
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of measurement

Bachelor’s Thesis

Automotive Ethernet Analyzer

Jan Nejtek

2019
Supervisor: doc. Ing. Jiří Novák, Ph.D.

Acknowledgement / Declaration

I would like to express my sincere
gratitude to my supervisor doc. Ing.
Jiří Novák, Ph.D. for all his valuable
advice, his mentorship and his guid-
ance. Also, I want to thank to my
coworker Ing. Lukáš Krejčí for the im-
plementation of support software for
the development board that was not
assigned as part of this thesis and for
his help with troubleshooting miscel-
laneous issues with the project and
general discussion. Last but not least, I
have to thank to my dog Benjamin for
providing unconditional support during
my work on this thesis.

I hereby declare that I am the sole au-
thor of this thesis and that all resources
that were used in the making of this the-
sis are identified in the reference section.

Prague, 18 April 2019

. .

v

Abstrakt / Abstract

Cílem této práce je navrhnout ná-
stroj pro analýzu rozhraní 100Base-T1
(též známé jako Automotive Ethernet
či BroadR-Reach). Práce je rozdělena
do čtyř částí. V první části se sezná-
míme se standardem 100Base-T1 a čím
se podobá a odlišuje od nejpoužíva-
nějších standardů Ethernet. Následně
na základě těchto znalostí navrhneme
koncept jak pasivně monitorovat ko-
munikaci na jednom síťovém segmentu
tohoto rozhraní. Ve třetí části je po-
psána implementace potřebného hard-
ware podle tohoto konceptu. Hardware
je navržen tak, aby komunikoval s vý-
vojovou sadou Terasic DE0-Nano-SoC.
Poslední část popisuje návrh zdrojového
kódu v jazyce VHDL, který dovoluje
tomuto hardware fungovat a přeposílat
zaznamenané pakety přes rozhraní Gi-
gabit Ethernet, které je zabudované ve
vývojové desce.

Klíčová slova: 100Base-T1, FPGA
SoC, MII, PHY, analyzátor paketů,
odposlech paketů

Překlad titulu: Analyzátor pro Auto-
motive Ethernet

The goal of this thesis is to de-
sign an analyzer tool for 100Base-T1
(also known as Automotive Ethernet
or BroadR-Reach). It is split into four
parts. In the first part, we acquaint
ourselves with the 100Base-T1 stan-
dard and its intricacies, similarities and
dissimilarities to most often used Eth-
ernet standards. Next, based on this
knowledge, we design a concept on how
to passively monitor communication
on a single network segment. In the
third part the necessary hardware is
implemented in accordance with said
concept. The hardware interfaces to
an FPGA development board Terasic
DE0-Nano-SoC as per the assignment.
The last part outlines the implemen-
tation of VHDL code that enables the
hardware that was implemented to work
and forward recorded packets over the
development board’s built-in Gigabit
Ethernet interface.

Keywords: 100Base-T1, FPGA SoC,
MII, PHY, packet analyzer, packet snif-
fer

vi

/ Contents

1 Introduction .1
1.1 Measuring Automotive Eth-

ernet .1
2 The 100Base-T1 Standard: The

practical parts .2
2.1 Difference between 100Base-

T1 and 100Base-TX2
2.2 Physical Coding Sublayer of

100Base-T1 .5
2.3 Physical Media Attachment

sublayer of 100Base-T17
2.4 Master and Slave modes of

100Base-T1 physical layer7
2.5 Full duplex communication

on single twisted pair8
2.6 Beyond the physical layer

chip: notes on 100Base-T1
hardware design8

3 Designing a monitoring device
for 100Base-T1 .9

3.1 Capturing packets passing
through .9

3.2 Forwarding copies of cap-
tured packets to an external
interface . 10

3.3 The final specification 11
4 Hardware design of a daugh-

terboard for Terasic DE0-Nano-
SoC . 14

4.1 The first iteration 15
4.2 The second iteration 16

5 Implementation of functional
VHDL code . 19

6 Conclusion . 21
References . 22

A Glossary . 23
B Schematic diagram of first ver-

sion hardware . 25
C Schematic diagram of second

version hardware 27

vii

/ Figures

2.1. Functional block diagram of
100Base-TX PHY3

2.2. Functional block diagram of
100Base-T1 PHY.4

2.3. 4B/3B parallel data conversion . .5
2.4. Data symbol to ternary map-

ping in SEND mode.6
2.5. Block diagram of echo can-

cellation and hybrids in
100Base-T1 .8

2.6. Block diagram of a physical
100Base-T1 link8

3.1. Basic concept of monitoring
device . 10

3.2. Detailed specification of
monitoring device 13

4.1. Basic KiCAD footprint for
GPIO ports of Terasic DE0-
Nano-SoC board 14

4.2. Render of the first iteration
PCB . 16

4.3. Full KiCAD footprint for
GPIO ports of Terasic DE0-
Nano-SoC board 17

4.4. Render of the second itera-
tion PCB . 18

5.1. Simulation of a single word
being written to FPGA mem-
ory . 19

5.2. Simulation of an end of a
packet. 20

viii

Chapter 1
Introduction

Recent developments in the automotive industry are slowly but surely rendering existing
communication standards (such as CAN, LIN, FlexRay or MOST bus) either too slow or
too expensive for certain purposes. Autonomous driving, advanced safety assistants and
distributed infotainment are among the most bandwidth intensive features emerging in
new models of cars across all manufacturers. Furthermore, as more and more cars
feature a permanent connection to the Internet (via LTE or otherwise), security and
integrity are also becoming very pressing issues. [1]

Many of these questions, such as bandwidth, network separation (VLAN), quality of
service and time synchronization were already solved quite some time ago in the field of
computer networks, so naturally car manufacturers have experimented with Ethernet
networks in their products. This has however introduced some new issues, such as
increased cable weight and cost, worse availability of automotive grade components
for said Ethernet standards and enormous issues with meeting some EMI standards.
[2] Some vehicles use 100Base-TX in their diagnostic port. For this reason, a new
standard was developed jointly by the companies Broadcom, NXP and BMW which
enables full duplex communication with 100 megabits per second bandwidth over a
single unshielded twisted pair of cables. This standard was first called BroadR-Reach
and was subsequently standardized with minor changes as 802.3bw a.k.a. 100Base-T1.
[3] These two standards are compatible with each other.

