloud when combined with additional

information about the recording device.



Chapter 7

Conversion between Light field and

Holography

The next conversion described is between Light field and Holography. These modalities

can be seen as complementary [33]. Each is modelling the light of the scene differently.

The former using rays, while the latter using waves [34]. A couple of methods were

proposed to convert between the representations, mostly from light field to holography,

even though the conversion should be possible in both ways. This chapter gives an

overview the proposed conversion methods.

7.1 Coherent and Incoherent

Several difficulties must be overcome for the conversion to be possible. The main being

the difference between coherent and incoherent light. Holograms are captured with the

former, while light fields in general with the latter.

Coherence describes the correlation between the phases of a wave propagating through

space at different points. Two types can be distinguished, being temporal and spatial

coherence. Temporal coherence defines the monochromaticity of the light source, while

spatial coherence represents the uniformity of the phase of the wavefront [35].

7.2 Point-source approach

The object wave computation is the first step for the generation of a CGH. The first

method is one of the most commonly used ones. It uses isolated points, which are re-

garded as spherical light sources, to analytically describe a 3D scene. Summing the waves

scattered by each point gives us the desired object wave [36].

24
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This approach essentially uses a point cloud as an intermediary step. For that reason,

it is only mentioned here, while being described in more detail in Chapter 8.

7.3 Wave-field approach

Another technique uses depth layers parallel to the hologram plane to emit a complex

wave. Each layer can thus be seen as a source of light and a shield for the propagated

scattered light, as can be seen in Figure 7.1. This method, also called Planar layer, is

relatively simple while yielding accurate results in most cases.

Figure 7.1: Wave-field approach (taken from [36]).

For cases when the depth of a scene is large, the number of depth layers and therefore

the computational time would also need to be large. A technique based on polygonal

modelling has been proposed in [37] to solve these issues. It uses a set of oriented polygons,

which are seen as surface sources of light, to describe the scene. On the hologram plane, a

complex light field is formed by the emitted light. One cannot use traditional propagation

formulas to compute the field. Several modification were therefore proposed [36].

7.4 Multiple-viewpoint projection approach

The above-mentioned methods generate “coherent” holograms in cases where the 2D view

projections of the scene are supplemented with depth maps or are synthetic 3D [34]. For

real, incoherent, cases without additional depth information, other methods can be used.

One of them is called Multiple-viewpoint projection, and it computes the object wave

from a set of multiview images [36]. !!

An assumption is made about the number of views, which corresponds to the desired

resolution. The larger the resolution, the more views are needed. The object wave is then

obtained by multiplying each view by a given Point Spread Function (PSF) and summing

them together. (Figure 7.2).
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Figure 7.2: Multiple-viewpoint projections (left) in comparison to a Holographic stere-
ogram approach (right) (taken from [36]).

7.5 Holographic stereogram approach

Another method which also uses multiview data is the holographic stereogram. Hogels,

holographic segments of the final hologram, are used. Each hogel is computed indepen-

dently, by multiplying each view by a random phase factor and calculating the Fourier

transform of the inner product (Figure 7.2) [36]. Efficient inverse fast Fourier transform

(IFFT) algorithm can be used to obtain the inside pattern of each hogel. This method is

often used due to its simplicity [34].

The inverse of this operation is not as straightforward as it would seem, as the final

hologram is a combination of the above-mentioned sub-holograms, as is described in [33].

The rendering of sub-image for each position has to be made. The resolution of the light

field image is dependent on the maximal depth extension of the visible part of the scene.

7.6 Phase reconstruction approach

A hologram can be characterized by its amplitude and phase. The light field has infor-

mation about amplitude and the direction of the light rays, which could be termed as a

phase. In a coherent illumination case, the phase can then be extracted, as is shown in

[38].

A breakdown of the definition of phase happens for incoherent waves. A generalized

phase is thus described in [38], which directly reduces to a conventional phase for a fully

coherent field. The authors show that for a microlens array the phase can be retrieved

from a set of defocused images by solving the transport of intensity equation. They

confirm the method for a slightly incoherent field.
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An inverse operation is also possible under certain conditions. To fully characterize a

4D light field, the knowledge of the source intensity distribution together with the phase

of the object is needed [38].

7.7 Wigner distribution function approach

As is mentioned in [39], the Wigner distribution function (WDF) provides a similar rep-

resentation of space and spatial frequency as a light field. The WDF differs in that it

also models diffraction and interference, which ties it to holography. A similar approach

to the holographic stereogram can then be employed.

The method in [39] uses hogels to partition the light field into non-overlapping local

patches, which can then be optimized independently, as in Section 7.5. The exception

being that the random phase factor and the Fourier transform is replaced with the WDF.

7.8 Summary

The chapter concentrates on conversion methods between Light field and Holography. A

point-source approach is detailed, which uses the scattering of isolated points to generate

the object wave. In the wave-filed approach, the complex wave is emitted from depth

layers parallel to the hologram plane. Another way is described in the multiple-viewpoint

projection approach, which computes the object wave from a set of multiview images. In

the phase reconstruction approach, the phase of the final hologram is retrieved from a

set of defocused images. Lastly, in both the holographic stereogram approach and the

approach based on the Wigner distribution function, hogels are used. The final hologram

is then a combination of them.



Chapter 8

Conversion between Point cloud and

Holography

The last conversion to be mentioned is between point cloud and holography. For the

conversion from a point cloud, one technique is mostly used. Each point of the scene is

seen as a spherical light source emitting light onto a hologram plane, as can be seen in

Figure 8.1. The superposition of all the waves gives us the object wave of the hologram

[36], [40], [41]. This approach can be time and resource consuming. Other methods were

developed to combat the disadvantages. This chapter gives an overview of the general

principle and the methods used to improve it. No methods are mentioned for conversion

from a hologram to a point cloud. The conversion should be possible as the amount of

data captured in a hologram is larger than in case of a point cloud.

8.1 The general principle

To compute the object wave of a hologram from a point cloud, a general principle, often

called point-source [36] is used. In this approach, the selected scene filled with points is

imagined as a scene filled with spherical light sources instead (Figure 8.1). The light each

point casts onto a plane must be coherent [40]. The sum of all the spherical light waves

gives us the hologram. The contribution of each light wave has to be limited to avoid

aliasing in the CGH [36].

Occlusion is not taken into account in this principle. To handle this, two approaches

are commonly used. That being an object-oriented approach and an image-oriented one.

In the former case, occlusion processing is performed to check the existence of obstacles

between the object points and the pixels on the hologram plane. The hologram pixels can

28
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Figure 8.1: Point-source approach - spherical light source cast onto the hologram plane
(taken from [41]).

be divided based on proximity into groups which then share the same set of visible scene

points. This is done to reduce the computational time [36].

A ray casting technique is used in the latter case. Rays are cast from the hologram

pixels onto the scene. Intersections of these waves are then considered to be spherical

light sources, the contribution of which is then calculated. The hologram pixels can be

divided into groups which share bundles of rays, to reduce the computational demands.

To further decrease the computational and memory demands, other methods were also

developed.

8.2 Look-up table methods

The optical wave cast by each point onto the hologram plane can be described by the

spatial impulse response (SIR). The sum of all of these from the individual points gives the

final object wave. The number of arithmetic operations needed to generate the responses

is rather large. Look-up table (LUT) methods leverage the fact that they can be pre-

computed and stored in memory. This leads to faster hologram generation, excluding the

time it takes to pre-compute all the points [40].

The issue then becomes high memory usage instead of computational time. This prob-

lem can be overcome with the Novel look-up table (N-LUT) method [40], which does not
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store all the responses. Different depth planes, in specified ranges, are instead shifted,

grouped and stored together. In the reconstruction, an inverse shift is applied.

To further lower the computational time, run-length coding can be used to group points

which have similar intensity and are close to each other. The newly formed regions can

then be used to generate the hologram instead of individual points.

A Line scanning method has been developed. To further lower the size of the N-LUT.

This approach uses ”scan lines”, which are radial lines of the SIRs, to lower the memory

demands.

Other techniques to lower the size of the N-LUT are the Split look-up table (S-LUT)

method and the Compressed look-up table (C-LUT) method.

8.3 Wavefront recording plane method

The wavefront recording plane (WRP) can, in general, be seen as a hologram located close

to the object space. The wave that is emitted by each point thus covers a small section

of the WRP. The process can be divided into two stages [40].

Each point emits a wave to the WRP which is bounded by its corresponding support to

a certain area. A WRP pattern is thus generated as the sum of all the projected waves.

This pattern is then converted into a hologram with the Fresnel diffraction equation.

The WRP is an efficient method of reduction of the computational time in cases where

the depth range of the point cloud in question is rather small, or the number of object

points is reduced. To reduce the latter, one can use down-sampling. The tradeoff is the

degradation of image quality.

To lessen this problem, a method that uses interpolation (IWRP) is mentioned in [40].

This method uses small regions of points to generate the diffracted pattern instead of a

single one. This leads to improved efficiency compared to the standard WRP.

8.4 Sub-lines method

The principle of the sub-line method is in the simplification of the hologram generation

to a one-dimensional process. The whole process can be divided into three stages. A

down-sampling operation and a generation of a horizontal sub-line. Interpolation with a



CHAPTER 8. CONVERSION BETWEEN POINT CLOUD AND HOLOGRAPHY 31

low-pass filter to fill in the space between adjacent sub-lines, and lastly, the generation of

a hologram [40].

This method can be realized by relatively simple hardware. The data size of the sub-

lines can also much smaller than the hologram. A simple delta modulation can be used

to compress the sub-line to a one-bit representation. Encryption can be used to secure

the content. And lastly, the object image can be magnified with the use of a multi-rate

interpolation process.

8.5 Wavelet shrinkage based superposition method

Another method used to reduce computational complexity is the wavelet shrinkage base

superposition (WASABI) method [42]. WASABI uses wavelets to accelerate the hologram

calculation.

The PSFs of the projected light sources are precomputed and transformed into the

wavelet domain. A percentage of wavelet coefficients is selected and superposed in the

wavelet domain. The inverse wavelet transform is then used to convert back to the space

domain [42].

This method is efficient when the propagation distance between the 3D object and the

hologram is small. The combination of this method with the WRP can be used to combat

the drawback of both [42], [43].

8.6 Summary

The chapter centres on conversion methods between Point cloud and Holography. A

general principle, in which each point of a point cloud is imagined as a spherical light

source casting light onto a plane is described. The sum of these light waves is then

considered the hologram. Look-up table methods, which are used to combat the issue of

high computational time, are then mentioned. They leverage the fact that each arithmetic

operation can be precomputed and stored. The wavefront recording plane method also

reduces the computational time with the use of the Fresnel diffraction equation, but only

for cases where the depth range of the point cloud is small. In the sub-lines method,

the generation of a hologram is simplified to a one-dimensional process. This process

can be divided into three stages, that being down-sampling, generation of a horizontal

sub-line and interpolation. To reduce the computational complexity, a wavelet shrinkage
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based superposition method can also be applied. It uses wavelets to store precomputed

information, similarly to the look-up table methods.



Chapter 9

Compression

Large amounts of data, even for today’s standards, are typically captured by the three

modalities. The extent of which can significantly vary depending on the modality, acqui-

sition and conversion method. An efficient compression method is thus a necessity.

