Master Thesis

Czech

Technical
University
in Prague

Faculty of Electrical Engineering

Department of Computer Science

Web Editor of the Model of the System
Under Test Processes

Bc. Ruslan Bakeyev

Supervisor: doc. Ing. Miroslav Bures, Ph.D.
Field of study: Open informatics

Subfield: Software Engineering

May 2019

ii

cvut ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
e N
Pfijmeni: Bakeyev Jméno: Ruslan Osobni ¢islo: 399361

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl

Studijni program: Oteviena informatika

Studijni obor: Softwarové inzenyrstvi
\ J
Il. UDAJE K DIPLOMOVE PRACI
~
Nazev diplomové prace:
Webovy editor modelu procesii testovaného systému
Nazev diplomové prace anglicky:
Web Editor of the Model of the System Under Test Processes
Pokyny pro vypracovani:
Navrhnéte a implementujete webovy editor, pomoci kterého bude mozné vytvaret a upravovat modely procesu testovaného
softwarového systému. Tyto modely budou zaloZzeny na orientovanych grafech rozsifenych o konfigurovatelnou mnozinu
metadat. V editoru bude mozné paralelné pracovat s nékolika projekty, které budou uloZzené v databazi systému. Nad
vytvofenymi modely mozné spoustét rizné algoritmy pro generovani testovacich scénari. Tyto algoritmy bude do systému
mozné pfipojit pomoci otevifeného rozhrani. U této Casti systému se predpoklada vysoké zatiZeni z hlediska vypocetniho
vykonu, proto navrhnéte architekturu celého systému tak, aby umoznila Skalovani této zatéze. Samotné algoritmy pro
generovani testovacich scénari nejsou pfedmétem prace a jejich implementace bude dodana vedoucim prace. Systém
implementujte pomoci technologii J2EE a Javascript. Pro implementaci uZivatelského rozhrani editoru pouZijte jiz existujici
vhodnou knihovnu pro vizualizaci grafli. Vysledné feSeni publikujte jako open-source projekt a otestujte jej sadou vhodnych
testl.
Seznam doporucené literatury:
P. Ammann, J. Offutt. Introduction to software testing. Cambridge University Press, 2016.
C. Walls. Spring in Action, Fourth Edition. Manning, 2014.
I. Robinson, J. Webber, E. Eifrem. Graph Databases. O'Reilly Media, 2015.
Jméno a pracovisté vedouci(ho) diplomové prace:
doc. Ing. Miroslav Bures, Ph.D., laborator inteligentniho testovani softwaru FEL
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:
Datum zadani diplomové prace: 18.09.2018 Termin odevzdani diplomové prace: 24.05.2019
Platnost zadani diplomové prace: 19.02.2020
doc. Ing. Miroslav Bure§, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Ing. Pavel Ripka, CSc.
podpis vedouci(ho) prace podpis dékana(ky)
. J
ll. PREVZETi ZADANI
é Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci. A
Seznam pouzité literatury, jinych prament a jmen konzultantu je tfeba uvést v diplomové praci.
S Datum prevzeti zadani Podpis studenta)

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to thank my supervisor doc.
Ing. Miroslav Bures, Ph.D. for his valu-
able advice and knowledge shared for the
duration of the diploma thesis. I am also
grateful to my family and friends for the
support, which helped me to complete
this work.

Declaration

I declare, that I am the only author of the
submitted work and all the information
sources have been listed and used in accor-
dance with the Methodological guideline
on compliance with the ethical principles
for the university final theses.

In Prague on 21. May 2019

Abstract

The goal of this master thesis is to de-
scribe the full development lifecycle pro-
cess of a web editor allowing to model the
system under test processes and generate
an optimized set of test cases based on the
provided model. In the beginning, this
work describes the motivation and defines
the fundamental concepts from the soft-
ware testing area, like the Model-based
testing, and continues with the review
of core Java and JavaScript technologies,
which has been used to implement the
solution. Core architectural concepts, de-
scription of design patterns used, and suc-
cessful engineering decisions provided at
the end of the thesis, can be useful for
anyone trying to build a highly interac-
tive web application. The work finishes
with a short conclusion summarizing the
results achieved.

Keywords: Model-based testing,
process testing, automated test case
generation, web editor, Cytoscape.js,
React, Redux, Spring framework, Spring
WebFlux, MongoDB

Supervisor:
Ph.D.
Laborator inteligentniho testovani
softwaru,

Katedra pocitaci,

Karlovo namésti 13,

121 35 Praha 2

doc. Ing. Miroslav Bures,

vi

Abstrakt

Cilem této diplomové prace je popsat
cely vyvojovy cyklus webového editoru,
umoznujictho modelovani procest testo-
vaného systému a generovani optimalizo-
vanych mnozin testovacich scénaii na za-
kladé poskytnutého modelu. Na zacatku
je popsana motivace a definice zakladnich
pojmu z oblasti testovani softwaru, napti-
klad testovani zalozené na modelu. Préace
pokracuje vyhodnocenim zakladnich tech-
nologii ze svétu jazykt Java a JavaScript,
které byly pouzity k implementaci feseni.
Zakladni architektonické koncepty, popis
pouzitych navrhovych vzori a uziteéna
technicka rozhodnuti uvedend na konci
prace mohou byt pirinosné pro kazdého,
kdo se snazi vytvorit vysoce interaktivni
webovou aplikaci. Diplomové prace konci
kratkym zavérem a diskuzi dosazenych
vysledku.

Kli¢ova slova: Model-based testing,
testovani procesii, automatické
generovani testovacich scénait, webovy
editor, Cytoscape.js, React, Redux,
Spring framework, Spring WebFlux,
MongoDB

Preklad nazvu: Webovy editor modelu
procest testovaného systému

Contents

1 Introduction 1
2 Definition of basic concepts 3
3 Introduction to the testing based
on a model
3.1 Fundamental definitions in
software testing..................
3.2 Test automation i
3.3 Coverage criteria
3.4 Model Based Testing 9
3.4.1 Advantages of the MBT
3.4.2 Disadvantages of the MBT ..
3.5 Process testing
3.5.1 Process model formal
definition 13
3.5.2 Coverage criteria...........
3.5.3 Algorithms used for test case
generation 14

4 Web Application Requirements (17|

5 Defining server-side technology

stack 19

5.1 Client-server communication . . .
5.1.1 Simple Object Access Protocol
5.1.2 Representational State

Transfer 20
5.1.3 GraphQL
5.2 Spring framework
6 Defining client-side technology
stack 23
6.1 Ul libraries
6.1.1 Angular
6.1.2 Vuejso
6.1.3 React 24]
6.2 Introduction to the Flux
architecture 25]
621Redux
6.3Babel 27
6.4 ESLint 27
6.5 Webpack
6.6 Create React App (CRA)......
7 Implementation of the web
application 29
7.1 Overall architecture review. 29
7.2 API endpoints definition
7.3 MongoDB data model

vii

7.4 Webserver...................
7.4.1 Integration with Oxygen
library it
7.4.2 Optimizing resource intensive
calculations
7.4.3 Security module
7.5 Webclient
7.5.1 Organizing application state .
7.5.2 React component tree
7.5.3 Integration with Cytoscape.js
library

8 Conclusion
Bibliography
A Figures
B Listings

3

EHEEEE

SEEREE

Chapter 1

Introduction

Software testing plays a big role in the software development process. The
main goal of testing is to verify, that requirements specified by customers are
met, the quality of the built product is acceptable according to the predefined
criteria, and application behavior is correct and free of bugs. When it comes
to creating test scenarios, it is important to identify and understand what
is going to be tested, which is usually referred to the system under test
(SUT!). In some cases, it could be a small function (then we are talking about
unit-testing), or a complex system. The latter situations usually require
modeling of business logic or flow, which is hidden inside the SUT. Such
models help testers to create more efficient and optimized test cases, covering
all the branches of the tested process. There are a lot of tools available on the
market, like draw.io?, which can be used to model and graphically represent
the system under test, but neither of them has been created specifically for
software testing area and free at the same time.

The goal of this work is to provide expertise to the reader on the possible
way how to implement the tool, which generates and optimizes test cases. It
is obvious, that such optimizations increase the efficiency of the whole quality
assurance team, thus reducing the overall cost of the project and time to
market. The overall process could be divided into two parts:

® Finding a set of algorithms, which can analyze, optimize and derive
test cases from the system under test. Since this problem is a big and
independent area of software testing, it is outside of the scope of this
thesis. STILL (Software Testing Intelligent Lab) research group has
developed an algorithm optimizing test case generation, which is used in
this work and called Process Cycle Test [I]. But the system is designed
to accept a set of different algorithms, which can help to solve this
task, like Prioritized Process Test [2, [3], Set-covering Based Solution or
Prefix-graph based solution [4, 5]. Chapter 3| describes this problematic
from a high-level perspective, because it is a core of the final software
product and all of the outcomes, like input data model validation, and
performance influence on the system, should be known ahead and taken
into account during the software development process.

LA better definition of the term is given in the next chapter
2https://www.draw.io/

1. Introduction

® Implementing software product, which serves as a platform for the system
under test modeling, providing the end user good user experience. The
process consists of the following activities:

analysis of the application requirements (chapter |4)),

analysis of existing software libraries and frameworks, which can
speed up the development process and ensure best practices during
the implementation phase (chapters 5 and 6),

definition of software architecture and module structure (chapter
7),

user experience and user interface design.

