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Abstract

Project scheduling often involves multiple contractors, who are in charge of activities in the
project plan. They have the power to decrease the duration of their activities from normal
duration to the incompressible limit. The project manager is responsible to deliver the project
on time. He specifies the milestones with appropriate due dates and penalties in the project
plan. The thesis aims to find a stable solution with minimal project duration. In a stable
solution, no contractor has the interest to change the duration of his activities to reduce his
expenses, since all other contractors do not change their strategies. We propose a mixed integer
linear program formulation with lazy constraint generation for its calculation. Computation
analysis confirms the effectiveness of our approach. We investigate the values of the price of
anarchy and the price of stability to get useful insight for the project manager.

Keywords: Multi-agent project scheduling, Nash equilibria, Milestones, Mixed integer linear
programming

Plánovanie projektov zvyčajne zahŕňa viacerých dodávatel’ov, ktoŕı majú na starosti rôzne
práce v projektovom pláne. Každý dodávatel’ má možnost’ skrátit’ trvanie svojej aktivity z
maximálneho až na minimálny časový limit. Projektový manažér je zodpovedný za včasné
dodanie projektu. V projektovom pláne stanovuje mı́l’niky s pŕıslušnými termı́nmi a pokutami
za ich nesplnenie. Ciel’om práce je nájst’ stabilné riešenie s minimálnym časovým trvańım
projektu. V stabilnom riešeńı nemá žiadny dodávatel’ záujem zmenit’ trvanie svojich aktiv́ıt,
aby zńıžil svoje náklady. To pláti za predpokladu, že všetci ostatńı dodávatelia nezmenia svoje
stratégie. V práci navrhujeme využitie celoč́ıselného lineárneho programovania s podmienkami
generovanými v priebehu programu pre výpočet stabilného riešenia s minimálnym časovým
trvańım projektu. Analýza výpočtov potvrdzuje efekt́ıvnost’ nášho riešenia. Taktiež v práci
skúmame ukazovatele v anglickej literatúre označované ako price of anarchy a price of stability,
aby sme źıskali lepšiu predstavu o probléme z pohl’adu projektového manažéra.

Kl’́učové slová: Rozvrhovanie projektov s viacerými hráčmi, Nashova rovnováha, Mı́l’niky,
Celoč́ıselné lineárne programovanie

v



vi



Acknowledgements

I would like to express my sincere gratitude to my advisor doc. Ing. Přemysl Š̊ucha, Ph.D.
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Chapter 1

Introduction

1.1 Motivation

In everyday life, we are planning activities to reach some goals. Our goals can be different,

from smaller ones, as for example to organize a weekend family session, to bigger ones like to

construct a car or goals to build a skyscraper. In all these situations we have to set up a project

plan. The project plan is a set of activities interconnected together, designed to achieve the

goal. Each activity has its normal duration, which represents the time for completing it.

The project duration, e.g. the project makespan, is the time required to complete all the

activities. In some of the projects, we are not the only person responsible to complete the

activity. We involve agents (firms, subcontractors, actors, organizations, etc.) to take control

of completing particular activities in the project. They also have a chance to decrease the

normal duration of the tasks. If they do that, they have to pay crashing cost of the activity.

As a project owner, we set up the milestones in the project. Then due date and penalty cost

for each milestone force the agents to get the milestones done on time. Managing the project

with many activities, agents and milestones can be tricky because all of the agents will try to

minimize their expenses. Also changing the strategy of one agent can affect the others.

The objective of our multi-agent project scheduling problem with milestones is to find

a stable solution with the minimal makespan. Minimum project makespan is the minimum

time required to deliver the project. Stability of the solution is defined via Nash equilibria

that guarantee that agents do not have the incentive to deviate from the proposed schedule.

Our model is a non-cooperative game where each agent is only interested in minimalization

of his expenses - crashing costs of reducing the activities and penalties for tardy milestones.

1



2 CHAPTER 1. INTRODUCTION

1.2 Project scheduling assumptions

Due date: 20 
Penalty: 

agent 1: 20 
agent 2: 10 
agent 3: 40 

 
agent 1 agent 2 agent 3 

milestone 
 

Activity 1 
processing time: <3,5>  

cost: 10 

Activity 2 
processing time: <1,9>  

cost: 15 

Activity 3 
processing time: <2,7>  

cost: 5 

Activity 6 
processing time: <1,9>  

cost: 20 

Activity 4 
processing time: <2,3>  

cost: 8 

Activity 5 
processing time: <2,5>  

cost: 7 

Activity 7 
processing time: <4,6>  

cost: 12 

Activity 8 
processing time: <1,16>  

cost: 3 

Due date: 10 
Penalty: 

agent 1: 20 
agent 2: 10 
agent 3: 0 

Figure 1.1: A project represented by an activity-on-arch network

Let us expose the problem with more details. You can see an example of a project plan

represented by the activity-on-arch network in Figure 1.1. All activities in the project are

associated with agents, responsible for concrete activities. An agent sets up a strategy, i.e.

time duration of his activities. Final makespan is a union of all agents decisions. The agent

can finish his activity in normal duration, or reduce the processing time of the activity to an

incompressible limit. Cost of reduction by one-time unit value is crashing cost. The agent is

motivated to shorten his activities to reach the milestones on time. If he does not, for each

day after the due date he has to pay a penalty. All agents are finding the best strategy for

them, where they minimize the sum of crashing costs paid because of shortening the activities

and sum of the penalty paid for tardy milestones. Among all solutions where agents minimize

their expense (stable solutions), we are looking for the one which minimizes project makespan.

Let us look at Figure 1.1. We can see 8 activities splitted among 3 agents. Agent 1 is

responsible for activities 1 and 3, agent 2 for activities 2,4,5 and agent 3 for 6,7,8. Precedence

of activities is defined by the graph, e.g. activity 3 can start only after activity 1 is finished.

Each activity has normal duration, incompressible limit and crashing cost specified on edges.

If agent 1 chooses to reduce processing time of the activity 3 from normal duration 7 to 6, he

will pay crashing cost 5. Project owner established 2 milestones in the example. Milestone

1 has due date 10 and penalty 20 for agent 1, 10 for agent 2 and 0 for agent 3. Milestone 2

has a due date 20 and penalty 20 for agent 1, 10 for agent 2 and 40 for agent 3. Due date for

milestone 1 is 10, so agent 1 will try to reduce the normal duration of activities 1 and 3 to

reach the milestone on time because penalty (20) for the delay is higher than crashing costs
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of activity 1 (10) or activity 3 (5). He will try to reduce the processing time of activity 3

by 2-time units and choose to pay 10 instead of 40 for 2 days penalty. For the same reason,

agent 2 will reduce the processing time of activity 4, but only by 1-time unit because he gets

to an incompressible limit of the activity. This situation also affects agent 1, as he will pay

a one-day penalty for milestone 1, so he will choose to reduce the processing time of activity

3 by only a 1-time unit instead of 2. As you can see, the strategy of one agent affects the

other agents. Stability of strategy profile depends on the ability of agents to decrease/increase

processing times of activities on one hand, and the due dates and penalties of milestones on

the other.

1.3 Related Work

We can find different models of the Multi-agent project scheduling (MAPS) problem, where

project activities are assigned to a set of agents. Nash equilibria in the MAPS with two

agents is described in [1]. When considering the time performance of agents, they compete

for a profit.

MAPS can also be studied from resource-constrained project scheduling context point of

view, where common limited resources are allocated to agents over time. Finding the best

Nash equilibria in a multi-agent resource-constrained project scheduling is presented in [2].

In [3], the authors target mechanisms for allocating shared resources to the agents. In [4], a

resource negotiation mechanism is presented and in [5] an auction-type mechanism is granted.

Paper [6] deals with a Multi-agent minimum-cost flow problem. It shows how Nash equilibria

can be characterized by means of augmenting or decreasing path in a reduced network, also

describes finding such equilibria that maximizes the flow value.

