
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Measurement

Migration of an IoT Real-Time System and
Reimplementation of Some of Its Functions

Bc. Jan Mrázek

Supervisor: Ing. Milan Kolář
Field of study: Computer Engineering
May 2019

ii

Acknowledgements

I would like to thank the supervisor of
this master’s thesis, Ing. Milan Kolář,
for providing me with a friendly work-
ing environment as well as great guidance
throughout my work on this project. I
would also like to thank doc. Ing. Jiří
Novák, Ph.D. for giving me additional
guidance and insights when authoring this
text.

Furthermore I want to thank my family,
who supported me not only during my
work on this thesis, but also throughout
my studies.

Declaration

I declare that the presented work was de-
veloped independently and I have listed
all sources of information used within it in
accordance with the methodical instruc-
tions for observing the ethical principles
in the preparation of university theses.

In Prague, May 20, 2019

iii

Abstract

This thesis is dedicated to the research
and realization of a prototype for mi-
gration of a home automation system
from an older, MCU-based design to a
more modern solution. The older de-
sign is a microcontroller-based, low sys-
tem resource solution incorporating an
ARM Cortex-M4 MCU, the FreeRTOS
operating system and various memory-
conserving implementation approaches.
The new proposed solution includes a
Texas Instruments Sitara AM3358 chip
and a distribution of Debian Linux
patched with the PREEMPT_RT real-
time kernel patch. Development is done
using a BeagleBone Black single-board
computer.

This thesis provides descriptions and
explanations of the concepts and inner
workings of real-time operating systems
and the Linux device tree system. The
process of reimplementing and porting of
functionalities from the previous project is
described, issues are discussed and their
solutions explained. Performance gains
are measured and explained for some of
the newly implemented functionality.

Keywords: home automation, real-time
operating system, Linux, device tree,
PREEMPT_RT, Sitara

Supervisor: Ing. Milan Kolář

Abstrakt

Tato diplomová práce se zabývá rešerší
a realizací prototypu pro migraci sys-
tému inteligentních domů ze stárnoucí
koncepce založené na mikrokontroléru
na koncepci modernější. Starší koncepce
zahrnuje mikrokontrolér založený na já-
dře ARM Cortex-M4, operační systém
FreeRTOS, relativně nízké systémové pro-
středky a několik implementačních po-
stupů pro jejich šetření. Navrhované ře-
šení používá čip Texas Instruments Sitara
AM3358 a Linuxovou distribuci Debian
včetně modifikace jádra PREEMPT_RT.
Vývoj je prováděn za pomoci jednodesko-
vého počítače BeagleBone Black.

Tato práce čtenáři poskytne popis a
vysvětlení konceptů a vnitřních procesů
operačních systémů reálného času a Li-
nuxového systému device tree. V práci je
popsán proces portování a reimplemen-
tace několika různých funkcí z původního
systému. Problémy zjištěné během tohoto
procesu jsou vysvětleny a jsou zde pro-
brána jejich řešení. U některých reimple-
mentací dochází k razantnímu nárůstu vý-
konnosti oproti předchozímu řešení - tyto
změny jsou naměřeny a jejich dopad je
detailněji popsán.

Klíčová slova: inteligentní dům,
operační systém reálného času, Linux,
device tree, PREEMPT_RT, Sitara

Překlad názvu: Migrace a
reimplementace funkcí IoT systému
reálného času

iv

Contents

1 Introduction 1

1.1 History and Current Trends 2

1.1.1 External and Paid Software
Toolsets . 2

1.1.2 Current Market Situation 3

1.1.3 Economical Considerations and
Initial Cost Tradeoffs 4

1.1.4 Embedded vs General-Purpose 5

1.1.5 Future Outlooks 5

2 Hardware 7

2.1 iQtec Home Automation System . 7

2.2 Existing Solution 8

2.2.1 Weak points 9

2.3 New Solution 10

2.3.1 Hardware Requirements 10

2.4 Candidates 12

2.4.1 Variscite DART-6UL
System-In-Module 12

2.4.2 STMicroelectronics
STM32MP1-Series microprocessor 13

2.4.3 Octavo Systems OSD3358
System-In-Package 14

2.4.4 BeagleBone Black 15

2.4.5 Texas Instruments Sitara
AM3358 . 17

2.4.6 Lapis Semiconductor
MR45V100A 18

3 Software 19

3.1 Operating System 20

3.1.1 Existing Solution - FreeRTOS 20

3.1.2 RTOS in General 21

3.1.3 Combining RTOS and Linux
Strengths - PREEMPT_RT 21

3.1.4 Real-Time Thread Scheduling 22

3.1.5 Effects of the PREEMPT_RT
Patch . 23

3.1.6 Cyclictest 24

3.1.7 A Custom Threaded
Benchmark 25

3.1.8 Choosing a Particular
Operating System 28

v

3.2 Filesystem 28

3.2.1 Existing Solution - FatFs 28

3.2.2 File Access Slowdowns 29

3.2.3 Quantifying Slowdowns 30

3.2.4 Sudden Shutdown Behavior . 31

3.2.5 New Solution - ext4 31

3.3 IDE and Other Software Tools . 34

3.3.1 Code Composer Studio 34

3.3.2 Microsoft Visual Studio 2017 34

3.3.3 Cross Compilation 35

3.3.4 Integration of the Cross
Compiler . 35

4 Implementation Process 37

4.1 The Linux Device Tree 38

4.2 Enabling Interfaces 39

4.3 Porting of Filesystem
Functionality 42

4.4 SPI FRAM Driver, EEPROM
Emulation . 43

4.4.1 FRAM Transactions Over SPI 44

4.4.2 Setting Maximum SPI Speed in
Device Tree 45

4.4.3 Real-World Transfer Speeds
Before and After 47

4.4.4 SPIDEV Maximum Buffer
Sizes . 47

4.4.5 EEPROM Redirecting 48

4.5 Userspace-Based RTC Driver . . . 50

4.5.1 Setting Hardware Time 51

4.6 Accurate Software Timers 51

4.6.1 Proposed Solution: AM3358’s
PRU . 52

4.6.2 Software Approach 52

4.6.3 Minor Redesign 53

4.6.4 Specifics 53

4.7 UART Interface Wrapper 55

4.7.1 Uses . 55

4.7.2 Implementation Specifics 56

4.8 Standalone Application
Substitutes . 58

vi

4.8.1 FTP Server 58

4.8.2 FTP’s Security Issues 58

4.8.3 HTTP Server 59

5 Conclusion 61

5.1 Future Development 63

Bibliography 65

Project Assignment 69

vii

Figures

1.1 Cellular IoT connections forecast
for 2023 . 6

2.1 iQtec PLC . 8

2.2 Variscite DART-6UL 12

2.3 STMicroelectronics STM32MP1 13

2.4 Octavo Systems OSD3358. 14

2.5 BeagleBone Black 16

2.6 Functional block diagram of the TI
AM3358 . 17

2.7 MR45V100A ferroelectric RAM 18

3.1 Timer overheads on non-patched
kernel . 26

3.2 Timer overheads on
PREEMPT_RT-patched real-time
kernel . 27

3.3 Random file access times
depending on directory population,
FatFs . 30

3.4 Schema of a typical journaling
filesystem . 32

3.5 Random file access times
depending on directory population,
ext4 . 33

3.6 Code Composer Studio splash
screen . 34

4.1 Simplified diagram of a device tree
structure . 38

4.2 Activity diagram of ported
FRAM/EEPROM handler 49

4.3 Diagram of the implemented
software timer structure 54

viii

Tables

3.1 Comparison of Cyclictest results
between unpatched and RT-patched
systems . 25

4.1 A mapping of GPIO pins to
interfaces enabled in this project . . 41

ix

Chapter 1

Introduction

The market for home automation solutions has been getting bigger and bigger
in recent years. To be successful in this specific field of Internet of Things
and beat the vast amount of competition, home automation companies strive
to create and provide solutions that are very economically (i.e. both in initial
price and maintenance costs) friendly and, maybe most importantly, solutions
that are intuitive to use and provide a comfortable user experience.

In order to create systems that are inconspicuous and non-invasive (to
not disrupt the customer’s interior design, for example), home automation
developers usually design their electronics to be compact in size. This brings
along the downside that a small, microcontroller-based system might not be
able to provide the real estate and computing power needed to satisfy all
requirements in a timely and responsive manner. When an issue of this nature
presents itself to such a developer or company, there are generally multiple
ways to get past it. A cost-effective way is to just limit and slow down the
responsiveness of the system. While cheap, this approach is far from being
correct. They might also try to pursue means of hardware upgrades to take
their system back up to par speed-wise.

In some cases, home automation companies will choose to research the op-
tions and approaches to hardware upgrades even before the risks of slowdowns
and issues tied to them present themselves.

I was tasked with researching such a hardware upgrade by Prague-based
smart home company Prologue, s.r.o. Prologue develops and maintains a
home automation system called iQtec. The plan was to research the means

1

1. Introduction
of replacing the iQtec home automation system’s main processing unit’s
CPU with a different, much more modern and faster chip. This project also
included researching a switch to a different operating system - a migration
from FreeRTOS to a more conventional Linux-based distribution. Another
task was the migration and porting of the processing unit’s codebase and
functionality from the old operating system to the new one.

This master’s thesis will describe to the reader in detail the process of
designing and executing such a research project. The thesis consists of
multiple parts; first, an overview of the the historical, current and future
trends in this field of computing are discussed. Next, the existing home
automation system is described. After that, some of the current system’s
weak points are discussed and their solutions are proposed. Then, both the
existing and new systems’ hardware specifics are introduced and compared.
The choice of operating system is explained and some key concepts are
introduced. Implementation specifics are described in detail and any issues
presenting themselves during the implementation process are discussed and
their solutions explained.

1.1 History and Current Trends

In the past, home automation and maybe even IoT systems as a whole used to
be mostly based around simple microcontrollers and MCUs (microcontroller
units). This situation rose from the fact that these generally simpler processors
were typically quite cost-effective to purchase.

Low costs, however, came with a significant penalty; as a result of the
relatively low RAM and storage capacity of these devices, a significant portion
of the development had to be devoted to making very memory- and CPU-
efficient source code. This was often extremely difficult in newly-started
companies, as there simply wasn’t enough manpower to be dedicated to
creating a working product in a reasonable time frame.

1.1.1 External and Paid Software Toolsets

An option in such a situation was to purchase a working pre-implemented
source code library or toolset from providers selling such services. There
was a clear advantage in doing so, as it enabled developers to divert their

2

.............................. 1.1. History and Current Trends

attention to implementing actual functionality. A downside of this approach
was the fact that a codebase acquired in this manner often came without any
sort of guarantee and was not free of bugs.

Even though these solutions were often far from perfect, their monetary
costs were not insignificant, especially for a start-up operation.

There however existed paid toolsets which offered such guarantees, but
those often had very different target customers - the aerospace industry. This
was reflected in the price tag of such solutions, which was so extreme that no
startup would elect to use them.

1.1.2 Current Market Situation

The situation in the IoT and microprocessor market nowadays contains three
types of big players. First, there are companies who actually manufacture
the silicon chips that are used in this type of computing. In today’s tech
climate, where costs are being pushed down rapidly and the period of moral
obsolescence is getting relatively longer (in other words, customers don’t seek
hardware upgrades as frequently as before), it is very important to offer good
customer support in order to sell units. Chip producers therefore put big
amounts of effort into providing good documentation, reference and usage
manuals and driver support.

Another sort of tech companies who represent a significant portion of
the market are businesses that produce software libraries based on those
drivers. There is a good amount of collaboration between these two types of
tech companies - silicon manufacturers want their hardware to have a good
software applicability and a good user experience for developers using it. The
result of this that customers will be more likely to choose a product with a
good software toolkit, thus bringing more sales to both the hardware and
software producers.

These software-creating companies are also getting more and more impor-
tant on the market as the complexity of the underlying hardware rises. An
example - in the past, a typical microcontroller’s reference manual would
be hundreds of pages long. Nowadays, such reference manuals for bigger,
multi-core and high feature chips are often an order of magnitude longer.
The amount of information needed to get through when programming drivers
and other low-level software for a modern microcontroller is truly vast, which
makes software libraries all the more important.

3

1. Introduction
More and more tech companies have been taking advantage of the seemingly

underdeveloped field of services built around maintaining IoT systems. These
companies belong to the third type of big players in today’s IoT market.
The service they usually provide is mainly centered around a means of data
storage and manipulation for customers in the form of what is commonly
called a cloud service.

Amazon and its AWS (Amazon Web Services) is a good representative of
a company offering such a business model. In order to have a good customer
uptake, it is very important to provide a high quality of service. This is
related more to the application side of the service, such as efficient storage,
good realiability and availability, data visualization, database maintenance
and so on, and less so the underlying hardware and lower-level software sides.
Amazon is also active in lower levels of the software hierarchy, though - since
2017, Amazon has taken stewardship of the FreeRTOS project and now offers
a real-time operating system containing libraries and functions which can be
integrated into AWS. [1] Other providers of cloud services include Microsoft
Azure and Google Cloud.

1.1.3 Economical Considerations and Initial Cost Tradeoffs

A typical IoT or home automation company will put more emphasis on certain
hardware and software requirements as its size changes. Smaller companies
with less developers and a smaller customer base will generally select hardware
from a big silicon manufacturer. This is because such manufacturers typically
offer a better developer support.

The unit price for a bigger producer’s better-supported chip might be
higher, but it is less important for a smaller company’s budget, as it might
not sell a significant enough number of products for the slightly higher initial
costs to matter.

On the other hand, for companies who move a relatively high amount of
end products and operate on a bigger scale, the initial unit price might be
more important than the manufacturer’s product support capability. It might
often be cheaper to simply hire more developers to battle issues and problems
that present themselves during the development of a big product than to
suffer from high initial hardware costs.

4

.............................. 1.1. History and Current Trends

1.1.4 Embedded vs General-Purpose

This approach can also be applied and seen when it comes to developing a
design of a particular IoT system. Nowadays, the rate of integration is rising
and single-board general purpose computers, such as the Raspberry Pi, its
various clones and devices based on a similar concept, are widely commercially
available.

There is a lot of competition in this field, which means that prices are
relatively low, which is a good trend for IoT companies. Single-board comput-
ers of today usually offer a complete solution of a CPU, power module, I/O
functionality and peripheral tools that would in the past need to be sourced
and assembled from many singular parts besides just the microcontroller.

For a smaller IoT company or start-up, the single-board computer approach
offers a tremendous upside; the usual use of a conventional Linux distribution
in such a device means that lots of different drivers are continuously being
supported and bugs are often quickly patched. This means that using a
single-board computer is actually more cost-effective in the long run, as less
work needs to be expended to write low-level software.

