
Master Thesis

F3 Faculty of Electrical Engineering
Department of Measurements

Hydronic Heating Testbed Automation

Bc. Jiří Cvrček

Supervisor: Ing. Jiří Dostál
Field of study: Computer Engineering
May 2019

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

420794Osobní číslo:JiříJméno:CvrčekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra měření

Otevřená informatikaStudijní program:

Počítačové inženýrstvíStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Automatizace pro testovací zařízení komponent otopných systémů

Název diplomové práce anglicky:

Hydronic Heating Testbed Automation

Pokyny pro vypracování:
1. Study (building) automations systems architectures. Review and enhance given hydronic testbed proposal.
2. Design an automation system for a defined hydronic heating testbed using a programmable logic computer (PLC). The
PLC should be able to run a separate process for a custom-made predictive controller.
3. Develop communication stack for all provided peripherals. The automation system software should be developed flexible
in terms of changing periphery set, safety critical tasks and override policies.
4. Prepare SCADA operated by an enclosed graphic touch display.

Seznam doporučené literatury:
[1] Domingues, P. et al.: Building automation systems: Concepts and technology review – Computer Standards & Interfaces,
2016.
[2] Samad, T. et al.: System architecture for process automation: Review and trends – Journal of Process Control, 2007.
[3] Zelenka, D.: Cyber-physical One-pipe Hydronic Heating Testbed – CTU, 2019.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Jiří Dostál, katedra řídicí techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 24.05.2019Datum zadání diplomové práce: 14.01.2019

Platnost zadání diplomové práce:
do konce letního semestru 2019/2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jiří Dostál

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements

I would like to thank everyone who helped
me with their ideas during this work.
Above all, I want to thank my supervisor,
Ing. Jiří Dostál. Next big thanks goes
to my colleague Tomáš and Ondra, who
constructed the testbed and helped with
the schematics and photos.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 24. May 2019

v

Abstract

This work is about automating the control
of a heating system in which active com-
ponents need to be controlled. At first I
was introduced to the hydraulic testbed
connection and then started to select elec-
trical components. There was a need to
select sensors to measure system pressure,
temperature, and water flow, followed by
temperature and air flow measurements
in the testbed air path. In addition to
the individual components, I chose a con-
troller that handles all components and
provides a communication interface to the
application in Matlab Simulink.

For operation and communication with
peripherals I created a program running
on the control unit. The main feature was
easy configuration of all peripherals and
simple API for communicating with the
client program. The controller application
is programmed in Python and communi-
cates via the ethnernet network with the
simulation client in Matlab Simulink.

Keywords: heating system, one-pipe
heating, control unit, communication
stack

Supervisor: Ing. Jiří Dostál

Abstrakt

Tato práce se zabývá automatizací řízení
otopného systému, v kterém je nutné ří-
dit aktivní komponenty. Nejprve jsem se
seznámil s hydraulickým zapojením test-
bedu a následně začal vybírat elektrické
komponenty. Bylo potřeba vybrat sen-
zory pro měření tlaku, teploty a průtoku
vody v systému, následně i měření teploty
a průtoku vzduchu ve vzduchové cestě
testbedu. Kromě jednotlivých komponent
jsem vybíral řídicí jednotku, která obslu-
huje všechny komponenty a poskytuje ko-
munikační rozhraní pro komunikaci s apli-
kací v Matlab Simulinku.

Pro obsluhu a komunikaci s periferiemi
jsem vytvořil program běžící na řídicí jed-
notce. Hlavním poaždavkem byla jedno-
duchá konfigurace všech periferií a jedno-
duché API pro komunikaci s klientským
programem. Aplikace na straně řídicí jed-
notky je naprogramována v Pythonu a ko-
munikuje prostřednictvím sítě ethnernet
se simulačním klientem v Matlab Simu-
linku.

Klíčová slova: otopný systém,
jednopotrubní vytápění, řídicí jednotka,
komunikační kanál

