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Abstract

An accurate environment perception is a key requirement for automated vehicles. To help ful-

fill this requirement, a promising approach is the semantic segmentation of LiDAR-pointclouds

using neural networks. The acquisition of large amounts of annotated data needed for training

these networks is challenging due to the high cost of manually labeling pointclouds.

In this work, data augmentation is proposed to obtain a high number of annotated LiDAR-

pointclouds without the need of manual labeling. Two augmentation strategies are presented,

the first one being the creation of semi-artificial samples and the second one the application of

label-preserving transformations. Semi-artificial samples are created by automatically extract-

ing objects from a controlled environment and inserting them into scenes where these objects

do not occur.

The results suggest that semi-artificial pointclouds can be successfully used as a supplement

or as a substitution of real data. An intersection over union of 31.7 % can be achieved on a data

set of real world scenes when only semi-artificial pointclouds are used for training. Additionally,

the recall on the real world data set can be increased if the semi-artificial data set is further

augmented with label-preserving transformations.
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1 Introduction

The German Federal Statistical Office registered 3180 fatalities on German roads in 2017. 88%

of all registered accidents can be attributed to human errors. Counting 1507, almost half of all

fatalities affect Vulnerable Road Users (VRU), such as pedestrians or bikers. [STA18] Auto-

mated vehicles bear the potential to drastically reduce the number of road accidents [SHL18].

Worldwide, numerous research institutions and automotive companies devote their research to

automated driving.

An accurate environment representation is fundamental for many automated driving applica-

tions. The ability of an automated vehicle to sense its surroundings is the basis for behavior

generation and trajectory planning. In order to achieve appropriate environment perception, it

is often not sufficient to know the location of surrounding objects, but also to classify them. A

tree on the roadside can require a different behavior than a pedestrian about to walk across the

road.

Sensors based on Light Detection and Ranging (LiDAR) represent a promising supplement

to cameras for environment perception as they are independent of ambient light and able to

provide depth information. A LiDAR-sensor sends out laser beams which are reflected by

surrounding objects. When detecting a reflected laser beam, either time-of-flight or difference

in wavelength can be used to compute the distance between the sensor and the object. The

points of reflection are accumulated in a pointcloud, enabling a 3-dimensional measurement of

the sensor’s surroundings.

Semantic segmentation performs classification on point-level. Typically, it is performed on im-

ages or pointclouds, i.e. a class is assigned to every pixel or every point respectivly. The

method is denoted as one of the key computer vision challenges as it represents the basis

for full scene understanding [GAR17]. It is already used in various applications in automated

driving [ESS09; GEI12; COR16]. Performing semantic segmentation on LiDAR-pointclouds can

therefore play an important role in creating an accurate environment model.

With the recent rise of deep learning, deep convolutional neural networks have become a pop-

ular choice in the whole area of computer vision [LEC15], including semantic segmentation.

These networks prove to have higher accuracy than previous approaches and are better at cor-

rectly processing new data [GAR17]. The decreasing cost of Graphics Processing Units (GPUs)

enables the use of deep learning techniques in automated driving, where large amounts of data

need to be processed in a short amount of time. The availability of sufficient training data is

crucial for the performance of a neural network. Larger amounts of labeled network inputs typ-

ically lead to a better performance. Labeling inputs by hand is prone to errors and is both time

and cost intensive.

Data augmentation is the process of generating additional network-inputs by alterations of ex-

isting data. They can be used to enlarge a data set without the need for additional labeling.
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Exemplary augmentation techniques are rotations or the addition of Gaussian noise. For ex-

ample, rotating the pointcloud of a scene changes the location of points, but the class assigned

to each point stays the same.

Content and Structure of this Work

This master thesis deals with the challenge of automatically creating large labeled pointcloud

data sets while keeping the manual labeling effort as low as possible. A concept to create aug-

mented data is developed. For evaluation, the performance of a neural-network for semantic

segmentation trained on the generated data sets is measured. Therefore, a suitable network

topology for semantic segmentation of pointclouds has to be found. Convolutional Neural Net-

works (CNNs) represent a popular choice in semantic segmentation tasks and are therefore

focused. The pointclouds have to be transformed into a format that can serve as input for the

neural network.

First, state of the art research regarding the topics worked on in this thesis is presented in

chapter 2. This includes a review about current LiDAR-Technology, an introduction to artificial

neural networks as well as a presentation of the most recent progress in data augmentation.

Chapter 3 describes the motivation and derives a research question to study. The concept

developed in this thesis is presented in chapter 4. Furthermore, experiments for evaluation and

the presentation of their results can be found in chapters 5 and 6. A final conclusion and an

outlook are elaborated in chapter 7.
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2 State of the Art

This chapter presents the current state of the art in data augmentation for semantic segmenta-

tion of LiDAR pointclouds using neural networks. First, current LiDAR technology is reviewed.

Then, a brief introduction to the fundamentals of machine learning and artificial neural net-

works is given. Furthermore, recent work about the topics treated in this thesis is presented.

This includes data labeling and augmentation, semantic segmentation and the transformations

of pointclouds to matrices.

2.1 Light Detection and Ranging

The semantic segmentation task examined in this thesis is performed on pointclouds. Those

pointclouds originate from LiDAR measurements. The LiDAR principle is based on a laser diode

sending out pulses which can get reflected by targets. The reflected laser enables computation

of the distance traveled by the laser pulse. Time of flight or phase-shift can be used as the

foundation. Considering the time-of-flight sensors used in this work, using the speed of light c,

the time the pulse is generated t1 and the time the pulse is received t2, the reflection distance r

can be calculated as follows:

r ≈ c · t2− t1
2

, i f c >> v Eq. 2-1

The movements of the sensor and the reflecting object during the measurement, e.g. if mounted

on a moving vehicle, are neglected as the speed of light is much larger in comparison to a

vehicle’s velocity.

By sweeping the laser beam, multiple points within a single plane can be collected.Multiple laser

diodes can be stacked with increasing elevation angles to receive a 3D-pointcloud representing

the sensors environment. Often, the intensity I of the reflected laser beam is measured in

addition to the spatial information. The principle is depicted in figure 2-1. The target coordinates

are typically represented as spherical coordinates. The zenith angle Θ corresponds to the laser

diode’s elevation angle and the azimuth ϕ to the sweeping angle. A representation as Cartesian

coordinates can be obtained by applying following transformation:x

y

z

= r ·

sinΘ · cosϕ
sinΘ · sinϕ

cosΘ

 Eq. 2-2

There are two different approaches used to sweep the laser beams: The first one realizes the

sweeping by rotating the whole sensor around itself. By doing so, a full 360◦ measurement can

be performed. The latter approach does not move the sensor itself but deflects the laser beam,

for example by using a movable mirror [VEL07]. Those sensors can be produced smaller and

cheaper, though they do not provide a 360◦ measurement. Recent research tries to realize

the deflection via Micro-Electro-Mechanical System (MEMS) in order to further reduce size and



2 State of the Art 14

production cost [PAR18]. As sensors produced this way do not have any freely moving parts,

they are often referred to as Solid-State-LiDAR sensors.

As mentioned in chapter 1, LiDAR sensors are a promising supplement to cameras. The sensor

works independently of ambient light and enables an accurate measurements even in long

distances and up to 360◦ around the vehicle. However, similar to cameras, objects can be

occluded. An object reflecting a laser pulse occludes all further obstacles in the laser’s possible

ray behind that object. Therefore, heavy weather conditions are challenging for LiDAR sensors.

A high number of raindrops or snowflakes might prevent that a laser pulse is reflected by an

obstacle, leading to a high number of occlusions and noise.

Alike the automated driving research, LiDAR development is advancing rapidly. 360◦ LiDAR-

sensors are widely used for fully automated driving research. [PAR18] offers a good state-of-

the-art market survey about LiDAR manufacturers. Current sensors, for example as produced

by Velodyne, can evaluate up to 700.000 measurement points per second with a rotation rate of

up to 20 Hz. The azimuth resolution typically is few tenths of degrees. Velodyne offers sensors

with 16, 32 or 64 laser diodes stacked, a 128 version is in the release. However, according to

[PAR18], the only sensor currently used in series consumer vehicles is based on the deflecting

mirror principle and offers a field of view of 145◦. Released in 2017 by Valeo, it has been

implemented in the Audi A8 as a part of the traffic jam assist.

r

Fig. 2-1: LiDAR measurement principle. The distance is computed by a time-of-flight-

measurement. The point of reflection can be represented in spherical coordinates,

with the radius corresponding to the distance r, the azimuth ϕ to the sweeping an-

gle and the zenith θ to the laser’s elevation angle. Image of the sensor taken from

www.velodyne.com.
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2.2 Artificial Neural Networks

As mentioned in chapter 1, neural networks are widely used for semantic segmentation tasks.

As this thesis deals with the augmentation of pointclouds to train neural networks, a brief intro-

duction to Artificial Neural Networks (ANNs) is given in this section.

ANNs are mathematical functions inspired by the human brain [ROS58]. In analogy to its

biological counterpart, the basic building blocks of each neural network are called (artificial)

neurons. A single neuron takes an input vector and processes it into an output scalar. First, a

transfer function computes the weighted sum of the inputs, resulting in the signal z. Together

with a bias b, this signal is then fed to an activation function which computes the neuron’s

output. The output is called activation a. The activation functions of a neuron of an ANN need

to be nonlinear in order for the ANN to model a nonlinear function.. The biological inspiration

behind an activation function is that a biological neuron fires above a certain input threshold

and stays inactive below it [ROS58].

Typical activation functions are step-function, sigmoid-function, tangens hyperbolicus, Rectified

Linear Unit (ReLU), Leaky Rectified Linear Unit (leakyReLU) or Exponential Linear Unit (ELU)

[MEH18]. For a better understanding, they are plotted in figure 2-2.

Summarizing the neuron i in a single function, the activation a can be expressed as follows:

ai = f




w1,i

w2,i
...

wm,i


T

·


x1,i

x2,i
...

xm,i

+bi

= f
(
wi

T ·xi +bi
)

:= f (zi,bi) Eq. 2-3
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Fig. 2-2: Typical activation functions for artificial neurons
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A graphical representation of an artificial neuron can be seen in figure 2-3. Multiple neurons

with individual weights and biases can be combined to form a layer. A neural network is a

combination of multiple neurons forming one or more layers. If multiple layers exist, the outputs

of a layer serve as input for the following one. This way, the output of a neural network is a

chained combination of the networks layers. The first layer of a neural network is called input

layer, the last one is called output layer. Often, the output is also known as the prediction.

Possible layers between input and output layers are denoted as hidden layers. If every neuron

of a layer is connected to all neurons of the following layer, the former layer is called a fully

connected layer. An illustration is depicted in figure 2-4.

x0

x1

...

xm

m
∑

i=0
xiwi f (z,θ) a

input weights transfer
function

signal activation
function

activation

w0

w1

wm

z

Fig. 2-3: Illustration of an artificial neuron. The signal, i.e. the weighted sum of all inputs, is fed

to a nonlinear function creating the neuron’s output.

The output obtained through a certain input combination can be influenced by modifying the

neurons’ weights and biases. By this modification, the neuron can be used for learning. A

model is said to learn if it improves its performance measure P with respect to a task T with

increasing experience E [MIT97]. The experience can appear in the form of data for example.

By using data to modify weights, a neural network can learn a large amount of different func-

tions to solve tasks like regression or classification. The phase of modifying weights is called

training. Receiving outputs for new, unseen inputs is typically called inference. A more detailed

presentation of training neural networks is found in section 2.4 and 2.5.

If a neural network is trained to perform classification tasks, typically each class is represented

by its own output neuron. In an ideal case, the neuron assigned to the correct class shows an

output while all the other neurons stay inactive at zero. However, this is usually not the case and

all outputs show some kind of activity. In most cases, the class belonging to the neuron with

the maximum output is chosen. In order to receive a measure of how good the networks classi-

fication is, a softmax function can be applied to the networks outputs. Softmax is a normalized

exponential function. It normalizes all outputs of a network to positive values between zero

and one. It is therefore used to represent probabilities, i.e. the certainty with which the neural

network predicts its own classification. Considering K output neurons, computing the softmax
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for the activation aout,n of output neuron n looks as follows: [GOO16]

so f tmax(aout,n) =
eaout,n

∑K
i ezi

Eq. 2-4

For neural networks, the term width is used to describe the number of neurons per layer, the

term depth refers to the total number of layers. Therefore Deep Neural Networks (DNNs) are

networks with a high number of hidden layers. Similarly, deep learning referes to the develop-

ment and training of DNNs.

Output

Hidden
layer

Hidden
layer

Hidden
layer

Input
layer

Output
layer

Fig. 2-4: Visualization of a Neural Network consisting of three hidden layers.

2.3 Convolutional Neural Networks

CNNs are neural networks specialized on matrix-like inputs, for example images. As their name

suggests, their operation is based on the mathematical convolution [GOO16]. Fully connected

layers connect every input to every output of a layer with an individual weight. The number of

trainable parameters increases rapidly with additional neurons and layers. Even with today’s

computation power, training networks with many layers can therefore quickly become unfeasible

with respect to time and memory. CNNs reduce the number of total weights by introducing

sparse interactions and weight sharing [LEC89; GOO16].

Sparse interactions abolish the interaction of each input neuron with each output neuron, as

done in fully connected layers. Instead, only a small subset of neighbouring inputs is considered

by a neuron. This subset is referred to as kernel. For example, a 3x3 kernel applied to a single

channel image takes a square of 3x3 pixels of an image as input to a neuron. Hence, a 3x3

kernel can process nine inputs and contains nine weights. This small square as input is often

sufficient to detect small features, like edges for example. By applying the kernel to different

locations of an image, for example by shifting it one pixel at a time, edges can be detected

everywhere in the image. The advantage is the relatively small number of weights needed. In

this example, only nine weights have to be trained, no matter how many pixels an input image

contains.
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Usually, multiple kernels are applied to the same input. Often, the weights in the first layers of a

neural network lead to the detection of low level features like edges, while the latter layers use

these features for a higher level detection, circles for example [GOO16].

The number of pixels the filter is shifted in each step is denoted as stride. Padding describes

how to handle the outermost pixels. Typically, if the filter’s center is located at an outermost

pixel, the filter elements outside of the image are set to zero, namely zero-padding. Using

zero-padding and a stride of one would result in an output of the exact shape of the input.

Figure 2-5 visualizes this process. Setting a larger stride for example might be used to down-

sample an image. A stride of two results in an output with quarter the resolution of the in-

put.

The repeated use of the shifted kernel can be understood as a convolutional operation. A

filter with kernel K applied to an image I produces a so called feature map F with pixel posi-

tions i, j. With respect to equation 2-3 the operation can be described by following formula:

[GOO16]

F(i, j) =
kx

∑
m

ky

∑
n

I(m,n) ·K(i−m, j−n) Eq. 2-5

Performing this operation on the whole Image thus results in a convolution of the filter kernel

across the image, explaining the name origin of CNNs: [GOO16]

F(i, j) = (I ∗K)(i, j) Eq. 2-6

Fig. 2-5: A visual representation of a convolutional layer. The center element of the kernel is

placed over the input vector and convolution is then calculated and replaced with a

weighted sum of itself and any nearby pixels. Taken from [OSH15].

The previously described techniques are not limited to two dimensional inputs. A typical kernel

has a size of kx× ky× c. Thereby, kx and ky describe the above mentioned pixel size of an

input image. Additionally, c represents the depth of an image, for example 3 in an RGB-colored
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image or the height in a pointcloud. While kx and ky, c is therefore fixed by the depth of the

grid-like input. The depth of the output is equal to the number of different kernels used by the

layer.

Layers performing the previously described techniques are the main building block of CNNs.

They are called convolution or convolutional layers. However, other layer types or a combination

of layers types can be used as well. The two most common are pooling and deconvolution

layers, which are explained in the following.

