
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Radio Engineering

Web Application for Visualization of Air Pollution in a Big Cities

Bachelor’s Thesis

Kseniia Chumachenko

Field of study: Communications, multimedia and electronics

Supervisor: Ing. Stanislav Vítek, Ph.D.

May 2019

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

446427Personal ID number:Chumachenko KseniiaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Radioelectronics

Communications, Multimedia, ElectronicsStudy program:

Multimedia TechnologyBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Web Application for Visualization of Air Pollution in a Big Cities

Bachelor’s thesis title in Czech:

Webová aplikace pro vizualizaci znečištění vzduchu ve velkých městech

Guidelines:
1) Gather requirement for the publicly available web application for visualization of air pollution in big cities. An application
will use aggregated publicly available data.
2) Introduce possible technologies capable of fulfilling all the requirements. Compare technologies and propose solution
of the problem. Propose GraphQL interface.
3) Design and implement the application. If possible, propose and perform unit testing.

Bibliography / sources:
[1] Alex Banks, Eve Porcello, Learning React, O'Reilly Media, 2017.
[2] Wieruch Robin, The Road to GraphQL, 2018 [accessible online]

Name and workplace of bachelor’s thesis supervisor:

Ing. Stanislav Vítek, Ph.D., Department of Radioelectronics, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2019Date of bachelor’s thesis assignment: 12.02.2019

Assignment valid until: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Mgr. Petr Páta, Ph.D.
Head of department’s signature

Ing. Stanislav Vítek, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Declaration

I declare that I have completed the presented thesis independently and that I wrote

down all the used sources in accordance with the methodological instruction on ethical

principles in academic theses.

In Prague, 24. May 2019

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré

použité informační zdroje v souladu s Metodickým pokynem o dodržovaní etických

principů při přípravě vysokoškolských závěrečných prací.

V Praze dne 24. května 2019

Abstract

This thesis focuses on the implementation of the client side of the web application for

Air2Day platform. The main idea is to study the software development lifecycle, which

allows to perform task division, model the solution, and technologies overview in order

to implement the modelled solution.

Keywords:

Software, software development lifecycle, client-server architecture, web, JavaScript,

Typescript, HTML, CSS

Abstrakt

Tato práce se zaměřila na implementaci klientské stránky webové aplikace pro

platformu Air2Day. Hlavní myšlenkou je studium životního cyklu vývoje softwaru, který

umožňuje provádět rozdělení úkolů a modelovat řešení a přehled technologií s cílem

implementovat modelované řešení.

Kličková slova:

Software, životní cyklus vývoje softwaru, klient-server architektura, web, JavaScript,

Typescript, HTML, CSS

Contents
Contents .. 1

Introduction .. 1

1. Product development lifecycle .. 2

1.1. Requirements prioritization techniques and decision making 3

1.1.1. MoSCoW method ... 4

1.1.2. Cost-value approach ... 5

1.2. Design ... 8

1.3. Development .. 11

1.4. Testing & QA .. 12

1.5. Deployment .. 12

1.6. Maintenance & Technical support ... 12

2. Air2Day implementation .. 13

2.1. Validation ... 13

2.2. Prototyping ... 15

2.3. Front-end development technologies overview .. 15

2.3.1. JavaScript frameworks and libraries ... 16

2.3.1.1. React project setup ... 21

2.3.2. GraphQL client side .. 22

2.3.3. Data visualization library .. 24

2.3.4. Map provider .. 24

2.3.5. UI Kit ... 25

3. Conclusion ... 26

4. References ... 27

5. Attachments .. 29

5.1. List of attachments .. 29

5.1.1. Attachment 1: Air2Day prototypes ... 30

5.1.2. Attachment 2: File air2day.zip .. 34

 1

Introduction

The aim of this thesis is to cover the first iteration of the implementation of the client-

side of a web application for Air2Day platform, the ambition of which is to compensate

the lack of fine monitoring of the air pollution and inform people about the current and

forthcoming states of the air quality, empowering them to live healthier lives and create

more sustainable business.

The long-term achievement of this ambitious mission was possible with the aid of real-

time tracking system of fine particles at human respiratory levels and across streets and

roads of densely inhabited areas with state-of-the-art moving and static sensors and an

open-API platform for own or 3rd party data processing.

The first iteration of the web application for Air2Day platform has to cover the

representation of aggregated publicly available data. To accomplish the mentioned goal,

the software will be considered as a product and its potential lifecycle will be researched

in the next chapter. Based on the knowledge learned from the research, the

implementation has to be estimated. The research on the technologies and libraries

possible to be used in order to implement the web application will be done, as well, and

it is covered in “Air2Day implementation” chapter.

 2

1. Product development lifecycle

One of the most depreciated parts of software development, by the technical mindsets,

is the management. The management refers to all “non-coding” processes needed for

the establishment of the final product. These processes have to be described, as well, in

order to define the way of efficient target-setting for the implementation of the

technical solution.

