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Abstract
This thesis is dedicated to a lifelong lo-
calization of a mobile robot, which is
equipped with the multiple sensors. The
information about the robot position and
the map are necessary for the autonomous
movement.

The goal of this thesis is implementing
the method based on the Normal Distri-
bution Transform for solving the problem
called Simultaneous localization and map-
ping. The important requirement is the
ability to use the CAD drawing of the
environment as an initial map.

The thesis contains the principle of the
method, the description of the implemen-
tation, and the experiments evaluation.
The experiments have been focused on the
difference between the localization and
mapping process with and without the
CAD drawing.

Keywords: localization, mapping,
robot, lidar, SLAM, normal distribution
transform, NDT, scan matching, CAD
drawing, ROS

Supervisor:
Ing. Vladimír Smutný, Ph.D.

Abstrakt
Tato práce se věnuje celoživotnímu určo-
vání polohy mobilního robotu, který je
vybavený různými senzory. Informace o
poloze robotu a mapa jsou nezbytné pro
zajištění autonomního pohybu.

Cílem je implementovat metodu řešící
problém zvaný Simultání lokalizace a ma-
pování pomocí přístupu využívající Trans-
formaci normálního rozdělení. Důraz je
kladen na schopnost využít CAD výkresy
prostředí jako počáteční mapu.

Práce zahrnuje princip metody, po-
pis implementace a zhodnocení výsledků,
které bylo zaměřeno na rozdíly v lokali-
zaci a mapování s využitím CAD výkresů
a bez nich.

Klíčová slova: lokalizace, mapování,
robot, lidar, SLAM, transformace
normálního rozdělení, NDT, scan
registrace, CAD výkres, ROS

Překlad názvu: Určování polohy
mobilního robotu na základě informací z
různých senzorů
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Chapter 1

Introduction

One of the most fundamental problems in mobile robotics is localization. Com-
putation of the robot position requires a model (a map) of the environment.
At the same time, building the map needs information about the position
of the robot. This chicken-egg problem is called Simultaneous Localization
And Mapping, and it is commonly abbreviated as SLAM. In contrast with
the localization with a known map or the mapping with a known position, in
SLAM problem, the map and position are both unknown.

Localization and mapping are essential for other applications such as
navigation, path planning, or multi-robot coordination. For these reasons,
the software, which is able to work with live data and provides the location
of the robot, is required.

The sensors provide the pieces of evidence for solving SLAM problem. The
range finders sensors (e.g., radar, lidar) are commonly used as well as the
cameras. Information from these sensors has to be processed by the algorithm
solving SLAM.

The algorithms are commonly focused on one-off experiments evaluation.
The scenario has a character of the expedition, and long term usage is
neglected. This work is focusing on the implementation of the algorithm,
which is able to operate life-long. Our motivation is to provide the localization
for a ground vehicle, which operates in the long term on the shop floor.

In the last couple of years, the method based on Normal distribution
transform has proven to be a suitable solution for scan registration, localization
and mapping. The NDT method can handle the dynamic object in the
environment and is also able to processed noisy data from range sensors. Last
but not least advantage is the fact that measured data from range sensors do
not need to be stored. This fact allows life-long use of the algorithm.
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1. Introduction .......................................
This work is divided into six chapters. The second chapter defines SLAM

problem. The used methods are presented in the third chapter. The fourth
chapter provides implementation information. The fifth chapter describes
experiments and results, and the last chapter involves summarization and
suggests improvements.
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Chapter 2

Problem analysis

This chapter defines the problem called Simultaneous Localization And Map-
ping. It will describe models for the map representation, common issue with
the solution and our scenario will be presented.

2.1 SLAM problem definition

As it is mentioned in the previous chapter, the SLAM problem is more
challenging than pure localization or mapping, since the map and position of
the robot are both unknown. The error in the pose estimation correlates with
the error of the map. From a probabilistic perspective, there are two main
forms of the SLAM problem [1]. On-line SLAM estimates the probability of
position in the actual time t

p(xt,m|z1:t, u1:t), (2.1)

where xt is an actual position of the robot, m is a map, z1:t is a sequence
of the measurements and u1:t is a sequence of the controls. The estimation of
only actual position allows discarding the previous measurement.

The other type of SLAM is called Full SLAM. It is a problem where all
positions x1:t are estimates (a trajectory reconstruction)

p(x1:t,m|z1:t, u1:t). (2.2)

The Full SLAM problem is a more challenging task for computing in real
time. On the other hand, the full SLAM can recover from failures, because
there are all measurements available.

3



2. Problem analysis .....................................

(a) : On-line SLAM (b) : Full SLAM

Figure 2.1: SLAM described by the dynamic Bayes network. The gray squares
mean an unknown states (the position of the robot, the map). The picture is
from [1]

2.2 Localization part

The localization has two main scenarios. In the first case, the initial position of
the robot is known, and thus, it is possible to follow the known position. This
problem is called continual localization [5]. The continual localization is solved
by correction of the odometry error by scan matching. The odometry sensor
suffers from significant error over time. In case the scan matching cannot
correct the error, then the divergence occurs, and the correct estimation of
the robot position is lost. Generally, the robot is not able to recover from
this state.

The second case is a global (absolute) localization [5]. In this scenario,
a priori information about the initial robot position is not known. This
situation occurs, when the sensor system of the robot fails, or when the
robot starts and no information about the initial position is provided. The
solution is based on searching for matches among the measured data and the
map. The absolute localization is a more difficult problem than the continual
localization because the large state space has to be examined. It is also more
prone to failure e.g., the robot is inside one of the many similar rooms.

The number of parameters required to determine the robot position depends
on the number of degrees of freedom of the robot. In case of the 2D localization,
it is Cartesian coordinates (tx, ty) of the robot to the reference point and the
robot heading angle θ. These three parameters ~p = [tx, ty, θ]T describe the
robot position completely.
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.......................................2.3. Mapping part

2.3 Mapping part

The other part of the SLAM problem is the building of the map. The model
of the environment where the robot operates is necessary for path planning
and collision avoidance. The mapping process has to deal with the inaccurate
sensors and the noisy data while the map has to be consistent, actual and
accurate. The inaccuracies in the map can lead to poor localization. There
are also requirements for time and memory consumption of the algorithm.
The robot should provide the map and information about self-position in real
time. The compromise between accuracy and time consumption cannot be
avoided.