Překlad názvu: Automatizace pro
testovací zařízení komponent otopných
systémů

vi

Contents

1 Introduction 1

1.1 Heating . 1

1.1.1 Two-pipe Hydronic Network . . 1

1.1.2 One-pipe Hydronic Network . . 2

1.2 Research of existing solutions . . . 3

2 Hardware 5

2.1 Testbed . 5

2.2 Components 9

2.2.1 Thermometers 9

2.2.2 Pressure sensors 10

2.2.3 Flowmeters 10

2.2.4 Frequency converter 12

2.2.5 Digital electricity meter 13

2.2.6 SSR relay 14

2.2.7 Boiler . 14

2.2.8 Water pump. 15

2.2.9 Touchscreen 16

2.2.10 Electronic valve 16

2.3 Control unit 18

2.3.1 Requirements 18

2.3.2 Possible control units 18

2.3.3 UniPi Neuron L513 19

2.3.4 UniPi Neuron Extension xS50 20

3 Software 23

3.1 Architecture 23

3.1.1 Requirements 24

3.2 Server . 24

3.2.1 Communication protocol 25

3.2.2 Safety rules 31

3.2.3 Server application 32

3.2.4 Set application as a service on
Linux . 34

3.2.5 Configuration extension unit in
EVOK . 35

3.3 Matlab application 36

vii

3.4 Touch screen communication . . . 39

4 Conclusion 43

Bibliography 45

A CD Content 47

viii

Figures

1.1 Two-pipe passive heating network. 2

1.2 One-pipe active heating network. 2

2.1 Testbed . 6

2.2 Electric testbed scheme 7

2.3 Hydraulic testbed scheme 8

2.4 Water thermometer 9

2.5 Air thermometer 10

2.6 Differential fluid pressure. 11

2.7 SITRANS F M MAG 1100 11

2.8 Optimass 6400 S15 12

2.9 AL-grid from AIRFLOW 12

2.10 Pressure transducer PTSXR . . 13

2.11 Frequency converter XV105D . 13

2.12 PRO1-Mod electricity meter . . 14

2.13 SSR relays for boiler 15

2.14 Water heater 15

2.15 Grundfos MAGNA 3 16

2.16 Touchscreen 17

2.17 Electronic valve 17

2.18 UniPi Neuron L513, source:
https://unipi.technology 20

2.19 UniPi Neuron extension xS50,
source: https://unipi.technology . . 21

3.1 Software architecture 24

3.2 EVOK response on request. 25

3.3 Create periphery command
structure. 26

3.4 Thermometer and flowmeter
configuration. 27

3.5 Remove periphery with ID 1. . . . 29

3.6 Remove all peripherals. 29

3.7 Set peripheral parameters. 30

3.8 Get peripheral informations. . . . 31

3.9 Response from server with
informations. 31

3.10 Get peripheral informations. . . 31

ix

3.11 Example of configuration of alarm
for periphery with id 7. 32

3.12 Inheritance diagram. 34

3.13 File hydro.service content. 35

3.14 Example of evok.conf file 35

3.15 Data representation in Simulink. 37

3.16 Output graph of measured
values. 38

3.17 Example of relay on. 40

3.18 Example of relay off. 40

Tables

2.1 Inputs and outputs on UniPi
Neuron L513 19

2.2 Inputs and outputs on UniPi
Neuron L513 20

3.1 Required fields for periphery
configuration. 28

3.2 Required register parameters for
Modbus device. 29

3.3 Required fields for change
periphery parameters. 30

x

Chapter 1

Introduction

1.1 Heating

In nowadays, a warm place to stay is one of the basic comfort needs of people.
People use mostly central heating system for heat up air in the room. The
principle is to heat up water in a boiler and transport it to a heat exchanger
in desirable place. The water heating system and heat exchanger have been
continuously developing, but the transport network topology stays almost
the same. There exist two systems, one-pipe and two-pipe. Both of them
have their positives and negatives.

1.1.1 Two-pipe Hydronic Network

Most common type of heat distribution system is a two-pipe system. Boiler
and all heat exchangers are parallel connected, thus the input temperature of
the water is the same in each heat exchanger. Cold water returns directly to
the boiler. Pressure in a pipe is generated by a pump in the circuit. This
type of network is used in industry and is used by designers and plumbers.
This system is widely used and advanced technology. [1]

1

1. Introduction

Figure 1.1: Two-pipe passive heating network. [2]

1.1.2 One-pipe Hydronic Network

Nowadays, Czech designers are not interested in one-pipe heating systems.
They prefer two-pipe heating system, as we know from most local buildings.
This heating system is suitable for office buildings.

Hot water preparation is the same as for a two-pipe heating system. The
main difference is in the distribution network. In one-pipe heatign system
hot water is prepared in a boiler and circulated in a primary circuit. Heat
exchangers are connect in series in the primary circuit. Heat exchangers
are connected to a primary circuit with a double T fitting, one inlet to the
secondary circuit and one outlet from the secondary back to the primary
pipe. There is a pump in the secondary circuit that sucks in a hot water from
primary circuit. The hot water is cooled in the exchanger and the now cold
water is returned back to the primary circuit. [1]

Figure 1.2: One-pipe active heating network. [2]

2

............................. 1.2. Research of existing solutions

1.2 Research of existing solutions

There are protocols for communication between client software and hardware.
One of the protocols is OPC (OLE for Process Control) [3]. OPC is a united
protocol used to exchange data between hardware and client software. The
hardware part consists of OPC server and hardware. The server communicates
with the hardware via a hardware communication protocol, such as Modbus,
and provides the data to the client via OPC protocol. This method eliminates
problems with different communication protocols. The disadvantage is that
each component has its OPC server. Multiple components can share one OPC
server. Configuring a shared OPC server is more complex. The programmer
must know the hardware communication protocol and the OPC protocol.
OPC is the only communication protocol, it cannot control the components
offline, for example, in case of water overheating, turn off the boiler without
the client command.

Another existing solution for controlling hardware components is Mervis.
Hardware component behavior can be programmed using a graphical interface
with function blocks. It is not possible to connect with the client software and
control the individual hardware components manually. Data logging can be
stored in the cloud Mervis database, which is for a fee based on the number
of data points.

Subject of this thesis is to create a system for automation of heating systems.
The system allows easy hardware component configuration and communicate
over Ethernet with client. The system monitors the selected critical values
and, if exceeded, performs the steps to a safe state.