Software development lifecycles may differ and have some individual steps, which are

specific to the company and product. In this chapter, we will take a look at the common

and necessary stages that are applicable to any software. The following lifecycle stages

will be considered:

Figure 1. Software development lifecycle

Requirement
gathering &

Scoping

Design

Development

Testing & QA

Deployment

Maintenance &
Technical
support

 3

1.1. Requirements prioritization techniques and decision

making

The first stage of the lifecycle is scoping and setting up the requirements, based on the

client request.

“A requirement is a necessary attribute in a system, a statement that

identifies a capability, characteristic, or quality factor of a system in

order for it to have value and utility to a customer or user.” (1)

In software development, the term requirement stands for a „must-have” functionality

that should be performed. Setting well-defined requirements provides high flexibility

and transparency of the development process by setting up exact tasks.

The aspects of prioritization that are usually considered are (2):

• Importance: multi-faceted term, but it stands, for example, for features which

are must-have in the supposed product, or for those that require urgent

implementation;

• Penalty: an estimate of the loss in case the requirement is not fulfilled;

• Cost: an estimate of the implementation cost supported by the developing

company;

• Time: time frame needed for the implementation of the solution which fulfils the

requirement;

• Risk: technical relevancy, market behaviour, external regulations, etc. are factors

which also have an impact on the requirement;

• Volatility: very often taken as a part of the risk. It can also depend on business

requirements changes, legislative changes or the requirement becoming clear

only during the development process. It detrimentally affects planning and

stability of the project.

• Other aspects: those are individual to the project. Competitors, release theme,

financial benefit, etc.

 4

The outcome of the requirement prioritization process is usually a scale; for the least

robust techniques it is a nominal or ordinal scale and for the more powerful it is a ratio

scale, due to the fact that it allows you to see not just the importance order, but also

how one task is more important than the other. (2)

Numerous prioritization techniques exist, some of the most well-known in software

development are presented in the subchapters bellow.

1.1.1. MoSCoW method

This method was developed by the Dai Clegg in 1994 (3). It has gained popularity

because of its simplicity, universality, and suitability for the small projects. The outcome

of this method is a nominal scale, where the requirements are grouped in four classes

of different priority, the importance of the requirements inside of the class being equal.

The name of the method is an acronym derived from the name of the classes.

The classes are the following (4):

1. Must have

Each and every MUST requirement is considered critical and has to be

implemented first. If at least one requirement from this class remains unfulfilled,

it leads to the failure of the project.

2. Should have

Set of the important, but not critical requirements, the unfulfillment of which

remains unpleasant, but does not lead to failure.

3. Could have

‘Nice to have’ features, which will be postponed first in case of timescale collapse

during development.

4. Won’t

This class is minor for the prosperity of the project and definitely won’t be

fulfilled until the next deadline.

The main disadvantage of this method is the subjectivity in the assessment and the

absence of any individual value assigned, which could lead to inaccurate results.

 5

1.1.2. Cost-value approach

One of the most popular methods of requirement prioritization is the cost-value

approach, created by Joachim Karlsson and Kevin Ryan. The main idea is to assign to

each requirement its cost of implementation and the value that the requirement has.

This method involves five steps (5):

b) Requirements review, to ensure they are comprehensive and clear;

c) Customers or users perform a cost/value estimation of the requirements based

on AHP’s1 pairwise comparison;

d) Developers perform a cost/value estimation of the requirements based on AHP’s

pairwise comparison;

e) Developers create a diagram with value on the y-axis and cost on the x-axis;

f) Based on cost-value, the diagram project manager (stakeholder) makes a

decision about implementation.

The steps described above include the so-called Analytic Hierarchy Process (AHP) also

known as a mathematical tool for a systematic approach to complex decision-making

problems.

AHP does not prescribe to the decision maker (DM) any “correct” decision but allows

them to interactively find an option that is in the best way consistent with his

understanding of the nature of the problem and the requirements for the solution.

This method was developed by the American mathematician Thomas L. Saaty, who

wrote books about this method, developed software products, and has been conducting

ISAHP 2 symposiums for 20 years. AHP is widely used in practice and actively developed

by scientists around the world. Along with mathematics, it is also based on psychological

aspects. AHP allows us to structure the complex problem of decision making in the form

of a hierarchy in a clear and rational way, to compare and quantify alternative solutions.

The method of analysing hierarchies is used throughout the world to make decisions in

a variety of situations: from management at the interstate level to solving industrial and

private problems in business, health care, and education.

1 Analytic Hierarchy Process
2 International Symposium on Analytic Hierarchy Process

 6

AHP consists of four steps (6):

1. Create 𝑛 × 𝑛 matrix of 𝑛 requirements.

For example, assuming that we have four requirements to be estimated; by

inserting those candidates into rows and columns we are getting a matrix of

order 4 × 4.

2. Evaluate relative intensity requirements with the aid of pairwise comparison on

each criterion.

Evaluation based on scale represented in Table 1.