In thesis, we extend work published in [7]. Activities in the project are assigned to a

particular agent. Agents are responsible for the duration of each activity, they can shorten

the duration of their activities, incurring a crashing cost. If the project is finished before

the normal value, agents get a bonus. Each agent wants to maximize its profit. The goal

of the paper is to analyze the problem and to characterize stable strategy (Nash equilibria),

i.e. in which no agent has an interest in modifying its own strategy if no strategy of another

agent is changed. This model of the non-cooperative game differs from [8], where agents

have no control over the duration of their activities and the situation is analyzed from a

cooperative game perspective. Also, penalties are set up as difference from actual duration to

the original estimate. In [7] penalties and rewards are fixed and pre-established. Formulation

of a mixed integer linear programming model to find a stable strategy that minimizes the

project makespan can be found in [9]. This paper extends the model from [7] such that the

manager of the project can decide how to share the reward among the agents. Finding base

strategy - strategy where every agent has non negative profit and the total project makespan

is minimum, best Nash solution - every agent has a maximum profit and the total project
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makespan is minimum, worst Nash solution - every agent has a maximum profit and the total

project makespan is maximum and their comparison (Price of stability and Price of anarchy)

are explained in paper [10].

1.4 Contribution

In this thesis, we extend the problem defined in [7] by definition of project milestones. We

assume project activities are splitted among agents. Agents have an option to decrease the

normal duration of activities to the incompressible limit. Project owner sets due dates and

penalties for milestones in the project. Under these settings, the key contribution is the

MILP formulation to determine the minimum project makespan among all stable solutions.

The MILP effectively generates and adds lazy constraints to program. The experimental

results show that the MILP model performs well on different types of testing data sets. Also,

the price of anarchy and the price of stability are measured and discussed to get useful insight

for the project manager.

1.5 Outline

The plan of the thesis is as follows. Section 2 formally defines the problem addressed in this

thesis, along with the definition of the price of anarchy and the price of stability. In Section 3,

the MILP formulation to compute the stable solution with minimum makespan using lazy

constraint generation is provided. The experimental results are discussed in Section 4, and

the last section concludes this work.



Chapter 2

Problem statement

2.1 Multi-agent project scheduling

In this section, we review the main definitions and concepts from [7] and extend the model by

the definition of milestones. We assume basic knowledge of classical, single-agent time/cost

trade-off problem. [11]

The MAPS problem with milestones is defined by a tuple 〈G,A, P , P , C,Nm〉:

• Project network. G = (N,E) is an activity-on-arc network. N is the set of nodes

(N = {1, . . . , n}) and E is the set of arcs. Arcs correspond to project activities, nodes

represent events which allow specifying finish-start precedence relations. Arc of activities

outgoing from a node cannot start before all incoming activities are finished. Specifying

precedence relations can require the addition of dummy activities (arcs) having a zero

duration in the project network [12]. Nodes 1 and n represent the project beginning

and end, respectively.

• Agents and strategies. A = {A1, . . . , Aa} is the set of a agents. The set of activities

belonging to agent Au is denoted by Eu, with Eu∩Ev = ∅, for u 6= v, and ∪mu=1Eu = E.

The individual strategy of agent Au, denoted by Su, consists in deciding the duration of

each activity (i, j) ∈ Eu, denoted by pij . We assume that activities duration are integer

values. For any activity (i, j) ∈ E, we have: p
ij
≤ pij ≤ pij . Strategy S is a collection

of a individual strategies Su. Here we assume that an agent has total control over its

activities only. Given strategy S, the project makespan is the length of the longest

path from node 1 to node n on G, and is denoted by D(S). To highlight the individual

strategy of agent Au within a certain strategy S, we sometime write S as (Su, S−u).

• Crashing costs. We let cij be the unit crashing cost of activity (i, j). So, the cost to

shorten the duration of (i, j) from pij to pij is equal to cij(pij − pij), and the cost paid

by agent Au for the strategy Su is
∑

(i,j)∈Eu
cij(pij − pij).

5



6 CHAPTER 2. PROBLEM STATEMENT

• Milestones and penalty. Nm is a set of m milestones, Nm ⊆ N . For each milestone

m, due date dm is defined, having the following meaning. If the project reaches milestone

m within dm (i.e., if tm ≤ dm), agent Au pays no penalty. Otherwise, the agent Au bears

a penalty qmuTm, where Tm = tm − dm. Value qmu represents a unit penalty cost paid

by agent Au for each unit time extension with respect to dm of each milestone m.

• Agent penalty. Given a strategy S, the expense of agent Au, denoted by Zu(S) is

given by Zu(S) =
∑

m∈M qmu max{0, tm − dm}+
∑

(i,j)∈Eu
cij(pij − pij).

The reaction of agent Au to strategy S can be described by the following mathematical

model:

min
∑

m∈Nm

qmuTm +
∑

(i,j)∈τu

cij(pij − pij)

s.t.

tj − ti − pij − sij = 0 ∀(i, j) ∈ E (2.1)

p
ij
≤ pij ≤ pij ∀(i, j) ∈ τu (2.2)

pij = pij(S) ∀(i, j) /∈ τu (2.3)

tm − dm ≤ Tm ∀m ∈ Nm (2.4)

where

qmu, dm, ti, Tm, sij ∈ R≥0, pij ∈ Z≥0

Agent Au is minimizing the penalty for tardy milestones
∑

m∈Nm
qmuTm and cost for

shortening his activities
∑

(i,j)∈τu cij(pij−pij). Expression (2.1) defines precedence constraints

given by G. Variable tj represents the time, when node j is accomplished, or in other words

when all activities coming to j are finished. Time tj is equal to time ti plus processing time

of activity pij plus slack variable sij . Agent Au can decrease processing time of activity (i, j)

from normal duration pij to incompressible limit p
ij

in activities he owns. This is expressed

via constraints (2.2). Processing time of other agents activities are defined in strategy profile

S given by constraints (2.3). Expression (2.4) sets up tardiness Tm = max{0, tm−dm}, which

is used in the objective function to compute the penalty for tardy milestones.

(Critical graph G(S)) Given a strategy S, the longest paths from node 1 to every milestone

m on G are called the critical paths. The arcs of the critical paths are critical activities. We

call critical graph the subgraph G(S) ⊆ G(S) consisting of all critical activities.
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2.2 Nash equilibria

In this section, we briefly review the characterization of Nash equilibria and poor strategy

from [7] and provide definitions of increasing / decreasing cuts in a graph concerning the

extension of the model.

(Nash equilibria) A strategy S = {S1, . . . , Sa} is a Nash equilibria if for all agents Au and

each strategy S′u 6= Su:

Zu(S−u, Su) ≥ Zu(S−u, S
′
u) (2.5)

Expression (2.5) means, that if S is a Nash equilibria, no agent Au has the interest to

change his strategy from Su to S′u, since all other agents do not change their strategies. Nash

equilibria is a stable strategy.

(Poor strategy) A strategy S = {S1, . . . , Sa} with project duration D(S) is a poor strategy

if and only if there exists agent Au and alternative strategy S′u such that Zu(S) < Zu(S′u) and

D(S′) = D(S), with S′ = (S−u, S
′
u)

Vector S is a poor strategy if there exists at least one agent Au, who can decrease his ex-

penses by modifying processing times of his activities without affecting the project makespan.

A strategy which is not poor is called non-poor. Nash equilibria is always a non-poor strategy.

Given non-poor strategy S with duration D(S) agent Au tries to find better strategy S′,

where his expenses are lower. Since S is non-poor, S′ will increase or decrease the project

makespan. Adjustment to S′ can be characterized in terms of cuts in the critical graph G(S).

(Cut in G(S)) Given a partition (X,N \X) of the set of activities N such that 0 ∈ X and

also there must exists at least one milestone m such that m ∈ N \X, a cut ω(X) of G(S) is

the subset of arcs across X and N \ X. The arcs (i, j) ∈ ω(X) with i ∈ X and j ∈ N \ X
are called forward arcs, denoted by ω+(X). The arcs (i, j) ∈ ω(X) with i ∈ N \X and j ∈ X
are called backward arcs, denoted by ω−(X). We have ω(X) = ω+(X) ∪ ω−(X). We are

particularly interested in two types of cuts on G(S).

(Decreasing cut) A cut ω(X) of G(S) is a decreasing cut if

∀(i, j) ∈ ω+(X), pi,j > p
i,j
.

So, all forward activities in a decreasing cut must have non-crash duration. Since all paths

in G(S) are critical, this definition means that, decreasing (by 1 day) the length of all activities

in ω+(X), we decrease by at least 1 day the makespan of all milestones which belong to N \X.