Pooling Layers

As mentioned in the precious section, typical convolutional layers produce an output matrix of

the same width and height of its inputs, only alternating the number of channels. However,

often a reduction of features to train is beneficial. For example, feature reduction plays an im-

portant role in overfitting prevention. Overfitting is presented in section 2.6. In order to reduce

the number of features, i.e. the resolution in image processing, pooling layers can be used

[WEN92]. They make use of a sliding window as well, but they do not contain any trainable

weights. They map a defined number of inputs to one output. The most common pooling oper-

ations are average-pooling or max-pooling. As their names suggest, average pooling computes

the average of the inputs and max-pooling forwards the maximum value [RIE99; OSH15]. A vi-

sualization of pooling is found in 2-6. Even though convolutional layers are able to downsample

the inputs, pooling layers are a popular choice as they do not contain any weights leading to a

larger model to train.

Fig. 2-6: A visual representation of a max-pooling layer. The pooling operation downsamples

the image slice by forwarding the slice’s maximum value. No trainable weights are

used. Modified from [OSH15].
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Deconvolutional Layers

As described in the previous section, pooling layers can be used to perform a resolution re-

duction. In contrast to that, deconvolutional layers are used to increase the resolution. They

take one pixel as input and use a filter with kernel size kx× ky to map it to multiple pixels in the

following layer as visualized in figure 2-7. However, their name is misleading. The operation

performed is not equivalent to the mathematical deconvolution.

Fig. 2-7: A visual representation of a deconvolutional layer. When comparing it to figure 2-5, it

can be seen that the layer performs the opposite operation compared to a convolu-

tional layer. However, this operation does not equal the mathematical deconvolution.

Modified from [OSH15].

Encoder-Decoder Structures

Encoder-Decoder neural networks are a popular design category for the development of neural

network topologies. The key idea is to encode a large amount of inputs into a small number of

features in the middle of the neural network. The features can then be decoded to the output.

Encoder-Decoder networks are often used for semantic segmentation of images [BAD17]. The

image is downsampled, possibly multiple times, to reduce the number of features. This part

of the network is called encoder. The encoder is followed by the decoder, which increases the

number of features by upsampling. Eventually, downsampling and following upsamling produce

an output of the same height and width as the input image. By encoding the image into a

small number of features, the neural network is forced to learn the most important features of

an image. For facial recognition, this could be a detected nose, an eye or also features not

recognizable by humans.

2.4 Taxonomy of Learning Tasks

Machine learning tasks can be broadly divided into three categories: Supervised learning,

unsupervised learning and reinforcement learning.



2 State of the Art 21

In supervised learning, both the inputs and desired outputs are known during training. The

known outputs are called ground truth. The machine learning model’s output is compared to

the ground truth using an error function [LEC15]. The models parameters can be modified in

order to reduce the discrepancy between ground truth and prediction. Typical use-cases for

supervised learning are classification or regression tasks. Typically, the weights are initialized

randomly.

In unsupervised learning tasks, ground truth values are unknown or do not exist. The machine

learning model learns to find correlations or patterns in the data set. The unsupervised learning

task best known is clustering [MEH18].

Models trained by reinforcement learning adapt their parameters by receiving a reward for their

output instead of a ground truth. An error function is not given in this type. During the training

process, the models parameters are changed without any prior knowlegde how this modification

might change the received reward. However, by comparing the rewards of different parameter

variations, a model can be learned [SUT98].

2.5 Training Neural Networks

The semantic segmentation task covered in this thesis belongs to supervised leaning. There-

fore, this section will focus on training of neural networks for supervised learning. As explained

in the previous section, an error function is used to compare prediction and ground truth in order

to adapt the networks weight.

Various possible error functions exist for different purposes. A typical error function for regres-

sion tasks is a simple Mean Square Error (MSE). It punishes the distance between prediction

and ground truth. For the prediction ŷ, the ground truth y and the numer of outputs n, MSE can

be expressed as [MEH18]:

LMSE(y, ŷ) =
1
n

n

∑
i
(yi− ŷi)

2 Eq. 2-7

Cross entropy is a common error function used in classification tasks. The error L with predic-

tion ŷ and ground truth y can be described as:

Lcross entropy(y, ŷ) =
1
n

n

∑
i

yi · log ŷi Eq. 2-8

A classification model typically outputs probabilities for possible classes, as explained when

introducing softmax in section 2.2. The model therefore learns a probability distribution. Cross-

entropy is a measure for comparing how similar two probability distributions are. It is there-

fore a good loss function to compare the ground-truth distribution with the network’s output.

[GOO16]
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The most common technique to optimize the weights is called Gradient Descent (GD). The key

idea of GD is to compute the gradient of the error function with respect to the weights and to

descend the error function along this gradient. The factor to scale the weight changes is called

learning rate λ . The simplest form of GD can be described as follows:

wt+1 = wt −λ · ∂L(y, ŷ)
∂wt

Eq. 2-9

Gradient computation and weight adaption are then performed on the whole data set. An

iterative method to modify the weights is called Stochastic Gradient Descent (SGD). Instead of

the whole data set, randomly selected samples are grouped into batches. The weight adaption

is then performed on those batches iteratively. Iterating through all batches once is defined as

an epoch and done repeatedly during training. Not performing GD on the whole data set leads

to less memory demand at one time as the gradient for fewer samples has to be computed at

the same time.

Calculating the gradient demands expensive computations as multiple layers lead to terms with

long chains of weights. Today’s most common approach for gradient computation is called

(Error-)Backpropagation (BP). [RUM86] paved the way for using BP for the adaption of weights

in neural networks. As BP is used successfully in most neural networks, it is used in this thesis

as well. Therefore, the idea behind BP is briefly presented below.

Instead of computing the whole gradient at once, the error at the end of each layer is computed

recursively from the last to the first layer. As the input and current weights are given, the signal zi

as well as the activation ai = f (zi) is known for each neuron in the network.

As mentioned in section 2.2, the outputs of a layer l serve as inputs for its following layer l +1,

with the exception of the output layer lout . The weight vector connecting the layer l with neuron

n of the following layer l + 1 can be described as wl,n
t . For the sake of a better understanding,

backpropagation is presented for a neural network with a single output trained using MSE.

Regarding only the output layer l = lout , the weight change ∆w in equation 2-9 can be rearranged

to the following formula, introducing the error signal δ :

∆wlout ,n
t =−λ · ∂L

∂wlout ,n
t

Eq. 2-10

=−λ · ∂L
∂alout ,n

· ∂alout ,n

∂ zlout ,n
· ∂ zlout ,n

∂wlout ,n
t

Eq. 2-11

=−λ ·δ lout ,n · ∂ zlout ,n

∂wlout ,n
t

Eq. 2-12

Using the fact that the activation of a layer serves as input of the following layer, derivating the

last factor of equation 2-12 leads to the following formula, for all layers:

∂ zl,n

∂wl,n
t

=
∂
(
(wl,n

t )T · xl,n
)

∂wl,n
t

= xl,n = al−1 Eq. 2-13
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As mentioned before, the activations in the networks are all known by propagating the input to

the output. Regarding equation 2-11, it can be seen that all variables needed for computing

the error signal δ lout ,n for the neurons of the output layer are known. The loss function directly

depends on the last layer’s activation. Hence, the loss function and the activation function can

be derived without further previous computations. For the sake of simplicity, an example is

given using MSE as loss function:

δ lout ,n =
∂L

∂alout ,n
· ∂alout ,n

∂ zlout ,n
Eq. 2-14

=
∂
(1

2(y−alout ,n)2
)

∂alout ,n
· ∂alout ,n

∂ zlout ,n
Eq. 2-15

=−(y−alout ,n) · f ′(zlout ,n) Eq. 2-16

The influence of activations from hidden layers on the error function is however more com-

plicated. To receive δ l,n, the error signal can be propagated backwards through the net-

work:

δ l,n =
∂L

∂al,n ·
∂al,n

∂ zl,n Eq. 2-17

=

(
∑
nnext

∂L
∂al+1,nnext

· ∂al+1,nnext

∂ zl+1,nnext
· ∂ zl+1,nnext

∂al+1,n

)
· ∂al,n

∂ zl,n Eq. 2-18

=

(
∑
nnext

δ l+1,nnext ·wl+1,nnext

)
· ∂al,n

∂ zl,n Eq. 2-19

In summary, BP can be described as follows: First, an input is passed through the neural

network, leading to a computation and storage of all activations and the output. Afterwards,

the error signal for the output layers is computed. This error signal can be used to modify

the weights of the last layer. Additionally, the error signal is used for the computation of the

preceding layer’s error signal. By passing the error signal from the output layer to the input

layer step by step, the partial derivatives of the error function with respect to all weights can be

computed and used for the weight update.

2.6 Capacity, Under- and Overfitting

The previous section explained how weights can be modified in order to reduce the error the

model produces on the training data. As a matter of fact, achieving low errors on the training

data is usually not sufficient for a well trained neural network. The ability to perform well not only

on the training data, but as well on new data is crucial. This ability is known as generalization.

Performance on training and new data can be described by the two terms underfitting and

overfitting. Not being able to achieve a low training error is known as underfitting [GOO16].

The state of performing well on training data but showing missing generalization capability is

known as overfitting. [GOO16] offers a definition and shows strategies how to deal them during

training. Therefore, it will be the basis of the following explanations.
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Capacity describes a model’s capability to learn complex prediction rules. A model of poor

capacity might not be able to learn suitable prediction rules for its training data. However,

increasing the capacity too far might enable the model to learn every input/output combination

directly, including outliers and noise, instead of finding a proper rule. They therefore show a high

bias towards the characteristics of the training data set. A capacity trade-off between under-

and overfitting has to be found. This trade-off is visualized in figure 2-8.

Fig. 2-8: Illustration of over- and underfitting with a model trained to separate circles and trian-

gles.. A model underfitting has not enough capacity to separate the areas containing

triangles from the ones containing circles. However, adding too much capacity leads

to a perfect separation in this case, but from the plot it can be seen that the model

learned to consider noise and outliers as well. A model of suitable capacity is able to

find a decent separation border, accepting some errors due to noise or outliers.

In order to detect an over- and underfitting model, the available data set is typically divided into

two parts. The first part is used for the purpose of training the neural network. The second

part is never directly used for weight modification and can therefore be used to estimate the

performance on new data. Due to their purposes, the former part is called training data set

and the latter is called validation data set. After each epoch, the loss is computed for both the

training and the validation samples. In the beginning of the training, both training and validation

error should decrease each epoch. If, during the training process, the validation error begins to

rise while the training error still keeps falling, the model starts overfitting.

Techniques aiming to increase generalization are collected under the term regularization. One

possible approach is to reduce the model size, for example by removing layers or single neu-

rons. However, this reduction has to be tuned carefully to not result in an underfitting neural

network. Another strategy is to stop the training phase when overfitting is detected, i.e. im-

mediately when the validation error starts to rise. This method is referred to as early stop-

ping.

Ensemble learning can be used as well. Ensembles are a committee of multiple models which
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are possibly over- or underfitting. The individual predictions are then used to form a combined

decision, for example by voting. This way weaknesses of an individual model can be com-

pensated by other models. However, this approach gets unfeasible for large neural networks

[SRI14]. A technique inspired by ensemble learning is called dropout. [SRI14] proposes to

randomly deactivate some neurons and their corresponding weights during each epoch of the

training process. In each epoch of the training, a different combination of neurons is deacti-

vated. Dropout is only used during the training process and deactivated afterwards. According

to [SRI14], the trained network can be seen as a combination of multiple thinned out networks

and can therefore be understood as an alteration of ensemble learning.

In addition to presented techniques, the model’s capacity can be controlled by punishing large

weights within the error function. As mentioned in this section, capacity rises with increasing

weights. If the weights are present in the error function, the model learns to keep weights, and

thus the capacity, as small as possible if they do not lead to a considerable performance gain.

A common approach to add the weights into the loss function are the L1-norm or the L2 norm,

scaled by factor α. Adding the L1-norm is known as Lasso regularization, adding the L2-norm

as ridge regularization respectively [POL19]. Ridge and Lasso regularization for the example

of cross-entropy are shown in the following formulas:

Lasso : Lcrossentropy(y, ŷ,w) =
1
n

n

∑
i

yi · log ŷi +α ·∑
i
|wi| Eq. 2-20

Ridge : Lcrossentropy(y, ŷ,w) =
1
n

n

∑
i

yi · log ŷi +α ·
√

∑
i

w2
i Eq. 2-21

Despite all regularization techniques, the training data set still plays a key role in model overfit-

ting. A neural network is only capable to generalize if the data set used for training is reflecting

the data of its use-case properly. A larger amount of training samples often leads to a better

representation of the use-case. This can be reasoned with the law of large numbers [EVA04].

[GOO16] describes training the model on a larger amount of data as the best way to prevent

overfitting.
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Fig. 2-9: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

An example of a thinned net produced by applying dropout to the network on the left.

Crossed units have been dropped. Taken from [SRI14].

2.7 Semantic Segmentation

Measuring the distance of the vehicle to surrounding objects is not sufficient for many auto-

mated driving tasks. To plan a vehicle’s trajectory, it is important to know which kind of objects

are being measured. As described in chapter 1, a tree on the roadside may require a different

behavior than a pedestrian about to walk across the road. Therefore, the measurements have

to be classified.

Semantic segmentation describes the point-wise classification of a data sample. It has been

mainly applied to images so far, but finds more and more applications on pointclouds.

Due to the importance of scene understanding, semantic segmentation has been studied exten-

sively. It has been tackled both with "traditional" computer vision methods as well as machine

learning techniques. In many fields of computer vision, neural networks have proven to outper-

form all "traditional" approaches for many public data sets [THO16; GAR17]. Therefore, the fol-

lowing section focuses on presenting state-of-the-art research on semantic segmentation using

neural networks. In the beginning of semantic segmentation research, the field of application

was focused on images. Later, it was expanded to 3D-images and pointclouds, benefiting from

the experinces made on images. Therefore, the following section reviews semantic segmen-

tation on both images and pointclouds. A more detailed review of state-of-the-art research in

semantic segmentation using deep learning can be found in [GAR17].

The neural network which paved the way for deep learning in semantic segmentation is called

AlexNet [KRI12]. It demonstrates the capabilities of neural networks by winning the ILSVRC

image classification challenge in 2012 [RUS15] with an accuracy of 84.6%. The best non-deep

learning competitor only achieves 73.8%. [KRI12] attributes the success to the use of a high

number of layers in the neural network. An additional major contribution made by the authors
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is the outsourcing of the training to GPUs, which makes the computationally expensive deep

learning feasible.

One year after AlexNet, [SIM14] introduced VGG-16 which consists of 16 convolutional layers

instead of AlexNet’s five. VGG-16 is still a popular model today achieving an accuracy of 92.7%

on the ILSVRC image classification challenge. GoogLeNet won the ILSVRC challenge in 2014

with an accuracy of 93.3% by introducing inception modules [SZE15]. The key idea is to not

only combine multiple layers sequentially, but also in parallel.

Fig. 2-10: A residual block as used in ResNet. A skip connection adds the block’s input to its

output. Taken from [HE16].

The idea of non-purely sequential network layers is also picked up by Microsoft’s ResNet which

uses so called residual blocks. Residual blocks are a combination of a few convolutional layers

using a skip connection. This skip connection sums the block’s input to its output, as depicted

in figure 2-10. If all weights are initialized to zero, the input is simply passed to the output.

The residual block only needs to learn features to add on top of the previous layer in order to

reduce the model loss, i.e. they only learn the residual. The idea is that learning the resid-

ual is easier than learning the full input-output mapping [HE16]. Resnet consits of 152-layers.

With today’s wide availability of affordable GPUs, even networks as deep as ResNet can be

trained in a reasonable amount of time. [POH17] uses a ResNet based neural network archi-

tecture to perform semantic segmentation of road scenes for automated driving. The network

is easily trainable and reaches high performances on the City Scapes data set. This data

set is one of the most popular and widely used image data sets for semantic segmentation

in automated driving [COR16]. The network is named resnet-like due to its usage of residual

blocks.