The Joint Photographic Experts Group (JPEG)1 committee, aware of this fact, de-

cided to develop a new standardized framework. JPEG Pleno, launched in 2015, aims

to solve many tasks, one of them being compression of plenoptic images. The IEEE In-

ternational Conference on Multimedia & Expo (ICME) launched two Grand Challenges

to date tackling coding and compression. Specifically Light-Field Image Compression in

2016 and Point Cloud Coding in 2018. Another IEEE International Conference, this time

the IEEE International Conference on Image Processing (ICIP) called a Grand Challenge

in 2017 on Light Field Image Coding.

Several methods have been proposed in recent years to compress the three modalities.

Some of which were responses to the above-mentioned challenges. This chapter is going

to describe them briefly.

9.1 Light field compression

The acquired light field data is often highly correlated, in both the spatial and view angle

dimension [44], [45]. This is a property to be targeted by compression, in the ideal case

even by today’s standards. That is, however, not always the case [44].

In [44], [46], [47] approaches are divided into two categories based on where in the

processing pipeline the compression is applied. In [47] they are called direct and indirect.

1See: https://jpeg.org/ (used 13.5.2019)
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In the former case, compression is performed immediately after the acquisition of the

raw sensor data. In the latter, the compressed image is created after transformation to

a 4D LF. From it, sub-aperture images can be created. The acquisition process then

does not affect the chosen compression method [44]. This could be crucial for backward

compatibility with existing legacy standards [45].

In [48] the categorization is made based on the technique used for compression. Three

kinds of methods are mentioned. First, self-similarity based LF compression [49], in which

common compression standards are used. Second, pseudo-sequence based LF compres-

sion, which employs the inter prediction of common video coding standard to exploit

correlations between different views. Third, dictionary learning compression methods,

which, as the name implies, use dictionary learning [50] for compression purposes.

An even higher number of categories is mentioned in [5]. However, similarly to the

previous paragraph, the methods can be grouped. The first way is into those that use

common compression standards used in image and video processing and those that use

other methods. The second is to those that use transform coding, predictive coding or

pseudo-sequence coding [5], [51]. Note that there are methods that can be included in

multiple groups. Because of that, the description below takes a rather general categoriza-

tion.

9.1.1 Conventional image compression methods

Traditional image compression techniques can be used to compress light field images, as

[44], [52], [53] show in their works. These come under the direct group of compression

methods. Legacy JPEG, which uses a discrete cosine transform (discrete cosine transform

(DCT)) in combination with block segmentation, can be used. The same can be said

about the newer JPEG 2000, which uses a discrete wavelet transform (DWT) and is

thus not backward compatible. A modification of the Embedded Zerotrees of Wavelet

transforms (EZW) compression algorithm called Set Partitioning in Hierarchical Trees

(SPIHT) can also be used [52]. So can be, JPEG XR, one of the newer JPEG standards.

The comparison in [52] and [44] shows, that in terms of the compression of raw light

fields, JPEG 2000 together with SPIHT achieve the best results. Beating out the block

coding transform of JPEG XR. The same results were shown in [46], where compression

algorithms of the ICME 2016 Grand Challenge were evaluated.

While they showcase lower computational complexity [52], than the later-described

methods, compatibility can be an issue. Mainly with the wavelet-based encoders. Perra
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et al. [54] also show, that a better understanding of the plenoptic signal structure can

lead to even higher compression ratios, as none of the above encoders is adapted for the

use with plenoptic images.

9.1.2 Multiview methods

A solution could be the use of multiview image compression methods, as they can better

exploit the redundancies in spatial and viewpoint dimensions [55]. These classify as

indirect, as they no longer apply directly onto the raw image. Two methods that both

use this technique and outperform the more traditional JPEG 2000 are proposed in [56].

The first one uses a wavelet transform, while the other uses distributed source coding

(DSC) [54].

In [57] a two-dimensional level based prediction scheme is proposed to control the

structure within frames of the multiview sequence. In [58] additional information about

the depth is added to the encoding process. In both cases, a High Efficiency Video Coding

(HEVC) video encoder is used in the compression pipeline.

9.1.3 Conventional video compression methods

HEVC encoding is often much better at exploiting the redundancies in the image than

JPEG standards, lowering the compassion rations in the process. Different profiles can

be used to tweak the encoding process further. In [59] low delay coding is used, which

codes all except the first frame as B frames. A similar approach is taken in [60], where

only the first frame is coded as I frame and all others as P frames.

As a study in [61] shows, the application of HEVC on light field images depends besides

its configuration also on the specific arrangement of images. An optimal sequence should

be found, to maximize performance [45].

9.1.4 Pseudo-sequence methods

Pseudo-sequences are a technique used in most of the proposed compression methods. A

pseudo-sequence falls under the indirect category. That is because the raw image is first

transformed into a 4-D representation, from which a sequence of sub-aperture images is

extracted. These sub-images can then be arranged into a number of different sequences,

based on many factors. The main one is the similarity between adjacent views. Scan

orders can thus have a variety of shapes, such as a zig-zag, spiral, raster, Hilbert, rotation
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and others [62], [63]. A video sequence is then composed, which can be encoded with a

standard video codec, such as Advanced Video Coding (AVC) or HEVC [60], [64], [65].

Different scan orders have different effects on the final compression ration. However,

that is not the only modification that can be done to increase the effectiveness of the

compression. In [62], for example, a CNN-based angular super-resolution approach is used

to explore the inter-view correlation before a pseudo-sequence is applied. An orthogonal

projection is firstly formed in [66]. In [63] the images are sparse-sampled. Multiview

video coding as in [59] or a JEM encoder as in [67] can be used instead of HEVC. Other

methods that include a pseudo-sequence are [68]–[72].

9.2 Point cloud compression

As the first point cloud acquisition and processing methods were proposed earlier than in

the case of light fields, so was the case for pioneering works in compression of this modality.

As is noted in [73], one of the methods in question uses a somewhat unusual technique.

Specifically, a shape-adaptive wavelet coding is used in [74]. Later works, fuelled mainly by

the research done in autonomous driving, use many different approaches. Some are similar

to the light field compression methods, in that they use traditional image compression

methods. Other venture more into the works done in computer vision and 3D modelling.

Grouping is thus quite problematic.

9.2.1 Tree-based compression

In [75] and later in [76], [77] and [78], octrees are used in the encoding process. They can

be used for geometry coding, as noted by [73], or the encoding of color information of

RGB point clouds [75], as noted in [79].

The combination with other techniques is also possible, as is shown in [77]. It that

case a real-time octree-based coder is used to exploit temporal redundancies on an octree

byte stream. Encoding of a dynamic point cloud is thus possible. An extension of this

framework is then proposed in [78], which includes a standard image codec for the encoding

of colour information.

9.2.2 Transform-based compression

For efficient compression of colour attributes a Graph Transform method was introduced

in [80]. An extension for the use on dynamic point clouds was then proposed in [81]. This
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method, also shown in [82], taps into the previously mentioned tree-based approaches,

as it uses a time-varying point cloud based codec which predicts graph-encoded octree

structures of adjacent frames. These techniques achieve top performance [73].

A similar approach is proposed in [83], based on Gaussian Process Transforms (GPTs).

The point colours are assumed to be samples of a stationary Gaussian Process, which is

defined over an infinite 3D space. The statistics of the points are then modelled. After a

few derivations, a Karhunen-Loève transform (KLT) is acquired. The authors, however,

call the KLT a GPT, to distinguish it from the above mentioned Graph Transform.

Lastly, a region-adaptive hierarchical transform (RAHT) coder has been proposed in

[84] for the compression of the colour attribute. The transform itself resembles an adaptive

variation of a Haar wavelet. It is then combined with arithmetic encoding. An octree

scanning method is used for the geometry encoding part of the point cloud. This method

was shown to be computationally efficient.

That is why variations of the RAHT approach are also used in [73]. Four techniques, to

be exact, are proposed. Two of which extend the transform over the sphere that represents

the plenoptic function. Two other involve a combined RAHT with 1D transforms. From

all four the RAHT-KLT variation showcases the best overall performance.

9.2.3 MPEG standards for point cloud compression

The Moving Picture Experts Group (MPEG) in 2017 proposed a point cloud compression

(PCC) technology, which should be delivered in 2020 as an ISO standard2. This future

standard consists of three main categories: Lidar point cloud compression (L-PCC), sur-

face point cloud compression (S-PCC) and video-based point cloud compression (V-PCC),

and a fourth called geometry-based point cloud compression (G-PCC) [79].

As the name implies, L-PCC is designed to compress Lidar point clouds. These display

highly irregular sampling. An octree-based method is thus used to compress the geom-

etry information. A Level-Of-Detail (LoD) structure is then built and further used for

prediction purposes [79].

S-PCC codec aims to efficiently compress static point clouds. These usually express

highly sampled and therefore highly detailed scenes. The encoder is composed of several

2See: https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-compression and
https://www.iso.org/committee/45316.html (used 20.5.2019)

https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-compression
https://www.iso.org/committee/45316.html
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modules, which in turn follow these steps: Voxelization, Block determination, entropy en-

coding of both blocks and vertices, spatial transform and quantization. A similar process

is then applied in reverse for the decoding [79].

Existing video codecs, such as AVC, HEVC and AV1, are to be utilized in V-PCC

for compression of geometry and texture information of dynamic point clouds. Points of

the point cloud are to be projected into a sequence of 2D frames. To generate the final

V-PCC, additional metadata are to be multiplexed with the video generated bitstream.

The amount of metadata in comparison to the video sequence is relatively small.

9.2.4 Other point cloud compression methods

A slew of other methods is mentioned in [85]. The usage of standard image coding

methods is proposed in [86] and [87]. In the former case, the acquired data is to be split

into height maps before compression. In the latter case, the raw data is first converted

into range images, before image or video coding algorithms are employed for encoding.

Tu et al. in [88] combine image compression methods with a Simultaneous Localization

and Mapping (SLAM) based prediction. This method is designed to work in autonomous

driving systems.

An adaptive radial distance prediction method that outperforms conventional image

and video coding algorithms is used in [89]. Both [90] and [91] propose the use of a

Random Sample Consensus (RANSAC) method. While the former uses RANSAC to

extract planes from a point cloud, as a part of its lossy compression scheme. In the

latter, fitting plane parameters are calculated using RANSAC, after the point cloud is

decomposed into blocks. DCT then performs the compression of the colour information.

A clustering method inspired by a DMM technique adopted in [92] is proposed in [85].

This approach is used to remove spatial redundancy of point cloud data. Besides that,

residual compression with ZStandard, LZ4, LZ5, Lizard, Deflate, BZip2, JPEG and JPEG

2000 is also explored in [85].

9.3 Holography compression

Firstly it must be noted, that in the case of holograms, even though they contain the infor-

mation about the entire three-dimensional scene, the information is completely scrambled.

The compression of such data is not as easy as was the case for 3D or multi-view data.

These, as was shown earlier, exhibit high redundancy and therefore better predictability.
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The efficiency of the proposed techniques thus highly depends on how they can exploit

the structure of the scene [93]. Summaries of the bellow mentioned approaches can be

seen in [94] and [95].

The earliest approaches encoded holograms generated with phase-shifting interferome-

try with conventional lossless coding methods, such as LZ77, LZW and Huffman encoding

[93], [96]. In [97], the Linde-Buzo-Gray algorithm is applied to perform scalar and vector

quantization [98]. No transformation is used in either approach and both are applicable

on raw data.

9.3.1 Wavelet-based approaches

The works in [99] and [95] explore the use of the JPEG 2000 standard for the compression.

In [100] the efficiency of JPEG-based encoders is further analyzed. JPEG-OPT, which

similarly to the legacy JPEG standard uses DCT and guarantees backward compatibility

with it, is compared to QT-L, JPEG 2000, SPIHT and HEVC algorithms.