Notice that if the milestone representing the end of the whole project is in X, then the project

makespan is not affected by such operation. Also, notice that we are not requiring that all

backward activities have to be increased: those having normal duration may simply become

non-critical as a consequence of the application of the cut. Moreover, milestones in X may

be affected by the decrease.
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However, some makespans of milestones may be decreased by more than one day. This

happens if all the paths leading to a certain milestone have 2 (or more) arcs in ω+(X), and

all such paths have at least one arc belonging to ω−(X) which cannot be increased. Notice

that this can happen only if certain arcs (u, v) ∈ ω+(X) are such that no path fully contained

in X exists from the initial node 0 to u. Call Ũ ⊆ X such set of nodes.

We can associate with each decreasing cut ω(X) a unit cost, consisting of the total cost

of activities which are crashed, minus the total saving of extended activities, minus the total

reward due to the reduction of the makespans of the milestones in N \X:

W (X) =
∑

(i,j)∈ω+(X)

cij −
∑

(i,j)∈ω−(X)

cij −
∑

m∈N\X

qm. (2.6)

In general, (2.6) overestimates the real cost. As we already observed, a unit decrease in the

activities of ω+(X) may result in a multiple decrease of some milestone makespan(s). Call M̃

the set of milestones for which a multiple makespan reduction is achieved. Moreover, notice

that Ũ ⊆ X may itself contain some milestone(s), for which the corresponding makespan is

reduced: these are not accounted for in (2.6). So, if we let W̃ (X) be the real cost borne

for reducing the activities of ω+(X) (and extending all the activities of ω−(X) which can be

extended), it may happen that W̃ (X) < W (X).

Nonetheless, we can show that if X∗ is a decreasing cut that minimizes W (X), then

W (X∗) = W̃ (X∗). Consider a decreasing cut ω(X) such that W (X) > W̃ (X). From the

above discussion, this means that there is a node set Ũ ⊆ X of nodes such that, even if they

lay in X, they are not reachable from the initial node through a path fully contained in X. Let

us, therefore, consider the node subset X̃ obtained removing from X all the nodes of Ũ , and

consider a new cut ω(X̃) = ω(X \ Ũ). Now, observe that in ω+(X̃) there can be no arc (u, v)

such that v ∈ Ũ , since otherwise the makespan of some milestone in M̃ would not be multiple

reduced by the decreasing cut ω(X). As a consequence, passing from ω(X) to ω(X̃), the

set of forward arcs has not been enlarged, and no milestone on the right-hand side of ω(X̃)

experiences multiple reductions. So now the set N \ X̃ includes exactly all the milestones

affected by the cut, and in conclusion, W̃ (X̃) = W (X̃) < W (X). Hence, given any cut ω(X),

if W̃ (X) < W (X), there is certainly another cut ω(X̃) such that W̃ (X̃) = W (X̃) < W (X),

so indeed minimizing W (X) is equivalent to minimizing W̃ (X).

(Increasing cut) A cut ω(X) in G(S) is an increasing cut if:

∃(i, j) ∈ ω+(X) and pi,j < pi,j

∀(i, j) ∈ ω−(X), pi,j > p
i,j
.
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The idea is that if at least one forward activity of the cut is not at normal duration, we

can get a saving from its extension. This is paid in terms of penalty for tardy milestones (in

N \X) which are extended. So, one can again associate with an increasing cut the following

quantity, which is formally equivalent to Equation (2.6):

W (X) =
∑

(i,j)∈ω+(X)

cij −
∑

(i,j)∈ω−(X)

cij −
∑

m∈N\X

qm. (2.7)

This quantity is related to the saving achieved through the increase (by 1 day) of all

forward activities which are not at normal duration (by definition there is at least one), the

decrease of all backward activities and the fact that we pay penalty for tardy milestones N \X.

Symmetrically to Equation (2.6), it may happen that (2.7) underestimates the real saving.

The definition of increasing cut only requires that at least one forward activity (call it (u, v))

can be increased. The set ω+(X) may contain other activities, but these may be at normal

duration, so they cannot be indeed increased (this is taken care by letting cij = 0 in the

residual graph). In conclusion, the increase of activity (u, v) may not affect the makespans

of all milestones in N \ X. So, if we call W̃ (X) the real saving achieved by extending the

activities of ω+(X) (and reducing all the activities of ω−(X) which can be reduced), it may

happen that W̃ (X) > W (X).

Nonetheless, we can show that if X∗ is an increasing cut that maximizes W (X), then

W (X∗) = W̃ (X∗). Suppose in fact that we have an increasing cut ω(X) and W (X) > W̃ (X).

This means that there is a set M̃ of milestones such that, even if they lay in N \ X, their

respective makespans are not increased by acting on the cut. Let us, therefore, consider the

node subset Ñ ⊂ N \ X including all the nodes of N \ X that are on some critical path

leading to some node of M̃ . Consider a new cut ω(X̃) = ω(X ∪ Ñ). Now, observe that in

ω−(X̃) there can be no arc (u, v) such that v ∈ Ñ , since otherwise the makespan of some

milestone in M̃ would be affected by the increasing cut ω(X). As a consequence, passing

from ω(X) to ω(X̃), the set of forward arcs may have been enlarged (there may well be

some ”new” forward arc), but the set of affected milestones on the right-hand side of ω(X̃) is

smaller. Now the right-hand side includes exactly all the milestones affected by the cut, so in

conclusion, W̃ (X̃) = W (X̃) > W (X). Hence, given any cut ω(X), if W̃ (X) > W (X), there is

certainly another cut ω(X̃) such that W̃ (X̃) = W (X̃) > W (X), so indeed minimizing W (X)

is equivalent to minimizing W̃ (X).
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Notation Meaning/description

G = (N,E) Project network with N nodes/events and E arcs/activities
Au Agent
Su Strategy of agent Au
S Strategy profile, union of all agents strategies
pij Processing time of activity (i, j) ∈ E
p
ij
, pij Incompressible limit and normal duration of activity (i, j) ∈ E

cij Crashing cost of activity (i, j) ∈ E
ti Time, when node i is finished i
Nm Set of milestones, Nm ⊆ N
dm Duedate of milestone m
qmu One day penalty for milestone m for agent Au
Tm Tardiness, Tm = max{0, tm − dm}
Zu(S) Expenses of agent Au under strategy profile S
G(S) Critical graph under strategy profile S
D(S) Project makespan under strategy profile S
ω(X) Cut in graph G(S)
ω+(X), ω−(X) Decreasing and increasing cut in graph G(S)
W (X) Cut cost

Table 2.2: Notation

2.3 Illustrative example

Let us look on Figure 2.1. We consider project network G = (N,E), where N = {1, . . . , 4} and

E = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}. Activities (1, 2), (2, 3), (2, 4) ∈ E1 and (1, 3), (3, 4) ∈
E2. Project owner sets up 2 milestones, nodes 3 and 4. Milestone 3 has due date d3 = 5,

penalty q3,1 = 120 and q3,2 = 120. Milestone 4 has due date d4 = 7, penalty q4,1 = 10 and

q4,2 = 190.

Strategy S = (5, 6, 2, 4, 2) is having all activities on the normal duration and project

makespan D(S) = 9. With the strategy profile S′ = (4, 6, 2, 4, 2) in Figure 2.2, the makespan

becomes 8, Z1(S
′) = 260 and Z2(S

′) = 310. This is a poor solution, agent A1 can decrease

his expenses by reducing the processing time of activity (2, 3) to p2,3 = 1. Also, agent A2 will

reduce time of activity (1, 3) to p1,3 = 5. This new strategy S′′ = (4, 5, 1, 4, 2) has D(S′′) = 8,

Z1(S
′′) = 230 and Z2(S

′′) = 300. No agent can change his processing time to decrease his

expenses, so it is a non-poor strategy. Also, it is not possible to find another one with shorten

makespan, so strategy S′′ = (4, 5, 1, 4, 2) is a Nash equilibria with the minimal makespan.

Changing penalty on milestone 4: q4,1 = 200 will force agent A1 to finish milestone 4 on

time. The optimal solution is S′′′ = (3, 5, 2, 4, 2), having makespan D(S′′′) = 7. See Figure 2.3.

Changing the due date on milestone 3: d3 = 6 will change the behavior of agents as well.

