
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Server-side rendering of React applications
in enterprise portals

Václav Jančařík

Supervisor: Ing. Martin Ledvinka
Field of study: Software Engineering and Technology
May 2019

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

466301Osobní číslo:VáclavJméno:JančaříkPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Vykreslování React aplikací na straně serveru v enterprise portálech

Název bakalářské práce anglicky:

Server-side rendering of React applications in enterprise portals

Pokyny pro vypracování:
1. Analyze the current state of the art in the field of server-side
rendering of React applications and running React applications in
portal solutions.
2. Design fundamental principles of integration of server-side
rendering of React applications in the context of portal
environments.
3. Based on your design, implement a server-side rendering solution
for React applications embedded in enterprise portals.
4. Demonstrate the correctness of your solution by comparing client-
side and server-side rendering output of an example application.
5. Compare the performance of your server-side rendering solution
with standard client-side rendering.

Seznam doporučené literatury:
[1] K. Konshin, Next.js Quick Start Guide: Server-side rendering done
right, Packt Publishing, 2018
[2] R. Sezov, Liferay in Action: The Official Guide to Liferay Portal
Development, Manning Publications, 2011
[3] R. Wieruch, The Road to learn React: Your journey to master plain yet
pragmatic React.js, 2018

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Martin Ledvinka, skupina znalostních softwarových systémů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 24.05.2019Datum zadání bakalářské práce: 22.02.2019

Platnost zadání bakalářské práce: 19.02.2021

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Martin Ledvinka

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I would first like to thank Ing. Martin
Ledvinka for great communication, sup-
port, and valuable feedback as the thesis
supervisor. I am also grateful to Mgr. Jiří
Kadlec and Ing. Tomáš Konrády for devel-
oping and maintaining the React Union
project. I would also like to thank my
friends and family for their continuous
endurance and encouragement.

Declaration
I hereby declare that I have completed this
thesis independently and that I have men-
tioned all the used information sources in
accordance with the Guideline for compli-
ance with ethical principles in the course
of writing final theses.

Prague, 21 May 2019

. .
Václav Jančařík

v

Abstract
Single-page applications utilizing modern
JavaScript libraries have many advantages
regarding development and user experi-
ence. Integrating them into enterprise
portals combines their respective benefits
and is highly requested in large corpo-
rates. However, the content of single-page
applications is usually generated in the
browser, measurably affecting load speed
and search engine optimization. Although
these applications can be dynamically ren-
dered on the server, no solution for enter-
prise portals was available.

One possible approach to this issue is
piping the HTML output of the enter-
prise portal to an HTTP server with a
JavaScript interpreter, which will han-
dle the rendering. This thesis includes
a functioning prototype, which is further
extended with other useful features for
load speed optimization.

Keywords: JavaScript, React, Node.js,
Liferay, WordPress, enterprise portal,
content management system, server-side
rendering, search engine optimization

Supervisor: Ing. Martin Ledvinka
Prague, Resslova 9, E-116

Abstrakt
Single-page aplikace využívající moderní
JavaScript knihovny mají spoustu výhod,
co se vývoje a uživatelského prožitku týče.
Jejich integrace do enterprise portálů kom-
binuje výhody obou technologií a je velmi
žádaná ve velkých společnostech. Obsah
single-page aplikací je však běžně gene-
rován až v prohlížeči, což má měřitelný
dopad na rychlost načítání a optimalizaci
pro vyhledávače. Ačkoliv mohou být tyto
aplikace dynamicky vykreslovány na ser-
veru, pro enterprise portály nebylo do-
stupné žádné řešení.

Jeden z možných způsobů, jak k tomuto
problému přistoupit, je posílat HTML vý-
stup enterprise portálu na HTTP server
s JavaScript interpretem, který se o vy-
kreslování postará. Součástí této práce je
funkční prototyp, který je navíc rozšířen
o další užitečné funkce pro optimalizaci
rychlosti načítání.

Klíčová slova: JavaScript, React,
Node.js, Liferay, WordPress, enterprise
portál, systém pro správu obsahu,
vykreslování na straně serveru,
optimalizace pro vyhledávače

Překlad názvu: Vykreslování React
aplikací na straně serveru v enterprise
portálech

vi

Contents
1 Rendering of web pages 1
1.1 Client-side rendering drawbacks . 1
1.1.1 Load speed 1
1.1.2 Search engine optimization . . . 2

1.2 Server-side rendering 2
1.2.1 Possible approaches 3
1.2.2 Environment restrictions 3
1.2.3 Optimization opportunities . . . 4

1.3 Static site generators 5
1.4 Objective of the thesis 6
2 React and enterprise portals 7
2.1 Widget-based design 7
2.2 Introduction to React 8
2.3 React Union project 9
2.4 Other means of integration 10
3 Architecture 11
3.1 Node.js solution analysis 11
3.2 High-level overview 12
3.3 Rendering process 12
4 Implementation 15
4.1 Node.js rendering service 15
4.2 Refactoring of existing packages 17
4.2.1 react-union 17
4.2.2 react-union-scripts 18
4.2.3 babel-preset-react-union 18

4.3 Example applications 18
5 Load speed improvements 21
5.1 Measurement setup 21
5.2 JavaScript bundle size 22
5.3 Back-end latency 22
5.4 HTML payload size 23
5.5 Real-world impact 23
6 Conclusion 25
A Guide to local deployment 27
B Contents of the enclosed CD 29
C References 31
D Abbreviations 35

vii

Figures
3.1 Example SSR architecture 13
3.2 Rendering process UML diagram 14

Listings
2.1 React application example 9
2.2 Sample enterprise portal output 10
4.1 Rendering service signatures . . . 16
4.2 Rendering process pseudocode . . 16

viii

Tables
5.1 JavaScript bundle sizes 22
5.2 Medians of back-end latencies . . 22
5.3 HTML payload sizes 23
5.4 Mobile network speeds 23
5.5 Load speed improvements with
SSR enabled 24

ix

Chapter 1
Rendering of web pages

Historically, most dynamic web pages have had their content generated on
the server, utilizing scripting languages like PHP. With JavaScript (JS), the
possibilities of interactivity can be nearly endless, but complex applications
quickly become unmaintainable and cumbersome to build upon – that is,
unless a single-page application (SPA) framework or library is utilized. When
these libraries (e.g. React) came along, the complexity of the applications
could be much higher. However, SPAs usually come with a major drawback:
their content is generated in the browser, not on the server.

1.1 Client-side rendering drawbacks

Generally, SPAs work in the following way:..1. User opens a web page...2. User agent1 downloads an empty page and some JS source code...3. JS source code is executed and the application is rendered.

It is apparent that there is a delay between opening the web page and
rendering it. This delayed loading of content poses challenges in various areas
of web development.

1.1.1 Load speed

Because the browser has to download the JS source code before anything can
be rendered, the impact on First Contentful Paint (and other related metrics)
can be quite extreme, especially with a slow internet connection.

First Contentful Paint (FCP) measures the time from navigation to
the time when the browser renders the first bit of content from the
DOM [1].

1Software acting on behalf of the user, e.g. a web browser.

1

1. Rendering of web pages
Although there is room for improvement in the form of caching and code

splitting2, the load speed never comes close to that of a purely server-rendered
application, as some JS is still necessary for the initial render.