Other wavelet-based approaches or adaptations of the common ones are also discussed.

Bang et al. in [101] propose an algorithm that uses a dual wavelet transform to track

the direction of the fringes. To better align the transform bases with the directional

characteristics of the fringe pattern a directional adaptive DWT (DA-DWT) method is

explored in [102]. In [103] a vector lifting scheme is proposed to design specific wavelets

dedicated for the use in hologram compression.

9.3.2 Content-aware approaches

The works of Onural et al. [104] on the link between the mother wavelet function and

depth in the Fresnel transform, was later explored in [105]. This led to the introduction

of Fresnelets, which are wavelet-like functions constructed from B-spline wavelets by the

use of the Fresnel transform. Which then led to further research on the topic, resulting

in the approach of Darakis et al. [106]. In their work, the data, respectively the depth of

the scene, is analyzed with specific basis functions and encoded with SPIHT.

In [107] the use of AVC and HEVC codecs is explored on computer-generated holograms.

AVC is also used in [108], for the encoding of numerically reconstructed sub-holograms.

This method is later extended in [109] with the use of directional scalability and in [110],

[111] with Gabor/Morlet wavelet dictionaries and a matching pursuit approach.
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As is noted in [93] further research has to be still done in this field for better compression

to be achieved. A better understanding of the hologram structure and its features will

likely have to be made before the most essential information can be effectively extracted.

9.4 Summary

In this chapter, different compression techniques are mentioned for light field, point cloud

and holography. There are some similarities between the approaches, for example, state-

of-the-art video codecs such as AVC and HEVC can be used for the compression of all

three modalities.

Direct and indirect categories are mentioned, based on the position of compression in the

processing timeline. They can further be divided into self-similarity based LF compression

methods, in which common compression standards are applied, pseudo-sequence based

schemes, which leverage redundancy between individual views of a light field image, and

lastly, dictionary-based methods, which use dictionary learning for compression purposes.

Point clouds can be compressed in many ways. Both the positional information and the

embedded data must be compressed. Octree-based encoders can encode both geometry

and colour information. For efficient compression of colour, a Graph Transform can also

be used. So is the case for approaches based on Gaussian Process Transforms or a region-

adaptive hierarchical transform. MPEG proposed a Point Cloud Compression technology.

Video encoders, still image coding methods and other algorithms were also suggested for

point cloud compression.

The compression of holograms is a difficult task. Conventional lossless coding methods,

such as LZ77, LZW or Huffman coding, were used. Wavelet-based compression techniques

are also proposed. A link between the mother wavelet and depth in the Fresnel transform

was found, which led to the introduction of Fresnelets. These are then also used for

compression purposes, together with SPIHT. Video coding techniques were also explored.

However, further research in this field has to be still done, before an efficient compression

method is found.



Chapter 10

Datasets and software

There are several publicly available datasets for each modality. The existence of which is

important for implementation, testing and training purposes of the previously discussed

conversion and compression methods and future ones. To satisfy a wide range of utiliza-

tion, each dataset has different properties, be it size, file types, number of captured scenes,

type of scenes, and other. Different software can then be used to view or manipulate the

data. This chapter gives a brief overview of both the datasets and software.

The datasets can be divided into two categories based on how they were created. That

being those that capture real scenes, by the means of cameras or sensors and those that

are computer generated. A table containing a few datasets can be seen in Appendix A1.

10.1 Real scenes

These datasets are acquired by the more traditional means, using digital single-lens reflex

cameras (DSLRs), light field cameras or a set of sensors, for example. The scenes they

capture render the real world, which provides some advantages and disadvantages.

The lack of ground truth depth data may be a problem for conversion methods that

use a depth map as an intermediate step. Having the ground truth available makes it

easier to compare the different algorithms. On the other hand the benefit is that reality

is being portrayed, instead of a resemblance of it.

The datasets that are based on real scenes include the light field datasets from École

polytechnique fédérale de Lausanne2 and Stanford University3 and the point cloud dataset

1Available also electronically: https://docs.google.com/spreadsheets/d/1OzMUTy9Ll_

5M59dbuyTsNs6mkmzXOJdyDXAfBWyCWFM/edit?usp=sharing
2Source: https://mmspg.epfl.ch/EPFL-light-field-image-dataset (used 28.1.2019)
3Source: http://lightfields.stanford.edu/mvlf/ (used 28.1.2019)
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https://docs.google.com/spreadsheets/d/1OzMUTy9Ll_5M59dbuyTsNs6mkmzXOJdyDXAfBWyCWFM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1OzMUTy9Ll_5M59dbuyTsNs6mkmzXOJdyDXAfBWyCWFM/edit?usp=sharing
https://mmspg.epfl.ch/EPFL-light-field-image-dataset
http://lightfields.stanford.edu/mvlf/
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from the University of São Paulo4.“

10.2 Synthetic scenes

Synthetic scenes, also often called Computer generated scenes, make it possible to better

test a specific aspect of the design algorithm. Methods which focus on a property, oc-

clusions, for example, will often use synthetic scenes for benchmarking purposes, rather

than their real equivalent.

The most popular software to generate a synthetic scene is Blender5, with a close second

being POV-Ray6. Both of them are free to use, with the former being also open source.

10.3 Software

Different programs can be used to view and modify the acquired data. In the case of

synthetic scenes, the software used to generate them is the obvious choice. In most cases

that means either the above mentioned Blender or POV-Ray. Otherwise, it depends on

the file type used. MATLAB, for example, has numerous publicly available toolboxes,

which can handle different types of data. A light field toolbox7, a holographic toolbox

(HoloRec3D8) and a point cloud toolbox9, just to name a few. Another open source

software is MeshLab10, which can be used to view point clouds. Tools such as Computer

Vision Toolkit (cvkit)11 and Point Cloud Maker 11 (PCM11)12 were developed to both

view depth/disparity maps and convert them to point clouds, as long as you supply them

with specific additional information. To work with digital holograms HoloPy13 can be

used. A larger list of publicly available solutions can be seen in the Appendix C14.

4Source: http://uspaulopc.di.ubi.pt (used 28.1.2019)
5Source: https://www.blender.org/ (used 25.11.2018)
6Source: http://www.povray.org/ (used 25.11.2018)
7Source: http://dgd.vision/Tools/LFToolbox/ (used 25.11.2018)
8Source: http://labh-curien.univ-st-etienne.fr/wiki-reconstruction/index.php/Main_

Page (used 25.11.2018)
9Source: https://github.com/pglira/Point_cloud_tools_for_Matlab (used 25.11.2018)

10Source: http://www.meshlab.net (used 25.11.2018)
11Source: http://vision.middlebury.edu/stereo/code/ (used 25.11.2018)
12Source: https://3dstereophoto.blogspot.com/2016/09/point-cloud-maker-11-pcm11.html

(used 25.11.2018)
13Source: https://holopy.readthedocs.io/en/latest/ (used 25.11.2018)
14Available at: https://docs.google.com/spreadsheets/d/19CEToXuiZf6gn-HTP_

0DAoztXHbjgAMQEJ468axwrco/edit?usp=sharing

http://uspaulopc.di.ubi.pt
https://www.blender.org/
http://www.povray.org/
http://dgd.vision/Tools/LFToolbox/
http://labh-curien.univ-st-etienne.fr/wiki-reconstruction/index.php/Main_Page
http://labh-curien.univ-st-etienne.fr/wiki-reconstruction/index.php/Main_Page
https://github.com/pglira/Point_cloud_tools_for_Matlab
http://www.meshlab.net
http://vision.middlebury.edu/stereo/code/
https://3dstereophoto.blogspot.com/2016/09/point-cloud-maker-11-pcm11.html
https://holopy.readthedocs.io/en/latest/
https://docs.google.com/spreadsheets/d/19CEToXuiZf6gn-HTP_0DAoztXHbjgAMQEJ468axwrco/edit?usp=sharing
https://docs.google.com/spreadsheets/d/19CEToXuiZf6gn-HTP_0DAoztXHbjgAMQEJ468axwrco/edit?usp=sharing


Chapter 11

Disparity from compressed light

fields

For the practical part of this work, a number of procedures described in the previous

chapters are offered. Some problems are not sufficiently analyzed in scientific publications.

One of which is the effect compression has on disparity estimation.

Raw light field images are mostly bigger than traditional photographs. It is thus ex-

pected that some form of compression (see Chapter 9) will have to be applied for storage

purposes. If the compression technique chosen is lossy, some amount of distortion is going

to occur, which is intern going to have some effect on all the possible subsequent light

field applications. It would thus be beneficial to know the effects of lossy compression

methods on the applications.

In this chapter, the effects of light field compression on disparity estimation are anal-

ysed. Several state-of-the-art image and video compression methods are used in combi-

nation with several light field to disparity map conversion techniques. Objective metrics

are then used for evaluation. Matlab was used for simulations.

11.1 Overview

The evaluation process is made of several steps, as shown in Figure 11.1. At first, the

desired light field data is loaded and compressed with the user-defined compression method

(see 11.3). For the middle view of the LF image the Mean Square Error (MSE) is computed

as follows:

MSE =
1

xy

x∑
i=1

y∑
j=1

[Ic(i, j) − Ir(i, j)]
2 (11.1)
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Figure 11.1: Block diagram of the evaluation process.

where (x,y) represent the dimensions of the image, Ic is the compressed image and Ir is

the reference image. The PSNR is then computed as:

PSNR = 10 log10

(
MAX2

MSE

)
[dB] (11.2)

where MAX is the maximum value of the image, for example for an 8-bit image that

would be 255. These values are stored for later evaluation. The compressed image is

loaded with the use of the Light Field Toolbox1. A user-chosen algorithm (see 11.3)

is then used to convert the data to a disparity map. The output map together with

additional information, such as the size of the input images and the run time, are stored

for evaluation purposes. This process repeats with a user-defined compression step for

a user-defined number of conversion methods. After the procedure is finished, objective

metrics are calculated.

11.2 Input data

Images from the synthetic light field dataset (Figure 11.2) from [31] were used as input

because they provide both ground truth data and other necessary data for the evaluation.

The images were chosen based on their properties, be it noise, depth range, occlusion or

overall complexity, to represent many real-world scenarios.

11.3 Compression and conversion

The individual views of the light field images were either encoded with purely image based

compression tools or they were organized in a row by row pseudo-sequence and encoded

1Source: http://dgd.vision/Tools/LFToolbox/ (used 7.5.2019)

http://dgd.vision/Tools/LFToolbox/
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Figure 11.2: A selection of light field images from the synthetic light field dataset from [31].
It is a combination of photorealistic scenes and scenes with specific controlled features.

with video compression algorithms. In the former case, the tools selected are JPEG

(based on the DCT transform), JPEG 2000 (based on the DWT transform), and Better

Portable Graphics (BPG) (based on a subset of HEVC)[112]. In the latter case, AVC

(x264), HEVC (x265), VP9 and AV1, were selected. These specific tools were selected

as a representation of both the state-of-the-art and the most widespread. The imwrite

and imread Matlab functions were employed for compression. The former was used to

write image data to JPEG and JPEG 2000 files, while the latter was used to load all the

decompressed files into Matlab. Otherwise the system function from Matlab was used

in combination with the BPG executable [112] or the open source FFmpeg tool 2. The

amount of compression in the video codecs is set with Constant Rate Factor (CRF), which

is the default encoding mode for FFmpeg. In comparison to the Constant Bit Rate (CBR)

mode, CRF aims to encode the sequence of frames so that a constant perceived quality is

achieved. The range of CRF is 0-51 for AVC and HEVC and 0-63 for VP9 and AV1. In

both cases 0 represents the best possible quality, with 51 or 63 being the worst. The user

can however choose quality on a scale of 0 to 100 in the evaluation script as it coincides

with the quality parameter in the imwrite Matlab function. The values are linearly

normalized and then rounded to the nearest integer based on the chosen compression3.