There are many ways to represent the map. One of the simples models
is a Point cloud map [6]. The output data from the range sensors can be
expressed as a point cloud. The map creation is done by simply storing these
measurements in the one large point cloud. This model is suitable for an
Iterative closest points (ICP) algorithm [7]. The disadvantage is memory
consumption because the amount of data increase over time.

The golden standard model is an Occupancy grid [8]. The Occupancy
grid discretizes the environment into a regular square grid of cells. Each
cell stores a value of probability that the cell is occupied. The advantage
is constant memory consumption over time. The required memory is given
by the mapping area size. Another advantage is the ability to represent free
space explicitly which is important for path planning. Occupancy grid is also
used as the standard for representing map in the Robot Operating System
(ROS).

The main model used in this work is the NDT map. Similarly, as Occupancy
grid, the NDT map discretizes the environment into the grid of cells. Each
cell approximate measured data with a Gaussian [9]. The points inside cell
are used for computing mean vector and covariance matrix (~µ,Σ). The NDT
representation is introduced in chapter 3 with more detail.

It might happen that prior information about the environment exists.
This information can be described as a CAD drawing, and it can be used
as an initial map for the robot before the mapping process starts. The
transformation from the CAD drawing into the NDT representation has been
done by Pánek [4]. The converted map in the NDT representation can be
used as the initial map for the localization and mapping process.

In the mapping task, there are known issues as the repetitive environment,
long corridor, and loop closure detection. The repetitive environment is
challenging for the localization because the current scan in scan matching
can be registered to more than one position. The long corridor is an example
of the repetitive environment. In this situation, the actual measured data
corresponds to many positions. The uncertainty rise in the longitudinal
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2. Problem analysis .....................................
direction of the corridor. In this situation localization is failing very often.
The inconsistencies in the map are created and the whole process of localization
and mapping is collapsing. The other problem is the loop closure. The loop
closure reflected the situation when robot visits already mapped area, but
with different direction (the crossover).

(a) : Point cloud map (b) : Occupancy grid map

(c) : NDT map (d) : CAD drawing

Figure 2.2: Different models of a map describing the same environment. The
Point cloud map and the NDT map are not able to represent free space explicitly.
The Occupancy map is the standard way to describe the environment. The CAD
drawing is unusual in the mobile robotics, and this model is processed to other
representation such as NDT map.

2.4 Scan registration

The scan registration is a method primarily used for finding the transformation
between two scans. However, the scan registration can be used for the
reconstructing robot position and therefore it is one of the crucial parts of
the solution for the SLAM problem. Maximization of the likelihood of i-th
pose and a map are computed relative to the (i-1)-th position and a map [10].

~̂xt = arg max
~xt

{
p(zt|~xt, m̂

[t−1])p(~xt|ut−1, ~̂xt−1)
}
, (2.3)

6



....................................... 2.5. Our scenario

where ~̂xt is an optimal actual pose and m̂[t−1] is an optimal map in the
time (t − 1). In the next step, an optimal map m̂[t] is estimated and the
whole process is computed again with other pair of the scans.

One of the most common algorithms for scan registration is an Incremental
scan matching. It can be done with the Iterative closest point (ICP) algorithm.
The ICP algorithm is looking for the transformation between two scans
by minimizing distances between pairs of corresponding points (each from
the one scan). A similar principle is used in the NDT approach, which
is specified in chapter 3. Both of these algorithms iteratively look for the
optimal transformation. An optimization method like Newton or Levenberg-
Marquardt is used. These methods require an initial position estimation. If
the initial estimation is not in the convergence area, the optimization can be
stuck in the local minimum which leads to the incorrect scan registration and
failure of the localization.

2.5 Our scenario

The robot (ground vehicle) is autonomously moving with the load (boxes,
pallets) on the factory shop floor. The robot is equipped with a different type
of sensors such as lidar, camera, and odometry. This thesis works only with
the lidar and odometry data.

The goal is to implement an algorithm which solves on-line life-long 2D
SLAM using the NDT approach. Since the environment where the robot
operates is known, the CAD drawing can be used as the initial map. The
map correspond with horizontal cut of the building in the height of the lidar
position.

The algorithm implementation should

. be able to import map based on the CAD drawing of the building,. compute localization of the robot and the map in real time,. follow standard interfaces in the Robot Operating System (ROS).
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Chapter 3

Used methods

This chapter describes methods and algorithms based on the Normal distri-
bution transform (NDT) used in this thesis. The NDT scan registration and
the map building will be introduced.

3.1 Normal distribution transform of Point cloud

The natural way of keeping output data from range sensors (sonar, lidar) is the
point cloud. However, as long as the robot senses new data, the point cloud
can be expensive to store. This thesis aims for the long-term localization, so
a memory needs to be bounded. Bieber and Straßer [9] have introduced an
alternative representation of the map. The map can be 2D or 3D without
changing the method [11]. The map consists of the regular grid of cells. Each
cell contains a single Gaussian representing surface of the measured object,
hence the Normal Distribution in the approach name.

The measured points belonging to the cell are thus represented by their
distribution approximated by the normal distribution. When some additional
information is stored (e.g., the number of measured points in the cell),
the Gaussian can be updated without the need for accessing the previous
measurements.

9



3. Used methods ......................................
The transformation of the input point cloud to the NDT grid follows two

steps:..1. The input Point cloud (2D scan from lidar) is subdivided into the regular
grid. Points from the scan are separated into the corresponding cells...2. The mean vector ~µ and the covariance matrix Σ are computed for each
cell as

~µ = 1
m

m∑
k=1

~yk, (3.1)

Σ = 1
m− 1

m∑
k=1

(~yk − ~µ)(~yk − ~µ)T , (3.2)

where ~yk = [x, y]T ∈ R; k ∈ {1, . . . ,m} are a coordinates of the points
and m is the number of points in the cell.

A set of local probability density functions, one per cell, is obtained. The
approach using normal distribution transform brings following advantages.

. The required memory is constant over time and it is given by the mapped
area and the cell size.. The Gaussian represents smooth surface in contrast with the point cloud.. The probability density function of the normal distribution is contin-
uous and smooth and has a continuous and smooth first and second
derivative, which can be computed analytically. This attribute is useful
in scan matching, where gradient needs to be found for the Newton’s
optimization [2].

The measured Point cloud and the resulting NDT grid are visualized in
Fig. 3.1. The Gaussian is not created when the cell contains less than five
points. The cell can hold only one Gaussian. The Gaussian is nonzero up to
infinity, but the cells are considered independent in the NDT approach.