Relative intensity Definition Explanation

1 Of equal value Two requirements are of equal value

3 Slightly more value
Experience slightly favors one

requirement over another

5
Essential or strong

value

Experience strongly favors one

requirement over another

7 Very strong value
A requirement is strongly favored and its

dominance is demonstrated in practice

9 Extreme value

The evidence favoring one over another

is of the highest possible order of

affirmation

2, 4, 6, 8

Intermediate values

between two

adjacent judgments

When compromise is needed

Reciprocals

If requirement i has one of the above numbers assigned to it when

compared with requirement j, then j has the reciprocal value when

compared with i.

Table 1. Scale for pairwise comparison. Taken from (7)

Matrix filled in row to column comparison order. For example, in the beginning

Req1 compared to Req1, relative intensity is equal, field filled with 1. Then Req1

 7

compared to Req2, relative intensity of Req2 is “slightly more”, field filled with

1/3, and so on. The matrix could be the following:

 Req1 Req2 Req3 Req4

Req1 1 1/3 2 4

Req2 3 1 5 3

Req3 1/2 1/5 1 1/3

Req4 1/4 1/3 3 1

Table 2. Requirement comparison matrix

3. Estimated eigenvalues of the comparison matrix.

This step consists of the normalization of each column, calculation of the sum of

the rows, and the normalization of the sum (i.e. divide sum by the number of

requirements). The results can look like this:

 Req1 Req2 Req3 Req4 SUM Normalized SUM

Req1 0,21 0,18 0,18 0,48 1,05 0,26

Req2 0,63 0,54 0,45 0,36 1,98 0,50

Req3 0,11 0,11 0,09 0,04 0,34 0,09

Req4 0,05 0,18 0,27 0,12 0,62 0,16

Table 3. Estimated eigenvalues of the comparison matrix

4. Set the relative values of the requirements according to the normalized sum.

Continuing the above example, the following total values of the requirements

are obtained 1:

Req1: 26%

Req2: 50%

Req3: 9%

Req4: 16%

1 Note, the sum of the percentage result is 101%, while it should be 100%. This is given by the rounding off of the matrix’s
eigenvalues and is not an error.

 8

It is worth mentioning that AHP is the most time-consuming part of this approach.

Sometimes the cost-value approach is used in a simplified manner: the position of the

requirement on the diagram depends on the subjective comparison of the requirements

to each other and the agreement of the stakeholders. In this case, the method loses the

benefit of the ratio scale and becomes more judgemental, but also less laborious.

1.2. Design

The design is a flexible stage and its definition depends on the nature of the developed

software.

As it was mentioned in the introduction, the scope of this thesis is to implement the

client-side of the web application. Before going into details, related specifically to the

client-side design, I would like to recall basic concepts of software engineering.

The Client-server term refers to the software architecture model, which basically

describes the existence of the provider of the service, called server, and the consumer

of this service or the requester, called client (8). In modern web jargon, the server side

is called “Back-end” and client side called “Front-end”.

The Back-end usually includes three major parts:

• the database, which stores the data;

• the server, which receives the requests;

• the application, which processes the requests, fetches data from the database,

possibly processes the data and sends a response on request;

The request formats are unified by an API1. The most popular API architectures are

SOAP2 , REST3 , and GraphQL, which is rather a specification, than an architecture and

which has gained popularity in recent years.

In terms of back-end design, the stage could be briefly represented by the following

steps:

• High-level design:

1 Application Programming Interface
2 Simple Object Access Protocol
3 Representational State Transfer

 9

o in terms of database: identify tables and key elements;

o in terms of server-side software: identify modules, draft their

functionality, relations and dependencies between modules;

• Low-level design:

o in terms of database: define the type and size of the tables;

o in terms of server-side software: define the module logic and the

functionality along with inputs and outputs;

Front-end is an interface between the user and back-end, which means that Front-end

responsibilities usually include:

• interaction with the user;

• sending the request to back-end;

• representation of the received response;

The interaction with the user implies UI1. UI has its own set of specifications, which cover

actions and interactions the end user can perform (9). The UI has to consider the

usability; for this another design pattern, called UX2, stands.

Front-end and back-end are equally important parts in terms of end-state, but in terms

of software, they are separated products with different approaches. While back-end is

strictly set on serving information efficiently, front-end has to consider not only the flow

of the data received from back-end, but also the variety of subjective factors related to

user perception.

Jean Kaiser assigned the following goals for the design stage of front-end (10):

• Simplicity

“Just because you can, doesn’t mean you should.” Jean Kaiser

Web pages from the late 90’s and early 00’s are some of the best examples of

overwhelming the user with redundant animations, music in the background and

a colour palette denser than a rainbow. The lack of designers in development

1 User Interface
2 User experience

 10

departments leads to the same problems today. But since minimalism is in

fashion, and a variety of ready-made templates exist, the situation is better.

• Consistency

From the user point of view, the web application is a physical place, navigating

from one page to another and should lead to a feeling of a closed system. Each

and every page has to be part of the same template and act in the same manner,

the colours should follow one scheme, and text content should have consistent

fonts.