However, both training duration and memory demand of trained models are growing rapidly with

increasing number of layers. In order to reduce the model size, [IAN16] propposes SqueezeNet,

a network that reaches the same performance as AlexNet while reducing the number of param-

eters to train by a factor of 50, resulting in a model size of less than 0.5 MB. Too large models

can lead to problems when embedding them in mobile real-time systems, as needed in auto-

mated driving for example. The size reduction is enabled by so called Fire modules as seen in

figure 2-11. Fire modules consist of two layers: A squeeze and an expand layer. The squeeze

layer consists of convolution filters with a kernel size of 1x1 while the expand layer is a combi-
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nation of 1x1 and 3x3 convolution filters. The idea behind this is to reduce the kernel size as

much as possible without loosing performance. For example, a 3x3 filter has 9 times as much

trainable weights as a 1x1 filter. In addition to that, the squeeze layer in front of the expand layer

can be used to reduce the number of input channels for the larger expand filter. The smaller

kernel size can be balanced by a slightly higher layer number. Additionally, SqueezeNet makes

use of skip connections inspired by ResNets. [IAN16]

Input Input

Fire Module Defire Module

1x1 convolution
s1x1 filters

deconvolution
double resolution

1x1 convolution
e1x1 filters

3x3 convolution
e3x3 filters

concatenate

Output

1x1 convolution
s1x1 filters

1x1 convolution
e1x1 filters

3x3 convolution
e3x3 filters

concatenate

Output

Fig. 2-11: Fire module introduced by SqueezeNet. It consists of a squeeze and an expand

layer. The squeeze layer consists of convolution filters with a kernel size of 1x1 while

the expand layer is a combination of 1x1 and 3x3 convolution filters. A Defire module

has an additional deconvolution layer between squeeze and expansion layers. This

deconvolution upsamples the input to have four times the original resolution. The

number of filters used is denoted as s1x1 for the squeeze layer. For the 1x1 and

3x3 filters in the expansion layers, the number of filters is described by e1x1 and e3x3

respectively.

After the success of applying deep neural networks to semantic segmentation of images, there

have been many attempts to apply the same techniques to 3D-pointclouds. Some problems

have to be considered when transferring semantic segmentation from the image to the point-

cloud domain. First, pixels representing an image are sorted in an array like structure and

therefore have a predefined structure. Pointclouds however are just a set of points without spe-

cific ordering. In addition to that, pointclouds are typically sparse and of heterogeneous density.

As mentioned before, CNNs demand a matrix-like input.



2 State of the Art 29

In order to still use the popular convolutional neural networks, most researchers try to transform

pointclouds to a matrix-like shape [POH17]. Classical convolutional layers can be used if the

additional third dimension is treated as a channel of an image, Instead of red, green and yellow

in RGB images, there would be height intervals for example. There are also specific volumetric

convolutional layers [JI13] which show a better ability to process the spacial information but

are computationally more expensive [POH17]. A popular choice of network architecture are

encoder-decoder structures [MA18; ZHA18; JAR18] and architectures developed originally for

images [BEL18]. Encoder-decoder structures are a combination of convolutional, pooling and

upsampling layers. [WU17] took inspiration from SqueezeNet and developed a network for

semantic segmentation of pointclouds using Fire Modules. Due to its origin, the network is

called SqueezeSeg.

Pointnet bypasses the pointcloud transformation by taking the raw pointcloud as direct input.

The developers of Pointnet take advantage of the symmetry of the maxpool operation which

simply takes a maximum characteristic of a subset of points. According to [CHA17], the most

relevant point of a subset can be selected and new features for this point can be computed to

use in the next maxpool operation.

2.8 Pointcloud Transformations for Convolutional Neural Networks

As mentioned in the previous section, pointclouds have to be transformed into image-like

shapes, i.e. matrices, if convolutional neural networks are used. When choosing a suitable

transformation, multiple aspects have to be considered. The transformation should lead to

preferably dense representation of the pointcloud. The resulting matrix should have dimen-

sions as small as possible while preventing the loss of too much original information. The

computation time for the transformation should not be too high either if the prediction is used in

time-critical applications as automated driving for example.

By dividing the pointcloud’s Cartesian coordinates into cuboid voxels, the pointcloud can be rep-

resented as a 3D grid map. With a voxel size of lx× ly× lz and maximum considered distances

dmaxx , dmaxy and dmaxz , the grid map’s dimensions are dmaxx
lx
× dmaxy

ly
× dmaxz

lz
. Each voxel may contain

one ore more characteristics computed from the points belonging to that voxel. For example,

the total number of points or the maximum, the average or the accumulated intensity of LiDAR

points are possible characteristics. If RGB-images are fused with the pointclouds, color values

can also be assigned to each voxel. The advantage of this transformation is that visualizing

the resulting grid map gives a very simple and concrete depiction of the underlying pointclouds.

However, this simple representation typically leads to very large and sparse matrices. Many

different transformations and characteristics exist for different applications. The two most com-

mon and recent representations are presented in the following.

[BEL18] introduces a bird’s eye view representation. The x and y coordinates are computed as

mentioned above while the third dimension already encodes the cells’ characteristics. Three

characteristics are used: Maximum height, mean intensity and the number of points divided by

the maximum possible number of points. The normalization of the third characteristic makes
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the representation independent of pointclouds of different densities, for example arising from

different LiDAR sensors. By sparing the voxelization of the z-dimension, this representation

becomes denser. However, the representation loses a lot of information of the point distribution

in the z-Axis.

Instead of using a Cartesian representation, [WU17] used spherical coordinates. The first

two dimensions of the resulting matrix are discretized azimuth and zenith angles. Again, the

third dimension holds characteristics, in this case x, y and z coordinates, intensity and range

r =
√

x2 + y2 + z2. As mentioned before, LiDAR pointclouds often already contain azimuth and

zenith angle. If they are not available, they have to be computed as follows:

(
θ
ϕ

)
=

arcsin
z√

x2 + y2 + z2

arcsin
y√

x2 + y2

 Eq. 2-22

[LI16] uses a similar transformation but only considers the height z and distance d =
√

x2 + y2

as characteristics.

2.9 Labeling Data Sets

Point-level classification, as done in semantic segmentation, requires point-wise labeling of the

training data set. The annotation is typically performed by a human annotator. Therefore, it is a

task which is both time-consuming and prone to errors. Many researchers try to reduce the cost

of the labeling process by developing interactive annotation tools [YUE18]. These tools aim to

reduce the amount of time spent for each labeled input as well as increasing the accuracy of

the point-level annotations.

An example for an interactive labeling tool used in the field of automated driving is the one

used to annotate the City Scapes data set [COR16] mentioned in section 2.7. The tool enables

a segmentation of the image by defining polygon vertices. It provides very basic function like

zooming and merging of polygons in order to support a human annotator. Still, tools providing

only basic functionalities for the labeling process are predominantly used. However, there are

efforts done to find more sophisticated methods to reduce labeling cost.

One approach is progressive refinement proposed by [KOP11]. The concept of progressive re-

finement is to gradually divide the points into groups which can be labeled at once. The amount

of instances to label can therefore be reduced and time is saved. [VEI14] advances this ap-

proach and introduces a multi-touch device to facilitate the annotation process.

[SHA12] as well as [WON15] suggest using automated proposals. Instead of labeling the com-

plete input, the annotator only has to correct the proposed labeling. [BOY14] enhance this

approach by introducing group labeling. An algorithm selects similar objects to annotate at

once.
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2.10 Data Augmentation

Data augmentation is a popular technique to increase the size of a training data set without the

need to obtain and label further samples. The key idea of most augmentation techniques is to

apply label-preserving transformations to a sample. The transformed element is then treated

as a new sample and added to the data set. [GOO16] describes the development of suitable

augmentation techniques as a key process in the development of new neural networks. Aug-

mentation is mainly used on image data sets as efficient image-processing techniques already

exist to apply the necessary transformations. However, most key ideas can also be applied

to pointclouds. For this reason, the state of the art in image and pointcloud augmentation is

presented in this chapter.

First image augmentation techniques are introduced by [SIM03]. Images are distorted to create

additional training samples for the popular MNIST digit recognition data set [LI 12]. A convolu-

tional neural network trained on the distorted images outperforms other algorithms for number

classification on the MNIST data set available at that time. The effectiveness of creating further

samples using augmentation implies that the MNIST database is too small for most algorithms

to infer generalization properly [SIM03]. In addition to that, the paper is able to show that neural

networks are outperforming other machine learning techniques in the area of pattern recognition

and contributes to today’s dominance of neural networks in this field.

[KRI12] adds flipping of the images as well as modifications of the individual RGB-values and

applies them to the ImageNet data set. ImageNet consists of over 15 million images [DEN09].

Even on this large data set, performance is improved by using data augmentation to prevent

overfitting of the trained neural network.

[SIN18] presents a complementary image augmentation technique. Random patches are added

to images in order to hide random areas. The intention behind this technique is to prevent a

neural network from focusing on single characteristics of an image, for example the face of a

person. Hiding the face in some samples forces the neural network to consider other parts of a

human as detection characteristics.

Data set augmentation is mainly used on image data sets as efficient image-processing tech-

niques already exist. Multiple augmentation libraries have been developed, for example aug-

mentor by [BLO17] and albumentations by [BUS18]. These libraries enable an easy to use

and quick augmentation that is even possible online during the training process. However,

not all available techniques are suitable for every data set. Finding a beneficial augmenta-

tion strategy requires experience, a good knowledge of the data set and sometimes trial and

error. Applying rotations onto MNIST for example result in sixes and nines being indistinguish-

able.

Smart Augmentation is introduced by [LEM17]. The key idea of Smart Augmentation is to learn

suitable augmentation techniques rather than manually engineer. A network is trained to learn

which augmentation techniques lead to the highest performance gain. To keep the possible
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combinations of augmentation techniques feasible, a number of techniques to choose from is

predefined.

As mentioned in the beginning of the section, most key ideas can also be applied to pointclouds.

They can be translated, rotated, flipped or scaled in order to augment them. Some pointclouds

contain further information, e.g. the intensity in LiDAR pointclouds. These characteristics can

be augmented individually. This is comparable to the described rgb-value modification in im-

ages. Combinations of these techniques are often combined as demonstrated by [LI16; BEL18;

ZHO18].

[BEL18] used those transformations to tackle a problem in the data of the widely used KITTI

data set [GEI13]. For its LiDAR pointclouds, KITTI only provides annotations in the camera’s

field of view 90◦ in front of the measurement vehicle. By rotating the annotated points by 90◦,

180◦ and 270◦, he was able to train a model for 360◦ environment perception.

A recent approach in pointcloud augmentation consits of the modification of only those points

belonging to an object. [ZHO18] uses this technique to slightly change the exact position of

the objects in the scene. He used the LiDAR pointclouds and their 3D bounding boxes as

data set. For each bounding box individually, he identified the points lying within this bound-

ing box. Then, he assigned a random rotation and translation to each of those identified

points. The rotational and translational parts were thereby sampled from a Gaussian distri-

bution.

The previously described techniques are all based on the traditional idea of data augmenta-

tion: Performing label preserving transformations on existing data samples. A different, more

sophisticated approach is fusing existing samples to create a new, semi-artificial one. [CHA02]

introduces Synthetic Minority Over-Sampling Technique (SMOTE) where samples can be fused

by simply computing their average. The idea of creating semi-artifical samples can be applied

to images as well. In pixel-wise labeled images, pixels belonging to the same instance can

be easily extracted. Those extracted pixels can then be inserted into another labeled images,

preferably with a low amount of dynamic objects [LAM18; GRO18]. For example, pixels belong-

ing to pedestrians can be extracted from multiple images and be inserted into an image of an

empty road. This way, a scene crowded with pedestrians can be simulated. To our knowledge,

this approach has not been transferred to pointclouds yet.

2.11 Clustering

After performing semantic segmentation on pointclouds, each point has an assigned class.

However, in many applications it is necessary to divide the points of the same class into objects.

For example, for an automated vehicle detecting 1000 points belonging to the class pedestrian,

it is crucial to know how many pedestrians these points represent.

Clustering describes the grouping of data into subsets of somehow similar points. The measure

of similarity is thereby not fixed and can differ depending on the type and distribution of the data.

For LiDAR pointclouds, this measure could be the spatial distance of points, for example. The
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subsets created are called clusters. Clustering is solely based on the features of a data set,

labeling is not needed. Thus, clustering belongs in the category of unsupervised learning. A

visualization of a simple example is found in figure 2-12. It is a very broad area of study and

many types of clustering algorithms exist. In this section, focus is set on the two algorithms

most widely used: K-means and mean-shift.

Unclustered Data Set

feature 1

feature 2

Clustered Data Set

feature 1

feature 2

Fig. 2-12: Visualization of clustering. For example, this simple data set with two features can

be divided into two clusters.

K-means clustering is one of the oldest and simplest clustering algorithm. The number of

cluster K, into which the data set is divided has to be defined prior starting the algorithm. K-

means clustering then computes K cluster centroids. Each data point is assigned to its nearest

centroid, thus creating clusters [MAC67]. To cluster spatial data, like pointclouds for example,

euclidean distance is typically chosen to detect the nearest centroid. However, other distance

measures are possible.

In order to compute the cluster centroids, random centroids are initialized and then iteratively

shifted. First, the points of the data set are assigned to their nearest centroid. Then, a new

centroid of each cluster is computed by computing the mean value of all points belonging to

a cluster. Shifting the centroid leads to another assignment of points to centroids. Shifting

the centroids by computing the mean and reassigning points to cluster is repeated until the

cluster assignment does not change anymore. Optionally, a criterion for abortion can be de-

fined.

While K-means clustering is a powerful and computationally cheap algorithm to perform clus-

tering, the number of clusters has to be predefined. However, it is not always easy or possible

to define the number of clusters a priori. Mean-shift clustering is able to perform clustering with-

out predefining the exact number of clusters [COM02]: A (possibly high) number of randomly

positioned centroids is initialed. Instead of now assigning all points to their nearest centroid, a

region of predefined size around each centroid is considered. For each centroid, the mean of

all points lying in this region is computed an the centroid moved towards the direction of this

mean, scaled by a factor. This means, that some points are used multiple times for the mean

computation and some are not at all. The centroids converge to regions of locally high density.
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As a high number of initial centroids exists, some might converge to a similar position. If the

centroids overlapped after they converged to a position, only the one with the higher number of

points inside its region is mantained. Afterwards, each point is assigned to its nearest centroid

[COM02]. As mentioned, mean shift does not demand to define a number of cluster a priori.

However, this comes at the price of higher computation cost, as a high number of centroids is

used.

2.12 Metrics for Performance Evaluation

In order to evaluate the performance of a neural network, metrics have to be defined. The

error function used during training might not always be suitable for evaluation. Cross-entropy

for example is a popular and effective loss function to train a neural network. However, it

does not lead to a well comparable scale and is a very abstract evaluation metrics. Metrics

with fixed scales (for example between zero and one) and easily interpretable might be more

suitable for performance evaluation. Additionally, it is often beneficial to use multiple met-

rics.

Considering semantic segmentation, typical metrics used are precision, recall and intersection-

over-union. They are all based on an error matrix which is called confusion-matrix and depicted

in table 2-1. It consists of four categories describing the comparison of prediction and ground

truth:

true positive (tp): The network correctly correctly detects the class to be evaluated.

false positive (fp): The network mistakenly detects the class to be evaluated.

false negative (fn): The network mistakenly rejects the class to be evaluated.

true negative (tn): The network correctly rejects the class to be evaluated.

If more than two classes exist for prediction, the confusion matrix is usually computed for each

class individually. The per-class results can then be averaged.

ground truth: yes ground truth: no

prediction: yes true positive false positive

prediction: no false negative true negative

Tab. 2-1: Confusion matrix for a binary classifier.