The optimal solution is S′′′′ = (5, 6, 1, 4, 2), having makespan D(S′′′′) = 9. See Figure 2.4. As

we can see, agent A1 reduces activity (2,3) to 1. This does not change the project makespan

but will reduce expenses of agent A1 from Z1(S) = 260 to Z1(S
′′′′) = 110.
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1

2

3

4

Due date: 7
Penalty:

agent 1: 10
agent 2: 190

agent 1 agent 2

milestone

[3,5], 130

[4,6], 110

[2,4], 200

[1,2], 200

Due date: 5
Penalty:

agent 1: 120
agent 2: 120

[1,2], 90

pij
pij

cij

–

–

Figure 2.1: A multi-agent project network with 2 agents and 5 activities - instance

1

2

3

4

Due date: 7 
Penalty: 

agent 1: 10 
agent 2: 190 

4

6 

4 

2 

Due date: 5 
Penalty: 

agent 1: 120 
agent 2: 120 

2

Figure 2.2: A multi-agent project network with 2 agents and 5 activities - strategy profile S′
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1

2

3

4

Due date: 7 
Penalty: 

agent 1: 200 
agent 2: 190 

3

5 

4 

2 

Due date: 5 
Penalty: 

agent 1: 120 
agent 2: 120 

2

Figure 2.3: A multi-agent project network with 2 agents and 5 activities - strategy profile S′′′

1

2

3

4

Due date: 7 
Penalty: 

agent 1: 10 
agent 2: 190 

5

6 

4 

2 

Due date: 6 
Penalty: 

agent 1: 120 
agent 2: 120 

1

Figure 2.4: A multi-agent project network with 2 agents and 5 activities - strategy profile S′′′′
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2.4 Price of anarchy and price of stability

In this section, we briefly review the characterization of PoA, PoS and base strategy from [10].

We focus on finding the Nash strategy which minimizes the project makespan Sbest. Also,

we can consider the Nash strategy which maximizes the project makespan Sworst. For the

project owner, Sbest and Sworst represent the best and the worst stable solutions. To assess

the quality of strategies Sbest and Sworst, we compare these Nash equilibria with base strategy

S∗

(Base strategy) Given a tuple 〈G,A, P , P , C,Nm〉, the base strategy is the strategy S∗

having the minimum makespan among all strategies that guarantee all milestones are finished

on time, and D(S∗) denotes its makespan.

A base strategy can be computed by solving the following MILP:

min tn (2.8)

s.t.

tj − ti − pij − sij = 0 ∀(i, j) ∈ E (2.9)

t0 = 0 (2.10)

p
ij
≤ pij ≤ pij ∀(i, j) ∈ E (2.11)

tm = dm ∀m ∈ Nm (2.12)

where

ti, pij ∈ Z≥0, sij ∈ R≥0

(Price of anarchy and price of stability) Given a tuple 〈G,A, P , P , C,Nm〉 and the corre-

sponding strategies Sbest, Sworst and S∗, the ratios

PoA =
D(Sworst)

S∗

and

PoS =
D(Sbest)

S∗

are called PoA and PoS respectively.
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Chapter 3

MILP formulation

3.1 Main problem

In this chapter, we show how the MAPS can be solved as MILP with lazy constraints gener-

ation. First, we describe a formal MILP formulation of the MAPS with milestones problem:

min

(
tn +

∑
∀(i,j)∈E cij(pij−pij)+

∑
∀m∈Nm

∑
∀u∈A qmuTm

1+
∑
∀(i,j)∈E cij

(
pij−pij

)
+
∑
∀m∈Nm

∑
∀u∈A qmu(tmax

m −dm)

)
(3.1)

s.t.

tj − ti − pij − sij = 0 ∀(i, j) ∈ E (3.2)

t0 = 0 (3.3)

p
ij
≤ pij ≤ pij ∀(i, j) ∈ E (3.4)

W (ω
(u)
dec) < 0 ∀ω(u)

dec, ∀Au ∈ A (3.5)

W (ω
(u)
inc) > 0 ∀ω(u)

inc,∀Au ∈ A (3.6)

tm − dm ≤ Tm ∀m ∈ Nm (3.7)

where

ti, Tm, pij ∈ Z≥0, sij ∈ R≥0

The objective function (3.1) has two parts. Th first one minimizes project makespan tn,

the second part is to ensure the optimal solution is non-poor. As tn is an integer value and the

second term is always smaller than 1, it will not affect the project makespan. Expression (3.2)

defines precedence constraints, and (3.3) will force the model to start at time 0. Processing

time of activity is lower or equal than normal duration and higher or equal than the incom-

pressible limit, due to constraints (3.4). Constraints (3.5) and (3.6) defined in Section 2.2

guarantee there is no profitable decreasing or increasing cut. Expression (3.7) sets up the

tardiness Tm, which is used in the objective function.

In order to express constraints (3.5) and (3.6) in linear term, we define residual network

Nu(S) and new decision variables xi,j , yi,j , zi,j , zm, z
′
m.

15
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3.2 Residual graph

Residual network Nu(S) is a function of strategy S. We introduce new binary variables

xij ,yij ,zij ,zm,z′m. Variable xij is equal to 1, iff processing time pij can be increased. Variable

yij is equal to 1, iff processing time pij can be decreased. Variable zij is equal to 1, iff activity

(i, j) is on the critical path in the critical graph G(S). Variable zm is equal to 1, iff tm−dm ≥ 0

for milestone m and z′m is equal to 1, iff tm−dm > 0 for milestone m. We append the following

constraints to the previous MILP formulation:

ε− zij ≤ sij ≤ sij (1− zij) ∀(i, j) ∈ E (3.8)

zij ≤
∑

∀(k,i)∈E

zki ∀(i, j) ∈ E : i > 1 (3.9)

zij ≤
∑
∀(j,l)∈E

zjl ∀(i, j) ∈ E : j < n, j /∈ Nm (3.10)∑
∀(i,m)∈E

zim ≥ 1 ∀m ∈ Nm (3.11)

1 ≤
∑

∀(1,i)∈E

z1i (3.12)

tm ≤ dm − 1 + (tmaxm − tminm + 1)zm ∀m ∈ Nm (3.13)

tm ≥ dm − (tmaxm − tminm )(1− zm) ∀m ∈ Nm (3.14)

tm ≤ dm + (tmaxm − tminm )z′m ∀m ∈ Nm (3.15)

tm ≥ dm + 1− (tmaxm − tminm + 1)(1− z′m) ∀m ∈ Nm (3.16)

xij ≤
(
pij − pij

)
≤
(
pij − pij

)
xij ∀(i, j) ∈ E (3.17)

yij ≤
(
pij − pij

)
≤
(
pij − pij

)
yij ∀(i, j) ∈ E (3.18)

zij ≥ xij ∀(i, j) ∈ E (3.19)

Expression (3.8) defines, that if the activity (i, j) has a zero slack variable sij , then it

cannot be critical. Also, when the activity (i, j) is critical, it cannot have sij > 0.

Expressions (3.9) and (3.10) ensure continuity of critical paths in the graph. If an activity

(i, j) is critical, then at least 1 activity entering node i is critical too, due to (3.9). Also if

activity (i, j) is critical and node j is not a milestone, then at least one activity leaving node j is

critical, due to (3.10). Constraints (3.11) and (3.12) defines that a critical path exists to every

milestone and minimum one critical path is starting from the first node . Variables zm, z
′
m

are used to determine tardy milestones via constraints (3.13) - (3.16). Expression (3.17) sets

up x variable and (3.18) sets up y variable. If activity is not critical, it cannot be increased,

due to (3.19)

For each agent Au, we construct residual graph Nu(S) from xij , yij , zij . The flow on arcs is

bounded between luij and uuij . Values of variables luij and uuij are specified by the transformation

shown in Table 3.3, for more information about the transformation please see [10].
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(i, j) ∈ Au zij xij yij luij uuij
True 0 0/1 0/1 0 0
True 1 1 1 cij cij
True 1 0 1 0 cij
True 1 1 0 cij +∞
True 1 0 0 0 +∞
False 0 0/1 0/1 0 0
False 1 0/1 0/1 0 +∞

Table 3.3: Lower and upper capacities luij , u
u
ij in Nu(S)

The most profitable decreasing or increasing cuts are computed independently in subprob-

lems MILP. See examples of residual graphs and cuts for different strategies and agents in

Figures 3.1 - 3.3.

In Figure 3.1, we can see an example of residual network N1(S
′) constructed for agent A1

and strategy S′ = (4, 6, 2, 4, 2) from Figure 2.2. There are 5 possible cuts in the network, but

only one is profitable: increasing cut ω1
3, W (ω1

3) = 30. Agent A! will increase the duration of

activity p12 = 5 and decrease the activity p23 = 1.

