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ABSTRACT

The monitoring of microcirculation becomes an attractive tool for
evaluation of state of health of critically ill patients. Microcirculary
alternations have been observed by patients with sepsis or organ failures.
Those parameters, which describe number and distribution of vessels
(TVD, deBacker score) can be assessed automatically, but the properties
of blood flow (MFI, FHI) have to be determined manually. The goal of
the thesis is to develop a software for automatic analysis of blood flow
velocity from SDFI (sidestream dark field imaging) microcirculation
videos.

The software contains automatic correction of video instability,
automatic vessel segmentation, measurement of vessel dimensions, two
traditional (TVD, deBacker score) and two novel (optical flow descriptor
(OFD), pixel intensity fluctuations (PIF)) descriptors.

The function of software was verified by comparison of deBacker
score values with those, which were determined by commercial software.
The average difference was 25 % for deBacker score for all vessels and
22 % for deBacker score for small vessels. OFD estimates optical flow, the
estimation is correct up to the velocity of 17 pixels/frame in artificial
videos. However, it is not suitable for real data assessment, because it
estimates identical values in vessels with visually different blood flow
velocity. We analysed the videos with both physiological and pathological
(patients on CPB) microcirculation and used the data to create a classifier
of pathological microcirculation. We found a significant difference in three
from 16 (each of four descriptors was computed for the vessels in four
different ranges of diameter) parameters (deBacker score, p=0.035), (PIF
for all vessels (p=0.034), PIF for large vessels (p=0.001).

The main outcome of the thesis is the software for automatic
analysis of microcirculation, which provides two conventional and two
novel descriptors. We found out, that software enables to classify
pathological microcirculation. However, just a small dataset of 151 videos
was used to train and test the classifier. We discovered, that our
implementation of optical flow is not suitable for blood flow velocity
estimation, probably due to unsufficient contrast and texture and
presence of noise.

We developed the software for automatic microcirculation analysis.
It describes number and distribution of vessels and blood flow.

Key words: microcirculation, optical flow, automatic vessel detection



ABSTRAKT

Monitorovani mikrocirkulace je stile vice povazovano za vyznamny
nastroj pii hodnoceni zdravotniho stavu kriticky nemocnych pacientii. Zmény v
mikrocirkulaci lze sledovat naptiklad u pacientlii se sepsi ¢i organovymi
selhdnimi. Zatimco parametry, které popisuji mnozstvi a rozmisténi cév (TVD,
deBacker score) jsou uréovany automaticky, deskriptory toku erytrocyti (MFI,
FHI) jsou zatim urCovany manudalné. Cilem prace je vyvinout software na
automatickou analyzu mikrocirkula¢nich videi ziskanych SDFI (sidestream dark
field imaging) technologii, pfic¢emz diraz bude kladen na hodnoceni toku krve,
predevsim rychlosti.

Zakladem softwaru jsou stabilizace videa, automatickd segmentace cév,
meéfeni rozmérd cév a tradiéni deskriptory mikrocirkulace, jez lze urcit
automaticky. Funkce zminénych implementaci byla ovéiena porovnanim hodnot
tradi¢nich deskriptorii s hodnotami, které byly ziskdny analyzou komerénim
softwarem. Hodnoty se liSily v priméru o 25 % (deBacker score) a 22 %
(deBacker score pro malé cévy). Nasledn¢ byly implementovany dva nové
deskriptory toku, jeden zaloZzeny na odhadu optického toku (opical flow
descriptor (OFD)), druhy na sledovani ¢asovych fluktuaci pixelovych intenzit
(pixel intensity fluctuations (PIF)). Z experimentu na umélych datech vyslo
najevo, ze OFD uréuje spravné rychlost do 17 pixelt/snimek. Pro popis realnych
videi se vSak nehodi, protoze urcuje totoznou rychlost u videi s vizudlné
odli$nymi rychlostmi toku. Software byl pouZzit na analyzu souboru videi, ktery
obsahoval fyziologickou (pacienti v normalnim stavu) a patologickou
mikrocirkulaci (pacienti na mimotélnim ob&hu). Data z analyzy byla pouzita na
vytvofeni klasifikatoru obou typl videi. Vyznamny rozdil se potvrdil u tii z 16
hodnocenych parametrt (kazdy ze ¢ty deskriptort byl urcen pro ¢tyfi skupiny
cév délené podle velikosti), a to jak u tradi¢niho (deBacker score, p=0.035), tak
u nového deskriptoru (PIF pro vSechny cévy (p=0.034), PIF pro velké cévy
(p=0.001)).

Hlavnim vysledkem prace je software pro kvantitativni automatickou
analyzu mikrocirkulace, ktery poskytuje dva tradi¢ni (TVD a deBacker score) a
dva nové (PIF, OFD) deskriptory. Experiment prokazal, ze na zakladé PIF lze
klasifikovat fyziologickou a patologickou mikrocirkulaci. Uskalim experimentu
je maly objem dat (151 videi). Zjistili jsme, Ze naSe implementace optického
toku neni vhodna pro ur€ovani rychlosti toku ¢ervenych krvinek ze SDFI videt,
nejspiSe kvili nedostatecnému kontrastu, nedostatecné textuie uvniti cév a
ptiliSnému Sumu.