10



....................................3.2. NDT scan matching

Figure 3.1: The NDT grid computed from the laser scan data. The blue lines
borders cells. The magenta dots are the measured points from the laser scan.
The black ellipses correspond with 80% mass of the Gaussian. The red dots are
the mean values of cells. The cell size is set to 0.25 m.

3.2 NDT scan matching

The goal of scan matching is to find the transformation between two scans.
Since the NDT representation of the point cloud is available, there are three
scenarios of the scan matching. A Point cloud to Point cloud (PCL-to-PCL)
registration is a standard way of the scan matching. The Iterative Closest
Points (ICP) algorithm [7] minimizes the distances between pairs of points.
This is a well-known solution to point-to-point registration. A Point cloud
to the set of distributions (PCL-to-NDT) registration is a technique using
the NDT grid instead of the reference point cloud. This chapter is dedicated
to PCL-to-NDT registration and it will be described in more details in this
section. A set of distributions to the set of distributions (NDT-to-NDT)
registration is the last possibility of the scan matching. In this case, the
registration problem is interpreted as minimization of the distances between
two NDT grids [11].

Bieber and Straßer have introduced the algorithm for the PCL-to-NDT
registration in [9] and later they improved it in the paper [12]. Magnusson
[2] provides a comprehensive description of the NDT approach. The PCL-
to-NDT registration works with a point-cell pair. It is possible to work with
the source scan (the newer one) and the target scan (the older one) or with

11



3. Used methods ......................................
the source scan and the NDT map. It is the same problem in the principle,
the NDT representation is essential. The robot position is described by
three parameters ~p = [tx, ty, θ]T as was mentioned in section 2.2. The 2D
transformation function is defined as

T (~p) =
[
cos θ − sin θ
sin θ cos θ

]
~x+

[
tx
ty

]
. (3.3)

The equation Eq 3.3 [2] describes transformation of the point ~x = [x, y]T
from the source scan to the map (or to the target scan).

In the original work [9], the points from source scan were simply subdivided
into the NDT map cells with the current transformation. This simple approach
works only if the source scan and the NDT map has misalignment similar to
the cell size. For this reason, the nearest neighborhood cell is found as the
corresponding cell for the point-cell pair.

The algorithm of the PCL-to-NDT registration follows these steps [9]:..1. Initialize parameters of the transformation ~p = [tx, ty, θ]T by zero or
using the odometry position estimation...2. Transform every point in the source scan using transformation (Eq 3.3)
with the current Ti(~p). The Ti means the transformation in the i-th
iteration of the algorithm...3. Create the point-cell pairs from the transformed points and the NDT
map...4. Compute a value of a score function Eq 3.10 described in a section 3.2.1...5. Optimize the parameters ~p by Newton’s method described in a section
3.2.2 and find the new transformation Ti+1...6. Go to step 2 until a convergence criterium or a maximum number of
iterations is reached. The convergence criterium is reached when the
absolute value of the difference between the value of the score function
Eq 3.10 in the time ti and ti+1 is smaller than the threshold.

3.2.1 Score function

Bieber and Straßer [9] used the probability density function of the normal
distribution as a score function for one point. Assuming that the point
creating the NDT cell was generated by a two-dimensional normal random
process, the likelihood of having measured ~x is

12



....................................3.2. NDT scan matching

s(~x) = 1√
(2π)2|Σ|

exp
(−(~x− ~µ)T Σ−1(~x− ~µ)

2

)
, (3.4)

where (~µ,Σ) are the mean vector and the covariance matrix of the cell.
The factor (

√
(2π)2|Σ|)−1 is the normalization constant, where |Σ| is the

determinant of the Covariance matrix Σ.

The probability density function can be modified for the outliers rejection.
The negative log-likelihood of a normal distribution grows without bound
for points far from the mean. It can be seen in Fig 3.2b. The outliers in the
scan have a huge influence and negative impact on the result [2]. The score
function, which approximates the probability density function and inhibits
the influence of the outliers is described as following

s̄(~x) = c1 exp
(−(~x− ~µ)T Σ−1(~x− ~µ)

2

)
+ c2r0, (3.5)

where r0 is the expected ratio of the outliers and c1 and c2 are the scaling
constants.

(a) : Likelihood (b) : Negative log-likelihood

Figure 3.2: Comparing a normal distribution s(x) (red) with the mixture model
s̄(x) (green). The negative log-likelihood function −log(s̄(x)) is used as score
function for one measured point. Figured is taken from [2].

The function s̄(~x) Eq. 3.5 can be approximated using probability density
function by setting parameters

d3 = − log(c2), (3.6)
d1 = − log(c1 + c2)− d3, (3.7)

d2 = −2 log
(− log(c1 exp(−1

2) + c2)− d3

d1

)
, (3.8)

13



3. Used methods ......................................
so that new function

s̃(~xk) = −d1 exp
(−d2(~xk − ~µk)T Σ−1

k (~xk − ~µk)
2

)
, (3.9)

where ~µk,Σk are parameters of the appropriate NDT cell for the point
~xk, has same value as the function s(~x) Eq. 3.4 in a points x = 0, x = σ
and x → ∞ [11]. The score function s̃(~x) is more suitable for a simpler
derivatives than function s̄(~x) Eq. 3.5. The function s̃(~x) still holds the
required properties when it comes to the optimization.

The score function with a set of points X = {x1, x2, . . . , xn} (i.e., the point
cloud) and the transformation T (~p), which transform point ~x by Eq. 3.3, is
defined as a sum of values of the score function p̃(~x) Eq. 3.9.

s(~p) = −
n∑

k=1
s̃
(
T (~p), ~xk

)
. (3.10)

3.2.2 Newton’s algorithm

The optimal parameters ~p can be found by minimizing value of the score
function Eq. 3.10. The minimization is done by iterative solving of the
equation

H∆~p = −~g, (3.11)

where H is a Hessian matrix of a partial derivatives Hi,j = ∂2s
∂pi∂pj

and ~g is
a gradient of the function s(~p) Eq. 3.10 [2]. An every iteration looks for new
∆~p which is added to the current parameters (~p ← ~p + ∆ ~p). The gradient
computation ~g describes following equation

gi = ∂s

∂pi
=

n∑
k=1

d1d2~x
′T
k Σ−1

k

∂~x′k
∂pi

exp
(−d2

2 ~x′k
T Σ−1

k ~x′k

)
, (3.12)

where ~x′k is the transformed point ~xk with the current parameters of the
transformation ~p, and the point is shifted by ~µk for placing relative to the
center of the appropriate NDT cell

~x′k ≡ T (~p, ~xk)− ~µk. (3.13)

14



...................................... 3.3. Mapping step

And lastly, the Hessian matrix H is computed

Hi,j = ∂2s

∂pi∂pj
=

n∑
k=1

d1d2 exp
(−d2

2 ~x′kΣ−1
k ~x′k

)(
− d2(~x′Tk Σ−1

k

∂~x′k
∂pi

)(~x′Tk Σ−1
k

∂~x′k
∂pj

)+

+ ~x′
T
k Σ−1

k

∂2~x′k
∂pi∂pj

+ ∂2~x′Tk
∂pj

Σ−1
k

∂~x′k
∂pi

)
.