Figures 3.2 and 3.3 are the residual networks for both agents and strategy S′′ = (4, 5, 1, 4, 2).

It is a non-poor strategy, and also there does not exist any profitable cut. It is an optimal

solution.
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1

2

3

4

Due date: 7
Penalty:

agent 1: 10
agent 2: 190

agent 1 agent 2

milestone

(130,130)

(0, +     )

(0,200)

(0, +     )

Due date: 5
Penalty:

agent 1: 120
agent 2: 120

(0,90)

lij
uij

∞
∞

ω
1
1 ω

1
2

ω
1
3 ω

1
4

Increasing cuts

ω
1
1

W(      ) = 130 + 0 -120 -10 = 0

ω
1
2

W(      ) = 0 + 0 + 0 - 120 - 10 = -130

ω
1
3

W(      ) = 130 - 90 + 0 -10 = 30

ω
1
4

W(      ) = 0 + 0 - 10 = -10

Maximum cost: 30 > 0 => 
Profitable cut found 

Decreasing cuts

ω
1
1

W(      ) = 130 +      -120 -10 = +

ω
1
2

W(      ) = 200 + 90 +      - 120 - 10 = +

ω
1
3

W(      ) = 130 - 0 +      -10 = +

ω
1
4

W(      ) = 200 +     - 10 = +

Minimum cost: +      > 0 => 
No profitable cut 

∞ ∞

∞ ∞

∞ ∞

∞ ∞

∞

W(      ) = 0 -      - 120 = - 

ω
1

5

ω
1

5
W(      ) =      - 0 - 120 = +ω

1

5
∞∞ ∞∞

Figure 3.1: Residual network N1(S
′) for strategy profile S′ from Figure 2.2 for agent A1
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1

2

3

4

Due date: 7
Penalty:

agent 1: 10
agent 2: 190

agent 1 agent 2

milestone

(130,130)

(0, +     )

(0,200)

(0, +     )

Due date: 5
Penalty:

agent 1: 120
agent 2: 120

(90, +     )

lij
uij

∞
∞

ω
1
1 ω

1
2

ω
1
3 ω

1
4

Increasing cuts

ω
1
1

W(      ) = 130 + 0 -120 -10 = 0

ω
1
2

W(      ) = 0 + 90 + 0 - 120 - 10 = - 40

ω
1
3

W(      ) = 130 -      + 0 -10 = - 

ω
1
4

W(      ) = 0 + 0 - 10 = -10

Maximum cost: 0 = 0 => 
No profitable cut found 

Decreasing cuts

ω
1
1

W(      ) = 130 +      -10 = +

ω
1
2

W(      ) = 200 +      +      - 10 = +

ω
1
3

W(      ) = 130 - 90 +      -10 = +

ω
1
4

W(      ) = 200 +     - 10 = +

Minimum cost: +     > 0 => 
No profitable cut 

∞ ∞

∞ ∞

∞ ∞

∞ ∞

∞

∞

∞ ∞

∞

ω
1

5

W(      ) = 0 -      -120 = - ω
1

5 ω
1

5
W(      ) =       - 0 = +∞ ∞ ∞∞

Figure 3.2: Residual network N1(S
′′) for strategy profile S′′ from Figure 2.3 for agent A1
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1

2

3

4

Due date: 7
Penalty:

agent 1: 10
agent 2: 190

agent 1 agent 2

milestone

(0, +     )

(120, 120)

(0, + .   )

(0, 200)

Due date: 5
Penalty:

agent 1: 120
agent 2: 120

(0, +     )

lij
uij

ω
2
1 ω

2
2

ω
2
3 ω

2
4

Increasing cuts

ω
2
1

W(      ) = 120 + 0 -120 -190 = -190

ω
2
2

W(      ) = 0 + 0 + 120 - 120 - 190 = -190

ω
2
3

W(      ) = 0 -      + 0 -190 = - 

ω
2
4

W(      ) = 0 + 0 - 190 = -190

Maximum cost: 0 = 0 => 
No profitable cut found 

Decreasing cuts

ω
2
1

W(      ) =      + 120 - 190 = +

ω
2
2

W(      ) =       +      + 120 - 190 = +

ω
2
3

W(      ) =      - 0 + 200 -190 = +

ω
2
4

W(      ) =      + 200 - 190 = +

Minimum cost: 120 > 0 => 
No profitable cut 

∞ ∞

∞ ∞

∞ ∞

∞ ∞

∞

∞ ∞

∞

∞ ∞

ω
2

5

ω
2

5
W(      ) = 120 - 0 = 120ω

2

5
W(      ) = 120 - 200 - 120 = - 200

Figure 3.3: Residual network N2(S
′′) for strategy profile S′′ from Figure 2.3 for agent A2
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3.3 Subproblem

We compute profitable increasing and decreasing cuts separately in subproblem MILP. We

use variables lij and uij from residual network Nu(S), also variables zm and z′m from the

main MILP formulation. After we find a profitable decreasing / increasing cut, we construct

a constraint and add it lazy to the main MILP formulation. See Section 3.4 for more details

about lazy constraint generation.

Decreasing Cuts

In this section, you can find a MILP formulation to find the most profitable decreasing cut in

the residual network. We define MC = {m ∈ Nm : z′m = 1}, the set of tardy milestones, where

variable z′m is equal to 1, iff tm − dm > 0 for milestone m. MC is set of all tardy milestones,

which can be affected by a decreasing cut. The cut is profitable when the objective function

is less than 0.

min
∑

(i,j)∈E

αijuij −
∑

(i,j)∈E

βijlij −
∑

m∈MC

qmu(1− γm)

s.t.

αij − βij = γi − γj ∀(i, j) ∈ E (3.20)

αij + βij ≤ 1 ∀(i, j) ∈ E (3.21)

γ1 = 1 (3.22)∑
m∈Nm

γm ≤ |Nm| − 1 (3.23)

where

qmu, `ij , uij ∈ R≥0, αij , βij , γi ∈ {0, 1}

We added binary variables αij , βij , γi to define a cut in residual network Nu(S). Variable

αij is equal to 1, iff arc (i, j) is a forward arc in the cut. Variable βij is equal to 1, iff arc (i, j)

is a backward arc in the cut. Variable γi is equal to 1, iff node i is on the left in the cut, i.e.

i ∈ X.

Constraints (3.20) means, that when activity (i, j) is forward arc, than node i is on the

left and j is on the ride. But also, if the activity (i, j) is the backward arc, then node i is

on the right and node j on the left. Arc (i, j) cannot be forward and backward at the same

time, due to (3.21). The first node is always on the left side of cut due to constraints (3.22)

and there is always at least one tardy milestone on the ride side of the cut (3.23).
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If a profitable cut is found, we define paramteres of new lazy constraint LCdeck = (Fk, Bk,

Ck, Dk) where

Fk = {(i, j) ∈ E : αij = 1 ∧ zi,j = 1},
Bk = {(i, j) ∈ E : βij = 1 ∧ zi,j = 1},
Ck = {(i, j) ∈ E : αij = 1 ∧ zi,j = 0},
Dk = {m ∈ Nm : γm = 0 ∧ z′m = 1}.
The corresponding constraint is added lazy to main MILP formulation, as will be explain

later in Section 3.4.

Increasing Cuts

In this section, you can find a MILP formulation to find the most profitable increasing cut

in the residual network. We define MC = {m ∈ Nm : zm = 1}, the set of tardy milestones.

Variable zm is equal to 1, iff tm − dm >= 0 for milestone m. The set MC of tardy milestones

are milestones, which can be affected by increasing cut. The set MC differs for increasing and

decreasing cut. In decreasing cut, we select milestones which are tardy, in increasing we select

tardy milestones and also milestones where tm = dm. The Increasing cut will increase the

makespan of milestones, so it will make milestones where tm = dm tardy. The cut is profitable

when the objective function is more than 0.

max
∑

(i,j)∈E

αijlij −
∑

(i,j)∈E

βijuij −
∑

m∈MC

qmu(1− γm)

s.t.

αij − βij = γi − γj ∀(i, j) ∈ E (3.24)

αij + βij ≤ 1 ∀(i, j) ∈ E (3.25)

γ1 = 1 (3.26)∑
m∈Nm

γm ≤ |Nm| − 1 (3.27)

where

qmu, `ij , uij ∈ R≥0, αij , βij , γi ∈ {0, 1}

Definition of variables αij , βij , γi and contraints are identical with the decreasing cut.