1.1.5 Future Outlooks

The spread of IoT services has been exponential and has even seen some
unexpected acceleration in recent years. In 2018, the number of devices
connected to AWS rose by 49% over the preceding 12 months, and Azure
grew by an even more staggering 93%. The number of connected devices
that are in use exceeded 17 billion in mid-2018, with 7 billion of those being
IoT devices, and is projected to exceed 34 billion by 2025 (21 billion of those
being IoT). [2]

The development and nearing worldwide deployment of fifth generation
networking (5G) communication technology will probably accelerate the
growth of the IoT market even more.

5

1. Introduction
Its promises of high bandwidth and, more importantly, extremely low

latencies, will be very important in this field. It is projected that 3.5 billion
IoT devices will be connected via cellular networks alone in 2023. [3]

Figure 1.1: Cellular IoT connections forecast for 2023 [3]

As mentioned before, the period of moral obsolescence of today’s both
IoT and non-IoT devices is lengthening. Another fact is that semiconduc-
tor manufacturing technology advancements are slowing down - in 2019, 7
nanometer technology is slowly becoming the standard, with 5nm proposed
for 2020 and 3nm for 2024. [4]

It is entirely possible that the market will see a shift with big companies
switching to the field of providing services mentioned above - it seems that
there is a relatively untapped profit potential, judging from the insane market
growth in the recent past, present and near future.

6

Chapter 2

Hardware

In this chapter, first an overview of the iQtec home automation system
is provided. Then the details of iQtec’s existing hardware are introduced,
along with its strong and weak points. In another section, the proposed new
hardware gets presented and its specifics are discussed.

2.1 iQtec Home Automation System

iQtec is a system used for technological process control and data collection. It
is highly modular and can be used in a wide variety of applications, ranging
from controlling the environment of a single apartment or house, all the way
to gathering data and regulating of large industrial objects. Its main usecases
are as follows:

. Temperature regulation. Heating, ventilation and louver control. Lighting control, including dimmers and RGB scenes. Electrical outlet control. Energy consumption monitoring (electricity, gas, water, etc.). Home security camera and intercom functionality

7

2. Hardware
Each additional sensor or control module connected within this system

has its own proprietary software driver, which enables it to get registered,
initialized and - most importantly - take part in communication with the
main system unit.

2.2 Existing Solution

iQtec’s PLC, or programmable logic controller, is comprised of a logic board
with an STM32F437ZIT6 microcontroller unit. This MCU is made by STMi-
croelectronics and is based on an ARM Cortex-M4 core operating at a
frequency of 168 MHz. This MCU itself contains 256 kilobytes of RAM, two
megabytes of flash memory, and a real-time clock (RTC) module. [5]

Figure 2.1: iQtec PLC [5]

There are also numerous peripherals inside the PLC [5]:

. A Ferroelectric RAM (or FRAM) module with a 128 kilobyte capacity
connected on one of the MCU’s SPI buses. This FRAM is used to store
data that changes frequently, such as outputs from various measurement
modules. The main strength of this FRAM module is its extreme
read/write endurance - it is possible to overwrite every bit up to 1013

(or ten trillion) times. [6]. An electrically erasable programmable read-only memory (EEPROM)
chip, mainly used to store longer-term data, such as device initialization
logs and error messages.

8

................................... 2.2. Existing Solution

. A microSD card interface, which is primarily used to store service in-
formation or update the unit’s firmware if needed. An industrial-grade
microSD card is used in order for it to sustain temperature fluctuations
reliably.. Transceivers for many different communication protocols, such as RS-422,
RS-485, CAN 2.0B, or Ethernet. These are used to communicate with
the system’s sensors and data collecting devices.

Most of the devices listed above are connected to the MCU via either of I2C,
SPI or UART-based serial interfaces.

2.2.1 Weak points

The weakest point of this PLC is the microcontroller unit. A massive drawback
is its memory size. 256 kB of RAM is not a very comfortable amount to work
with as a developer, especially when the code is powering a project which can
potentially be quite extensive. There is a significant amount of effort that has
been expended into designing the iQtec’s software in an efficient way. Lots of
time was put into memory optimization in the existing solution to make it
run smoothly.

Another drawback is the relatively low computing power of the system’s
processor. A 168 MHz Cortex-M4 core still offers plenty of power for simpler
usecases, but it has been showing signs of running out of breath in this
application.

Steps had to be taken when developing the original iQtec codebase to
reduce the memory footprint of some of its functions. These steps resulted
in some unfavorable behavior of the system, which became apparent as the
codebase grew and the system got more complex. Some of these drawbacks
will be explained in detail in chapter three.

9

2. Hardware
2.3 New Solution

2.3.1 Hardware Requirements

Research had to be conducted in order to choose a processing unit to act as a
basis of the project’s hardware. To make sure the correct chip was chosen in
the end, a list of system requirements was agreed upon and made up. These
requirements took into account the weak points mentioned in the previous
section, as well as some parameters of the old solution that should be carried
over and executed in a similar or better fashion.

Multi-Core Processing

The decision to create this project to use a traditional Linux operating system
meant that the new CPU should be able to comfortably switch between lots
of threads running concurrently. Therefore, a chip with multiple cores should
be chosen.

Computing Power

This requirement also stems from the usage of a more complex operating
system. To put this requirement into a context of numbers, the DMIPS metric
should be explained first. DMIPS stands for Dhrystone Millions of Instructions
Per Second, where Dhrystone is the name of a synthetic computing benchmark
that quantifies a processor’s performance in an accurate manner. A metric of
"specific DMIPS" can be defined as the amount of DMIPS achieved for every
1 MHz for a given chip’s clock rate.

The old project’s processor has a DMIPS value of 210, or a specific DMIPS
of 1.25 with a clock rate of 168 MHz [5]. A requirement was defined to
provide at least five times the DMIPS of computing power with the new chip.
This is quite generous, as it should be possible to beat 1000 DMIPS with
almost any chip which already satisfies the first requirement and runs at a
reasonable clock speed. For example, if a hypothetical dual-core Cortex-M4
chip existed, it would only have to run at a clock speed of 400 MHz to satisfy
this requirement.

10

.................................... 2.3. New Solution

Memory

As mentioned in the previous section, a low amount of RAM is quite limiting
when developing software for embedded systems, and can be downright painful
as the project snowballs with more features and an expanding codebase.

To make sure there is enough system memory to satisfy the project’s
needs even as it gets improved in the future, while at the same time leaving
some extra for the operating system itself, it was decided that at least 512
megabytes of memory should be available in the new hardware solution. This
amount trumps the original 256 kilobytes by a huge margin, while being more
than reasonable in today’s state of the art.

Interfaces and Storage

The original system’s PLC offers a relatively large array of communication
interfaces. Five UARTs, three SPI bus interfaces, two I2Cs, two USB 2.0
ports, an Ethernet port and more [5]. The new system should provide a
comparable amount of these interfaces, with Ethernet and UART being the
most important ones. There should also be options available to expand the
IO ports with more functionality.

A microSD card slot is also an important requirement, as it stores crucial
service information, as mentioned in section 2.1, though this is not necessarily
a feature of the processing unit itself. A dedicated storage device (other
than the microSD card) would also be welcome - the original design only
incorporates a two megabyte flash storage, which is far being optimally sized.

11

2. Hardware
2.4 Candidates

2.4.1 Variscite DART-6UL System-In-Module

The Variscite DART-6UL is one the platforms selected for closer examination.
It includes a processor based on NXP’s i.MX 6UltraLite family and contains
an ARM Cortex-A7 core clocked at up to 900 MHz and 1 gigabyte of RAM.
Its features also include two Ethernet connections, dual CAN, I2C, SPI,
UART and SD/MMC interfaces. The DART-6UL is optimized for low power
consumption and is also relatively small in size, with the whole module’s
dimensions being only 25 by 50 millimeters. The DART-6UL also supports
Linux as its operating system of choice. [7]

Figure 2.2: Variscite DART-6UL [7]

The Variscite DART-6UL satisfied demands for available storage devices
and communication interfaces. It only uses a single Cortex-A7 core though,
which might not be enough to handle the needs of the project when combined
with possible future extensions. The lack of multiple cores also hurts its
computing power - while its DMIPS value of about 1760 is far higher than
the original system’s 210, there are multi-core variations of the Cortex-A7
which would help even more.

A big advantage of this system-in-module is the fact that Variscite also
produces and sells a 4G LTE modem module, which will be incorporated into
the project at some point in the future. Combining these two devices could
prove to be favorable, especially when it comes to development support.

12

..................................... 2.4. Candidates

2.4.2 STMicroelectronics STM32MP1-Series microprocessor

In February of 2019, STMicroelectronics announced a new series of micropro-
cessors, the STM32MP1. This family of microprocessors uses a single or dual
ARM Cortex-A7 core in combination with a Cortex-M4 core, clocked at 650
and 209 MHz, respectively. This enables the STM32MP1 to support multiple
and flexible applications and achieve best performance and power figures. Up
to 1 gigabyte of DDR3 RAM is available. Communication interface equipment
is very good, with six I2C, up to 8 UART, six SPI, three SD/MMC and a
single Ethernet connection available. As for operating systems, both Linux
and Android are supported. [8]

Figure 2.3: STMicroelectronics STM32MP1 [9]

The STM32MP1 satisfied all of the requirements defined in the previous
section. It offers two Cortex-A7 cores clocked at 650 MHz, which comply to
the computing power requirement with a DMIPS value of 2470. A big plus is
the amount of communication interfaces available, as well as the number of
storage devices available. A discovery or evaluation kit was not available at
the time of this research, so the usage of the STM32MP1 was not pursued
further. It is also very new and fresh on the market, which could have negative
implications as it is currently relatively unproven, though they are not factual
as of writing this thesis.

13

2. Hardware
2.4.3 Octavo Systems OSD3358 System-In-Package

The last candidate that made the short list is Octavo Systems’ OSD3358
System-In-Package (SiP). The OSD3358 itself integrates multiple devices in
order to make it a system that is completely ready to run.

It integrates a Texas Instruments Sitara AM3358 processor, a TI power
management system, up to 1 gigabyte of DDR3 memory and lots of passive
components, all while keeping everything inside a single reasonably-sized
27x27 mm package. With this level of integration, the OSD335x Family of
SIPs allows designers to focus on the key aspects of their system without
spending time on the complicated high-speed design of the processor/DDR3
interface or the PMIC power distribution. It also reduces the overall size and
complexity of the design and the supply chain. [10]

Figure 2.4: Octavo Systems OSD3358

The OSD3358 offers an Ethernet connection, two USB 2.0 ports, access to
multiple CAN, SPI, UART and I2C peripherals, a SD/MMC interface and
an optional integrated eMMC storage device. [10] It is capable of running
Linux, Android or an RTOS (real-time operating system) as far as operating
systems go.

The Octavo OSD3358 also satisfies most of our requirements. It boasts solid
computing power - its Cortex-A8 clocked at up to 1 GHz offers a DMIPS value
of 2000 with a specific DMIPS of 2 per MHz - a value slightly higher than
any of the other candidates. Peripheral interface connections are plentiful
and a combination of eMMC and microSD card support is a big plus, as well
as its size.

14

..................................... 2.4. Candidates

In the end, the OSD3358 was picked as the basis of this thesis’s project.
The main factors in this decision were its dimensions, its Sitara AM3358
processor, integrated eMMC and good peripheral connection capabilities. Its
theoretical performance was also important in the decision, though it does
only use a single-core processor.

Note on development board used

An Octavo OSD335X-SM-RED evaluation board was ordered and acquired in
preparations to start the prototyping phase. Issues appeared with Ethernet
drivers in the Linux distribution of choice in the early stages of prototyping.
The Octavo-supplied evaluation board uses an Atheros AR8035, whose drivers
were not functioning properly at the time. This meant that in the end, most
of the prototyping was done on a BeagleBone Black board.

In the final product, it is likely that the Octavo SiP will be used, and a
different Ethernet adapter will be used instead of the AR8035 located on the
Octavo OSD355X-SM-RED.

2.4.4 BeagleBone Black

Due to issues with the Octavo OSD355X-SM-RED evaluation board early
on in the development of this project, the decision was made to switch to a
BeagleBone Black single board computer. The BeagleBone Black is extremely
similar to the Octavo evaluation board, but there are some differences.

The key difference is that this board does not in fact run the Octavo
OSD3358 chip - the main CPU of the BeagleBone Black is TI’s Sitara
AM3358, i.e. the exact same CPU found inside the OSD3358. This has no
practical consequences on this project, as these CPU solutions only differ
in power delivery circuitry, which does not affect this project in any way.
The BeagleBone uses an SMSC LAN8710A Ethernet adapter, which did not
exhibit any driver problems during development.

Another notable difference between the Octavo evaluation board and the
BeagleBone Black is the amount of RAM, of which the latter only has 512
megabytes.

15

2. Hardware
The BeagleBone Black is actually a very good board to use for this project.

It is widely commercially available and relatively inexpensive (the cost of one
unit at the time of writing is about $55). This means that the BeagleBone
Black is very favored among developers and hobbyists alike. There is a big
community support for this board, both from users and the manufacturer.

Figure 2.5: BeagleBone Black [11]

The main features of the BeagleBone Black are as follows [11]:

. TI Sitara AM335x 1GHz ARM Cortex-A8 processor. 512MB DDR3 RAM. A 3D graphics accelerator and a microHDMI port, which can be utilized
to use the BeagleBone Black as a traditional single-board computer. USB client and host connections. A microSD card slot, as well as a 4 gigabyte eMMC memory, which
allows it to be shipped with a preinstalled OS to provide out of the box
usability. Ethernet, two 46-pin input/output headers. 4x UART, 2x SPI, 2x I2C, 2x CAN bus peripheral drivers

16

..................................... 2.4. Candidates

2.4.5 Texas Instruments Sitara AM3358

The AM335x family of microprocessors, of which the AM3358 is a member,
are based on the ARM Cortex-A8 processor core and are enhanced with
image, graphics processing, peripheral and industrial interface options. These
devices also support high-level operating systems (HLOS). [12]

Figure 2.6: Functional block diagram of the TI AM3358 [12]

The AM335x family chips also contain two additional 32-bit RISC micro-
controllers, called the Programmable Realtime Units, located on the SoC
in the PRU Subsystem and Industrial Communication Subsystem, or PRU-
ICSS. The PRU-ICSS is separate from the ARM core, allowing independent
operation and clocking for greater efficiency and flexibility. The PRU-ICSS
enables additional peripheral interfaces and real-time protocols. The pro-
grammable nature of the PRU-ICSS, along with its access to pins, events and
all system-on-chip (SoC) resources, provides flexibility in implementing fast,
real-time responses, specialized data handling operations, custom peripheral
interfaces, and in offloading tasks from the other processor cores of SoC. [12]

The AM3358 CPU being used here runs at a clock speed of 1 GHz.