1.1.2 Search engine optimization

While some web crawlers, such as Google’s Googlebot [2], are able to crawl
and index client-rendered applications as well, it requires way more resources
and is therefore deferred. Google uses two waves of indexing to process these
kinds of applications:..1. In the first wave, HTML and CSS will be crawled and indexed, almost

instantly...2. In the second wave, Google will come back to render and index JavaScript-
generated data, which can take from a few hours to over a week [3].

Other web crawlers cannot handle client-rendered applications at all. In
contrast, server-rendered applications can be indexed by Google immediately
and can be easily processed by other search engines as well. To solve this
problem, Google recommends using dynamic rendering [4].

Dynamic rendering (or prerendering) is the principle of sending client-
rendered content to users and server-rendered content to search engines and
other crawlers [2, 4]. Instead of serving an empty web page to the crawler,
the content is prerendered by a headless browser3 and cached.

Because the web page output is simulated in a full-featured browser, dy-
namic rendering is applicable to all types of SPAs, regardless of the underlying
framework or system. As a result, it is possible to delegate dynamic rendering
to hosting providers – this is directly supported e.g. by Netlify [5].

1.2 Server-side rendering

Server-side rendering (SSR) is quite similar to dynamic rendering, but slightly
harder to implement. Instead of server-rendering the web page for crawlers
only, it is rendered on the server per each request. Client-side JS can then hook
into the server-rendered application, attaching event listeners to the existing
markup – “hydrate” it. SSR is more expensive than dynamic rendering, but
ultimately results in noticeable load speed improvements, especially when
using a slower network connection.

It is important to mention that the concept of rendering applications on
the server is nothing new, as libraries like React or Angular were developed
with SSR in mind. Today, there are many platforms which support SSR,
such as Next.js or Electrode [6, 7, 8]. However, because these platforms are
highly opinionated in terms of structure and how they serve content, they
are unsuitable for integration into other systems.

2Splitting the JS bundle into smaller chunks, which can be loaded on demand.
3A web browser without a graphical user interface.

2

................................. 1.2. Server-side rendering

1.2.1 Possible approaches

There are essentially two feasible approaches to rendering SPAs on the server:. Rendering the application using a JS runtime or a virtual machine (e.g.
Node.js or GraalVM). For example, React comes with a renderToString
function, making it possible to render the entire application as a string
and inject it into the web page which would otherwise be sent empty.. Using a headless browser (e.g. Google Chrome or Mozilla Firefox), it
is possible to open the requested web page on the server, wait for the
content to load, and then send the final HTML to the client.

Both have their advantages and disadvantages, but the JS runtime ap-
proach is more customizable in terms of load speed optimization and should
technically be more performant as well4. The headless browser approach is
thus often used as a universal solution for dynamic rendering, but not so
much for reducing load times.

1.2.2 Environment restrictions

When developing a server-rendered application, especially one which will not
be rendered in a headless browser, there are some technical challenges and
restrictions to keep in mind.

Browser API

Because the JS source code is not be evaluated in a standard browser en-
vironment, global variables such as window or document are not available.
There are multiple ways of handling this:. In many applications, it is not necessary to use these variables at all,

meaning that this issue does not have to be dealt with.. Any use of these variables can be wrapped in a conditional statement to
prevent runtime errors.. Defining the global variables as NOOP stubs (e.g. global.window = {}).. Emulating a subset of the browser environment. Although this is possible
with the use of some libraries, there are no clear reasons for doing so.
Accessing these variables is usually necessary because of event listeners
and/or very specific DOM manipulation (such as scrolling behaviour),
none of which need to be addressed during SSR.

Conditional statements and NOOP stubs are clearly the way to go. The
decision can be left to the developer of the server-rendered application, because
these approaches require no additional tooling setup.

4Headless browsers come with overhead in the form of unnecessary browser features.

3

1. Rendering of web pages
Singleton pattern

The singleton pattern is a software design pattern that restricts the possibility
of having more instances of specific objects while providing a global point of
access to them [9]. In the JS ecosystem, it is often used to avoid dependency
injection of objects that are only present once throughout the application
(likely because dependency injection is not natively supported). However,
the use of this pattern is highly discouraged, mainly because of the following
reasons:. It introduces global state to the application.. Testability. Although this issue can be solved by various mocking libraries,

the use of this pattern is often not necessary and thus the tests become
unnecessarily complex.. Server-side rendering. Because there is only one instance of the object
throughout the entire application, this instance would be reused for each
request, resulting in data leakage across sessions and possibly serious
security vulnerabilities.

In this case, we are concerned mainly with SSR. Although it is possible to
achieve total isolation by creating a new execution environment (i.e. virtual
machine) per each request, this often comes with a performance cost, so it is
better to avoid the singleton pattern altogether.

1.2.3 Optimization opportunities

Executing JS code on the server comes with interesting opportunities for
further load speed improvements.

Server-side prefetching of data

Because the application is often rendered in the same physical location as
its data source, it is possible to further optimize the delivery of content by
enabling server-side prefetching of data. This means that instead of rendering
e.g. an empty list and then sequentially fetching the necessary data, the list
can be filled on the server.

Furthermore, server-side rendering is often executed synchronously, as is
the case with React’s renderToString function. In contrast, AJAX requests
are inherently asynchronous (hence Asynchronous JavaScript and XML).
Because of this, the fetching must occur before rendering the application5.

Wave reduction

This concept may not be as obvious and simple to grasp, but can nevertheless
improve web page load speed significantly. Most large JS applications utilize

5Asynchronous calls are deferred, not affecting the synchronously rendered application.

4

................................. 1.3. Static site generators

some form of code splitting, which needs to be handled both when bundling
the JS modules (e.g. by Webpack or Parcel.js) and when executing the
resulting source code..When bundling the modules, whenever a dynamic import() call is

encountered, a new chunk (a separate JS file) may be created6..When executing the source code, whenever a dynamic import() call
is encountered, the appropriate chunk will be fetched (if not already
available). Note that import() returns a Promise , meaning that any
dependent code will be run asynchronously.

The necessary chunks are thus fetched when they are actually needed. The
asynchronous fetching of chunks is handled by a runtime injected into the
entry chunk7 by the bundler. For clarity, let us assume a scenario of three JS
files/chunks:. entry.js containing await import("./foo.js"). foo.js containing await import("./bar.js"). bar.js containing console.log("Hello from bar!")

With appropriate bundler configuration, using entry.js as a bundle entry
results in three separate chunks: app.js, app~foo.js, and app~bar.js. If
each chunk takes one second to fetch (including the application entry), “Hello
from bar!” will be logged after a total of three seconds.

This is not ideal, because the chunks are fetched “in waves”. Technically,
it should be possible to serve all the necessary chunks immediately, because
the application has already been rendered on the server. This can be done
by “marking” the chunks when they are used on the server, i.e. during the
rendering. Afterwards, the marked chunks can be included in the HTML that
will be sent to the client. This techinque is called “wave reduction”, term
coined by Anton Korzunov [10].

Because it is necessary to somehow mark the used server-side chunks and
map them to the client-side ones, wave reduction requires a very advanced
tooling setup to pull off.

1.3 Static site generators

Using a JS-based static site generator, such as GatsbyJS, is a viable alternative
to SSR [11]. Instead of rendering the web page on the server per each request,
static site generators render the entire website once – at compile time. This
website can then be hosted without the need of a dedicated Node.js server,
tackling the same challenges as SSR, but more efficiently.