Vysledkem prace je software na automatickou kvantitativni analyzu
mikrocirkulacnich videi, ktery kromé stavajicich parametrit jSou rozmisténi ¢i
plocha cév, popisuje také tok krve.

Klicova slova: mikrocirkulace, opticky tok, automaticka detekce cév
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1 Introduction

Microcirculation has been lately widely discussed, because it
has been demonstrated that the behaviour of blood flow is related to
many diseases, such as septic shock, cardiac disease or diabetes. [1] The
automatic evaluation of number or distribution of vessels in
microcirculation videos is common, but the reliable estimation of blood
flow velocity is a challenging problem. Our work is dedicated to the
software for automatic microcirculation analysis, where both traditional
and novel descriptors are determined.

1.1 Microcirculation

By microcirculation we understand blood perfusion in vessels
with smaller diameter than 100 um. It is the primary site of oxygen and
nutrient exchange. In addition to delivering nutrients and removing
waste products essential for moment to moment function,
microcirculation plays an essential role in fluid exchange between blood
and tissue, delivery of hormones from endocrine glands to target organs,
bulk delivery between organs for storage or synthesis and providing a
line of defence against pathogens. [1,2]

Physiological microvascular net is dense and perfusion is
continual and homogenous. The velocity of blood cells depends on
diameter of vessels and ranges between 0.5-1.5 mm/s [19].

A real time video of microcirculation can be captured, which
means, that the area, where an important part of metabolism takes place
can be observed. Based on the visualization, a lot has been written about
microvascular alternations.

It has been demonstrated that the performance of blood flow
is related to many diseases, such as cardiac dysfunction, hypertension,
cerebral cavernous malformations or diabetes [19]. There are
investigators, who have reported, that the microcirculation is markedly
altered in sepsis and that these alternations are more severe in
nonsurvivors than in survivors [15,16,17]. Persistent microvascular
alterations are associated with development of multiple organ failure
and death [18]. The alterations typically include decreased capillary
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density, there can be substantial heterogeneity in microvascular
perfusion between areas separated just by a few millimetres as well.
Microcirculation alternations occur by the patients with extracorporeal
membrane oxygenation (ECMO) and intra-aortic balloon pulsation
(IAMB) or during anaesthesia [8].

Another research field focuses on cardiac surgery and
cardiopulmonary bypass (CPB). In [12] the changes of PPV during
cardiac surgery are assessed. Moreover, the comparison of cardiac
surgeries with and without CPB is present. The outcome of the study
is, that the alternations of PPV are observed in cardiac surgery patients
whether or not CPB is used. In [13] the quality of microcirculation with
and without CPB was compared. They claim the quality decreased
during early surgery with CPB. Off-pump resulted in a significantly
better microcirculation compared to on-pump for three of six parameters
during surgery. However, by the end of surgery there was no difference
between the groups. In [14] twelve adult cardiac surgery patients
received microvascular assessment before and after cardiopulmonary
bypass. After cardiopulmonary bypass, sublingual microcirculation
showed a significantly decreased microvascular flow index and increased
heterogeneity index.

Next, we can find in literature, that analysis of
microcirculation  videos enables to detect four types of
shock - hypovolemic, distributive, cardiogenic, obstructive [8].
Hypovolemic shock is caused by the loss of blood volume because of
gastrointestinal bleeding, extravasation of plasma, major surgery,
trauma or severe burns. Obstructive shock is caused by an obstruction
of circulation by pulmonary embolism or pericardial tamponade.
Distributive shock results in an excessive vasodilation and impaired
distribution of blood flow, patients have good capillary refill.
Cardiogenic shock is characterized by myocardial dysfunction resulting
in adequate cardiac output, capillary refill is poor. [7]

Practically, any kind of disease which is related to the blood
perfusion alternation might be observed in microcirculation videos. We
might expect, that in the future microcirculation analysis will be the
standard method of assessing patient’s state of health. Moreover, based
on quality of microcirculation, side-effects of such procedures like ECMO
or CPB might be revealed. Even though it is a young field, there are
many important findings, which show, that microvascular visualization
is a promising direction.
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1.2 Visualization of microcirculation

~— 0.7 mm

Figure 1: One frame of a video of sublingual microcirculation.
Video was captured by Microscan device with Sidestream Dark
Field Imaging Technology from MicroVision Medical, NL

Until late 1990s intravital microscopy (IVM) was considered a
gold standard for microcirculation visualization. It enables imaging cells
through an imaging window that is implanted into the tissue. However,
IVM could not have been performed in patients, because there was a
need of implantation of an imaging window. Thus, the research
concerning microcirculation depended on animals. Another possibility of
assessing microcirculation was laser Doppler technique, which enables
blood flow velocity measurement. However, it provides just information
about average of the velocities in all vessels in a defined tissue volume,
which is not enough for complex microvascular analysis. [63]