More details on physical layer functionality of 100Base-T1 will be covered in the next
chapter.

1.1 Measuring Automotive Ethernet
Since Automotive Ethernet uses a single differential signal pair for bidirectional com-
munication, which means that it can’t be simply measured, recorded and decoded by
taking samples from the wire directly like it is possible with (for example) 10Base-T
and 100Base-TX. [4] To get around this, the link must be split in two and bridged.
Measurements then can be taken at the bridge point.

There is a commercial solution for measuring Automotive Ethernet available from
Rohde & Schrwarz for their RTP and RTO range of oscilloscopes. This also involves
splitting the link and bridging it via their RT-ZF5 probing board. This probing board is
equipped with directional coupling circuitry which allows to perform completely passive
probing of transmitted data much like with the older Ethernet standards. Decoding
then happens inside the oscilloscope. [5] This has two disadvantages, the first being
that it a high end oscilloscope along with extra hardware and software is required to
carry out measurements, and the second one is the lack of extensibility. For example,
since the system is completely passive, it can’t modify or inject extra data into the link
if desired.

1

Chapter 2
The 100Base-T1 Standard: The practical parts

A very extensive description of BroadR-Reach (in Czech) by Dmitrij Bučkovský can be
found at [1]. The (newer) IEEE 100Base-T1 standard (in English) can be found at [6].
For comparison, the general Fast Ethernet standard can be found at [7]. 100Base-TX
is covered under the 100Base-X1 section inside said standard.

In this chapter we will mainly explain the physical layer of 100Base-T1 to give more
insight to statements from last part of introduction, as well as describe the similarities
to 100Base-TX especially regarding communication with PHY chips to set the stage
for the following chapter.

2.1 Di�erence between 100Base-T1 and 100Base-TX

So, the big question everyone must be asking is: “How did the OPEN Alliance manage
to transmit at the same speed as Fast Ethernet while only using roughly half the signal
bandwidth?” The answer is disappointingly simple. They sacrificed the robustness of
the encodings used in the transmission of data. As a result, Automotive Ethernet is
only capable of transmitting over distances less or equal to 15 meters, while regular
100Base-TX can work up to 100 meters.

Interestingly, this sacrifice also simplifies the sublayers that exist inside the physical
layer. Regular 100Base-TX PHY contains three distinct sublayers: the Physical Coding
Sublayer (PCS), the Physical Media Attachment (PMA) and the Physical Medium
Dependent (PMD). The PCS sublayer receives data that is 4 bits wide in parallel and
clocked at 25 MHz from MII (alternatively 2 bits wide at 50 MHz from RMII, which is
equivalent) and uses a 4B5B encoding which converts said data to serial bursts of five
bits at 125 MHz. The PMA sublayer receives this data and converts it to non-return-
to-zero inverted code. Finally, the PMD sublayer encodes the data again using MLT-3
encoding. [7] This results in signal bandwidth of around 65 to 80 MHz depending on
circumstances.

Now, Automotive Ethernet does away with the PMD sublayer and only has two
sublayers total — the PCS and the PMA. The Physical Coding Sublayer receives the
same data from the same MII or RMII, but instead of converting parallel to serial, it
converts parallel to parallel using a 4B3B encoding, resulting in 3 bits of data at 33.3
MHz. The Physical Media Attachment sublayer uses PAM3 encoding which serializes
the data while maintaining 100 megabit per second transmission speed and results in
an unchanged signal rate of only 33.3 MHz.

Detailed functional block diagrams for physical layers of 100Base-T1 and of 100Base-
TX can be found below.

1 100Base-X is a blanket term for 100Base-TX and 100Base-FX standards.

2

. 2.1 Di erence between 100Base-T1 and 100Base-TX

Figure 2.1. Functional block diagram of 100Base-TX PHY taken from [7]

NOTE: The same diagram is also applicable to 100Base-FX fiber optic standard.

3

2. The 100Base-T1 Standard: The practical parts .

Figure 2.2. Functional block diagram of 100Base-T1 PHY taken from [6]

Now that the basic difference between 100Base-T1 and 100Base-TX has been covered,
I will explain the intricacies of 100Base-T1 physical sublayers and the encodings they
use in more detail.

4

. 2.2 Physical Coding Sublayer of 100Base-T1

2.2 Physical Coding Sublayer of 100Base-T1
The PCS Transmit functionality starts with receiving data from the MII interface. As was
previously noted, this interface is exactly the same one that is used by other physical
layer standards of Fast Ethernet and this will be taken advantage of in the following
chapters.

The transmit part of this sublayer first converts the 4-bit parallel packet data nibbles
coming from the MII interface clocked at 25 MHz to 3-bit parallel data clocked at 33.3
MHz. When the total number of data is not a multiple of three, one or two extra stuff
bits are appended to the end of a packet.

Figure 2.3. 4B/3B parallel data conversion in PCS taken from [6]

As noted above, the diagram sees 32 bits of data coming in through the MII inter-
face, which is not a multiple of three, so a single stuff bit is appended at the end of
transmission.