Furthermore, the Matroska Multimedia Container was used to encompass the data, as it

can be used with all the video encoders mentioned above.

The conversion tools selected are LF [113], LF OCC [114], CAE [27], [115], SPO [21]

and EPINET9×9 [19] (for descriptions see Chapter 6). Only the last of them is based

2Source: https://ffmpeg.org (used 11.5.2019)
3The norma

https://ffmpeg.org
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on neural networks, which makes its run time noticeably smaller in comparison with the

rest. For this reason and because it ranked towards the very top of the 4D Light Field

Benchmark4, it was chosen as a reference and was evaluated on all the input images. The

other algorithms were tested only on a subset of input data. Two things also must be

noted. One being that the LF OCC algorithm did not function properly, as it was able

to distinguish between parts with similar disparities, but was not able to assign correct

values to them. Because of this fact, the algorithm will be mentioned sporadically. The

second being that no evaluation was done on the LF algorithm and thus no results will be

mentioned from it, because of its fairly lengthy run time, of approximately 1300 seconds

per estimation5.

11.4 Objective metrics

The PSNR metric (11.2) was used together with metrics from [31] for the objective eval-

uation. Their names and descriptions can be seen in Table 11.1.

Table 11.1: Overview of the used objective metrics [31].

BadPix
Measures the number of pixels which are above a certain error threshold on

masked areas.
Bumpiness Quantifies the smoothness of planar continuous surfaces.

Bumpiness slanted Quantifies the smoothness of non-planar continuous surfaces.

Foreground Thinning
(FG Thinning)

Measure how many pixels are closer to the background than the foreground,
but should be estimated as foreground instead. It is defined at occlusion

boundaries on masked areas.

Foreground Fattening
(FG Fattening)

Measure how many pixels are closer to the foreground than the background,
but should be estimated as background instead. It is defined at occlusion

boundaries on masked areas.

Thinning
Measure how many pixels are closer to the background than the foreground,
while exceeding a threshold value. It is defined at occlusion boundaries on

masked areas.

Fattening
Measure how many pixels are closer to the foreground than the background,
while exceeding a threshold value. It is defined at occlusion boundaries on

masked areas.
Mean Square Error

(MSEM)
Quantifies the mean square difference between a specific image and a

reference on masked areas.

Peak Signal-to-Noise
Ratio (PSNR)

Ratio between the maximum power of an image and the power of an error
image, where the error image is the difference between a specific image and a

reference.

However, some adjustments had to be made, as the authors implemented their evalu-

ation algorithm in Python rather than in Matlab. For example, the authors use Scharr

4Source: http://hci-lightfield.iwr.uni-heidelberg.de/benchmark/table?column-type=

images&metric=badpix_0070 (used 7.5.2019)
5It has to be noted that the CAE algorithm is shown to have a longer average run time per estimation

(see Table 11.8) than the LF algorithm; however it performed better in the 4D Light Field Benchmark.

http://hci-lightfield.iwr.uni-heidelberg.de/benchmark/table?column-type=images&metric=badpix_0070
http://hci-lightfield.iwr.uni-heidelberg.de/benchmark/table?column-type=images&metric=badpix_0070
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transform for edge detection in the Bumpiness metric, which is not present in Matlab.

Thus the Sobel transform was used instead. None of the adjustments deviates from the

equations in [31], the differences are only in the implementation of them, which does not

necessarily matter in our case as there is no comparison made with the results of [31] and

consistency is maintained within our evaluation. The Bjøntegaard metric6, which is used

for the computation of the average distance between two R-D curves, was also added.

11.5 Results

There are four scenes with controlled parameters in [31], which they called stratified.

These are designed to test algorithms on specific features, which can occur in complex

real-world scenes. Figures 11.3 and 11.4 show artifacts which can arise from compression.

a) BPG b) JPEG c) JPEG 2000

d) VP9 e) AVC (x264) f) HEVC (x265)
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Figure 11.3: Effects of compression algorithms on distortion of disparity for the EPINET
[19] algorithm. Images of similar bit rate were chosen for the top and bottom row, so
that the distortions are visible and comparable. The images chosen are represented by
red dots on the PSNR plot, with the dotted lines representing the approximate bit rates.

In both cases, the images were compressed to the approximately same bits-per-pixel

value, so that the difference between both compression and conversion algorithms can be

seen. In Fig. 11.3, where the EPINET 9×9 algorithm is used, the still image coding

techniques exhibit mostly impulse noise, the amount and position of which varies. In

contrast, the tested video coding methods display distinctly different cases of distortion,

blockiness for VP9 and HEVC, smaller and less consistent bumps for AVC.

6Source of the Matlab implementation used: https://www.mathworks.com/matlabcentral/

fileexchange/41749-bjontegaard-metric-calculation-bd-psnr (5.5.2019)

https://www.mathworks.com/matlabcentral/fileexchange/41749-bjontegaard-metric-calculation-bd-psnr
https://www.mathworks.com/matlabcentral/fileexchange/41749-bjontegaard-metric-calculation-bd-psnr
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a) BPG b) JPEG c) JPEG 2000

d) VP9 e) AVC (x264) f) HEVC (x265)
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Figure 11.4: Effects of compression algorithms on distortion of disparity for the SPO [21]
algorithm. Images of similar bit rate were chosen for the top and bottom row, so that the
distortions are visible and comparable. The images chosen are represented by red dots on
the PSNR plot, with the dotted lines representing the approximate bit rates.

The same behaviour does not, however, apply for the SPO algorithm, as shown in Fig.

11.4. SPO is not based on neural networks, and thus compression has a different effect

on it than the EPINET algorithm, which is noticeable both from the disparity maps and

from the PSNR plot. Impulse noise is not as prevalent, replaced instead with bumps and

general surface roughness. For JPEG compression, one can observe that the algorithm is

no longer able to reconstruct almost any depth, picking up only the shapes of the objects

in the scene. Similar behaviour can be observed for the AVC codec. The HEVC algorithm

displays very similar distortion as in Fig. 11.3. VP9 is the least affected of the tested

methods for this specific scene, as the deformations are less periodical, smoother and

mostly on the edges of objects. The impact of compression on the SPO algorithm is not

as substantial in case of distortion as on EPINET. This is because SPO is not as precise

in assigning disparity values as EPINET. The maximum PSNR values are thus smaller.

11.5.1 PSNR metrics

Next observed was the effect compression has on other scenes. Figure 11.5 shows the

PSNR for four photorealistic scenes when the EPINET algorithm is used. In each case,

trends can be seen. As expected video codecs showcase higher compression ratios in

comparison with purely image based compression techniques, as they use both spatial

and temporal compression. None can be, however, called superior, as all behave slightly

differently, based on the scene. For the kitchen scene, an improvement in PSNR can even

be seen when compression is applied. This is due to a reflective surface in the scene, which

when compression is not applied complicates the calculation, as it behaves like a mirror.
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a) Kitchen b) Museum

c) Pillows d) Rosemary
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Figure 11.5: PSNR performance of compression techniques for the EPINET conversion
algorithm, measured on a set of photorealistic scenes.

However, when the scene is slightly distorted, the conversion algorithm can better pick

up depth cues and thus improve the overall PSNR. Otherwise, an almost linear regression

can be observed for these scenes.

Purely spatial compression algorithms also exhibit similar, in cases almost the same,

behaviour, in terms of PSNR. In both the Museum and Pillows scenes, the overall differ-

ence between the techniques is fairly small. However, it can be seen that the generally

superior compression methods, BPG and JPEG 2000, are not only not outperforming the

older JPEG standard, in some cases, the older JPEG standard reaches higher values of

PSNR. Despite this, the last image illustrates, that this behaviour is not consistent. For

the Rosemary scene, a clear difference between the generations is presented, with the older

JPEG performing significantly worse than both BPG and JPEG 2000. What should be

pointed out, is the plot in Fig. 11.3, where it is the JPEG 2000 standard that performs

worse.

Table 11.2 further showcases the effects of compression on conversion algorithms using

the Bjøntegaard metric (see 11.4). The R-D curve of each compression algorithm was

taken, represented in rows, and compared to other ones, represented by the columns. The
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Table 11.2: Comparison of PSNR by the Bjøntegaard metric (BD-PSNR), which computes
the average distance between two R-D curves, for three different scenes and conversion
algorithms. Higher values are better.

BD-PSNR [dB]

EPINET SPO CAE

JPG JP2 BPG VP9 x264 x265 JPG JP2 BPG VP9 x264 x265 JPG JP2 BPG VP9 x264 x265

BOXES

JPG X 3.06 0.85 -3.77 -4.03 -3.76 X -0.44 -0.90 -1.54 -1.52 -1.48 X -0.12 -0.97 -0.95 -0.74 -0.78

JP2 -3.06 X -0.89 -6.19 -6.50 -6.40 0.44 X 0.52 -0.60 -0.59 -0.52 0.12 X -0.28 -0.56 -0.35 -0.41

BPG -0.85 0.89 X -9.35 -9.50 -9.36 0.90 -0.52 X -3.58 -3.52 -3.67 0.97 0.28 X -1.77 -1.73 -1.87

VP9 3.77 6.19 9.35 X -0.04 0.00 1.54 0.60 3.58 X 0.11 -0.10 0.95 0.56 1.77 X 0.12 -0.03

x264 4.03 6.50 9.50 0.04 X -0.22 1.52 0.59 3.52 -0.11 X -0.46 0.74 0.35 1.73 -0.12 X -0.26

x265 3.76 6.40 9.36 0.00 0.22 X 1.48 0.52 3.67 0.10 0.46 X 0.78 0.41 1.87 0.03 0.26 X

SIDEBOARD

JPG X 3.31 1.28 -6.42 -7.05 -7.47 X -1.04 -0.37 -2.27 -2.34 -2.32 X -0.31 -1.33 X X X

JP2 -3.31 X -0.30 -9.08 -10.10 -10.46 1.04 X 1.34 -0.91 -0.97 -0.85 0.31 X -0.67 X X X

BPG -1.28 0.30 X -12.11 -12.53 -12.43 0.37 -1.34 X -4.19 -4.16 -4.08 1.33 0.67 X X X X

VP9 6.42 9.08 12.11 X -0.24 -0.22 2.27 0.91 4.19 X 0.16 0.07 X X X X X X

x264 7.05 10.10 12.53 0.24 X -0.38 2.34 0.97 4.16 -0.16 X -0.56 X X X X X X

x265 7.47 10.46 12.43 0.22 0.38 X 2.32 0.85 4.08 -0.07 0.56 X X X X X X X

PYRAMIDS

JPG X 6.47 -2.22 -9.27 -10.83 -9.82 X -0.59 -1.44 -1.66 -1.79 -1.36 X -0.30 -0.79 -1.26 -1.65 -1.29

JP2 -6.47 X -10.16 -12.87 -15.74 -15.05 0.59 X -0.43 -0.29 -0.34 0.25 0.30 X -1.40 -0.40 -1.00 -0.63

BPG 2.22 10.16 X -18.57 -16.83 -16.04 1.44 0.43 X -3.92 -3.82 -4.20 0.79 1.40 X -5.07 -4.94 -5.49

VP9 9.27 12.87 18.57 X 1.43 2.28 1.66 0.29 3.92 X 0.28 -0.01 1.26 0.40 5.07 X 0.29 -0.10

x264 10.83 15.74 16.83 -1.43 X -0.39 1.79 0.34 3.82 -0.28 X -0.38 1.65 1.00 4.94 -0.29 X -0.85

x265 9.82 15.05 16.04 -2.28 0.39 X 1.36 -0.25 4.20 0.01 0.38 X 1.29 0.63 5.49 0.10 0.85 X

values in the table specifically express the average distance and thus the average gain

between the two compared R-D curves. In this case, the higher the values, the bigger the

average PSNR difference. For each conversion technique in the table, certain trends can

be seen. Be it the effect of temporal coding, which creates a performance gap between

coding algorithms, or the similarity between purely image-based compression schemes

and video codecs. Furthermore, it may seem BPG in comparison to video compression

algorithm performs worse than both JPEG standards. However, when looking at both

Tab. 11.2 and Fig. 11.5, it is clear that BPG is rated worse, because of its ability to

compress the input image further than both JPEG standards, thus increasing the surface

between the measured R-D curves.