The idea of the product takes inspiration from the concept of Oxygen
platform (formerly known as PCTGen [1]), but enhanced with the following
features:

B cross-platform support due to the web nature of the tool,

B synchronization between devices, since the data are stored in a web
database and attached to the user account,

® data backups in the background every 3 seconds after inactivity in order
to improve user experience and minimize the aftermath of unexpected
situations, like internet connection loss,

B software architecture that allows extension of the product in the future
with different types of diagrams, like state machines or UML class
diagrams,

B data model, specifically designed to share projects between users in the
future.

The last chapter of the work summarizes achieved results and describes
the product roadmap.

Chapter 2

Definition of basic concepts

This chapter explains essential terms, which are used throughout the thesis,
but their proper explanation is out of the scope. Table shows a brief
definition with a short form of the term, which the reader can face in the
future chapters.

Term

Abbreviation

Definition

Test Case Values

The input values necessary to com-
plete some execution of the software
under test [6].

Prefix Values

Any inputs necessary to put the
software into the appropriate state
to receive the test case values [6].

Postfix Values

Any inputs that need to be sent
to the software after the test case
values are sent [6].

Test Case

Composition of the test case values,
expected results, prefix values, and
postfix values necessary for a com-
plete execution and evaluation of
the software under test [6].

Test object

The component or system to be
tested [7].

System under test | SUT A type of test object that is a sys-
tem [7].

Test requirement | TR A condition or an objective that
must be met or covered by a test
case [6].

Continuous inte- . .

. CI An approach, which aims to auto-
gration

mate build and testing processes
after every change committed to
the source code repository [8].

2. Definition of basic concepts

Term Abbreviation | Definition

E;;f;iigl\j()deumg UML A set of graphical notations with
the unified metamodel, which are
used to design, model, or document
an aspect of the software system
[9].

Application

programming API A set of methods, which can be used

interface by one system to communicate with
another.

?/Ioozlglnent Object DOM A platform-neutral interface ex-
posed to the programs and scripts
to dynamically manipulate with the
content, attributes, and style of
XML-based document [10].

User interface Ul A set of interfaces, which allows a

user to interact with the elements
of the system.

Table 2.1: Definition of used terms.

Chapter 3

Introduction to the testing based on a
model

Testing is not a separate activity in software engineering. Instead, it is tightly
coupled with every phase of the software development lifecycle, starting from
requirements analysis and management until the release to production. The
main goal is to verify on each stage, that the developed product is correct and
respects the specification and client needs. Most of the errors are hidden in
the requirements, while the cost of the fixes increases with time. That is the
main reason why the test process should be established as early as possible.

Cost of Fixing
A
2
Requirements Design and Unit Functionality/System User i
Gathering Development Testing Testing Acceptance

Point at which
Bug Discovered

Figure 3.1: Cost of the bug fix with respect to time [I1].

B 3.1 Fundamental definitions in software testing

Each phase of the software development lifecycle has a corresponding test
level, that relates to it. P. Ammann and J. Offutt define the basic test level
hierarchy shown in Figure 3.2 Most of the test levels require different parts

5

3. Introduction to the testing based on a model

of the team to participate. For example, software developers mostly involved
in unit testing, while stakeholders or product owners in agile environments
are responsible for creating acceptance criteria.

Requirements Acceptance
Analysis - Test
Test
Architectural Besin = System
Design Information Test
\ Subsystem -~ Integration]
Design o Test
L Detailed Design| -wwweeroeeeee > M.?:Slile —j
L Implementation —> %:S': —j

Figure 3.2: Basic test level hierarchy, the "V model" [6].

There are more criteria, which help to classify the testing process and
formulate the problem of model-based testing. One of the essential aspects
is the target characteristic of the tested system, which requires functional,
performance, usability, security, and many more test types.

The knowledge about the internal implementation of the system can signif-
icantly change the design of test cases. If the test is derived from the source
code, then the method is called white-box testing. It can be applied on
different levels of the testing process, but usually takes place in unit testing.
Such an approach can be easily automated and allows coverage of all branches
of the source code. On the other hand, the resulting test is tightly coupled to
the existing implementation and requires a deep understanding of the internal
implementation from the test engineer or developer. Black-box testing is
the opposite technique, which relies on system specifications and requirements.
Unlike the white-box method, it can be applied to all levels of the testing
process and more focused on the functionality instead of internal implemen-
tation. Grey-box testing is a combination of the methods described above.
It usually requires both the system specification and partial knowledge about
its internal structure. The main idea behind it is to verify the correctness of
software implementation relative to the application requirements.

All the methods mentioned earlier assume, that the target code is executed,
and differs only with the level of knowledge about system implementation.
This is the necessary precondition for dynamic testing. Andreas Spillner
et al. define a set of problems that can be only found by dynamic testing
[12]. Faults in the data exchange or communication between systems are the
typical example. Static testing assumes an analysis of the test object, rather
than execution [I12]. The process could be initiated even in the early stages of
the software development lifecycle by analyzing the relevant documentation

6

3.2. Test automation

of the software product. The goal is to find any inconsistencies and defects
in corresponding specifications or requirements. Figure 3.1 shows, that early
identification of a bug significantly reduces the cost of future rework [12].
Apart from that, static analysis can be performed on the source code during
the implementation phase. There are a variety of tools on the market, that
can help to automate this process. Andreas Spillner et al. define the following
issues, which can be detected by static analysis [12]:

B programming language syntax error,
® violations of code conventions or standards

B security holes or danger constructions, which can potentially lead to
security issue, like lack of buffer overflow protection,

® control flow anomalies,

® data flow anomalies.

. 3.2 Test automation

A proper way to increase testing efficiency is automation [13] [14]. One of the
main advantages is the overall process speed up, but, on the other hand, there
is a need to maintain the source code of testing scripts [15] 16}, [I7]. Nowadays,
a variety of modern concepts have the goal to decrease the required effort
[13, 14, 18, 19, 20]. E. Dustin et al. define automated testing as the use
of an automated test tool to manage and perform test activities, including
test precondition setup and verification of the outcomes with the expected
results [14]. Since software testing can be expensive and require much effort,
the main goal is to automate as much, as possible. Thus not only achieving
cost reduction but also reducing the probability of human error by reducing
the amount of manual work needed. It is especially valuable when repeated
execution of the same test is required, i.e., while performing regression testing.
The purpose of regression testing is to verify new changes haven’t broken a
piece of functionality, which is supposed to remain untouched. Unlike manual
testing, automated testing allows the execution of the regression tests in
a simple and error-free manner. The same effect can be achieved in agile
environments while adopting continuous integration practice. The basic idea
is to execute a set of automated tests after the developer has pushed the
source code to the repository [6]. CI service automatically performs test
execution after the system rebuild. Any mistake made by a developer can be
easily detected, while the rest of the team gets the notification of the issue.

A. Rafi et al. in the research define 9 main benefits of test automation [17]:

® product quality improvement by reducing the number of defects,
B better test coverage,

® decreased time required for testing,

7

3. Introduction to the testing based on a model

improved reliability,

increase in confidence of the product quality,
possibility to reuse tests,

less human effort,

costs reduction by minimizing manual work required,

better fault detection ability.

Despite the advantages mentioned above, the decision about automation
should be made carefully, taking into account the limitations defined by A.
Rafi et al. [17):

manual testing is needed anyway, i.e., automation can’t replace every
test activity.

The real benefit is not always achievable by automation.

With every change in the software product, there is a need to maintain
the corresponding test.

It takes time to implement the test and fulfill infrastructure requirements.

Trying to save as much cost as possible, organizations face with false
expectations.

It is hard to decide what should be automated. Inappropriate strategy
leads to the lost benefits of automatization.

Test engineers should be skilled enough to automate the test because it
requires knowledge from different areas.

According to A.Spillner et al., test automation is a bad option for projects
with a low maturity level of the test process, e.g., when the documentation
doesn’t exist or contains inconsistencies [12]. In such cases, the better option
would be to establish a manual testing process first. The main idea is to
prefer the effectiveness of testing, rather than improving the efficiency of poor
testing [12].

3.3 Coverage criteria

Coverage criteria are the metrics used in software testing. P. Ammann and J.
Offutt define coverage criterion as a rule or a set of rules that a test activity
should satisfy [6]. The research literature identifies a lot of coverage criteria,
but the following are supposed to be the most popular [21]:

function coverage, determining, if all the functions have been called in
the application code,

3.4. Model Based Testing

B statement coverage, identifying, if all the lines of the source code have
been executed,

® condition coverage, showing if all the possible results of condition expres-
sion are tested,

B edge coverage, measuring the ratio of executed edges in the control flow
graph,

® branch or decision coverage, verifying if all the branches of the target
software, e.g., usually if-else or switch statements, has been covered.

The type of coverage criteria often determined by the test level. While
statement coverage is a proper choice for unit testing, it can be hard to
satisfy during the system tests [12]. On the other hand, the ratio of tested
requirements can determine system test coverage.

Some of the criteria could be applied during the test automation process
without spending any additional effort. It is possible due to the available
tools, which include coverage analyzers, comparators, and many more. After
the test execution, the coverage report is created. Test engineer, developer, or
any other person can analyze the produced log and evaluate test efficiency. It
is crucial to keep in mind when interpreting the results, that coverage metrics
algorithms depend on the chosen tool [12].

B 3.4 Model Based Testing

Section [3.2| shows, that test automation is not a solution to all the problems.
One of the main disadvantages is the necessity to maintain the source code
of the test in case of any change. The situation becomes even worse with the
new functionality added on a regular basis. As the number of requirements
increases, the software system becomes more complicated. The volume of
test cases explodes, and it is hard to keep an overview of what has been
already tested [22]. Moreover, the number of errors in the specification grows.
Figure 3.1 shows that the price of such mistakes significantly increases as the
application becomes closer to its release phase, while the industry demands
cost-reduction and improved time-to-market. Model-Based Testing (MBT)
can be a solution to these problems, as it reduces the effort of test scenario
generation and maintenance while achieving desired coverage criteria.