• Identity

The web app for a construction company will not be the same as web app for a

music band. Consistency, not only inside of the template, but with the domain it

was made for, is important as well. Set up an identity and your user groups;

• Robustness

Based on the identity, re-evaluate your requirements; specific user groups can

bring additional expectations. Make sure your content is robust enough;

• Navigability

Use best practices; it’s not a good time use your brilliant imagination and

reinvent a wheel. The web app navigation has to be intuitive and positioned in a

predictable location, external links have to be visually identified, cursors have to

change accordingly;

• Visual Appeal

If you achieved simplicity, add some aesthetic value. Pay attention to the look

and feel of the content you provide, do it in the most natural way. Keep the

interface simple and intuitive, with a focus on content – this strategy never fails;

• Compatibility

Based on the identity, define the environments the application should be

compatible with.

Based on the described goals, the front-end design requires numerous skills from a

single developer. This is why, in commercial product development, the responsibilities

are divided between the UI designer, the UX designer and the front-end developer.

 11

Roger S. Pressman in his book “Software Engineering: A Practitioner's Approach” (10)

offers to follow the design pyramid in Figure 2, where the levels represent design

actions.

The first two levels represent the platform design, the selection of technology, and the

application architecture. The other levels are about filling the skeleton with actions and

content. The outcome of this process is usually wireframes or prototypes of future UI,

with so-called user stories, which describe the behaviour of particular parts of an

interface.

user

technology

Figure 2. Design Model. Take from (10)

1.3. Development

In this stage, the actual implementation starts. If the previous stages performed properly

and the requirements were transformed into user stories without loss, the coding

should be painless. Unfortunately, such an ideal situation is very rare. Even the most

experienced specialist can fail to predict some details, leading to the correction of the

tasks on the fly, or in the worst situation, to the reimplementation of some functionality.

The outcome of this stage is the build of the product that could be deployed.

The development process could be committed according to some specific model. The

model is kind of a framework that the development team chooses individually. The most

popular models these days are Waterfall and Agile.

Interface design

Aesthetic design

Content design

Navigation design

Architecture design

Component design

 12

1.4. Testing & QA1

Testing is usually a subcategory of the Design and Development stages. The wireframes

or prototypes have to be tested in terms of intuitiveness and user-friendliness. The code

created during development is usually written along with tests for particular modules.

The UI can be tested manually or with automated tests.

The final testing had to check the whole build and assure the absence of critical issues,

otherwise, the product is not ready for delivery to the customer.

1.5. Deployment

After the testing and possible error/bug fixing are done, the formal release and product

deployment occur.

1.6. Maintenance & Technical support

The main goal is to ensure that the customer has no obstacles to use application. Once

the product is deployed, it has to be monitored. While the customers are using the

product, possible problems and bugs can occur and have to be fixed. If the product

nature requires it, the current version will be upgraded or enhanced.

1 Quality assurance

 13

2. Air2Day implementation

During the summer semester of 2019, the first iteration of Air2Day was implemented.

The high-level idea of this implementation was the following:

• aggregate data about air pollution from static sensors of known locations (done

by the chief scientist of the project);

• implement back-end with the database based on the aggregated data and

GraphQL API (had to be done by the Master’s degree student involved in the

project);

• implement front-end that communicates with the GraphQL API and represents

the provided data (scope of this thesis);

2.1. Validation

The front-end implementation started with target-setting, i.e. requirement gathering,

and defining of so-called user-stories (i.e. scenarios of how the requested requirement

should be fulfilled through the application’s performance). The fictional stakeholders

are the user and the developer. The developer was used with the aim of describing

maintenance and technical tasks, even though it is not a usual persona. Connextra

template, recommended by Mike Cohn in his book “User Stories Applied: For Agile

Software Development”, was used in order to perform the feature description (11):

“I as a <role> want <function> so that <value>”

Even though some of the user stories may seem obvious, the clarification of the reasons,

why a particular feature is on the to-do list instead of others, sometimes brings not only

a deeper understanding of product objectives, but even new requirements.

 The following results were produced:

a) Compatibility with GraphQL API

Story: “I, as a developer, want to have compatibility with the GraphQL API client,

so that data could be fetched from the server.”

b) The representation of sensor locations on the map has to be included

 14

Story: “I, as a user, want to see sensors on the map, so that I know where the

data collecting units are located.”

c) A table representation of the gathered data has to be included

Story: “I, as a user, want to see a table representation of the gathered data, so

that the content is clear and well-arranged.”

d) A chart representation and of the data has to be included

Story: “I, as a user, want to see a chart representation of the gathered data, so

that I have a picture of the pollution trends.”

e) Instruments for data filtration by time periods, locations, etc.

Story: “I, as a user, want to data filtration be available, so that I’m able to setup

graphs or tables according to the desired data.”

f) Maximize cross-browser compatibility

Story: “I, as a user, want a maximum browser compatibility, so that I’m able to

open web page in any browser available to me at the moment.”

g) Maximize uniqueness of the design

Story: “I, as a developer, want my product design to be unique so that it will be

remembered.”

h) Compatibility with mobile devices

Story: “I, as a user, want the web application to be compatible with a mobile

device, so that I’m able to open it when my laptop is not available.”

i) Accessibility

Story: “I, as a user with disabilities, want the web application to be accessible so

that I have the opportunity to be informed about air pollution.”