3

4

Chapter 2

Hardware

2.1 Testbed

A testbed is a platform for conducting transparent and replicable testing of
scientific theories. The testbed is designed for heating system testing. The
testbed was primarily designed to test the control of one-pipe heating systems,
but it can also be used to test two-pipe heating systems. There are several
active components that are controlled according to the values measured by
the passive components. The testbed has two parts, electric and hydraulic. I
worked on the design and construction of electrical parts.

To design the electrical part of the testbed, I chose and ordered some
components. The components had to be selected so they would meet both
hydraulic and electrical criteria, such as pipe connection threads or suitable
supply voltage. I participated with my colleagues in the design of the electrical
wiring so that all the components could be connected. Peripheral power is
switched on by relay. This has the advantage that the testbed is always on
and if we want to make a measurement, we turn on the relay using the UniPi
output. If you need to reset the peripherals, just turn the power off and on
remotely.

The testbed that was created during the work is shown in Fig 2.1. The
electric part is shown in Fig 2.2 and the hydraulic part is shown in Fig 2.3

5

2. Hardware

Figure 2.1: Testbed

6

.......................................2.1. Testbed

Figure 2.2: Electric testbed scheme

7

2. Hardware

Figure 2.3: Hydraulic testbed scheme

8

.....................................2.2. Components

2.2 Components

At the begin of work, I must chose an electric components for the testbed.
Many components are passive, such as thermometers, flowmeters or pressure
sensor. Active components include water pump, relays and fan.

2.2.1 Thermometers

Many components are thermometers with resistance sensor PT1000. In this
project, use a four-wire connection.

Thermometers from SENSIT s.r.o. are used to measure water temperature
in Fig. 2.4. These thermometers are screwed into the measuring tubes in the
valves. The temperature range is chosen according to the water temperature
with a sufficient reserve, from 0 ◦C to 105 ◦C.

Figure 2.4: Water thermometer

The temperature of air is measured by thermometers from RAWET s.r.o.
in Fig. 2.5, these thermometers are from custom production. Thermometers
contain a PT1000 sensor, whose temperature range is up to 85 ◦C. For
these temperature sensors is required a fast response to changes ambient air
temperature.

9

2. Hardware

Figure 2.5: Air thermometer

2.2.2 Pressure sensors

In the testbed, there is a pressure sensor for measuring absolute and differential
fluid pressure. These values are used to determine the amount of energy
transferred.

For measuring differential pressure we use MEAS D5154-000005-005PD in
Fig. 2.6. This sensor has the maximum allowable differential pressure 5 PSI.
To connect this sensor we use a current loop with range 4-20mA.

The absolute pressure sensor is not used at this time. An analog indicator
is used to check the absolute pressure.

2.2.3 Flowmeters

In this project, we need to know the amount of water flowing for proper
control.

For measuring water flow in the primary circuit we use inductive flowmeter

10

.....................................2.2. Components

Figure 2.6: Differential fluid pressure.

SITRANS F M MAG 1100 from Siemens in Fig. 2.7. To connect this flowmeter
we use RS485 with Modbus protocol. In the flowmeter documentation, it is
possible to find a list of all registers for configuration and reading of measured
values.

Figure 2.7: SITRANS F M MAG 1100

For measuring water flow in the secondary circuit we use Coriolis mass
flowmeter Optimass 6400 S15 from Krohne in Fig. 2.8. To connect this
mass flowmeter we use RS485 with Modbus protocol. In the mass flowmeter
documentation, it is possible to find a list of all registers for configuration
and reading of measured values.

To measure the heat energy transmitted by the water-air exchanger, it is
necessary to know the amount of air flow and temperature change.

11

2. Hardware

Figure 2.8: Optimass 6400 S15

Figure 2.9: AL-grid from AIRFLOW

The air velocity is measured by the AL-grid from AIRFLOW in Fig. 2.9.
The AL-grid evaluates the differential pressure in the air duct, which is
converted using pressure transducer PTSXR in Fig. 2.10. To connect pressure
transducer we use a current loop with range 4-20mA. The pressure transducer
is powered by 24V DC.

2.2.4 Frequency converter

The air flowing through the water-air heat exchanger is blown by the fan.
The fan is controlled by a frequency converter. We use the XV105D frequency

12

.....................................2.2. Components

Figure 2.10: Pressure transducer PTSXR

converter from Dixell in Fig. 2.11. the frequency converter is controlled by
an analog signal 0-10V. The frequency inverter is powered by 230V AC.

Figure 2.11: Frequency converter XV105D

2.2.5 Digital electricity meter

The power supply of the testbed is connected via an electricity meter from
inepro Metering in Fig. 2.12. We use type PRO1-Mod electricity meter.
The maximum load of the electricity meter is 45A at 230V AC. To connect
electricity meter we use RS485 with Modbus protocol.

13

2. Hardware

Figure 2.12: PRO1-Mod electricity meter

2.2.6 SSR relay

We use SSR relay to control the power of the heating coil in the boiler. The
SSR relay is controlled by the controller’s digital output in PWM mode.