6This depends on the bundler configuration. Serving too many chunks may actually
result in a performance drop due to too many requests and runtime overhead.

7The runtime can also be located in a separate file for long-term caching.

5

1. Rendering of web pages
However, static site generators only make sense for serving data that

does not depend on user context. Any user-specific data cannot possibly be
rendered at compile time, making SSR the only way to provide load speed
improvements for JS applications which serve data based on the currently
authenticated user.

1.4 Objective of the thesis

The objective of this thesis is to design and implement a prototype for SSR of
React applications embedded in enterprise portals and content management
systems (CMSs). This prototype shall serve as a basis for measuring and
evaluating the real-world benefits of SSR.

Although it is possible to render traditional SPAs on the server, the existing
tools cannot be applied in the context of the aforementioned CMS-like systems,
as explained in section 1.2. Moreover, SSR can be implemented using different
SPA libraries and frameworks, each of them coming with their own set of
challenges and supported features. In this thesis, React is selected as the
main focus, primarily because of its popularity and simplicity.

While being specific to React, the solution should not be coupled to any
enterprise portal or CMS platform. Instead, it should be possible to swap the
underlying CMS-like system without any major refactoring. The following
chapter will explore the possibilities of integrating React applications into
enterprise portals in more detail.

6

Chapter 2
React and enterprise portals

Enterprise portals and other CMS-like systems are attractive to large compa-
nies for various reasons. The stakeholders are able to be in control of what
is shown on the website more directly, and these systems usually contain
useful built-in features (such as user management), making them beneficial for
cutting down costs as well. In contrast, React applications (and other SPAs)
have benefits from the opposite side of the spectrum, such as the increased
interactivity and the ability to cater to almost any business requirement
related to user experience.

2.1 Widget-based design

What are the possibilities of combining React and CMS-like systems? The
first option is to use a so-called headless CMS, which would serve as a back-
end only content database1. This content can usually be accessed in the React
application via a REST (or GraphQL) API. With this approach, however,
we would give up the ability to manage the layout of the web pages through
the CMS UI, which is often one of the main reasons for adopting a CMS or
an enterprise portal.

Instead, in order to take advantage of as many features as we can, the
React application could be split into separate widgets. The content manager
can then create a web page, decide on the layout, and then drag and drop
the widgets to where they should actually be rendered. The widget-based
design needs to support all of the following features to be comparable to e.g.
Liferay’s portlets2 or widgets in WordPress.

Dynamic combinations of widgets. The layout of the application should
not be in the hands of developers. In other words, we do not know which
widgets are actually going to be rendered, or in what combination. This
means that the widgets should be isolated and should not depend on one
another. Furthermore, the browser should not download any unnecessary
JS code, because the entire application may consist of tens of widgets, with

1In essence, it means that the data layer is decoupled from the actual website, allowing
multiple front-end applications to share the same back-end service (content database).

2In Liferay, a portlet is a web application that runs in a portion of the web page [12, 13].

7

2. React and enterprise portals
only a small portion of them being rendered for a particular web page (code
splitting must be implemented).

Sharing data between widgets. Although the widgets should keep their
data isolated, they should be able to communicate with one another (if
necessary). Assume two widgets: a map of branches and an onboarding form.
When these two widgets are present on the same web page, it should be
possible to preselect a branch in the onboarding form when the branch is
selected in the map.

Custom configuration of widgets. Content managers should be able to
configure the behaviour and appearance of widgets through the enterprise
portal UI. Depending on the business requirements, it should be possible to
change the localization, default form values, or any other variable, just like
in widgets native to the platform.

Multiple instances of the same widget. When using the Redux library for
application state management, it is common practice to only use a single store
for the entire application [14]. When there are multiple instances of the same
widget in a single web page, e.g. of an image gallery, the data location within
the store cannot be defined statically. Instead, each widget should have a
unique namespace and should store data accordingly. In practice, this means
using state.galleries[namespace] instead of state.galleries.food ,
because the content manager can decide to have two food galleries in a single
page (e.g. food-top and food-bottom). Ignoring this would result in the
two galleries being “linked”, causing unexpected behaviour.

2.2 Introduction to React

React is a JavaScript library for building component-based UIs using a
declarative API. React is often used with JSX, an XML-like syntax extension
to JS. In this minimal example (listing 2.1), the name Taylor is being passed
as a prop3 to the HelloMessage component. When ReactDOM.render is
called, the entire application is rendered into an HTML element, displaying
“Hello Taylor”. This example would be very easy to replicate without the
need of any libraries, but as the application grows in terms of complexity,
React quickly becomes indispensable [15, 16].

Should the name prop change, React will automatically update the DOM4

with the correct content. In this example, the prop is defined statically (and
thus will not change), but the components can have their own encapsulated
state and pass props down to other components, meaning that React needs
to keep track of which components to update.

React does so by keeping a virtual representation of the UI in memory [17],
synchronizing it with the real DOM when necessary – this process is called

3Short for property. It is essentially a function parameter to the component.
4Document Object Model, an API allowing programmatic access to HTML documents.

8

................................. 2.3. React Union project

Listing 2.1: React application example
const HelloMessage = props => (

<div>Hello {props.name}</div>
)

ReactDOM.render(
<HelloMessage name="Taylor" />,
document.getElementById("root")

)

reconciliation [18]. Because accessing the DOM is slow, React is able to
calculate the necessary updates to the component tree much faster, resulting
in huge performance benefits. Another benefit of this approach is that React
can be used even in non-browser environments, so a React application can be
rendered as a native mobile application or even as a string.

Despite the fact that the DOM is a tree structure, React provides a useful
feature: portals. They allow applications to render content outside their
DOM scope; their intended use is described in the React documentation.

A typical use case for portals is when a parent component has
an overflow: hidden or z-index style, but you need the child
to visually “break” out of its container. For example, dialogs,
hovercards, and tooltips [19].

Although portals were designed to solve a completely different use case, we
can utilize this behaviour to render the widgets anywhere in the document
while keeping them in a single virtual DOM. This allows us to treat the
widgets as a single React application, massively simplifying development.

2.3 React Union project

The React Union project is an open-source collection of libraries and tools for
integrating React applications into various back-end systems [20]. The core
mechanism is simple: instead of rendering the React widgets directly, the
CMS-like system outputs HTML elements called widget descriptors, describing
the widgets to render. The React application then scans the entire document
and renders the widgets to their respective containers using React portals.

Listing 2.2 contains a sample HTML document generated by an enterprise
portal. When the app.js script is run, the library5 will scan the document,
resulting in a single widget descriptor being found. This descriptor says that
a navigation widget shall be rendered into a DOM element with an ID of
root . Widget descriptors may optionally contain a JSON object that can
be used to provide configuration data to the widget.

5To be more precise, the scanning will be initiated by the Union React component.

9

2. React and enterprise portals
Listing 2.2: Sample enterprise portal output

<!doctype html>
<title>Enterprise portal</title>
<script src="app.js" defer></script>

<div id="root"></div>

<script data-union-widget="nav" data-union-container="root">
</script>

Because of a clearly defined, platform-agnostic interface, React Union is
not tied to any CMS or enterprise portal platform, making it easy to use with
WordPress, Liferay, Drupal, and many other solutions.