17

2. Hardware
2.4.6 Lapis Semiconductor MR45V100A

The existing PLC uses a 128 kB FRAM chip to store data that changes
very frequently and is overwritten constantly, such as temperature or energy
consumption measurements, or other information of similar character.

This prototype uses an MR45V100A FRAM chip for this very same purpose.
It is a one megabyte unit which should be good for trillions of overwrites per
bit. It can be used in temperatures ranging from -40 to +85 degrees Celsius,
which will be enough for our use. [6] It is connected to the CPU via a serial
peripheral interface (SPI).

A picture of the FRAM chip as installed on the prototype can be seen in
figure 2.7.

Figure 2.7: MR45V100A ferroelectric RAM

18

Chapter 3

Software

The software side of this thesis is arguably the part that needed improvement
the most.

The iQtec functionality itself and all the system device (i.e. hardware other
than the PLC itself) drivers will not need reimplementing or any drastic
changes, as the system devices are not a part of this prototype, rather just
peripherals connected to it.

The microcontroller-esque nature of the original PLC design is not ideal in
today’s state of the art, as outlined in 1.1 and 2.2. As the scope of the original
project rose, some sub-optimal routes had to be taken in order to ensure
proper functionality while staying inside the constraints of the hardware and
system resources.

In this chapter, some of these solutions will be explained. New approaches
will be discussed and introduced, and a general comparison will be provided
between the old and new solutions.

19

3. Software.......................................
3.1 Operating System

3.1.1 Existing Solution - FreeRTOS

The old PLC uses FreeRTOS as its operating system of choice.

FreeRTOS is a market leading real time operating system, or RTOS for
short, from Amazon Web Services that supports more than 35 architectures.
It is professionally developed, strictly quality controlled, robust, supported,
and free to embed in commercial products without any requirement to expose
your proprietary source code. FreeRTOS has become the de facto standard
RTOS for microcontrollers by removing common objections to using free
software, and in so doing, providing a truly compelling free software model.
The FreeRTOS kernel was originally developed by Richard Barry around
2003, and was later developed and maintained by Richard’s company, Real
Time Engineers Ltd. FreeRTOS was a runaway success, and in 2017 Real
Time Engineers Ltd. passed stewardship of the FreeRTOS project to Amazon
Web Services (AWS). [1]

FreeRTOS has been used in iQtec’s PLC because of its good viability when
used in a microcontroller-based system. FreeRTOS is generally designed and
created to have a small memory footprint and a small processor overhead. It
also supports multi-threading. There are none of the more advanced features
typically found in operating systems like Linux or Microsoft Windows, such as
device drivers, advanced memory management, user accounts, and networking.
The emphasis is on compactness and speed of execution. [13]

The second to last point mentioned in the previous paragraph is one of the
bigger downsides of using FreeRTOS here. Networking and device drivers have
to generally be "outsourced" to external libraries, or written from scratch.
To avoid doing this in this thesis’s prototype, it was decided to not use
an operating system of this nature, and instead go for a traditional Linux
distribution, which offers the "luxury" of having network and device drivers
ready to go, as well as a good memory management system.

20

.................................. 3.1. Operating System

3.1.2 RTOS in General

A big strength of using a lightweight operating system such as FreeRTOS can
be found in its name - it is a true real time operating system.

A processor core can only run a single thread of execution at a time. To
provide multi-tasking, an operating system has what is called a scheduler,
which is responsible for deciding which program to run when, and provides
the illusion of simultaneous execution by rapidly switching between programs.
[14]

The type of an operating system is defined by how the scheduler decides
which program to run when. For example, the scheduler used in a multi-user
operating system (such as Unix) will ensure each user gets a fair amount of
the processing time. Some operating systems prioritize tasks that interact
with the user, which helps with user experience and perceived responsiveness.
[14]

The task scheduler in a real time operating system provides a deterministic
execution pattern. This is very useful in embedded systems, as these systems
have real time requirements. A real time requirement is one which specifies
that the system must respond to a certain event within an expected and strictly
defined time frame. Real time operating systems generally guarantee real
time requirements because the system’s task scheduler runs in a deterministic
manner, and thus its behavior can be predicted. [14] A typical way of
providing determinism and predictability is the use of thread priorities. The
highest priority task wanting the CPU always gets the CPU within a fixed
amount of time after the event waking the task has taken place. On an
RTOS, the latency of a task only depends on the tasks running at equal or
higher priorities. On a normal operating system, these latencies depend on
everything running in the system at a given point in time, which makes it
very difficult to meet a task’s deadline reliably. [15]

3.1.3 Combining RTOS and Linux Strengths -
PREEMPT_RT

A traditional Linux-type operating system is not an RTOS. Many programs
and threads run in parallel and typically, no real time requirements are
specified nor guaranteed. If kernel code is executing when some event takes
place that requires a high priority thread to start executing, the high priority

21

3. Software.......................................
thread can not preempt the running kernel code, until the kernel code explicitly
yields control. In the worst case, the latency could potentially be hundreds
of milliseconds or more. [15] There is, however, a way to bring Linux’s kernel
closer to that of a real time operating system - The PREEMPT_RT patch.

PREEMPT_RT is a real-time kernel patch which can transform the Linux
kernel into one that is fully preemptive. In addition to faster response
times (and maybe more importantly), it removes all unbounded latencies.
An unbounded latency means that the amount of delay that can occur is
dependent on the situation. [16]

In a normal Linux kernel, a total of four preemption models are implemented
which alter the kernel’s behavior. These models provide tradeoffs between
system throughput and latency, with the "No Forced Preemption" model
having the best throughput at the cost of worse latency, while the "Low
Latency Desktop" model is at the other end of the perceived spectrum. The
PREEMPT_RT patch adds two more preemption models, one of them dubbed
"Fully Preemptible Kernel." This flavor of the patch makes all kernel code
preemptible, save for a few selected critical sections. Several substitution
mechanisms, such as special real-time mutexes, are implemented to reduce
preemption-disabled sections of code to a minimum. This model is the one
that truly provides the kernel with real-time behavior. [17]

3.1.4 Real-Time Thread Scheduling

In an ordinary Linux operating system (or any other general purpose OS),
tasks need to share CPU time, as there are orders of magnitude more tasks
than available CPUs. Waiting tasks are usually dispatched in order of
decrasing priority. If two or more tasks’ priorities are identical, these kinds
of ties are broken according to task scheduler policies. [18] All scheduling is
preemptive - if a task with of a higher priority becomes ready to run, the
currently running task is preempted and returned to the list of waiting tasks.
[19]

The standard task scheduler in Linux is called CFS, or "Completely Fair
Scheduler." Internally, this scheduler is called SCHED_OTHER. It uses an at-
tribute called the nice value, which in essence represents a task’s priority
level. The range of the nice value varies across different Unix systems, but
on modern Linux, the range is -20 (high priority) to +19 (low priority). [19]
This might seem counterintuitive when thinking about niceness as a priority,
but what it actually represents is how "nice" a task is to other waiting tasks.

22

.................................. 3.1. Operating System

A very nice task will let other tasks skip ahead of it, while a task that is not
nice will not.

A Linux kernel patched with PREEMPT_RT introduces more functionality
when it comes to scheduling and priorities. There are two more task scheduling
policies, as well as an additional priority system. One of the new policies is
called SCHED_RR. When using this scheduler, tasks of equal priority alternate
using a simple round-robin scheme. The other new policy is SCHED_FIFO. As
its name might suggest, tasks with equal priorities are dispatched in the order
in which they were enqueued into the task queue. [18]

When using one of these new scheduling policies, threads gain the abil-
ity to have a new set of priority values. A static scheduling priority, or
sched_priority, is what the scheduler uses in order to decide which task
to dispatch next. sched_priority is not used in this decision at all when
not using any of these two new policies (it is always set to zero for all tasks).
Processes scheduled under these policies have a sched_priority value in the
range of 1 (low priority) to 99 (high priority). This means that real-time
scheduled threads will always have higher priority than normal tasks. [19]

3.1.5 Effects of the PREEMPT_RT Patch

To quantify how PREEMPT_RT actually affects performance in real-time
applications, two tests were conducted. The first test’s purpose was to measure
the difference in latencies between a Linux system where the PREEMPT_RT
patch wasn’t applied, and a Linux system that had previously been patched.

In order to prepare the testing environment, an image of Debian 9.8 suited
for the BeagleBone Black was sourced and flashed onto a microSD card. This
system was then booted up unmodified, and the first batch of tests was run.
After that, the system was patched with PREEMPT_RT, and the same tests
were run again. Applying the PREEMPT_RT patch on the kernel of the
BeagleBone Debian distribution is quite simple. The Debian distribution
ships with a script that will take care of most of the patching process.

root@beaglebone:~# cd /opt/scripts/tools/
root@beaglebone:/opt/scripts/tools/# uname -r #verify kernel version
4.14.71-ti-r80
root@beaglebone:/opt/scripts/tools/# ./update_kernel.sh \
> --ti-rt-channel --lts-4_14

23

3. Software.......................................
After the script finishes executing, a reboot is needed for the patch to take

effect.

Verification of the model of preemption can be done very quickly - the
configuration file /proc/config.gz can be decompressed and displayed with
gzip, and all lines containing the word "PREEMPT" can be filtered with
grep. A flag will be displayed for each of the preemption models. If the
CONFIG_PREEMPT_RT_FULL flag is present and enabled like in the
snippet below, the operating system’s kernel is fully preemptible.

root@beaglebone:~# gzip -cd /proc/config.gz | grep PREEMPT
CONFIG_PREEMPT=y
CONFIG_PREEMPT_RT_BASE=y
CONFIG_HAVE_PREEMPT_LAZY=y
CONFIG_PREEMPT_LAZY=y
CONFIG_PREEMPT_NONE is not set
CONFIG_PREEMPT_VOLUNTARY is not set
CONFIG_PREEMPT__LL is not set
CONFIG_PREEMPT_RTB is not set
CONFIG_PREEMPT_RT_FULL=y
CONFIG_PREEMPT_COUNT=y
...

3.1.6 Cyclictest

The Cyclictest utility was used to measure the systems’ latencies. Cyclictest
runs a non real-time master thread which starts a defined number of measuring
threads with a defined real-time priority. The measuring threads are woken
up periodically with a defined interval by an expiring timer (cyclic alarm).
Subsequently, the difference between the programmed and the effective wake-
up time is calculated and handed over to the master thread via shared
memory. The master thread tracks the latency values and prints the minimum,
maximum, and average latencies after each iteration. [20]

In order to put load on the system while Cyclictest was running, the stress
utility was used. stress is a very simple workload generator which can put a
configurable amount of load on the CPU, memory, I/O and disk system. [21]
It was configured to run 64 load tasks on the CPU and I/O system, as well
as 4 tasks on the memory system, each randomly allocating and deallocating
64 megabytes of memory.

24

.................................. 3.1. Operating System

Cyclictest was launched and configured to run for 1,000,000 iterations with
a thread timer running at a period of 1 ms. Cyclictest’s priority was set to
99 (the highest possible priority). The exact same command was used while
testing both the unpatched and patched kernels - the priority setting had no
effect on the unpatched system. The output of Cyclictest consists of three
numbers - the minimum, average and maximum values of thread latency in
microseconds. Ideally, these three values should be as close as possible to
each other, with the maximum not being very high relative to the average.

A typical output of Cyclictest on a non-RT-patched system looks like the
following snippet:

root@beaglebone:~# stress --cpu 64 --io 64 --vm 4 --vm-bytes 64M &
root@beaglebone:~# ./cyclictest -t1 -p 99 -n -i 1000 -l 100000

policy: fifo: loadavg: 123.82 77.32 58.20 133/287 1796
T: 0 (1796) P:99 I:1000 C: 1000000 Min: 23 Act: 45 Avg: 44 Max: 421

You can see that the maximum latency gets quite wild, at about 10x the
value of the average. This would not be acceptable in a real-time system.

The table in 3.1 displays the results of this first test done on a clean
installation of BeagleBone Debian, and a PREEMPT_RT-patched version of
the same system. You can see that using a real-time kernel does indeed bring
significant improvements in performance and reduces latencies drastically.

Min. Latency [µs] Avg. Latency [µs] Max. Latency [µs]
Debian 9.8,
unpatched 23 44 421

Debian 9.8,
PREEMPT_RT_FULL 16 24 49

Table 3.1: Comparison of Cyclictest results between unpatched and RT-patched
systems

3.1.7 A Custom Threaded Benchmark

The second test that was executed was in essence quite similar to the first
test. A more real-life source code was written (some of which would later be
used in the ported code during the implementation phase of the thesis).

25

3. Software.......................................
The purpose of this code was to spawn an independent thread with a high

priority, which would keep a timer alive and, when the timer fired, would
raise a POSIX semaphore structure so that other threads knew a set amount
of time had passed since the last firing. To put it very simply, it is an
emulation of a hardware timer running at a configurable period. The actual
implementation calls for a 25 millisecond timer, so that value is what was
used to benchmark the latencies in this test.

When running on the patched kernel, the thread priority was again set to
99, and the schedule policy was set to SCHED_FIFO. When running on the
unpatched kernel, these settings were not applied as they are not supported.

The only task of the so-called "timer thread" is to wake up after catching
a signal, set the timer again, and raise a semaphore. This whole cycle was
timed using high-precision clocks in C’s time.h library.

During testing, the system was put under load in the same manner as in
the first test; using the stress utility. Each test was comprised of 8,000
iterations of a 25 millisecond timer, which means that one test instance took
about 200 seconds to run.

The results of this test can be seen in figures 3.1 and 3.2. What they
represent is, simply put, the overhead (in microseconds) of the implemented
timing mechanism. Both figures also include a line representing the mean
overhead values.

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
r

o
v
e

rh
e

a
d

 [

�

s
]

Iteration

Timer overhead, Debian 9.8 unpatched

Figure 3.1: Timer overheads on non-patched kernel

26

.................................. 3.1. Operating System

The results are somewhat expected; the unpatched kernel performs worse,
its mean overhead value is 50.44 µs and 90 % of measurements fall into an
interval of (37.375; 62.216). The outliers are rather extreme, and there were
three occurrences of overheads larger than 1500 µs. Even though microsecond-
precision is probably not needed in a 25 ms timer, a 1.5 ms delay is truly
unacceptable.