Used relay is KSD215AC8 from COSMO in Fig. 2.13. The maximum
current load of the SSR relay is 15A at 600V AC. This relay must be mounted
on the passive cooler otherwise it may be destroyed.

2.2.7 Boiler

For heating water, we use the water heater from Dražice in Fig. 2.14. We
use SSR relay to control the power of the heating coil. The water heater is
powered by 230V AC.

14

.....................................2.2. Components

Figure 2.13: SSR relays for boiler

Figure 2.14: Water heater

2.2.8 Water pump

Primary flow through a water heater is induced by a primary pump from
Grundfos MAGNA 3 in Fig. 2.15. To connect this pump we use RS485 with
Modbus protocol. The pump is powered by 230V AC.

15

2. Hardware

Figure 2.15: Grundfos MAGNA 3

2.2.9 Touchscreen

The testbed has a touch display that displays water temperature, air temper-
ature, water flow and some more information. The display is from Weintek
and its type is MT8102iP in Fig. 2.16. To connect display we use Ethernet
with Modbus RTU over TCP protocol. The display is powered by 24V DC.

2.2.10 Electronic valve

An electronic flow control valve is mounted on the secondary circuit to heat
the water through the exchanger. It is a N05010-SW2 valve from Honeywell
in Fig. 2.17. The control is analog with voltage level in the range of 0-10V.
The valve is powered by 24V DC.

16

.....................................2.2. Components

Figure 2.16: Touchscreen

Figure 2.17: Electronic valve

17

2. Hardware
2.3 Control unit

We have to communicate with each testbed component. Some components
are passive, such as thermometers, and other active, such as pump or fan.
Thus we need to have some control unit. In this section, we summarize the
requirements for the control unit and compare them with possible candidates.

2.3.1 Requirements

A suitable control unit must have digital inputs and outputs for PWM, analog
outputs for voltage generation, analog inputs for measuring voltage, resistance
and the current loop. An additional required interface is an RS485 bus and
ethernet. In addition, the hardware must be able to run custom software in
parallel threads and has to be powerful enough to enable optimization solvers
to operate on the control unit.

2.3.2 Possible control units

One of the candidates was the ATmega microcontroller on the Arduino
prototyping board. However, this chip does not have an analog input for the
current loop, RS485 bus, or Ethernet port. We must use additional electronics
to read current loop or resistance sensor and some extension component for
ethernet and RS485 interface.

Other alternatives included a microcontroller from STMicroelectronics.
This chip has an ethernet and RS485 interface but does not have an analog
input for the current loop. We must use additional electronics to read the
current loop and resistance sensor.

Other alternatives included programmable logic controllers (PLC). We
wanted to be able to access the inputs and outputs with full control. Another
selection criterion for PLC is the ability to run custom software. Now we
want control the testbed remotely using the Matlab Simulink application, but
in the future we will want to move the control application to the PLC. So we
compared PLCs from TECO [4], Beckhoff [5] and UniPi [6]. We have decided
for UniPi because it is possible to access to operating system and run custom
applications.

18

..................................... 2.3. Control unit

UniPi PLC is based on Raspberry Pi with an expansion board that handles
input and output ports. The whole PLC is in an aluminum case, which can
be mounted on a DIN rail in a rack. With this PLC, we have full-access
Linux OS.

2.3.3 UniPi Neuron L513

UniPi Neuron L513 control unit was selected for testbed control. It is shown
in Fig. 2.18. This control unit has several analog inputs for measuring voltage,
current signals, and resistance. The analog outputs of this unit can provide
voltage in range from 0 to 10V DC. There are also digital inputs with debounce
circuit and digital outputs with mode pulse width modulation (PWM). There
are also relay outputs for switching large current loads.

All UniPi products work on 24V DC, which is used by most peripherals so
we can use one power supply to power the entire testbed.

All input and output ports can be controlled via the Evok API. We can
communicate with the Evok API via ethernet. We can use several protocols,
for example, Websocket, RESTful, JSON-RPC. In this project, we use an
HTTP request with JSON data format. [7]

type count function
digital inputs 16 debounce
digital outputs 4 PWM, current load 750mA, maximum voltage

50V
relay outputs 10 current load 5A, maximum voltage 230V AC

or 30V DC
analog inputs 9 measuring voltage 0-10V, current 0-20mA and

resistance 0-1960kΩ
analog outputs 9 output voltage 0-10V
Ethernet 1 10/100Mbit
RS485 3
1-Wire 1

Table 2.1: Inputs and outputs on UniPi Neuron L513

19

2. Hardware

Figure 2.18: UniPi Neuron L513, source: https://unipi.technology

2.3.4 UniPi Neuron Extension xS50

UniPi Neuron Extension xS50 is an extension unit for Neuron controller
units allowing extend inputs and outputs port. It is shown in Fig. 2.19. The
extension unit is connected via an RS485 bus with protocol Modbus. The
extension unit has its own processor, which communicates with a master
control unit. [8]

type count function
digital inputs 6 debounce
relay outputs 5 current load 5A, maximum voltage 230V AC

or 30V DC
analog inputs 4 measuring voltage 0-10V, current 0-20mA and

resistance 0-1960kΩ
analog outputs 4 output voltage 0-10V
RS485 1

Table 2.2: Inputs and outputs on UniPi Neuron L513

20

..................................... 2.3. Control unit

Figure 2.19: UniPi Neuron extension xS50, source: https://unipi.technology

21

22

Chapter 3

Software

Before programming, it was necessary to design software architecture. My
job was to design software architecture and program a server application
that communicates with clients and handles inputs and outputs ports. In
the next step I created a block for Simulink in Matlab that communicates
with the server application. The result is the control of the testbed from the
application in Simulink in Matlab.