The individual values in the confusion matrix can be used in order to compute metrics that eval-

uate the performance of the examined neural network. Typically, multiple metrics are taken into

consideration when assessing performance. Using only one single index is often not appro-

priate to judge predictions based on unbalanced data sets. In this work, precision, recall and

intersection over union will be used for evaluation.
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Precision: The precision of a neural network is the relation of true positives to the total num-

ber of detected positives. It therefore describes how reliable the model’s predictions are. Its

value can therefore be calculated as follows:

precision =
t p

t p+ f p
Eq. 2-23

However, precision does not take false negatives into account. Assuming an automated vehicle

trying to pass a crosswalk, not considering false negatives regarding pedestrians crossing the

street can arise problems. It is critical to detect every pedestrian in front of the vehicle to prevent

accidents, thus there should be no false negative detection. It is no critical problem that creating

such a sensitive detector results in some more false positives, as falsely detecting a pedestrian

only leads to waiting longer at the crosswalk.

Recall: In order to compensate the weakness of precision, recall can be taken into account.

The recall, also called true positive rate, of a neural-network describes the relation of true posi-

tives to the real number of positives and can be computed by the following formula:

recall =
t p

t p+ f n
Eq. 2-24

It therefore describes how reliably a classifier detects positive ground truths. In contrast to pre-

cision, recall does not consider false positive detections. In the scenario mentioned above, not

considering false positives at all could lead to an automated vehicles falsely detecting pedes-

trians everywhere, making driving impossible. This is the reason why both precision and recall

need to be used for evaluation.

Intersection over Union: A metric often used in semantic segmentation is the intersection-

over-union (iou). This metric evaluates how much prediction and ground truth overlap in relation

to their size. It is also called Jaccard index and is computed as follows:

iou =
| prediction ∩ groundtruth |
| prediction ∪ groundtruth |

=
t p

t p+ f p+ f n
Eq. 2-25

It takes both false positives and false negatives into account and is well suited to evaluate

semantic segmentation for automated driving tasks. Intersection over union is used as the

main evaluation metric in this work as it is presumably the most common metric to evaluate

semantic segmentation. Precision and recall are studied additionally as they might point out

where weaknesses of the model originate from.
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3 Motivation and Research Question

As described in chapter 1 and 2, this work aims to develop and evaluate a concept for data aug-

mentation techniques applicable to LiDAR-pointclouds. The motivation behind this is the high

difficulty to obtain a large amount of high quality, point-level annotated pointclouds needed

to train a neural network. This thesis aims to use the developed concept for augmenta-

tion to create large data sets of annotated pointclouds without the need of manual label-

ing.

Sections 2.5 and 2.6 describe how neural networks are trained and why many high quality

training samples are crucial to train a suitable model. Data augmentation creates additional

samples without the need for further human annotation. When developing a concept for point-

cloud operation, inspiration can be taken both from state of the art pointcloud augmentation

and from image augmentation which is already well studied. The concept is developed and

evaluated in this work, aiming at answering following research question:

Which augmentation techniques can be applied to LiDAR-pointclouds in order to

increase the performance of a neural network that performs semantic segmentation

on these pointclouds?

The augmentation techniques used in this work can be divided into two groups. There are aug-

mentation techniques in the traditional sense, i.e. performing label preserving transformation

on the training samples as presented in chapter 2. Additionally, the creation of semi-artificial

training data can be understood as data augmentation as well. As the creation of semi-artificial

data differs strongly from the traditional sense of data augmentation, this work differentiates

between the two techniques, though they both belong to the field of data augmentation. Re-

garding possible augmentation techniques, studying following question can help answering the

research question:

How does the performance of a CNN trained on semi-artificial samples compare to state-

of-the-art performances of CNNs trained on manually labeled pointclouds from recorded

traffic scences?

Inspired by [LAM18] and [YUE18], whose work is presented in chapter 2, automatically la-

beled pointclouds of objects can be merged with recordings free of objects that shall be clas-

sified. Automatically labeling objects is possible in controlled environments where only the

objects of interest exist. It is then possible to extract these objects based on the height of the

points representing the objects and the proximity of individual points. This technique might

have the potential to drastically reduce or even revoke the need for human annotated point-

clouds.

During the creation of the semi-artificial data set, the number of objects and their insertion

locations can be influenced by choosing different probability distributions. This can be done for
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each class individually. Multiple data sets based on different distributions can be created and

evaluated with respect to the trained network’s performance.

Instead of using objects extracted from measurements of a controlled environment, only labeled

objects of an already existing data set can be used as well. In this case, the objects are inserted

into different scenes of the same data set.

In which way is the the performance of a CNN influenced by traditional augmentation

techniques applied to its training pointclouds?

In addition to merging pointclouds of different recordings, traditional augmentation techniques

can be either applied to the fused semi-artificial samples, to the objects before insertion or to

the empty scenes before insertion. Examples are simple rotations of the scenes, adding noise

to the measurement or simulating occlusion introduced by potential objects that are located

between the sensor and another object.

To which extend do the developed augmentation techniques lead to a supplement or

even substitution of manually annotated pointclouds from recorded traffic scenes?

A direct comparison of semi-artificial samples and recordings of road traffic can be done. To

study how realistic the semi-artificial samples can be produced, a real road traffic scene can

be reconstructed using semi artificial samples. A possible way to do so is to remove all points

not belonging to the background in the real scene. Then, corresponding objects extracted from

the measurements in the controlled environment can be inserted at the exact same position.

This way, it is possible to create a semi-artificial scene in the exact same environment as a real

scene, but with inserted objects.

Additionally, the traditional augmentation techniques can be applied to manual annotated data.

Objects can be split from the background in manually annotated scenes. This leads to a

set of empty scenes and another with objects for insertion. Semi-Artificial samples can be

created. Instead of merging recordings of empty road traffic scenes with objects recorded

in a controlled environment, the sources for the creation originate from the same measure-

ment.
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4 Concept

This chapter explains the concept developed for this thesis. The design process loosely follows

the V-model for systems engineering [OSB05]. The development process is divided into two

parts, the first being the development of the concept itself and the latter one being the evaluation

and testing. This chapter focuses on the left part of the V-model, i.e. the development of a

concept for the augmentation of LiDAR-pointclouds.

First, the concept of operations is presented in section 4.1. Then the requirements to each of

the operations are presented in section 4.2. Then, the design concept is described in section

4.3, again individually for each operations. The evaluation of the concept can be found in

chapters 5 and 6.

Concept
of

Operations

System 
Requirements

Design 
Concept

Integration, 
Verification

Evaluation

Operation

Integration

Fig. 4-1: V-Model for systems engineering. The left part describes the requirements to the

system and the development concept. The right part deals with the verification, eval-

uation, operation and maintenance. Adapted from [OSB05].

4.1 Concept of Operations

Though the scope of this thesis clearly focuses on the development and evaluation of aug-

mentation techniques, a whole system for the semantic segmentation of pointclouds needs to

developed. This system can be divided into five operations: Data recording, augmentation,

pointcloud transformation, model training and evaluation. Though the scope of this work clearly

focuses on augmentation and evaluation, all modules shown in figure 4-2 are crucial for this the-

sis. The measurements needed to create semi-artificial samples have specific requirements.

No data fulfilling this requirements is yet available at the Institute for Automotive Engineering

(IKA). Additionally, no suitable network is yet implemented at the institute, which is why a suit-

able network architecture has to be found. As no network is implemented, a suitable pointcloud

transformation is missing as well. Therefore, the concept developed for each of the five areas

is presented in this chapter.
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Data Recording Augmentation Pointcloud
Transformation

Training Evaluation

Fig. 4-2: The whole developed system as a block diagram. The concept can broadly be di-

vided into five parts: Data recording, augmentation, pointcloud transformation, model

training and evaluation. All parts are presented in section 4.3

4.2 System Requirements

Before starting concept development, requirements for the system developed have to be de-

fined. For each of the operations identified in the concept of operations in figure 4-2.

4.2.1 Data Recording

The setup used record to record training data should be as similar as possible as the setup that

records the pointclouds during inference, i.e. when the trained model is used in an automated

vehicle. As mentioned in section 2.6, this requirement is crucial to receive a model with decent

generalization.

In the context of this thesis, this means that the LiDAR sensor used for measuring should be

mounted at the same position in the vehicle as later during inference. Additionally, measure-

ments should be recorded in similar weather conditions as well as environment types.

In order to examine all points raised in chapter 3, three different types of measurements have

to be recorded:

1. Measurements within a very simple environment, enabling automatic labeling.

This measurement is used to extract objects for augmentation. As stated in chapter 3, objects

within a controlled environment are extracted and inserted into real road traffic scenes.The

motivation behind creating this semi artificial samples is the reduction of labeling effort. There-

fore, it has to be made sure that the controlled environment enables an automatic labeling

and extraction of the relevant objects. Additionally, the extracted object should represent the

whole object class properly. This means recording the objects in different poses, angles and

distances. A pedestrian recorded running produces a different LiDAR pointcloud than walking

or standing. Pointclouds differ if he is recorded from the front or side, wearing a backpack

or not. Additionally, the intra-class variability should be considered during the measurements.

Instances of each class have different sizes and dimensions. Therefore, multiple objects of the

same class should be recorded.

Occlusion of the recorded objects should be avoided as well. Later in the augmentation pro-

cess, it is possible to emulate occlusions by removing points. Recovering occluded areas of an

existing object is much more challenging.
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2. Measurements on public roads, free of objects we want to detect.

This measurement is used to insert the objects extracted from 1. Therefore, the main require-

ment is that the recordings are free from objects the neural network is supposed to detect.

Since the developed semantic segmentation network is supposed to perceive urban environ-

ments, recordings in similar areas should be aspired. Within the scope of urban environments,

data should be recorded of preferably many different environments, i.e. different streets and

varying building density for example. This requirements is challenging as it is difficult to record

urban areas without these kind of objects.

3. Measurements on open roads with objects that can be detected.

This measurement will be used for evaluation of the augmentation techniques. The require-

ments to the recorded environments is identical to 2. Additionally, the measurement should

be performed without drawing too much attention from other road users. Vehicles noticeably

equipped for automated driving, typically draw attention by passing people. This often leads

to unnatural behavior of both vehicles and VRU. Referring to section 2.6, it is important to

record natural traffic to receive a neural network that performs well in future driving applica-

tions.

4.2.2 Pointcloud Transformation

As mentioned in chapter 2, convolutional neural networks need matrix-like inputs. Therefore,

the pointcloud representation of the LiDAR measurements have to be transformed into a ma-

trix. When choosing a suitable transformation, multiple aspects have to be considered. The

transformation should lead to preferably dense representation of the pointcloud. The resulting

matrix should have dimensions as small as possible. However, a trade-off between represen-

tation size and information loss has to be found. The computation time for the transformation

should not be neglected either if the prediction is used in time-critical applications as automated

driving for example. An existing representation presented in chapter 2 can be used if suitable

or a new one can be developed.

Additionally, its beneficial if the transformed pointcloud still enables augmentation. Applying

augmentation techniques after transforming the pointcloud reduces computation time during the

training process. Considering an augmentation technique that creates n additional samples out

of an original one before the transformation results in a computation time of:

ttot,1 = n · (taugment + ttrans f ormation) Eq. 4-1

If augmentation is done after the transformation, the transformation itself only has to be com-

puted once. The computation time reduces to:

ttot,2 = n · taugment + ttrans f ormation Eq. 4-2

= ttot,1− (n−1) · ttrans f ormation Eq. 4-3
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However, modifying the pointcloud directly leads to a wider range of applicable methods. A

trade-off between techniques before and after the transformation process has to be found.

4.2.3 Neural Network for Semantic Segmentation

A neural network capable of semantic segmentation on pointclouds needs to be found. The

search for an architecture is focused on convolutional neural networks, as they are a popular

choice for semantic segmentation of both images and pointclouds. Even though we are looking

for a well performing network, the development time has to be considered when choosing a

suitable architecture. Within the scope of the thesis, we are not seeking to optimize a network

for semantic segmentation. The neural network has to be suitable for the evaluation of the

developed data augmentation techniques. This means we have to make sure changes in the

training data set can both increase and decrease the prediction performance. That is to say

those influences are not restricted by the chosen network.

4.2.4 Augmentation Techniques

As mentioned in chapter 3, the augmentation techniques can be divided into traditional tech-

niques and the creation of the semi artificial data set.

Traditional Augmentation Techniques

The augmentation techniques developed in this work should be applicable individually. This en-

ables parameters of the individual techniques to be varied and examined separately.

Augmentation techniques can be performed both on the pointclouds as well as on their ma-

trix representations. However, it is desirable to focus on the raw pointclouds. As described in

section 2.8, there is a variety of inputs formats that can serve as input for convolutional neural

networks. Different representations possibly demand different implementations of augmenta-

tion techniques, if implementation is possible at all. In contrast to that, techniques applied to

the raw pointclouds can be applied independently of the following transformation or network

topology. This enables a wider relevance of this work’s results. Additionally, it is beneficial if the

developed techniques are applicable onto other kinds of pointclouds with little to no effort. That

applies to either other LiDAR-sensors or other types of pointclouds.

The application of augmentation techniques leads to an increasing prepossessing time during

the training process. The gain should be kept as low as possible in order to preserve a feasible

training time. This can be achieved by developing efficient implementations of the techniques

or by finding suitable simplifications.
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Creation of Semi-Artificial Samples

Before creating the semi-artificial samples, objects for insertion have to be extracted from the

controlled environments. It is not sufficient to label the pointclouds in this environment. Fur-

thermore, it is necessary to know which points belong to the same objects. All points of the

same class have to be grouped into instances. The number of instances might not always be

known, as the objects might for example leave and enter the sensed area during the record-

ing process. This can happen accidentally or by a belated restriction of the measured range.

Restricting the measured range is for example necessary to transform the pointcloud into the

matrix representation used for training.

As the motivation behind the creation of semi-artificial samples is to supplement or substitute

real pointcloud measurements, it should be aimed to produce semi-artificial pointclouds as

realistically as possible. For example, objects should be inserted at reasonable positions. The

most important criterion is that objects are not inserted into obstacles. Simply comparing two

pointclouds is not sufficient to find out if they overlap as pointclouds do not indicate if the space

between two points is occupied or not. For each pointcloud of an object, an area marked

as occupied has to be defined. Then, it is possible to check if any point not belonging to

the object lies within the marked area. However, computing the exact occupied area is not

possible as the pointcloud does not contain this information. A suitable approximation has to

be found.

An additional requirement to the semi-artificial sample is that the insertion process should be

parameterizable with respect to the class of the inserted objects, their number per scene and

their insertion positions.

4.2.5 Evaluation

Evaluation Data Set

The data augmentation techniques developed in this thesis aim to produce pointclouds that can

be used to train a neural network for semantic segmentation. They can serve as both substi-

tution or addition to non augmented pointclouds labeled by a human annotator. As described

in section 4.2.1, a manually labeled, non augmented data set is needed to evaluate to which

extend these semi-artificial pointclouds show this capability. Without a manually labeled data

set, there is no baseline the developed concept can be compared to. This work aims to bypass

the need for human annotations through the creation of semi-artificial samples. However, a

human annotated data set is needed to for evaluation as described in section 4.2.1. As the

annotation of pointclouds requires a lot of effort, a technique facilitating the annotation process

is needed. Section 2.9 shows recent work in data annotation. A labeling technique should be

found that enables the labeling of one pointcloud in just a few minutes.
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Evaluation Metrics

In addition to the evaluation data, suitable metrics have to be defined to evaluate the net-

work’s performance after training with differently augmented data sets. Multiple metrics help

to evaluate the performance from different perspectives. Additionally, metrics that are widely

used for semantic segmentation enable better comparison and integration into other research

projects.

4.3 Design Concept

This section describes the developed concept for each operation showed in figure 4-2. Thereby,

the requirements mentioned in the previous section are taken into account.

4.3.1 Data Recording

Vehicle Setup

An easy integration of the developed system into different research projects at the IKA should

be strived for. Therefore, the institute’s research vehicle sensor setup is used without mod-

ifications on the hardware side for data recording. The vehicle is a Volkswagen Passat CC.