The order of task implementation had to be defined. Between the MoSCoW method and

Cost-value approach, the first way of prioritization was used because of its simplicity,

and results are represented in Table 4:

MUST SHOULD COULD WON’T

a d e g

b f i

c h

Table 4. Prioritized requirement for Air2Day implementation

 15

As it can be seen in the last column, in the current release, I have no intention to focus

on the design but assure basic functionality and rule out the accessibility goal. It is worth

mentioning, that accessibility is a MUST long-term goal for the final implementation,

and it is ruled out here only because this version will not be available to users.

2.2. Prototyping

Based on the drawn-up user-stories, first pencil sketches, and then prototypes were

created using the online service Figma. For the prototyping of the desktop version, a

MacBook Pro preset with 1440x900 resolution was used and for the mobile version, an

iPhone SE preset with 320x568 resolution was used, with the assumption that it is one

of the smallest devices on the market today. In order to achieve the best user

experience, the following differences between the mobile and the desktop layout exist.

The desktop layout was divided vertically and the map was placed on the left half of the

display. The mobile layout was divided horizontally and the map placed in the upper

part. It was done with the aim to prevent inconvenience in the display while scrolling.

Currently, the existing requirements imply the existence of only two screens, but a

navigation bar was created with the assumption of functionality extension.

The created prototypes have an auxiliary character of mock-ups because they are not

set on design. A ready-made kit of UI components will be used, which will be discussed

in the following chapter. The exported prototypes are available in 5.1.1. Attachment 1:

Air2Day prototypes.

2.3. Front-end development technologies overview

The front-end was based on three pillars, i.e. coding languages:

• HTML1 - used to create a structured skeleton of web page layout;

• CSS2 - used to style the pieces created with the HTML structure;

• JS3 - used to add functionality and interactivity;

1 Hyper-Text Markup Language
2 Cascading Style Sheets
3 JavaScript

 16

In order to give the back-end technology a client-side, rendering is required. What this

means is that the browser receives the bare-bones of the HTML and JS files that will be

rendered, the benefit of this technology being the high interface interactivity and

probably, the only disadvantage is the longer initial load time. The client-side rendering

approach became very popular in the development of JS frameworks and libraries. In

comparison to the server-side rendering, a ready-made HTML with already filled data is

received by the browser. This is a static approach, and the full page has to be reloaded.

It also leads to frequent requests to the server.

2.3.1. JavaScript frameworks and libraries

The software framework defines the whole application design, while the libraries are

functions that can be in the code. None of these technologies is preferred over the other

because both of them are, theoretically, flexible enough and serve our needs.

In order to select one of the frameworks/libraries, the most popular were compared

using the AHP technique mentioned in Cost-value approach description. The most

popular frameworks/libraries to be compared: Angular, React, Ember.js and Vue.js.

Each framework/library was compared according to each of the criteria and the

following results were obtained:

a) Usage statistic (based on the received stars on the GitHub service on

20.05.2019):

• Angular – 48 241 (12)

• React – 129 389 (13)

• Ember.js – 20 984 (14)

• Vue.js – 138 937 (15)

There was no need to calculate the estimated eigenvalues here, relative values

were calculated directly: Angular – 14,3 %, React – 38,3 %, Ember.js – 6,2 %,

Vue.js – 41,2 %.

b) Compatibility with TS1:

TS is a superset of JS with a static type checking, used in order to prevent possible

type errors. Any of the JS frameworks should be TS compatible with additional

1 TypeScript

 17

compilers and tricks around. But of course, the best solution for us is official

support or solution that does not require much effort and is maintainable in the

future. The official documentation provided the following results:

• Angular (besides AngularJS, which is legacy solution) is a completely TS

based framework (16);

• For React and Vue.js official documentation (17) (18) confirmed the

support of TS and the existence of tools available for it;

• Information about TS support in Ember.js official documentation is very

short and uninformative, no official tools provided (19);

The results of the AHP calculation presented in Table 5 and Table 6, converted to

relative values results of comparison, are the following: Angular – 52 %, React –

20 %, Ember.js – 8 %, Vue.js – 20 %.

 Angular React Ember.js Vue.js

Angular 1 3 5 3

React 1/3 1 3 1

Ember.js 1/5 1/3 1 1/3

Vue.js 1/3 1 3 1

Table 5. Comparison matrix of TS compatibility

 Angular React Ember.js Vue.js SUM Norm. SUM

Angular 0.54 0.56 0.42 0.56 2.08 0.52

React 0.18 0.19 0.25 0.19 0.80 0.20

Ember.js 0.11 0.06 0.08 0.06 0.32 0.08

Vue.js 0.18 0.19 0.25 0.19 0.80 0.20

Table 6. Estimated eigenvalues of the comparison matrix of TS compatibility

c) Availability of work experience with framework/library:

This is the most subjective criterion to compare, but still very important. The

absence of the need to learn significantly increases the developer’s efficiency

 18

and leaves more time for feature development instead of discovering the main

concepts of the technology.