(3.14)

The first derivate ∂~x′

∂~p in the gradient Eq. 3.12 for the 2D transformation
T (~p, ~xk) Eq. 3.3 is a Jacobian J2

∂~x′

∂~p
= J2 =

[
1 0 −x1 sin θ − x2 cos θ
0 1 x1 cos θ − x2 sin θ

]
. (3.15)

The derivative ∂2~x′

∂pi∂pj
in the Hessian matrix H Eq. 3.14 is calculated as

follow

∂2~x′

∂pi∂pj
=



[
−x1 cos θ + x2 cos θ
−x1 sin θ − x2 sin θ

]
, if i = j = 3[

0
0

]
, otherwise.

(3.16)

3.3 Mapping step

The result of the scan registration determines the location of the robot (the
localization step). The known robot position allows joining the measured
point cloud with the NDT map (the mapping step). In the original paper [9],
storing of all measurement has been necessary. Recomputing the parameters
of the NDT cell (mean vector and covariance matrix) have required the points
from the all previously measured scans.

The original method was improved in the papers [13] and [11]. The
Recursive Covariance Update (RCU) has been proposed as a solution for
merging two NDT cells. The measurements do not need to be stored anymore.
This improvement makes the NDT approach more suitable for long-term
localization.

There are two sets of points {~xi}mi=1 and {~yi}ni=1, where m and n are the
number of points of these sets. The first equation describes combined mean
vector ~µx⊕y as
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~µx⊕y = 1

m+ n

( m∑
i=1

~xi +
n∑

i=1
~yi

)
= 1
m+ n

(m~µx + n~µy). (3.17)

The second equation describes combined covariance matrix Σx⊕y as

Σx =
m∑

i=1
(~xi − ~µx)(~xi − ~µx)T ,

Σy =
n∑

i=1
(~yi − ~µy)(~yi − ~µy)T ,

Σx⊕y = Σx + Σy + mn

m+ n
(~µx − ~µy)(~µx − ~µy)T . (3.18)

Besides the advantages of throwing away the previous measurement, the
RCU can create the grid with a lower resolution. It can be used for the faster
path planning computation [11]. The number of points in the cell increase
over time and it can cause numerical instability. Moreover, the high number
of points in the cell leads to the problem with the dynamic object mapping
[11]. The maximum number of points in cell N is bounded by the parameter
M

N =
{
n+m,n+m < M

M,n+m ≥M
. (3.19)

The parameter M influences a map adaptation. The small value of M
means that the map is adapted for changes very fast. A high value of M
means slow adaptation - the previous measurements have higher influence.

3.3.1 Occupancy extension

The Normal Distribution Transform Occupancy Map (NDT-OM) expands
the NDT representation about the occupancy value, which can explicitly
describe a free space [11]. This extension is motivated by the mapping of the
dynamic objects. The dynamic object can disappear, but the Gaussian in
the cell persists. Another motivation is free space modeling, which is crucial
for path planning. Since this extension has been implemented and has been
taken from [3] as it is presented in [11], a description of the NDT-OM is just
an overview of the state-of-the-art of this method.

The cell ci in the NDT-OM is represented by the parameters ci = {~µi,Σi, Ni,
pi(m|z1:t)}, where pi(m|z1:t) is the probability that the cell is occupied. The
eight numbers are needed for the description of 2D NDT cell (two for mean
vector, four for covariance matrix, one for the number of points and one for
the probability of occupancy). The value of probability is computed by a ray
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...................................... 3.3. Mapping step

tracing. The ray tracing starts in a lidar position and ends in a point where
ray has been reflected from an obstacle. The line intersects cells between the
start and end point. Ray modifies the Gaussian shape and the occupancy
probability value. The cells along the ray are updated with the low occupancy
probability. The last cell is updated with the high occupancy probability.
The mathematical description can be found in [11].
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Chapter 4

Implementation

This chapter describes the implementation of on-line 2D NDT SLAM. Used
libraries will be presented and the implementation will be introduced. The
source code of the implementation can be found in an enclosed CD. The code
is based on Jelínek’s work [3], which uses NDT for a graph based SLAM.
Some basic structures and classes have been taken from that work. Our
concept of the solution is quite different since it does not work with the graph
SLAM and it is required the CAD drawing import.

4.1 Used software

4.1.1 Robot Operating System (ROS)

The Robot Operating System is an open source framework for Linux distri-
bution. It is a software, which provides useful tools for developing software.
The ROS associates with many other libraries such as PCL library, OpenCV,
MoveIT. The ROS works with node architecture. The node is a program,
which can communicate with other nodes using a topics. One of the advan-
tages of the ROS is a standard format of the messages in the topics. For this
reason, a different type of software from different developers can be connected
without difficulties. The implementation solving SLAM has been developed
in ROS Kinetic [14]. The important libraries connected with the ROS are
Eigen and PCL library.

Eigen

Eigen library [15] implements operations with a matrices (e.g., multiplication,
inverse matrix computation, singular value decomposition).
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4. Implementation......................................
PCL

The point cloud structure is used as main representation of the measured
data the from lidar. The PCL library solves operation with cloud such as
transformation to the different coordinate system.

CAD drawing import

The tool for converting the CAD drawing into the NDT representation has
been developed by Pánek in [4]. The simple .txt file with the NDT map
contains parameters for each NDT cell (mean vector, covariance matrix,
occupancy value, and the number of point in the cell).

4.2 Program overview

The input data are the scans from lidar and the odometry data. The ROS
package message_filters synchronizes messages from topics with the lidar and
odometry data. It is important to have a pair of messages from one time.
Frequency of the lidar scans could be different from the odometry frequency.