3.1 Architecture

At the beginning I had to find out the software requirements. Several
applications will run on the PLC. One of the applications is EVOK, which
control input and output ports. Another application is any database that
is used to record all activity. In the future will run on the PLC predictive
control applications, so this requirement must be respected. The software
architecture design is shown in Fig 3.1. Other requirements related to the
server application, which provides communication between programs.

UniPi is based on operation system Raspbian with service EVOK, which
control input and output ports. On this operating system we can run custom
software. My server application runs on Raspbian and communicate with
EVOK. The RS 485 serial line is controlled directly from my application. My
server application also communicates with the client over ethernet.

23

3. Software.......................................
My server applicatin is multithreaded. The application provides communi-

cation with clients over Ethernet, checking client syntax and communicating
with EVOK via API over Ethernet. At the same time, the application must
check that the security rules are followed. Security rules are specified when
configuring peripherals.

3.1.1 Requirements

Communication server application requirements are:

. easy peripheral configuration,. flexible communication over ethernet with clients,. implementation of security rules.

Another software application requirements are OOP design for easy exten-
sion of other types of peripherals, stable and fast communication, recalculating
physically measured units into human readable units.

Figure 3.1: Software architecture

3.2 Server

My server application implements a flexible communication stack for all
provided periphetals. At the same time, the application checks the rules to
keep the testbed in safe state.

24

....................................... 3.2. Server

3.2.1 Communication protocol

For communication with EVOK I chose JSON API over HTTP requests.
I had to study the JSON API documentation for EVOK. Each port have
own identificator, which consists of a group identifier and a port identi-
fier. For example, if you want get analog value from analog port num-
ber one on second logic group, you muset use get http request on ad-
dress http://unipi-ip-addr:8080/json/analoginput/2_01. EVOK re-
turns data in JSON format, if field with name status has value success,
you can read field data. In field data from HTTP response you find field
with required value. [9]

Figure 3.2: EVOK response on request.

My server application allows you to set up all input and output ports on
UniPi through EVOK. Analog input ports must be set to mode (voltage,
current, resistance) according to what we want to measure. We must also
specify range of measure value. Analog output ports can only operate in
voltage mode with range 0-10V. Digital input ports can be connected up to
50V DC. Digital output ports can operate in simple or pulse width modulation
mode. The RS485 serial line is operated directly from my server application.

I used a Websocket protocol to communicate between the clients and the
PLC. Data between the client and the server are send in JSON format. The
client requests peripherals information from the server not ports information.

25

3. Software.......................................
Each of the peripherals has a its unique id, that was specified in configuration.
Peripherals return values recalculated in human readable unit instead of raw
data. The recalculation formula is given in the peripheral configuration. For
example, the thermometer does not return the value of its resistance, but the
temperature in degrees Celsius.

My communication API include these types of messages:

. create - create a periphery. remove - remove a periphery by unique id. clear - remove all periphery. set - set values or parameters of peripheral. get - get values and parameters of peripheral. state - get values and parameters of all peripherals

Create periphery

Each peripheral must be configured after the physical connection. For config-
uration, we use a message with the structure shown in Fig. 3.3. The values
for each field are listed in the table 3.1. A specific example of thermometer
and Modbus device configuration is shown in Fig. 3.4.

Figure 3.3: Create periphery command structure.

In addition, the Modbus device has a list of registers that we specify in the
regs field. In this list is named fields with register parameters. Each item in
registry configuration is listed in the table 3.2.

26

....................................... 3.2. Server

The peripheral port specification varies according to the peripheral type.
Peripherals connected via RS485 have a port in the format
/dev/extcomm/<number_of_connector>/0. Other peripherals have port by
physical connector number on UniPi, for example analog input AI2.2 is
assigned port 2_02.

The server response to this command is success or error. If the answer is an
error, then we get the error information in the msg field. The most common
mistake is to enter an already used ID or a bad port identifier.

Figure 3.4: Thermometer and flowmeter configuration.

27

3. Software.......................................
type field value
for all id own unique identifier

alias own name of periphery for human readabil-
ity

port UniPi physical port
class specify type of periphery (Voltage,

Current, Resistance, Simple, PWM,
Relay, ModbusRTUDev)

param below
regs list of modbus registres (only for Modbus

device) listed in the table 3.2
field param direction direction of port (input)
for Voltage range maximum value (10) V
inputs formula formula of variable x for recalculate
field param direction direction of port (output)
for Voltage formula formula of variable x for recalculate
outputs
field param direction direction of port (input)
for Current formula formula of variable x for recalculate
inputs
field param direction direction of port (input)
for Current range maximum value (100, 1960) kOhm
outputs formula formula of variable x for recalculate
field param direction direction of port (input)
for Simple
inputs
field param direction direction of port (output)
for Simple
outputs
field param
for Relay
outputs
field param clock switching frequency (0.1 - 48000000)
for PWM
outputs
field param subaddr Modbus device address (1 - 127)
for Modbus baudrate Modbus device baudrate (1200, 2400,

4800, 9600, 115200, etc.)
parity Modbus device parity (’E’,’O’,’N’)
stopbit Modbus device stopbit (’1’,’2’)
timeout Response timeout
bytesize Byte size in bits 8

Table 3.1: Required fields for periphery configuration.