The sensor used in this thesis is a Velodyne Puck VLP-16 LiDAR-sensor on top of the vehi-

cle.

The LiDAR sensor used in this work is a Velodyne Puck VLP-16. It consists of 16 laser beams

with equidistant elevation angles between -15◦ and 15◦. A visualization of the resulting laser

beams is depicted in figure 4-3. Detailed sensor specifications are listed the appendix in table

A-1.

An new coordinate system is chosen to represent all spatial information in this thesis. The x-

axis points in the vehicle’s driving direction, the y-axis perpendicular to its left, parallel to the

ground. The z-axis points in the normal direction to the ground, forming an orthogonal system

as visualized in figure 4-4.The whole system moves with the vehicle. The origin is located

vertically under the LiDAR sensor at ground level:

O = (x = xsensor |y = ysensor |z = 0) Eq. 4-4

The measurement vehicle used in this thesis was already equipped with a measurement system

to record the pointclouds of the LiDAR sensor. The measured points belonging to one 360◦

sweep of the LiDAR sensor were collected and sent out at once. Each point is characterized

by 7 coordinates. The tuple of each point contains the x,y and z coordinate, the intensity of the

reflected laser beam I, the azimuth ϕ, the measured distance r and the index of the laser which

measured the point nlaser:

P = (x, y, z, I, ϕ, r, nlaser) Eq. 4-5
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The Cartesian coordinates x, y and z are redundant. As explained in section 2.1, they can be

computed using the spherical coordinates given by ϕ, r and the elevation angle Θlaser given by

nindex.

A timestamp was associated with each pointcloud.

Measurements in a controlled environment

As stated in 4.2.1, measurements within a very simple environment are needed. The idea is to

record objects in an environment so simple that automatic labeling is possible. The test track

of the IKA offers an asphalted plane. If only objects of the same class are recorded, labeling

gets straightforward as all points within the pointcloud either belong to the object or the ground.

Therefore, all points above a height-threshold in this recordings are automatically assigned to

the corresponding class. For a better understanding of the measurement setup, a top view

image taken during one recording session is shown in figure 4-5.

Five different pedestrians and two bikers were recorded for extraction. They were instructed

to change their poses during the measurement process. For the pedestrians, this included for

example to change from walking to running or to vary their steps sizes. The bikers changed
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Fig. 4-3: Laser beams of a Velodyne Puck VLP-16 mounted at 1.6m height.

Left: Side view of the (rotating) laser beams. Beams with a positive elevation angle are

marked dashed. Right: Top View of the locations where laser beams hit the ground.

The ground in this plot is assumed to be a flat plane at z=0. Only beams with negative

elevation angles ever hit this ground. As the beams are rotating around their vertical

axis, they create circles at z=0. Modified from [BEY18].
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a) Side view of the test vehicle, a VW Passat CC.

The coordinate axis directions are indicated.

b) Top view of the measurement vehicle with posi-

tion of the coordinate system’s origin. The origin

is vertically under the LiDAR sensor at

(x = xsensor, y = ysensor, z = 0)

Fig. 4-4: Measurement vehicle used in this thesis. A VW Passat CC with a LiDAR sensor

mounted at 1.61 m height was used. The coordinate axes are visualized. i) side view,

ii) top view.

Fig. 4-5: Image of the measurement setup on the test track of the institute for automotive en-

gineering. Four objects of the class pedestrian are visible. As no other objects exist

around the test vehicle, all points recorded either belong to the ground or to a pedes-

trian.

their body posture on the bike. Additionally, two vehicles, a VW Passat B8 and a Mercedes

E-Class, have been used during the measurements. This way, a larger variety of objects of the

same class could be recorded. To keep the amount of measurements as low as possible, the

pedestrian recordings have been done with multiple people at the same time. Those people had

to make sure to not walk through the path between the LiDAR-sensor and another pedestrian,

creating occlusions as demanded in 4.2.1. An overview of the objects recorded on the test

track can be found in table 4-1.
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measurement class objects recorded extracted recorded

name name simultaneously objects pointclouds

pedestrian01 pedestrian 2 5177 7192

pedestrian02 pedestrian 2 2940 4869

pedestrian03 pedestrian 2 5681 4795

pedestrian04 pedestrian 4 3438 1160

pedestrian05 pedestrian 4 13578 4105

cyclist01 cyclist 1 2494 5720

cyclist02 cyclist 1 3503 6719

vehicle01 vehicle 1 2066 6546

vehicle02 vehicle 1 1034 4855

vehicle03 vehicle 1 3262 7802

vehicle05 vehicle 1 498 4146

Tab. 4-1: List of measurements performed on the test track.

In order to receive a feedback about the spatial positions of measured objects after each mea-

surement, heat maps depicting the distribution of the objects’ position on the test track are

generated. This way, it is possible to asses the distribution of the positions of recorded objects

directly after the measurement processes. Lesser covered locations can be focused during the

following recording. Examples for heatmaps can be found in figure 4-6.

10 m

a) Pedestrian

10 m

b) Cyclist

10 m

c) Vehicle

Fig. 4-6: Examples for heatmaps regarding the measurements on the test track. a) pedestrian,

b) cyclist c)vehicle.

Measurements free of objects of detectable classes

In order to be able to obtain data from public roads free of any objects belonging to classes the

network is supposed to detect, recordings were made during night time. For the few scenes

containing pedestrians, time stamps were noted during the measurement process. The area

of recording spanned from Campus Melaten to Kaiserplatz in Aachen with a lot of smaller

detours. A map indicating the measurement location is found in figure 4-7. By covering a large
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area, heterogeneous data could be recorded with different types of roads: Main roads, side

paths as well as traffic-reduced areas. A list of the measurements recorded is found in table

4-2.

Fig. 4-7: Map of the city of Aachen, Germany. Measurements taken of public roads during the

night are marked in green. Some roads were passed twice, if possible in different

directions. Small side roads, main roads as well as traffic-reduced areas are included.

Taken from Open Street Map [CON19].

measurement name duration [min:sec] pointclouds

boulevard01 01:08 1372

boulevard02 00:56 1119

superc 00:26 511

aachen 26:27 31737

Tab. 4-2: List of measurements during night time in Aachen.

Evaluation Data Set

The evaluation data was recorded at the intersection Kühlwetterstr./Süsterfeldstr. in Aachen,

Germany. On one hand, it was chosen as it represents a suitable urban environment with urban

buildings, a small square and main road. On the other hand, it was possible to obtain a permit to

fly a drone during the measurements. This drone was used to support the pointcloud annotation

process. This motivation and concept behind this drone assisted labeling is explained in section

4.3.5.
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Fig. 4-8: Recording location of the evaluation data set. The measurements were taken at the

intersection Kühlwetterstr./Süsterfeldstr. in Aachen, Germany. The image shows the

measurement with the vehicle driving.

The measurement was obtained with two different types of measurement setups. First, the

vehicle was standing on the roadside, close to the intersection. This way, pointclouds of pedes-

trians passing very close to the vehicle could be recorded. Additionally, recordings with a

driving vehicle have been performed, as they represent a more realistic scenario. An image of

the recorded environment is depicted in figure 4-8.

253 pointclouds have been annotated. For a better understanding of the evaluation data

set, its size and the number of objects it contains are listed in table 4-3. Additionally, the

locations of these objects are visualized in the appendix, depicted as heatmaps in figure A-

1.

Table 4-3 shows that almost no bicyclists have been annotated for evaluation. Though it is

possible to create semi-artificial samples containing bicyclists, they will not be considered for

evaluation. A possible reason for the low number of bicyclists could be that the temperature

during the measurement were relatively low.

class number of occurences

pedestrian 215

bicyclist 4

vehicle 212

Tab. 4-3: Objects annotated in the evaluation data set. 253 pointclouds have been annotated.

4.3.2 Augmentation Techniques

In this work, augmentation techniques both on raw pointclouds as well as on the matrix rep-

resentation are developed. As already shown in figure A-9, the traditional augmentation tech-



4 Concept 49

niques are applied at two different moments: Before creating the semi-artificial samples, the

objects which are inserted into empty scenes are augmented individually. After fusing objects

and empty scenes, we do not augment the pointcloud further. Instead, the sample is aug-

mented in its matrix representation during training. The idea behind augmenting the matrix

representation is the reduction of computation time described in 4.2.2. The augmentations per-

formed on the matrix-representations are performed fast enough to be applied during training

time. By augmenting the sample directly before computing the gradient for weight modification,

a sample can be augmented differently in each epoch. This possibly leads to a wider variance

in the training data set and can therefore help to prevent overfitting.

In theory, all augmentations can be performed during training time, including the creation of

semi-artificial samples. This techniques bear a high potential to train networks showing bet-

ter generalization. Each epoch, the combination of empty scenes, inserted objects and their

augmentation could be alternated. A pipeline for full augmentation during training has been

developed in this work. However, the computational cost is too high to be performed during

training time. Selecting objects for insertion, augmenting them, fusing them with empty scenes

and transforming the resulting sample into a matrix demands too high computation time and

leads to unfeasible training duration. Therefore, this concept has been rejected. Instead, a

data set of fixed size is created before starting the training. However, due to the high potential

this techniques offers further research for run time optimization is recommended and will be

picked up in chapter 7.

Augmenting Objects Before Insertion

In order to augment the objects before inserting them into empty scenes, five techniques are

presented: Rotation, removing random points, moving individual points horizontally, shifting the

distance of the whole objects and simulating occlusions.

The first augmentation technique used is the rotation of the object around its horizontal axis.

As the points’ coordinates are given in spherical coordinates, only the azimuth position of each

point has to be changed, while both the distance and laser indices stay unchanged. As men-

tioned in section 4.3.1, during the recording on IKA’s test track, it was aimed to distribute the

objects evenly during measurements. However, it is not possible to achieve a completely even

distribution or another distribution could be desired. For example, section 2.10 describes how

[BEL18] rotates the KITTI data set’s pointclouds 90◦, 180◦ and 270◦ to receive pointclouds all

around the vehicle. The idea presented in this work is very similar, but many more rotational

angles are possible and objects can be rotated individually. The heatmap in figure 4-10 shows

how the measurements of a recording can be augmented by rotation to achieve very evenly dis-

tributed possible insertion positions. The figure can be compared to the heatmaps presented

in figure 4-6

Another augmentation technique developed is the removal of random points. The inspiration

behind this is that not all laser pulses that hit an obstacte are reflected back to the LiDAR sensor.

This technique is simple to apply. A random percentage of points to remove is selected and
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a) Original pointcloud.

b) Removal of random points. c) Moving points individually.

d) Shifting the distance of the whole

pointcloud.

e) Simulating occlusion by an obstacle

between sensor and object.

Fig. 4-9: Visualization of four developed techniques to augment the objects before inserting

them into empty scenes. The arrows depict laser beams of a LiDAR sensor which

are reflected by a pedestrian. The resulting LiDAR pointclouds is visualized with red

dots. a) original measurement, b) removal of random points, c) shifting the points

individually, d) shifting the distance of the whole pointcloud, e) simulating occlusion

by an obstacle between sensor and object - Not depicted is the rotation around the

vertical axis in the sensor’s origin.

then uniformly random distributed points are selected to be removed. A percentage to remove

instead of absolute value was selected, as objects close to the sensor produce far more points

than objects far away. As already shown in figure 4-3, fewer laser layers are able to hit a target

of constant size with increasing distance. The augmentation technique is depicted in figure

4-9b.

In real road traffic, a random removal of points might happen during heavy rain or snowfall

due to occluded laser rays, as mentioned in section 2.1. However, the influence on weather

conditions is out of the scope of this work.

Instead of removing indivudal points, spatial noise can be introduced by moving individual

points randomly. By this, inaccuracies and noise of the LiDAR sensor can be simulated. The
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10 m

Fig. 4-10: Heatmap showing possible insertion locations after augmenting objects by rotations.

The figure can be compared to figure 4-6, which shows heatmaps for object location

before the augmentation by rotation.

points are only moved horizontally, as the height of a point is only determined by its laser index

nlaser. For high distances, moving a point by only a single layer, large shifts in height are pos-

sible. These distances are considered too be to high and therefore a vertical movement is left

out. For example, figure 4-3 shows that the height difference between two layers 10 m away

from the sensor is already 35 cm. A visualization of this augmentation technique can be found

in figure 4-9c.

Additionally to moving points individually, the whole object pointcloud can be shifted in distance.

This technique is depicted in figure 4-9d. While rotating the pointcloud around its own axis does

not change

The fifth augmentation technique that can be applied is the simluation of occlusions. As men-

tioned in section 2.1, an obstacle reflecting the sensor’s laser pulse occludes the areas behind

it. A traffic sign for example might occlude parts of a pedestrian, making a correct segmenta-

tion challenging. However it is important to especially detect VRU that are partly occluded, as

they migh be standing behind a vehicle and are about to cross the road for example. There-

fore, squares of random size and position created. All points within and behind this square are

removed from the pointcloud. This approach takes inspriation from [SIN18]. As presented in

section 2.10, random patches are placed onto images in order to hide random areas. Simulat-

ing occlusions is visualized in figure 4-9e.

Creating Semi-Artificial Samples

Before being able to insert objects into empty scenes, these objects have to be labeled and

extracted from the recordings in a controlled environment. As hinted in section 4.3.1, labeling

can be done by chosing a heigth treshold, labeling all points above. The points below the

threshold are considered to be part of the ground. The threshold used has to be high enough

to compensate irregularities of the ground. On the other hand it should be kept as low as
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possible to not cut off a large part of the objects of interest. In this thesis, it is chosen to be 10

cm.

In order to assign the labeled points to objects, a clustering algorithm can be used. In this

work, mean-shift clustering is applied to all points belonging to the same class. As explained in

section 2.11, mean-shift is able to cluster without providing the exact number of clusters to find.

The pointcloud transformation presented in section 4.3.3 demands for a maximum distance

sensed. If the objects recorded are occasionally leaving and entering the sensed area, the

number of objects to find by clustering changes.

A structured database collecting all extracted pointclouds is created. An object from this

database can be chosen and inserted into an empty scene. In this work, the object to in-

sert is chosen by its distance. A random distance is sampled from a predefined distribution.

The object in the database closest to this distance is selected.

Figure 4-11 depicts the extraction process. It can be seen that the points belonging to the

two pedestrians (red) can automatically be labeled as they are the only points above ground-

level. After clustering and extracting the objects, they can be inserted into the structured

database.

Fig. 4-11: Visualization of the object extraction. The two objects from the test track are labeled,

clustered, extracted and the put into a structured database.

The selected object can be augmented using the above described techniques. Each technique

receives a probability with which it is applied. Therefore, some objects might not get aug-

mented at all while others are augmented with multiple techniques. In this work, augmentation

techniques applied receive a probability of 50%.

After augmenting the selected object, it has to be checked if the insertion location is occupied.

A simple 3D-bounding box is created around the object. If any point of the scene lies within

this bounding box, the object is not inserted. If this is the case, the process of selection,
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augmentation and insertion check is repeated up to nine times. If the last insertion check fails,

no object is inserted.

A picture of a semi-artificial pointcloud is depicted in figure 4-12. Additionally, a real pointcloud

is shown. Both scenes seem very similar and presumably indistinguishable for the human eye

underlying the motivation behind developing this technique. An image visualizing the bounding

box can be found in figure 4-13.

Fig. 4-12: Comparison of a real (left) and a semi-artificial scene (right).

Fig. 4-13: Visualization of inserted objects with its bounding box. The bounding box represents

the area occupied by an object.
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Augmenting Semi-Artificial Samples

As mentioned before, the semi-artifical samples are not augmented in their pointcloud but their

matrix representation. Two techniques are used in this work: Rotations and the addition of

Gaussian noise.

Rotating the sample in its matrix representation can be realized by shifting its second dimen-

sion. As explained in section 4.3.3 the second dimension represents the azimuth angle. With

respect to the azimuth resolution ϕstep, shifting by nrot indices along the second dimension cor-

responds to a pointcloud rotation of nrot ·ϕstep. The addition of Gaussian noise is straightforward,

as it can simply be added to each value of the 3D-matrix representation.