11.5.2 Bumpiness metrics

The tested algorithms may exhibit roughness on surfaces that should be smooth. This

can be measured with the Bumpiness metric, both for planar and non-planar continuous

surfaces. Figure 11.6 details the case for two photorealistic scenes, Cotton and Sideboard.

In the former case, a sudden decrease in bumpiness can be seen for lower bit rates. This

is due to the design of the Bumpiness metric, in which a transform is used for detection

of edges and thus roughness in the image. However, when the bit rate of the compressed

image is lower then a certain threshold, the bumps start to form larger distorted patches.

The metric therefore detects that the amount of discontinuities lowers, even though the

image might no longer be recognizable. Otherwise, a similar behaviour to the PSNR
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Figure 11.6: Bumpiness performance on planar and non-planar surfaces of compression
techniques for the EPINET conversion algorithm, displayed for the Cotton and Sideboard
scenes.

metric can be seen for both images on both planar and non-planar (slanted) surfaces.

The Bjontengaard metric was again used to measure the differences between R-D curves,

as can be seen in Tables 11.3 and 11.4. In the former case, there are again some noticeable

trends, as video codecs outperform image compression techniques. However, no method

can be named truly superior in either group, as the distortion is highly input dependent.

The Pyramids scene deviates in Bumpiness in the latter case. This is mainly due to the

sheer amount of slanted continuous surfaces compared to the two other scenes. The slope

of the surfaces is also different, which gives the potential to produce more discontinuities.

Lastly, there is noise in each view, which is another difficulty the conversion algorithms

have to deal with.
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Table 11.3: Comparison of Bumpiness on planar surfaces by the Bjøntegaard metric (BD-
Bumpiness), which computes the average distance between two R-D curves, for three
different scenes and conversion algorithms. Lower values are better.

BD-Bumpiness [-]

EPINET SPO CAE

JPG JP2 BPG VP9 x264 x265 JPG JP2 BPG VP9 x264 x265 JPG JP2 BPG VP9 x264 x265

BOXES

JPG X -0.90 -1.25 0.19 -1.04 0.19 X -0.19 -0.43 0.30 0.30 0.29 X -0.07 0.05 0.01 -0.04 0.02

JP2 0.90 X 0.78 1.08 -0.10 1.16 0.19 X 0.12 0.43 0.44 0.45 0.07 X 0.02 0.06 0.01 0.07

BPG 1.25 -0.78 X 1.72 0.42 1.82 0.43 -0.12 X 1.33 1.30 1.36 -0.05 -0.02 X 0.12 0.09 0.13

VP9 -0.19 -1.08 -1.72 X -1.10 0.10 -0.30 -0.43 -1.33 X -0.02 0.03 -0.01 -0.06 -0.12 X -0.02 0.01

x264 1.04 0.10 -0.42 1.10 X 1.06 -0.30 -0.44 -1.30 0.02 X 0.08 0.04 -0.01 -0.09 0.02 X 0.03

x265 -0.19 -1.16 -1.82 -0.10 -1.06 X -0.29 -0.45 -1.36 -0.03 -0.08 X -0.02 -0.07 -0.13 -0.01 -0.03 X

SIDEBOARD

JPG X -0.13 -0.08 0.46 0.52 0.51 X 0.01 -0.14 0.19 0.19 0.21 X 0.02 -0.01 X X X

JP2 0.13 X -0.03 0.52 0.60 0.59 -0.01 X -0.16 0.15 0.16 0.18 -0.02 X -0.03 X X X

BPG 0.08 0.03 X 0.99 0.99 0.99 0.14 0.16 X 0.53 0.50 0.53 0.01 0.03 X X X X

VP9 -0.46 -0.52 -0.99 X -0.02 0.00 -0.19 -0.15 -0.53 X -0.03 0.00 X X X X X X

x264 -0.52 -0.60 -0.99 0.02 X 0.07 -0.19 -0.16 -0.50 0.03 X 0.05 X X X X X X

x265 -0.51 -0.59 -0.99 0.00 -0.07 X -0.21 -0.18 -0.53 0.00 -0.05 X X X X X X X

PYRAMIDS

JPG X -0.25 0.12 0.24 0.27 0.27 X -0.10 0.07 0.22 0.14 0.11 X -0.05 -0.03 0.03 0.04 0.03

JP2 0.25 X 0.66 0.40 0.50 0.52 0.10 X 0.18 0.23 0.15 0.09 0.05 X 0.06 0.08 0.08 0.08

BPG -0.12 -0.66 X 1.21 1.21 1.24 -0.07 -0.18 X 0.99 0.94 0.98 0.03 -0.06 X 0.37 0.37 0.38

VP9 -0.24 -0.40 -1.21 X -0.03 -0.01 -0.22 -0.23 -0.99 X -0.10 -0.07 -0.03 -0.08 -0.37 X -0.01 0.00

x264 -0.27 -0.50 -1.21 0.03 X 0.04 -0.14 -0.15 -0.94 0.10 X -0.01 -0.04 -0.08 -0.37 0.01 X 0.01

x265 -0.27 -0.52 -1.24 0.01 -0.04 X -0.11 -0.09 -0.98 0.07 0.01 X -0.03 -0.08 -0.38 0.00 -0.01 X

Table 11.4: Comparison of Bumpiness on slanted surfaces by the Bjøntegaard metric
(BD-Bumpiness slanted), which computes the average distance between two R-D curves,
for three different scenes and conversion algorithms. Lower values are better.

BD-Bumpiness slanted [-]

EPINET SPO CAE

JPG JP2 BPG VP9 x264 x265 JPG JP2 BPG VP9 x264 x265 JPG JP2 BPG VP9 x264 x265

COTTON

JPG X -0.03 0.21 0.22 0.31 0.41 X -0.01 0.28 0.08 0.11 0.15 X X X X X X

JP2 0.03 X 0.29 0.22 0.27 0.26 0.01 X 0.05 0.04 0.05 0.05 X X X X X X

BPG -0.21 -0.29 X 1.71 1.68 1.72 -0.28 -0.05 X 0.75 0.75 0.76 X X X X X X

VP9 -0.22 -0.22 -1.71 X -0.06 -0.01 -0.08 -0.04 -0.75 X -0.01 0.00 X X X X X X

x264 -0.31 -0.27 -1.68 0.06 X 0.06 -0.11 -0.05 -0.75 0.01 X 0.02 X X X X X X

x265 -0.41 -0.26 -1.72 0.01 -0.06 X -0.15 -0.05 -0.76 0.00 -0.02 X X X X X X X

SIDEBOARD

JPG X -0.08 -0.18 0.61 0.65 0.67 X 0.03 0.11 0.16 0.16 0.17 X 0.05 0.02 X X X

JP2 0.08 X -0.18 0.63 0.70 0.71 -0.03 X -0.02 0.10 0.11 0.10 -0.05 X -0.06 X X X

BPG 0.18 0.18 X 1.56 1.58 1.51 -0.11 0.02 X 0.26 0.27 0.27 -0.02 0.06 X X X X

VP9 -0.61 -0.63 -1.56 X 0.00 -0.05 -0.16 -0.10 -0.26 X 0.00 0.01 X X X X X X

x264 -0.65 -0.70 -1.58 0.00 X 0.00 -0.16 -0.11 -0.27 0.00 X 0.01 X X X X X X

x265 -0.67 -0.71 -1.51 0.05 0.00 X -0.17 -0.10 -0.27 -0.01 -0.01 X X X X X X X

PYRAMIDS

JPG X -33.24 10.04 73.43 89.41 74.73 X -33.83 -75.25 -30.19 -25.91 -31.28 X 108.34 -24.33 94.28 77.79 101.93

JP2 33.24 X 24.39 106.38 124.12 107.04 33.83 X -11.65 18.74 30.56 21.04 -108.34 X -107.55 -1.94 -14.61 13.78

BPG -10.04 -24.39 X 43.13 32.62 23.63 75.25 11.65 X 36.09 36.37 59.38 24.33 107.55 X 34.87 8.40 13.62

VP9 -73.43 -106.38 -43.13 X -4.50 -14.10 30.19 -18.74 -36.09 X 1.04 20.35 -94.28 1.94 -34.87 X -20.06 -14.11

x264 -89.41 -124.12 -32.62 4.50 X -1.96 25.91 -30.56 -36.37 -1.04 X 7.78 -77.79 14.61 -8.40 20.06 X -3.22

x265 -74.73 -107.04 -23.63 14.10 1.96 X 31.28 -21.04 -59.38 -20.35 -7.78 X -101.93 -13.78 -13.62 14.11 3.22 X

Both the EPINET and SPO algorithms behave differently, as was shown in Figures

11.3 and 11.4. This is further confirmed by the Bjøntegaard metric, with SPO being the

one developing fewer bumps than its counterpart. All compression techniques exhibit

similar behaviour to a certain bit rate. Video codecs gain an advantage after it thanks to

temporal coding.
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Figure 11.7: Foreground Thinning and Fattening performance of compression techniques
for the LF OCC and EPINET conversion algorithms. Displayed for the Backgammon
scene, with examples (left column).

11.5.3 Foreground Thinning and Fattening metrics

In Figure 11.7 some results from the FG Thinning and FG Fattening measurement are

displayed. The goal of these metrics is to quantify the amount of incorrectly assigned dis-

parity values at occlusion boundaries for thin structures [31]. In the case of the EPINET

algorithms, not much FG Thinning occurred when compression was applied. The excep-

tion being BPG, which suffered greatly from impulse distortion.

What can, however, be seen from the figure, is that compression affects FG Fattening.

This can be credited to the occurrence of other types of artifacts, mainly blockiness, blur

and inaccurate colour reproduction. Both JPEG standards show similar performance in

that regard, even though they use different transform coding techniques. In the case of

the legacy JPEG standard, that is probably mainly due to the 8×8 block size. Blur,

on the other hand, is probably the cause when JPEG 2000 is applied. In contrast, the

behaviour of BPG is comparable to AVC, at least in terms of the R-D curves. When

looked at the distortion, differences can be seen.