28

....................................... 3.2. Server

field value
reg Register address
size Value size in bytes
dataType Value datatype (’float’,’int’,’string’)
type Register type (’holding’, ’input’)

Table 3.2: Required register parameters for Modbus device.

Remove periphery

To remove a periphery, use the command with the structure shown in Fig. 3.5.
This command only has a parameter with the peripheral ID value to be
removed from the configuration. The server response to this command is
success or error. If there is no periery with the specified ID, we get an error
response.

Figure 3.5: Remove periphery with ID 1.

Remove all periphery

To remove all peripherals, use the command with the structure shown in
Fig. 3.6. This command has no other parameters. The server response to
this command is always a success.

Figure 3.6: Remove all peripherals.

Set periphery parameters

To set periphery parameters, use the command with the structure shown in
Fig. 3.7. This command has a mandatory ID and param field. The values for
each type of periphery are listed in the table 3.3.

29

3. Software.......................................
The server response to this command is success or error. If the answer is an

error, then we get the error information in the msg field. The most common
error is the wrong range of set parameters.

For Modbus devices, the possibility to change parameters and registry
values via API is not implemented at this time.

Figure 3.7: Set peripheral parameters.
type field value
for all id periphery unique identifier

param below
field param value values of voltage from range
for Voltage
outputs
field param state state of output 0,1
for Simple
outputs
field param state state of output 0,1
for Relay
outputs
field param pwm_duty state of output 0 - 100
for PWM
outputs
field param pwm_duty state of output 0 - 100
for PWM
outputs

Table 3.3: Required fields for change periphery parameters.

Get parameters of one periphery

This command is used to find available peripheral information that is specified
by the id field value. An example of this command is shown in Fig. 3.8.
The server response to this command is success or error. Example of success
response is shown in Fig. 3.9. If the answer is an error, then we get the
error information in the msg field. The most common error is a non-existent
peripheral id.

30

....................................... 3.2. Server

Figure 3.8: Get peripheral informations.

Figure 3.9: Response from server with informations.

Get parameters of all peripheral

Use this command to get the parameters of all configured peripherals that are
contained in the testbed. An example of this command is shown in Fig. 3.10.
The server response is an array that contains data about all peripherals with
the same structure as a response to the status query of one peripheral.

Figure 3.10: Get peripheral informations.

3.2.2 Safety rules

If you want use safety rules, for example if water temperature exceeds 90 ◦C,
the boiler switches off, you can specify them in peripheral configuration.
Safety rules specify in alarm field as array of pair value and string. Each
item in array has equation where actual periphery value is represented as
its unique identifier in square brackets, e.g. ”[1]”, it is also possible to use
comparsion operators and constants. For Modbus devices, use the alarm
field for each register separately. Example of SSR Relay with id 7 alarm
configuration based on temperature from thermometer with id 1 is shown in
Fig. 3.11.

31

3. Software.......................................

Figure 3.11: Example of configuration of alarm for periphery with id 7.

3.2.3 Server application

I chose scripting programming language Python for programming my server
application. At the beginning of my work I only tested communication with
EVOK through various APIs, finally I chose JSON API communication. I
made a data structure design to hold peripheral information. Data structure
design uses objects. Each object represents a different type of periphery.
Object design uses inheritance. Object instances represent specific peripherals
and are stored in the collection. Each object has methods for create JSON
data format output, get or set value or registres and get recalculate value.
The server application consists of some parts. The structure of the object is
shown in Fig. 3.12.

The application uses libraries:

. threading - standard library. time - standard library. json - standard library. requests - require install (pip install requests). https://github.com/kennethreitz/requests

32

....................................... 3.2. Server

. websocket_server - require install (pip install websocket-server). https://github.com/Pithikos/python-websocket-server. pymodbus - require install (pip install pymodbus). https://github.com/riptideio/pymodbus

API

Using the API, the client application communicates with the server. In this
case, the Websocket protocol is used for communication. I chose this protocol
because I used it when communicating with EVOK and wanted to keep the
same communication protocol. Communication is through the messages I
have described in the previous section. Each received message is executed
and the response is sent back to the client. JSON data format is used for
message representation.

Safety rules

This part of the server checks client requests and compares them with defined
security rules. If the client request violate security rules, then the client
request is discarded. For example, if the client asked to turn on the boiler,
but the water would be overheated.

Communication with EVOK

For communication with EVOK I chose JSON API over HTTP requests. This
part of the application sends commands to EVOK and receives data from
EVOK.