The boom in the observation of microcirculation started after
introduction of non-invasive hand-held vital microscopes (HVM) based
on the principle of orthogonally polarized spectral imaging (OPS) in
1999 [8]. Principle of the technique is the illumination of tissue by light
source (A=548 nm) of linearly polarized light. Most of the reflected light
retain its polarization and cannot pass through the orthogonal polarizer
(analyser) to absorbing material in the foreground, where image is
created. Those beams, which penetrate the tissue more deeply and
undergo multiple scattering events become depolarized. These beams
pass through orthogonal polarizer and back-illuminate absorbing
material. The first generation of HVM has been replaced and is not
available commercially anymore [8]. However, it was a milestone of
microcirculation visualization by that time.
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Figure 2: First generation of hand-held vital
microscope with the principle of orthogonally
polarized spectral imaging, taken from [64].

Second generation of HVM is commercially available and is
called sidestream darkfield imaging (SDF). It is based on the principle,
that haemoglobin absorbs green light. Green light (A= 548 nm) is
emitted by peripheral light-emitting diodes toward tissue arranged in a
circle at the end of the light guide. The light is absorbed by RBCs,
whereas the rest of tissue reflects the light back to the camera. This
causes RBCs are displayed in a black color and their surrounding is
brighter [3,63].

Recently, a third generation of HVM, called incident darkfield
imaging (IDF) was introduced. It is an alternative mode to SDFI with
improved optical resolution. It has a computer controlled high-density
image sensor synchronized to an illumination unit [65].

1.3 Manual microcirculation analysis

The main disadvantage of manual assessment is subjectivity.
There are many rules and instructions, which try to unify the assessment
of microcirculation, however, every human treats them differently.
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1.3.1 Proportion of perfused vessels (PPV)

PPV describes the overall quality of perfusion in a video. The
number of non-perfused vessels is defined. Vessel is considered
non-perfused, when RBCs are present, but they do not move. Moreover,
it is such vessel, where flow occurs, but at least 50 % of the time there
are no RBCs in the vessel. [1]

PPV = 100 - XN
N

(%) . (1)

where N is the total number of vessels and NP number of non-perfused
vessels.

Exact manual assessment of PPV is time-consuming [8]. It is
difficult to specify the number of vessels for the operator. Often it is
hard to decide, whether the vessels bifurcate or just cross in different
depths of the tissue. Besides that, sometimes a single crooked vessel
looks like the group of different vessels. Nevertheless, it is possible to
roughly estimate the percentage of altered-flow vessels quite quickly.

1.3.2 Microvascular flow index (MFT)

This descriptor evaluates the overall type of flow in the video.
The more vessels with the insufficient perfusion the video contains, the
smaller MFI is. Video is split into four quadrants, the operator labels
each quadrant with a certain number according to the type of flow he
assumes is dominant. The flow is characterized as absent (0),
intermittent (1), sluggish (2), or normal (3). MFI is computed as the
average of the four quadrants values. [1] MFI values < 2.6 are agreed to
identify microcirculatory alteration. [§]

The measurement is quick, because the principle is simple.
However, MFT is is not relevant for medical assessment in several ways.
The score for video labelled as 1,1,2,2 is identical with the score for the
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video assessed as 0,0,3,3, even though the difference of the flow in the
videos is obvious by eye. On the other hand, both such microcirculations
are probably altered, which is what MFT recognizes.

1.3.3 Flow heterogeneity index (FHI)

FHI provides an additional information based on the
previously named descriptors. It describes the heterogeneity of the flow
between different videos of microcirculation. That means it compares
three to five videos from one patient between each other. Having MFI
or PPV from these videos, it is computed as the difference of their
extreme values divided by their mean value. [1]

1.3.4 Perfused vessel density (PVD)

PVD = TVD - PPV (2)

It describes the amount of perfused vessels in video. TVD
(total vessel density) will be defined in 1.4.1
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1.4 Automatic microcirculation analysis

1.4.1 Total vessel density (TVD)

TVD is defined as

Sv
TVD = o (3)

where Sv refers to the total area of vessels and S¢ total
captured area of video. [8]

Principle of TVD is the fact the vessels in the microcirculation
videos are visible only if they are perfused. When the perfusion in some
vessels is decreased so much they do not appear in the video at all, TVD
value decreases too.

The utility of TVD is based on the assumption, that the vessel
net in normal microcirculation videos is very dense. However, from our
experience it is not always true. Moreover, the reliability of TVD is
influenced by the size of captured vessels. Occasionally, a wide vessel
occupies a significant part of the frame which leads to the increase of
TVD.

Interestingly, we found a study [62], where TVD is employed
with unit mm, which means only the length of vessel segments is taken
into consideration.