VP9 outperforms the rest, as it is able to reach the lowest bit rate with the slits being

still recognizable. Otherwise, the behaviour between VP9 and HEVC is very similar. The

LF OCC algorithm and its incorrect behaviour are also shown.
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11.5.4 Thinning and Fattening metrics

The difference between the Thinning and Fattening metrics and their Foreground variants

is in that for the former a threshold is first set, then the difference between the ground

truth and the final disparity map is computed. Only values that exceed the threshold,

which in our case was ± 0.15, are measured. This way, if a pixel is only slightly in the

foreground or background, it is not counted as completely incorrect.
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Figure 11.8: Thinning and Fattening performance of compression techniques for the
LF OCC and SPO conversion algorithms. Displayed for the Sideboard scene, with exam-
ples (left column).

Figure 11.8 shows the results for the SPO and LF OCC algorithms. As can be observed,

the former one displays high values of Thinning, no matter the compression. Fattening,

on the contrary, is low. The two metrics present almost the opposite behaviour. However,

in the case of Fattening, the compression algorithms can once again be split into two

groups, with and without temporal coding. Clear conclusions cannot be drawn for the

LF OCC algorithm, because of its incorrect functioning, even though certain trends are

noticeable.

The Bjøntegaard metric offers a clearer comparison, as can be seen in Table 11.5. In

the case of Thinning, the differences between R-D curves for both EPINET and SPO are

highly inconsistent. VP9 is, however, the most consistent performer for the latter. AVC

shows very similar behaviour to VP9 for both algorithms.
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Table 11.5: Comparison of Thinning and Fattening by the Bjøntegaard metric
(BD-̄Thinning and BD-Fattening), which computes the average distance between two
R-D curves, for the Sideboard scene and three conversion algorithms. Lower values are
better.

BD-Thinning [-]

EPINET SPO LF_OCC

JPG JP2 BPG VP9 x264 x265 JPG JP2 BPG VP9 x264 x265 JPG JP2 BPG VP9 x264 x265

JPEG X -1.67 0.35 -0.51 1.37 -0.40 X -5.71 -10.76 -4.75 -2.40 -7.84 X 2.19 3.21 -7.61 -2.92 -10.47

JPEG2000 1.67 X 2.53 1.26 3.61 1.67 5.71 X -0.70 2.20 5.40 0.12 -2.19 X -4.33 -8.60 -4.37 -13.16

BPG -0.35 -2.53 X -0.18 -1.67 -1.47 10.76 0.70 X 5.11 3.78 0.47 -3.21 4.33 X -11.56 -9.42 -13.77

VP9 0.51 -1.26 0.18 X -2.37 -1.85 4.75 -2.20 -5.11 X -0.93 -3.80 7.61 8.60 11.56 X 2.43 -0.61

x264 (AVC) -1.37 -3.61 1.67 2.37 X -1.07 2.40 -5.40 -3.78 0.93 X -5.49 2.92 4.37 9.42 -2.43 X -3.63

x265 (HEVC) 0.40 -1.67 1.47 1.85 1.07 X 7.84 -0.12 -0.47 3.80 5.49 X 10.47 13.16 13.77 0.61 3.63 X

BD-Fattening [-]

JPEG X 3.27 15.51 16.54 17.76 17.53 X 10.92 15.85 18.31 18.25 18.67 X -0.16 0.03 0.58 -0.35 -0.50

JPEG2000 -3.27 X 8.86 11.14 12.67 12.16 -10.92 X -0.95 5.06 4.72 4.45 0.16 X -0.09 0.69 -0.29 -0.37

BPG -15.51 -8.86 X 18.33 19.10 16.66 -15.85 0.95 X 8.83 8.69 8.72 -0.03 0.09 X 0.84 0.28 -0.91

VP9 -16.54 -11.14 -18.33 X 0.90 -0.89 -18.31 -5.06 -8.83 X -1.07 0.79 -0.58 -0.69 -0.84 X -1.12 -1.97

x264 (AVC) -17.76 -12.67 -19.10 -0.90 X 0.22 -18.25 -4.72 -8.69 1.07 X 8.82 0.35 0.29 -0.28 1.12 X 1.65
x265 (HEVC) -17.53 -12.16 -16.66 0.89 -0.22 X -18.67 -4.45 -8.72 -0.79 -8.82 X 0.50 0.37 0.91 1.97 -1.65 X

More profound differences can be seen in the case of Fattening, where video codecs

show similar behaviour and outperform the rest. HEVC outperforms the other techniques

when the SPO algorithm is used. The same conclusion, however, cannot be drawn for

the EPINET algorithm, as the performance of each codec varies based on bit rate to a

greater extent. In case of image compression techniques, JPEG 2000 end up being the

top performer for the SPO algorithm, BPG being the second best and legacy JPEG being

last. For EPINET, the first two places are swapped, as BPG tops JPEG 2000.

11.5.5 BadPix metrics

Similar to the Fattening and Thinning metrics is the BadPix metric, which is computed

at occlusion areas. A threshold is set, 0.07 px in our case, to which the absolute difference

between the ground truth and the final disparity map is compared. The performance of

the EPINET and SPO algorithms for two photorealistic scenes can be seen in Figure 11.9.

In the case of the EPINET algorithm, some clear trends can be seen for both image and

video compression techniques. There is clear performance separation between them. In

case of image compression methods, BPG outperforms the rest for both scenes, with the

JPEG standards being much closer to each other. The difference between video codec

changes based on the scene. The best performer thus cannot be named, as is further

displayed in Table 11.6.

The SPO algorithm varies much more in terms of the BadPix measurement then

EPINET. Furthermore, there can be seen an improvement in the BadPix value in case of

the Sideboard scene. This is due to fuzziness at occlusion areas, which is partly eliminated
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Figure 11.9: BadPix 0.07 px performance of compression techniques for the EPINET and
SPO conversion algorithms. Displayed for the Cotton and Sideboard scenes.

with compression. However, upon detailed inspection, one can notice, that the decrease

in value is relatively small.

The dependence on the scene is highlighted in Table 11.6. There, some clear patterns

can be seen for the EPINET algorithm, but not for SPO.

11.5.6 AV1 performance

Lastly, the performance of the experimental implementation of AV1 was tested with the

FFmpeg tool. This was done only for the Boxes scene and only for the EPINET conversion

algorithm. When looked at both Figure 11.10 and Table 11.7, it can be seen that the AV1

codec outperforms the rest in most calculated metrics. The Bumpiness metric being the

outlier. There both VP9 and HEVC perform better.
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Table 11.6: Comparison of BadPix 0.07px by the Bjøntegaard metric (BD-BadPix), which
computes the average distance between two R-D curves, for three scenes and conversion
algorithms. Lower values are better.

BD-BadPix 0.07 [-]

EPINET SPO

JPG JP2 BPG VP9 x264 x265 JPG JP2 BPG VP9 x264 x265

COTTON

JPG X 6.06 35.11 29.94 33.01 38.33 X 0.62 5.15 0.16 -0.38 1.51

JP2 -6.06 X 17.82 23.11 23.08 23.84 -0.62 X 0.82 -1.32 -2.04 -0.38

BPG -35.11 -17.82 X 37.54 36.51 36.02 -5.15 -0.82 X -1.41 -0.82 -0.11

VP9 -29.94 -23.11 -37.54 X -2.99 -2.83 -0.16 1.32 1.41 X -0.14 0.68

x264 -33.01 -23.08 -36.51 2.99 X 0.40 0.38 2.04 0.82 0.14 X 0.83

x265 -38.33 -23.84 -36.02 2.83 -0.40 X -1.51 0.38 0.11 -0.68 -0.83 X

SIDEBOARD

JPG X -2.25 12.57 19.48 21.67 21.88 X 0.52 0.18 0.95 0.45 1.93

JP2 2.25 X 12.93 19.44 22.55 22.78 -0.52 X 0.20 0.12 -0.37 1.08

BPG -12.57 -12.93 X 25.22 26.15 24.22 -0.18 -0.20 X 1.43 0.90 3.31

VP9 -19.48 -19.44 -25.22 X 0.62 -0.95 -0.95 -0.12 -1.43 X -0.95 1.50

x264 -21.67 -22.55 -26.15 -0.62 X -0.35 -0.45 0.37 -0.90 0.95 X 2.59

x265 -21.88 -22.78 -24.22 0.95 0.35 X -1.93 -1.08 -3.31 -1.50 -2.59 X

PYRAMIDS

JPG X -5.10 15.19 17.66 20.18 18.99 X 14.61 0.42 -0.13 -3.63 0.74

JP2 5.10 X 22.85 13.67 17.15 16.83 -14.61 X -8.56 -15.01 -17.80 -10.93

BPG -15.19 -22.85 X 39.60 39.34 42.79 -0.42 8.56 X -4.74 -1.03 -6.05

VP9 -17.66 -13.67 -39.60 X -1.20 1.24 0.13 15.01 4.74 X 2.75 -1.02

x264 -20.18 -17.15 -39.34 1.20 X 12.90 3.63 17.80 1.03 -2.75 X -5.39

x265 -18.99 -16.83 -42.79 -1.24 -12.90 X -0.74 10.93 6.05 1.02 5.39 X
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Figure 11.10: Performance of the experimental AV1 compression algorithm in comparison
to the other tested compression methods. Computed by EPINET for the Boxes scene.

11.5.7 Computational demands

The evaluation was implemented in Matlab version 2017b and run on a computer equipped

with a Ryzen 5 1600 CPU running at 3.70 GHz, an NVIDIA GTX 1050Ti and 16 GB of

RAM. The run times of the tested algorithms can be seen in Table 11.8. It has to be noted

that the output of the EPINET algorithm is a PFM file, which has to be converted to a
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Table 11.7: Performance of the experimental AV1 compression algorithm compared to
the other tested compression methods with the Bjøntegaard metric, which computes the
average distance between two R-D curves,. Computed by EPINET for the Boxes scene.
Lower values are better, except for BD-PSNR.

JPG JP2 BPG VP9 x264 x265

BD-PSNR [dB]

AV1

4.10 6.48 9.91 0.43 0.56 0.40

BD-BadPix [-] -15.56 -8.25 -20.12 -3.18 -4.18 -4.41

BD-Bumpiness -0.26 -1.18 -1.62 0.06 -0.86 0.22

BD-Thinning -6.18 -3.92 -13.30 -0.13 -2.48 -0.49

BD-Fattening -7.39 -6.64 -4.30 -2.50 -1.08 -2.88

PNG before it can be loaded to Matlab. The run time thus includes both the estimation

and the conversion to PNG. Still it took far less time than the other algorithms.

Table 11.8: Average run times for the disparity map estimation for the Boxes scene.
Method LF OCC CAE SPO EPINET 9×9
Time 446s 1742s 1058s 43s

In terms of compression, the run times were mostly seconds long. The only exception

was AV1, which took anywhere from seconds to about a minute. This is because FFmpeg

version 4.1.1. has AV1 only as an experimental implementation.

11.6 Summary

Several compression algorithms were tested in combination with several light field to

disparity estimation methods on eight scenes. The tested compression algorithms exhibit

different cases of distortion, which has, in turn, different effects on the disparity estimation

(see Figures 11.3 and 11.4). The effects are not however consistent for all the conversion

methods. They are rather highly scene and method dependent.

Several metrics were computed (see 11.4), and their values were evaluated. The results

imply that the inclusion or absence of temporal coding makes a significant difference in

performance for most metrics. The methods can thus be divided into two groups. Further

testing would, however, need to be done, before a definitive best performer for each group

could be named.

The experimental implementation of the AV1 codec outperformed the rest for the Boxes

scene but was not tested for other scenes. VP9 and HEVC (x265) perform better than
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the older AVC (x264) on several occasion, however, as the tables and figures in this

chapter show, there are many scenes and metrics where the differences between them are

negligible. On some occasions, the AVC encoder performs better.