When developing the React application, there is no need to have the
underlying enterprise portal running, as it is possible to use a static HTML
file as the source of widget descriptors. Moreover, when it is necessary to
debug the React application in the context of an enterprise portal, it is
possible to use a proxy server that serves the React application on top of
the enterprise portal. This allows developers to utilize hot replacement of JS
modules for rapid development.

React Union comes with all of these features preconfigured in the form
of React Union Scripts, a software development kit similar to Create React
App’s react-scripts package [21]. Furthermore, the React Union repository
includes multiple example projects that are completely set up with all the
necessary tooling and are ready to be extended with custom functionality [20].

2.4 Other means of integration

Besides React Union, no other platform-agnostic solution for integrating
React applications into CMS-like systems has been publicly available. This
might be because it is possible to use a headless CMS instead of a standard
one, but the drawbacks of this approach were mentioned at the beginning of
chapter 2.

Although some CMS-like systems claim that they support React applica-
tions in their documentation, most of them allow only the classic, “non-widget”
approach, meaning that some of the desired features (such as having dynamic
combinations of widgets) cannot be properly implemented.

Liferay is an exception to this with its liferay-npm-bundler, which allows
us to have a JS application in a portlet [12, 22]. While this bundler does
support code splitting, keep in mind that due to the nature of the JS ecosystem,
“regular” bundlers like Webpack6 are always going to be more advanced in
terms of features and optimization. Unfortunately, Liferay’s solution is not
transferrable to other platforms and does not support SSR at all.

6Webpack is utilized extensively in the React Union project.

10

Chapter 3
Architecture

Given the circumstances explained in section 2.4, extending React Union is
presumably the most logical way of implementing SSR of React applications
in the context of enterprise portals. As mentioned in subsection 1.2.1, we
want to use a JS runtime or a virtual machine instead of a headless browser,
mainly because of the added flexibility and performance.

There are quite a few options to choose from, but not all of them are
suitable for us. To keep the core React Union source code JS only, JVM-
based software1, such as Nashorn or GraalVM, is not ideal when compared
to alternatives like Node.js.

3.1 Node.js solution analysis

Node.js is a JavaScript runtime built on Chrome’s V8 JS engine [23]. We can
use it to create an HTTP server which can execute JS source code, i.e. render
a React application. This means that the rendering server would essentially
be an “SSR as a service” Node.js microservice.

This is very similar to Airbnb’s Hypernova [24], but due to the nature of
React Union (scanning the document for widget descriptors), it is not possible
to use Hypernova for this purpose. Furthermore, Hypernova does not support
wave reduction and implementing it would likely prove to be difficult.

Because any two widgets should technically be able to communicate with
one another, all the widgets must be rendered in a single phase (using a
single call to ReactDOMServer.renderToString). In order to allow seamless
integration with any CMS or enterprise portal, it is best to pipe all the HTML
output of the CMS-like system to the rendering service, which will respond
with the HTML to send to the client. On most platforms, this is easier to
implement2 than aggregating the rendered widget descriptors.

At first glance, piping all the HTML to a Node.js server might not look
like a great idea performance-wise. There are two points where a bottleneck
might occur: I/O and scanning the HTML for widget descriptors.

1Software which can execute JS source code using the Java virtual machine.
2Possible e.g. via output buffering or servlet filters (WordPress and Liferay, respectively).

11

3. Architecture
. As measured by Airbnb, I/O load is negligible compared to the actual

rendering of the application [25].. There are multiple ways to scan an HTML document for widget descrip-
tors. While implementing a subset of the DOM might turn out to be a
bottleneck, using simple string manipulation would suffice.

This means that the most demanding part of the rendering process should
be the rendering itself. However, because there is no way to avoid rendering
the application altogether, piping all the HTML to a Node.js rendering service
should be a suitable solution.

3.2 High-level overview

To summarize what we know so far in terms of requirements and necessary
features, here are the main points:. A Node.js HTTP server acting as a rendering microservice shall be

implemented.. In order to offload as much implementation logic to this tool as possible,
the Node.js server shall accept the entire HTML output of an enterprise
portal as its input.. The new HTML (containing the rendered React application and used JS
chunks) shall be sent back to the enterprise portal, replacing the original
HTML as the client-facing output.

A simplified version of a possible underlying infrastructure is shown in fig-
ure 3.1, with server-side prefetching of data taking place during the rendering
process (communication with the REST API).

Because this is a method of progressive enhancement, if anything related to
SSR goes wrong, the application must still function properly. The enterprise
portal should find out if the rendering service is running via a health check
API endpoint. If the service returns a bad status code, the enterprise portal
should fall back to relying on client-side rendering (CSR).

3.3 Rendering process

A couple of points have been metioned so far in terms of rendering:. The HTML document shall be scanned for widget descriptors before
rendering the React application.. After the document is scanned, server-side prefetching of data shall occur,
based on the widgets that are going to be rendered.

12

.................................. 3.3. Rendering process

Figure 3.1: Example SSR architecture

. Because of React portals, we must pay close attention to where the
widgets should actually be rendered.. The used chunks shall be appended to the HTML as script elements to
achieve wave reduction.

The rendering flow is thus depicted as a UML diagram in figure 3.2, taking
the aforementioned points into consideration.

13

3. Architecture

Figure 3.2: Rendering process UML diagram

14

Chapter 4
Implementation

The implementation of the proposed architecture consists of three parts:..1. The Node.js rendering service...2. Refactoring of the existing React Union packages...3. Example applications with out-of-the-box SSR support.

The source code of all parts is available in the lundegaard/react-union
repository on GitHub [20]. A collection of JS libraries by James Gillmore has
been extensively used in order to achieve simultaneous code splitting, SSR,
and wave reduction [26, 27, 28, 29].

4.1 Node.js rendering service

The Node.js rendering service was implemented as a standalone JS package1,
exposing a single function: startRenderingService . The function signature
is described using Flow syntax in listing 4.1, which should be quite simple to
grasp with basic knowledge of JavaScript [30].

This function accepts a handler to be invoked for each request. In this
handler, the render function must be called at least once, rendering the entire
React application into the HTML context of the request. This HTML can also
be accessed and manipulated using the head and body Cheerio wrappers2.
This design allows developers to have full control over the rendering process,
with two-phase rendering3 and other customization being possible as well. To
better show how each request is actually handled, a pseudocode sample is
included in listing 4.2.

The startRenderingService function also accepts an options object,
which can be used for enabling/disabling some features, as well as other
configuration (e.g. setting the TCP port of the server). It is also possible to

1Available in the npm repository as react-union-rendering-service.
2Cheerio is a server-side implementation of jQuery [31].
3Rendering the application once, walking the component tree, and then rendering it

again. This is necessary for libraries such as React Apollo [32].

15

4. Implementation....................................
Listing 4.1: Rendering service signatures

type RenderResult = {
widgetConfigs: Object[],
chunkNames: string[],
initialProps: { [namespace: string]: Object }

}

type Render =
(rootElement: React.Element, routes: Array) => RenderResult

type HandleRequest = ({
render: Render,
head: CheerioWrapper,
body: CheerioWrapper,
req: http.ServerRequest,
res: http.ServerResponse

}) => RenderResult

type StartRenderingService =
(handleRequest: HandleRequest, options?: Object) => void

Listing 4.2: Rendering process pseudocode
function renderingMiddleware(handleRequest, req, res) {

originalHTML = cheerio.parse(req.body)
head = originalHTML.head
body = originalHTML.body

function render(reactElement, routes) {
widgets = scan(originalHTML, routes)
data = widgets.map(prefetchData)
reactHTML = renderToString(withData(data, reactElement))
html = distributeWidgets(originalHTML, reactHTML)
return html

}

context = { render, head, body, req, res }
html = await handleRequest(context)
assert(render).calledTimes(1)
chunks = flushChunks()
html.append(chunks)
return html

}

16

............................ 4.2. Refactoring of existing packages

configure the rendering service via a union.config.js file in the application
root directory.