What is also worth noting, if the transmit error MII signal comes high at any time of
the transmission for any period of time, the internal transmit error signal subsequently
also comes high and stays high until the end of transmission (e.g. transmit enable MII
signal comes low). This is because it would be very impractical to try to salvage the
rest of transmission for subsequent encodings and somehow try to translate this signal
to the coming domains.

The parallel 3-bit data is then subsequently scrambled via side-stream scrambling.
[6] This is to help reduce the occurrence of spectral lines in the EMI spectrum. The
scrambling is carried out using these two following polynomials:

gM (x) = 1 + x13 + x33

gS(x) = 1 + x20 + x33

where gM (x) stands for the polynomial used when the PHY is in master mode and gS(x)
stands for the polynomial used when the PHY is in slave mode. More information on
master and slave modes will be in the next section. Interestingly, these polynomials are
exactly the same as the ones used in the PCS of 1000Base-T Gigabit Ethernet.

The correlation with 1000Base-T continues in the next part of the encoding, where the
scrambled 3-bit data is mapped to two ternary symbols. This corresponds to a similar
(but more complex) process in 1000Base-T where the scrambled data is mapped to four
quinary [sic] symbols before finally being passed to the PMA sublayer.

5

2. The 100Base-T1 Standard: The practical parts .
How the two ternary symbols map to incoming 3-bit data can be seen in the table

below. Please note that this mapping applies when the PCS as a whole is in a trans-
mit state, and that it is different when the link is idle or being established. Another
important thing to comment is the existence of special symbol sequences that mark
the start and end of a stream, known as SSD – Start-of-Stream Delimiter and ESD –
End-of-Stream Delimiter.

Figure 2.4. Data symbol to ternary symbol mapping in the PCS taken from [6]

The Start-of-Stream Delimiter is represented by a sequence (0, 0), (0, 0), (0, 0),
the End-of-Stream delimiter is represented by (0, 0), (0, 0), (1, 1). Additionally, the
End-of-Stream delimiter when an error has occured is represented by (0, 0), (0, 0),
(-1, -1).

The PCS Receive functionality starts with receiving the ternary data coming from the
PMA sublayer. The process starts with the PCS looking for a sequence of symbols
signifying the start or end of a stream (SSD, ESD or ESD with error). Afterwards, it
starts decoding these symbols per the above table and sets the internal data valid and
error signals accordingly to what symbol sequence was identified.

The resulting sequence of parallel 3-bit data is then descrambled using the following
polynomials:

g′
M (x) = 1 + x20 + x33

g′
S(x) = 1 + x13 + x33

where g′
M (x) stands for the polynomial used when the PHY is in master mode and

g′
S(x) stands for the polynomial used when the PHY is in slave mode. Note that these

polynomials are the same as the ones that were used in scrambling, but swapped.
Last, the descrambled 3-bit data is converted to 4-bit data using the reverse of the

process that was illustrated in Figure 2.3. As was previously noted, if the amount of
received data is not a multiple of four bits, the extra data will be discarded. [6]

6

. 2.3 Physical Media Attachment sublayer of 100Base-T1

2.3 Physical Media Attachment sublayer of
100Base-T1

The PMA Transmit functionality is quite simple. The sublayer receives ternary symbols
from the Physical Coding Sublayer and transmits them over a single differential (two
signals) line using the PAM31 modulation.

There are two interesting points to note here. The same modulation (PAM3) as
100Base-T1 is used in the (rarely used) 100Base-T4 Fast Ethernet standard. Similar,
although more complex modulation (PAM5) is used in 1000Base-T Gigabit Ethernet.

The PMA Receive functionality is also simple. It is tasked with receiving the PAM3
modulated signal from MDI which is then decoded into said ternary symbols that are
then sent to the Physical Coding Sublayer receive circuitry.

Another part of this sublayer worth noting is The PMA Clock Recovery. This circuitry
is utilized when the PHY chip is running in slave mode (more information about master
and slave modes is in the next section). It allows the chip to recover a clock signal that
the other side of the link is running on, from the received symbols. When the PHY
chip is in master mode, it uses its own clock source and clock recovery does not occur.

2.4 Master and Slave modes of 100Base-T1 physical
layer

100Base-T1 employs a master-slave hierarchy similar to some other Ethernet standards
such as 100Base-T2 or 1000Base-T. There has to be exactly one master and one slave
device for the link to establish. [6] However, because of requirements in the automo-
tive industry, the negotiation protocols known from these standards have been greatly
simplified.

How? All devices are in slave mode by default, unless they get switched to master
mode through their respective management interfaces. This means that it is assumed
that all 100Base-T1 networks will be tightly designed and tested, and all links are wired
as part of non-interchangeable connectors. After all, the internal network of a car is not
expected to be changed or reconfigured at all in its lifetime, aside from repairs. This
allows much faster initialization times than what we might expect from most commonly
found Ethernet standards.

So, what is the functional difference between a master and a slave PHY chip?
On start up, the master PHY initiates the training sequence by transmitting idle

pulses. This sequence is very very different from the known auto-negotiation that other
Ethernet standards use – both sides of the link transmit data at the same frequency
and phase and take measurements. These measurements are then used to tune the echo
cancellation circuitry that enables separation of data sent and data received on a single
fully duplex link. More on this in the next section.

Additionally, the master device uses its own oscillator to generate clocks for trans-
mission over the link. The slave device uses clock recovery to match the clock of its
master. The scrambling polynomials are also different between devices in master and
slave modes.