The input point cloud structure is created from the lidar data by laser_geometry
ROS package. The point cloud is transformed from a coordinate system of
the lidar to the base of a robot coordinate system. The point cloud and the
odometry are inputs for the AlgorithmNdtSlam class, where the NDT scan
matching is computed as described in section 3.2.

The scan matching provides the transformation between the current point
cloud and the map (the Localization step). This transformation defines the
position of the robot, and thus, the point cloud can be registered into the
map (the Mapping step). The ray tracing and the RCU are computed for the
update of the map as described section 3.3.

The map and the position of the robot are the outputs of the program.
The ROS standard messages are used. The map is published to the topic
with the nav_msgs::OccupancyGrid message and the position of the robot is
published to the topic with the geometry_msgs::Pose message. The sections
below describe the classes of the program.
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Figure 4.1: Diagram of the program for solving 2D NDT SLAM. The scan
registration and the map updating (orange) have been taken from Jelínek [3].
These components have been reworked for our concept of solution. The NDT
map file (green) has been prepared by Pánek [4]. The white boxes have been
implemented by the author of this work.

4.2.1 NdtSlamNode

The NdtSlamNode class encapsulates the algorithm for NDT SLAM to the
ROS environment. This class handles the preprocessing of the input data,
the time synchronization of the messages from the scan and odometry, and
maintenance of the transformations between the map coordinate system and
the base of the robot. It is crucial for visualization (RVIZ tool in the ROS).
The class creates the ROS node. The main function is placed here and the
program can be executed in the ROS environments by command rosrun.
The launch file can be written for the comfortable using. Every pair of the
preprocessed data are sent to the AlgorithmNdtSlam class, where the data
are processed.

The parameters of the class NdtSlamNode:

. robot_base_frame_ - The coordinate system of the base of the robot.
The default value is set to base_link. (string). odom_frame_ - The coordinate system of the odometry. The default
value is set to odom. (string). fixed_frame_ - The coordinate system of the map. The robot position
is given by the transformation between the robot_base_frame_ and the
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4. Implementation......................................
fixed_frame_. The default value is set to map. (string). laser_topic_ - The name of the ROS topic with the input data from
the lidar. The input data format follows the standard ROS message
sensor_msgs::Laser_scan. The default name of the laser topic is set to
scan_filtered. (string). odom_topic_ - The name of the ROS topic with the input data from
the odometry. The input data format follows the standard ROS message
nav_msgs::Odometry. The default value name of the odometry topic is
set to odometry/filtered. (string)

4.2.2 AlgorithmNdtSlam

The AlgorithmNdtSlam is the class for the computing 2D NDT SLAM. The
memory management for the map and position is done in here. The visual-
ization is also computed in this class. The class publishes to the topics with
the output data (the robot position and the map). If the CAD drawing is
available, the class deals with the importing of file with the map and sets the
initial guess of the robot position.

The class has two important methods called init and update. The init
method is called only once when the program is executed. The map is
initialized by the CAD drawing or by the first measured point cloud. The
coordinate system of the map and the initial position is set.

The update method is called with the every pair of the point cloud and
the odometry data, which have been synchronized in the NdtSlamNode class.
The scan matching is computed only if the robot travels required distance
or rotates by required angle. The scan matching is not computed when the
robot is standing on the one place. The reason is that the measured object
by lidar might have the disproportionate number of points in the cells. It
might cause a problem in a remapping when the object disappears.

If the robot is moving, the scan matching is computed as described in
section 3.2. The result of the scan matching is the transformation between
the base of the robot and the map, and this transformation defines the robot
position. The map is updated by the merging measured point cloud into the
NDT map. It is done by the RCU and the ray tracing as described in section
3.3.

Two types of visualization are available. The first one uses ellipses, which
correspond with the Gaussians. The visualization by the ellipses is de-
scribed in a section 4.2.3 in more detail. The second type of visualiza-
tion is done by the Occupancy grid and follows the standard ROS message
nav_msgs::OccupancyGrid. The occupancy map creation is described in
section 4.2.4.
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The types of visualization can be used independently. The computation
of visualization is a time-consuming process. The map is not visualized for
each map update, but for a constant time interval. The frequency of the
visualization is given by a parameter. The robot pose computed by SLAM is
published to the ROS topic ndt_slam_pose with the standard ROS message
geometry_msgs::Pose.

The parameters of the AlgorithmNdtSlam class:

. cell_size_ - The size of the cell in the NDT map in meters. The default
value is set to 0.25 m. (double).map_file - The path to the .txt file with the NDT map for import.
(string). import_map_ - The map is imported when the value is True. (boolean). init_pose_x, init_pose_y, init_pose_phi - The initial estimation of
the robot position in the imported map. (meters, meters, radians)(double,
double, double).min_distance_, min_rotation_ - The scan matching is computed,
when the odometry reaches the distance or rotation angle. (meters,
degrees)(double, double). visualize_occ_ - The map is available as the Occupancy grid when the
value is True. (boolean). visualize_ellipse_ - The map is available as a set of ellipses when the
value is True. (boolean). visualize_every_x_sec_ - The time period for the visualization. The
default value is set to 3.0 seconds. (seconds) (double)

4.2.3 EllipsoidViewer

The class EllipsoidViewer is one of two possible types of visualization of the
map. The ROS visualization marker (visualization_msgs::Marker) represents
the ellipse. The ellipse corresponds with percent of the mass of Gaussian.

An input parameter is a pointer to the vector with NDT cells. A size of
semi-axes and an angle are computed by eigenvalues of the covariance matrix.
A parameter mean of the cell defines a center position of the ellipse. The
marker is colored depending on a cell type. The cell from the CAD drawing
has a different color from the cell creating by the mapping process.

The parameters of the EllipsoidViewer class:
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. topic_name_ - The name of the topic with an array of markers for

visualization. The default value is set to ndt_ellipse_map. (string). nstd - The standard deviation value defines how many percent of the
Gaussian is visualized. It is tabular value for probability density func-
tion. The width w and height h of the ellipse is given by formulas
w = 2 nstd

√
λ1, h = 2 nstd

√
λ2, where λ1, λ2 are the eigenvalues of

the covariance matrix. The default value is set to 3.22, which correspond
with 80% mass of the Gaussian. (double)

4.2.4 OccupancyGridViewer

The other type of visualization is the Occupancy grid. It is discretization of
the probability density function into the grid with the higher resolution than
the NDT grid. The input parameter is a pointer to the NDT grid. Width
and height in pixels of the occupancy grid are computed by the cell_divider
parameter, which defines the number of pixels in the NDT cell. The procedure
is similar to the EllipsoidViewer. The parameters of the ellipses are computed
from the eigenvalues of the covariance matrix. The mask, which defines the
occupied cells is ’printed’ into the Occupancy grid. The cell with no Gaussian
or with the small value of occupancy are set as free.