The model is the heart of the MBT method and the main challenge at the
same time. Robert V. Binder et al. define a model as a set of assumptions and
relationships between them, which allow approximating of a specific aspect of
reality [22]. In other words, a model is usually used to represent the expected
behavior of the system under test. In most cases, a model is abstract and
should cover only the main aspects of the SUT. That allows preventing the
explosion of generated test cases. Figure 3.3 shows an example of a model.

MBT approach can be used on different test levels. However, it is usually
applied on higher levels, starting from integration tests. Figure 3.4 shows the

9

3. Introduction to the testing based on a model

Getup in the
morning

Go to work

Watch TV

Do something else

Requirement:
------- You are able to sleep no matter
what the day looked like

Figure 3.3: Basic example of a model [22].

result of the MBT User Survey from the year 2014 [22]. The main reason
refers to the key advantage of the model - the capability to abstract the target
user from the complexity of the functional requirements. The use of the
'target user’ term is not an accident. Test engineers are not the only people
involved. Software developers could be also interested and take part in the
process for test automation purposes. Stakeholders can verify the correctness
of the requirements. Additionally, any member of the team, who lacks the
knowledge about the target product, can benefit from reviewing the model.

00 On which test level(s) do you employ MBT?

80
70
60
50

40
30
20
0 T T T 1

Component (or unit) Integration testing System testing Acceptance testing
testing

(%)

Figure 3.4: Test level MBT approach applied on. MBT User Survey, 2014 [22].

The typical MBT process includes 4 main activities [22].

1. Creation of the model of the SUT. The result is a structured representa-

10

3.4. Model Based Testing

tion (either text or graphical) of the target aspects of the system. The
model is usually derived from the requirements. That is the reason why
MBT is a form of black-box testing.

2. Generation of test cases and selection of the test set, which satisfies
predefined criteria, as it is possible to generate a variety of tests from
the same model by using different test selection criteria. The only
precondition is the model from step 1, which should be precise enough
to allow the test case generation.

3. Implement abstract tests to make them executable. Since the model
is an abstract representation of the SUT, it is not possible to directly
execute the generated test set.

4. Test execution and further result analysis. Assuming, that the model
from step 1 is correct, failed tests can signalize about the differences
between actual and expected behavior of the system caused by incorrect
implementation or error in the requirements.

B 3.4.1 Advantages of the MBT

Section |3.4]introduces the main benefits of the adoption of the MBT approach.
Every test engineer tries to get maximum effectiveness and efficiency from
the test activity. The modeling process encourages better communication
both with the stakeholders and throughout the team, improves application
domain knowledge, and continuously supports the level of understanding
of the application requirements for every member involved. These factors
directly influence the effectiveness of the test activity. The efficiency is signif-
icantly increased by the reduction of maintenance effort when the application
requirements change. Rather than maintaining test cases itself, the focus is
shifted to the model, which allows generating test cases whenever needed.
Moreover, the same model provides the possibility to create different test sets
based on the test level, coverage criteria, and test selection strategy.

Apart from that, Robert V. Binder et al. define the further benefits, which
the MBT approach can bring [22]:

® MBT models establish a focus on what is tested, thus helping in managing
complexity. That follows directly from the definition of term model,
which, according to the recommendations [22], should be abstract and
much smaller than the SUT.

® MBT models visualize tests, allowing more effective team involvement
and more productive discussions with non-technical stakeholders.

8 The model can be created in the early stages, helping to verify re-
quirements and avoid bugs in later phases of the software development
lifecycle.

11

3. Introduction to the testing based on a model

B 3.4.2 Disadvantages of the MBT

The previous section described the main advantages of the MBT approach,
but every test team should also be aware of the limitations and costs required
for the adoption of the process. One of the biggest challenges of MBT is a
modeling activity. First of all, the model should be correct. Otherwise, the
interpretation of failed tests would be misleading and confusing. It is also
necessary to choose the proper level of granularity and abstraction of the
model, which requires experienced model designers and time. Each of these
factors leads to the increased cost of the overall testing process. According
to Robert V. Binder et al., MBT can also lead to the test case explosion
3.5 shows a simple model of a chat room. There are no limitations on the
number of messages sent per person, as well as the order of chats received
is not predefined by the system. The number of possible variations grows
exponentially and equal to 4* = 256 for the 4 participants in the chat room.
Fortunately, defining test selection criteria can help in this situation [22].

Figure 3.5: Model for testing a chat room [22].

B 35 Process testing

Process testing is considered to be a discipline of the abstract model-based
testing concept. The main difference is in the model, which usually represents
an application workflow or a process. Bures, Ahmed, and Zamli state that
process test uses a sequence of actions in a system under test to identify
possible inconsistencies in SUT processes [3]. An automated generation of
process tests is significant both for the software systems testing [6}, 23] 24], and
IoT systems testing, where quality assurance is a common technological and
organizational challenge [25] 26] or specific platforms like SmartTV [27] 28§].

There exist a lot of notations, which can be used to describe the model

12

3.5. Process testing

[22]. Moreover, the choice of the modeling language directly depends on a
modeled aspect of the application. For example, UML package diagrams
are widely used to describe structural MBT models, while UML activity
diagrams can be a proper choice to represent behavioral MBT models [22].
The latter, together with Business Process Model Notation (BPMN), is also
the commonly used option for the modeling of workflows and processes of
an application [3]. However, for test case generation purposes, these two
notations should be transformed into a more suitable data structure. A
directed graph is a preferred choice [3] due to the following reasons:

® A lot of existing algorithms for finding a path in a directed graph, like
Depth-first-search (DFS) or Breadth-first-search (BFS), can be adapted
for an automated test generation.

® Both the UML activity diagram and BPMN can be transformed into a
direct graph. An example is shown in figure [3.6

content 1
2
v
logged in? >—[no] registered? o 3
[no]

bt

code
validation
decrease

price

provide
transfer
details

16 17

issue of
invoice

Figure 3.6: An example of conversion UML activity diagram into a directed
graph [3].

payment
received

B 3.5.1 Process model formal definition

As has been mentioned earlier, a directed graph G = (V, E) can represent
the SUT flow or a process. V stands for a set of vertices of GG, where each
vertex has a meaning of a decision point or an action within the workflow
[1]. Tt is up to a model designer to choose an appropriate granularity of the
actions, which are additionally determined by the test level. Graph edges E
is a subset of V' x V, representing transitions between distinct decision points
[1] or actions. Additionally, graph G must fulfill the following conditions:

® there should exist one initial vertex vy € V,

13

3. Introduction to the testing based on a model

B there should exist at least one end vertex, i.e., V., C V,

m D+

The generated test case t is a sequence of vertices v1,vs, - , Uy, satisfying

the following constraints:

u = Vs,

m oy €V,

B there should exist edge e;, which connects v; and v;41.

B 3.5.2 Coverage criteria

One of the primary factors, defining the number of generated test cases, is
selected coverage criterion. Path coverage is a commonly used strategy for
process testing. Table [3.1| reviews the most common coverage criteria, which
are ordered by the level of intensity of the generated tests.

Criterion

Description

All Node Coverage

All Edge Coverage

Prime Path Coverage

All Paths Coverage

Each node v € V' should be present at least in one
test case ¢ from the test set T'.

Each edge e € E should be present at least in one
test case t from the test set 7. This criterion is
usually applied for smoke or regression tests.

Each reachable prime path (a simple path, that is
not a sub-path of any other simple path) in graph
G should be a sub-path of some test case ¢t from
the test set T' [3].

Each possible path in graph G should be present
in the test set T'. This criterion is rarely used in
testing because it is too exhaustive.

Table 3.1: Common coverage criteria in process testing [3] .

As an alternative to the criteria shown in table [3.1, Test Depth Level
(TDL) concept can be used to determine the test coverage level. The main
advantage is the flexibility it provides. For instance, TDL = 1 is equivalent
to All Edge Coverage from table 3.1, while T DL = n represents all possible
combinations of n following edges in graph G [3]. In other words, the value
of the T'DL parameter determines the intensity of the generated test set. A
more strict definition is given, for instance, in Prioritized Process Test: An
Alternative to Current Process Testing Strategies [3].

B 3.5.3 Algorithms used for test case generation

The TDL coverage criterion is widely used in process testing, but it only
helps to generate a sequence of n edges in a graph. The next step is to

14

3.5. Process testing

assemble the generated combinations to a path in an efficient way. Usually,
the goal is to minimize the number of steps to execute in the output test case,
covering all the actions required to test at the same time. Process Cycle
Test (PCT) is an example of a technique solving this task. The internal
implementation is described in TMap Next [23], and out of the scope of this
work. However, the algorithm doesn’t respect other aspects, which should
be kept in mind during the test generation process. For instance, certain
actions in the workflow could have higher business priority or potential risk
from the technical point of view. Bures et al. implemented an algorithm
called Prioritized Process Test (PPT) [3], which respects the concept of
prioritization. A detailed description of the internal implementation can be
found in Prioritized Process Test: An Alternative to Current Process Testing
Strategies [3].

15

16

Chapter 4
Web Application Requirements

In the previous chapters, there were a lot of mentions about the importance
of application requirements. Figure |3.2| shows that the whole lifecycle of
software development starts with the definition of the system specification. In
an agile environment, this process can run simultaneously with other phases
of the lifecycle.