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
r

o
v
e

rh
e

a
d

 [

�

s
]

Iteration

Timer overhead, Debian 9.8 PREEMPT_RT

Figure 3.2: Timer overheads on PREEMPT_RT-patched real-time kernel

The PREEMPT_RT-patched kernel performed significantly better. Its
mean timer overhead was only 38.86 µs, and 90 % of values measured fell
into an interval of (28.791; 53.085). Outliers were also less frequent and their
values were not as high as with the unpatched kernel - just five iterations saw
an overhead of more than 100 microseconds (0.0625%), versus a much higher
392 occurrences (4.9%) of the same during benchmarking of the unpatched
kernel.

27

3. Software.......................................
3.1.8 Choosing a Particular Operating System

After running these tests and consulting with the project supervisor, an
agreement was reached to use the PREEMPT_RT-patched version of the
official BeagleBone Debian distribution to conduct the rest of this thesis’s
experiments.

We agreed that while it still might have some performance reserves that
could be improved by using a more "lean" operating system, this distribution
has a lot to offer to a software developer. Things such as the system’s
automatically-configured virtual Ethernet connection over its USB port (which
allows the user to connect to and transfer data to and from the device without
a network), a reasonably well-written documentation and active support
forums, as well as the fact that this very operating system is recommended
and supported by Texas Instruments, the company making the CPU used in
this thesis, were factors that helped make this decision even easier.

3.2 Filesystem

As discussed before, iQtec’s original PLC uses FreeRTOS as its operating
system of choice. Being a bespoke RTOS, its main useful parts are the task
scheduling kernel, a means for inter-process communication (IPC), thread
synchronization and timers. [22] When used as is, it provides little more
functionality. FreeRTOS has to be statically linked with any user-supplied
compiled source code to produce a single executable, which is then booted by
the system directly (or using a bootloader). Most real-time operating systems
including FreeRTOS can not load and unload code dynamically from a file
system, just like a regular general-purpose operating system can. Code is
usually loaded at start-up and runs until power-down. [23]

3.2.1 Existing Solution - FatFs

Programs running on microcontrollers don’t usually have any filesystem
capabilities. What these entail is the creation, moving and deletion of files
and directories, reading and writing binary data to and from files, and
communication with external storage devices, such as SD cards. The existing
PLC incorporates all of this functionality, and uses FatFs to do so.

28

......................................3.2. Filesystem

FatFs is a generic FAT filesystem module for small embedded systems,
which is written in C and is very platform-independent. It can be incorporated
into small microcontrollers with limited resources, as it boasts a very small
memory footprint. [24] Some of FatFs’s other features include [25]:

.Windows compatible FAT file system. Support for multiple volumes (both physical drives and partitions), up
to 10. Long file name support in ANSI/OEM or Unicode. Volume sizes of up to 2 terabytes (FAT32 specification when using 512
byte sectors). Support for RAM disks

3.2.2 File Access Slowdowns

One of FatFs’s main uses in iQtec’s system is communication with the microSD
card. The microSD card’s purpose is to store service information, new
firmware versions when an update is available, error logs and a partial copy
of the system’s current program state. There can be up to hundreds of files
on the card at a given point in time. The microSD card is usually accessed
every 25 milliseconds, so it does see some load almost constantly. One of the
drawbacks of using the FAT filesystem is the fact that file operations can
get very slow in directories containing more than a few hundred files. This
concerns not only write and read operations on files, but simple file accesses
are affected, too.

This was reportedly a problem at some point in iQtec’s system history -
file access times would apparently take about 5 milliseconds from start to
finish when only about twenty files were present in a given directory, but this
access time would rise linearly up to unusable levels. What this means is
that the time complexity of searching within a given directory is bounded
by O(n), where n is the number of files in the directory. With close to a
thousand of files, access times were reaching upwards of 40 milliseconds. This
is clearly unacceptable in a case where the filesystem has to be accessed every
25 milliseconds. A workaround was deployed where a larger directory’s files
were split into subdirectories by the first characters of their filenames. This
brought a little bit of extra complexity into the code, but helped mitigate
the file access time issue somewhat.

29

3. Software.......................................
3.2.3 Quantifying Slowdowns

A simple program was created to test this behavior. The application would
start with an empty directory and incrementally create files of random sizes.
After each file was created, the application would select an existing filename
at random and open the corresponding file. The access time was measured
and outputted for every iteration. After the completion of this test, the
directory would get scrubbed of all created files and the application would
quit. The testing would terminate after 1000 files were created, which was
more than enough to illustrate the point.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600 700 800 900 1000

A
c
c
e

s
s
 t

im
e

 [
m

s
]

Number of �les

Number of �les in directory vs. random access time, FatFs (FAT)

Figure 3.3: Random file access times depending on directory population, FatFs

This test was conducted numerous times and output logs were then analyzed.
Typical results can be seen in figure 3.3. The data looks incredibly well-
behaved - as iterations go on, the access times stay almost constant and only
rise once every 16 iterations. The output looks almost like a plot of a step
function. This is almost certainly caused by a construct inside FatFs that
possibly reallocates the directory table in increments of 16 records to save
space. A trend line is not included in this graph as it is fairly apparent that
file access times rise in a linear manner as the number of files in the tested
directory rises. The equation for the trend line is, according to Microsoft
Excel, f(x) = 0.04 · x+ 1.625, which indeed corresponds to the theoretical
access time complexity of O(n).

30

......................................3.2. Filesystem

The test confirmed the existence of one of FAT’s weaknesses - directories are
merely unsorted arrays of filenames, so a directory searching function simply
goes through the entries one at a time, until it finally finds (or doesn’t) the
correct entry. This is not a problem for directories that are relatively sparse,
but gets more apparent as a directory gets populated with many files. [26] The
FAT system is not solely to blame, though. FatFs is a very lightweight and
simple implementation of a FAT filesystem, which certainly does not help with
speed and efficiency. The fact that a 168 MHz-clocked microcontroller is used
as the hardware is another factor that surely contributes to the filesystem’s
slowness.

3.2.4 Sudden Shutdown Behavior

Another weakness of the existing solution is its relatively low tolerance against
sudden shutdowns. The FAT filesystem is not inherently power fail safe. This
means that if a power loss happens during file or directory updates, incorrect
file metadata updates may happen. This produces garbage data, which in
turn can cause a filesystem corruption. [27]

In FatFs, the filesystem is only updated once a file that is being updated is
closed. Data loss due to sudden shutdown or media removal can be somewhat
mitigated by periodically flushing a file that is opened for an extended period
of time. The f_sync() function provides means to do this; only the data
since the last synchronisation is lost after a sudden shutdown. After a
search through the iQtec codebase, it seems as though this function was not
being used at all, which definitely contributed in the system’s intolerance to
shutdowns.

3.2.5 New Solution - ext4

Since the decision was made to use a traditional general-purpose operating
system in the form of a Linux distribution (Debian 9.8 for the BeagleBone
Black), there will be no need to use an external filesystem solution. The
operating system is installed on a volume using the ext4 filesystem, which
is supported by the Linux kernel natively. This brings about numerous
advantages over the formerly used FatFs.

One such advantage is the fact that ext4 is a journaling filesystem. This
has tremendous implications regarding its sudden shutdown tolerance.

31

3. Software.......................................
Journaling file systems are fault-resilient file systems that use a journal to

log changes before they’re committed to the file system to avoid metadata
corruption. The journal is a special file that logs the changes destined for
the file system. At periodic intervals, the journal is committed to the file
system. If a crash occurs, the journal can be used as a checkpoint to recover
unsaved information and avoid corrupting file system metadata. Figure 3.4
illustrates how a journaling system works. Ext4 also includes the ability
to checksum the contents of the journal to make the journal more reliable.
Another interesting fact about ext4 is its date resolution for file attributes -
down to 1 nanosecond - although this will not be needed in this project. [28]

Figure 3.4: Schema of a typical journaling filesystem [28]

Another advantage that ext4 possesses over FatFs (and FAT in general)
is speed. It does not suffer from the issue where file access times in a given
directory would go up with the number of files in the directory. This is due
to ext4’s usage of efficient data structures to store directory entries. Where
FAT used simple linear arrays to store such information, ext4 puts those
into a special balanced tree. An advantage of balanced trees is that, while
their implementation is more complex, they offer a search time complexity of
O(log(n)), where n is the number of elements in the tree. [29]

A testing application was written to test the access times of files in an ever-
expanding directory, very similar to the test executed on the FatFs-equipped
old system. The inner workings of this test were identical to the test described
in 3.2.3. This test was run on the new hardware and software configuration,
i.e. a BeagleBone Black system running an installation of Debian 9.8.

32

......................................3.2. Filesystem

The results of this test can be seen in a plot in figure 3.5. Other than the
obvious speed-up (or rather lack of slowdown), please take note of the units
used. The test showed that the ext4 solution used here was about two to
three orders of magnitude faster than the formerly used FAT solution; where
FatFs took dozens of milliseconds to access a file, ext4 only needs about 100
microseconds at worst.

The figure also includes a trend line this time, which, as it turns out,
correctly reflects the time complexity by rising logarithmically with increasing
file counts. According to Excel, the equation for the trend line’s curve is
f(x) = 0.458 · ln(x) + 73.27, where ln(x) is the natural logarithm of x.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900 1000

A
c
c
e

s
s
 t

im
e

 [

�

s
]

Number of �les

Number of �les in directory vs. random access time, ext4

Figure 3.5: Random file access times depending on directory population, ext4

There is one more explanation for this massive performance gain, other
than the usage of a superior, non-lightweight-implemented filesystem. It’s
also the fact that this test was executed on hardware that is much more
powerful - the BeagleBone Black is equipped with a processor based on a
very different microarchitecture (Cortex-A8 vs Cortex-M4), as well as having
a significantly higher clock-rate (1 GHz vs 168 MHz).

33

3. Software.......................................
3.3 IDE and Other Software Tools

3.3.1 Code Composer Studio

When developing source code for this master’s thesis project, the integrated
development environment (IDE) of choice was Texas Instruments’ Code
Composer Studio version 8.3. Code Composer Studio is based on the Eclipse
open source software framework. This generally means that a user familiar
with Eclipse will find the user experience of CCS to be very similar. The
choice to use CCS was made because of its very good integration of various
functionalities used in developing applications for Linux-based systems.

Figure 3.6: Code Composer Studio splash screen

3.3.2 Microsoft Visual Studio 2017

Microsoft’s Visual Studio was also used for a portion of the development.
iQtec’s codebase is contained in multiple Visual Studio projects, and plans
were made to integrate the Linux-deployed code into the existing projects.
The correct platform would then simply be selected in Visual Studio.

Generally, individual functional components of this project were developed
and debugged using Code Composer before being integrated into the iQtec
codebase in Visual Studio.

34

............................. 3.3. IDE and Other Software Tools

3.3.3 Cross Compilation

During this project, development was done on ordinary desktop computers
running the Microsoft Windows operating system. The target device, on
the other hand, was an ARM processor running Linux. To bridge the gap
between the development and target (or host) environments, a cross compiler
is used. A cross compiler is a tool that allows the developer to compile source
code on one platform and run it on a different platform.

The cross compiler used in this project was a part of the Linaro Toolchain.
What’s included in this toolchain, besides the GCC compiler and compiler
libraries, is a set of tools that allow the inspection, debugging, and profiling
of executables [30]. The Linaro Toolchain is maintained by the Linaro
engineering organization and new versions are released periodically.

In order to compile on an x86-64 operating system and deploy onto an ARM
system, the 5.5.0-2017.10-i686-mingw32_arm-linux-gnueabihf package
was used. This designation can be broken down into individual parts -
i686-mingw32 signifies the host environment, arm signifies the target archi-
tecture, linux is the target system, and finally gnueabihf indicates which
ABI (application binary interface) is used during compilation (GNU in this
case). [31]

3.3.4 Integration of the Cross Compiler

The integration of cross compiler toolchains into Code Composer Studio
projects is incredibly easy. Once a toolchain is extracted and installed on the
host environment, it is only a matter of adding its path into Code Composer’s
compiler settings, and finally selecting the desired compiler from a dropdown
menu in a project’s properties.

When it comes to Visual Studio however, the integration of the Linaro
toolchain was a very different experience. As it turns out, it is impossible
for Visual Studio 2017 to support third-party cross compilers. Linux targets
are supported with a slight workaround, though. It is possible to set up
Visual Studio for remote compilation for Linux C/C++ development. Since
Windows 10 ships with the option of installing a Linux subsystem (called
the Windows Subsystem for Linux, or WSL for short), it is possible to point
Visual Studio to target WSL. This means that Visual Studio will compile
source code "remotely," with the target system running on the same machine.

35

3. Software.......................................
To take advantage of this workaround, it is then possible to simply obtain a
version of Linaro toolchain that runs on x86-64 Linux and targets our ARM
system, and finally point WSL to use that compiler instead.

What this means in summary is that Visual Studio will "remotely" copy
all source code onto the Windows Subsystem for Linux, compile it using a
Linaro cross compiler targeting a system that is completely different from
what it thinks, and then return the ready-to-deploy binary file back to the
user in Windows.

The particular version of Linaro used for this workaround is
5.5.0-2017.10-x86_64_arm-linux-gnueabihf. To verify that the entire
cross compilation process works without issues, we can simply run the file
command on the resulting binary and check that the target architectures are
identical.

root@beaglebone:~# gcc hello.c -o hello_gcc
root@beaglebone:~# ./hello_gcc
Hello, World!
root@beaglebone:~# file hello_gcc hello_ccs hello_vs2017
hello_gcc: ELF 32-bit LSB shared object, ARM,

EABI5 version 1 (SYSV), dynamically linked, ...
hello_ccs: ELF 32-bit LSB executable, ARM,

EABI5 version 1 (SYSV), dynamically linked, ...
hello_vs2017: ELF 32-bit LSB executable, ARM,

EABI5 version 1 (SYSV), dynamically linked, ...

Note: There is no difference between the terms "executable" and "shared
object" in this context.

36

Chapter 4

Implementation Process

Chapters 2 and 3 provided an exhaustive description of both the old and new
solutions when it comes to the hardware and software used. A consequence
of the dramatic hardware and software changes is that a significant part of
the codebase needs to be rewritten from scratch.

A portion of the codebase could simply be migrated from the old system
to the prototype developed in this thesis. This particular portion consists of
peripheral device drivers which are connected to the iQtec PLC via standard-
ized communication protocols, such as SPI or other UART-based protocols.
The functionality of these peripherals should remain unchanged provided
the handling of communication on the aforementioned buses is implemented
correctly.