To improve developer experience as much as possible, the rendering ser-
vice is polymorphic: it can also run as a middleware. When developing
React applications, it is common to use the webpack-dev-middleware li-
brary [33], which intercepts requests to compiled JS files in the file system
and instead serves them from memory, all the while watching for any source
code changes. Additionally, webpack-hot-server-middleware can be used
to hook a server-rendering middleware to these changes [34]. This compli-
cated setup allows React Union applications to be rendered on the server
even during development, without the need to manually restart the Node.js
development server.

The nature of microservices allows the React Union rendering service to be
easily scaled horizontally, utilizing off-the-shelf solutions such as Docker, Ku-
bernetes, PM2, Nginx, and HAProxy. The service performance (i.e. latency)
can be monitored using traditional distributed tracing tools.

4.2 Refactoring of existing packages

There were a total of three packages which needed refactoring: react-union,
react-union-scripts, and babel-preset-react-union.

4.2.1 react-union

Previously, the Union component was responsible for the scanning. Because
it is necessary to scan the widget descriptors before rendering on the server,
the component now also accepts external scan results. Furthermore, in order
to support scanning a string instead of a DOM element, support for Cheerio
wrappers was added.

Unfortunately, React does not support SSR of portals at all. This issue
had to be solved on both sides of the rendering process.

On the server. Instead of using portals directly, we can render all the
widgets into a single parent container, wrapping each widget in an HTML
element with a data attribute specifying where the widget should have been
rendered. After the entire application is rendered, we can parse the HTML
output and emulate the behaviour of React portals, although with a slight
performance drop.

On the client. Unfortunately, the hydration of portals is not as straightfor-
ward as the rendering. Currently, instead of hooking into the existing markup,
React will duplicate it. This can be solved by clearing the respective HTML
containers prior to rendering the widgets and disabling any stateful features
of the application, such as input fields, to prevent unexpected behaviour when
the application is hydrated.

17

4. Implementation....................................
4.2.2 react-union-scripts

The Webpack configuration had to be altered to allow building server bun-
dles [35]. Furthermore, in order to enable wave reduction, the server bundle
and the client bundle must be compiled at the same time4. As a result, the
build process was completely revamped, taking advantage of Webpack being
able to reuse modules and chunks during compilation.

React Union Scripts support customization via a union.config.js file.
This file now also accepts several options related to the Node.js rendering
service under the renderingService property.

4.2.3 babel-preset-react-union

React Union Scripts use Babel to transpile modern JS syntax for old browsers.
Babel is configurable via presets and this is the one used in the React Union
project. Because the selected collection of libraries contains a Babel plugin
for passing contextual metadata to imported components, this plugin was
added to the preset for convenience [29].

4.3 Example applications

Two SSR-ready projects were added to the React Union repository: ssr-basic
and liferay-ssr. They are heavily based on the existing boilerplate projects5.
Let us take a closer look at their structure.

A standard React Union project consists of multiple widgets and one or
more applications, allowing developers to target multiple platforms and share
source code across applications within a project. Every application should
include the following files:. routes.js defining the mapping of widgets (React components) and

widget descriptors.. index.js being the client-side entry point of the entire application (akin
to the main method in Java). Somewhere in this file, ReactDOM.render
should be called.. index.ssr.js optionally being the server-side entry point of the applica-
tion. It must export the return value of calling startRenderingService .

Each example project contains a single application and two simple widgets,
rendering only some basic text content or an image.

In the liferay-ssr project, an SSR servlet filter was implemented for
integration with the Node.js rendering service. This filter pipes the Liferay
HTML output to the rendering service, replacing the client-side output with

4Wave reduction depends on marking used server chunks and then serving the appropriate
client chunks, meaning that simultaneous access to both is needed at compile time.

5Preconfigured applications serving as a source code base for custom functionality.

18

................................. 4.3. Example applications

the service response. If the rendering service is not available, Liferay falls
back to CSR, periodically attempting to re-enable SSR by calling the health
check API of the service. The default interval has been set at 5 minutes.

The new boilerplates are completely set up with tooling and are ready to
be extended with custom functionality. Appendix A contains a guide on how
to build these projects and deploy them in a local environment.

19

20

Chapter 5
Load speed improvements

As explained in section 1.2, the main reason for adopting SSR should be
improvements in load speed. This chapter attempts to measure the real-world
performance impact, utilizing the implemented prototype. The following
application parameters must be taken into account:. JavaScript bundle size.. Back-end latency.. HTML payload size.

Because the React application needs to be rendered on the server before
being sent to the client, the back-end latency is expected to slightly increase.
The size of the initial HTML payload is expected to increase as well, but the
amount depends on the tested application. The size of the JavaScript bundle
is not affected by the rendering method.

5.1 Measurement setup

To measure the impact on the individual parameters as accurately as possible,
the analysis was performed on the following existing projects:. Project A, a small project containing 1 application and 2 simple widgets.. Project B, a medium-sized project containing approximately 25 000 lines

of functional JS code, 2 applications, 27 internal libraries, and 19 widgets
of varying complexity, mostly forms and tables. To simulate a real
application configuration, two combinations of widgets have been used,
containing 2 widgets and 5 widgets, respectively.

The applications were compiled using react-union-scripts and processed
by a Node.js script1 ensuring that the Liferay portal can load them on demand.
The resulting bundles were deployed to an instance of Liferay Portal 7.0 CE
GA7 [36].

1AMD loader tools are available in all Liferay boilerplates in the React Union reposi-
tory [20].

21

5. Load speed improvements
The back-end latency was measured using Apache JMeterTM [37, 38], the

size of the HTML payload was inspected using Chrome DevTools [39].

5.2 JavaScript bundle size

The JS bundle size is essentially the main cause of the delayed rendering of
web pages. The data in table 5.1 is the result of a quick inspection using an
appropriate file explorer.

Project A
2 widgets

Project B
2 widgets

Project B
5 widgets

Application entry 10 kB 101 kB 101 kB
Webpack runtime 2 kB 3 kB 3 kB
Libraries 236 kB 700 kB 700 kB
Widget chunks 3 kB 181 kB 229 kB

Sum 251 kB 985 kB 1 033 kB

Table 5.1: JavaScript bundle sizes

5.3 Back-end latency

The latency was measured by sending 500 sequential GET requests to the
Liferay portal, which in turn calls the Node.js rendering service if SSR is
enabled. Because the rendering service itself is single-threaded and the
renderToString function is synchronous, a real-world setup would consist
of running multiple services behind a load balancer. However, with the
requests being sent sequentially, running a single instance of the rendering
service does not affect the latency.

As shown in table 5.2, enabling SSR does indeed have a slight impact on
back-end latency when compared to CSR. On average, the latency medians
have increased by approximately 30 ms.