There are two basic types of requirements in software engineering. R.Young
summarizes that functional requirements describe the behavior of the system,
whereas non-functional requirements define system properties [29], that is
application availability, security, scalability, response time, and many others.
The document providing both functional and non-functional requirements to
the rest of the team is called specification [29].

Tables |4.1 and 4.2 shows the most important requirements to the web
application.

Requirement

1 The application should provide the possibility to add new types of
model diagrams, like UML activity diagram or state machine charts.

2 The application should provide the possibility to add new types of the
test set generating algorithms, like PPT or PPC.

3 Server-side of the application should be implemented in Java.
Client-side of the application should be implemented in Javascript.

5 The application should use Cytoscape.js as a graph visualization
library.

6 The application should be both horizontally and vertically scalable.

The test case generator module is computation-intensive. The appli-
cation should handle this loading factor.

8 The application should be implemented as an open source project,
that is source code should be properly documented.

9 The application should be secured. Main security vulnerabilities, like
SQL-injection or XSS-scripting [30], have to be prevented.

Table 4.1: Non-functional requirements.

17

4. Web Application Requirements

Requirement

10

The application should allow a user creating, updating, and deleting
a model of SUT processes represented in the form of a directed graph.
Every element of the graph can be extended with a configurable
set of metadata. An element’s priority should be visualized using
appropriate colors. Low priority is considered to be a default.

The application should allow a user to change the graph element name
and any other attribute except the node/edge id.

The application should allow a user to create, update, and delete
projects. A project is a collection of the models of SUT processes,
which is identified by the name and optional description.

The application should allow a user to execute algorithms for test case
generation and display the output in the editor.

The application should mark the generated test case set as invalid in
case of any inconsistencies, which could be caused by node or edge
deletion or missing start point.

The application should allow a user to review previously generated
test cases and delete it if necessary.

The application should allow a user to register and authenticate to
the system.

The application should restrict unauthorized access to the created
entities, which are owned by another user.

The application should persist data into the database.
The application should persist data on:

® "Save" button click,
B after a new graph is selected,
B after 3 seconds since the last user action.

In case of any synchronization issues, alert notification should be
displayed to the user.

Table 4.2: Functional requirements.

18

Chapter 5

Defining server-side technology stack

Choosing core technologies for a project is a complex process, which requires
continuous analysis of both the application requirements and functionality
provided by the target technology. This chapter provides a review of the
most important libraries and frameworks, which help to build a reliable and
maintainable software product. In the context of this work, the following
evaluation criteria for the technologies have been defined:

B Java language support for the web-server and JavaScript language support
for the web client;

B availability of the tutorials and a gentle learning curve to involve new
contributors more effectively;

® the level of flexibility provided by the tool, since the web editor should
support various types of the diagrams and algorithms in the future;

8 the effectivity with which technology solves the problem:;

B 3 type of the license authorizing free use of the application.

. 5.1 Client-server communication

B 5.1.1 Simple Object Access Protocol

Simple Object Access Protocol (SOAP) is a communication protocol specifica-
tion extensively using XML to structure the message format. It mostly relies
on Hypertext Transfer Protocol (HTTP) as a transport protocol for message
exchange. The complexity of the specification, performance implications due
to the message size, and the necessity to deal with XML format makes SOAP
inappropriate technology to use at the moment. Nowadays, the protocol is
primarily used in systems that have strict security policies, which are banks,
payment gateways, or billing companies.

19

5. Defining server-side technology stack

B 5.1.2 Representational State Transfer

Representational State Transfer (REST) is an architectural style, which
defines a set of constraints applied to the distributed systems. Nowadays,
nearly 80% of the applications are following this architectural style [31] due
to its simplicity and scalability. REST defines a concept of resources, which
relates to a piece of the application state. The HTTP protocol is widely used
as a communication protocol, allowing to transfer messages and operate with
the resources using the following basic request methods:

B GET - used to retrieve a resource or a collection of the resources;

B POST - used to create a new resource;

B PUT - used to update a resource or a collection of the resources;

B DELETE - used to remove a resource or a collection of the resources.

The web service is called RESTful, if it doesn’t violate the following architec-
tural constraints [32]:

B client-server architecture,
B statelessness,

B cacheability,

B layered system,

B code on demand,

® uniform interface.

B 5.1.3 GraphQL

GraphQL is a query language providing the possibility to request for data
required by the client. The main idea is the opposite principle of the traditional
paradigm, where it is up to the server to decide what information to expose
to the client. The technology was released by Facebook in 2015 and published
as an open source project.

GraphQL is especially useful when the data needs to be fetched from
different sources, which is a usual case for enterprise-level applications or
the systems following microservices approach. On the other hand, it adds
another level of complexity for smaller projects.

B 52 Spring framework

Spring is an open source Java application framework. Before Spring was
created, Java applications had been built using a traditional Java EE approach
with the following unresolved problems:

20

5.2. Spring framework

® complex implementation,
B huge specification document to learn from,
® heavyweight deployment artifacts.

Spring, which initially served as an inversion of control (IoC) container,
can solve nowadays a variety of tasks from different domains:

®8 dependency injection,
B data access,

B system integration,

web applications,

AOP (Aspect Oriented Programming),
B testing.

It can perfectly achieve any goal, starting from developing a small proof-of-
concept application until the complex modern solutions built on top of the
micro-services [33].

The following benefits make the Spring framework a perfect candidate to
use in the project:

® time-tested architectural decisions and best practices enforced by the
framework;

® an open source nature of the project, which is improving continuously
due to the community support;

® detailed documentation enriched by the guidelines aiming both the new
and experienced developers.

Starting from version 5 Spring offers two different approaches for building
web applications [34]:

® based on synchronous blocking I/O architecture,

® served by an asynchronous, non-blocking stack built on the reactive
design principles.

The whole architecture of WebFlux is event-driven. As shown in figure
5.1, Spring WebFlux uses reactive streams instead of servlets to handle the
asynchronous flow. The application built on the top of WebFlux is able to
handle a relatively big amount of concurrent requests, which is exactly the
case of a typical web editor application. Project Reactor, which is Spring
WebFlux based on, includes the creation of reactive controllers, repositories,
web clients, and many other components [33]. However, the solution has the
following disadvantages:

21

5. Defining server-side technology stack

@ Spring Boot 2.0

OPTIONAL DEPEN!

@ Reactor

Reactive Stack Servlet Stack

Spring WebFlux is a non-blocking web Spring MVC is built on the Servlet API
framework built from the ground up to take and uses a synchronous blocking I/O
advantage of multi-core, next-generation architecture with a one-request-per-
processors and handle massive nhumbers thread model.

of concurrent connections.

Netty, Servlet 3.1+ Containers Servlet Containers
Reactive Streams Adapters Servlet API
Spring Security Reactive Spring Security
Spring WebFlux Spring MVC
Spring Data Reactive Repositories Spring Data Repositories
Mongo, Cassandra, Redis, Couchbase JDBC, JPA, NoSQL

Figure 5.1: Comparison of Spring WebFlux and MVC architectures [34]

B increased complexity of the projects, due to the paradigm shift caused
by the reactive approach;

B less amount of documentation, since the WebFlux module is relatively
new

® some bugs can be still present.

22

Chapter 6

Defining client-side technology stack

This chapter analyzes existing Javascript libraries and frameworks available
for software developers. Since the Javascript projects usually have a bunch
of dependencies, the next sections cover the most important libraries only.
Chapter 5| defines the fundamental criteria helping to choose proper technology.
However, for the web client, several additional factors should be taken into
account:

B browser support,
B the size of the package,

® the type of web application, for example, a single page application (SPA).

B 6.1 Ul libraries

React, Vue.js, and Angular are the most popular Javascript libraries used
for building large-scale single-page applications. Figure [35] illustrates the
interest of developers to these tools.

Interest over time Google Trends

® React @ Angular Vue.js

JI Noto
Average Jan 4,2015

Worldwide. 1/1/15 - 5/12/19. Web Search.

Figure 6.1: React, Angular and Vue.js trends comparison [35]

It is not entirely accurate to compare React with Angular or Vue.js, because,
technically - React is a library, while the latter two are full-fledged frameworks.

23

6. Defining client-side technology stack

The difference between a library and a framework is in the amount of the tasks
they try to solve. Usually, the latter provides the foundation and tools often
complete in functionality to deliver full solutions. In other words, picking a
library requires an analysis of further tools specific for different tasks.

B 6.1.1 Angular

Angular is a framework created by Google in 2010. The first version, called
AngularJS, was the first of its kind, i.e., a full-blown solution for highly
interactive single and multi-page web applications. In 2016, due to vast
advancements in JavaScript language and its ecosystem, the company decided
to completely redesign and rewrite the framework to fit in the modern
environment.

Angular includes everything needed to implement a complete solution. It
uses the TypeScript language to make the code type-safe and eliminate the
most common bugs that most pure JavaScript applications have. A typical
Angular application is structured into modules including components and
services, which are building blocks of every Angular-based application. The
architecture enforced by the framework focuses on building scalable web
applications without losing control of the source code.

Between the main disadvantages are a steep learning curve and a high level
of abstraction, which can prevent other developers from contributing to the
open-source application.

B 6.1.2 Vuejs

Vue is a web application framework that focuses on incremental adoption,
declarative rendering, and component composition [36]. It takes inspiration
from Angular and React to deliver an Angular-like experience with React
rendering model. The framework was created by Evan You in 2013. However,
the first version was released two years later. Vue.js aims to be more com-
prehensive than React by providing official packages for routing and state
management, and less complicated than Angular at the same time. Unfortu-
nately, the level of popularity of the framework makes it an inappropriate
choice for developing an open-source project.