A lot of the codebase became incompatible with the new system specifica-
tions. Some code depended on constructs that are not available or supported
in the same way in this thesis’s project, such as hardware timers and external
real-time clocks. Other parts of the code were simply outdated or depended
on technology that has been surpassed, like the filesystem - this issue was
described in 3.2.

This chapter will provide to the reader an overview of what tasks needed
to be accomplished in order to begin developing new functionality for this
project. The process of enabling various peripheral interfaces connected to
the CPU of choice, the Texas Instruments Sitara AM3358, will be described.
Each system component that needed porting over to the new solution will be
introduced in detail and the specifics of its reimplementation will be discussed.

37

4. Implementation Process
4.1 The Linux Device Tree

The Linux system, when running on an embedded device, does not have a
BIOS. In order to boot and configure the hardware device it is running on,
it uses files located on the filesystem that describe the machine’s hardware.
Every type of embedded Linux device has its own unique set of files to describe
its platform hardware. Previously, modifications to the Linux kernel were
applied each time Linux was booted from a new unique embedded device.
As the popularity of ARM-based microprocessors soared, thousands of such
modifications were implemented. Nowadays, ARM-powered embedded devices
use device trees to describe hardware configurations instead. [32]

The data contained within a device tree describes the type of CPU, memory,
input and output pins and other devices connected to it (such as Ethernet,
external storage, SPI/I2C buses, etc.). [33] Figure 4.1 illustrates a simple
device tree structure. [34]

/

Tree Root

Memory

DDR
I2C Device

0

I2C Device

1

I2C SPI

SPI Device

0

SPI Device

1

CPU

Core0 Core1

Child nodes

Children

nodes

Figure 4.1: Simplified diagram of a device tree structure (adapted from [34])

These files are used as part of the boot process. To modify the hardware
that is enabled in the system, it is possible to decompile the full device tree,
make changes, then recompile and deploy it, which is a rather tedious process.
An alternative way of doing it is by using a device tree overlay. A device
tree overlay supplies additional information about the hardware. It is simply
merged with the full device tree by the bootloader (typically U-Boot) and
then passed to the Linux kernel at boot-up. [32] A device tree overlay’s binary
form is called a device tree blob, or .dtb file. The human-readable format for
device trees typically uses the .dts extension. A device tree compiler (DTC)
is used to to transform between the two formats.

38

.................................. 4.2. Enabling Interfaces

Note on documentation confusion

Previously, it used to be possible to load device tree overlays at runtime.
A kernel mechanism called Capemgr (short for cape manager) was used
to dynamically load overlays without the need to reboot the system, as
long as the device tree blob file was prepared in advance. These overlays
were originally used to support custom expansion boards (capes) for various
development boards which used device tree-supporting kernels. [35] Though
very convenient, this approach is no longer supported due to stability issues
and is being phased out to be replaced with U-Boot overlays, which are
more stable and well supported, though they do require a reboot. [36]
This overhaul started in late 2017 (with kernel version 4.14), more than
five years after Capemgr first started being used. This means that lots of
documentation sources contain now-obsolete information and troubleshooting
device tree-related problems requires a considerable amount of effort.

4.2 Enabling Interfaces

The Sitara AM3358 chip contains an abundance of peripheral interfaces.
Approximately half of its terminals can multiplex up to eight modes of signal
functions. There are many combinations of pin-multiplexing that are possible,
but only a certain number of combinations, or IO sets, are permitted due to
timing limitations. A table of all possible pin attributes can be found in the
AM335x datasheet. [37]

The BeagleBone Black has two 46-pin headers of GPIO pins, 92 in total.
Almost every one of these pins (except for ground and power supply pins) can
be configured for one of up to 8 possible operating modes. This configuration
can be changed by unloading and loading different device trees. The default
configuration of the Debian distribution used in this project is unfavorable
for our use - a significant number of pins are allocated for multichannel
audio, LCD and HDMI output drivers, which means they cannot be used as
traditional GPIO (general-purpose input/output) pins. These allocations can
be freed by simply not including the HDMI (or other) functionality in the
device tree.

As the operating system used here is supported by both Texas Instruments
and BeagleBoard.org, it ships with various device tree overlays included,
which enable the developer to pick and choose pin multiplexing sets, which
in turn defines what interfaces will be available and enabled.

39

4. Implementation Process
There is no need to recompile device trees, as there are numerous pre-

prepared device tree blobs located in the /lib/firmware/ folder. To enable or
disable different device tree blobs, the /boot/uEnv.txt script, which defines
the boot configuration, needs to be edited. A sample snippet of what uEnv
looks like in default form can be seen below:

###U-Boot Overlays###
###Master Enable
enable_uboot_overlays=1
...
###Additional custom capes
#uboot_overlay_addr0=/lib/firmware/<file0>.dtbo
#uboot_overlay_addr1=/lib/firmware/<file1>.dtbo
...
###Disable auto loading of virtual capes (emmc/video/wireless/adc)
#disable_uboot_overlay_emmc=1
#disable_uboot_overlay_video=1
#disable_uboot_overlay_audio=1
#disable_uboot_overlay_wireless=1
#disable_uboot_overlay_adc=1

By default, there are no extra overlays loaded. In this project, the support
for two SPI devices is needed, as well as two UARTs. To enable these
interfaces, it is possible to simply edit the lines in the "Additional custom
capes" section and add the paths of the corresponding device tree blobs
located in /lib/firmware/. SPI0 and SPI1 were enabled, as well as UART1
and UART4. UART2’s pins collide with SPI0 and UART3 is TX-only, which
is the reason behind going all the way to UART4.

To avoid pin mux collisions, it is advised to remove the overlays for HDMI
and multi-channel audio. This is done by enabling (uncommenting)
disable_uboot_overlay_video=1 and disable_uboot_overlay_audio=1.
The ability to connect an external monitor or speakers is lost this way, but
those were never going to be used in this project anyway.

Table 4.1 shows a diagram of the BeagleBone Black’s P9 header and how
its pins are mapped to various interfaces that were enabled and mentioned in
this section. Please note that pins corresponding to greyed-out fields are not
used, as well as pins with numbers 33 to 46.

40

.................................. 4.2. Enabling Interfaces

BeagleBone Black’s P9 Header
Usage Pin# Usage
(FRAM) GND 1 2

(FRAM) VDD (3.3 V) 3 4
5 6
7 8
9 10

UART4_RX 11 12
UART4_TX 13 14

15 16
(FRAM) SPI0_CS0 17 18 SPI0_MOSI (FRAM)

19 20
(FRAM) SPI0_MISO 21 22 SPI0_SCLK (FRAM)

23 24 UART1_TX
25 26 UART1_RX
27 28 SPI1_CS0

SPI1_MISO 29 30 SPI1_MOSI
SPI1_SCLK 31 32

Table 4.1: A mapping of GPIO pins to interfaces enabled in this project

As mentioned in 2.4.4, the BeagleBone Black board used in this prototype
includes a four gigabyte eMMC card used as a storage device. It is typically
used to house the operating system and root filesystem, with the microSD
card slot being used as expandable storage or a temporary boot device. As
the eMMC storage is connected to the AM3358 processor in the same way as
any other interfaces on this board, it too can cause pin collisions.

In the case of a pin collision being unavoidable, it is possible to disable the
eMMC storage device completely. This means that only the microSD card
can be used for booting, unless a new storage device is connected (e.g. via
SPI). The disable_uboot_overlay_emmc=1 line in uEnv.txt controls this
behavior.

41

4. Implementation Process
4.3 Porting of Filesystem Functionality

As mentioned earlier, the original iQtec PLC used the FatFs module to handle
file reads and writes as well as other filesystem manipulation, such as creating,
renaming and deleting of files and directories and accessing external storage.
There were at least three ways of supporting this functionality going forward:
either port FatFs to the new hardware and software configuration, use a
different filesystem interface such as Boost.Filesystem or modules from the
POCO project, or implement a new custom interface.

The decision to abandon FatFs and not use it in this project was made
rather quickly. As mentioned in section 3.2, it offers sub-par performance
and relatively low resistance to power loss events. Both Boost.Filesystem and
the Foundation package from the POCO project, which includes filesystem
functionality [38], were also looked into, but ultimately rejected. This project
uses the C programming language strictly and both Boost and POCO are
C++ libraries.

Instead, the decision was made to reimplement all functionality provided
by FatFs from scratch using only standard C libraries. This task was quite
straightforward, though it did have some interesting elements. The iQtec
codebase is rather extensive and filesystem/file manipulation functions are
used throughout the whole project in different contexts. In order to avoid
hunting down each occurrence inside the codebase, it was decided to implement
a filesystem handler that would emulate FatFs’s application interface. This
meant that the rest of the codebase could remain untouched.

Staying within the constraints of FatFs’s API brought about some issues.
Typically, filesystems use some sort of object information structure which
contains a file’s name, size, a date of creation and/or last modification, and
information about its attributes (read-only flag, directory flag, etc.). This is
also true in FatFs, its object information structure is named FILINFO. This
structure is used when traversing directories and listing files inside of them.

typedef struct {
FSIZE_t fsize; /* File size */
WORD fdate; /* Last modified date */
WORD ftime; /* Last modified time */
BYTE fattrib; /* Attribute */
TCHAR fname[12 + 1]; /* Object name */

} FILINFO;

42

.........................4.4. SPI FRAM Driver, EEPROM Emulation

An obvious solution to this is to just alias occurrences of FILINFO inside
the codebase to a similar structure within the C libraries, but there is no
one structure that contains all of the needed information. A new custom
structure containing parts of both stat and dirent structures was devised.
Using just stat would almost be enough, but there is a name field missing.

typedef struct {
struct stat stat_info; /* size, date, time, attributes */
struct dirent *dir_entry; /* name */

} COMPLEXFILEINFO;

Another detail that needed straightening out was the logic behind creating
and opening files in FatFs. The traditional fopen function which is a part of
the C standard library and FatFs’s f_open do not offer the same sets of options,
which in some occasions called for some interesting workarounds. For example,
when opening a file for reading and writing in binary mode, the FatFs imple-
mentation used the flags FA_OPEN_ALWAYS | FA_READ | FA_WRITE, which
cannot be emulated in a single call of fopen. In some circumstances, up to 3
calls to fopen can happen in this new implementation. Though this might
hamper the performance somewhat and put extra load on the storage device,
this version of the filesystem handler is still orders of magnitude faster than
FatFs, as discussed in 3.2.2.

Other than these two issues, the rest of the filesystem porting was completed
without significant hitches.

4.4 SPI FRAM Driver, EEPROM Emulation

iQtec’s original microcontroller-based PLC had multiple memory modules con-
nected to it, with each serving a different purpose. A ferroelectric nonvolatile
RAM module was connected via a serial peripheral interface. The FRAM’s
purpose was to store data from drivers communicating with peripheral data-
gathering devices connected to it. A memory module was needed which would
have a very long lifetime, as it typically incurred massive numbers of reads
and writes - hence the usage of a ferroelectric RAM over an EEPROM or
flash storage device.

43

4. Implementation Process
Another memory module connected to the PLC was an EEPROM memory

chip. This device was used for storage of two distinct types of data. The
first type was logging information about devices connected to the PLC once
their initialization was complete. This data was prepared and stored after
boot-up and then never again. The amount of memory writes was dependent
on the configuration of the whole home automation system, but the chip’s
endurance was not an issue even with a large amount of connected devices,
as the system does not typically get rebooted often. The second use of the
EEPROM chip was to store error logs. These errors were usually caused
when a fault in communication with a peripheral device was detected, or
when the peripheral device would stop communicating completely, often from
a sudden loss of power. Again, the usage of an EEPROM chip is just fine in
this usecase, as errors did not happen very frequently.

A handler function was a part of the original codebase that serviced requests
for reads and writes to both the FRAM and EEPROM. The application
decided which memory was to be accessed from the address and flag supplied
to the function.

The decision was made to eliminate the EEPROM module from this project
completely. Instead, information meant to be stored in the EEPROM would be
redirected into two separate files located within the microSD card’s filesystem.
This helps simplify the system’s architecture and bring a slight cost saving,
as there is no more need to source and install the EEPROM hardware. The
FRAM module functionality needs to be kept, as the frequency of accesses
and its advantages are unchanged.

4.4.1 FRAM Transactions Over SPI

The FRAM device here is a Lapis MR45V100A unit, as described in 2.4.6.
It is connected to the BeagleBone in a similar manner to the original PLC’s
design - via a serial peripheral interface (SPI), though only being connected
to the GPIO pins and not to be CPU directly for prototyping purposes.
The SPI_0 interface was chosen for this purpose. An illustration of how
the GPIO pins are utilized here can be seen back in table 4.1. The SPI
bus is usually enabled by simply loading the appropriate device tree overlay,
e.g. BB-SPIDEV0-00A0.dtbo. In this case, the device tree had to be slightly
modified. This will be explained in detail later.

A software interface was needed to be developed to integrate the FRAM’s
functionality into the rest of the system.

44

.........................4.4. SPI FRAM Driver, EEPROM Emulation

The spidev standard Linux userspace driver was used in the implementation.
To initialize the bus device for use, first the appropriate spidev file (i.e.
/dev/spidev1.0 when using SPI_0 with the SPI_0_CS0 pin for chip select
signaling) has to be opened and some of its parameters, such as read/write
frequency or bits per word, configured. Once that is done, communication
with the device can begin.

The ioctl system call is the core function used in all communication.
Sending and receiving data is done using SPI transfers. An spi_ioc_transfer
structure is created and its parameters are set; mainly the send and receive
data buffers, message length and transfer rate (speed). ioctl is then called
to dispatch the transfer message to SPIDEV.

FRAM reads and writes are implemented in a fairly conventional way - the
TX array is first populated with command instructions and an address of
where to store data / read data from in the FRAM module, and the rest of
the transfer message is either blank if reading, or populated with actual data
values if writing. After the transfer is completed, the RX transfer contains
the expected values (nothing if writing or the contents of the FRAM chip if
reading).

4.4.2 Setting Maximum SPI Speed in Device Tree

When an early version of the FRAM handler was implemented, the maximum
communication speed (frequency) was set to be either the maximum speed
of the FRAM chip itself, which is 34 MHz [6], or the maximum reported by
SPIDEV by sending a transaction via iotcl with SPI_IOC_RD_MAX_SPEED_HZ
as the argument, whichever of these two was lower. Everything seemed to be
working just fine, but an issue was discovered where the transactions would
seem subjectively a little too slow. The maximum theoretical throughput
of the FRAM chip is around 30 Mb/s - it should be possible to overwrite
the entire memory’s contents multiple times a second. However after a test
was conducted, the actual throughput was only around 3.2 Mb/s. After
investigating, it was discovered that:..1. The maximum speed of SPIDEV0 is defined as only 16 MHz in the

corresponding device tree overlay blob, even though the AM3358 should
be capable of communicating at up to 48 MHz. [37]..2. SPI_IOC_RD_MAX_SPEED_HZ reports the maximum speed as 4 MHz every
time.