Project A
2 widgets

Project B
2 widgets

Project B
5 widgets

CSR latency 28 ms 18 ms 17 ms
SSR latency 54 ms 48 ms 56 ms

Difference 26 ms 30 ms 39 ms

Table 5.2: Medians of back-end latencies

22

..................................5.4. HTML payload size

5.4 HTML payload size

To measure the difference in HTML payload sizes, there is no need to have the
React applications embedded in Liferay. Instead, it is faster and simpler to use
the development server of react-union-scripts. As seen in table 5.3, the
increase in payload size is negligible, possibly due to the nature of the selected
projects. To put the values into perspective, the initial HTML payload of
Wikipedia’s home page was measured to be approximately 20 kB.

Project A
2 widgets

Project B
2 widgets

Project B
5 widgets

CSR size 1.2 kB 3.5 kB 4.6 kB
SSR size 4.2 kB 7.7 kB 19.2 kB

Difference 3.0 kB 4.2 kB 14.6 kB

Table 5.3: HTML payload sizes

5.5 Real-world impact

The collected data allows us to estimate the impact of SSR on different kinds
of networks. As a guildeline, table 5.4 lists the typical real-world mobile
network speeds based on their type [40].

Network type Typical real-world download speed [40]

3G 375 kBps
3G HSPA+ 750 kBps
4G LTE 2 500 kBps
4G LTE-advanced 5 250 kBps

Table 5.4: Mobile network speeds

Table 5.5 lists the improvements in First Contentful Paint (FCP) when the
projects use SSR [1]. The following equation was used to calculate the values:

∆FCP = JS − ∆HTML

download speed
− (∆latency × 1000),

where ∆FCP is the reduced First Contentful Paint in seconds, JS is the
JS bundle size in kilobytes, ∆HTML is the increased HTML payload in
kilobytes, download speed is the download speed in kilobytes per second, and
∆latency is the increased back-end latency in milliseconds.

It is clear that SSR has a great impact on slower networks, improving
load speed by up to 2.68 seconds in the worst case scenario. On the same
network, the total FCP of the respective Liferay page with SSR disabled is
approximately 11 seconds. In this case, SSR theoretically reduces FCP by

23

5. Load speed improvements
about a quarter. It should be noted that the bundle size of Project B has
been optimized and reduced as much as the available tools allow, including
manual inspection of transitive dependencies. This means that in larger, less
optimized projects, the impact will be even more apparent.

Project A
2 widgets

Project B
2 widgets

Project B
5 widgets

3G 0.64 s 2.59 s 2.68 s
3G HSPA+ 0.30 s 1.28 s 1.32 s
4G LTE 0.07 s 0.36 s 0.37 s
4G LTE-advanced 0.02 s 0.16 s 0.15 s

Table 5.5: Load speed improvements with SSR enabled

On faster networks, the JS bundle size becomes less significant, as does
the difference in HTML payload size, making the increased back-end latency
progressively more important. However, as long as the latency increase stays
in the range of tens of milliseconds, this should not become a problem.

The downside of SSR is the increased Time to Interactive (TTI), i.e. the
delayed attaching of JS event handlers [41]. The following equation can be
used to calculate the theoretical increase in TTI:

∆TTI = ∆HTML

download speed
+ (∆latency × 1000),

where ∆TTI is the increased Time to Interactive in seconds, ∆HTML is the
increased HTML payload in kilobytes, download speed is the download speed
in kilobytes per second, and ∆latency is the increased back-end latency in
milliseconds. On all the selected networks, ∆TTI is negligible.

24

Chapter 6
Conclusion

Server-side rendering is currently one of the most troublesome aspects of
web development, mainly because there is no easy unopinionated solution.
Nevertheless, there are many great libraries which aid in this area, making
SSR possible to implement even in more complex systems. This is further
demonstrated by the included prototype, proving that SSR does indeed have
a positive impact on performance, as measured in chapter 5. The objective
of this thesis was thus accomplished.

The load speed implications of SSR can be noticeable even on fast mobile
networks. In practice, however, the difference depends on the type of the
application, making it difficult to decide if SSR is actually worth the hassle.
That being said, the React Union repository now contains a preconfigured,
SSR-enabled boilerplate project with Liferay integration, which can serve as
a basis for custom functionality [20].

25

26

Appendix A
Guide to local deployment

To run the applications locally, the following software must be installed and/or
running on your device.. Node.js, version 10.. Yarn, version 1.. Liferay CE, version 7.0 GA7 (only necessary for a production build)..Gradle, version 5 (only necessary for a production build).

Installation instructions for all the abovementioned software are available
online [23, 42, 36, 43].

Development

This section describes how to run the applications for development, without
the need of deployment to a Liferay portal instance...1. Navigate to the React Union root directory via the command line...2. Run yarn to install the dependencies. You may skip this step if all the

dependencies are already installed...3. Navigate to the appropriate project directory. For example, by running
cd boilerplates/react-union-boilerplate-ssr-basic...4. Run yarn start. A browser tab will open shortly.

Production build

This section describes how to build the applications for production and deploy
them to a local Liferay portal instance. This guide only applies to boilerplate
projects with Liferay integration...1. Navigate to the React Union root directory via the command line.

27

A. Guide to local deployment2. Run yarn to install the dependencies. You may skip this step if all the
dependencies are already installed...3. Navigate to the appropriate project directory. For example, by running
cd boilerplates/react-union-boilerplate-liferay-ssr...4. Run gradle build to build the application for production...5. Run node build/app-demo/server.js to start the rendering service.
This step should be skipped for applications without SSR...6. Deploy the built .jar files by moving them into the Liferay deploy
directory. These files can be found in liferay/<module>/build/libs...7. React Union portlets should now be available in the Liferay portal.

If the Liferay servlet filter detects that the Node.js rendering service is
not available, SSR will be immediately disabled. To manually attempt to
re-enable SSR, the filter bundle should be restarted. This can be done via
the Felix Gogo Shell [44].

28

Appendix B
Contents of the enclosed CD

Below is the directory structure of the enclosed CD. For brevity, only the
notable inner directories are listed.

/
latex-source
react-union-project

boilerplates
react-union-boilerplate-liferay-basic
react-union-boilerplate-liferay-ssr
react-union-boilerplate-ssr-basic

packages
babel-preset-react-union
react-union
react-union-rendering-service
react-union-scripts

react-union-rendering-service
ssr-filter

cron
filter
service

bachelors-thesis.pdf
README.txt

The source code of the implemented modules and example applications can
be found in the lundegaard/react-union GitHub repository as well as on the
CD [20]. The react-union-project directory contains a complete clone of
the repository. It should be noted that the cloned repository might be different
to the current master branch on GitHub, as the project is continuously
being updated. Furthermore, the react-union-rendering-service and
ssr-filter modules have been copied to the root directory of the CD for
more convenient source code inspection.

29

30

Appendix C
References

[1] Google LLC. (2018). First Contentful Paint, Google Developers,
[Online]. Available: https:
//developers.google.com/web/tools/lighthouse/audits/first-
contentful-paint (visited on Dec. 24, 2018).

[2] R. Costello. (2018). A search marketer’s guide to Google I/O 2018,
DeepCrawl, [Online]. Available:
https://www.deepcrawl.com/blog/events/a-search-marketers-
guide-to-google-io-2018 (visited on Dec. 23, 2018).