1.4.2 DeBacker score

DeBacker score is an effective simplification of TVD during
manual analysis. It describes the number of visible vessels without the
need of exact summation of the perfused segments. Just as TVD it is
based on the assumption, that the vessel net in normal microcirculation
videos is very dense.

The principle of the descriptor is as follows: The video is
symmetrically split by three vertical and three horizontal lines.
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DeBacker score is computed as the number of vessels crossing the lines
divided by the total length of the lines in millimetres. [1]

It is possible to extend the descriptor by using only vessel with
certain range of diameters for computing the score. Usually, deBacker
score for small vessels with the threshold of 20 pm and for the rest of
the vessels is computed.

Figure 3: The principle of deBacker score. Taken from [1].

1.5 Constraints of automatic analysis

There are several aspects in microcirculation videos, which
hamper the automatic analysis as subsurface scattering, defocus, sensor
noise and field of view drift. [11] Scattering of light on the path from the
capillaries to the camera reduces contrast of the images. Defocus is
present because capillaries are embedded at varied depths while the
depth of field of the camera is fixed, so some capillaries appear blurred.
The instability of the video makes the video unusable for any analysis
quite often. Not only the fact, that the recording device has to be kept
in hand of the operator during the recording causes the drift of field of
view. Moreover, there are motions induced by heart beat and respiration
of the subject. [11] Moreover, pressure artefacts [2] destroy significant
part of videos (10 % of videos in our dataset). The artefacts are caused
by the camera, when it develops too much pressure on the captured
tissue. Blood flow in vessels decreases and the information the video
provides becomes unreliable.
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1.6 Existing software tools

Several software tools for microcirculation analysis have been developed,
such as AVA (Microvision Medical B.V.) [9], tSICA (Microvision
Medical B.V.) [4] or CapiScope (KK Technology). [5]

1.6.1 AVA

It is the most common software. Besides others, it determines deBacker
score and PPV automatically (we consider PPV parameter of manual
analysis, because, the decision, whether a certain vessel is perfused or
not has to be made). AVA provides more descriptors, but we do not
find them interesting, because they do not belong to the commonly used
descriptors. To recognize, if the vessels are perfused or not and to
estimate velocity of flow, space-time diagrams (STD) are used in AVA.
STDs will be described in section 1.7.3. Architecture of AVA software
is displayed in figure 4.

l/ b‘h 1 2 3 a 5
e b i Linking Vessel/pixel
g Image [ Frame | Centerline | \ N p
- stabilizgalion averaging detection centerline length

o _ 4 pixels estimation

detection thresholding bifurcations interaction determination generation

l. 6 7 8 9 10 11
Vesselwall | Infocus |»] Autocutat f»{ Manual T Velocity > Report —l
Segmented Quantitative

image analysis report

Figure 4: Architecture of AVA software, the commercial microcirculation
analysis tool, taken from [9]

1.6.2 tSICA

Software tSICA is a faster version of AVA. The velocity
measurement is based on the temporal pixel intensity fluctuations. It is
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just a quick method, so as a result, the software only decides, whether
the vessel is perfused or not. Time-averaged frame from the video is
created. Next, temporal pixel intensity fluctuation picture is generated.
It is quantified as the standard deviation of the intensities in time. [4]

1.6.3 CapiScope

According to [10], CapiScope computes the correlation
between the centerlines of two sequential frames for various shifts of the
centerlines. The shift with the biggest correlation is marked as the
distance RBCs travelled between the frames.

There are other approaches for complex microcirculation
videos analysis described in [11] and [19]. In [11] 3D convolution with
pre-defined spatial-temporal filters is implemented to assess the speed of
RBCs. In [19] particle image velocimetry and optical flow are used.

1.7 State-of-the-art of particular software
components

1.7.1 Correction of video instability

Stabilization by estimating and smoothing a motion model is
widely used. Such an approach can be divided into two categories: 2D
methods and 3D methods, depending on the model they use.
Theoretically, 3D methods are better, but they are fragile and slow. In
3D methods the full 3D structure of the scene is recovered and motion
is modelled directly using the recovered position of the camera. The
algorithm, which is used to recover 3D structure from a video is
sensitive to noise. [54] 2D methods are faster than 3D methods. They
are based on the assumption that the motion between two frames can
be represented by a single 2D transformation matrix. It
models translation, rotation and scaling. However, they only work well
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on single plain scenes or scenes, which are far away from the camera. In
[65] four parameter transformation and in [56] six parameter
transformation is used.