45

4. Implementation Process
A solution to problem number 1 was quite straightforward. First, the

SPIDEV device tree overlay mentioned above had to be decompiled using
the device tree compiler (DTC):

root@beaglebone:/lib/firmware# dtc -I dtb -O dts BB-SPIDEV0-00A0.dtbo \
> > BB-SPIDEV0-00A0.dts

Then, the maximum SPI speed field was changed to a more reasonable
value (48 MHz):
...
__overlay__ {

#address-cells = <0x1>;
#size-cells = <0x0>;
status = "okay";
pinctrl-names = "default";
pinctrl-0 = <0x1>;
ti,pio-mode;

channel@0 {
#address-cells = <0x1>;
#size-cells = <0x0>;
compatible = "spidev";
symlink = "spi/0.0";
reg = <0x0>;
spi-max-frequency = <0xf42400>; <--- old value
spi-max-frequency = <0x2dc6c00>; <--- new value
spi-cpha;

};
...

Note: 0xf42400 = 16,000,000, 0x2dc6c00 = 48,000,000.

Finally, the overlay was then recompiled again and deployed. The new
device tree blob was renamed to reflect the modified SPI speed (by appending
48 to the old filename).

root@beaglebone:/lib/firmware# dtc -O dtb -o BB-SPIDEV0-00A48.dtbo \
> -b 0 -@ BB-SPIDEV0-00A0.dts

This solved the first issue.

46

.........................4.4. SPI FRAM Driver, EEPROM Emulation

The cause of the second problem, where the maximum reported SPI speed
by the SPIDEV module was 4 MHz, was never discovered. The code was
rewritten to set SPI speed to 34 MHz (the maximum fo the FRAM chip) in
every transaction being processed, regardless of the reported maximum speed.
This approach fixed the rather slow transaction speeds.

4.4.3 Real-World Transfer Speeds Before and After

Before applying these fixes, the performance of the FRAM chip was rather
poor, only reaching write and read speeds of about 405 kiB/s. The throughput
did not change at all even when the addresses and transaction lengths were
randomized, indicating that the hardware was not in fact the bottleneck.
After changing the device tree overlay and rewriting the handler to essentially
hardcode the SPI speed before every transaction, the maximum read/write
speeds reached 1600 kiB/s, or about 12.8 Mb/s of throughput. Though this
is still lower than the theoretical maximum of 30 Mb/s, these speeds are
satisfactory for now.

4.4.4 SPIDEV Maximum Buffer Sizes

During development and testing of the FRAM interface, an issue was en-
countered where relatively large read and write transactions would return a
"Message too long" error when being processed. This was caused by creating
transactions whose RX and TX buffers’ length exceeded the maximum buffer
size of SPIDEV, which is 4096 bytes by default.

There are two solutions for this issue - the default maximum length of the
buffers can be overridden by either unloading the SPIDEV module and then
reloading it with the bufsiz=X argument (using modprobe), or the uEnv.txt
boot-up script can be modified by adding spidev.bufsiz=X to the cmdline=
command, where X is the new maximum buffer size (see below). A third
alternative solution is to implement the SPI FRAM handler to parse long
transactions into multiple transactions with shorter message lengths.

cmdline=coherent_pool=1M net.ifnames=0 quiet spidev.bufsiz=16384

47

4. Implementation Process
All three of the aforementioned solutions were tried and tested. While

transaction splitting brings a tiny bit of extra overhead into the code, it
guarantees portability. If the FRAM handling code ever gets reused on a
different system, it should work just fine with no modifications needed to the
SPIDEV module. Modifying uEnv was by far the simplest, but the uEnv file
is subject to frequent changes and the cmdline command could be forgotten
about when upgrading to a different distribution of the operating system.
The one remaining approach - reloading SPIDEV with different arguments -
was abandoned completely. In the end, the transaction splitting approach
was deployed. The uEnv modification is part of the documentation, though
unused at this time.

4.4.5 EEPROM Redirecting

As mentioned above, the original iQtec PLC used an EEPROM module to
store error and logging information. In order to reduce costs and complex-
ity slightly, it was decided to abandon the EEPROM completely. Instead,
information originally meant for it would be stored in files on the microSD
card.

Implementing this functionality was very straightforward. If no log and
error storage files are present on the microSD card’s filesystem, the application
will first create empty binary files of a given size. Read and write requests
meant to work with this data are simply pointed to these files, which are
accessed using functions from the C standard library.

In order for this approach to work reliably, it is critical for the SD card to
be mounted correctly. A script running at boot-up is set up to mount the SD
card device as an external storage unit and check the integrity of these files.

In the original project, both the FRAM and EEPROM functionalities were
implemented in a single set of handler functions. The handlers decided where
to store data based on the flag supplied to the read/write function. As with
the filesystem port, the reimplementation of this functionality was limited
by the constraints of the original system’s API. The original implementation
included a lot of supplemental information and function calls because of
its microcontroller-esque nature, such as low level hardware initialization
functions. Pin IDs were also originally passed as arguments to most of the
read/write request functions.

48

.........................4.4. SPI FRAM Driver, EEPROM Emulation

These function calls had to be kept in the ported version to mirror the
API completely, though they did not need to offer any functionality - the
ported version is purely in userspace and uses Linux drivers as a building
block. Many of them were simply rewritten to do nothing.

An activity diagram of a write transaction request can be seen in figure
4.2.

writeEEPROM(addr, data, len, type)

switch(type)

SPI_ERR

SPI_LOG

SPI_PARAM

SPI_DRI

addr +=

PARAM_OFFSET

addr +=

DRI_OFFSET

FRAM

FRAM_write

(addr, data, len)

/log.bin /err.bin

fopen()

fwrite(data, len)

fclose()

SPIDEV

Figure 4.2: Activity diagram of ported FRAM/EEPROM handler

49

4. Implementation Process
4.5 Userspace-Based RTC Driver

As mentioned in 2.1, there is an external real-time clock module or RTC
installed as part of the original design of the PLC. It was decided to not use
an external RTC in this project yet. One reason for this was that there is
already an internal RTC integrated into the AM3358 processor.

Other than the rather obvious use of remembering time when the PLC is
off, the RTC module is used in the iQtec project to keep precise time for tasks
that require it. One of these is the filesystem - as there is no traditional clock
in the original system, FatFs essentially didn’t know what dates and times to
put in a file’s properties. Accesses to the RTC had to be implemented when
originally porting FatFs to work on FreeRTOS.

The RTC naturally had to be accessed when the correct time had to be set
as well. The PLC is set up to receive messages from either a UDP connection,
via its integrated GSM modem, or via a file on the external storage. When a
message is received from either of these three sources, it is parsed and the
RTC is set accordingly.

Since this project uses a traditional operating system in which the current
time is obviously a normal element, the argument could be made to not touch
the internal RTC at all and instead just work with the system clock. Using
the internal RTC provided a sense of reliability and additional precision and
accuracy - which is not false, as the system clock is a software clock and as
such is handled and maintained by the kernel. There is another upside in the
fact that the AM3358’s RTC is supported by standard Linux drivers. In the
end, the RTC functionality was indeed ported to use the RTC instead of just
system time.

To implement a port of the previous iQtec RTC functionality, first a file
descriptor had to be connected to the device driver via typical open (and
close) calls. The file for the internal RTC is usually located in /dev/rtc0.
ioctl was used to gain access to the driver and dispatch transactions in a
similar manner to the SPI driver described in section 4.4.1.

A typical function set had to be implemented in order for the port to work
correctly; a function for reading the current time of day and date, another for
converting between different time structure conventions. Another "standard"
function returned the system’s tick count (time elapsed since the boot-up
of the system in milliseconds). All of this functionality is fairly traditional.

50

............................... 4.6. Accurate Software Timers

The biggest challenge of porting the real-time clock functionality was rooting
through the codebase and writing code that would conform to the original
iQtec API.

4.5.1 Setting Hardware Time

It is also important to note the userspace driver’s behavior when attempting
to write data to the RTC (e.g. calling ioctl with RTC_SET_TIME). It is
recommended in the Linux documentation [39] to run the RTC-accessing
program with the "set system clock; set real-time clock" (CAP_SYS_TIME) ca-
pability. An alternative is to simply launch the application with administrator
privileges, i.e. sudo.

4.6 Accurate Software Timers

The iQtec home automation system can get very complex as the number of
modules integrated within the system rises. Some modules depend on data
provided from the PLC, some modules collect data and supply it to the PLC,
some are a part of the PLC itself.

To function correctly, all modules and their functionality have to be served
periodically. There can be dozens of tasks waiting for execution at any
given moment during the system’s operation, from data values waiting to be
collected to communication requests that need to be answered. In order to
process these tasks efficiently, a control loop is used and tasks are dispatched
in a round-robin manner with predefined repeat times and priorities.

Tasks are usually organized in a queue and dispatched in sets. Each different
task set is dispatched every 25 milliseconds, and a given set is scheduled once
40 ticks. This means that a given task is being handled once every second.
There are also tasks that need to be dispatched much more frequently. These
"high priority" tasks, such as the filesystem handler which processes read and
write requests to the SD card (described in 3.2.2), are simply dispatched
inside every task set, i.e. once every 25 milliseconds.

Some sort of a timer is needed to handle task dispatching as described above.
Reasonably high precision is needed for this timer to make sure the frequency

51

4. Implementation Process
of the tasks does not skew in time. The original project’s microcontroller-
based design used a hardware timer contained in its STM32F4 processor.
This timer was configured to tick with a 1 millisecond period. An interrupt
handler function for this timer decremented the "remaining wait time" value
for each task in a queue. If the remaining wait time of a task reached zero,
it was ready to be dispatched. The wait time of a given task reflected the
"priority" (high or low) of it.

4.6.1 Proposed Solution: AM3358’s PRU

Section 2.4.5 briefly mentioned a specialty of the Sitara AM3358 - in addition
to the Cortex-A8 core, it also contains two Programmable Realtime Units,
or PRUs for short. These chips are extremely simple, run at a clock rate
of 200 MHz and are a great solution for usecases where very tight timings
are required. The PRUs also have the ability to access the AM3358’s RAM,
making inter-chip communication possible.

At a glance, using one of the PRUs to implement an ultra-accurate timer
would be possible. Some research was done on this topic, however it was
decided in the end against pursuing this approach. One factor in the decision
is the fact that the PRUs are programmed using a special PRU Assembly
language, and thus have a very steep learning curve, which would compromise
the time frame of this project. Code running on the PRU is also quite difficult
to debug.

Another factor that played a role in the decision is the fact that the PRUs
cause pin collisions with other interfaces used in this project (pin collisions
and device tree overlays were explained in 4.2). It is essentially impossible to
use the PRU subsystem in the current hardware configuration.

4.6.2 Software Approach

In 3.1.7, a benchmarking program was created to test timer-settings overheads.
It was purposely designed with the reimplementation of task queue handling
in mind. Most of the code from this benchmarking application was supposed
to be reused here; first, a timer is set that fires every 25 milliseconds. After
firing, a handler function is called whose only purpose is to raise a semaphore,
set the timer again and exit.

52

............................... 4.6. Accurate Software Timers

The semaphore would be waited on by a completely different thread which
is set up to be real-time and with the highest possible priority (99). This is
where the actual processing of the task queue would be handled.

4.6.3 Minor Redesign

After starting the porting process, the structure had to be changed up slightly.
As mentioned above, the original system deploys a 1 millisecond timer on
which the task queue handling is dependent. There are also other unrelated
constructs depending on this timer, so it cannot simply be abandoned.

In the actual reimplementation used in this project, the timer had to be
reconfigured to fire with a period of 1 millisecond. The handler semaphore
would only be raised once for every 25 tries, thus simulating a 25 millisecond
timer. Another handler thread was added whose sole purpose was to handle
"higher priority" or lower period tasks, as explained a few paragraphs ago. A
different semaphore was used for this thread to wait on as well. This way,
the higher priority tasks would essentially get their own queue and handler.

4.6.4 Specifics

The specifics of the reimplementation included the following concepts:

. A total of two POSIX-standard threads - one to handle the "fast" queue,
the other to handle the regular queue. Two POSIX semaphores, named handler_sem and handler_sem_fast. A pthread_attr_t structure to preserve the real-time attributes of the
two handler threads. A timer_t structure to hold information about the main timer

All of these items (and more) were encapsulated in a single custom structure
to keep clutter to a minimum.

The rather standard timer_create, timer_settime, etc. functions were
used to implement this feature. The SIG_ALRM signal is fired when the timer

53

4. Implementation Process
expires. The signal handler was designed to be very simple for multiple
reasons. According to the documentation, a signal handler function should
not ever call async-unsafe functions, or any standard library functions for
that matter [40]. It is recommended that the signal handler only sets a flag
that is processed by non-interrupt code, such as an entirely different thread
as designed here. An upside of using an unrelated thread is that if a task set
took too long to dispatch occasionally, the handler thread would deal with
the delay and the timer would not run late, which would set the whole system
back an undetermined amount of time.

The final structure of the software timer design can be seen in figure 4.3.

TIM

while(1) {

 sem_wait()

 for x: slowSet[i]

 dispatch(x)

}

while(1) {

 sem_wait()

 for x: tasks

 dispatch(x)

}

TIMHandler sem_fast taskHandler taskHandler_fast

sem_post()

sem_post()

setTimer()

sem

Figure 4.3: Diagram of the implemented software timer structure

In conclusion, even though this functionality is handled purely by software,
which could provide sense of bad precision and delays, it proved to be quite
reliable and returned very reasonable overhead times, even when the system
is under high load. Using the PRU integrated in the AM3358 would definitely
be very interesting and possibly prove to be an even better solution, but the
implementation presented here is more than satisfactory. It also had the
bonus of being somewhat programmer-friendly, a trait that is unsure in the
PRU approach.

54

............................... 4.7. UART Interface Wrapper

4.7 UART Interface Wrapper

The last part of the project that needed porting from the old iQtec system to
the new Linux-based prototype was UART functionality.

In the original design, there are typically at least 4 UART links being used
by the PLC, with the ability to use even more if necessary (e.g. if there is a
demand for more nodes in the system; up to 16 UART links total). UART
links are used to communicate both with devices which are a part of the PLC
itself, and devices that are connected externally.