If a profitable cut is found, we define parameters of new lazy constraint LCinck = (Fk, Bk,

Ck, Dk) where

Fk = {(i, j) ∈ E : αij = 1 ∧ zi,j = 1},

Bk = {(i, j) ∈ E : βij = 1 ∧ zi,j = 1},

Ck = {(i, j) ∈ E : βij = 1 ∧ zi,j = 0},

Dk = {m ∈ Nm : γm = 0 ∧ zm = 0}.

The corresponding constraint is added lazy to main MILP formulation, as will be explain

later in Section 3.4.
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3.4 Lazy constraints generation

We have shown how to compute profitable decreasing and increasing cut for each agent in

Section 3.3. We add these constraints lazy to main MILP model. Instead of constraint (3.5),

we add:

∑
∀(i,j)∈Fk

yij +
∑

∀(i,j)∈Bk

xij ≤

|Fk ∪Bk| − 1 +
∑

∀(i,j)∈Ck

zij +
∑
∀m∈Dk

(1− z′m) ∀LCdeck ∈ LCdec (3.28)

and instead of (3.6), we add:

∑
∀(i,j)∈Fk

xij +
∑

∀(i,j)∈Bk

yij ≤

|Fk ∪Bk| − 1 +
∑

∀(i,j)∈Ck

zij +
∑
∀m∈Dk

zm ∀LCinck ∈ LCinc (3.29)

The sum of forward and backward arcs in the cut associated with variables xi,j and yi,j

lower or equal to the union of sets −1 generates a constraint in the main MILP model. The

constraint is added lazy to the model and forces the model to change from strategy S to a

strategy S′ where this cut will not exist (no such configuration of forward and backward arcs).

Blocking arcs and milestones

Let us look at Figure 3.4. Consider this situation: Forward arcs in an increasing cut are

α2,5 = 1, α3,6 = 1 and α4,7 = 1, backward arc is β5,3 = 1, critical arcs are z2,5 = 1 and

z3,6 = 1, milestone 8 is tardy z8 = 1 and milestone 9 is not tardy z9 = 0 . We find the profitable

increasing cut 60 + 50−100(> 0), and set up Fk = {(2, 5), (3, 6)}, Bk = ∅, Ck = {(5, 3)}, Dk =

{9}. This cut will generate a constraint: x2,5 + x3,6 <= 1 + z5,3 + z9. Arc (5, 3) is called

blocking, because we have to turn off the constraint, if this arc becomes critical (z5,3 = 1).

The reason is when (5, 3) becomes critical, cut costs will change: 60−20+50 = −10(< 0) and

the cut is no more profitable. On the other hand, when activity (4, 7) becomes critical, the

constraint can stay in model, because it only improves the cut cost 60 + 50 + 20− 100(> 0).

Also the cut can becomes unprofitable, when milestone 9 turns critical 60+50−100−100(< 0),

and constrain has to be turned off by variable z9.
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Figure 3.4: Blocking arcs and milestones for an increasing cut in the residual graph
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Figure 3.5: Blocking arcs and milestones for a decreasing cut in the residual graph
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Figure 3.5 illustrates the way decreasing cuts are transformed to lazy contraints. Consider

the situation where α2,5 = 1, α3,6 = 1 and α4,7 = 1, backward arc is β5,3 = 1, critical

arcs are z2,5 = 1 and z3,6 = 1, milestone 8 is tardy z8 = 1 and milestone 9 is not tardy

z9 = 0. In this configuration, a decreasing profitable cut appears 40 + 50− 100(< 0). Cut is

defined as Fk = {(2, 5), (3, 6)}, Bk = ∅, Ck = {(4, 7)}, Dk = {8}. It will generate constraint

x2,5 + x3,6 <= 1 + z4,7 + (1 − z′8). Arc (4, 7) is blocking, if it becomes critical, we have to

turn the constraint off, because the cut will no longer be profitable 40 + 20 + 50− 100(> 0).

The arc (5, 3) can only improve the cut cost 40 − 20 + 50 − 100(< 0), so it is not blocking.

If milestone 8 is not tardy, the cut also has to be turned off, because the cost will not be

profitable 40 + 50(> 0).
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Chapter 4

Experimental results

The algorithm performance was measured on a personal computer with macOS Mojave version

10.14.4, 8 GB of RAM and 2,5 GHz Intel Core i5 processor. The MILP model was solved

with Gurobi solver version 8.0.1. Section 4.1 explains how the instances were generated and

provides step by step example of program execution. Section 4.2 discusses the performance

of MILP model under different conditions: number of activities, number of agents, number of

milestones and others. Price of anarchy and price of stability is addressed at the end of the

section.

4.1 Benchmark instances

Problem instances were generated by RanGen1, generator defined in [13]. For each problem

size, 100 instances were created. All of them were made with Order Strength equal to 0.3

which represents the number of precedence relations divided by the theoretical maximum

of precedence relations in the network. Instances were converted from activity-on-node to

activity-on-arcs by definition in [9], using an algorithm described in [12]. The converter was

modified to generate milestones in the graph. Each milestone has a due date dm and penalty

for agents qmu = qmwmu assigned. The number of milestones in the graph is a parameter for

a converter, a value in interval [0, 1] is expected. It is a ration of the number of milestones to

all nodes in the graph. The last node is always a milestone and the first one never is. The due

date dm is calculated in an interval of the longest path to milestone using lower bounds on

the arcs and the longest path to milestone using upper bounds on the arcs. A parameter in

interval [0, 1] is expected, 0 means dm will have the smallest possible value, 1 will compute the

biggest value. The same principle is enforced in the calculation of penalties, were boundaries

are calculated and parameter in interval [0, 1] sets the final value of penalty qmu.

27
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Step by step example

Let us look step by step on program execution from the beginning to the end. We take the

example from Section 2.3. Consider an input file:

NumNodes = 6 ;

NumAgents = 3 ;

Arcs = {
// fromnode , tonode , cost , pLB,pUB, agent ;

< 1 , 2 , 0 , 0 , 0 , 1>,

< 2 , 3 , 130 , 3 , 5 , 2>,

< 2 , 4 , 110 , 4 , 6 , 3>,

< 3 , 4 , 90 , 1 , 2 , 2>,

< 3 , 5 , 200 , 2 , 4 , 2>,

< 4 , 5 , 200 , 1 , 2 , 3>,

< 5 , 6 , 0 , 0 , 0 , 1>

} ;

Mi l e s tones = {
//m,dm,qm,wum;

< 6 , 7 , 200 , [ 0 . 0 0 0 0 0 0 , 0 . 1 , 0 . 9 ] > ,

< 4 , 5 , 240 , [ 0 . 00000 0 , 0 . 5 , 0 . 5 ] >

} ;

The input file can be visualized using Graphviz— Open Source Graph Drawing Tools

described in [14], see Figure 4.1.

Figure 4.1: Step by step example - input file
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We consider project network G = (N,E), where N = {0, . . . , 5} and E = {(0, 1), (1, 2),

(1, 3), (2, 3), (2, 4), (3, 4), (4, 5)}. Activities (1, 2), (2, 3), (2, 4) ∈ E1 and (1, 3), (3, 4) ∈ E2.

Project owner sets up 2 milestones, nodes 3 and 5. Milestone 3 has due date d3 = 5, penalty

q3,1 = 120 and q3,2 = 120. Milestone 5 has due date d5 = 7, penalty q5,1 = 10 and q5,2 = 190.

After the main MILP starts, the first iteration comes up with the strategy S = (0, 3, 4, 1,

2, 1, 0), having makespan D(S) = 5. The A1 agent has expenses Z1(S) = 750 and agent A2

has Z2(S) = 420. No milestones are tardy. In Figure 4.2, you can see the project network in

the MILP callback function. Critical arcs are bold. The Program makes the residual network

for both agents respectively and finds two profitable increasing cuts. The first increasing

cut w1
1 is agent’s A1 and has a cost W (w1

1) = 290. Agent A1 can increase the activity on

arcs (2, 3), (2, 4) and saves 290. The second increasing cut w2
1 is agent’s A2 and has a cost

W (w2
1) = 200. Agent A2 can increase the activity on arc (3, 4) and saves 200. The program

chooses cut w2
1 and generate a lazy constraint x3,4 ≤ 0 + z0.