Modbus RTU on RS485

I used Python library pymodbus [10] to control the RS485 bus with the
Modbus protocol [11].

33

3. Software.......................................

Figure 3.12: Inheritance diagram.

3.2.4 Set application as a service on Linux

We want the server application to run after the operating system starts. So
we need to configure the python application as a service. There are many
ways to solve this problem. I chose the systemd method. This method to run
a program on UniPi at startup is to use the systemd files. Systemd provides
a standard process for controlling what programs run when a Linux system
boots up. Note that systemd is available only from the Jessie versions of
Raspbian OS.

Step 1, create a unit file. I created a new file in /lib/systemd/system/
with name hydro.service. Put into file content that defines a new service
and its parameters. Set file privileges to 644. The content of the file are
shown in Fig. 3.13.

34

....................................... 3.2. Server

Figure 3.13: File hydro.service content.

Step 2, configure systemd. We must tell systemd to start start it dur-
ing the boot sequence. We use command: systemctl daemon-reload and
systemctl enable hydro.service. [12]

Now we have configure server application as service and this application
automatically start at each operating system start up.

3.2.5 Configuration extension unit in EVOK

For the functional connection of UniPi Neuron L513 and UniPi Neuron
Extension xS50, it is necessary to connect the RS485 bus connectors and
activate the built-in terminators using the switch at the end of the bus.

It is necessary to configure the hardware in the main unit with which
extension unit and on which line to communicate. We configure extension
unit in the evok.conf file in the /etc directory. A sample of the file content
is shown in Fig. 3.14. Here we set the global module ID, the file name, which
contains information about the MODBUS registers, port and address. Other
parameters are optional. All the parameters are described in the configuration
file comments. This file may vary in different versions of the EVOK. [9]

Figure 3.14: Example of evok.conf file

35

3. Software.......................................
3.3 Matlab application

The last part of my work is to create an application for Matlab Simulink.
This application is used for simple testbed control and measurement. I
started by learning about Matlab and creating a Simulink object. To create a
communication link, I used a third-party library WSClient [13] that provides
Websocket client. This library requires several additional packages to install
and add a path in Matlab. The library needs Java to run.

The Matlab libraries that mediate the websocket client are more. I chose
WSClient library with the help of my supervisor, it is the easiest to use and
has the least dependency on other packages.

After the connection has been established successfully, it is necessary to
process messages receive from the server and send control instructions to
the server. For this I have to use the functions to parse JSON messages.
Simulink object works in steps. At each step, the input values are read and
processed and sent in JSON form messages to the server. Incoming messages
with peripheral status information are processed and values passed to the
simulink object output. Both input and output values are represented as
a column vector. Simulink object output data is displayed using part that
contain a Simulink library. An example of the interface in Simulink is shown
in Fig 3.15.

Each time the connection is established, the Matlab application sends a
command to turn on the peripheral power to make measurements. It is the
command to activate the digital output on which the relay is connected. At
the end of the connection the digital output is deactivated and the peripherals
are switched off.

When testing the application and the server, the data shown in Fig 3.16
was measured. At the time of testing, there is still no functional water
heating. You can see in the graph that the fan started in 35 seconds, which
increased the airflow and the current consumption of the testbed. The air
flow is measured using an AL-grid and a pressure transducer. Electricity
consumption is measured using an electricity meter.

36

.................................. 3.3. Matlab application

Figure 3.15: Data representation in Simulink.

37

3. Software.......................................

Figure 3.16: Output graph of measured values.

38

............................. 3.4. Touch screen communication

3.4 Touch screen communication

At the beginning I had to create a project in EasyBuilder Pro. This program
is free from Weintek’s display manufacturer. In the project I had to define
that the display is connected via Ethernet and mediates Modbus server, which
is used for communication with UniPi PLC. In a graphical environment, I
created a screen that displays temperature information. There is also a switch
on the display that can be switched by touch. The displayed temperature
value is read from the defined Modbus server register. The switch state is
also stored in the Modbus server register.

I created a demonstration program in Python that connects to the display
as well as any Modbus device. This program reads the value from the
thermometer on analog input of UniPi and it writes to the appropriate
register on the Modbus server display. The program also reads the Modbus
server registry value where the graphical switch status is stored. According to
the value in the register, the program instructs the activation or deactivation
of the digital output UniPi.

The demo application results can be seen in Fig 3.17 and 3.18.

39

3. Software.......................................

Figure 3.17: Example of relay on.

Figure 3.18: Example of relay off.

40

............................. 3.4. Touch screen communication

41

42

Chapter 4

Conclusion

The aim of the work was to study building automation systems, to get ac-
quainted with the hydraulic part of the test bed and to design the electrical
part including necessary components. The electrical part included the selec-
tion of a PLC that communicates with peripherals. This part of the work
has been done.

Another aim of the work was to program a communication stack for all
peripherals. The automation system software should be flexible and in terms
of peripheral changes. A security task must be running on the PLC to monitor
the safe status of the testbed. This part of the work has been done.

The last aim of the work was to prepare a SCADA operating on a graphical
touchscreen. This part of the work has been partially done. I created a way
to communicate between display and UniPi and created a demo application
to show the function.