The parameters of the OccupancyGridViewer class:

. topic_name_ - The name of topic with the standard ROS message
nav_msgs::OccupancyGrid. The default value is set to ndt_occupancy_map.
(string). cell_divider_ - The value defines resolution of the Occupancy grid map.
Example: If the cell_size parameter is set to 0.25 m and cell_divide to 13,
the size of one pixel in the Occupancy grid map is 0.25

13 = 0, 01923 m.
The default value is set to 13. (integer)

4.2.5 P2DRegistration

The class P2DRegistration implements the PCL-to-NDT scan matching as
described section 3.2. The implementation has been developed by Jelínek
[3] based on paper [16]. The multilayer scan matching has been used in that
work. The upper layers have a lower resolution than the layers on the bottom.

The scan matching is used for the continuous localization. The estimation
of the robot position by the odometry tends to be good enough for the
convergence of the scan matching. The one layer scan matching works
properly. The size of the cell can be the same as in the NDT map or n-times
bigger. The lower resolution grid is computed by the recursive covariance
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update (RCU). The scan registration worked better with the lower resolution
in some experiments.

The input parameters are the measured point cloud, the pointer to the
NDT map and the estimation of the robot position by the odometry. The
output is the transformation between the point cloud and the NDT map.

The parameters of the P2DRegistration class:

. score_epsilon_ - The parameter describes an absolute value of the
difference between the value of the score function Eq 3.10 in the time
ti and ti+1. If the difference is less than the score_epsilon_, the conver-
gence criterium is reached. The default value is set to 1. (double)

.max_iterations_ - The maximum number of iteration. If the number
of iteration reaches the max_iterations_, the scan registration returns
current transformation even though the convergence criterium has not
been reached. The default value is set to 20. (integer)

. cell_size_ - The cell size for the scan matching. The default value is
the same as cell_size_ in the NDT map. (double)

4.2.6 NdtCell

The NdtCell class describes the NDT cell by these parameters: the covariance
matrix, mean vector, center of the cell, inverse covariance matrix, probability
of occupancy, number of points in the cell, temporal vector with points in the
cell and a boolean value signs that the cell comes from the CAD drawing.

The Singular Value Decomposition (SVD) of the covariance matrix is
applied, and a diagonal matrix with eigenvalues on the diagonal is stored.
The inverse covariance matrix is stored as well for the faster computation in
the Newtons method described in section 3.2.2, even though this information
is redundant. The probability of the occupancy is computed by the NDT-OM
described in section 3.3.1. The number of points in the cell needs to be stored
for the Recursive Covariance Update (RCU) described in section 3.3. The
temporal vector with the measured points is used for computation of the
mean vector and covariance matrix. The cells from the CAD drawing is not
updated by the RCU, thus they are static (unchangeable over time).

The methods in this class deal with operations such as computing the mean
value and the covariance matrix from the measured points, the merging two
cells into the one with the RCU.
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4.2.7 NdtGrid

The NdtGrid class handles operation with the NDT cells. This class is used
for the NDT map representation. The important functionality is computing
the NDT grid from the measured point cloud or registration of the point
cloud to the existing NDT grid. The registration can be done with or without
the ray tracing. The ray tracing is able to model the free cell and updates
the occupancy probability so the dynamic object can disappear.

The point cloud, with the mean value of the cells, is stored as the k-D tree.
This structure is used for the fast search for the nearest neighbor cell in the
scan matching.

The parameters of the NdtGrid class:

. cell_size_ - The size of cell in the NDT grid. The default value is set
to 0.25 m. (meters) (double). origin_ - The position of the NDT grid in the global coordinate system
fixed_frame_. (meters, meters, radians)(3 doubles)
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Chapter 5

Experiments

5.1 Experimental platform

The lidar is the crucial range sensor for the mapping and localization in this
work. The experimental platform contains the Sick TiM361 lidar and the
Robot Jackal. The robot is equipped with some additional sensors like a
camera or an Inertial Measurement Unit (IMU). The camera data is not used
in this work. The wider concept of solution for autonomous robots will use
the camera for global localization.

Figure 5.1: Experimental platform

5.1.1 Robot Jackal

The Robot Jackal from the Clearpath Robotics is a four-wheeled ground
vehicle. The robot is designed as experimental platform for developing
applications in the mobile robotics. The robot has two motors with 500 watts
power. Each motor propels two wheels on the same side (four-wheel drive).
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The differential kinematics allows the rotation around robot center. The
270Wh battery powers the robot for about four hours.

The robot senses data with gyroscopes and accelerometers, which create
Inertial Measurement Unit (IMU). Another source of information about the
robot moving is odometry. The weight of the robot is 17 kilograms, and
dimensions (L x W x H) are 508 x 430 x 250 mm [17].

Two computers are used. The computer inside the robot has CPU Celeron
J1800, Dual core 2.4 GHz, 2 GB RAM, 32 GB Hard Drive, operating system:
Ubuntu 14.04 with the ROS Indigo). This computer is used for collecting the
data from sensors and for motion control.

The second computer performs computation of SLAM. The Intel NUC
computer is mounted on the top of the robot (Intel Core i7-8650U, 4.20 GHz,
8 cores, 16 GB RAM, 250 GB Hard Drive). This computer uses Ubuntu
16.04 with the ROS Kinetic as an operating system. The router connects
both computers with an Ethernet interface, and there are two other free ports
for connecting additional devices such as the external notebook. The NUC
computer also provides WLAN for wireless communication.

The required time for one scan registration computation on the NUC
computer takes around 320 ms (rarely around 780 ms) depending on the
number of iteration in Newtons optimization.

5.1.2 Lidar Sick TiM361

The lidar Sick TiM361 emits laser pulses reflected by a rotating mirror. The
pulses paths form a pencil of lines in the horizontal plane. The measured
distances are performed with the angular resolution 0.33◦ [18]. The connection
between the lidar and the robot is via the Ethernet interface. The technical
parameters are listed in Tab. 5.1.