B 6.1.3 React

React was initially released in 2013 by Facebook as a competitor to Angular.js,
and quickly gained in popularity due to the following reasons:

B a gradual learning curve,
B better performance,
® the paradigm shift from imperative to the declarative approach.

The main building block of the library is a component. React components
are reusable and self-contained pieces of code, that accept parameters, called

24

6.2. Introduction to the Flux architecture

properties, and optionally can have a state. A component changes its state
as a response to some event, for example, button click. React organizes
components into a tree, which is called virtual DOM. The idea behind it is to
minimize the number of operations with a real DOM to improve the overall
performance. Managing the virtual model is a considerably cheaper operation.
The algorithm which prevents re-rendering of the whole component tree is
called reconciliation. Its goal is to identify and render the parts of the tree,
which require updates, leaving all the rest untouched. Such an approach
makes React very performant.

Another innovation, which made the library successful is JSX. It stands
for JavaScript XML and provides the capability to define the output of
the components in an HTML-like representation. The purpose of JSX is to
improve code readability. However, JSX is just syntactic sugar converted to
the plain Javascript during the compilation phase.

At first sight, the main disadvantage of React is a lack of additional tools
shipped with it. That is the main difference between a library and a framework.
However, React perfectly fits the needs of this work due to the following
reasons:

® flexibility to choose the appropriate library, since the process modeling
tool is not a typical web application, and the tools shipped with the
frameworks may not help;

® the size of the community, as shown in Figure |6.1, and the number of
learning materials available;

® performance increased by applying the virtual DOM concept.

. 6.2 Introduction to the Flux architecture

The core of every web application is its state, so, along with React, Facebook
also introduced an architectural pattern, which helps to build scalable web
applications - Flux. It is best suited to work with React, but can be used in
other contexts as well. Flux mainly addresses a fundamental part of every
architecture - the data flow. The pattern ensures that data flow only in
one direction, which makes the application more predictable and easier to
understand.
As shown in figure [6.2 the main components of Flux are:

® Dispatcher, which is responsible for receiving actions and sending them
to the stores.

B Store, which holds the application data and mutates them upon receiving
an action from the dispatcher. After modifying the data, the store must
emit a change event, to let the views know that they need to re-render.

® Action, which is usually a simple object containing data and a type field
to identify itself. Dispatching an action is the only way how to interact
with the application state.

25

6. Defining client-side technology stack

Action ———>| Dispatcher —=p| Store —>| View

Action <

Figure 6.2: Flux architectural pattern [37]

® View, which displays data from the stores and sends actions to the
dispatcher in response to some events, such as a button click.

Flux architecture is widely used with React to organize the data flow and
the structure of event-driven applications, making it a suitable candidate to
use within this work.

B 6.2.1 Redux

Redux is a Javascript library helping to organize and manage application
state. It takes inspiration from the Flux architectural pattern and is often
thought of as its implementation. However, there are some aspects in which
Redux differs. They are as follows:

B the dispatcher component is missing in the Redux;

B the number of stores is limited to one, following the concept of a single
source of truth;

B every store subscriber is required to provide a callback, which is executed
on every update of the state.

Redux is based on the concept of reducers, which are the functions cal-
culating a new state based on the current application state and the action
dispatched. Such an approach has a great scaling potential, by utilizing the
principle of function composition, that allows managing the state trees of any
complexity by slicing it into small maintainable chunks. In addition to the
benefits described above, Redux enforces the entity immutability principle to
minimize the number of side effects, which are hard to debug. Following the
best principles from the Flux pattern and functional programming, Redux is
a powerful solution for application state management, which is widely used
with React to build highly interactive, event-driven maintainable applications.

26

6.3. Babel

B 63 Babel

Babel is a JavaScript compiler that converts newer ECMAScript standards
into the code supported by older browsers to ensure backward compatibility.
That gives the developers flexibility to use cutting edge language features,
and at the same time support outdated JavaScript engines used in browsers.
Babel is widely used by most of the open source frameworks and libraries,
including React.

B 6.4 ESLint

Since JavaScript is a dynamically typed language, keeping bugs out is a
hard task. ESLint is a static code analysis tool helping to find defects that
are usually hard to detect, like a typo or missed comma. One of the main
advantages of ESLint is a pluggable architecture, providing the possibility
to adapt the tool to different JavaScript-based languages, like TypeScript.
The plugins are actively developed by the community and are free to use.
Additionally, ESLint can be used to validate the source code style against the
style guides created by different organizations, enforcing consistency within
the project.

B 65 Webpack

Webpack is a static module bundler for web applications. It analyzes the
libraries used by an application and builds a dependency graph. The output
of the process is one or more bundle files, containing all the necessary depen-
dencies and assets packaged with it. A typical example of an asset is HTML,
CSS, or an image. Apart from that, Webpack supports the following features
[38]:

® source code transformations, like compilation, minification, obfuscation,

and dead code elimination;

® dependency graph optimization dramatically decreasing the output bun-
dle size;

8 built-in optimizations based on the target environment, like an injection
of the environment variables.

The scope of the tasks solved by Webpack is defined by a set of declared
plugins in the configuration file. As with the ESLint tool, the project, plugins,
and loaders are developed and maintained by the community.

B 6.6 Create React App (CRA)

Configuring a modern React-based web application requires knowledge of
tools like Webpack, Babel, ESLint, and many others. To simplify the process,

27

6. Defining client-side technology stack

CRA has been created. The benefits of its usage are as follows:
® automatic configuration of Babel, Webpack, and ESLint;
B automatic compilation of JSX to the plain JavaScript code;
B setting up build scripts for development and production environments;

In other words, CRA provides a modern build setup with no effort required.
It is especially useful for new developers trying to get acquainted with React.

28

Chapter 7

Implementation of the web application

. 7.1 Overall architecture review

This chapter describes the most relevant implementation aspects of the soft-
ware product. It consists of several sections, including the overall application
architecture review, API description, the data model definition, server, and
client internal implementation details.

Figure illustrates the overall application architecture. It consists of three
main modules, which are React-based client application, Spring-based server
application, and the MongoDB database. The presented solution is a typical
implementation of the client-server architecture, which refers to requirement

o—

#3 from table
Client browser £]
.
React El —h
application L1
/(])\ RESTful API
Cytoscape I]
.
(]
Docker container 7] Netty server &
z] N Spring webflux £]
1
MongoDB OJ L ‘ application
Reactive MongoDB
adapter Spring webflux £]
security

Oxygen £

algorithms

Figure 7.1: Web application architecture diagram

29

7. Implementation of the web application

B 72 APl endpoints definition

It is a good practice to think in terms of resources working with the RESTful
APIs. In the scope of this work, the following resources can be defined:

B user,

B project,

® graph,

B test case.
Table |7.1) shows authentication endpoints, which violate the concept of re-
sources. The choice is made in favor of simplifying the integration process for

the third-parties.

URI path Method Semantics

/login POST Retrieves authentication token, which should
be sent with every request for the protected
resources.

/register POST Creates a new user in the system. An authenti-

cation token is sent as a part of the response.

Table 7.1: Description of the authentication endpoints

The authentication token obtained, allows the user to request resources
defined in table 7.2 Note, that all endpoints are prefixed with the /api/v1
path. Incrementing the version of the prefix is a simple way how to manage any
changes made to the API. Since the designed API follows conventions and best
practices defined for RESTful web services, the semantics of request methods
reflects standard behavior and doesn’t require any additional description.

URI path Available Methods
/users/:id PUT

/projects GET, POST

/projects/:id GET, PUT, DELETE
/projects/:id /graphs GET, POST

/projects/:id /graphs/:id GET, POST, PUT, DELETE

/projects/:id /graphs/:id /test-cases GET, POST
/projects/:id/graphs/:id /test-cases/:id DELETE

Table 7.2: Description of the main application endpoints

30

7.3. MongoDB data model

B 7.3 MongoDB data model

The data modeling process for MongoDB slightly differs from the approach
for relational databases. Even for NoSQL databases, the references between
entities is a necessity. Fortunately, MongoDB manual [39] provides compre-
hensive information about the best practices for data modeling. The key idea
is to prefer nesting of the sub-documents instead of references due to the
following reasons:

® The support of object-relational mapping is limited for MongoDB. Spring
Data MongoDB reference documentation suggests using multiple queries
to fetch required entities [40], which is an expensive operation.

®8 The transaction mechanism was introduced since MongoDB 4.0, while the
implementation phase of this work had finished earlier. Hence, updating
multiple documents at once can lead to inconsistencies.

® Nested documents are simpler to analyze and understand. As the appli-
cation is an open-source project, this is especially useful for newcomers.

Listings [7.1], [7.2], [7.3], and [7.4] show JSON-like representation of the main
application entities. Project, graph, and test case structures are split for
better readability. Note that the user entity uses an id to reference projects.
Such a design decision could be useful in the future for implementing project
sharing functionality.