[3] ——, (2018). Webinar recap: The chaotic landscape of JavaScript with
Bartosz Goralewicz & Jon Myers, DeepCrawl, [Online]. Available:
https://www.deepcrawl.com/blog/events/webinar-recap-
javascript-bartosz-goralewicz/ (visited on Dec. 23, 2018).

[4] Google LLC. (2018). Get started with dynamic rendering, Google
Developers, [Online]. Available:
https://developers.google.com/search/docs/guides/dynamic-
rendering (visited on Dec. 25, 2018).

[5] Netlify, Inc. (2019). Prerendering, Netlify, [Online]. Available:
https://www.netlify.com/docs/prerendering/ (visited on Apr. 28,
2019).

[6] ZEIT, Inc. (2018). Next.js, [Online]. Available: https://nextjs.org/
(visited on Dec. 24, 2018).

[7] K. Konshin, Next.js Quick Start Guide: Server-Side Rendering Done
Right. Packt Publishing, 2018, isbn: 9781788993661. [Online].
Available: https://www.amazon.com/Next-js-Quick-Start-Guide-
Server-side/dp/1788993667.

[8] Walmart Labs. (2018). Electrode, Universal React and Node.js
application platform, [Online]. Available:
https://www.electrode.io/site/web.html (visited on Dec. 24,
2018).

31

https://developers.google.com/web/tools/lighthouse/audits/first-contentful-paint
https://developers.google.com/web/tools/lighthouse/audits/first-contentful-paint
https://developers.google.com/web/tools/lighthouse/audits/first-contentful-paint
https://www.deepcrawl.com/blog/events/a-search-marketers-guide-to-google-io-2018
https://www.deepcrawl.com/blog/events/a-search-marketers-guide-to-google-io-2018
https://www.deepcrawl.com/blog/events/webinar-recap-javascript-bartosz-goralewicz/
https://www.deepcrawl.com/blog/events/webinar-recap-javascript-bartosz-goralewicz/
https://developers.google.com/search/docs/guides/dynamic-rendering
https://developers.google.com/search/docs/guides/dynamic-rendering
https://www.netlify.com/docs/prerendering/
https://nextjs.org/
https://www.amazon.com/Next-js-Quick-Start-Guide-Server-side/dp/1788993667
https://www.amazon.com/Next-js-Quick-Start-Guide-Server-side/dp/1788993667
https://www.electrode.io/site/web.html

C. References......................................
[9] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, 1st ed. Addison-Wesley
Professional, 1994, isbn: 0201633612. [Online]. Available:
http://www.amazon.com/Design-Patterns-Elements-Reusable-
Object-Oriented/dp/0201633612.

[10] A. Korzunov. (2018). react-imported-component, GitHub, [Online].
Available:
https://github.com/theKashey/react-imported-component
(visited on Dec. 24, 2018).

[11] Gatsby contributors. (2019). GatsbyJS, [Online]. Available:
https://www.gatsbyjs.org/ (visited on May 12, 2019).

[12] Liferay, Inc. (2019). Portlets, Liferay Developer Network, [Online].
Available: https://dev.liferay.com/en/develop/tutorials/-
/knowledge_base/7-0/portlets (visited on Jan. 7, 2019).

[13] R. Sezov, Liferay in Action: The Official Guide to Liferay Portal
Development, 1st ed. Manning Publications, 2011, isbn: 193518282X.
[Online]. Available: https://www.amazon.com/Liferay-Action-
Official-Portal-Development/dp/193518282X.

[14] Dan Abramov and the Redux documentation authors. (2019). Store
setup, Redux, [Online]. Available:
https://redux.js.org/faq/store-setup#can-or-should-i-
create-multiple-stores-can-i-import-my-store-directly-
and-use-it-in-components-myself (visited on Apr. 28, 2019).

[15] Facebook, Inc. (2018). React, A JavaScript library for building user
interfaces, [Online]. Available: https://reactjs.org/ (visited on
Dec. 23, 2018).

[16] R. Wieruch, The Road to Learn React: Your Journey to Master Plain
yet Pragmatic React.js. Independently published, 2018, isbn:
9781720043997. [Online]. Available: https://www.amazon.com/Road-
learn-React-pragmatic-React-js/dp/172004399X.

[17] Facebook, Inc. (2018). Virtual DOM and internals, React, [Online].
Available: https://reactjs.org/docs/faq-internals.html (visited
on Dec. 24, 2018).

[18] ——, (2018). Reconciliation, React, [Online]. Available:
https://reactjs.org/docs/reconciliation.html (visited on
Dec. 23, 2018).

[19] ——, (2018). Portals, React, [Online]. Available:
https://reactjs.org/docs/portals.html (visited on Dec. 24,
2018).

[20] Lundegaard a.s. (2018). React Union, GitHub, [Online]. Available:
https://github.com/lundegaard/react-union (visited on Jan. 7,
2019).

32

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://github.com/theKashey/react-imported-component
https://www.gatsbyjs.org/
https://dev.liferay.com/en/develop/tutorials/-/knowledge_base/7-0/portlets
https://dev.liferay.com/en/develop/tutorials/-/knowledge_base/7-0/portlets
https://www.amazon.com/Liferay-Action-Official-Portal-Development/dp/193518282X
https://www.amazon.com/Liferay-Action-Official-Portal-Development/dp/193518282X
https://redux.js.org/faq/store-setup#can-or-should-i-create-multiple-stores-can-i-import-my-store-directly-and-use-it-in-components-myself
https://redux.js.org/faq/store-setup#can-or-should-i-create-multiple-stores-can-i-import-my-store-directly-and-use-it-in-components-myself
https://redux.js.org/faq/store-setup#can-or-should-i-create-multiple-stores-can-i-import-my-store-directly-and-use-it-in-components-myself
https://reactjs.org/
https://www.amazon.com/Road-learn-React-pragmatic-React-js/dp/172004399X
https://www.amazon.com/Road-learn-React-pragmatic-React-js/dp/172004399X
https://reactjs.org/docs/faq-internals.html
https://reactjs.org/docs/reconciliation.html
https://reactjs.org/docs/portals.html
https://github.com/lundegaard/react-union

...................................... C. References

[21] Facebook, Inc. (2019). Create React App, Set up a modern web app by
running one command, [Online]. Available:
https://facebook.github.io/create-react-app/ (visited on
Jan. 7, 2019).

[22] Liferay, Inc. (2019). liferay-npm-bundler, Liferay Developer Network,
[Online]. Available:
https://dev.liferay.com/en/develop/tutorials/-
/knowledge_base/7-0/liferay-npm-bundler (visited on Jan. 7,
2019).

[23] Node.js Foundation. (2019). Node.js, [Online]. Available:
https://nodejs.org/en/ (visited on Jan. 7, 2019).

[24] Airbnb, Inc. (2019). Hypernova, A service for server-side rendering
your JavaScript views, [Online]. Available:
https://github.com/airbnb/hypernova (visited on Jan. 7, 2019).

[25] B. Hughes. (2018). Operationalizing Node.js for server side rendering,
Medium, Airbnb, [Online]. Available:
https://medium.com/airbnb-engineering/operationalizing-
node-js-for-server-side-rendering-c5ba718acfc9 (visited on
Jan. 2, 2019).

[26] J. Gillmore. (2019). React Universal Component, GitHub, [Online].
Available:
https://github.com/faceyspacey/react-universal-component
(visited on May 17, 2019).