It should be noted that the augmentation of empty scenes has been left out in this work. The

reason behind this is that performing the two presented techniques on the semi-artificial sample

should have the same effect as performing it onto both objects and empty scenes. Rotating

the empty scene should have no effect before insertion if the objects are inserted at random

angles. Therefore, it is sufficient to rotate the fused sample. The addition of Gaussian noise

has the same effect no matter if applied to both object and empty scene or later of the semi-

artificial sample, as the added noise is purely random. Difference would only arise if the noise

distributions used would differ between objects and empty scenes. An additional difference

in this thesis arises due to the application of the two techniques on the matrix representation.

For example, the sample can only be rotated in steps of the discretization size of the azimuth

dimension. However, the motivation behind augmenting the matrix has been explained in the

beginning of the section.

Tuning the Augmentation Techniques

The techniques developed are parametrizable. An overview of all parameters is given in ta-

ble 4-4. The augmentation techniques are mainly controlled by providing probability distribu-

tions. These distribution can directly be specified by well known distribution function. Ad-

ditionally, a lower and upper boundary can be specified. Furthermore, it is also possible to

use histograms in order to provide highly customized distributions used as basis to create

random numbers. This enables the modification of the described techniques to a very high

degree.

In addition to the probability functions, a few scalar values can be used to modify the creation

of semi-artificial samples. The first one is a threshold for the obstacle detection. As described

in section 4.3.2, before inserting an object, it has to be made sure that it is no overlap with an

existing object in the scene. The threshold allows to accept a certain number of points within

the object’s bounding box before denoting an insertion position as occupied. An additional

threshold used is the minimum number of points per object. This can be used to prevent

the insertion of objects consisting of too few points, for example due to a faulty clustering in the

object extraction process or to only a few points reflected by an object far away from the sensor.

Furthermore, it is possible to specify the distribution of classes of objects selected for insertion.
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Before inserting an object, the number of objects available for insertion gets limited to a certain

class, sampled from the class probabilities specified.

technique parameter unit num. values prob. dist.

rotation rotation angle [◦] one X

remove points percentage of points to be removed [-] one X

move single points amount a point is shifted in azimuth and distance dircetion [m] two per point X

shift object distance-shift of the object [m] one X

occlusions size of the patch occluding the object [m] one X

distance for object selection [m] one X

create threshold for obstacle detection [-] one

semi-artificial minimum number of points per object [-] one

samples number of objects to insert [-] one X

distribution of classes of selected objects [-] one per class

rotation - [-] -

gaussian noise mean µ and standard deviation σ of the Gaussian noise [-] one per voxel X

Tab. 4-4: Overview of the parameters defining the augmentation techniques. The last row

indicates if the values are specified directly or via a probability distribution.

4.3.3 Pointcloud Transformation

A new matrix-representation of pointclouds has been developed for this work. Each LiDAR-

pointcloud is transformed into a 3-dimensional matrix. The first two dimensions represent dis-

cretized distance and azimuth of the environment for each of the sensor’s laser beams individ-

ually. The resulting 2D-grid maps are then concatenated in a third dimension. For the 16-layer

sensor used in this thesis, this would lead to a third dimension of length 16 - if all beams are

taken into account. As the LiDAR sensor’s lasers have different elevation angles, this third

dimension implicitly contains height information.

For the matrices’ values, two different characteristics are examined: The number of points

belonging to each voxel or the normalized intensity of these points. Using the intensity has

the advantage of providing more information. However, using only the number of points would

enable a wider use of this pointcloud representation. For example, a LiDAR sensor’s intensities

are very difficult to simulate. In a scenario where someone would like to merge simulation and

real-world data, using the number of points is advantageous.

The matrix dimensions’ size depends on the discretization of the pointcloud. A maximum

sensable distance and a spatial resolution has to be chosen, leading to a first dimension of

size:

D1 =
rmax

rstep
Eq. 4-6

For the second dimension, only the angular resolution is needed to compute the dimension’s
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size. The size of the second dimension therefore is:

D2 =
360◦

ϕstep
Eq. 4-7

In scenarios where no 360◦ perception is demanded, the second dimension can be modified

accordingly.

For each LiDAR point with coordinates P (see equation 4-5) within the range rmax, the corre-

sponding voxel characterized by d1, d2 and d3 can be computed as follows:

d1 =

⌊
r

rstep

⌋
, d2 =

⌊
ϕ

ϕstep

⌋
, d3 = nlaser Eq. 4-8

The transformation performed on each point is computationally cheap as ϕ, r and nlaser are

directly provided by the LiDAR sensor.

laser
index

distance
azimuth

Fig. 4-14: Visualization of the matrix that serves as input for the convolutional neural network.

Each point of the pointcloud gets assigned to its voxel in the matrix by computing

discretized azimuth and distance as well as laser index. Cells marked red are non-

zero, indicating the sparsity of the matrix. The matrix values can either be the number

of points assigned to that voxel or the normalized intensity sum.

4.3.4 Neural Network for Semantic Segmentation

Multiple CNN architectures have been examined with respect to the requirements raised in sec-

tion 4.2. Different variations of PointNet, ResNet and SqueezeSeg as well as a simplistic archi-

tecture only consisting of a few convolutional layers have been tested.

As mentioned in section 4.2.3, the search for a suitable network architecture was focused on

convolutional neural network. SqueezeSeg presented in section 2.7 was chosen as basis as

it is reaching state of the art performance for semantic segmentation of pointclouds. However,

SqueezeSeg overfits highly on the data used in this thesis. A possible reason for that could be
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that SqueezeSeg is designed for a sensor with double the number of layers. As pointed out in

section 2.6, the capacity could be to high for operating on pointclouds containing with only 16

laser diodes.

In order to tackle the overfitting problem, the model’s capacity was reduced by decreasing the

number of layers and modifiying kernel sizes the network contains. The topology developed

in this work is visualized in figure A-9. When comparing the neural network used in this the-

sis to SqueezeSeg, the main difference is a reduction of layers. Instead of the 15 layers in

SqueezeSeg, only seven are used. For example, the third downsampling step in SqueezeSeg

is completely skipped. The network used in this work only gets downsampled twice: Once by

the first convolutional layer with a stride of two and then once again by a maxpooling layer.

Additionally, a single convolutional layer in parallel to all other layers has lead to an additional

increase in performance.

A tabular overview about the layers used is found in table 4-5. It can be seen that in each

convolutional layer, a high number of filters has been used. Though, the kernel dimension are

kept low with sizes of 3x3 and 1x1, a central property of SqueezeSeg, as explained in section

2.7. ReLU is used as neuronal activation function.

In order to reduce the risk of overfitting, a dropout layer is used directly before performing the

softmax operation. 50% of all neurons are dropped during the training period.

layer name input type functionality

conv1 input convolution 64 filters, 3x3 kernel, stride=2

conv1skip input convolution 64 filters, 3x3 kernel, stride=1

pool1 conv1 pooling maxpool, size=3, stride=2

fire1 pool1 fire 16 1x1 squeeze filters, 64 1x1 + 64 3x3 expansion filters

fire2 fire1 fire 16 1x1 squeeze filters, 64 1x1 + 64 3x3 expansion filters

fire3 fire2 deconv 16 1x1 squeeze filters, 32 1x1 + 32 3x3 expansion filters

fire3fuse sum fire2 fire3 + conv1

fire4 fire3fuse deconv 16 1x1 squeeze filters, 32 1x1 + 32 3x3 expansion filters

fire4fuse fire4 sum fire4 + conv1skip

dropout fire4fuse dropout 50% keep probabilty, only active during training

softmax dropout softmax softmax function for classification

Tab. 4-5: Description of the layers used to build the neural network developed in this work. A

visualization is found in figure A-9

4.3.5 Evaluation

Annotation of the Evaluation Data

As described in the previous section, drone videos were taken during the recording of the eval-

uation data set in order to assist the labeling process. As mentioned in section 2.9, annotating

pointclouds can be more difficult than annotating images for a human. Looking at pointclouds,

it is often not easy to differentiate between a pedestrian or pole for example. In contrast to that,



4 Concept 58

it is much easier to differentiate between them by looking at an image. Therefore, this work pro-

poses to use drone images assisting the pointcloud labeling process.

The key idea in drone assisted labeling of pointclouds is to label the drone images and transfer

the label to the pointclouds. This can be done by fusing the pointcloud with the drone image. To

do so, the pointclouds’ coordinates in meters have to be transformed into their pixel representa-

tion and the origin of the pointcloud has to be detected within the image.

In order to label the drone images, a labeling tool has been developed within this thesis. The

tool is based on the City Scapes labeling tool mentioned in section 2.9. This tool provides

a basic interface for image annotation. In addition to modifications necessary fit the tool to

enable easy annotation of the drone images used in this work, a neural network suggesting

annotations has been developed and included into the tool. After labeling a few drone images

by hand, a neural network using the resnet-like architecture [POH17] presented in section 2.7

has been trained. As only a few labeld images are used for training, the images are augmented

by rotations and flipping, as suggested in 2.10. A visualization of the labeling process can be

found in figure 4-16.

The trained resnet-like network performs predictions on all images the human annotator la-

bels. Due to the small training data set, the predictions might be inaccurate. The human

annotator has to correct the labels in order to ensure accurate labeling. If correcting the net-

work’s suggestions is faster than labeling the image as a whole, the labeling cost can be re-

duced. Additionally, the model can be retrained after labeling additional samples, presumably

leading to better predictions. This way, the labeling time might be reduced further succes-

sively.

Evaluation Metrics

As suggested in section 4.2.5, multiple evaluation metrics are used. This work evaluates the

concept for pointcloud augmentation using three of the most common metrics used for se-

mantic segmentation, namely IoU, precision and recall. These metrics are already described

in section 2.12. Intersection over Union (IoU) is used as the main measure of performance.

Additionally, precision and recall are examined to get a better understanding of the networks

performance.
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a) Fusing drone images with pointclouds. b) Labeling the fused pointclouds using the

labeld drone image.

Fig. 4-16: Visualization of the drone assisted labeling of pointclouds. a) shows the fusion of

drone image and pointclouds by transforming the point coordinates in meters to the

pixel domain. b) depicts the labeling process. The polygons indicate labeled objects,

the color indicates their class (red: pedestrian, blue: vehicle). All points within a

polygon are labeled. The color of a point indicates its assigned class.
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5 Experimental Design

A concept for data augmentation has been presented in the previous chapter. Aiming at an-

swering the research question raised in 3, this concept has to be evaluated. In this chapter,

four experiments are presented. The first three experiments try to answer the three secondary

issues proposed in chapter 3. For these experiments, only one class is taken into account. The

class pedestrian was chosen due to the high availability of both extracted pedestrians as well

as scenes without them. The fourth experiment is performed to study how the results obtained

considering one class can be compared to data sets containing multiple classes. The additional

class vehicle is introduced.

The subsequent experiment focuses on the influence of traditional augmentation techniques.

These techniques are performed for the data sets of the first experiment, so that data sets

without the application of traditional augmentation techniques can be compared to those where

they are applied. The third experiment is performed to compare manually annotated pointclouds

to recordings of real road traffic. A manually labeled data set is augmented by both traditional

techniques and the creation of semi-artificial samples.

As explained in section 2.6, evaluation metrics on the training data do not offer information

about the networks generalization. Therefore, all metrics examined in chapters 5 and 6 are

the validation metrics. Tu further improve the validity of the results, all tests presented within

the experiments are performed three times and the resulting metrics are averaged. The results

obtained by each measurement can be found in the appendix.

In all four experiments, the number of points per voxel has been chosen as characteristic over

the intensity. As mentioned in section 4.3.3, a possible alternative is the average, maximum or

accumulated intensity. However, using the intensity did not lead to a meaningful performance

increase during the development phase. Due to the advantages presented in section 4.3.3,

the number of points has been chosen. A maximum distance of 10 m is considered. The

distance resolution is 10 cm. The angular coordinate has been divided into 176 bins, leading to

a resolution of 2.05◦. The full number of LiDAR layers was used. This leads to an input matrix

of size 100×176×16. The parameters defining the pointcloud representation are chosen based

on qualitative results, for example by looking at the visualization of the semantic segmentation.

An image showing a visualized pointcloud used to for qualitative evaluation can be found in the

appendix in figures A-2 and A-3. As the focus of this work lies on augmentation, quantitative

comparisons are not depicted.
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5.1 Experiment 1: Creation of Semi-Artificial Samples

The first experiment aims at studying the creation process of semi-artificial samples. It exam-

ines following question raised in chapter 3:

How does the performance of a CNN trained on semi-artifical samples compare to state-

of-the-art performances of CNNs trained on manually labeled pointclouds from recorded

traffic scences?

In order to focus on the creation of semi-artificial samples, traditional augmentation techniques

are not considered in this experiment. Following hypothesis is proposed: The number of objects

and the number of empty scenes both have an impact on the quality of the created data set. It

is assumed that a higher availability of at least either one of them leads to a higher performance

of a neural network trained on the data.

To test this hypothesis, multiple data sets are created, each one with a different number of

empty scenes or objects available. First, only the number of objects available is varied while

the number of empty scenes is kept constant. Following, the number of empty scenes is var-

ied while the number of available objects stays fixed. An overview of the variations tested is

depicted in figure 5-1.

Test number of number of objects

Number empty scenes used available for insertion

1 10000 100

2 10000 500

3 10000 3000

4 10000 30000

5 100 30000

6 1000 30000

7 5000 30000

8 10000 30000

Tab. 5-1: Overview of the parameters varied in experiment 1.

10000 semi-artificial samples are created for each data set. During development, this data set

size has proven to be suitable for training. A comparison of performances for different data set

sizes can be found in the appendix. The parameters influencing the creation of semi-artificial

samples are not varied in this experiment. The values used for the parameters presented in

section 4.3.2 can be found in table 5-2.

A neural network is trained for each data set presented in table 5-1. The model’s architecture

is found in section 4.3.4. Each training is performed for 100 epochs. This value was chosen

as the performance typically converged before reaching this number of epochs. After training,
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parameter Value lower bound upper bound

distance for object selection ∼U(1,10) - -

threshold for obstacle detection 60 - -

minimum number of points per object 5 - -

number of objects to insert ∼ N(µ = 1,σ = 0.5) 0 10

distribution of classes of selected objects ppedestrian = 1 - -

Tab. 5-2: Overview of the parameters to tune the augmentation in experiment 1.

the performance of the epoch showing the highest IoU is selected and IoU, precision and re-

call compared for this epoch. It should be noted that the epoch showing maximum IoU is not

always the epoch with maximum precision or recall. But as the metrics are all based on the

same confusion matrix (see section 2.12), choosing different epochs would diminish compara-

bility.

The data set consisting of manually annotated pointclouds presented in section 4.3.1 is used

as validation data set.

The results obtained in this experiment can be compared among themselves and to the perfor-

mance achieved by other state-of-the-art networks. However, the comparison to other networks

has to be performed with care. Different data sets and different pointcloud representations as

network input might impair the comparability. Nevertheless, the comparison to other networks

can be used for an approximate assessment.

5.2 Experiment 2: Traditional Augmentation Techniques

The second experiment focuses on the traditional augmentation techniques developed in this

work. The motivation is to study the following question, which was raised in chapter 3:

In which way is the performance of a CNN influenced by traditional augmentation tech-

niques applied to its training pointclouds?

In order to find an answer to this question, the augmentation of objects available for insertion

and the augmentation of semi-artificial samples are examined. The creation process of semi-

artificial samples is based on the same parameters used in the previous experiment. By doing

so, all tests performed can be evaluated to the corresponding non-augmented data set created

for experiment 1. Following hypothesis is assumed: Data sets consisting of 10000 samples

benefit from traditional augmentation techniques, regardless of the number of empty scenes or

objects available. Furthermore, it estimated that this benefit decreases with a higher number of

empty scenes and objects available, because the baseline performance of the non-augmented

data rises.