Sick TiM361
Light source 850 nm
Laser class 1, eye-safe

Aperture angle (horizontal) 180◦
Scanning frequency 15 Hz
Angular resolution 0.33◦

Working range 0.05 - 10 m
Systematic error ±60 mm
Statistical error 20 mm

Connection Ethernet, USB
Ambient light immunity 80 000 lx

Table 5.1: Parameters of the lidar Sick TiM361
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5.2 Experiments description

The experiments are mainly focused on the influence of the imported NDT
map, based on the CAD drawing, on the quality of the mapping process.
The results of computation SLAM with and without using CAD drawing will
be compared on the same datasets. The aim is to describe quality of the
mapping process and causes of failure in localization.

The first experiment describes the common behavior of the program, differ-
ences between mapping with and without using CAD drawing. The second
experiment is focused on the long-term program performance when the robot
cycled twenty times around the lecture hall. The third experiment focuses on
failures of the localization and mapping process.

All experiments have these common properties:

. The Robot Jackal has been guided manually with joystick (PS4 controller)
in an office environment.. The maximum speed of robot has been 0.5 ms−1.. The frequency of lidar scans has been set to 15 Hz.. The frequency of odometry computation has been set to 50 Hz.

The NDT cells in all figures in this chapter follow these colors:

. The blue color is used for the NDT cells, which were created from CAD
drawing (the imported map).. The green color is used for the NDT cell, which were created by mapping
process (from the measured point clouds).

5.2.1 First experiment

The map has been created by two passage of the robot in the environment.
The program has been executed with the input dataset specified in Tab 5.2
without and with the imported map from the CAD drawing.

duration 7 min 12 s (432 s)
number of the laser scan messages 6 485
number of the odometry messages 21 616

Table 5.2: Dataset description of the first experiment.

The parameters for scan matching computation were set to (min_distance = 0.15 m,
min_rotation = 3◦). The other parameters were set to the default values.
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Figure 5.2: The final map of the first experiment without imported map from
CAD drawing.
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Figure 5.3: The final map of the first experiment with imported map from
CAD drawing.
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Without CAD drawing

The final map without using CAD drawing is shown in Fig 5.2. The areas
marked by red dotted ellipses are analyzed below.

The area A corresponds to the long corridor. The scans from lidar are
very similar, and it is difficult to find their correct position on the map. The
scan matching registers the point cloud with the error. The estimated length
of the corridor is larger than its real length.

The consequence of the error in the long corridor is the incorrect placement
of the area B. The scan matching is consistent, and the area C is not
duplicated when the robot rides in the opposite direction even though the
length of the corridor was estimated incorrectly.

The area D is slightly duplicated during scan matching. This area has
been observed multiple times from both sides of the corridor and from the
adjacent room. The scan matching most likely neglected the width of the
wall between the room and the corridor. The duplicity is probably caused by
the fact, that one time the point cloud was registered to the one side of the
wall and other time to the reverse side of the wall. The estimated corridor
shape is warped in the map. The area E refers to local duplication of the
map as a failure of the scan matching.

The room with the area F is mapped with a wrong angle. The curvature
is caused by the previously warped corridor and by passing through the door.
The situation when the robot rides through the door is critical. The measured
scan after passing through the door contains a lot of new information (the
unmapped environment) and less information about the already mapped
area. The scan matching needs solid reference model for correct registration
of the measured point cloud. The rotated neighboring rooms can have the
overlapping walls in the map which will misguide the future localization.

With CAD drawing

The final map using CAD drawing initialization is shown in Fig 5.3. The
incorrect estimated length of the long corridor in the area A causes failure of
mapping in the area B. This is the same kind of failure as in the case without
using CAD drawing.

A duplicity in the area C is created, when the robot moves in the opposite
direction. The duplicity leads to the wrong localization. The scan matching
is not able to converge to the global optimum and the measured point cloud is
placed to the wrong position. Still, it can be seen in Fig 5.3 that misalignment
in the localization in the area C is smaller than in the area B.

The scan matching in the next part of the corridor (the area D) finds the
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right position of the robot and the duplicates no more occur.

The area F is mapped without warping. The imported map based on CAD
drawing provides a reference model of the environment for the scan matching.
The imported map helps to prevent incorrect overlaps in the map.

5.2.2 Second experiment

This experiment is designed for testing the evolution of the map when the
robot visits mapped area multiple times. The robot rides twenty loops in a
lecture hall and the part of the corridor. Ten loops in each direction have
been recorded. Two boxes were placed in the corridor for preventing a failure
in scan matching along the long corridor. The evolution of the map without
and with CAD drawing can be seen in Fig 5.5 and Fig 5.6. The final maps
are shown in Fig 5.7.

duration 35 min 48 s (2 148 s)
number of the laser scan messages 32 232
number of the odometry messages 107 438

Table 5.3: Dataset description of the second experiment.

The conditions for scan matching computation were set to (min_distance = 0.40 m,
min_rotation = 3◦). The other parameters were set to the default value.

(a) : The lecture hall (b) : Scheme of the robot trajectory.

Figure 5.4: The lecture hall photo and the layout with the robot trajectory.
The dotted blue line means that the robot sometimes followed this path and
other times followed the path placed in the corridor.
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(a) : The map after the passing of one loop.

(b) : The map after the passing of two loops.

(c) : The map after the passing of four loops.

Figure 5.5: Evolution of the map in the experiment without using CAD
drawing.
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(a) : The map after the passing of one loop.

(b) : The map after the passing of two loops.

(c) : The map after the passing of four loops.

Figure 5.6: Evolution of the map in the experiment with using CAD drawing.
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(a) : The final map of the second experiment without using CAD drawing.

(b) : The final map of the second experiment with using CAD drawing.

Figure 5.7: The final maps of the second experiment.
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Without CAD drawing

The evolution of the map without CAD drawing is shown in Fig 5.5. The
localization fails with the second pass through. The curved line in the top
of Fig 5.5a is the most likely the reason. One side of the hall is duplicated
during the mapping. The warping of the map is probably caused by a short
range of the vision of the lidar (10 m). The length of the lecture is 18 m.
The wall is modeled by many overlapping measurements, so the small errors
of the individual registrations of the point cloud sum up, and the result is a
curved line instead of the straight one.

The fourth loop Fig 5.5c adds another incorrect fragment into the map.
The scan matching registers the point cloud to one of these three fragments
in the remaining loops.

The final map without using the CAD drawing can be seen in Fig 5.7a.
The areas G, H, I, J refer to the duplicities and the incorrect fragments in
the map.

The fragment creating can be reduced by setting a larger NDT cell size.
On the other hand, the large NDT cell is not able to describe the environment
in the detail.