{
"_id": "5ccb64cebB86aadB826279bald6",
"firstName": "Ruslan",
"lastName": "Bakeyev'",
"email": "bakeyrus@fel.cvut.cz",
// Password is hashed for security reasons
"password": "$2a$10$CpYC7K;j2LLTcKUH2"
b
Listing 7.1: Example of user entity
{
"_id":0bjectId("5cd56d7£86aa485c9ffae41b"),
"name":"Test project #1",
"description":"With description",
// graphs attribute is omitted for better readability
"graphs": []
+

Listing 7.2: Example of project entity

31

7. Implementation of the web application

{
"id":"5cd56d8886aa485c9ffaedlic",
"name":"Test graph #1",
"type":"FLOW",
"nodes": [
{
"data":{
"startNode":true,
"id":"2124ab2f-b68d-4c87-b2fd-d5516cc956b5",
"name":"a",
"priority":"LOW"
Iy
"group": "NODES"
Vg
{
"data":{
"startNode":false,
"id":"935dd698-a99b-48d8-8343-57664a0e67ef",
"name":"b",
"priority":"LOW"
I
"group" : "NODES"
b
1,
"edges": [
{

"data":{
"source":"2124ab2f-b68d-4c87-b2fd-d5516cc956b5",
"target":"935dd698-a99b-48d8-8343-57664a0eb67ef",
"from":"a",

"to":"b",
"id":"7091a264-28a6-4608-87cc-cbb196793d21",
"name":"0",
"priority":"LOW"
I,
"group": "EDGES"
}
P
// testCases attribute is omitted for better readability
"testCases": [
]
X

Listing 7.3: Shortened example of graph entity

32

7.4. Web server

"id":"5ce335b086aa4863b4851998",
"name" :"Test set #1",
"tdl":1,
"algorithm":"PCT",
"paths": [
[
"7091a264-28a6-4608-87cc—cbb196793d21"

Listing 7.4: Example of test case entity

. 7.4 Web server

The web server is built on top of the Spring framework, which incorporates
time-tested best practices and enforces the layered architecture pattern.
Figure [7.2] illustrates the UML package diagram together with the main
application layers highlighted.

cz.fel.cvut.bakeyevrus.rhino
Controller layer
Rhino
Package \ Package |
handles 9 9 Injects Application
™™ 7 77 | handler access | router Injects
| ‘ kaccess “ ’)
| T
| | security
T

! L _imports _
‘ access |
V | Package \

(Package | (Package \ * Package \ * Package \ global

. enum
exception validation dto ;[nports“ mapper]
* |mp0rts_JI * @_
I | global
| access uti
|
| [Service Tayer (Data Tayer
|
| throws Package [Package \ [Package \ X Package \
L access access imports
oxygen Servme ''''' repository " == | model ’

Figure 7.2: Web server package diagram

The detailed description of every package is as follows:
B model - contains business entities, used to represent database state.

B repository - contains a set of classes, used to interact with the database,
e.g., retrieve or persist business entities.

33

7. Implementation of the web application

B service - contains a set of classes incorporating application business
logic.

B oxygen - contains algorithms for test cases generation from input graph
structures.

B mapper - contains classes transforming business entities into the data
transfer objects (DTO). The purpose of the DTO is to expose a minimal
portion of the information demanded by the upper layers.

B dto - contains classes describing DTO, which are serialized into required
data format, typically JSON or XML, during transfer over the network.

® handler - contains a set of classes, transforming web client requests into
web server responses. Other responsibilities of handlers are:

DTO serialization and deserialization,
DTO validation,

mapping exceptions generated by the service layer into appropriate
HTTP status codes.

B router - contains mapping logic between URIs and corresponding handler
methods.

B validation - contains custom annotations, which extend the basic
functionality of the Java Bean Validation standard (JSR 303: Bean
Validation).

B enum - contains enumeration types, that are primarily used as constants.

B util - contains a set of utility classes, which are widely reused through
the application.

B exception - contains exception classes, which are created by the service
layer and should be handled in the controller layer.

B security - a set of classes, which implement fundamental interfaces of
the Spring Security module. Subsection [7.4.3] contains more detailed
information.

The possibility to add new types of model diagrams is one of the non-functional
requirements described in table |4.1. Figure |7.3| illustrates a hierarchy of core
entity classes and their interconnection. Such a detailed decomposition
provides better flexibility and a capability to extend existing functionality to
support new model diagrams.

34

7.4. Web server

GraphElementPosition

GraphElementGroup

—

Abstract
D GraphElement <}

-t

Abstract
D GraphElementData|

GraphNode

GraphEdge

GraphNodeData

GraphEdgeData

..*
0.*
1) 1.%
TestCase Project o0 User

Figure 7.3: Class diagram of the model package

B 7.4.1 Integration with Oxygen library

The purpose of the oxygen package is to expose an interface to integrate
with the oxygenCORE module, which contains a set of test case generation
algorithms. However, the tool is tightly coupled to the mxGraph library, as
shown in listing [7.5. An adapter design pattern has been used to abstract
the end user from the difference between expected interfaces [41]. Listing 7.6
shows the definition of the I0xygenAdapter interface exposed by the oxygen
package.

public class PCTSituationsGeneratorImpl extends
AbstractPCTSituationsGenerator {

public PCTSituationsGeneratorImpl(GraphModelCore model,

int tdl, Priority defaultEdgePriority, boolean optimize) {
// constructor implementation is omitted

3

// rest of the implementation is omitted

Listing 7.5: PCTSituationsGeneratorImpl constructor signature

35

7. Implementation of the web application

public interface IOxygenAdapter {

List<List<String>> generateTestCases(Graph graph, int tdl,
boolean optimize) ;

Listing 7.6: I0xygenAdapter interface

B 7.4.2 Optimizing resource intensive calculations

Another aspect, associated with Oxygen algorithms, is high-load computations
dramatically affecting the overall system performance. The problem has been
solved by using a thread pool, i.e., a set of pre-initialized threads, waiting for
heavy computation tasks to reduce the load on the main application thread.
Fortunately, the concept of reactive programming helps to solve such kinds
of tasks avoiding the complexity of managing both the thread pool size and
threads synchronization. The combination of the Schedulers abstraction
mechanism and publishOn operator [42] provides the possibility to adapt to
the increasing load and scale vertically, which refers to the non-functional
requirement #5 from table 4.1, Project Reactor reference documentation
provides additional information about parallelization capabilities.

B 7.4.3 Security module

An authentication and authorization concepts are built on top of the Spring
WebFlux Security module. Table [7.1] shows the endpoints that the user
can utilize to obtain a JWT token, that is necessary for accessing secured
resources. Such an approach is known as a token-based authentication
concept.

Figure [7.4] demonstrates an example of a JWT token and its based64-
decoded representation. It contains necessary nonsensitive information about
the authorized user, which allows reducing the number of requests to the
database. The JWT token is sent as a part of the HI'TP Authorization

header and verified by the web server on each request sent by a client
application. The stateless nature of the approach reduces the effort needed to
scale the system horizontally. That fact satisfies non-functional requirements
#5 from table [4.1]

Package security contains the following configuration classes:

B SecurityContextRepository class, which implements Spring Security
ServerSecurityContextRepository interface;

B AuthenticationManager class, which implements Spring Security
ReactiveAuthenticationManager interface;

36

7.5. Web client

B SecurityConfig class, which defines the parts of the application needed

to secure, and provides concrete implementation of the interfaces men-
tioned above.

Encoded i Decoded -

HEADER:

eyJhbGeci0iJIUzUxMiJ9.eyJ1c2VySWQiOiI1Y2U
1TM2YTMTg2YWEBODYzY jQANTESOWEiLCJzdWIi0iJ {

iYWtleXJ1c@BmZWwuY3Z1dC5jeilsIm1lhdCI6MTU }

"alg": "HS512"

10DUyNzgyNSwiZXhwIjoxNTUSMTI30DI1fQ.38vn
7 _XHtFZORzqVIGIOfdS- PAYLOAD
gayo@feUeD9S3YaBO7LyXr4NoBOCngLNJaI2gesf

aqabhxBIJ0sd3G4rT96oNg {

aa4863b485199a",

Figure 7.4: Example of JWT token generated by the application

7.5 Web client

Cytoscape.js, React, and Redux are the core libraries used in the web client.
Due to the React popularity, lots of guidelines are created helping to organize
the application structure. Figure shows the hierarchy of main application
modules and their interaction, used in this work. The overall communication
flow between modules corresponds to the constraints defined by the Flux
architecture.

The detailed description of every module is as follows:

components - contains a collection of reusable React components.

hooks - contains pieces of reusable logic that other React components
can apply to reduce code duplication.

LoginPage and EditorPage packages export React components respon-
sible for composing the whole web page from other elements. They are
usually at the top of the React component tree hierarchy as described in
subsection

actions - contains Redux actions usually dispatched by React compo-
nents connected to the store. Dispatched actions describe what is going
to change in the state, and trigger the re-rendering process.

reducers - contains small composable functions, which describe how the
application state changes in response to the dispatched action.

services - contains a set of classes, responsible for communication with
the web server, i.e., sending HTTP requests, accepting HT'TP responses,
and handling network errors.

37

7. Implementation of the web application

View layer \
[Reusables
[—— T
Package \ | Package I |
LoginPage _inﬂ)oﬁs_>| components _imports |
L I S I
Pack | |
[Package] : (Fadkage) I |
EditorP i rt
itorPage | imports o hooks | II
} | I
I e J |
| |
| I
imports
L2 P — | cytoscape |
I
I
I
| I
| Package S |
dispatch . |
L _|$£ac_e_s> actions triggers | reducers | updates

Package

global : Package S

access
L — — —] services

constants

S

Figure 7.5: Module hierarchy diagram of the client application

B cytoscape - contains a set of classes responsible for the integration with
the Cytoscape.js library. Refer to subsection |7.5.3| for additional details.

B constants - contains a set of immutable variables used through the
application.