ω1
1 ω2

1

Figure 4.2: Step by step example - 1st callback

Next iteration of algorithm brings the strategy S1 = (0, 3, 4, 1, 3, 2, 0), see Figure 4.3. The

A1 agent has expenses Z1(S
1) = 550 and agent A2 has Z2(S

1) = 220. No milestones are

tardy. In the MILP callback function, there are 2 profitable increasing cuts. The first one

w1
1 is the same as in Figure 4.2. The second increasing cut w2

1 is agent’s A2 and has a cost

W (w2
1) = 110. Agent A2 can increase the activity on arc (1, 3) and saves 110. The program

chooses cut w2
1 and generates a lazy constraint x1,3 ≤ 0 + z0 + z1.

In Figure 4.4, you can see the strategy S2 = (0, 3, 5, 2, 4, 2, 0) evaluated in the next iteration

of the algorithm. The A1 agent has expenses Z1(S
2) = 260 and agent A2 has Z2(S

2) = 110.
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ω1
1

ω2
1

Figure 4.3: Step by step example - 2nd callback

ω1
1

Figure 4.4: Step by step example - 3rd callback

No milestones are tardy. One profitable increasing cut w1
1 is found in the MILP callback

function. Agent A1 can decrease his expenses when he increases the duration of activity (1, 2)

and decreases the duration of activity (2, 3). The cut cost is W (w1
1) = 40. This cut will

generate a constraint x1,2 + y2,3 ≤ 1.
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ω1
1

Figure 4.5: Step by step example - 4th callback

In the next iteration of algorithm, the strategy is S3 = (0, 4, 5, 1, 3, 2, 0), see Figure 4.5.

The A1 agent has expenses Z1(S
3) = 420 and agent A2 has Z2(S

3) = 110. No milestones are

tardy. One profitable increasing cut w1
1 is found in the MILP callback function. Agent A1

can decrease his expenses when he increases the duration of activity (2, 4), even though he

pays the penalty because milestone 5 becomes tardy. The cut cost is W (w1
1) = 190. This cut

will generate a constraint x2,4 ≤ 0.

You can see strategy S4 = (0, 3, 4, 1, 4, 2, 0) computed in the next iteration of the algorithm

in Figure 4.6. The A1 agent has expenses Z1(S
4) = 350 and agent A2 has Z2(S

4) = 220. No

milestones are tardy. Two profitable increasing cuts are found in the residual networks. The

first increasing cut w1
1 is agent’s A1 and has a cost W (w1

1) = 120. Agent A1 can increase

the activity on arc (1, 2) and saves 120 because he pays a penalty as milestone 5 becomes

tardy. The second increasing cut w2
1 is agent’s A2 and has a cost W (w2

1) = 110. Agent A2 can

increase the activity on arc (1, 3) and saves 110. The program chooses cut w1
1 and generate a

lazy constraint x1,2 ≤ 0 + z1.

Next iteration of algorithm comes up with the strategy S5 = (0, 5, 6, 2, 4, 2, 0), see Fig-

ure 4.7. The A1 agent has expenses Z1(S
5) = 260 and agent A2 has Z2(S

5) = 620. Both

milestones 3 and 5 are tardy. In the MILP callback function, there is 1 profitable decreasing

cut w1
1. Agent A1 can decrease his expenses when he decreases the duration of activity (2, 3)

because the cost of activity (2, 3) is less than a penalty for milestone 3. This cut will generate

a constraint y2,3 ≤ 1+z1,3−z′1. This is an example of blocking arc z1,3, when this arc becomes

critical, the constraint has to be turned off.
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ω1
1

ω2
1

Figure 4.6: Step by step example - 5th callback

ω1
1

Figure 4.7: Step by step example - 6th callback
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Final strategy S6 = (0, 4, 5, 1, 4, 2, 0) is the optimal solution, no profitable increasing or

decreasing cuts are found in the residual network for both agents. The test for the Nash

solution from Section 2.1 passes correctly. We can confirm the correctness of the algorithm,

in this case, using total enumeration method. From all possible combinations of processing

times on arcs, we take Nash solutions and compute the makespan of the projects. The

minimum value is our result.

Figure 4.8: Step by step example - final solution
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|UR|[−] avg |U |[−] avg |X|[−] avg CPUtime[s] min CPUtime[s] max CPUtime[s]

10 17.2100 9.9700 0.1982 0.0535 0.4620
20 50.5700 20.2800 0.8346 0.1771 2.1689
30 98.0200 33.6400 4.0767 0.9209 11.8401
40 162.4000 47.2400 20.2193 2.9263 90.1049
50 239.4800 62.2100 62.2966 7.4153 314.0791

Table 4.1: MILP model CPU run time depending on number of activities

|UR|[−] avg constraints[−] avg variables[−]

10 122.2000 205.2600
20 340.0200 584.4700
30 648.0400 1 123.0200
40 1 058.1800 1 848.3000
50 1 546.7900 2 714.7800

Table 4.2: MILP model number of constraints and variables depending on number of activities

4.2 Performance

An important property of the project plan is a number of activities. In the first experiment,

we measured a CPU processing time, the number of variables and constraints in MILP for

|UR| = 10, 20, 30, 40 and 50 activities in the project plan. Also, we measured the total number

of activities (activities + dummy activities) avg|U | and a total number of nodes avg|X| in the

problem instances. The number of agents in the instances were 3, the due date of milestones

was set to 0.5, a number of milestones 0.25 and penalty of milestones 0.5. The results are

summarized in Tables 4.1 and 4.2. The experiment has shown that processing time of instances

is increasing with bigger size problems. We can compare the average number of variables and

constraints with [9], where the problem without milestones is measured. In our model, the lazy

constraint generation in MILP is used, so the average numbers of variables and constraints

are significantly lower.

Figures 4.9 - 4.11 show how many instances (in %) are solved in a given amount of time

for |UR| = 30, 40 and 50 activities.
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Figure 4.9: MILP model performance for |UR| = 30: percentage of instances solved over time
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Figure 4.10: MILP model performance for |UR| = 40: percentage of instances solved over time
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Figure 4.11: MILP model performance for |UR| = 50: percentage of instances solved over time
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a[−] avg
CPUtime[s]

min
CPUtime[s]

max
CPUtime[s]

avg
constraints[−]

avg
variables[−]

2 4.9040 0.6402 13.5058 648.0400 1 123.0200
4 2.7969 0.6488 9.3603 648.0400 1 123.0200
8 4.9440 0.7360 16.7203 648.0400 1 123.0200
16 9.8961 2.7834 45.3692 648.0400 1 123.0200

Table 4.3: MILP model CPU run time depending on number of agents

Nm/N [−] avg
CPUtime[s]

min
CPUtime[s]

max
CPUtime[s]

avg
constraints[−]

avg
variables[−]

0.00 0.9041 0.2146 2.4634 624.7600 1 084.2200
0.25 2.6770 0.5672 8.3990 648.0400 1 123.0200
0.50 3.7032 0.6442 13.0652 671.5300 1 162.1700
0.75 3.9914 0.6497 12.4293 694.0300 1 199.6700
1.00 3.9156 0.6710 11.8641 716.6800 1 237.4200

Table 4.4: MILP model CPU run time depending on number of milestones

Table 4.3 illustrates the influence of the number of agents on the CPU time. We measured

the CPU processing time, the number of variables and constraints in MILP for instances

where a = 2, 4, 8, 16. The due date of milestones was set to 0.5, the number of milestones 0.25

and penalty of milestones 0.5 in the problem instances. The number of agents does not affect

the number of variables and constraints.

In the same way, Table 4.4 represents the influence of the number of milestones on the

CPU time. We measured the CPU processing time, the number of variables and constraints

in MILP for instances where the ratio of milestones to all nodes in tbe graph where Nm/N =

0, 0.25, 0.5, 0.75, 1. The average CPU time increased when the number of milestones increased.

If we compare the time for milestones ratio 0.75 and 1, we see just a small difference, the graph

is saturated with milestones.

Table 4.5 shows the influence of penalty for tardy milestones on CPU time and project

makespan. The due date of milestones was set to 0.5, the number of milestones 0.25 and

penalty of milestones 0.5 in the problem instances. This is a reason why, when the penalty is

set to a maximal value, the ratio of project makespan is 0.5. The processing time is higher

when the penalty is 0.1 and 0.2. In these cases, the algorithm will choose an activity processing

time between normal duration and incompressible limit. See Figures 4.12 and 4.13 for more

details.