100Base-T1 is also able to detect polarity of the link and adapt to it. The polarity
of the master device is assumed to be the correct one, and the slave device adapts if
the wires seem to be switched from its point of view. [8]
1 Three level Pulse Amplitude Modulation

7

2. The 100Base-T1 Standard: The practical parts .

2.5 Full duplex communication on single twisted pair

100Base-T1 physical layer chips use hybrid function signal joining along with echo
cancellation to effectively separate incoming ant outgoing waveforms. For the echo
cancellation to work, it must be tuned at link start up, this is described in the previous
section.

Unfourtunately, the 100Base-T1 standard does not provide a clear illustration or
diagram of the signal separation happening between the transmit and receive parts of
the PMA blocks and the actual MDI outlet, however a paper (cited below) from Texas
Instruments does.

Figure 2.5. Block diagram of echo cancellation and hybrids in 100Base-T1 taken from [9]

2.6 Beyond the physical layer chip: notes on
100Base-T1 hardware design

When designing hardware that contains PHY chips for 100Base-T1, there is one big
difference in circuit design when compared to PHY chips for 100Base-TX or even
1000Base-T. That is: Automotive Ethernet does away with Ethernet magnetic trans-
formers and instead uses capacitive coupling and a low pass filter, along with some
extra circuitry to comply with automotive EMI requirements and to protect from ESD.
[8] An illustration is below.

Figure 2.6. Block diagram of a physical 100Base-T1 link taken from [8]

This might seem like a setback in terms of PCB complexity, but one must consider
that the risks that a magnetic transformer protects from might not be present in an
automotive setting, moreover, its absence also has a part in reducing EMI and a tiny
amount of weight might also be saved. All of this are strong points when considering
automotive use.

8

Chapter 3
Designing a monitoring device for 100Base-T1

Please note that in this and the following chapter, I will be writing about some dis-
coveries that me, my coworkers or my supervisor made before the official assignment
of this thesis was written. If you start feeling at any point like you are experiencing a
small time space anomaly, I apologize for the inconvenience.

In the second part of the introduction I wrote about an approach to measure and
monitor a single 100Base-T1 network segment by Rohde & Schwarz. For obvious rea-
sons, I decided against replicating this approach. First, it already exists and is being
marketed and sold by a reputable company, there would be no point replicating it as a
bachelor’s thesis. Second, it requires a high-end oscilloscope. While it might be possible
to replicate it with more readily available equipment (either a lower end oscilloscope or
logic analyzer) or even redesign it with entirely custom hardware, it would still be at
the very least inheriting the disadvantages present in said commercial solution.

Thanks to my supervisor, I learned that there’s a considerable demand in the indus-
try for an active analyzer, which would be capable of not only monitoring, but also
modifying the packets coming through for purposes of development and testing. This is
not a part of this thesis’ assignment per se, but we decided to design the device in such
a way that would allow to implement this functionality later via a software update, for
example.

However, since I was assigned to design a passive monitoring device, I would some
day be tasked in changing the way it is internally wired in order to transform it into an
active device. If one needs to make changes in hardware with a software update, the
first thing that comes to mind is an FPGA device.

I have to mention at this point that approaching this issue using Ethernet switch
integrated circuits with port mirroring and concentration functionality was also consid-
ered. Unfortunately, this carries the same disadvantage as the setup used by Rohde &
Schwarz, the impossibility to do signal modification in the future.

3.1 Capturing packets passing through

The basic idea was to take two 100Base-T1 PHY chips that would be bridged to each
other via an FPGA, and then add another interface with higher speed which would
output copies of packets that came from both sides, as is pictured below.

9

3. Designing a monitoring device for 100Base-T1 .

Figure 3.1. Basic concept of FPGA based monitoring device with three PHY chips

Now, in order for the device to appear passive to the link being monitored, there
have to be no MAC blocks along the way of data between the two 100Base-T1 PHY
chips, the FPGA needs to simply connect their respective MII interfaces back to back
while monitoring the data coming in both directions.

Some PHY chips for 100Base-T1 (and likely for other Ethernet standards as well)
support a mode called “Reverse MII”. This mode is inteneded for media converters and
signal repeaters and it allow you to connect two PHY chips back to back without the
need for any other circuitry and signal processing. One of such PHY chips is NXP’s
TJA1100. [8]

So, we take two of these chips, set one up in the Reverse MII mode, and use the GPIO
ports of an FPGA development board to make connections according to the TJA1100
data sheet and application notes. This gives us a nice reliable 100Base-T1 repeater just
as NXP intended, with the added benefit that we have all the access we need to the
MII data passing through.

Now we are met with another issue, arguably the biggest problem to solve in this the-
sis. How do we reliably record and send out copies of all the packets that pass through?

3.2 Forwarding copies of captured packets to an
external interface

We can draw some inspiration from the aforementioned approach using Ethernet switch
chips. Nevertheless, reimplementing a such chip whole in VHDL is clearly both beyond
the scope of a bachelor’s thesis and unnecessary for our purposes. Since all the MII
data is passing through the FPGA, we can take some internal cache memory and save
copies of all the packets there. Subsequently, we can resend them from there, with the
possibility of grouping smaller packets together to reduce the transport layer overhead.

As with most FPGA projects, the first course of action is to solve the repetitive
problem using a soft microprocessor, such as Nios II in case of Altera/Intel FPGA based
development boards. However, one can quickly find out that such system running at a
frequency typical for an FPGA will have major issues saturating a Gigabit Ethernet link.
In fact, in tests conducted by my colleague at the department, the soft microprocessor
could not saturate the bandwidth required to forward two saturated 100Base-T1 links
(it was well under 200Mbps) even with no other processing going on in the background.