4.7.1 Uses

A device that is present in every PLC and is connected internally is the
GSM modem. It is used for sending out data that is being collected from
other modules within the automation system, as well as receive incoming
connections. The GSM modem typically sees heavy use in a system where
there is no accessible network being provided in the environment, be it for
security or other reasons.

Other UART connections are used to communicate with modules that are
typically in relatively remote locations - dozens or hundreds of meters away.
To ensure a reliable connection over longer distances, the RS-422 and RS-485
communication standards are used via standard UART-RS-4xx converters.
Another mode of communication used here and connected via UART is an
M-Bus interface. M-Bus (or Meter Bus) is typically used to communicate
with electric power, gas or water meters in order to get readouts from those
devices. The usecase of M-Bus in this project is quite obvious - a home
automation system is going to want to read data from power or gas meters
for various purposes.

55

4. Implementation Process
The original project’s UART handlers are quite low-level because of its

microcontroller nature. It is not possible to reuse the same code as there is
no readily-available hardware accessibility. Instead, the UART functionality
is again ported using Linux drivers.

It was decided to implement only some very basic UART handler func-
tionality for now - functions that would setup a UART device with given
parameters, functions that handled sending a receiving data and some basic
error detecting code (CRC) calculation.

4.7.2 Implementation Specifics

C’s termios library functions were used to implement the majority of the
above functionality. A structure was created that takes care of all UART
communicators by their ID. A total of three UARTs (two are mentioned
in 4.2, plus the UART0 serial console) are enabled in the prototype for
now. There are files in the /dev/ directory corresponding to their respective
interfaces (/dev/ttyO1, /dev/ttyO4). To initialize a given serial device, its
corresponding file needs to be opened and the communication’s properties
have to be configured using the termios structure and tcsetattr function.

...
snprintf(file, sizeof file, "/dev/ttyO%d", devNum);
serial_fd = open(file, O_RDWR | O_NOCTTY | O_NDELAY);
struct termios config;
memset(&config, 0, sizeof(config));
config.c_iflag &= ~(IGNBRK | BRKINT | ICRNL | INLCR |

PARMRK | INPCK | ISTRIP | IXON);
config.c_oflag = 0;
config.c_lflag &= ~(ECHO | ECHONL | ICANON | IEXTEN | ISIG);
config.c_cflag &= ~(CSIZE | PARENB);
config.c_cflag |= CS8;
cfsetospeed(&config, baudrate);
tcsetattr(serial_fd, TCSANOW, &config);
...

56

............................... 4.7. UART Interface Wrapper

There is a total of four different flag fields in the termios structure (in
order of appearance above) [41]:

. Input modes - low-level aspects of input processing - line ending transla-
tion types, handling of framing or parity errors, input data flow control.Output modes - modifying and padding of output data - line ending
translation, tab translation (converts tabs to spaces). Control modes - parameters usually associated with asynchronous serial
data transmission - enable/disable/set types of parity used, use local
connection (no modem). Local modes - higher-level aspects of input processing - echoing, signals

In this implementation, accesses to the serial ports are non-blocking. To
make sure data is written or read out of the device correctly, a wrapper
was created with input and output buffers, and a periodical flushing of both
buffers was implemented. If the device is not ready or has no data to be
read out, the EAGAIN error is received and the flushing function simply does
nothing and tries again next time. Each serial device has its own set of input
and output buffers and wrappers.

As was the norm when porting other functionalities described in this chapter
so far, the constraints of the original iQtec system’s API had to be adhered
to. This meant that functions for reading and writing of single bytes, as well
as longer character strings had to implemented.

A cyclic redundancy check function was implemented as well, which is used
to provide error checking of inbound and outbound messages and commands.
The algorithm for CRC calculation and verification was simply carried over
from the original project’s codebase, as was an implementation of the serial
framing protocol. These were left largely untouched and worked just fine
when combined with the other ported functionality.

Since the original UART code was rather low-level, most of the initialization
functions were either kept empty or very sparse, as there was no need to
setup interrupts or clocks. A big drawback here is the amount of available
UART links - the hardware in its current configuration does not allow for
more than three at this moment. Pin multiplexing will have to be examined
and device trees will need changing around to allow for more UARTs in the
future.

57

4. Implementation Process
4.8 Standalone Application Substitutes

4.8.1 FTP Server

The iQtec PLC also includes the ability to act as a simple FTP server.
This functionality is typically used to push new firmware onto the device
remotely or retrieve log and error information or other data files from the
integrated microSD card. There is a separate thread dedicated to serving
FTP functionality in the original implementation.

4.8.2 FTP’s Security Issues

The old FTP server implementation was discarded when developing this
project. While it would be possible to simply port the code over to the
new project, a decision was made to instead install and use a standalone
application.

A huge factor in this decision is the fact that the original file transfer
protocol has some glaring security issues. When logging onto the server, the
login information (username and password) are being sent as plain text with
no sort of security measures applied. The data being transmitted is also
completely plain with no kind of encryption, making it vulnerable to being
intercepted. This is a very non-secure behavior and could easily be exploited
by a person with malicious intents.

There are multiple different alternatives to using FTP that provide various
degrees of improved security. FTPS is an extension of the FTP protocol
that adds in-transit encryption using SSL (secure socket layer), making it
essentially "FTP over SSL." [42] Packet interception is still possible, though
the data inside would not be of any use to an attacker. It is still possible to
use an unencrypted control channel with FTPS (encryption of the control
channel is not strictly required), which is not ideal.

Another alternative protocol is SFTP, which stands for "SSH file transfer
protocol." SFTP does not provide the option to use an unencrypted control
or data channel, which means that by default it does not broadcast any
information in plain text. Another good thing about SFTP is the fact that,

58

........................... 4.8. Standalone Application Substitutes

in a similar fashion to FTP, it only requires a single port to be open for both
control and data streams, making it friendly to client-side firewalls. [42]

An SFTP server was installed using Debian’s APT package manager and
configured to accept the same sort of credentials as the old FTP system. The
original implementation was compliant to FTP standards, i.e. it supported
all standard commands and used the proper return codes. This means that
the new solution works just fine out of the box.

4.8.3 HTTP Server

The original design also included an HTTP server which could serve a sim-
ple web interface used for both monitoring and configuring a given iQtec
automation system. Originally, this functionality was based on lwIP - the
Lightweight TCP/IP stack, which was used for its relatively low demand
for system resources, namely memory. The HTTP server offered no security
whatsoever, though.

Again, there are multiple alternatives that could be used in place of the
original solution. One of them was the inclusion of microhttpd, which is a
small C library that could be used to replace the lwIP functionality in the
previous system design.

A better idea is to employ the same approach as described in the previous
section - don’t integrate this functionality at all and instead use a standalone
application. There are dozens of Linux HTTP servers that provide HTTPS -
all that remains is to make a choice. The HTTP server functionality has not
yet been re-added.

59

60

Chapter 5

Conclusion

The goal of this thesis was to research the options of migrating a rather
complex microcontroller-based home automation system to a completely new
design and develop a prototype that could provide the same functionality.

In chapter one, the existing market for these home automation systems
is overviewed, the historical progression of this field of computing and its
current trends are explained, and some basic concepts are discussed.

The second chapter first provides a closer description of the existing iQtec
home automation system’s hardware and system requirements are established
and discussed for its replacement. Next, some replacement candidates are
introduced and their degrees of requirement satisfaction are discussed. Finally,
the proposed hardware solution that was chosen is described in greater detail
and its specifics are introduced.

Chapter three provides a detailed explanation and comparison of the old
and new systems’ software solutions. This includes a description of the inner
workings of real-time operating systems and an explanation of some key
concepts related to real-time computing. The PREEMPT_RT patch for
Linux kernels is described and its effects are measured. Weak points of the
existing home automation system are identified and alternative solutions are
explained. The software development tools and solutions used in creating the
new system’s prototype are also explained.

61

5. Conclusion......................................
Chapter four describes in detail all of the tasks and efforts expended in or-

der to port, reimplement and otherwise emulate the old system’s functionality
using approaches described in chapter three. In addition, smaller details are
explained in individual sections. The Linux device tree system is introduced
and some of its specifics are examined. The process of implementing a filesys-
tem handler, SPI-connected ferroelectric RAM functions, integrated RTC
controls, a wrapper for serial communication and software timer emulation
functionality is described, issues during development are explained and their
solutions are introduced. Standalone application solutions for some smaller
parts of the original project are also explored.

The research portion of this project had the goal of selecting a hardware
solution that would be suitable to the task of executing the project. An
Octavo OSD3358 System-In-Package was chosen at first, but was substituted
by a Texas Instruments Sitara AM3358 early on in the development stage of
the project. This had next to no effects on the system’s functionality, as the
OSD3358 does in fact incorporate the AM3358. Once a different Ethernet
device gets sourced and integrated into the system, a switch can happen to
the original plan of using the OSD3358.

Section 2.3.1 defined some important hardware system requirements which
were derived from research conducted on the old iQtec system and an analysis
of its weak points. I believe the choice of hardware solution for this project
in accordance with these requirements was done correctly. The Octavo
OSD3358/AM3358 does indeed satisfy all but one of the defined hardware
system requirements, though its absence of multiple cores did not prove
to be an issue. It offers good performance when compared to the other
proposed solutions, and is far more powerful than the previous solution. The
inclusion of an eMMC storage device is also a great feature. Once the issue
of a relatively low amount of UARTs being available in the current system
configuration gets rectified, the OSD3358 can potentially be considered a
perfect fit for use in a system like the one prototyped in this project. There
were no other significant issues that would suggest otherwise.

I believe the design and software development of this project’s prototype
was a success. Weak points identified during the research phase and explained
in chapter three were successfully eliminated or mitigated with tests and
measurements to support this claim; significant performance gains were
observed across the board. The tasks of porting or reimplementing critical
functionality over to the prototype were accomplished.

62

................................. 5.1. Future Development

Not all approaches planned for execution were pursued, such as the usage
of the Sitara AM3358’s Programmable Real-time Units for precise timer
interrupts. Other issues were identified that will need more effort to solve,
such as the relatively low amount of available UART links.

This project showed that it is indeed viable to migrate the iQtec home
automation system from its current hardware and software solutions to
solutions described in this thesis, though more work needs to be done to
complete this task in its entirety. A solid foundation has been laid down upon
which more development work can be conducted and integrated.

5.1 Future Development

In the future, more development will need to be done in order to complete
the migration of the iQtec home automation system to the new Linux-based
approach.

Important tasks which need more exploration include buttoning up of
communication protocols briefly mentioned in chapter 4, such as RS-485
and RS-422, that facilitate communication with other nodes in the home
automation system. Solving the low UART count problem is also an important
future task. A good deal of other smaller, less important tasks is also available
for solving, such as the HTTP server functionality mentioned at the end of
chapter 4.

63

64

Bibliography

[1] Real Time Engineers Ltd.: About FreeRTOS; RTOS - Free professionally
developed and robust real time operating system... [online]. 2019, [vis-
ited on 2019-04-14]. Available from: https://www.freertos.org/RTOS.
html

[2] Knud Lasse Lueth: State of the IoT 2018: Number of IoT de-
vices now at 7B – Market accelerating [online]. 2018, [visited
on 2019-05-10]. Available from: https://iot-analytics.com/
state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/

[3] Ericsson: Ericsson Mobility Report June 2018 [online].
2018, [visited on 2019-05-10]. Available from: https://www.
ericsson.com/assets/local/mobility-report/documents/2018/
ericsson-mobility-report-june-2018.pdf

[4] IEEE: The International Roadmap For Devices and Systems [online].
2017, [visited on 2019-05-10]. Available from: https://irds.ieee.org/
images/files/pdf/2017/2017IRDS_MM.pdf

[5] iQtec.cz: iQtec Home Automation System. Marketing material, 2014.

[6] Lapis Semiconductor: MR45V100A [online]. Datasheet, 2018, [visited on
2019-03-22]. Available from: http://www.lapis-semi.com/en/data/
datasheet-file_db/Memory/FEDR45V100A-02.pdf

[7] Variscite: DART-6UL Product Brief [online]. 2019, [visited on 2019-
05-07]. Available from: https://www.variscite.com/wp-content/
uploads/2017/12/DART-6UL_Product_Brief.pdf

65

https://www.freertos.org/RTOS.html
https://www.freertos.org/RTOS.html
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://irds.ieee.org/images/files/pdf/2017/2017IRDS_MM.pdf
https://irds.ieee.org/images/files/pdf/2017/2017IRDS_MM.pdf
http://www.lapis-semi.com/en/data/datasheet-file_db/Memory/FEDR45V100A-02.pdf
http://www.lapis-semi.com/en/data/datasheet-file_db/Memory/FEDR45V100A-02.pdf
https://www.variscite.com/wp-content/uploads/2017/12/DART-6UL_Product_Brief.pdf
https://www.variscite.com/wp-content/uploads/2017/12/DART-6UL_Product_Brief.pdf

Bibliography
[8] STMicroelectronics: STM32MP153C datasheet [online]. Datasheet,

2019, [visited on 2019-05-07]. Available from: https://www.st.com/
resource/en/datasheet/stm32mp153c.pdf

[9] STMicroelectronics: STMicroelectronics Launches STM32MP1 Mi-
croprocessor Series with Linux Distribution to Speed IoT and
Smart Industry Innovation [online]. 2019, [visited on 2019-05-07].
Available from: https://www.st.com/content/st_com/en/about/
media-center/press-item.html/p4140.html

[10] Octavo Systems: OSD335x Family [online]. Datasheet, 2019, [visited
on 2019-02-15]. Available from: https://octavosystems.com/docs/
osd335x-datasheet/

[11] BeagleBoard.org Foundation: BeagleBoard.org - Black [online]. 2019,
[visited on 2019-03-02]. Available from: https://beagleboard.org/
black

[12] Texas Instruments: AM3358 Sitara Processor: Arm Cortex-A8, 3D
Graphics, PRU-ICSS [online]. 2011, [visited on 2019-02-26]. Available
from: http://www.ti.com/product/AM3358

[13] Wikipedia: FreeRTOS — Wikipedia, The Free Encyclopedia. 2019, [vis-
ited on 2019-04-18]. Available from: https://en.wikipedia.org/wiki/
FreeRTOS#Implementation

[14] Real Time Engineers Ltd.: Why RTOS and What is RTOS? [online].
2019, [visited on 2019-04-15]. Available from: https://www.freertos.
org/about-RTOS.html