Besides motion model methods, there are trajectory based
methods. Video is stabilized by smoothing the extracted trajectories
without setting up a motion model. The trajectories are extracted by
feature tracking [54]. Extracting feature trajectories is tricky, because
not all movements present in the video are caused by the camera.
Sometimes the feature is not static, so it undergoes displacements that
are caused by both the camera motion and the movements of the object
in the scene. These moving objects need to be separated. [57]

In [20] a block matching algorithm is used while stabilizing
microcirculation videos. The similarity of the blocks in consecutive
frames is measured by cross-correlation coefficients. Block matching
algorithms use a predefined size of blocks or even entire images to
estimate motion vectors. However, if a window does not contain
distinctive details, there is a high probability of mismatch. Typically,
this happens when just background pixels are included. To avoid such
error the processed blocks are checked to ensure they include vessels
using Laplacian of Gaussian filtering. Gradient of the Gaussian improves
visibility of blood vessels. The maximum values from several areas of
the frame are chosen to be the distinctive features. Typically, branching
points meet the condition. The blocks are implemented as follows: 25x25
pixel window around each control point is selected as subregion. The
cross-correlation is calculated between these sub-regions in the current
frame and a 40x40 surrounding. The dimensions of the windows are state
empirically.

In [11] the stabilization is based on the patches, that are
matched between frames using template matching. Just like in [20], the
patches with enough texture are chosen according to the variance of
pixel intensities.

1.7.2 Image segmentation

A wide range of image segmentation methods is described in
literature. Their suitability always depends on the problem to be solved,
there is no universal segmentation technique that works equally well in
all situations. Generally, image segmentation methods can be
categorized into two classes, i.e. semi-automatic and automatic.
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Semi-automatic techniques require some sort of human input and
usually provide better performance. In automatic techniques no operator
intervention is needed [25]. Mostly, while segmenting an image, such
properties like color, texture, gradient or spatial attributes are assessed.
Namely, region growing, region splitting, region merging,
parametric/geometric  active  contours, histogram thresholding,
feature based clustering, graph-cuts or watersheds. [28]

Concerning vessel detection, automatic methods comprise of
vessel tracking, matched filter responses, grouping of edge pixels, model
based locally adaptive thresholding, topology adaptive snakes and
morphology-based techniques. In contrast, supervised methods require
manually labeled images for training, features and classifier. From the
training sets feature vectors are constructed and they are labeled as
vessel or non-vessel. It is assumed, that feature vectors from a certain
class cluster together in the feature space. In that case a classifier that
determines a decision boundary between the different classes can be
designed. After the training, a non-labeled feature vector can be
classified by determining on which side of the decision boundary it is
situated. such classifiers like k-nn, SVM or random forest can be
employed [34]. Concerning semi-automated image segmentation, wide
range of software tools is available. Usually, besides other functions, they
determine sufficient features and train a classifier automatically based
on the training data. Such tools are for example Dragonfly (Object
Research Systems (ORS) Inc., Montreal, Canada), TurtleSeg (Oxipita
Inc., Vancouver, Canada), Fiji [42] or Ilastik [24].

To facilitate vessel segmentation, Frangi filter [27] is widely
used. It has been employed in many research projects concerning vessel
detection [29,30,31,32,33]. It enhances contrast of tubular structures in
image. The filtering process searches for geometrical structures which
can be regarded as tubular. The probability that the pixel belongs to
the tubular structure is called tubularity. It is provided by quantification
of following parameters: deviation from a blob-like structures, the
difference between plate-like and line-like structures, and background
noise, respectively [33]. Information about contrast and direction is
extracted from Hessian matrix of each pixel. Hessian matrix contains
second order derivatives of the smoothed image. Matrix H for pixel x,y
in smoothed image 7is constructed [29]:
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Gonzales [35] extracts features from Hessian matrix to train a
tubular structure classifier. He claims, that the second-order derivatives
used to compute the Hessian matrix do not provide a local description
that is powerful enough to account for irregular tubular structures and
perform in noisy images. Computing of higher-order derivatives is
recommended.

In both AVA software [53] and in Liu’s microcirculation
analysis approach [11] automatic vessel detection is based on a
automatic detector of curvilinear structures described by Steger [36].
Hessian matrix is employed to detect vessel centerlines. For each pixel,
analysis of the matrix results in a vector that points in the vessel
direction (¢) and a vector in the perpendicular direction (z). The pixel
is considered to be the candidate for the centerline pixel if the second
order spatial derivative in direction of n, is markedly higher than in ¢
direction, Candidate pixels are identified as centerline pixels if the
intensity profile in n direction, is locally at its extremum. In [11] (v
thesis) just the centerlines are detected, finding the complete vessel
segments is not the purpose of the approach. In [53], besides centerlines
vessel walls are detected. To do so, cross-sectional intensity profile of
each centerline pixel is analysed. The wall is marked by the points where
the cross-sectional intensity profile in each centerline pixel shows its
maximum steepness in the direction of vector n. The cross-sectional
intensity profile is obtained by sampling the image at sub-pixel level in
the normal direction.