A list of all tests regarding the augmentation of inserted objects is presented in figure 5-4. Point

removal, spatial noise and distance shift are each evaluated once individually and once com-

bined with rotating the object. Regarding augmentation by occlusion, two parameter choices

are evaluated: One with a small and another with a large patch size. They will be referred to
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as small and large occlusion respectively. Both are evaluated individually as well as combined

with rotation. Two more techniques studied are the application of rotations alone and the com-

bination of all presented augmentation techniques for objects. All techniques are performed for

the same variations of the number of available objects used for experiment 1, i.e. 100, 500,

3000 and 30000 objects.

To augment an object by rotating it, a random angle has to be sampled. For this experiment, a

uniform distribution between 0◦ and 360◦ is used to sample the angle. For the other techniques,

namely point removal, spatial noise, distance shift and occlusion, Gaussian distributions with

upper and lower bounds are chosen to sample the relevant parameters. The exact distributions

are found in table 5-3.

The two augmentation techniques performed on the semi-artificial samples are evaluated in-

dividually as well as combined. The evaluation is done for the same variations of the number

of empty scenes used for experiment 1, i.e. 100, 1000, 5000 and 10000. The number of

available objects is kept at 30000 to not introduce too many possible variations. The Gaus-

sian distribution used to add noise is depicted with all other augmentation parameters in table

5-3.

technique parameter Value lower bound upper bound

rotation rotation angle U(0,2π) - -

remove points percentage of points to be removed ∼ N(µ = 0.1,σ = 0.20) 0 0.6

move single points amount a point is shifted in azimuth and distance direction ∼ N(µ = 0.0,σ = 0.07) -0.1 0.1

shift object distance-shift of the object ∼ N(µ = 0.0,σ = 0.40) -2 2

small occlusions size of the patch occluding the object ∼ N(µ = 0.2,σ = 0.30) 0.1 0.5

large occlusions size of the patch occluding the object ∼ N(µ = 0.5,σ = 0.30) 0.1 0.9

distance for object selection U(1,10) - -

create threshold for obstacle detection 60 - -

semi-artificial minimum number of points per object 5 - -

samples number of objects to insert ∼ N(µ = 1,σ = 0.5) 0 10

distribution of classes of selected objects ppedestrian = 1 - -

rotation - - - -

Gaussian noise mean and standard deviation σ = 0, µ = 5 - -

Tab. 5-3: Overview of the parameters defining the augmentation techniques. The last row

indicates if the values are specified directly or via a probability distribution.

The same method to receive evaluation metrics as in experiment 1 is used. For each data

set created, a model is trained for 100 epochs. IoU, precision and recall are noted for epoch

showing highest IoU. The results are compared to the non-augmented data sets created in

experiment 1. The data set consisting of manually annotated pointclouds presented in section

4.3.1 is used as validation data set. This means, the augmentation techniques applied using

a certain number of available objects are compared to the data set using the same number

of objects. Comparing the techniques with respect to a different number of empty scenes

used happens analogous to that. The same data set as in experiment 1 is used as validation

set.
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number of number of objects augmentation

empty scenes used available for insertion techniques

1 10000 100 rotation

2 10000 100 remove points

3 10000 100 remove points, rotation

4 10000 100 spatial noise

5 10000 100 spatial noise, rotation

6 10000 100 shift object

7 10000 100 shift object, rotation

8 10000 100 small occlusion

9 10000 100 small occlusion, rotation

10 10000 100 large occlusion

11 10000 100 large occlusion, rotation

12 10000 100 all techniques

13 10000 500 rotation

14 10000 500 remove points

15 10000 500 remove points, rotation

16 10000 500 spatial noise

17 10000 500 spatial noise, rotation

18 10000 500 shift object

19 10000 500 shift object, rotation

20 10000 500 small occlusion

21 10000 500 small occlusion, rotation

22 10000 500 large occlusion

23 10000 500 large occlusion, rotation

24 10000 500 all techniques

25 10000 3000 rotation

26 10000 3000 remove points

27 10000 3000 remove points, rotation

28 10000 3000 spatial noise

29 10000 3000 spatial noise, rotation

30 10000 3000 shift object

31 10000 3000 shift object, rotation

32 10000 3000 small occlusion

33 10000 3000 small occlusion, rotation

34 10000 3000 large occlusion

35 10000 3000 large occlusion, rotation

36 10000 3000 all techniques

37 10000 30000 rotation

38 10000 30000 remove points

39 10000 30000 remove points, rotation

40 10000 30000 spatial noise

41 10000 30000 spatial noise, rotation

42 10000 30000 shift object

43 10000 30000 shift object, rotation

44 10000 30000 small occlusion

45 10000 30000 small occlusion, rotation

46 10000 30000 large occlusion

47 10000 30000 large occlusion, rotation

48 10000 30000 all techniques

Tab. 5-4: Overview of experiment 2: Variation of the number of objects available



5 Experimental Design 66

number of number of objects augmentation

empty scenes used samples created techniques

49 100 30000 rotation

50 100 30000 noise

51 100 30000 rotation, noise

52 1000 30000 rotation

53 1000 30000 noise

54 1000 30000 rotation, noise

55 5000 30000 rotation

56 5000 30000 noise

57 5000 30000 rotation, noise

58 10000 30000 rotation

59 10000 30000 noise

60 10000 30000 rotation, noise

Tab. 5-5: Overview of experiment 2: Variation of the number of empty scenes used
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5.3 Experiment 3: Comparing Semi-Artificial and Real Data Sets

After examining the developed augmentation techniques in experiments 1 and 2, experiment

3 aims to find out how distinguishable semi-artificial samples are from real ones. This is done

aiming to answer following question presented in chapter 3:

To which extend do the developed augmentation techniques lead to a supplement or

even substitution of manually annotated pointclouds from recorded traffic scenes?

A first tendency about the answer of this question can be observed in the results of experiment 1.

If the experiment shows that models trained on the created data sets can reach reasonable

performance compared to the state of the art, the hypothesis assumed is that semi-artificial

samples can be used both as a supplement or substitution for real samples. For further val-

idation, a direct comparison between real and semi-artificial samples is done in this experi-

ment.

Manually annotated pointclouds of road traffic are needed for the comparison. However, the

only manually labeled data set is the one used for validation in the previous experiment. There-

fore, this data set has to be split into a training and a validation set. This means that training and

validation samples are possibly highly similar. It has to be noted that this approach diminishes

the reliability of the obtained results. There is a possibility that good evaluation metrics are

caused by an overfitting model. If training and validation data are very similar, overfitting might

not always be detected. Due to the high cost of obtaining labeled pointclouds, which has been

highlighted throughout this thesis, obtaining more labeled pointclouds of different locations was

not feasible in this work.

The results obtained in this experiment should therefore be handled with care. However, they

are suitable to identify tendencies and potentials.

First, the potential of semi-artificial samples as supplement for real data is studies. To obtain

a baseline, a network is trained on the manually labeled data without augmentation. Then,

labeled objects from the labeled scenes are extracted. This leads to empty scenes and va-

riety objects that can be reinserted. Two data sets are created using the split data: The

objects originally positioned in the scenes are augmented and reinserted. Due to the aug-

mentation, the objects can be inserted into different scenes and at different locations than their

original state. The second data set is created by inserting the objects extracted from the con-

trolled environment. Similar to the previous experiments, the size of the two data sets is set to

10000 samples. The data creation parameters a equivalent to experiment 1, i.e. depicted in

table 5-2.

The models trained on these data sets are trained for 100 epochs. However, the non augmented

data set is trained for 500 epochs. As it consist of much less samples, fewer weight modification

steps can be done. The model converges more slowly and therefore needs to be trained for a

longer time. Obtaining the corresponding metrics is done analogously to experiment 1 and 2.

Obtaining the metrics is done as in the previous experiments.
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After examining the semi-artificial samples as supplement, their potential to fully substitute man-

ually annotated data is evaluated. In order to do so, the empty scenes obtained from splitting

the annotated pointclouds can be reused. Objects extracted from the controlled environment

can be inserted at the exact same positions as the original objects. This way, semi-artificial

scenes are created which have an almost identical sample as within the real data. The only

difference is that the original objects are swapped by objects recorded in a controlled environ-

ment. For evaluation, the IoU of both models is compared for the whole training period, i.e. for

every epoch.

5.4 Experiment 4: Data Sets with Multiple Samples

The fourth experiment aims at transferring the previous results to the multi-class domain. While

the previous experiments consider pedestrians as the only class, data sets containing pedes-

trians and vehicles are created. It is assumed that the results obtained in the previous experi-

ments can be transferred to other classes as well. Though an-in depth evaluation is outside of

the scope of this work, an outlook can be given. Accordingly, the results should only be used to

describe tendencies and potentials.

A semi-artificial data set containing all three classes is created. The data set size is expanded

to 30000 samples through augmentation. The model is trained on this data set for 500 epochs.

These parameters are enlarged as it is assumed that the segmentation task is more challeng-

ing if more classes have to be predicted. Again, IoU, precision and recall are noted for each

trained epoch. 30000 empty scenes and all objects extracted from the controlled environments

are used. An overview about the available of objects per class is found in the concept chap-

ter in section 4.3.1. The probability of inserting a pedestrian or a vehicle is set to equally

50%.

As bicyclist have been recorded on the test track, it would be possible to include them in this

experiment. However, due to the small amount of bicyclists in the evaluation data set, bicyclist

have been left out.
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6 Results

This chapter evaluates the results of the experiments presented in chapter 5. First, the results

of each experiment are examined individually. Then, section 6.5 summarizes the results and

tries to answer the questions raised chapter 3.

6.1 Experiment 1: Creation of Semi-Artificial Samples

This section aims at testing the hypothesis that the performance of a neural network trained

on the semi-artificial data set increases if the number of empty scenes or objects available is

increased. Figure 6-1 shows the results for the tests varying the number of objects available.

Figure 6-2 shows the results for the tests varying the number of empty scenes available. The re-

sults are visualized using bar charts. An individual chart is created for IoU, precision and recall

respectively. Each test listed in table 5-1 is represented by its own bar.
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Fig. 6-1: Results of Experiment 1: Variation of the number of objects available. Three diagrams

are depicted that show the evaluation of IoU (left), precision (center) and recall (right).
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Fig. 6-2: Results of experiment 1: Variation of the number of empty scenes available. Three

diagrams are depicted that show the evaluation of IoU (left), precision (center) and

recall (right).
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As described in section 5.1, the results obtained are compared to performances of a state-of-

the-art network. As presented in section 4.3.4, the network developed in this thesis is based

on the SqueezeSeg architecture. Therefore, the results are compared to the performances

of SqueezeSeg. The network’s metrics are measured on the KITTI data set. For pedestri-

ans, the original SqueezeSeg achieves an IoU of 22.8%, a precision of 52.9% and a recall

of 28.6% [WU17]. As a different data set and a different pointcloud representation are used,

these values are only used to evaluate if the performances measured in this work are within

the scope of state of the art performances. A quantitative comparison is not suitable. Espe-

cially the distance considered, i.e. 10 m in this work, presumably has a high influence on the

performance.

Regarding figure 6-1, it can be seen that IoU and recall both increase when increasing the

number of available objects. Using 30000 objects, an IoU of 30.7 % is measured. The recall

is 58.5 %. As both values lie above the ones of SqueezeSeg, we assume that it is possible to

achieve an IoU and a recall comparable to the state of the art. The maximum precision, which

is achieved using 500 available objects, is 46.5 % and therefore 6.4 percentage points (pp)

below SqueezeSeg’s precision on KITTI.

The benefit of using 30000 objects for insertion seems small compared to using only 3000

objects. Using ten times the number of available objects only leads to an increase of 1.1pp

regarding IoU and 2.1pp regarding recall. Precision increase by 0.4pp, staying under the preci-

sion achieved using 500 available objects.

Figure 6-2 shows that using more empty scenes for the data set creation lead to an increasing

IoU. However, in contrast to varying the number of objects, the recall decreases while the

precision increases. Another difference is the fact that using more empty scenes always leads

to a noticeable increase in IoU for the examined tests.

It should be noted that the bars belonging to 30000 available objects in figure 6-1 have the

same number of both available objects as well as empty scenes as the bars corresponding to

10000 available scenes in figure 6-2. Therefore, the performances should be almost equal.

Small changes can arise because the data sets are created under the same premises but are

not identical.

It seems reasonable that using a small number of available objects with a high number of empty

scenes leads to a low recall. If the training data has many differing examples of empty scenes

and only a few examples of objects, it might learn the exact shapes of the objects available,

considering all other shapes as background. This can lead to a high number of false negatives,

causing a low recall. The same hypothesis can be applied to to a high number of available

objects with a low number of empty scenes used. It is possible that the network learns the exact

shapes of the background and therefore tending to classify an unknown shape as object. This

leads to a high number of false positive and thus to a lower precision.

The hypothesis proposed in section 5.1 therefore has to be answered with respect to the metrics

studied. The data suggests that an increase in empty scenes seems to lead to an increasing
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IoU and precision. According to the results, an increase in available objects seems to lead to

an increasing IoU and recall.

6.2 Experiment 2: Traditional Augmentation Techniques

As described in section 5.2, the CNN is trained on each data set listed in tables 5-4 and 5-5. IoU,

precision and recall are evaluated, measuring the change with respect to the non augmented

data set in percentage points.

Augmentation of Inserted Objects

Again, bar charts are chosen to visualize the results. Two bars for each augmentation technique

are plotted on the x-axis: The first one representing the augmentation technique alone and the

latter one representing an additional rotation, as explained in section 5.2. The metrics of all

data sets containing the same number of objects available for insertion are visualized in one

diagram. The results regarding IoU are shown in figure 6-3. Corresponding results regarding

precision and recall can be found in figure 6-4 and 6-5 respectively. Due to the high number

of tests performed in this experiment, the results are structured with respect to the evaluation

metrics.

Intersection over Union Regarding the change in IoU in figure 6-3, it can be seen that data

sets created with only 100 objects available for insertion benefit highly from augmentation tech-

niques. Every augmentation technique causes an increase in IoU. However, removing random

points does not show to be very beneficial. An additional benefit is achieved when combining

the techniques with an augmentation by rotation. However, the combined techniques should be

compared to the IoU achieved by applying rotation as only augmentation technique instead of

to the baseline.

The highest increase in IoU is seen when combining small occlusions with a rotation of the ob-

ject: The increase of 18.61pp more than doubles the IoU of the non-augmented data set. The

resulting IoU of 36.5% is even higher than the performance achieved using all objects.

Another notable observation is that applying an augmentation technique in combination with a

rotation does not lead to a performance gain equivalent or close to the sum of both individually

achieved gains. Additionally, it is worth to highlight that applying all augmentation techniques

together does not lead to the highest performance gain.

Augmentation techniques applied to data sets with 500 available objects lead to an increase in

IoU for every technique examined. Compared to the data sets with 100 available objects, this

increase is however of smaller size. This fact seems intuitive, as the baseline IoU is higher.

The highest increase is caused by applying small occlusion. In contrast to the data sets with

100 available objects, this increase is achieved without combining the occlusion with a rota-

tion of the inserted object. The benefit of combining rotations with other techniques seems to
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vanish in general for the data sets with 500 objects available. Spatial noise is the only tech-

nique benefiting from the combination, but only by 2.6pp. A possible explanation is that 500

objects presumably cover more azimuth angles than 100 objects. This might lead to a lower

benefit of rotating the objects. Again, it should be emphasized that combining all augmentation

techniques does not seem to beneficial with respect to the performance change obtained by

individual techniques.

Regarding the results on the data sets with 3000 available objects, the benefit of most aug-

mentation techniques fades or is even reversed. Applying only rotations, removing points or

simulating large occlusions leads to relatively small IoU gains. All other techniques show negli-

gible or even negative IoU changes. With 3.8pp, applying the spatial noise technique leads to

the highest decrease.