With CAD drawing

The imported map using the CAD drawing provides a reference model of the
environment for the scan matching. The CAD drawing ensures straightness
of the walls, so the curved line on the top of the map no more occur. The
fragment is not created, and the map is more consistent. The evolution of
the mapping is shown in Fig 5.6.

The final map is shown in Fig 5.7b. The areas K, L, M, N, O refer
to the local duplicities in the map. There are surely more duplicities, but
the marked ones are obvious and clearly observable. The scan matching
sometimes registered the point cloud with the reverse side of the wall from
the reference NDT model using the CAD. The current implementation of the
method is not able to distinguish between the visible and the reverse side of
the wall. Setting the NDT cells to contain both sides of the wall might be a
solution.
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5.2.3 Failure of the algorithm

The scan matching returns transformation between the measured point cloud
and the NDT map regardless of the correctness of the transformation. The
failure of the scan matching leads to the failure of the localization and mapping
in general. The example of the failure is shown in Fig 5.8.

cell_size in the map 0.25 (m)
cell_size for scan matching 0.5 (m)

min_distance 0.2 (m)
min_angle 15 (deg)

Table 5.4: Parameters when program failed.

The grid-based sampling has been tested in this experiment. In the paper
[16], the grid-based sampling is used for the faster scan matching. The number
of points is reduced, the computation of the score function, the gradient, and
the Hessian matrix in the Newtons method takes less time. The measured
point cloud is separated into the grid with 0.125 m cell size and one random
point from each cell is selected so the point cloud with reduced number of
point is created as the input for the scan matching.

Figure 5.8: Example of the failure.

The localization fails in the area P. The rest of the map is shifted as it can
be seen in the area Q. The other failure of the scan matching is in the area
R, where the corridor is registered with the wrong orientation.

The scan matching tends to register the current point cloud with the recent
mapped area. The mapped area from recent history is similar to the current
point cloud. The minimum of the score function Eq 3.10 can be located in
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the wrong position. The mapping of the corridor keeps the wrong orientation
and the reference model using the CAD drawing loses the influence for the
scan matching.

5.3 Practical observations

The setting of the size of cell of the NDT map depends on the environment
where the robot operates. The evaluated experiments have been done in
the office environment (labs, corridors, kitchens, lecture halls). The small
object such as a foot from a chair is commonly observed. These object require
smaller NDT cell in the map for the sufficient descriptiveness. On the other
hand, when the cell is small, the scan matching creates an incorrect fragment
of the map more often. The size of cell depends on the measurement accuracy
(i.e., the parameters of the lidar). This parameter needs to be adjusted
experimentally. The cell size in the office environment has been set to 0.25 m

The conditions for the scan matching computation in the AlgorithmNdtSlam
class (min_distance, min_rotation) have a huge influence on the behavior
of the program. The small values (min_distance = 0.03 m, min_rotation
= 1◦) cause that the current point cloud is registered with a recent mapped
area in the map. The original small error grows, and the process of the
localization and mapping fails. The estimation of the position from the
odometry determines the convergence area of the score function Eq 3.10 and
it might causes convergence to the local minimum, where the method gets
stuck.

The grid-based sampling has been tested as is suggested in [16]. This
speeds up the registration of the point cloud from 242-310 ms to 15-45 ms.
On the other hand, the reliability has been reduced, and the failures have
occurred more often. The grid-based sampling is not used in the program for
this reason, and all points from the measured point cloud are used for the
scan matching.
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5. Experiments .......................................
5.4 Comparison of map with the Gmapping
package

The Gmapping is the popular package for solving SLAM in the ROS. The
Gmapping is based on the Rao-Blackwellized filter in which each particle
carries an individual map of the environment [19]. The Gmapping package
was tested on our experimental platform. The comparison of the Occupancy
maps from the Gmapping package and NDT approach (our) is described
below.

The Occupancy grid map was visualized in the RVIZ tool in the ROS. The
figures Fig 5.9 and Fig 5.10 use following colors. The white pixels refers to
the free space, the black pixels are the measured obstacles, and the green-gray
pixels are the unobserved space.

The size of one pixel in the map from Gmapping package is 0.05 m, and from
NDT package is 0.0192 m. The final maps from two datasets are presented
in Fig 5.9 and Fig 5.10. The Gmapping package describes the environment
with more details even though the NDT package has a finer resolution of
the Occupancy map. The Occupancy map computation by NDT package is
done by discretization of the Gaussian in the NDT cell, so the details of the
environment depend on the size of the NDT cell.

The beam from lidar can be reflected from more than one obstacle, so the
measured is incorrect. The ray tracing causes that the pixels behind the
objects are modeled as free space even though space has not been observed
in reality. This phenomenon can be seen in each of the final maps regardless
of the package.

The maps computed by the Gmapping package in Fig 5.10b is more straight
in the corridors than the map computed by the NDT package in Fig 5.10a.
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(a) : The Occupancy grid map of the lecture hall created by NDT approach.

(b) : The Occupancy grid map of the lecture hall created by the Gmapping
package.

Figure 5.9: The Occupancy grid maps of the lecture hall.
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(a) : The Occupancy grid map created by NDT approach.

(b) : The Occupancy grid map created by the Gmapping package.

Figure 5.10: The Occupancy grid maps.
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Chapter 6

Conclusion

This work has dealt with on-line 2D SLAM solved by Normal Distribution
Transform (NDT) approach. The solution is based on the incremental scan
matching. The implementation takes advantage of using prior information
coming from the CAD drawing provided by Pánek [4].

The implementation uses ROS Kinetic environment and follows the ROS
standard representations of the robot position and the map. The program
has been tested on the Robot Jackal with the lidar Sick TiM361. The results
of the experiment have demonstrated that the prior information about the
environment as the CAD drawing can be used as an initialized map for the
localization and mapping process. The imported map from the CAD drawing
improves results by eliminating the warping in the map and suppress the
appearing of duplicities in the map.
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Appendix A

Structure of CD

ndt_ciirc_slam
CMakeLists.txt
include

ndt_ciirc_slam
algorithm_slam.h

cell_grid.h

ellipsoid_viewer.h

ndt_cell.h
ndt_grid.h

ndt_slam_node.h
occ_viewer.h
point2distro_registration.h

utils
launch

nuc_live_demo.launch
ciicr_slam_testing.launch

maps
ndt_map.txt

package.xml
src

ndt_slam_node.cpp

thesis.pdf
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