In terms of image-based compression techniques, the results are even more scene and

metric dependent, as can be seen for example in Figure 11.5 and Table 11.2. The absence

of temporal coding, however, puts these methods behind video compression methods in

terms of performance.



Chapter 12

Conclusions and future work

The project introduces three imaging modalities, light field, point cloud and holography,

and explores currently available techniques of conversion between them. At first, an

introduction to plenoptic imaging is made with the basis being the plenoptic function.

The different representations of the function are then shown in Chapters 2 to 5. Each

of those can be split into three main steps, depicting gradually the main principle, data

acquisition and data representation. One should be able to get a clear distinction between

the modalities in terms of their usage, benefits and drawbacks.

Chapters 6 to 8 summarize the different techniques of conversion between the modali-

ties1. The character and amount of data between the representations can differ greatly.

It is thus not always possible or easy to convert between them. Assumptions have to

be often made about the information at hand for the procedure to work. Even so, there

are still directions for which the conversions are either not described or an intermediary

step through a different representation has to be made. This is mainly the case for the

conversion from point cloud, as it usually provides fewer data and thus a worse represen-

tation of the specific scene then both light field and holography. With the introduction

of JPEG Pleno and the hardware and software available to capture and process the data,

an increase in research can be seen nowadays.

Chapter 9 focuses on compression of the three modalities. Many different methods can

be applied; however, certain algorithms appear for each. This is the case for example for

JPEG, JPEG 2000, AVC and HEVC. Wavelets show promising results for compression

of raw light fields. However, as pseudo-sequence methods show, efficiently exploring the

correlation between views of the light field image seems to be the key. From the three

modalities, most research by far was done on point cloud compression, as there are many

1Further details are included in Appendix B or its electronic version at https://docs.google.com/

spreadsheets/d/1HgcG6RxWGCKbkmWplLjZq0qN3FWMQe6dCPxWFNcP6U8/edit?usp=sharing
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https://docs.google.com/spreadsheets/d/1HgcG6RxWGCKbkmWplLjZq0qN3FWMQe6dCPxWFNcP6U8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1HgcG6RxWGCKbkmWplLjZq0qN3FWMQe6dCPxWFNcP6U8/edit?usp=sharing
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proposed techniques. This is partly due to research in autonomous driving. Certain meth-

ods can be used for both geometry and colour compression, as is the case, for example,

for octrees. Others utilize conventional compression algorithms as part of their compres-

sion scheme. This is the case for example for JPEG, JPEG 2000, AVC and HEVC. The

same encoders can be used in holography as well. Holographic compression is, however,

in comparison to the other two modalities still in fairly early stages of research. The

information stored in digital holograms is completely scrambled, which makes it problem-

atic to compress. Wavelet-based approaches, together with the content-aware techniques,

seem to show most promise so far. A better understanding of the hologram structure and

its features has to be made before truly efficient compression schemes can be designed.

Chapter 10 is dedicated to the datasets and software that can be used for testing2. Two

ways of dataset creation are depicted based on the method of acquisition. The benefits of

both real and synthetic scenes are also mentioned so are the various types of software for

both displaying and processing. For the development of conversion algorithms, the choice

of datasets can be crucial. This is true primarily in the case of neural networks as they

have to be properly trained.

In Chapter 11, the effects of compression of light field images on disparity estimation

are analysed. The results show that the experimental implementation of the AV1 codec

outperformed the other tested codec for one specific scene. However, as it was not tested

on other, it cannot be conclusively named the best performer overall. Video encoders are

shown to have better performance than still image coding approaches, as they exploit the

correlation between the views of light field images. VP9 and HEVC (x265) perform better

than the older AVC (x264) on several occasion. Their behaviour is, however, highly scene

dependent, and thus inconsistent. This can be seen on some occasions, where the AVC

encoder performs better than both VP9 and HEVC. In terms of image-based compression

techniques, the results are even more scene and metric dependent, thus more inconsistent.

However, the absence of temporal coding puts these methods behind video compression

methods in terms of performance. Other compression algorithms, together with other

conversion methods, would need to be tested before a definitive conclusion could be drawn.

The computational together with memory or storage demands for the conversions are

often quite large. A closer look at the effects of compression algorithms at the different

conversions could be made in future work. Subjective evaluation metrics could also be

2A table of publicly available datasets can be found in Appendix A and its electronic version
at https://docs.google.com/spreadsheets/d/1OzMUTy9Ll_5M59dbuyTsNs6mkmzXOJdyDXAfBWyCWFM/

edit?usp=sharing

https://docs.google.com/spreadsheets/d/1OzMUTy9Ll_5M59dbuyTsNs6mkmzXOJdyDXAfBWyCWFM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1OzMUTy9Ll_5M59dbuyTsNs6mkmzXOJdyDXAfBWyCWFM/edit?usp=sharing
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added as precision is not always the most desired aspect. That is the case, for example, in

portrait photography in smartphones. It could also be beneficial to explore what could be

done about the missing information in the different representations or what effects does

the conversion between two modalities have on the data. Different quality assessment

techniques could be tested. Lastly, a comparison to JPEG Pleno could be made after the

standard is finalized.



Appendix A

Datasets

Table A.1: Publicly available holographic datasets.

name origin/hosted by modality consists of
size over-

all

size of

the main

data

size of

addi-

tional

data

filetype main

data

filetype

addi-

tional

data

scene

type
acquisition

ERC Interfere Holo-

graphicdata set

Vrije Universiteit

Brussel
holography holograms 1,07 GB 1,07 GB x mat; x synthetic

CGH - recon-

structed from

point cloud data

EmergImg-HoloGrail
Universidade da Beira

Interior
holography holograms 999 MB 999 MB x mat; x

synthetic;

real

CGH and ac-

quired with an

optical recording

setup

Holographic database
Advanced Media Cod-

ing Lab at IRT b-com
holography holograms

∼276,34

GB

∼276,34

GB
x bmp; exr; x

synthetic;

real

computation

from a syn-

thetic scene

or Multiview-

plus-Depth

projections

Table A.2: Publicly available point cloud datasets.

name origin/hosted by modality consists of
size over-

all

size of

the main

data

size of

addi-

tional

data

filetype main

data

filetype

addi-

tional

data

scene

type
acquisition

UNIVERSITY OF

SÃO PAULO POINT

CLOUD DATASET

University of São

Paulo
point cloud point clouds 1,57 GB 1,57 GB x ply; x real ?

GTI-UPM Point-

cloud dataset

Universidad

Politécnica de Madrid
point cloud point clouds 192 MB 192 MB x obj; jpg; wrl; x real ?

8iVFB v2 8i Labs point cloud point clouds 5,5 GB 5,5 GB x
ply; png; mp4;

txt; pdf; docx;
x real RGB cameras

Microsoft Voxelized

UpperBodies - A

Voxelized Point Cloud

Dataset

Microsoft point cloud point clouds 7,9 GB 7,9 GB x
ply; png; avi;

pdf;
x real RGBD cameras
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Table A.3: Publicly available light field datasets.

name origin/hosted by modality consists of
size over-

all

size of

the main

data

size of

addi-

tional

data

filetype main

data

filetype

addi-

tional

data

scene

type
acquisition

(OLD) 4D Light Field

Benchmark

University of Kon-

stanz and the HCI at

Heidelberg University

light field

light field im-

ages; depth

maps

4,02 GB 4,02 GB x png; h5; gif x
synthetic;

real

blender; gantry;

Raytrix

(NEW) 4D Light

Field Benchmark

University of Kon-

stanz and the HCI at

Heidelberg University

light field

light field im-

ages; depth

maps

5,68 GB 3,16 GB 1,52 GB png; pfm; cfg pfm; cfg synthetic blender

DDF12
Caner Hazirbas - TU

Munich
light field

light field im-

ages; depth

maps

93,76 GB 80,4 GB 13,36 GB
npy; mat; png;

raw; h5; ?

png; lfr;

json; gct;

hst; raw;

txt;

real Lytro ILLUM

Lytro Dataset Irisa light field
light field im-

ages;
1,33 GB 1,33 GB x lfp; gct; jpg x real Lytro F01

Material recognition

dataset

University of Califor-

nia San Diego
light field

light field im-

ages; labels
30 GB 30GB x png; x real Lytro ILLUM

Synthetic Light Field

Archive

Massachusetts Insti-

tute of Technology
light field light field images 348 MB 349 MB x png; x synthetic POV-Ray

Occlusion-aware

depth estimation us-

ing light-field cameras

University of Califor-

nia, Berkley
light field light field images 3,03 GB 3,03 GB x h5; x real Lytro ILLUM

Scene Reconstruction

from High Spatio-

Angular Resolution

Light Fields

Disney research light field

light field im-

ages; depth

maps

7,18 GB 7,18 GB x png; jpg; dmap; x real
Multi-Camera

array

Stanford Lytro Light

Field Archive
Stanford University light field

light field im-

ages; depth

maps

60,7 GB 60,7 GB x png; json; jsn; x real Lytro ILLUM

Multiview Dataset Stanford University light field

light field im-

ages; depth

maps

212,1 GB /

223,1 GB

207 GB /

218 GB
5,1 GB lfr; decoded eslf; ? real Lytro

Three-View Dataset Stanford University light field ? 155 GB 150 GB 5,1 GB lfr; decoded eslf; ? real Lytro ILLUM

The (New) Stanford

Light Field Archive
Stanford University light field

light field im-

ages;
18,95 18,95 x png; jpg; hom; x real

Stanford Multi-

Camera Array;

gantry; Lego

Mindstorms

gantry; light

field microscope

The (Old) Stanford

Light Field Archive
Stanford University light field

light field im-

ages;
140,3 MB 140,3 MB x lif; rgb; lid; ?

synthetic;

real
gantry

Light-Field Image

Dataset

École polytechnique

fédérale de Lausanne
light field

light field im-

ages; depth

maps

56,6 GB 55 GB 1,6 GB lfr; mat; jpg; ? real Lytro

EPFL Light-field

lensletdata set

École polytechnique

fédérale de Lausanne
light field

light field im-

ages;
3,42 GB 3,42 GB x ppm; x real ?