Besides [36] there are more methods for centerline detection.
They can be divided in two categories. In the first category vessel
segmentation is needed. Thinning-based methods [39], which perform
skeletonization of segmentation, and active contour-based methods [40)]
are included. In both cases segmentation has to be created before
finding the centerline. These techniques are efficient only when good
segmentation is provided [41]. Thinning-based methods often produce
disconnected components and artefacts on noisy data, which then
require post-processing and analysis to merge into a meaningful tree. In
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the second category, just tubular images (like in [36]) are provided.
Tubularity is determined and evaluated. It can be either computed or
classified by machine learning [41]. There are tracking methods, where
set of seed points is initiated and high tubularity paths are recursively
traced. It means tubularity is determined locally [38]. Or tubularity can
be computed globally in whole image and a global objective function can
be optimized to create the most convenient centerline tree [37]. Or, like
in [41], the samples of centerline points are determined and connected
by maximum probability paths.

1.7.3 Velocity measurement

Many motion estimation techniques have been employed to
determine RBCs velocity from sequence of frames, including space-time
images [9], cross correlation methods [66,19], optical flow [19], temporal
pixel intensity fluctuation [4], 3D convolution with predefined
spatio-temporal filters [11].

Cross correlation methods search particular structure from
consecutive frames by cross-correlation. We can find implementations of
both 1D and 2D methods. 1D method was employed in CapiScope
software [66]. Centerline of a certain vessel segment was compared in
two images. In fact, centerline is a vector of pixel intensities. Vectors
can be shifted mutually and the shift with the highest correlation is
supposed to be the inter-frame motion. Practically, this method is
limited because the centerline structure is not constant in time.
Moreover, there are curved structures which influent flow unpredictably.
2D cross-correlation method is called PIV (particle image velocimetry).
Correlation is employed to find a window from first image in the
subsequent frame [19]. In fact, it is the same method, which is used in
AVA software to stabilize videos - windows with distinctive texture are
selected and cross-correlation is used to find them in subsequent images.

Optical flow is another possibility of velocity determination.
This approach estimates motion vector for each pixel of region of
interest. There are several techniques to do so. In each case a supposition
has to be determined. In [19] comparison of both optical flow and PIV
method is provided. The experiment on artificial microcirculation video
was performed. The author claims, that optical flow performs better,
but combination of both techniques works the best. Optical flow
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determination was based on Horn-Schunck algorithm, where smoothness
in the flow over the whole image is presumed.

3D convolution with predefined spatio-temporal filters is based
on the assumption, that certain flow patterns repeat in microcirculation
videos. In that case artificial filters, which correspond with certain flow
patterns can be generated. Parameters of such filters are direction and
velocity of shift. Velocity is determined according to the energy response
of the filters. [11]

Temporal pixel intensity fluctuation does not describe velocity
directly, but it relates with it. It is based on observation of brightness
changes of particular pixels in time. Naturally, in vessels with no flow
brightness of pixels does not change in time, whereas when movement
occurs, so do pixel intensity fluctuations.

In STD (figure 5), each column is created by the centerline of
the vessel from a certain frame in time order of the video. The elements,
which occur in the centerline, change their position within the vessel
because of the blood flow. This leads to the creation of the continuous
lines in STD. The orientation of the line shows the direction and the
velocity of the flow. When the lines are detected and their orientation
is determined, quantitative analysis of the flow can be provided.

centerline

v

time

Figure 5: Space-time diagram (STD) is a common
technique of RBCs velocity determination. Each
column in STD is created by centerline of vessel
from a certain frame in time order of the video.

The orientation of lines corresponds with the
velocity of centerline elements.
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2 Main research goals

The goals of the thesis are:

1) to design a descriptor of blood flow velocity in microcirculation
videos,

2) to develop a software for microcirculation analysis, which will
determine the novel descriptor and traditional microcirculation
descriptors,

3) to process microcirculation videos by the software,

4) to compare the results of analysis with results from commercial
software

5) to create a classifier of pathological and physiological
microcirculation.

We have no ground truth of RBCs velocity, so we decided to
create artificial videos, where flow velocity is known.

We have videos with altered circulation and with normal
circulation at our disposal. By altered microcirculation we mean the
videos, which were captured, while the patient was on CPB during
cardiac surgery. Based on available literature, we expect, that on-pump
microcirculation is altered.

We will compare our results with AVA. It provides deBacker
score and PPV. We will implement deBacker score in our software,
because it does not require any qualitative assessment (unlike PPV).
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3 Description of data

While building the software, we could have used 1087 videos,
which were recorded by Microscan device with Sidestream Dark Field
Imaging Technology from MicroVision Medical, NL. The dataset was
created in order to verify the assumption, that a patient with
non-pulsatile flow on the cardiopulmonary bypass would represent the
stage with an altered microcirculation. The videos were captured on 6
subjects at the cardiac surgery department of Na Homolce Hospital,
Prague, Czech Republic. We received the videos from MD, MSc David
Macku, the leader of the experiment.

In total, there were 563 videos of on-pump subjects, 524
videos of off-pump subjects. Each video was roughly 1 second long.

There were 4 different types of off-pump videos, marked M1, M2,
M4, Mb>:

M1: Captured at the standard ward before surgery.