The results of the AHP calculation presented in Table 7 and Table 8, converted

to relative values results are: Angular – 25 %, React – 55 %, Ember.js – 10 %,

Vue.js – 10 %.

 Angular React Ember.js Vue.js

Angular 1 1/3 3 3

React 3 1 5 5

Ember.js 1/3 1/5 1 1

Vue.js 1/3 1/5 1 1

Table 7. Comparison matrix of available experience

 Angular React Ember.js Vue.js SUM Norm. SUM

Angular 0.21 0.19 0.30 0.30 1.01 0.25

React 0.64 0.58 0.50 0.50 2.22 0.55

Ember.js 0.07 0.12 0.10 0.10 0.39 0.10

Vue.js 0.07 0.12 0.10 0.10 0.39 0.10

Table 8. Estimated eigenvalues of the comparison matrix of available experience

d) Quality of documentation:

Even the best technologies could remain unknown if they are poorly described.

Clear documentation is a prerequisite for a smooth learning curve. The

estimation using this criterion is mostly subjective as well and based on personal

impressions.

The documentation for Ember.js (19) was the only that left a bad impression

because of the mentioned earlier lack of content. Clear release notes for each

update and the recently added wide language support of the React

documentation (20) deserve positive feedback. Vue.js provides descriptive

 19

documentation in 8 languages (18). No claims addressed to Angular

documentation (16).

The results of the AHP calculation presented in Table 9 and Table 10, converted

to relative values results are: Angular – 16 %, React – 50 %, Ember.js – 8 %, Vue.js

– 26 %.

 Angular React Ember.js Vue.js

Angular 1 1/3 3 1/3

React 3 1 5 3

Ember.js 1/3 1/5 1 1/3

Vue.js 3 1/3 3 1

Table 9. Comparison matrix of documentation quality

 Angular React Ember.js Vue.js SUM Norm. SUM

Angular 0.14 0.18 0.25 0.07 0.64 0.16

React 0.41 0.54 0.42 0.64 2.00 0.50

Ember.js 0.05 0.11 0.08 0.07 0.31 0.08

Vue.js 0.41 0.18 0.25 0.21 1.05 0.26

Table 10. Estimated eigenvalues of the comparison matrix of documentation quality

e) Maintainability

Long-term support for of the application can become very complicated if the

update strategies of the framework-development team are not good or the

application can simply get stuck in its development if no updates are provided

over time.

For bad version compatibility, Angular is famous. The first two versions of the

framework were not compatible. Over time, the cross version compatibility has

improved but it still updates with significant changes and this is one of the

reasons why Angular lost its audience.

 20

Vue.js is the youngest framework that has only two generations. 90% of the API

remains the same in the second version compared to the first according to

documentation (21).

The react development team creates library updates very fast; upgrades go

smoothly if you not unduly prolong it. Otherwise, an upgrade after a few major

releases could be complicated. But it seems that that library continues to gain

popularity and applications being developed using React are likely to be

supported for a long time.

Ember.js future does not look as positive. The development team submits

features slowly and the Ember audience migrates to other solutions.

The results of the AHP calculation presented in Table 11 and Table 12, converted to

relative values results are: Angular – 20 %, React – 52 %, Ember.js – 8 %, Vue.js

– 20 %.

 Angular React Ember.js Vue.js

Angular 1 1/3 3 1

React 3 1 5 3

Ember.js 1/3 1/5 1 1/3

Vue.js 1 1/3 3 1

Table 11. Comparison matrix of documentation quality

 Angular React Ember.js Vue.js SUM Norm. SUM

Angular 0.19 0.18 0.25 0.19 0.80 0.20

React 0.56 0.54 0.42 0.56 2.08 0.52

Ember.js 0.06 0.11 0.08 0.06 0.32 0.08

Vue.js 0.19 0.18 0.25 0.19 0.80 0.20

Table 12. Estimated eigenvalues of the comparison matrix of documentation quality

Summary of the calculated results is next:

Criterion Angular React Ember.js Vue.js

a) 14.3 % 38.3 % 6.2 % 41.2 %

 21

b) 52 % 20 % 8 % 20 %

c) 25 % 55 % 10 % 10 %

d) 16 % 50 % 8 % 26 %

e) 20 % 52 % 8 % 20 %

Average: 25.46 % 43.06 % 8.04 % 23.44 %

Table 13. Summary of JS framework validation

Based on the performed evaluation, I came to the conclusion that React is the best

possible choice, not only because of the available personal experience, but also

because of the high flexibility and the good prospect of this library.

2.3.1.1. React project setup

To get started with the project setup, first, one of the package management tools has

to be installed on a local development machine. In our case Yarn was used. The

installation guide can be found in the official documentation (22). Another compulsory

tool is Node, a JavaScript runtime environment version 8.10 and newer, available on

the official web page (23).

React provides a quick starting solution to create a single-page application, called

Create React App. It is available online as a package that could be installed with Yarn,

npx or npm clients. This solution provides preinstalled and preconfigured tools such as

Babel (24) and Webpack (25) inside, which means ready-made browser compatibility

and compilation of the next generation JS into plain JS. A preconfigured version for TS

of Create React App exist as well, this being used for the Air2Day project setup, with

the following command:

yarn create react-app air2day –typescript

The created project can be run in the development mode using the following

command:

yarn start

To add/remove another dependency (package), the following command has to be
used:
yarn add package
yarn remove package

Where package is the name of the dependency you want to adjust.