10

. 3.3 The final specification

The next course of action was to look at FPGA boards featuring hard processors.
This did the trick, as an ARM processor running at a frequency several times higher
than what is usual for an FPGA, while still not guaranteed to saturate a Gigabit link,
has no issues fulfilling the requirements to transmit packets from two 100 megabit
interfaces.

The last thing to determine is the type of the memory that we want to use. I will
write in more detail on this topic in the next chapter, but to put things short, we have
evaluated both using memory blocks that are internal to the FPGA (M10K or MLAB
blocks in case of Altera/Intel FPGA Cyclone V) and using on-board DDR3 memory
shared with the ARM processor via DMA. The latter turned out to be more suitable.

3.3 The final specification

Now is the time to take into consideration the actual implications and pitfalls of using
actual FPGA hardware. Since the 100Base-T1 PHY chips run on their own 25MHz
oscillators, we have to account for different clock domains. Fortunately, the 25MHz
clock signal is provided to us as a part of the MII interface.

Since our internal cache memory has a wider data input port than four bits of the
MII interface, we need to adapt the width first. This means we need a “parallel-in,
parallel-out” shift register. I decided to create such functionality using a three bit
nibble counter (because 8 = 23 nibbles fit in a single 32-bit word) and a custom 4-bit
to 32-bit multiplexing register.

The “overflow” of the counter needs to trigger data writes to the FPGA internal
memory. These writes have to happen at exactly two occasions: when a full word is
completed (e.g. we are at the last nibble and the MII data valid signal is still high) or
when there is a falling edge on the MII data valid signal. This functionality was moved
to the multiplexing register for ease of implementation.

Now, since we are still in the MII 25MHz clock domain, we need to adapt all required
signals to the faster FPGA clock in order to prevent metastability from occurring. One
possible solution to this problem would be to double buffer all signals passing over to
the faster clock domain. However, this could cause unwanted slowdown in propagation
of some of the signals and unnecessary complication in VHDL code.

For this reason it was decided to double buffer only the “data ready” signal from
the aforementioned multiplexing register. We leverage that the FPGA clock is several
times faster than the MII clock and this allows us to look for a rising edge of said signal
on the 25MHz domain, and the moment we identify it send a trigger pulse signal on
the faster domain that causes the rest of the entities to sample their respective signals
at that moment.

Since all signals in the MII clock domain keep their value over a whole 25MHz
period, we have plenty of time to sample data without having to worry about causing
metastabilities, even when considering worst-case clock drift and/or skew.

11

3. Designing a monitoring device for 100Base-T1 .
We define a simple 32-bit register to capture the valid word when the “data ready”

signal comes from the other clock domain. At that moment we have the word captured
in this register and we can write it to memory. Since the memory is defined using the
Intel Platform Designer tool and thus is accessed from the Avalon bus, an Avalon to
External bus IP component was also used.

In order to capture the whole packet correctly, we need another counter to keep
track of data address in said memory. Since we write whole 32-bit words, we use a
9-bit counter. Together with the upper two bits of the 3-bit counter mentioned before
this gives us a complete 11-bit address signifying the end of data written and thus the
length of data to copy over. Thus, the total memory capacity would be 2048 bytes,
enough to store the largest possible Fast Ethernet frame.

The Avalon bridge IP has an “acknowledge” output signal which is used to increment
the 9-bit counter. This means that this counter will be incremented with each 32-bit
word passing into the memory. When the MII data valid signal falls low, the address
can be relayed over to the ARM CPU via a memory mapped parallel input output
register. I should also mention at this point that the memory in which the actual data
is stored is defined as dual port, with one port being accessible from the FPGA and
the other port also mapped into the memory of the ARM CPU.

Since we can not possibly expect the internal architecture of the FPGA SoC chip to
allow us to copy out the entire contents of a frame (up to 1522 bytes) before another
packet can arrive (0.96 µs) [7], we double the memory to 4096 bytes and use the upper-
most bit as a bank switch. Then, we add a 1-bit “counter” to keep track of the active
memory bank. This way, we can read the last packet from one bank of memory, while
a new can be written to the other.

12

. 3.3 The final specification

Figure 3.2. Detailed specification of entities defined inside the FPGA and their intercon-
nects. Please note that this does not completely reflect the resulting Quartus project,
because some functionality had to be moved between entities and some extra helper enti-
ties had to be added to cover all edge cases and to ensure reliable functionality. More on

this subject in Chapter 5.

13

Chapter 4
Hardware design of a daughterboard for
Terasic DE0-Nano-SoC

After consultation with my supervisor we decided to use the DE0-Nano-SoC develop-
ment kit as the basis for this project. Its FPGA GPIO ports provided ample space for
connecting two full MII interfaces, and the ARM processor part already has built-in Gi-
gabit Ethernet connectivity and ample DDR3 memory capable of doing DMA transfers
between the FPGA and the operating system. For further expandability, a dual CAN
interface and two protected external inputs were also specified for the daughterboard.

I chose to design the schematic and printed circuit board in KiCAD. I have some prior
experience with the EAGLE editor from prior personal hobby projects, but I wanted
to learn to use an open source editor. Furthermore, a colleague from the department
provided me with a tested footprint for the TJA1100 PHY chip and for the 100Base-T1
specific ESD diode and EMI choke.

The first step I had to take was to design a special footprint for the GPIO ports
of said Terasic development kit. I took care to create the footprint (and manage the
KiCAD project) in such a way that any footprints or schematic symbols I create, modify
or extract from other libraries are easy to reuse in future projects.