M2: Captured after the introduction into total anesthesia.

M4: Captured at the end of CPB, during the suture of sternotomy.
Mb5: Captured at the standard ward before the patient was discharged.

There were 4 different types of on-pump videos, marked M0, M45, M90,
M120:

MO: Captured during the surgery procedure after the onset of
cardiopulmonary bypass.

M45: Captured 45 minutes after initiation of CPB.

M90: Captured 90 minutes after initiation of CPB.

M120: Captured 90 minutes after initiation of CPB.

3.1.1 Dataset for analysis

The initial dataset of 1087 videos contained a lot of low-quality
records. Common defects were: poor focus, no visible vessels, bubbles,
scattered red blood cells all over the field of view (probably caused by
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bleeding in the captured area), big camera motion (captured area
changed entirely within the video). So, we sorted out the videos
manually, we selected 260 good-quality videos - 120 off-pump videos and
140 on-pump videos manually.

We processed the selected videos by our stabilization
algorithm and checked the stabilized videos manually. We rejected 93
videos (36 %), which were not stabilized sufficiently. From the group of
stable videos we eliminated those, where pressure artefact seemed to
occur, which was in 16 cases (10 %). Finally, dataset of stable videos,
which were sufficient for analysis, consisted of 151 videos-75 on-pump,
76 off-pump.

The overview of the distribution of video types, which were
present in the final dataset, is depicted in table 1.

Table 1: Distribution of videos in the dataset for analysis. In off-pump row, M1-5 labels
when the video was captured. M1: at standard ward before surgery, M2: after
introduction into total anesthesia, M4: at the end of CPB, M5: at the standard ward
after surgery. In on-pump row M0-120 stand for: MO: at the beginning of surgery after
onset of CPB, M45: 45 minutes after onset of CPB, M90: 90 minutes after onset of
CPB, M120: 120 minutes after onset of CPB.

M1 M2 M4 M5 Total:
Off-pump: ora

12 33 19 11 75

MO M45 M90 M120 Total:
On-pump:

40 14 16 6 76
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4 Methods

4.1 Software

Our approach is inspired by AVA [9], but it differs in several
aspects. Simultaneously, Liu’s approach [11] is a guideline from time to

time.

In contrast with AV A, vessel segmentation in our case is based
on machine learning instead of vessel wall detection and thresholding.
Furthermore, we have implemented optical flow method for flow velocity
estimation and temporal pixel intensity fluctuation-based descriptor of

microcirculation.

The structure of our software is displayed in figure 6.

1) 2) 3) 1)
Image Frame > Vessel Segmentation
stabilization averaging segmentation processing and labelling
| 2
Straight vessel
. '7) . segments extraction
Pixel intensity
fluctuations l
8) 6)
Descriptors «— Optical flow
determination
9)
Microcirculation
classification

Figure 6: Software architecture
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4.2 Project workflow

In figure 7 we display the working diagram which includes the
steps we processed to achieve all the goals of the thesis.

) Training the
Implementation of _»| Stabilization of Manual vessel N segmentation
correction of video 21 videos - labeling classifier

instability
f ]
. Segmentation
Segmenta}tlon ) postprocessing Optical flow
evaluation implementation implementation

\

Flow Implementation
descrlptors 1 of pixel intensity
deBacker score TVD creation fluctuations
implementation implementation
Artificial videos
creation
classifier of v i
- - pathological or - —
Comparison with physiological Testing on artificial
AVA microcirculation videos

Figure 7: Working diagram. The steps processed to achieve all the goals of the
thesis are displayed.
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5 Correction of video instability

Our approach is based on 2D motion model estimation. We
took the implementation of motion estimation from [50].

5.1 Image pre-processing

Since a natural movement of the RBCs is present in the video,
it is challenging to recognize just the movement caused by camera while
stabilizing. Moreover, quite often a motion between tissue layers in
different depths appear. To prevent this, we process following steps:
First, we enhance the contrast of the image by adapting the histogram
of pixel intensities. Next, we blur the frames to conceal the movement
of blood cells. Blurring is processed by a 2-D Gaussian smoothing kernel
with the window size of 3 pixels. To get rid of the motion in different
depths, we apply thresholding, because deeper structures appear
brighter. Threshold is computed from each image wusing Otsu’s
method [26]. It assumes, that two classes of pixels are present in an
image. It calculates the optimum threshold separating the two classes
so that their combined intra-class variance is minimal. Like this we
remove the bright structures and keep just the important dark
structures.

L}i
Vv

(a) (b)
Original frame, its segmentation is Segmentations of two consecutive
displayed in green color in (b). frames, first one in green, second one in

red color. Yellow color marks the area
where both segmentations overlap.

Figure 8: Segmentations of dark areas in unstabilized frames. The distinct
structures from (a) are segmented as green color in (b). The segmentations of two
consecutive frames (b) is used for motion model estimation.
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5.2 Motion estimation

The estimation of the motion model is based on spatial and
temporal derivatives of binary frames. Once the model is estimated, the
default frames of the video can be stabilized.