B 7.5.1 Organizing application state

An application state is supposed to be a single source of truth despite the
library used for its management. Redux additionally enforces a set of best-
practices helping to avoid common pitfalls and application bugs. Based on
the guidance provided by Redux documentation, the state of the web client
is split into the following chunks:

® projects (listing |7.7)),
® graphs (listing|7.8)),

B testCases (listing |7.9),

38

® auth (listing |7.10)),
® modal (listing |7.11)),
® editor (listing [7.12).
"projects": {

"byId": {

"5cd56d7f86aa485c9ffaedlib": {
"id": "5cd56d7f86aa485c9ffaedlb",

"name": "Test project #1",
"description": "With description",
"graphs": [

"5cd56d8886aa485c9ffaedlc"
]
X
1,
"activeProjectId": "5cd56d7f86aa485c9ffae4lb",
"loading": false,
"errorMessage": null

Listing 7.7: Example of projects state chunk

"graphs": {
"byId": {
"5ce333f186aa4863b4851997": {
"id": "b5ce333f186aa4863b4851997",
"name": "State machine",
"type": "Flow",
"elements": {
// attribute value is omitted
X,
"testCases": [
"5ce335b0862a4863b4851998"
]
+
I
"activeGraphId": "b5ce333£186aa4863b4851997",
"loading": false,
"errorMessage": null

Listing 7.8: Example of graphs state chunk

39

7.5. Web client

7. Implementation of the web application

"testCases": {
"byId": {
"5ce335b086aa4863b4851998" : {
"id": "5ce335b086aa4863b4851998",

"name": "Test set #1",
"tdl": 1,
"algorithm": "PCT",
"paths": [

[

"lae62e62-69fc-4333-ael6-bb4a640afe22",
"c3249941-d93e-4cde-853d-278666£37912",
"lae62e62-69fc-4333-ael6-bb4a640afe22"

]
}
I,
"selectedTestCaseId": "5ce335b086aa4863p4851998",
"loading": false,
"errorMessage": null

X
Listing 7.9: Example of testCases state chunk
"auth": {
"authenticating": false,
"loggedIn": true,
"errMessage": null
+s
Listing 7.10: Example of auth state chunk
"modal": {
"modalType": null,
"modalProps": {}
+s
Listing 7.11: Example of modal state chunk
"editor": {
"lastSavedTimestamp": 1558394340524,
"saving": false,
"errorMessage": null
}

Listing 7.12: Example of editor state chunk

40

7.5. Web client

One of the most effective methods to reduce the complexity of a state tree
is normalization [43]. The main idea is to use a hash map instead of an
array to store domain objects, like graphs or projects. The nested entities
are split into separate chunks and referenced using the id attribute. Such an
approach helps to think of split pieces as database tables. Listings 7.7 and
7.8 show an example of normalized entities.

B 7.5.2 React component tree

React stores the hierarchy of components in the form of a tree, which is similar
to the DOM concept [44]. Figure |7.6|illustrates the organization of React
components. The state of the application is similar to the one from subsection
7.5.1. Note that the diagram shows only the components subscribed to the
Redux store and significantly simplified. Nevertheless, it can be useful for
new people trying to understand the implementation details of the web client.

Root

loggedin = true

SecuredRoute

ModalDispatcher

loggedin = true

modalType = null path = "/editor"
Y
| EditorPage |
activeProjectld =
"5cd56d7f86aa485c9ffaed1b”
AppBar Editor
activeGraphld =
"5ce333f186aa4863b4851997"
| ProjectList |
activeProjectld =
"5cd56d7f86aa485c9ffaed1b” LeftPanel [CytoscapeContainer } | RightPanel |
loading = false
activeProjectName = "Test selectedTestCaseld =
project #1" "5ce335b086aa4863b4851998"
activeGraphld =
"5ce333f186aa4863b4851997"
ActiveGraphTab [SelectedElementCard } | SelectedTestCaseCard
id= selectedTestCaseld =
"5¢e333f186aa4863b4851997" "5ce335b086aa4863b4851998"
name = "State machine” algorithm = "PCT"
isGraphSaving = false name = "Test set #1"

Figure 7.6: Simplified example of the React component tree

B 7.5.3 Integration with Cytoscape.js library

Cytoscape.js is the Javascript library helping to create and visualize graph
structures. It exposes a well-documented and easy to understand API with a
broad set of features supported. However, integrating React with Cytoscape.js
was not a simple task.

While Redux encourages the developers to keep an application state as a
single tree in one place, including Cytoscape state into the Redux store can

41

7. Implementation of the web application

lead to performance issues. The reasons are as follows:

®m The updates are too frequent. As an example, the element repositioning
listener on canvas can dispatch a high number of actions to the store. The
cost of the operation is expensive since React re-renders the component
tree on each state update.

® An internal Cytoscape state is not fully serializable, that is the violation
of the core Redux principles.

B State merging breaks the concept of a single source of truth in the
application since the Cytoscape.js is a true owner of its part of the state.

The solution used in this work is based on state merging only in appropriate
situations. An example is a graph switch action in the editor. In that case,
a particular part of the Cytoscape state is cached in the Redux store and
pushed to the server at the same time. If the back-end responses with error
status code, the user can switch back and try to save the graph manually.
Functional requirement #10 presented in table 4.2 describes other cases when
state merging is needed.

The structure of the cytoscape package is quite complex since the module
has to be easy to extend with the new types of diagrams as described in
requirement 3 from table 4.1l Figure|7.7|illustrates core classes of the package
and their interconnection.

Cytoscape Facade

+ plugins: CytoscapePlugin[*]

) - cytoscape: Cytoscape use <<interface>>
<<interface>> create — Cytoscape Plugin
Cytoscape —
createNode
Factory —_ getName
createEdge
n removeNgde getlnstance
| destroy
| removeEdge
B | destroyInstance é
r 0oL r————- R —— R
| T | ' |
|
Workflow State Machine Panzoom Plugin Edg;haljd\es Cont:‘xt Menus
Cytoscape Cytoscape ugin ugin
Factory Factory
<<interface>>
Cytoscape Plugin 4 * 4
Factory | create | |
An instance of | P . | |
Cy:ssei?gg s L | Panzoom Plugin | |
! 7 Factory | |
|
I | — | :
| L _ | Edgehandles |_create)
| Plugin Factory |
| |
| I
- Context Menus | create]
_____ PluginFactory [~ — — — T T T T T

Figure 7.7: Class diagram of the cytoscape module

The whole concept is based on the abstract factory design pattern [41].
Every element of the editor, e.g., a plugin or the CytoscapeFacade class,
should have a corresponding factory class implemented, that knows how to
create an instance of the element according to the target diagram type. After

42

7.5. Web client

that, these factories are aggregated by a parent class, which can be thought
of as a factory of factories. Figure illustrates an example flow of how
CytoscapeFacade class is initialized together with all the required plugins
(Panzoom.js and Edgehandles.js in this example) for a particular type of the
diagram.

Editor Cytoscape Panzoom Edgehandles

factory Plugin Factory Plugin Factory
selectGraph | ! !
—_— | |
createCytoscape new Cytoscape |
= > Facade |

new | Panzoom
createPanzoom Plugin

return Panzoom

X

new " Panzoom
—

create Edgehandles 5
Plugin

. return Edgehandles .
setPlugins
> |
|
-~
return Cytoscape | I
X ‘
|

initialize

|
L
|
I
I
I
I
I
I
|
|
|
|
|
|
|

closeGraph _.
—_—

destroy destroyPlugin

destroyPlugin

| ' X '
% X X

Figure 7.8: CytoscapeFacade class initialization flow

43

44

Chapter 8

Conclusion

The main goals of this work can be split into two parts. The former is to
create a web editor, allowing to model the system under test processes and
generate an optimized set of test cases based on the provided model. The
latter is to describe the overall process and share the thoughts about common
pitfalls that can software engineers face trying to build a highly interactive
web application.

Chapters 2| and |3| explained fundamental terms from the software testing
area, together with the more advanced concepts like Model-based testing or
techniques, that are broadly used to derive and optimize the test cases from
the SUT process.

Chapter 4| introduced application requirements, which is usually the first
and one of the most important steps in the software development lifecycle pro-
cess. Provided requirements describe both the functional and non-functional
expectations from the system.

Chapters [5| and [6] introduce core libraries and frameworks, which have been
used through the work, together with the recommendations on how to choose
proper software technology. As a result, the web client is based on React and
Redux stack, which allows building highly interactive systems, which is the
typical web editor supposed to be. The Spring WebFlux framework is the
core technology of the web server, which, on the one hand, provides great
scalability opportunities, but on the other hand, it significantly increased the
learning curve for new developers.

Chapter [7| is the most valuable part of the whole work, as it provides
thoughts and inspiration to other people on how the application architecture,
API, and data model can look like, together with the arguments in a favor of
the provided solution.

Despite the presented solution solves the problem quite effectively, there
are some aspects, which can be improved:

® Horizontal scaling has its limitations. The part of the application, re-
sponsible for handling intensive computations, should be scaled vertically.
Any cloud PaaS solution, like Amazon Web Services, perfectly addresses
such kind of tasks.

® State management synchronization algorithms, described in section [7.5.3]

45

8. Conclusion

are quite difficult to understand. Some parts of the application logic can
be implemented in plain JavaScript without using React and Redux.

® The application user interface can be significantly improved to provide a
better look and increase the overall user experience.

46

1]

Bibliography

Miroslav Bures. Pctgen: Automated generation of test cases for applica-
tion workflows. In Alvaro Rocha, Ana Maria Correia, Sandra Costanzo,
and Luis Paulo Reis, editors, New Contributions in Information Systems
and Technologies, pages 789-794, Cham, 2015. Springer International
Publishing.

Miroslav Bures, Tomas Cerny, and Matej Klima. Prioritized process
test: More efficiency in testing of business processes and workflows. In
International Conference on Information Science and Applications, pages
585-593. Springer, 2017.