[27] ——, (2019). Webpack Flush Chunks, GitHub, [Online]. Available:
https://github.com/faceyspacey/webpack-flush-chunks (visited
on May 17, 2019).

[28] ——, (2019). extract-css-chunks-webpack-plugin, GitHub, [Online].
Available: https://github.com/faceyspacey/extract-css-chunks-
webpack-plugin (visited on May 17, 2019).

[29] ——, (2019). babel-plugin-universal-import, GitHub, [Online].
Available: https://github.com/faceyspacey/babel-plugin-
universal-import (visited on May 17, 2019).

[30] Facebook, Inc. (2014). Flow, A static type checker for JavaScript,
[Online]. Available: https://flow.org/ (visited on Jan. 7, 2019).

[31] M. Mueller. (2016). Fast, flexible, and lean implementation of core
jQuery designed specifically for the server. GitHub, [Online]. Available:
https://github.com/cheeriojs/cheerio (visited on Jan. 2, 2019).

[32] L. Chung. (2017). Server side rendering with GraphQL, Apollo
GraphQL, [Online]. Available:
https://blog.apollographql.com/how-server-side-rendering-
works-with-react-apollo-20f31b0c7348 (visited on Jan. 4, 2019).

33

https://facebook.github.io/create-react-app/
https://dev.liferay.com/en/develop/tutorials/-/knowledge_base/7-0/liferay-npm-bundler
https://dev.liferay.com/en/develop/tutorials/-/knowledge_base/7-0/liferay-npm-bundler
https://nodejs.org/en/
https://github.com/airbnb/hypernova
https://medium.com/airbnb-engineering/operationalizing-node-js-for-server-side-rendering-c5ba718acfc9
https://medium.com/airbnb-engineering/operationalizing-node-js-for-server-side-rendering-c5ba718acfc9
https://github.com/faceyspacey/react-universal-component
https://github.com/faceyspacey/webpack-flush-chunks
https://github.com/faceyspacey/extract-css-chunks-webpack-plugin
https://github.com/faceyspacey/extract-css-chunks-webpack-plugin
https://github.com/faceyspacey/babel-plugin-universal-import
https://github.com/faceyspacey/babel-plugin-universal-import
https://flow.org/
https://github.com/cheeriojs/cheerio
https://blog.apollographql.com/how-server-side-rendering-works-with-react-apollo-20f31b0c7348
https://blog.apollographql.com/how-server-side-rendering-works-with-react-apollo-20f31b0c7348

C. References......................................
[33] JS Foundation and other contributors. (2019).

webpack-dev-middleware, A development middleware for Webpack,
[Online]. Available:
https://github.com/webpack/webpack-dev-middleware (visited
on Apr. 28, 2019).

[34] 60frames. (2019). Webpack hot server middleware, Hot reload
Webpack bundles on the server, [Online]. Available:
https://github.com/60frames/webpack-hot-server-middleware
(visited on Apr. 28, 2019).

[35] J. Gillmore. (2019). Universal Demo, GitHub, [Online]. Available:
https://github.com/faceyspacey/universal-demo (visited on
May 17, 2019).

[36] Liferay, Inc. (2019). Download Liferay Portal CE, Liferay, [Online].
Available: https://www.liferay.com/downloads-community (visited
on May 12, 2019).

[37] The Apache Software Foundation. (2019). Apache JMeter, [Online].
Available: https://jmeter.apache.org/ (visited on May 11, 2019).

[38] Guru99. (2019). How to use JMeter for performance & load testing,
[Online]. Available:
https://www.guru99.com/jmeter-performance-testing.html
(visited on May 11, 2019).

[39] Google LLC. (2019). Chrome DevTools, Google Developers, [Online].
Available:
https://developers.google.com/web/tools/chrome-devtools/
(visited on May 12, 2019).

[40] 4G.co.uk Limited. (2014). How fast is 4G?, 4G speeds and UK network
performance, [Online]. Available:
https://www.4g.co.uk/how-fast-is-4g/ (visited on May 12, 2019).

[41] Google LLC. (2019). Time to Interactive, Google Developers, [Online].
Available: https:
//developers.google.com/web/tools/lighthouse/audits/time-
to-interactive (visited on May 12, 2019).

[42] Yarn contributors. (2016). Installation, Yarn, [Online]. Available:
https://yarnpkg.com/en/docs/install (visited on Jan. 7, 2019).

[43] Gradle Inc. (2019). Gradle Build Tool, [Online]. Available:
https://gradle.org/ (visited on May 14, 2019).

[44] Liferay, Inc. (2019). Felix Gogo Shell, Liferay Developer Network,
[Online]. Available:
https://dev.liferay.com/en/develop/reference/-
/knowledge_base/7-0/using-the-felix-gogo-shell (visited on
May 14, 2019).

34

https://github.com/webpack/webpack-dev-middleware
https://github.com/60frames/webpack-hot-server-middleware
https://github.com/faceyspacey/universal-demo
https://www.liferay.com/downloads-community
https://jmeter.apache.org/
https://www.guru99.com/jmeter-performance-testing.html
https://developers.google.com/web/tools/chrome-devtools/
https://www.4g.co.uk/how-fast-is-4g/
https://developers.google.com/web/tools/lighthouse/audits/time-to-interactive
https://developers.google.com/web/tools/lighthouse/audits/time-to-interactive
https://developers.google.com/web/tools/lighthouse/audits/time-to-interactive
https://yarnpkg.com/en/docs/install
https://gradle.org/
https://dev.liferay.com/en/develop/reference/-/knowledge_base/7-0/using-the-felix-gogo-shell
https://dev.liferay.com/en/develop/reference/-/knowledge_base/7-0/using-the-felix-gogo-shell

Appendix D
Abbreviations

AJAX Asynchronous JavaScript and XML. 4

AMD Asynchronous Module Definition. 21

API application programming interface. 7, 8, 12, 19

CMS content management system. 6, 7, 9–11

CSR client-side rendering. 12, 19, 22, 23

CSS Cascading Style Sheets. 2

DOM Document Object Model. 1, 3, 8, 9, 12, 17

FCP First Contentful Paint. 1, 23

HTML Hypertext Markup Language. vi, ix, 2, 3, 5, 8–13, 15, 17, 21–24

HTTP Hypertext Transfer Protocol. vi, 11, 12

I/O input/output. 11, 12

ID identifier. 9

JS JavaScript. vi, ix, 1–8, 10–12, 15, 17, 18, 21–24

JSON JavaScript Object Notation. 9

JSX JavaScript XML. 8

JVM Java Virtual Machine. 11

NOOP no operation. 3

PHP PHP: Hypertext Preprocessor. 1

REST Representational State Transfer. 7, 12

35

D. Abbreviations
SEO search engine optimization. vi

SPA single-page application. vi, 1–3, 6, 7

SSR server-side rendering. viii, ix, 2–6, 10–13, 15, 17–19, 21–25, 28

TCP Transmission Control Protocol. 15

TTI Time to Interactive. 24

UI user interface. 2, 7, 8

UML Unified Modeling Language. viii, 13, 14

XML Extensible Markup Language. 4, 8

36

	Rendering of web pages
	React and enterprise portals
	Architecture
	Implementation
	Load speed improvements
	Conclusion
	Guide to local deployment
	Contents of the enclosed CD
	References
	Abbreviations