 22

For the navigation between the components of the application, the react-router

package was added, along with its dependency react-router-dom.

In the aim of the future localization support react-intl package was added. Any text

that should be present on the page is defined as an object, where the id will be the

key for a message in different languages. Example:

…
home: {
 id: "screen.appBar.home",
 description: "screen.appBar.home",
 defaultMessage: "Home"
},
…

2.3.2. GraphQL client side

In order to build a client compatible with GraphQL API, Apollo Client (26) was used.

The following dependencies were installed:

• graphql

• react-apollo

• apollo-boost

• apollo-client

• apollo-link-context

This client is easy to set up. It is enough to just wrap React app with Apollo Provider as

it is demonstrated in the example below:

…
const httpLink = createHttpLink({
 uri: "your_uri",
 headers: {
 authorization: `your_autorization_header`
 }
});
const client = new ApolloClient({
 link: httpLink,
 cache: new InMemoryCache()
});

ReactDOM.render(

 23

 <ApolloProvider client={client}>
 <App />
 </ApolloProvider>,
 document.getElementById("root")
);
…

headers is an optional property, needed only if your server requires authorization.

 Another advantage of this client is the treatment of GraphQL queries as components.

The “Query” component returns an object that contains loading, error, and data

properties, and it allows us to manage the state and work on the UI in a very elegant

way. Example:

…
<Query>
 {({ data, loading, error }) => {
 if (loading) {
 return <Loading />;
 }
 if (error) {
 return <ErrorBanner />;
 }
 if (data) {
 console.log(data);
 }
 }}
</Query>
…

GraphQL code generator (27) was used to setup the Apollo Client with TS addition

library.

 The following dependencies were added:

• graphql-codegen-typescript-client

• graphql-codegen-typescript-common

These packages require configuration, which in our case is the folllowing codgen.yml:

overwrite: true
schema: "./schema.graphql"
documents: "**/*.graphql"
config:
 noNamespaces: true

 24

generates:
 src/generated/graphql.tsx:
 plugins:
 - typescript
 - typescript-operations
 - typescript-react-apollo

In other words, the installed library will base the types on the schema property, i.e.

file schema.graphql, the components will be generated from documents containing

queries, i.e. with *.graphql name.

2.3.3. Data visualization library

Based on the same criteria as for JS framework selection in previous subchapter and

the compatibility with React, the recharts (28) library was chosen for chart

representations. The library has a rich API that allows building the following charts:

• Area chart

• Bar chart

• Line chart

• Composed chart

• Pie chart

• Radar chart

• Radial bar chart

• Scatter hart

• Treemap

Moreover, the components of this library are very flexible when it comes to styling.

However, the default design is satisfactory as well.

2.3.4. Map provider

Between map providers, Google Map (29) has the most powerful API.

Unfortunately, most of the libraries which aim to serve Google Maps API in React are

very limited and do not cover what Google offers. In spite of that, in order to simplify

the first implementation steps, google-map-react (30) was used to connect Google

Map API to React.

The library to retrieve the addresses from latitude and longitude compatible with

typescript does not exist yet. This forced me to make asynchronous requests directly

 25

to the Google Maps API. This complicates the state management and adds code-style

inconsistency. Technically, this is not a problem but it is not an ideal situation either.

2.3.5. UI Kit

Material-UI (31) – a ready-made UI kit was used for the layout compassioning along

with Google's Material Design guidelines. The advantages of this approach are:

• Satisfactory initial design;

• High flexibility of the design construction;

• Time saving and the possibility to focus on feature development;

• The UI kit was already tested, so upon agreement with the supervisor, we

decided not to spend any time on rewriting tests;

 26

3. Conclusion

During the work on this thesis, the first iteration of the client-side web application for

Air2Day platform was implemented. With this purpose, the software development

workflow was examined together with the decision-making strategies. Based on the

knowledge gathered, the implementation was done.

According to the information provided by GitHub, the project is 93% of TypeScript, 5.0%

HTML and 2% of CSS. The project was built using:

• React

• Apollo Client

• Material-UI

• Recharts

• Google Map React

The project guides (installation, deployment), along with the prerequisites are in the

read.me file available in the root folder of the project.

The functionality implemented covers everything planned for the first iteration.

In the next iteration, Google Map React library will be replaced in favor of our own

implementation. This decision was made because of the inconvenience caused by the

library API and the very limited coverage of the Google Map API. There are only a few

libraries for React that work with Google Map API and all of them are badly supported

and very limited. Otherwise, the development went smoothly and the release of the

next version is planned for the middle of July 2019.

 27

4. References
1. Young, Ralph R. The Requirements Engineering. Norwood : ARTECH HOUSE, INC,

2004. 1-58053-266-7.