[15] Ts’o, T.; Hart, D.; Kacur, J.: What is real-time? - RTwiki [online]. 2012,
[visited on 2019-04-21]. Available from: https://rt.wiki.kernel.org/
index.php/Frequently_Asked_Questions#What_is_real-time.3F

[16] The Linux Foundation: Intro to Real-Time Linux for Embed-
ded Developers [online]. Blog article, 2013, [visited on 2019-04-20].
Available from: https://www.linuxfoundation.org/blog/2013/03/
intro-to-real-time-linux-for-embedded-developers/

[17] The Linux Foundation: Preemption Models [online]. 2016, [visited
on 2019-04-20]. Available from: https://wiki.linuxfoundation.org/
realtime/documentation/technical_basics/preemption_models

[18] Cerqueira, F.; Brandenburg, B. B.: A Comparison of Scheduling La-
tency in Linux, PREEMPT_RT, and LITMUSRT [online]. Proceedings
of OSPERT 2013 9th Annual Workshop on Operating Systems Plat-
forms for Embedded Real-Time Applications, 2013, [visited on 2019-
04-30]. Available from: https://people.mpi-sws.org/~bbb/papers/
pdf/ospert13.pdf

66

https://www.st.com/resource/en/datasheet/stm32mp153c.pdf
https://www.st.com/resource/en/datasheet/stm32mp153c.pdf
https://www.st.com/content/st_com/en/about/media-center/press-item.html/p4140.html
https://www.st.com/content/st_com/en/about/media-center/press-item.html/p4140.html
https://octavosystems.com/docs/osd335x-datasheet/
https://octavosystems.com/docs/osd335x-datasheet/
https://beagleboard.org/black
https://beagleboard.org/black
http://www.ti.com/product/AM3358
https://en.wikipedia.org/wiki/FreeRTOS#Implementation
https://en.wikipedia.org/wiki/FreeRTOS#Implementation
https://www.freertos.org/about-RTOS.html
https://www.freertos.org/about-RTOS.html
https://rt.wiki.kernel.org/index.php/Frequently_Asked_Questions#What_is_real-time.3F
https://rt.wiki.kernel.org/index.php/Frequently_Asked_Questions#What_is_real-time.3F
https://www.linuxfoundation.org/blog/2013/03/intro-to-real-time-linux-for-embedded-developers/
https://www.linuxfoundation.org/blog/2013/03/intro-to-real-time-linux-for-embedded-developers/
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/preemption_models
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/preemption_models
https://people.mpi-sws.org/~bbb/papers/pdf/ospert13.pdf
https://people.mpi-sws.org/~bbb/papers/pdf/ospert13.pdf

.......................................Bibliography

[19] The Linux man-pages project: sched(7) [online]. 2019, [visited on 2019-04-
30]. Available from: http://man7.org/linux/man-pages/man7/sched.
7.html

[20] The Linux Foundation: Cyclictest - FAQ [online]. 2018, [visited on
2019-04-22]. Available from: https://wiki.linuxfoundation.org/
realtime/documentation/howto/tools/cyclictest/faq

[21] Waterland, A.: Stress project page [online]. 2014, [visited on 2019-04-22].
Available from: https://people.seas.harvard.edu/~apw/stress/

[22] Clifford: Running applications from freeRTOS [online]. 2014, [visited on
2019-04-23]. Available from: https://stackoverflow.com/revisions/
21921675/3

[23] Clifford: What is the difference between RTOS and Embedded Linux?
[online]. 2014, [visited on 2019-04-23]. Available from: https://
stackoverflow.com/revisions/25875777/2

[24] ChaN: FatFs - Generic FAT Filesystem Module [online]. 2019, [visited on
2019-04-22]. Available from: http://elm-chan.org/fsw/ff/00index_
e.html

[25] STMicroelectronics: Developing applications on STM32CubeTM with
FatFs [online]. User manual, 2019, [visited on 2019-04-26]. Available from:
https://www.st.com/resource/en/user_manual/dm00105259.pdf

[26] Chen, R.: Why is the FAT driver called FASTFAT? Why would anybody
ever write SLOWFAT? [online]. Microsoft Developer Blogs, 2014, [visited
on 2019-04-27]. Available from: https://devblogs.microsoft.com/
oldnewthing/20141030-00/?p=43733

[27] Munegowda, K.: Power Fail Safe FAT File System [online]. Embedded
Linux Conference (Lecture), 2011, [visited on 2019-04-27]. Available from:
https://elinux.org/images/5/54/Elc2011_munegowda.pdf

[28] Jones, M. T.: Anatomy of Linux journaling file systems
[online]. IBM developerWorks, 2008, [visited on 2019-04-29].
Available from: https://www.ibm.com/developerworks/library/
l-journaling-filesystems/l-journaling-filesystems-pdf.pdf

[29] The Kernel Development Community: Directory Entries — The
Linux Kernel documentation [online]. 2019, [visited on 2019-04-
29]. Available from: https://www.kernel.org/doc/html/latest/
filesystems/ext4/directory.html#hash-tree-directories

[30] Linaro: Toolchain - Linaro [online]. 2014, [visited on 2019-04-30]. Avail-
able from: https://wiki.linaro.org/Toolchain

[31] Linaro: Toolchain Frequently Asked Questions - Linaro [online]. 2017,
[visited on 2019-04-30]. Available from: https://wiki.linaro.org/
WorkingGroups/ToolChain/FAQ

67

http://man7.org/linux/man-pages/man7/sched.7.html
http://man7.org/linux/man-pages/man7/sched.7.html
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/faq
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/faq
https://people.seas.harvard.edu/~apw/stress/
https://stackoverflow.com/revisions/21921675/3
https://stackoverflow.com/revisions/21921675/3
https://stackoverflow.com/revisions/25875777/2
https://stackoverflow.com/revisions/25875777/2
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
https://www.st.com/resource/en/user_manual/dm00105259.pdf
https://devblogs.microsoft.com/oldnewthing/20141030-00/?p=43733
https://devblogs.microsoft.com/oldnewthing/20141030-00/?p=43733
https://elinux.org/images/5/54/Elc2011_munegowda.pdf
https://www.ibm.com/developerworks/library/l-journaling-filesystems/l-journaling-filesystems-pdf.pdf
https://www.ibm.com/developerworks/library/l-journaling-filesystems/l-journaling-filesystems-pdf.pdf
https://www.kernel.org/doc/html/latest/filesystems/ext4/directory.html#hash-tree-directories
https://www.kernel.org/doc/html/latest/filesystems/ext4/directory.html#hash-tree-directories
https://wiki.linaro.org/Toolchain
https://wiki.linaro.org/WorkingGroups/ToolChain/FAQ
https://wiki.linaro.org/WorkingGroups/ToolChain/FAQ

Bibliography
[32] Molloy, D.: Exploring BeagleBone: Tools and Techniques for Building

with Embedded Linux. John Wiley & Sons, Inc., 2015, ISBN 978-1-118-
93512-5, pages 219-221.

[33] Embedded Linux Wiki: Device Tree Usage - eLinux.org [online]. 2019,
[visited on 2019-05-02]. Available from: https://elinux.org/index.
php?title=Device_Tree_Usage&oldid=491246

[34] Eshtaartha Basu: OSD335x Lesson: Linux Device Tree [on-
line]. 2018, [visited on 2019-04-27]. Available from: https:
//octavosystems.com/app_notes/osd335x-design-tutorial/
osd335x-lesson-2-minimal-linux-boot/linux-device-tree/

[35] Embedded Linux Wiki: Capemgr - eLinux.org [online]. 2017, [visited on
2019-05-02]. Available from: https://elinux.org/index.php?title=
Capemgr&oldid=431081

[36] Robert C. Nelson: Where did the slots file go? - eLinux.org
[online]. 2019, [visited on 2019-05-02]. Available from: https:
//elinux.org/index.php?title=Beagleboard:BeagleBoneBlack_
Debian&oldid=490826#Where_did_the_slots_file_go.3F

[37] Texas Instruments: AM335x Sitara Processors datasheet [online].
Datasheet, 2018, [visited on 2019-05-02]. Available from: http://www.
ti.com/lit/ds/symlink/am3358.pdf

[38] Applied Informatics Software Engineering GmbH: POCO C++ Libraries
- About [online]. 2019, [visited on 2019-05-02]. Available from: https:
//pocoproject.org/about.html

[39] The Linux man-pages project: rtc(4) [online]. 2017, [visited on 2019-04-
17]. Available from: http://man7.org/linux/man-pages/man4/rtc.4.
html

[40] ISO/IEC: International Standard ISO/IEC 9899 (Programming lan-
guages - C) [online]. Manual, 2011, section 7.1.4 [visited on 2019-05-06].
Available from: http://www.iso-9899.info/n1570.html

[41] Free Software Foundation, Inc.: The GNU C library [online]. Manual,
2008, [visited on 2019-05-08]. Available from: https://www.gnu.org/
software/libc/manual/html_node/Concept-Index.html

[42] Horan, M.: SFTP vs. FTP: Understanding the Difference [online]. 2017,
[visited on 2019-05-07]. Available from: https://www.ftptoday.com/
blog/sftp-vs.-ftp-understanding-the-difference

[43] Siewert, S.; Pratt, J.: Real-Time Embedded Components and Systems
with Linux and RTOS. Mercury Learning & Information, second edition,
2016, ISBN 978-1942270041.

[44] Abbott, D.: Linux for Embedded and Real-time Applications (Embedded
Technology). Newnes, third edition, 2012, ISBN 978-0124159969.

68

https://elinux.org/index.php?title=Device_Tree_Usage&oldid=491246
https://elinux.org/index.php?title=Device_Tree_Usage&oldid=491246
https://octavosystems.com/app_notes/osd335x-design-tutorial/osd335x-lesson-2-minimal-linux-boot/linux-device-tree/
https://octavosystems.com/app_notes/osd335x-design-tutorial/osd335x-lesson-2-minimal-linux-boot/linux-device-tree/
https://octavosystems.com/app_notes/osd335x-design-tutorial/osd335x-lesson-2-minimal-linux-boot/linux-device-tree/
https://elinux.org/index.php?title=Capemgr&oldid=431081
https://elinux.org/index.php?title=Capemgr&oldid=431081
https://elinux.org/index.php?title=Beagleboard:BeagleBoneBlack_Debian&oldid=490826#Where_did_the_slots_file_go.3F
https://elinux.org/index.php?title=Beagleboard:BeagleBoneBlack_Debian&oldid=490826#Where_did_the_slots_file_go.3F
https://elinux.org/index.php?title=Beagleboard:BeagleBoneBlack_Debian&oldid=490826#Where_did_the_slots_file_go.3F
http://www.ti.com/lit/ds/symlink/am3358.pdf
http://www.ti.com/lit/ds/symlink/am3358.pdf
https://pocoproject.org/about.html
https://pocoproject.org/about.html
http://man7.org/linux/man-pages/man4/rtc.4.html
http://man7.org/linux/man-pages/man4/rtc.4.html
http://www.iso-9899.info/n1570.html
https://www.gnu.org/software/libc/manual/html_node/Concept-Index.html
https://www.gnu.org/software/libc/manual/html_node/Concept-Index.html
https://www.ftptoday.com/blog/sftp-vs.-ftp-understanding-the-difference
https://www.ftptoday.com/blog/sftp-vs.-ftp-understanding-the-difference

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

406809Osobní číslo:JanJméno:MrázekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra měření

Otevřená informatikaStudijní program:

Počítačové inženýrstvíStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Migrace a reimplementace funkcí IoT systému reálného času

Název diplomové práce anglicky:

Migration of an IoT real-time system and reimplementation of some of its functions

Pokyny pro vypracování:
1) Nastudujte hardwarové a softwarové řešení systému inteligentního řízení domu firmy iQtec.
2) Porovnejte výhody, nevýhody a rozdíly hardwarového přípravku založeného na čipu OctavoOSD335x oproti dosavadnímu
řešení.
3) Prostudujte problematiku týkající se použití operačních systémů reálného času.
4) Navrhněte a realizujte implementaci některých funkcí systému při použití tohoto řešení.

Seznam doporučené literatury:
[1] SamSiewert, John Pratt: Real-Time Embedded Components and Systems with Linux and RTOS, 2016Mercury Learning
& Information. ISBN 978-1942270041.
[2] Doug Abbott: Linux for Embedded and Real-time Applications, 2012 Newnes. ISBN 978-0124159969.
[3] Firemní materiály, dokumentace firem Octavo, Texas Instruments

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Milan Kolář, Prologue s.r.o.

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 24.01.2019

Platnost zadání diplomové práce:
do konce letního semestru 2019/2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Milan Kolář

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

	Introduction
	History and Current Trends
	External and Paid Software Toolsets
	Current Market Situation
	Economical Considerations and Initial Cost Tradeoffs
	Embedded vs General-Purpose
	Future Outlooks

	Hardware
	iQtec Home Automation System
	Existing Solution
	Weak points

	New Solution
	Hardware Requirements

	Candidates
	Variscite DART-6UL System-In-Module
	STMicroelectronics STM32MP1-Series microprocessor
	Octavo Systems OSD3358 System-In-Package
	BeagleBone Black
	Texas Instruments Sitara AM3358
	Lapis Semiconductor MR45V100A

	Software
	Operating System
	Existing Solution - FreeRTOS
	RTOS in General
	Combining RTOS and Linux Strengths - PREEMPT_RT
	Real-Time Thread Scheduling
	Effects of the PREEMPT_RT Patch
	Cyclictest
	A Custom Threaded Benchmark
	Choosing a Particular Operating System

	Filesystem
	Existing Solution - FatFs
	File Access Slowdowns
	Quantifying Slowdowns
	Sudden Shutdown Behavior
	New Solution - ext4

	IDE and Other Software Tools
	Code Composer Studio
	Microsoft Visual Studio 2017
	Cross Compilation
	Integration of the Cross Compiler

	Implementation Process
	The Linux Device Tree
	Enabling Interfaces
	Porting of Filesystem Functionality
	SPI FRAM Driver, EEPROM Emulation
	FRAM Transactions Over SPI
	Setting Maximum SPI Speed in Device Tree
	Real-World Transfer Speeds Before and After
	SPIDEV Maximum Buffer Sizes
	EEPROM Redirecting

	Userspace-Based RTC Driver
	Setting Hardware Time

	Accurate Software Timers
	Proposed Solution: AM3358's PRU
	Software Approach
	Minor Redesign
	Specifics

	UART Interface Wrapper
	Uses
	Implementation Specifics

	Standalone Application Substitutes
	FTP Server
	FTP's Security Issues
	HTTP Server

	Conclusion
	Future Development

	Bibliography
	Project Assignment