Figure 4.1. Basic KiCAD footprint for GPIO ports of Terasic DE0-Nano-SoC board (ap-
prox. 1:1 scale)

14

. 4.1 The first iteration

As I mentioned in the previous chapter, I drew the schematic based on information
found in the TJA1100 data sheet [8] and application note [10], specifically the Reverse
MII schematic from the data sheet and the supply schematic from the application note.

I made sure to connect all communication pins to the FPGA board GPIO ports,
including interrupt output, enable and reset input and the SMI bus. Only pin left
unconnected is the inhibit pin (used for external voltage regulator control), since it is
explicitly specified to be left floating in our case.

The TJA1100 chip supports configuration of the most basic parameters (MII mode,
master or slave mode, managed or independent operation) either via by pin strapping
(aside from the SMI protocol). Pin strapping works by connecting pull-up or pull-down
resistors on pins specified by the manufacturer. The chip’s address on the SMI bus can
also be configured by the same means, this allows more than one TJA1100 PHY on one
control bus.

Since the configuration values for the pin strapping were very likely to change during
development, I opted for using three-pad solder jumpers that would allow a given
configuration pin to be pulled either high, or low, or neither way. I also decided to
use resistor arrays for said pull-up and pull-down resistors to simplify PCB layout and
assembly.

4.1 The first iteration

The first manufactured version of the hardware was designed basically in full accordance
to the above paragraphs. I chose to use 0805 (imperial) size passive components and
opted for KiCAD’s hand soldering variants of physical footprints. Later, it would turn
out that they were unnecessarily large for anyone with at least intermediate soldering
skills.

In order to minimize the amount of vias (and complexity of PCB layout), I decided
to connect the second PHY chip in reverse order to its respective GPIO port and
subsequently rotate the part 180 degrees in physical layout. This means that the chips
are upside down in respect to each other, with the MDI interface pins facing each other,
allowing for almost mirrored board design. This doesn’t cause any further issues, since
the GPIO pins on the Terasic development board are not connected in any particular
order to the balls on the FPGA chip anyway.

I also added two TJA1051 CAN drivers, also connected to the FPGA board GPIO
ports. My supervisor requested to use DB9 connectors for CAN and a 3.50 millimeter
pitch two pin connectors for the 100Base-T1. The DB9 connectors would prove prob-
lematic as the regular stabilized PCB mount versions of them would not fit two side by
side at the narrow end of the daughterboard, should the daughterboard have the same
dimensions as the main board. At the time I opted for floating DB9 connectors without
stabilization or screw holes, but they turned out to be hard to obtain and impractical.

15

4. Hardware design of a daughterboard for Terasic DE0-Nano-SoC .
One annoying issue were the solder jumpers on this board, since they did not end

up in the same order between the two PHY chips due to the aforementioned rotation
layout trick. Furthermore, they did not end up automatically annotated in order,
so the silkscreen documentation did not help determining to which configuration bit
belongs which configuration jumper. Also, I did not add the solder jumpers necessary
for configuring the SMI address, but it didn’t cause any issues, since this protocol was
not used at all during this part of development.

Figure 4.2. 3D Render of the first iteration PCB (approx. 1:1 scale)

This iteration of the board was successfully used to develop, troubleshoot and test
all the functionality of this project. However, aside from the small issues I discussed
above, we also realized that such finished product would be very difficult to place inside
an enclosure, due to the daughterboard being significantly shorter (and interestingly,
a little wider) than the main development kit PCB. Thus, I was asked to design a
second, improved version of the printed circuit board. With the experience gained and
knowledge of all outstanding issues, I excitedly accepted.

4.2 The second iteration

I started with redesigning the footprint of the dev kit’s GPIO ports, except this time I
captured everything about the base printed circuit board, including outline, profile of
the USB ports, the power port and the Ethernet port and the screw holes.

16

. 4.2 The second iteration

Figure 4.3. Full KiCAD footprint for GPIO ports of Terasic DE0-Nano-SoC board (approx.
1:1 scale)

With the daughterboard layout now being much taller, I also decided to swap the
sides that the 100Base-T1 connectors and the CAN connectors were on. This provided
me with a lot of new space to design the supporting circuitry for the MDI side of the
100Base-T1 chips with perfect symmetry (see Figure 2.6).

Then I cleaned up the schematic design, reviewing the TJA1100 application notes
again and separating filter capacitors into neatly labeled groups to ensure they are in-
deed placed as close as possible to their respective power pins. I switched the footprints
from their hand soldering variants to their smaller, regular counterparts.

In order to make it possible to fit the whole resulting hardware into an enclosure, I
had to consider the placement of all ports to line up with flat enclosure walls. Since
there were issues with fitting the DB9 connectors for CAN port connectivity, I decided
to use board-edge mounted DB9 connectors and switched their footprints that one side
would have a female connector and the other would have a male one. In order to fit
said board-edge mounted connectors to flat enclosure, I designed them to sit inside a
cut-out to move their flanges towards the inside of the board.

I also redesigned the configuration solder jumpers, so that they are in the same order
for both PHY chips at the cost of slightly more complicated PCB traces. Then, I added
more information to the silk screen and hid their respective annotation. Furthermore,
I added solder jumpers for SMI address configuration. Since there are only two bits
per chip, I could use a single resistor array for both pull-up and pull-down resistors,
because the part I used did not utilize a common pin.

17

4. Hardware design of a daughterboard for Terasic DE0-Nano-SoC .
Then, I added the aforementioned circuitry for external inputs, with Zener diode

protection from over-voltage, Schottky diode protection from negative voltage spikes,
and a low pass filter for EMI protection. For improved thermal performance, I added
nine vias (3x3 grid) under both the TJA1100 chips.