Future work on the project will include changing the communication proto-
col between PLC and clients and API extensions to writes to the Modbus
registers and communicate with Modbus device over Ethernet. The currently
used Websocket protocol is unsatisfactory. I want to change the protocol so
that only one common is used for all Ethernet communication. The reason
for this change is the error that occurs when communicating between the
server and the client. I would like to add BACnet communication. [14]

43

44

Bibliography

[1] Zelenka, D.: Cyber-physical One-pipe Hydronic Heating Testbed. CTU,
2019.

[2] Dostál, J.: Studie proveditelnosti OPPPR. Koncept Praha, 2018.

[3] OPC Foundation: What is OPC? [online]. [cit. 2019-05-20]. Accessed
from: https://opcfoundation.org/about/what-is-opc/

[4] TECO: PLC Tecomat Foxtrot [online]. [cit. 2019-05-20]. Ac-
cessed from: https://www.tecomat.cz/products/cat/cz/
plc-tecomat-foxtrot-3/

[5] Beckhoff: Beckhoff PLC [online]. [cit. 2019-05-20]. Accessed from: https:
//www.beckhoff.com/

[6] UniPi.technology: UniPi Neuron [online]. [cit. 2019-05-20]. Accessed
from: https://www.unipi.technology/products/unipi-neuron-3?
categoryId=2&categorySlug=unipi-neuron

[7] UniPi.technology: UniPi Neuron L513 [online]. [cit. 2019-
05-20]. Accessed from: https://www.unipi.technology/
unipi-neuron-l513-p106?categoryId=2

[8] UniPi.technology: UniPi Neuron xS50 [online]. [cit. 2019-
05-20]. Accessed from: https://www.unipi.technology/
unipi-neuron-extension-xs50-p111?categoryId=13

[9] UniPi.technology: EVOK - the UniPi API [online]. [cit. 2019-05-20]. Ac-
cessed from: https://evok.api-docs.io/1.0/jKcTKe5aRBCNjt8Az/
introduction

45

https://opcfoundation.org/about/what-is-opc/
https://www.tecomat.cz/products/cat/cz/plc-tecomat-foxtrot-3/
https://www.tecomat.cz/products/cat/cz/plc-tecomat-foxtrot-3/
https://www.beckhoff.com/
https://www.beckhoff.com/
https://www.unipi.technology/products/unipi-neuron-3?categoryId=2&categorySlug=unipi-neuron
https://www.unipi.technology/products/unipi-neuron-3?categoryId=2&categorySlug=unipi-neuron
https://www.unipi.technology/unipi-neuron-l513-p106?categoryId=2
https://www.unipi.technology/unipi-neuron-l513-p106?categoryId=2
https://www.unipi.technology/unipi-neuron-extension-xs50-p111?categoryId=13
https://www.unipi.technology/unipi-neuron-extension-xs50-p111?categoryId=13
https://evok.api-docs.io/1.0/jKcTKe5aRBCNjt8Az/introduction
https://evok.api-docs.io/1.0/jKcTKe5aRBCNjt8Az/introduction

Bibliography
[10] Read the Docs: PyModbus - A Python Modbus Stack [online]. [cit.

2019-05-20]. Accessed from: https://pymodbus.readthedocs.io/en/
latest/readme.html

[11] Chipkin, P.: Modbus For Field Technicians. CreateSpace Independent
Publishing Platform, 2011, ISBN 978-1456376444.

[12] DigitalOcean: How To Use Systemctl to Manage Sys-
temd Services and Units [online]. [cit. 2019-05-20]. Accessed
from: https://www.digitalocean.com/community/tutorials/
how-to-use-systemctl-to-manage-systemd-services-and-units

[13] tbxManager: Websocket client for Matlab [online]. [cit. 2019-05-20]. Ac-
cessed from: http://www.tbxmanager.com/package/view/wsclient

[14] Domingues, P.: Building automation systems: Concepts and technology
review. Computer Standards Interfaces, 2016.

[15] Samad, T.: System architecture for process automation: Review and
trends. Journal of Process Control, 2007.

[16] Zlevor, O.: Heat flow control of water-to-air heat exchanger. CTU, 2017.

46

https://pymodbus.readthedocs.io/en/latest/readme.html
https://pymodbus.readthedocs.io/en/latest/readme.html
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units
http://www.tbxmanager.com/package/view/wsclient

Appendix A

CD Content

A CD is attached to the printed version of this thesis. It contains an electronic
version of this thesis.

47

	Introduction
	Heating
	Two-pipe Hydronic Network
	One-pipe Hydronic Network

	Research of existing solutions

	Hardware
	Testbed
	Components
	Thermometers
	Pressure sensors
	Flowmeters
	Frequency converter
	Digital electricity meter
	SSR relay
	Boiler
	Water pump
	Touchscreen
	Electronic valve

	Control unit
	Requirements
	Possible control units
	UniPi Neuron L513
	UniPi Neuron Extension xS50

	Software
	Architecture
	Requirements

	Server
	Communication protocol
	Safety rules
	Server application
	Set application as a service on Linux
	Configuration extension unit in EVOK

	Matlab application
	Touch screen communication

	Conclusion
	Bibliography
	CD Content