Miroslav Bures, Bestoun S Ahmed, and Kamal 7Z Zamli. Prioritized
process test: An alternative to current process testing strategies. arXiw
preprint arXiv:1903.08551, 2019.

Anurag Dwarakanath and Aruna Jankiti. Minimum number of test
paths for prime path and other structural coverage criteria. In IFIP
International Conference on Testing Software and Systems, pages 63—79.
Springer, 2014.

Nan Li, Fei Li, and Jeff Offutt. Better algorithms to minimize the cost
of test paths. In Software Testing, Verification and Validation (ICST),
2012 IEEE Fifth International Conference on, pages 280-289. IEEE,
2012.

P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2016.

Istgb glossary. https://glossary.istgb.org/en/search/. (Accessed
on 12/05/2019).

What is continuous integration? |https://docs.microsoft.com/
len-us/azure/devops/learn/what-is-continuous-integration.
(Accessed on 19/05/2019).

Martin Fowler. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley Professional, 3rd edition, 2003.

47

https://glossary.istqb.org/en/search/
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-integration
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-integration

Bibliography

[10]

[11]

[14]

[15]

[21]

22]

Mdn web docs. https://developer.mozilla.org/en-US/. (Accessed
on 23/05/2019).

The fail-fast principle in software development. https://dzone.com/
articles/fail-fast-principle-in-software-development. (Ac-
cessed on 13/05/2019).

Tilo Linz Andreas Spillner and Hans Schaefer. Software Testing Foun-
dations. Rocky Nook, 4th edition, 2014.

Elfriede Dustin, Thom Garrett, and Bernie Gauf. Implementing Au-
tomated Software Testing: How to Save Time and Lower Costs While
Raising Quality. Addison-Wesley Professional, 1st edition, 2009.

E. Dustin, J. Rashka, and J. Paul. Automated Software Testing: Intro-
duction, Management, and Performance. Pearson Education, 1999.

Jussi Kasurinen, Ossi Taipale, and Kari Smolander. Software test au-
tomation in practice: Empirical observations. Adv. Software Engineering,
2010:620836:1-620836:18, 2010.

Miroslav Bures. Automated testing in the czech republic: The current
situation and issues. ACM International Conference Proceeding Series,
883:294-301, 06 2014.

Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Petersen,
and Mika Miéntyld. Benefits and limitations of automated software
testing: Systematic literature review and practitioner survey. In 2012
7th International Workshop on Automation of Software Test, AST 2012
- Proceedings, pages 36-42, 06 2012.

Miroslav Bures. Model for evaluation and cost estimations of the au-
tomated testing architecture. In New Contributions in Information
Systems and Technologies, pages 7T81-787. Springer, 2015.

Miroslav Bures. Metrics for automated testability of web applications. In
Proceedings of the 16th International Conference on Computer Systems
and Technologies, pages 83-89. ACM, 2015.

Miroslav Bures. Framework for assessment of web application automated
testability. In Proceedings of the 2015 Conference on research in adaptive
and convergent systems, pages 512-514. ACM, 2015.

Corey Sandler Glenford J. Myers and Tom Badgett. The Art of Software
Testing. John Wiley & Sons, 3rd edition, 2011.

Bruno Legeard Robert V. Binder, Gualtiero Bazzana and Anne Kramer.
Model-Based Testing Essentials - Guide to the ISTQB Certified Model-
Based Tester. Wiley, 2016.

Tim Koomen, Leo van der Aalst, Bart Broekman, and Michiel Vroon.
TMap Nezxt, for Result-driven Testing. UTN Publishers, 2006.

48

https://developer.mozilla.org/en-US/
https://dzone.com/articles/fail-fast-principle-in-software-development
https://dzone.com/articles/fail-fast-principle-in-software-development

[24]

[25]

[32]

Bibliography

Miroslav Bures, Miroslav Renda, Michal Dolezel, et al. Efektivni testovdni
softwaru: klicové otdzky pro efektivitu testovaciho procesu. Grada Pub-
lishing as, 2016.

Miroslay Bures, Tomas Cerny, and Bestoun S. Ahmed. Internet of things:
Current challenges in the quality assurance and testing methods. In
Kuinam J. Kim and Nakhoon Baek, editors, Information Science and
Applications 2018, pages 625-634, Singapore, 2019. Springer Singapore.

Bestoun S Ahmed, Miroslav Bures, Karel Frajtak, and Tomas Cerny.
Aspects of quality in internet of things (iot) solutions: A systematic
mapping study. IEEE Access, 7:13758-13780, 2019.

Bestoun S Ahmed and Miroslav Bures. Testing of smart tv applications:
Key ingredients, challenges and proposed solutions. In Proceedings of
the Future Technologies Conference, pages 241-256. Springer, 2018.

Bestoun S Ahmed and Miroslav Bures. Evocreeper: Automated black-
box model generation for smart tv applications. IEEE Transactions on
Consumer Electronics, 2019.

Ralph R.Young. The Requirements Engineering Handbook. Artech House
Print on Demand, 2003.

OWASP. OWASP Top 10 - 2017. The Ten Most Critical Web Application
Security Risks, 2017.

Which API Types and Architectural Styles are Most
Used? https://www.programmableweb. com/news/

which-api-types-and-architectural-styles-are-most-used/
research/2017/11/26, (Accessed on 23/05/2019).

Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. University of California, 2000. Avail-
able at https://www.ics.uci.edu/~fielding/pubs/dissertation/
top.htm,

Craig Walls. Spring in Action. 5th edition.

Spring framework reference documentation. https://spring.io/} (Ac-
cessed on 23/05/2019).

Google Trends. https://trends.google.com/trends/explorel (Ac-
cessed on 12/05/2019).

Vue Official Guide. https://vuejs.org/v2/guide/l (Accessed on
23/05/2019).

Flux Application Architecture For Building User Interfaces. fhttps:
//facebook.github.io/flux/. (Accessed on 23/05/2019).

49

https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-mo st-used/research/2017/11/26
https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-mo st-used/research/2017/11/26
https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-mo st-used/research/2017/11/26
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://spring.io/
https://trends.google.com/trends/explore
https://vuejs.org/v2/guide/
https://facebook.github.io/flux/
https://facebook.github.io/flux/

Bibliography

[38] Webpack Concepts. https://webpack.js.org/concepts. (Accessed
on 23/05/2019).

[39] MongoDB Manual. https://docs.mongodb.com/manual/. (Accessed
on 20/05/2019).

[40] Spring Data MongoDB - Reference Documentation.
|//docs.spring.io/spring-data/data-document/docs/current/ |
reference/html/. (Accessed on 20/05/2019).

[41] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides. Design
Patterns: FElements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1st edition, 1994.

[42] Web on Reactive Stack. |https://docs.spring.io/spring/docs/
lcurrent/spring-framework-reference/web-reactive.html. (Ac-
cessed on 22/05/2019).

[43] Redux API Reference. https://redux.js.org/. (Accessed on
22/05/2019).

[44] React API Reference. https://reactjs.org/docs/getting-started,

(Accessed on 23/05/2019).

50

https://webpack.js.org/concepts
https://docs.mongodb.com/manual/
https://docs.spring.io/spring-data/data-document/docs/current/reference/html/
https://docs.spring.io/spring-data/data-document/docs/current/reference/html/
https://docs.spring.io/spring-data/data-document/docs/current/reference/html/
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html
https://redux.js.org/
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html

Appendix A

Figures
3.1 Cost of the bug fix with respect to time [II].
3.2 Basic test level hierarchy, the "V model" [6].................... ... (§
3.3 Basic example of a model [22]....... L.
3.4 Test level MBT approach applied on. MBT User Survey, 2014 [22].
3.5 Model for testing a chat room [22]...................

3.6 An example of conversion UML activity diagram into a directed graph

5.1 Comparison of Spring WebFlux and MVC architectures [34]
6.1 React, Angular and Vue.js trends comparison [35]................
6.2 Flux architectural pattern [37]............
7.1 Web application architecture diagram
7.2 Web server package diagram
7.3 Class diagram of the model package............
7.4 Example of JWT token generated by the application
7.5 Module hierarchy diagram of the client application...............
7.6 Simplified example of the React component tree
7.7 Class diagram of the cytoscape module
7.8 CytoscapeFacade class initialization flow

o1

52

Appendix B

Listings

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Example of user entity
Example of project entity
Shortened example of graph entity
Example of test case entity . . .

PCTSituationsGeneratorImpl constructor signature

I0xygenAdapter interface
Example of projects state chunk .
Example of graphs state chunk . .
Example of testCases state chunk

7.10 Example of auth state chunk . . .
7.11 Example of modal state chunk . . .
7.12 Example of editor state chunk . .

53

	Introduction
	Definition of basic concepts
	Introduction to the testing based on a model
	Fundamental definitions in software testing
	Test automation
	Coverage criteria
	Model Based Testing
	Advantages of the MBT
	Disadvantages of the MBT

	Process testing
	Process model formal definition
	Coverage criteria
	Algorithms used for test case generation

	Web Application Requirements
	Defining server-side technology stack
	Client-server communication
	Simple Object Access Protocol
	Representational State Transfer
	GraphQL

	Spring framework

	Defining client-side technology stack
	UI libraries
	Angular
	Vue.js
	React

	Introduction to the Flux architecture
	Redux

	Babel
	ESLint
	Webpack
	Create React App (CRA)

	Implementation of the web application
	Overall architecture review
	API endpoints definition
	MongoDB data model
	Web server
	Integration with Oxygen library
	Optimizing resource intensive calculations
	Security module

	Web client
	Organizing application state
	React component tree
	Integration with Cytoscape.js library

	Conclusion
	Bibliography
	Figures
	Listings