2. The Fundamental Nature of Requirements Engineering Activities as a Decision

Making Process. Aybüke Aurum, Claes Wohlin. 14, Sydney, Australia; Ronneby,

Sweden : Elsevier, 2003, Vol. 45. 000185957600002.

3. Clegg, Dai and Barker, Richard. Case Method Fast-Track: A Rad Approach. Boston :

Addison-Wesley Longman Publishing Co., Inc, 1994. 020162432X.

4. HYBRID APPROACH FOR REQUIREMENT PRIORITIZATION. Sherraz, Ahmed, Abbas,

Ahmad and Haad, Ali. 12, s.l. : IJSER, 2018, International Journal of Scientific &

Engineering Research, Vol. 9. 2229-5518.

5. A Cost–Value Approach for Prioritizing Requirements. Karlssonn, Joachim and Ryan,

Kevin. 5, s.l. : IEEE, 1997, Vol. 14. 1937-4194.

6. Relative measurement and its generalization in decision making why pairwise

comparisons are central in mathematics for the measurement of intangible factors the

analytic hierarchy/network process. Saaty, Thomas L. s.l. : Springer-Verlag, 2008. 1579-

1505.

7. The Analytic Hierarchy Process. T.L.Saaty. New York : McGraw-Hill, 1980.

8. Oluwatosin, Haroon Shakirat. Client-Server Model. Sintok : IOSR Journal of Computer

Engineering, 2014. Vol. 16.

9. Galitz, Wilbert O. The Essential Guide to User Interface Design. Toronto : Robert

Ipsen, 2002. 0-471-084646.

10. Pressman, Roger S. Software Engineering: A Practitioner's Approach. s.l. : Palgrave

Macmillan, 2005. 978-0-07-301933-8.

11. Cohn, Mike. User Stories Applied: For Agile Software Development. s.l. : Addison-

Wesley Professional, 2004. 978-0321205681.

12. angular. GitHub. [Online] [Cited: may 20, 2019.]

https://github.com/angular/angular.

13. react. GitHub. [Online] [Cited: may 20, 2019.] https://github.com/facebook/react/.

14. ember.js. GitHub. [Online] [Cited: may 20, 2019.]

https://github.com/emberjs/ember.js.

 28

15. vue. GitHub. [Online] [Cited: may 20, 2019.] https://github.com/vuejs/vue.

16. Docs. Angular. [Online] [Cited: may 20, 2019.] https://angular.io/docs.

17. Adding TypeScript. Create React App. [Online] [Cited: may 20, 2019.]

https://facebook.github.io/create-react-app/docs/adding-typescript.

18. TypeScript Support. Vue.js. [Online] [Cited: may 20, 2019.]

https://vuejs.org/v2/guide/typescript.html.

19. Web Development. Ember. [Online] [Cited: may 20, 2019.]

https://guides.emberjs.com/release/glossary/web-development/#toc_coffeescript-

typescript.

20. Languages. ReactJS. [Online] [Cited: may 20, 2019.] https://reactjs.org/languages.

21. Migration from Vue 1.x. Vue.js. [Online] [Cited: may 20, 2019.]

https://vuejs.org/v2/guide/migration.html.

22. Installation. Yarn. [Online] [Cited: may 22, 2019.]

https://yarnpkg.com/en/docs/install#mac-stable.

23. Home. Node.js. [Online] [Cited: may 22, 2019.] https://nodejs.org/en/.

24. Home. Babel. [Online] [Cited: may 22, 2019.] https://babeljs.io/.

25. Home. Webpack. [Online] [Cited: may 22, 2019.] https://webpack.js.org/.

26. Introduction. Apollo Docs. [Online] [Cited: may 20, 2019.]

https://www.apollographql.com/docs/react/.

27. GraphQL Code Generator. GitHub. [Online] [Cited: may 20, 2019.]

https://github.com/dotansimha/graphql-code-generator.

28. Home. Recharts. [Online] 2016. [Cited: may 20, 2019.] http://recharts.org/en-US/.

29. Maps JavaScript API . Google Maps Platform. [Online] [Cited: may 20, 2019.]

https://developers.google.com/maps/documentation/javascript/tutorial.

30. Google Map React. GitHub. [Online] [Cited: may 20, 2019.]

https://github.com/google-map-react/google-map-react.

31. MATERIAL-UI. Home. [Online] [Cited: may 20, 2019.] https://material-ui.com.

 29

5. Attachments

5.1. List of attachments

• Attachment 1: Air2Day prototypes

• Attachment 2: File air2day.zip

 30

5.1.1. Attachment 1: Air2Day prototypes

Figure 3. Mock-up of landing page. Desktop size

Figure 4. Mock-up of error banner. Desktop size

 31

Figure 5. Mock-up of data representation. Desktop size

Figure 6. Mock-up of chart representation. Desktop size

 32

Figure 7. Mock-up of landing page. Mobile version

Figure 8. Mock-up of error banner. Mobile version

 33

Figure 9. Mock-up of data representation. Mobile version

Figure 10. Mock-up of chart representation. Mobile version

 34

5.1.2. Attachment 2: File air2day.zip

Contains React project files along with a read.me file with installation instructions.