When we were testing and troubleshooting the first iteration of the board, it proved
very annoying and time consuming to always have to look up where the power and
ground pins are on the GPIO connectors. (For example for connecting oscilloscope
probes.) For this reason, I labeled the respective pins using the front PCB silk screen.

Figure 4.4. 3D Render of the second iteration PCB (approx. 1:1 scale)

Last but not least, I ensured that the passive components are aligned to make the
PCB more aesthetically pleasing, and if possible, grouped them by their values to make
assembly easier and faster. I also added the logo of the Czech Technical University.

The full KiCAD projects for both iterations of this hardware can be found on the in-
cluded optical disc. Furthermore, schematics for both iterations are printed at the end
of this thesis in full size.

18

Chapter 5
Implementation of functional VHDL code

Now comes the time to actually write and test the VHDL code for the logic that
was outlined in Chapter 3. During the development I wrote a testbench along with the
individual entities. This surprisingly helped speed up development, because ModelSim1

is both faster and stricter in VHDL compilation than Quartus Prime.
The testbenches I wrote feature simulated MII data input. The simulated clock is

25MHz and shifted out of sync from the FPGA clock. The simulated data is a counting
pattern to help verify that it is correctly processed and ends up in the correct order in
32-bit words to be written to memory.

Figure 5.1. Simulation of a single word being written to FPGA memory. This is from a
testbench which assumes memory with two banks. Notice the propagation of data_rdy
signal. Also notice that the chunk_count signal is incremented and data_write falls low
only when an acknowledge signal is received from the Avalon bus (avalon_ack). This

signal comes surprisingly fast even on actual hardware.

Towards the end of Chapter 3 I spoke about using two memory banks to compensate
slower transfer of recorded data to the ARM CPU. Unfortunately, it turned out that
this setup is not fast enough. Due to the speed and latency of the memory accesses
from the CPU, both very short and very long packets would not get copied over in
time. Tuning memory bus widths and the controlling software yielded negligible im-
provements. At this point we experimented with implementing DMA transfers which
did make a noticeable improvement.

Even with the utilization of DMA transfers, the time to copy over a very long packet
(1522 bytes) was approximately 45 microseconds, which is enough time for seven very
short packets to arrive. Including preamble and interpacket gap, the shortest possible
Layer 1 packet is 84 bytes total. [7] Since Fast Ethernet has a bit time of 0.01 µs, this
equals to 6.72 µs per packet, so seven packets should arrive in around 47 µs.

For this reason, the FPGA memory was expanded to eight banks of 2048 bytes for
a total of 16384 bytes or 16 KiB. The bank counter was also expanded to 3-bit from
1-bit.
1 ModelSim Intel FPGA Starter Edition

19

5. Implementation of functional VHDL code .

Figure 5.2. Simulation of an end of a packet with a length that is not a multiple of 32 bits.
This testbench assumes memory with eight banks, thus the eight byte_count_* registers
for communication with a CPU. Notice that the byte_count_0 signal indeed has non-zero
two lowest bits. Also notice the ram_addr signal increment the upper three bits to switch
memory bank while zeroing out the rest. Also notice that the byte_count_0 register gets
zeroed out when the bytecount_sw_reset signal changes. This is an acknowledge signal

coming from the CPU, and would normally get sent much later.

During early development we also uncovered a massive pitfall that currently
occurs in Quartus during project creation. When a project is created for the DE0-
Nano-SoC/Atlas-SoC development board, the downloaded example top-level file
(de0_nano_soc_baseline.v) incorrectly assumes that the onboard 50MHz clock pin
is called FPGA_CLK1_50. The correct name is CLOCK_50. This also applies to the other
two clock pins FPGA_CLK2_50 and FPGA_CLK3_50, which should be called CLOCK2_50
and CLOCK3_50, respectively. This can be uncovered in the assignment editor after
compiling the project, where FPGA_CLK1_50 and possibly some other signals end up
undriven.

This causes a very cryptic problem when instantiating the HPS bridge. The HPS
bridge needs a clock input, and it causes very weird behavior if it ends up connected to
an undriven signal. It seems that it depends on the individual compilations, some cause
the ARM processor to lock up immediately after the FPGA is programmed, others can
still work. Yes, you read correctly. Different compilations of a same project plagued by
this mistake may or may not work. I suspect it depends on the work of the fitter.

The full Quartus Prime project can be found on the included optical disc.

20

Chapter 6
Conclusion

I was tasked to design a device that performs analysis of communications over the
100Base-T1 standard. This required solving a very wide range of problems, ranging
from theoretical to practical, and from hardware to software. I started this thesis out
by researching the functionality of said standard and how it differs and coincides with
other Ethernet standards.

This allowed me to design a concept on how to carry out monitoring of a single
network segment. I leveraged both the newly gained knowledge on 100Base-T1 and
previous knowledge of hardware and software design from my university. Because there
is currently no suitable hardware that the requirements of this work on the market, I
designed an expansion board for an existing suitable FPGA development kit.

I took advantage of this opportunity to acquaintance myself with a new electronic
design suite. After the printed circuit boards were manufactured, I personally assembled
two specimens. Finally, I went on to implement the VHDL code under the guidance
of my amazing supervisor. After tackling all the challenges and pitfalls and many
adjustments, the device has indeed proven to be working and functional, capable of
capturing packets sent from both other development tools and those sent from real car
electronics.

One spot that can definitively be improved in the future is the VHDL code base.
Although I tried to rigorously test it and make it well arranged and easy to understand,
the issues encountered during development took their toll. But then again the same is
true for most code bases in the world, it really is a never ending battle.

It would also be interesting to make the CAN part of the hardware work. Presently
it is just connected to the GPIO ports of the development board. It was not assigned
as part of this thesis, but making it work will be with no doubt also beneficial to future
users.