As you see in Table 4.6, a different number of activities does not significantly affect the

PoA and PoS. The reason is that the model is stabilized by milestones in the project. More

agents affect the PoA, due to Table 4.7. The explanation is when more contractors are

assigned to the project, all of them will try to minimize their expenses and project duration

can increase. Table 4.8 shows how penalty policy affects both PoA and PoS, as the penalty

for tardy milestones is getting higher, the project is getting stabilized.
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qm
W (ωmax)

[−] avg CPUtime[s] D(S)−D
D−D [−]

0.0 2.795 1.000
0.1 4.039 0.623
0.2 3.044 0.531
0.3 2.620 0.516
0.4 2.594 0.511
0.5 2.585 0.506
0.6 2.432 0.506
0.7 2.456 0.504
0.8 2.372 0.504
0.9 2.478 0.504
1.0 2.399 0.504

Table 4.5: MILP model penalty policy comparison

|UR|[−] PoA[−] PoS[−]

20 1.044 1.009
30 1.048 1.001
40 1.028 1.002

Table 4.6: PoA and PoS analysis for different number of activities

a[−] PoA[−] PoS[−]

2 1.023 1.005
4 1.045 1.004
8 1.109 1.030

Table 4.7: PoA and PoS analysis for different number of agents

qm
W (ωmax)

[−] PoA[−] PoS[−]

0 1.436 1.436
0.2 1.077 1.024
0.4 1.053 1.006
0.6 1.046 1.001
0.8 1.043 1.000
1 1.038 0.999

Table 4.8: PoA and PoS penalty policy comparison
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Figure 4.12: Project makespan as a function of relative milestones penalty

Figure 4.13: CPU tun time as a function of relative milestones penalty



40 CHAPTER 4. EXPERIMENTAL RESULTS



Chapter 5

Conclusion

In this thesis, we extended the scope of the project scheduling problem considered in [7] by

definition of milestones. The thesis provides a formal definition of an agent’s behavior as

MILP and a formulation of a stable solution expressed as Nash equilibria. Then it shows how

a Nash equilibria can be defined via cuts in a residual graph. Also, we propose a new algorithm

based on MILP and a lazy constraint generation method. A step by step program execution

example is shown in the thesis. We measured the algorithm under different conditions (number

of activities, agents, milestones) and proved his effectiveness. We discussed how the penalty

policy for tardy milestones could affect the project duration and investigated the values of

the price of anarchy and the price of stability to get useful insights for the project manager.

Future research should concentrate on the case where the amount of penalty payment is

part of the decision. That may lead to a more efficient solution compare to the case with fixed

penalties. Also, a generalization of the agent’s objective function can be analyzed, where an

agent will not be only penalized for tardy milestones, but on the other hand will get a reward

for milestones reached before the due date.
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Appendix A

Complete MILP formulation

A.0.1 The objective of an agent

The reaction of agent Au to strategy profile p(S):

min
∑

m∈Nm

qmuTm +
∑

(i,j)∈τu

cij(pij − pij)

s.t.

tj − ti − pij − sij = 0 ∀(i, j) ∈ E (A.1)

p
ij
≤ pij ≤ pij ∀(i, j) ∈ τu (A.2)

pij = pij(S) ∀(i, j) /∈ τu (A.3)

tm − dm ≤ Tm ∀m ∈ Nm (A.4)

where

qmu, dm, ti, Tm, sij ∈ R≥0, pij ∈ Z≥0

43
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A.0.2 Main problem

min

(
tn +

∑
∀(i,j)∈E cij(pij−pij)+

∑
∀m∈Nm

∑
∀u∈A qmuTm

1+
∑
∀(i,j)∈E cij

(
pij−pij

)
+
∑
∀m∈Nm

∑
∀u∈A qmu(tmax

m −dm)

)
(A.5)

s.t.

tj − ti − pij − sij = 0 ∀(i, j) ∈ E (A.6)

t0 = 0 (A.7)

p
ij
≤ pij ≤ pij ∀(i, j) ∈ E (A.8)

ε− zij ≤ sij ≤ sij (1− zij) ∀(i, j) ∈ E (A.9)

zij ≤
∑

∀(k,i)∈E

zki ∀(i, j) ∈ E : i > 1 (A.10)

zij ≤
∑
∀(j,l)∈E

zjl ∀(i, j) ∈ E : j < n, j /∈ Nm (A.11)∑
∀(i,m)∈E

zim ≥ 1 ∀m ∈ Nm (A.12)

1 ≤
∑

∀(1,i)∈E

z1i (A.13)

tm ≤ dm − 1 + (tmaxm − tminm + 1)zm ∀m ∈ Nm (A.14)

tm ≥ dm − (tmaxm − tminm )(1− zm) ∀m ∈ Nm (A.15)

tm ≤ dm + (tmaxm − tminm )z′m ∀m ∈ Nm (A.16)

tm ≥ dm + 1− (tmaxm − tminm + 1)(1− z′m) ∀m ∈ Nm (A.17)

tm − dm ≤ Tm ∀m ∈ Nm (A.18)

xij ≤
(
pij − pij

)
≤
(
pij − pij

)
xij ∀(i, j) ∈ E (A.19)

yij ≤
(
pij − pij

)
≤
(
pij − pij

)
yij ∀(i, j) ∈ E (A.20)

zij ≥ xij ∀(i, j) ∈ E (A.21)

∑
∀(i,j)∈Fk

xij +
∑

∀(i,j)∈Bk

yij ≤

|Fk ∪Bk| − 1 +
∑

∀(i,j)∈Ck

zij +
∑
∀m∈Dk

zm ∀LCinck ∈ LCinc (A.22)∑
∀(i,j)∈Fk

yij +
∑

∀(i,j)∈Bk

xij ≤

|Fk ∪Bk| − 1 +
∑

∀(i,j)∈Ck

zij +
∑
∀m∈Dk

(1− z′m) ∀LCdeck ∈ LCdec (A.23)

where

qmu, dm, ti, Tm, sij ∈ R≥0, pij ∈ Z≥0, xij , yij , zij , zm, z′m ∈ {0, 1}
LC

inc/dec
k = 〈Fk, Bk, Ck, Dk〉, ε = 1/n, sij = D(S).



45

A.0.3 Subproblems (lazy constraint generation)

Increasing Cuts

MC = {m ∈ Nm : zm = 1}

max
∑

(i,j)∈E

αijlij −
∑

(i,j)∈E

βijuij −
∑

m∈MC

qmu(1− γm)

s.t.

αij − βij = γi − γj ∀(i, j) ∈ E (A.24)

αij + βij ≤ 1 ∀(i, j) ∈ E (A.25)

γ1 = 1 (A.26)∑
m∈Nm

γm ≤ |Nm| − 1 (A.27)

where

qmu, `ij , uij ∈ R≥0, αij , βij , γi ∈ {0, 1}

Constraint LCinck = (Fk, Bk, Ck, Dk) where

Fk = {(i, j) ∈ E : αij = 1 ∧ zi,j = 1},
Bk = {(i, j) ∈ E : βij = 1 ∧ zi,j = 1},
Ck = {(i, j) ∈ E : βij = 1 ∧ zi,j = 0},
Dk = {m ∈ Nm : γm = 0 ∧ zm = 0}.

Decreasing Cuts

MC = {m ∈ Nm : z′m = 1}

min
∑

(i,j)∈E

αijuij −
∑

(i,j)∈E

βijlij −
∑

m∈MC

qmu(1− γm)

s.t.

αij − βij = γi − γj ∀(i, j) ∈ E (A.28)

αij + βij ≤ 1 ∀(i, j) ∈ E (A.29)

γ1 = 1 (A.30)∑
m∈Nm

γm ≤ |Nm| − 1 (A.31)

where

qmu, `ij , uij ∈ R≥0, αij , βij , γi ∈ {0, 1}

Constraint LCdeck = (Fk, Bk, Ck, Dk) where

Fk = {(i, j) ∈ E : αij = 1 ∧ zi,j = 1},
Bk = {(i, j) ∈ E : βij = 1 ∧ zi,j = 1},
Ck = {(i, j) ∈ E : αij = 1 ∧ zi,j = 0},
Dk = {m ∈ Nm : γm = 0 ∧ z′m = 1}.
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