The application of the examined techniques to data sets created with 30000 available objects

seems to impair the IoU of a network trained on them. Besides the technique of removing

points, all techniques applied lead to a decrease of the IoU. Removing points does not seem

to have any impact in these tests. Additionally, the data suggests that the combination of

techniques with rotations impairs the IoU even further. With around 6pp for rotations combined

with removing points, spatial noise or the distance shift, the size of the decrease is relatively

large.

Precision When examining the IoU, the benefit of the augmentation techniques applied to

objects decreases with increasing number of available objects, in the end even impairing

the performance. The same trend can be observed when studying the precision in figure 6-

4.

Regarding the data sets created using 100 available objects, most augmentation techniques

show a high increase in precision. Though, the removal of points, applying small occlusions

and applying all techniques seem to have no impact on the precision. The largest increase

is seen when combining small occlusions with a rotation of the objects, analogous to the

IoU.

While data sets based on 500 available objects still seem to benefit from augmentation of

the inserted objects regarding IoU, most techniques do not lead to an increase in precision.

Applying small occlusions or distance seem to be beneficial, but any other technique either

shows very small increases or even decreases. The tendency, that the traditional augmentation

techniques start to impair the performance can also be seen for the data sets created using

3000 and 30000 available objects respectively.

Recall The data suggests that the recall is the only metric for which the hypothesis formulated

in 5.2 could hold true. Examining figure 6-5, it can be seen that all augmentation techniques

correlate with an increasing recall. As assumed, the benefit decreases with an increasing
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number of available objects. The negative change in recall when applying the point removal

is so small that it can be neglected. When comparing the plots for 3000 and 30000 available

objects, it can not be seen whether the augmentation techniques generally perform better on

one of those data sets.

In contrast to IoU and recall, applying all augmentation techniques together leads to the highest

increase in recall for each data set. Additionally, for 30000 available objects, the introduction of

small occlusions leads to the same increase in recall.

After performing the test examining the augmentation of inserted objects, the hypothesis pos-

tulated in section 5.2 is supported by the data with respect to the recall. Data sets with aug-

mented objects show a higher recall than non augmented data sets. The benefit decreases

with increasing number of available objects. Regarding IoU and precision, the hypothesis only

holds true for data sets with a very small number of available object. The assumption that data

sets with a higher number available objects benefit as well is rejected.

Augmentation of Semi-Artificial Samples

Analogous to the previous visualizations, bar charts are used as well to evaluate the augmenta-

tion of semi-artificial samples. The results are shown in figure 6-6. Three diagrams are plotted,

depicting the results for the change in IoU, precision and recall respectively. A bar for each

augmentation technique is created, i.e. rotation, adding noise and combining both techniques.

Groups with respect to the number of available empty scenes are created.

The results of the augmentation techniques applied to semi-artificial samples do no allow many

conclusions. The addition of Gaussian noise leads to changes that seem arbitrary regarding

the metrics and number of empty scenes available. For example, no explanation has been

found for why the data set created with 1000 available scenes hardly benefits from rotation,

shows a decrease in in all metrics for the application of noise, but exhibits an increase in IoU

and precision when both techniques are combined.

It is noticeable that all three examined techniques cause their highest increase in IoU and

precision for data sets created with 5000 available objects.

In summary, regarding the augmentation of semi-artificial samples, the hypothesis postulated

in section 5.2 can neither be verified nor rejected.
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Fig. 6-3: Results of Experiment 2regarding IoU for varying the number of objects available for

insertion.
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Fig. 6-4: Results of Experiment 2 regarding precision for varying the number of objects available

for insertion.
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Fig. 6-5: Results of Experiment 2 regarding recall for varying the number of objects available

for insertion.
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Fig. 6-6: Results of Experiment 2 for varying the number of empty scenes available. The base-

line metrics can be found in figure 6-2

6.3 Experiment 3: Comparing Semi-Artificial and Real Data Sets

This experiment aims to compare semi-artificial samples to real data sets. As mentioned in

section 5.3, due to the possibly high similarity between training and validation data, the results

of this experiment is only able to provide hints and reveal tendencies.

Supplementing Manually Annotated Data

For the first comparison, two semi-artificial data sets are created. The first one is created

by reinserting objects into the empty scenes obtained by splitting a manually annotated data

set. The second one uses the same empty scenes, but consists of inserted objects extracted

from the recordings on the test track. The performances of the CNNs trained on this data are

visualized in figure 6-7.

The differences between the insertion of original objects compared to objects from the test track

are rather small. IoU and Precision seem to increase when inserting objects from the test track.
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Fig. 6-7: Comparison of the performances of semi-artificial data sets, once with objects origi-

nating from the same scene and once from the test track.

However 3.3pp and 4.6pp respectively seem too low to attribute this change to objects used. It

should be noted again that we focus on qualitative results in this experiment. The similarity in

performances can indicate that semi-artificial data can indeed be used as supplement for real

data. The similar performances suggest that the quality with respect to the training process

is comparable. Therefore, it seems plausible that they can be used in the same training data

set.

Substituting Manually Annotated Data

Figure 6-8 shows the performance metrics for each epoch of the training. The IoU of the CNN

trained on the semi-artificial data set is mostly indistinguishable from the performance if trained

on real data. When examining precision and recall, it can be seen that real samples show a

higher precision while semi-artificial samples correlate with a higher recall.

The small differences in precision and recall and the almost identical IoU support the hypothesis

that semi-artificial samples can serve as a substitution of real samples. A possible explanation

for the differing precision and recall is that the objects inserted into the scene might show a

higher intra-class variability than the original objects. As the original scenes are all from the

same measurement, it is probable that the recorded scenes contain a few people in similar

poses. If a pedestrian passes by the measurement vehicle, he or she can be found in multiple

recorded scenes. However, a pedestrian passing by presumably does not change his posture

very often, for example by changing from walking to running and back quickly. The pedestrians

in the controlled environment however have been recorded in many different postures, as ex-

plained in section 4.3.1. As already argued in section 6.1, it is possible that a higher variety of

objects leads to an increasing recall. It is also possible that the increase of the recall diminishes

the precision. If the model is very sensitive about predicting an object, more points are classi-

fied as pedestrian, decreasing the number of false negatives but increasing the false positives.

As explained in section 2.12, the lower false negatives increase the recall while the increasing

false positives lead to a decreasing precision.
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Regarding the results of the two tests performed in experiment 3, no differences between semi-

artifical and real pointclouds can be identified. The data suggests that the two types of samples

can be used equally, the hypothesis that semi-artificial samples can be used either as supple-

ment or as substitution for real pointclouds is supported by the results.
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Fig. 6-8: Learning curve comparing a training on a real data set with a semi-artificial data set.

Both data sets have pedestrians positioned at the same locations.
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6.4 Experiment 4: Data Sets with Multiple Samples

As mentioned in section 5.4, this experiment examines if the creation of semi-artificial samples

is not only possible for the semantic segmentation of one class but also for multiple classes

simultaneously. While it is reasonable to focus on one class when evaluating the new developed

augmentation techniques, semantic segmentation for one class only is not sufficient to create

an environment model for automated driving. The results for a neural network trained on a

semi-artificial data set containing pedestrians and vehicles is found in figure 6-9. A bar chart

shows IoU, precision and recall sorted by class.
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Fig. 6-9: Results of Experiment 4: Performances for the semantic-segmentation of pedestrians

and vehicles simultaneously

The metrics regarding the class pedestrian are not diminished by introducing a higher number

of classes. The CNN developed for this thesis seems to have a sufficient capacity for the

semantic segmentation of multiple classes. Additionally it seems that the network is able to

reach reasonable performance regarding the semantic segmentation of vehicles. However, due

to the small validation data set, the high precision of 98% should not lead to the assumption

that it is in general possible to achieve such high precision with the presented techniques to

create semi-artificial data.

6.5 Discussion

In this section, the results obtained in the individual experiments are summarized and used

to draw conclusions regarding the questions raised in chapter 3. Limitations of the obtained

results are shown. Additionally, questions left out by the experiments or emerging from their

results are presented.

Reciting chapter 3, the main research question this work aims to answer is: Which augmenta-

tion techniques can be applied to LiDAR-pointclouds in order to increase the performance of

a neural network that performs semantic segmentation on these pointclouds? Answering the

three secondary questions introduced might help finding an answer.
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How does the performance of a CNN trained on semi-artificial samples compare to state-

of-the-art performances of CNNs trained on manually labeled pointclouds from recorded

traffic scenes?

The metrics achieved by the various trainings indicate that performances comparable to state

of the art results can be achieved by training on semi-artificial data. The results further-

more suggest that reasonable performances can be achieved even when creating data sets

where some of the empty scenes and inserted objects are used multiple times. The per-

formances using 30000 available objects are close to the ones obtained by only using 3000

objects.

In which way is the performance of a CNN influenced by traditional augmentation tech-

niques applied to its training pointclouds?

Studying the results of experiment 2 leads to the assumption that an increase regarding all

three metrics is achieved for data sets where objects to insert are scarce. This conclusion

however seems obvious. The observation, that an increasing recall is detected for all augmen-

tation technique is more interesting. Especially considering VRU, a high recall is important for

automated driving applications in order to prevent accidents.

To which extend do the developed augmentation techniques lead to a supplement or

even substitution of manually annotated pointclouds from recorded traffic scenes?

The results obtained suggest that semi-artificial pointclouds are suitable both as supplement

and as substitution of manually annotated data. Small differences in precision and recall can

arise when comparing real pointclouds to semi-artificial ones. A possible explanation for this

is that the objects extracted from the test track can be intentionally recorded with a high vari-

ability of different poses while objects in real recordings typically do not alternate their poses

extensively from one moment to another.

Research Question

Regarding the results obtained in this work and putting them into context regarding the three

secondary questions leads to the following conclusion:

The creation of semi-artificial samples turned out to be an effective augmentation technique.

Data sets created using this technique showed high similarities in the performance metrics com-

pared to a real data set. Traditional augmentation techniques are most beneficial to increase

recall, which is an important metric in the context of automated driving. However, a decrease in

precision can go along with this and should not be set aside.
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Recommendations for Further Evaluation

The high performance variance determined especially in experiment 2 demand for a further

examination of the traditional augmentation techniques. An experiment not done in this work

is the evaluation of the influence of augmentation parameters. Additionally, new augmentation

techniques can be developed and evaluated. For example, the objects could be distorted in

height and width the whole semi-artificial samples could be flipped.

The augmentation techniques developed could be tested with another sensor. As described

in section 4.3.1, the sensor used only consists of 16 layers. Sensors with a higher vertical

resolution can be tested. The pointclouds obtained by such a sensor are denser and might

therefore offer more room to tune the augmentation.

A weakness in this work is the rather small amount of manually annotated pointclouds for

evaluation. It is recommended to repeat the experiments with a higher amount of evaluation

data. However, this data is hard to obtain. An approach to bypass this problem could be the

use of an another LiDAR-sensor. Few public data sets containing labeled LiDAR pointclouds

exist, but choosing a sensor that is used in one of those public available data sets might enable

the use of that data set for evaluation.
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7 Conclusion & Outlook

In this thesis, a concept for the augmentation of LiDAR-pointclouds was developed and eval-

uated. The techniques presented were successfully used to train a CNN for semantic seg-

mentation. Two types of augmentation were proposed: First, the augmentation techniques in

a traditional sense, i.e. the application of label preserving transformations to a single point-

cloud. Second, the creation of semi-artificial samples, where objects from one measurement

are inserted into scenes of another one.

The biggest contribution of this work is both the provision of a software framework allowing the

augmentation of LiDAR-pointclouds and the analysis conducted on top of this research, show-

ing that semi-artificial pointclouds can be used as supplement or substitution of real recordings.

This enables the creation of large pointcloud data sets without being restricted by the expensive

manual labeling process.

Regarding the traditional augmentation techniques developed, no statement could be made

about which augmentation techniques lead to a generally higher performance. Instead, the

benefit of a technique seemed to be highly dependent on the data used for training and valida-

tion. This leads to the assumption that techniques have to be carefully selected and possibly

tuned in order to profit from these augmentations. The influence of the augmentation parame-

ters should be studied further.

Though IoU is one of the most popular metrics used to evaluate semantic segmentation, it

turned out that precision and recall enable a deeper evaluation and understanding of the influ-

ence of augmentation techniques. For both types of augmentation techniques, recall showed

the highest increase in performance. This has been attributed to the fact that augmenting the

objects comes with a higher intra-class variability of the objects’ class while influencing the

background variability in a smaller amount.

An experiment performed for multi-class semantic segmentation hints that the results obtained

for the semantic segmentation of pedestrians could be transferred to other classes. However,

no in-depth evaluation has been done. Further research regarding the semantic segmentation

of multiple classes is needed.

The CNN developed has successfully been implemented in the test vehicle of the IKA. The

input transformation and semantic segmentation show a processing time of up to 9 ms for the

current sensor setup. Clustering the segmented pointcloud for an environment model costs an

additional 10 ms. This indicates the possibility for real time application considering that a typical

LiDAR-sensor produces pointclouds with a frequency of 10-20 Hz.

A byproduct of this work is the suggestion and the development of a method to facilitate manual

labeling of pointclouds. Simultaneously to the recording of LiDAR-pointclouds, drone images

can be used to receive a top view of the measured scenes. For a human annotator, labeling

these images is presumably easier than labeling pointclouds. By overlaying the images and
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pointclouds, it is possible to use the images’ labels for the automatic annotation of the corre-

sponding pointclouds. For further acceleration of the labeling process, a neural network can be

used to obtain a prior suggestion for labels.

Finally the author of this work would like to suggest three ideas that emerged during the devel-

opment, seeming particularly interesting for further research:

As presented in chapter 2, [CUB18] claims a neural network that is able to learn the augmen-

tation techniques which probably lead to the highest increase in performance. Transferring

the concept from the image domain to pointclouds could help identifying and tuning the most

suitable techniques developed.

Furthermore, the pointcloud representation used for evaluation did not consider intensity mea-

surements. As described in chapter 4, this opens up the possibility to use simulated data.

Simulations, real data and semi-artificial data can be mixed or semi-artificial samples can be

created using real empty scenes and simulated objects or vice versa.

In this work, semi-artificial samples are created by inserting objects that shall be classified

into empty scenes. The insertion of static objects that do not have a distinct class seems like

an interesting idea. Unsupervised learning, e.g. clustering, could be used to identify objects

in empty scenes. With the techniques developed, these objects could be inserted into other

scenes without the need to know their class. This way, semi-artificial scenes can be created

with a higher variability.
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A Appendix

Sensor - 16 channels

- Measurement Range: max. 100 m

- Range Accuracy typically up to 3 cm

- Vertical Field of View: -15.0◦ to +15.0◦

- Vertical Angular Resolution: 2◦

- Horizontal Field of View: 360◦

- Horizontal Angular Resolution: 0.1◦ - 0.4◦

- Rotation Rate: 5 Hz - 20 Hz

Laser - Wavelength: 903 nm

Output - Single Return Mode: max. 300.000 points per second

- Dual Return Mode: max. 600.000 points per second

- UDP-Packets: Time of Flight, Reflectivity, Rotation Angle, Timestamp

Tab. A-1: Velodyne Puck VLP-16 specifications. Information taken from

https://velodynelidar.com/
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10 m

a) Locations of pedestrians.

10 m

b) Locations of bicyclists (4 objects)

10 m

c) Locations of vehicles

Fig. A-1: Locations of objects in the evaluation data set. a) Pedestrians, b) Bicyclists c) Vehicles
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Fig. A-2: Qualitative results obtained using a matrix-representation of size 100x176x16 with a

maximum distance of 10 m.
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a) Good result

b) Result showing false positives

Fig. A-3: Example for a qualitative comparison of two predictions. a) good results b) false

positives.
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Fig. A-6: Detailed results for data sets 100 empty scenes.

Fig. A-7: Detailed results for data sets 1000 empty scenes.
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Fig. A-8: Detailed results for data sets 5000 empty scenes.

Fig. A-9: Detailed results for data sets 10000 empty scenes.
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