Thanks to this project I gained a lot of theoretical as well as practical knowledge and
I am looking forward to extending it in order to create a true active signal analyzer.
The fact that there is a demand in the industry for such product is very exciting and
personally I would love to see this tool being actively used.

21

References

[1] Dmitrij Bučkovský. Využití sítí Ethernet v osobních automobilech. České vysoké
učení technické v Praze. 2016.
http://hdl.handle.net/10467/64842.

[2] Charles M. Kozierok, Colt Correa, Robert B. Boatright, and Jeffrey Quesnelle.
Automotive Ethernet: The Definitive Guide. Intrepid Control Systems, Inc., 2014.
https: / / cdn . intrepidcs . net / brochures / icsusa / Sample-AutomotiveEthernet-
TheDefinitiveGuide.pdf.

[3] David Maliniak. What’s the Difference Between BroadR-Reach and 100Base-T1?
2018.
https: / / www . electronicdesign . com / automotive / what-s-difference-between-
broadr-reach-and-100base-t1.

[4] Tektronix Inc. Troubleshooting Ethernet Problems with Your Oscilloscope. . Tek-
tronix, Inc.. https://www.tek.com/document/application-note/troubleshooting-
ethernet-problems-your-oscilloscope.

[5] Anna Flockett. Oscilloscopes for debugging automotive Ethernet networks. 2019.
https://automotive.electronicspecifier.com/connectivity/oscilloscopes-for-
debugging-automotive-ethernet-networks.

[6] 8802-3:2017/Amd 1-2017 - ISO/IEC/IEEE International Standard - Part 3: Stan-
dard for Ethernet - Amendment 1: Physical Layer Specifications and Management
Parameters for 100 Mb/s Operation over a Single Balanced Twisted Pair Cable
(100BASE-T1). 2018.
https://ieeexplore.ieee.org/document/8310988.

[7] 802.3-2018 - IEEE Standard for Ethernet. 2018.
https://ieeexplore.ieee.org/document/8457469.

[8] TJA1100 Product data sheet. 2018.
https://www.nxp.com/docs/en/data-sheet/TJA1100.pdf.

[9] Donovan Porter. 100BASE-T1 Ethernet: the evolution of automotive networking.
2018.
http://www.ti.com/lit/wp/szzy009/szzy009.pdf.

[10] Application hints for TJA1100 Automotive Ethernet PHY . 2017.
https://www.nxp.com/docs/en/application-note/AN12088.pdf.

22

http://hdl.handle.net/10467/64842
https://cdn.intrepidcs.net/brochures/icsusa/Sample-AutomotiveEthernet-TheDefinitiveGuide.pdf
https://cdn.intrepidcs.net/brochures/icsusa/Sample-AutomotiveEthernet-TheDefinitiveGuide.pdf
https://www.electronicdesign.com/automotive/what-s-difference-between-broadr-reach-and-100base-t1
https://www.electronicdesign.com/automotive/what-s-difference-between-broadr-reach-and-100base-t1
https://automotive.electronicspecifier.com/connectivity/oscilloscopes-for-debugging-automotive-ethernet-networks
https://automotive.electronicspecifier.com/connectivity/oscilloscopes-for-debugging-automotive-ethernet-networks
https://ieeexplore.ieee.org/document/8310988
https://ieeexplore.ieee.org/document/8457469
https://www.nxp.com/docs/en/data-sheet/TJA1100.pdf
http://www.ti.com/lit/wp/szzy009/szzy009.pdf
https://www.nxp.com/docs/en/application-note/AN12088.pdf

Appendix A
Glossary

ARM . Advanced RISC Machine
CAN . Controller Area Network
CPU . Central Processing Unit
DMA . Direct Memory Access
EMI . Electromagnetic Interference
ESD . End-of-Stream Delimiter
FPGA . Field Programmable Grid Array
GPIO . General Purpose Input and Output
MAC . Medium Access Control
MDI . Media Dependent Interface
MII . Media Independent Interface
MLAB . Altera/Intel FPGA Memory Logic Array Block
MLT-3 . Multi-Level Transmit encoding
M10K . Altera/Intel FPGA Memory 10 Kilobyte Block
PAM . Pulse Amplitude Modulation
PCB . Printed Circuit Board
PCS . Physical Coding Sublayer
PHY . Physical Layer chip
PMA . Physical Media Attachment
PMD . Physical Medium Dependent
RMII . Reduced Media Independent Interface
SMI . Serial Management Interface
SSD . Start-of-Stream Delimiter
VHDL . VHSIC Hardware Description Language

23

A Glossary .

24

Appendix B
Schematic diagram of first version hardware

Please see next page.

25

B Schematic diagram of first version hardware .

26

Appendix C
Schematic diagram of second version hardware

Please see next page.

27

C Schematic diagram of second version hardware .

28

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Measuring Automotive Ethernet

	The 100Base-T1 Standard: The practical parts
	Difference between 100Base-T1 and 100Base-TX
	Physical Coding Sublayer of 100Base-T1
	Physical Media Attachment sublayer of 100Base-T1
	Master and Slave modes of 100Base-T1 physical layer
	Full duplex communication on single twisted pair
	Beyond the physical layer chip: notes on 100Base-T1 hardware design

	Designing a monitoring device for 100Base-T1
	Capturing packets passing through
	Forwarding copies of captured packets to an external interface
	The final specification

	Hardware design of a daughterboard for Terasic DE0-Nano-SoC
	The first iteration
	The second iteration

	Implementation of functional VHDL code
	Conclusion
	References
	Glossary
	Schematic diagram of first version hardware
	Schematic diagram of second version hardware