LCAV-31
École polytechnique

fédérale de Lausanne
light field

light field im-

ages;
660 MB 660 MB x jpg; x real Lytro

Light Field Dataset
Universidad de

Zaragoza
light field

light field im-

ages; depth

maps

384 MB 384 MB x jpg; float; x
synthetic;

real

Raytrix; gantry;

Lytro; PBRT

(the physically-

based renderer)

Depth from Com-

bining Defocus and

Correspondence Using

light-Field Cameras

dataset

University of Califor-

nia, Berkley
light field

light field im-

ages;
80 MB 80 MB x jpg; lfp; x real Lytro
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Conversion methods

Table B.1: Methods, which use neural networks for the conversion between light field and
point cloud/depth map.

paper
name in the
4D benchmark

year method

code
pub-
licly
avail-
able

programing
language used

hardware used to
run the code

training dataset(s)
number
of
scenes

Convolutional net-
works for shape from
light field

- 2016
CNN (neural
networks)

No - -
LF dataset generated
by POV-Ray

8,00E+06

EPI-Patch Based
Convolutional Neural
Network for Depth
Estimation on 4D
Light Field

EPN+OS+GC 2017
CNN (neural
networks)

No
Python + Mat-
lab

i7-4720HQ @
2.60GHz, 128 GB
RAM, TITAN X

4D light field bench-
mark dataset

16

EPI-Patch Based
Convolutional Neural
Network for Depth
Estimation on 4D
Light Field

SOA-EPN 2017
CNN (neural
networks)

No
Python + Mat-
lab

i7-4720HQ @
2.60GHz, 128 GB
RAM, TITAN X

4D light field bench-
mark dataset

33

Neural epi-volume
networks for shape
from light field

- 2017
CNN (neural
networks)

No - -
LF dataset generated
by POV-Ray

900

EPINET: A Fully-
Convolutional Neural
Network Using Epipo-
lar Geometry for
Depth from Light
Field Images

Epinet-fcn 2018
CNN (neural
networks)

Yes Python
i7-7770 @ 3.6GHz,
32GB RAM, 1080ti

LF dataset generated
by POV-Ray (a com-
bination of those used
in Convolutional net-
works for shape from
light field and Neu-
ral epi-volume net-
works for shape from
ligh tfield

250

EPINET: A Fully-
Convolutional Neural
Network Using Epipo-
lar Geometry for
Depth from Light
Field Images

Epinet-fcn-m 2018
CNN (neural
networks)

Yes Python
i7-7770 @ 3.6GHz,
32GB RAM, 1080ti

LF dataset generated
by POV-Ray (a com-
bination of those used
in Convolutional net-
works for shape from
light field and Neu-
ral epi-volume net-
works for shape from
ligh tfield

250

EPINET: A Fully-
Convolutional Neural
Network Using Epipo-
lar Geometry for
Depth from Light
Field Images

Epinet-fcn9X9 2018
CNN (neural
networks)

Yes Python
i7-7770 @ 3.6GHz,
32GB RAM, 1080ti

LF dataset generated
by POV-Ray (a com-
bination of those used
in Convolutional net-
works for shape from
light field and Neu-
ral epi-volume net-
works for shape from
ligh tfield

250
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Table B.2: Other methods for the conversion between light field and point cloud/depth
map.

paper
name in
the 4D
benchmark

year method
occlusion
aware

code
pub-
licly
avail-
able

programing
language
used

hardware
used to
run the
code

Epipolarplane image analysis: An approach to determining struc-
ture from motion

- 1987 line fitting - No - -

Accurate correspondences from epipolar plane images - 2001 line fitting (cost function) - No - -

Handling occlusions indense multi-view stereo - 2001
shiftable window + multi-view
(cost function, data cost)

Yes No - -

Multi-camera scene reconstruction via graph cuts - 2002 graph cut - Yes C++ -
Stereo matching using belief propagation - 2003 multi-view - No - -
Asymmetrical occlusion handling using graph cut for multi-view
stereo

- 2005 graph cut (occlusion) Yes No - -

Reconstructing occluded surfaces using syntheticapertures: Stereo,
focus and robust measures

- 2006
synthetic apertures (cost fuction,
data cost)

Yes No - -

Plenoptic depth estimation from multiple aliased views - 2009 multi-view - No - -
Reducing plenoptic camera artifacts - 2010 cross correlation - No - -
Surface stereo with softsegmentation - 2010 stereo algorithm (surface based) - No - -
Globally Consistent Depth Labeling of 4D Light Fields EPI2 2012 structure tensor - No - -

Structure and motion from scene registration - 2012
convertion into a volumetric
space

- No - -

The light field camera: Extended depth of field, aliasing, and su-
perresolution

- 2012 multi-view - No - -

Depth from combining defocus and correspondence using lightfield
cameras

- 2013
defocus and correspondence (data
cost)

Yes Yes Matlab -

Line assisted light field triangulation and stereo matching - 2013 line fitting - No - -
Reconstructing reflective and transparent surfaces from epipolar
plane images

- 2013 structure tensor - No - -

Scene reconstruction from high spatio-angular resolution light fields - 2013 line fitting - Yes Python -
Variational shape from light field - 2013 active wavefront sampling - No - -
Depth estimation for glossy surfaces with light-field cameras - 2014 glossy - No - -

Light field scale-depth space transform for dense depth estimation - 2014
convolution + Ray Gaussian ker-
nel

- No - -

Light field stereo matching using bilateral statistics of surface cam-
eras

- 2014
mix of defocus and correspon-
dence and multi-view

Yes No - -

Shape from light field meets robust PCA - 2014
multi-view - low rank structure
regularization

- No - -

Variational light field analysis for disparity estimation and super-
resolution

- 2014 structure tensor - Yes C++ -

A multi-resolution approach to depth field estimation in dense im-
age arrays

RM3DE 2015 multi-resolution - No - -

Accurate Depth Map Estimation from a Lenslet Light Field Camera LF 2015 cost volume, phase shift - Yes Matlab
i7-4770
@3.40GHz

Depth from shading, defocus, and correspondence using light-field
angular coherence

- 2015
defocus and correspondence (data
cost)

- Yes Matlab -

Depth recovery from light field using focal stack symmetry - 2015 defocus and correspondence - No - -

Occlusion-aware depth estimation using light-field cameras LF OCC 2015
defocus and correspondence (data
cost)

Yes Yes Matlab
i7-4770
@3.40GHz

Shape estimation from shading, defocus, and correspondence using
light-field angular coherence

- 2015 defocus and correspondence - No - -

Variational separation of light field layers - 2015 layer separation - No - -
Dense Depth-map Estimation and Geometry Inference from Light
Fields via Global Optimization

SC GC 2016 cost volume (optimization) - No - -

Depth estimation and specular removal for glossy surfaces using
point and line consistency with light-field cameras

- 2016 glossy - No - -

Depth estimation with occlusion modeling using light-field cameras - 2016
defocus and correspondence (oc-
clusion)

Yes No - -

Depth from gradients in dense light fields for object reconstruction - 2016 patch-based local gradient - No - -

Occlusion-aware depth estimation using sparse light field coding - 2016
sparse light field coding (occlu-
sion)

Yes No - -

3D point cloud reconstruction from single plenoptic image - 2016
histogram stretching, edge detec-
tion, image fusion

- No - -

Robust Depth Estimation for Light Field via Spinning Parallelo-
gram Operator

SPO 2016 spinning parallelogram Yes Yes Matlab
i7-4790
CPU @
3.60GHz

Robust Light Field Depth Estimation for Noisy Scene with Occlu-
sion

- 2016
defocus and correspondence (data
cost)

Yes Yes Matlab -

SVBRDF-invariant shape and reflectance estimation from light-
field cameras

- 2016 glossy - No - -

What sparse light field coding reveals about scene structure EPI1 2016 light field dictionary - No - -

Accurate depth and normal maps from occlusion-aware focal stack
symmetry

OFSY330DNR 2017 defocus and correspondence Yes Yes Matlab
i7-3770 @
3.40GHz,
Titan X

Depth estimation from light field by accumulating binary maps
based on foreground-background separation.

FBS 2017 binary maps - No - -

Fast and Efficient Depth Map Estimation from Light Fields BSL 2017 line fitting (matching cost) - No - -
BSL I

Geometric Occlusion Analysis in Depth Estimation using Integral
Guided Filter for Light-Field Image

- 2017 multi-view Yes No - -

Robust and dense depth estimation for light field images - 2017
multi-view (stereo non-dense
methods)

- No - -

Robust Pseudo Random Fields for Light-Field Stereo Matching RPRF-5view 2017
statistical method (Bayesian
framework)

- Yes
Matlab
and C++

i7-6700 @
3.40GHz

Depth from a Light Field Image with Learning-based Matching
Costs

PS RF 2018
cascade random forest (cost vol-
ume)

- No - -

Occlusion-Aware Depth Estimation for Light Field Using Multi-
Orientation EPIs

SPO-MO 2018
spinning parallelogram (opti-
mization)

Yes No - -

Robust Light Field Depth Estimation using Occlusion-Noise Aware
Data Costs

CAE 2018
defocus and correspondence (data
cost)

Yes Yes Matlab
i7-7770 @
3.6GHz



Appendix C

Software

Table C.1: Publicly available software.
name toolbox for modality
Point cloud tools Matlab point cloud
PovRay x point cloud
Point Cloud Maker 11 x point cloud
MeshLab x point cloud
CloudCompare x point cloud
Computer Vision Toolkit x point cloud
Blender x point cloud
OctoMap x point cloud
OpenCTM x point cloud
Corto x point cloud
Draco x point cloud
LASzip x point cloud
LEPCC x point cloud
PCL x point cloud
cwi-pcl-codec x point cloud
pointzip x point cloud
PDAL x point cloud
Pointfuse x point cloud
Light Field Toolbox Matlab light field
Light Field Imaging Toolkit (LFIT) Matlab light field
Plenoptic Toolbox 2.0 Python light field
Plenoptic-Simulation Blender light field
cocolib x light field
Geometric Calibration for Light Field Matlab light field
Blender Addon Blender light field
Python tools Python light field
lfptools x light field
Light field WebGL viewer x light field
light-field-graph-codec Matlab light field
Lightfield-processing x light field
WaSP light field compression x light field
LYTRO meltdown x light field
python-lfp-reader Python light field
HoloPy Python holography
HoloRec3D Matlab holography
CGDH Tools Matlab holography
x265 HEVC Encoder x
JEM software x
Kakadu software x
ICME 2018 Grand Challenge x
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https://github.com/pglira/Point_cloud_tools_for_Matlab
http://www.povray.org
https://3dstereophoto.blogspot.com/2016/09/point-cloud-maker-11-pcm11.html
http://www.meshlab.net
http://www.danielgm.net/cc/
https://github.com/roboception/cvkit
https://www.blender.org
https://octomap.github.io
http://openctm.sourceforge.net
https://github.com/cnr-isti-vclab/corto
https://github.com/google/draco
https://laszip.org
https://github.com/Esri/lepcc
https://github.com/PointCloudLibrary/pcl
https://github.com/cwi-dis/cwi-pcl-codec
http://www.cs.unc.edu/~isenburg/pointzip/
https://pdal.io
https://pointfuse.com
http://dgd.vision/Tools/LFToolbox/
https://github.com/AFDL/LFIT
https://github.com/PlenopticToolbox/PlenopticToolbox2.0
https://github.com/Arne-Petersen/Plenoptic-Simulation
http://cocolib.net
https://sites.google.com/site/yunsubok/lf_geo_calib
https://github.com/lightfield-analysis/blender-addon
https://github.com/lightfield-analysis/python-tools
https://github.com/nrpatel/lfptools
https://github.com/mpk/lightfield
https://github.com/mmspg/light-field-graph-codec
https://github.com/Vincentqyw/light-field-Processing
https://github.com/astolap/WaSP
http://optics.miloush.net/lytro/
http://code.behnam.es/python-lfp-reader/
https://github.com/manoharan-lab/holopy
http://labh-curien.univ-st-etienne.fr/wiki-reconstruction/index.php/Main_Page
https://gitlab.com/petr.lobaz/CGDH-Tools
https://www.videolan.org/developers/x265.html
https://jvet.hhi.fraunhofer.de
http://kakadusoftware.com
https://drive.google.com/drive/folders/1oPdTKSm9x2KS3AF-4bzKal-pWjYfukKg?usp=sharing


Appendix D

Structure of appendix archive

The appendix archive comprises of 2 folders:

• /Implementation/... - Folder containing all the scripts necessary for the evalua-

tion described in Chapter 11. The folder contains a README file, which further

explains the structure of underlining sub-folders and their contents.

• /Results/... - Folder containing results in the form of tables, figures and computed

disparity maps. The folder also contains a README file, which further explains

the structure of the underlining sub-folders and their contents.
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