Motion between two images I(x1,yi.1) and I(x:,y:) is modelled
with a 6 parameter affine transform [50]:

()= Gy ) G+ Gng) )

When we assume that picture [(xw.z,yw;) and I(x:,y:) are the
same, but /(x,,y:) is deformed, we can write the equation (1) as:

I(xe,ye) = I(Myxe_q + Mpy_q + Ms, M3Xe_q + MyYr_q + M),

where parameters m;, m. ms ms control scaling and rotation and m,
my control translation. Despite the approach in [50], we found out it was
more convenient to align all the frames to a certain frame, which is in
the middle of the sequence, so all the frames are compared with just one
picture. We determine /(Xum,yVim) to be the middle frame of the video
sequence.

In order to estimate the parameters of the model, following
quadratic error function has to be minimized [50]:

E(m) = Z (e ye) = [(My Xy + MyYem + Ms, MaXey + MyYem +my)]?
X, yEQ

Where Q is the region of interest of the frame.
The equation (7) is non-linear in its unknowns. To compute the
inter-frame motion, differential motion estimation is used. We
approximate equation (7) by the first-order truncated Taylor series
expansion:
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E(m) = Z [[ =+ (mx + mpy + ms — x)I, + (Mzx + myy + mg — y)1,, — ID]?
X,yEQ

= Z [I; — (myx + myy + mg — x)I, — (M3x + M,y + mg — y)Iy]2 (8)
X,yEQ

where I, I, and I; are partial derivatives of the image 7 with respect to
position x, y and time ¢.

For notational convenience, the parameters m;s are dropped
and k and c are given as:

k =1 + xl,+yl, (9)

c=(xl, yl, xI, yl, I, I,) (10)

Finally, the approximation of the error function is:

E(m) zz:[k—ch]2 (11)

Q

The quadratic error function is now linear in its unknowns and
can be minimized analytically by differentiating with respect to m.
Setting the result equal to zero and solving for m:

gl e

Since we want to control just rotation and translation, but not
scale, we extract the rotation angle 6 from the affine parameters [21]:
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0 = arctg (%) (13)

4

We can now deform the image /(x:y:) and create I(x;’y:’), which is aligned
with the reference frame /(xuwyu). First, we rotate and translate the
coordinates [22]:

Gr) = Cine oss) G+ Gae) (1)

By x:’and y:’ the query points for an interpolation are defined. Image
I(x/y.’) is obtained by the cubic interpolation of (x.y:).

5.2.1 Coarse to fine method

We use the implementation described in [50] of coarse to fine
method to estimate large motion, typically more than 10 pixels. The
motion is estimated in different resolutions like displayed in figure 9.
The motion estimated at coarser level is used to warp the frame at the
next finer level, until the finest level of the pyramid is reached. Like
this, large motion estimation from the coarse level is iteratively refined.
When warping the image in a finer level, the estimation of translation
vector (ms myg) from the coarser level has to be multiplied by 2. The
way the affine estimation parameters are accumulated is described in
equations (16 - 18).
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Figure 9: Multiresolution method of motion estimation. Images are down sampled
n times. Motion is estimated on small images, so bigger velocity can be recognized.
In finer level the estimation is enhanced. Small images are up sampled, estimated
translation vector is multiplied by 2 and one of the images is warped. Motion is
estimated again. Like this, iteratively, the finest level estimation is achieved.

coarse
Ay

In our case image segmentations are used to estimate the
motion, so the actual video frames are not warped during the process.
We need to find the finest motion estimation and apply it on the video
frame. We accumulate the model parameters during the multiresolution
process like described in [50]. The transformation of the original image
coordinates by the parameters estimated in level n is given by:

xc'\ _ (cos @ —sinf\ (% (2"_1"15)
(yt'>_(sin6 cosH) (J’t)+ 2" Im, (15)

Like this the coordinates are transformed repeatedly during
multiresolution. When we declare

4=(no cocs) amd t=(m). (16

repeated coordinates transformation by A and ¢ obtained in
different levels n and 71 can be written as:
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X' X
( tr) = Ap_14, (yi) + Ap_1ty + 1ty

Yt (17)

In the manner of equation (17) the model parameters from
different levels are accumulated. The combination of coarser and finer
level estimation is given by:

A= An 14, t= Ay 1ty + 1ty (18)

While setting up the maximum level of the pyramid, resolution
of the original image should be considered. In equation (12) it is assumed
that the first term, a 6 x 6 matrix, is invertible. To be so, integrating
over sufficient amount of pixels is needed. In our case the resolution can
be reduced six times at most. Original resolution of the videos is
960x1280 pixels. Minimal resolution, which is necessary to solve
equation (11) is (960/26)x(1280/26), which is 15x20 pixels.

We filter the images before down sampling from level n to level
n-1 by binomial filter (1/4, 1/2, 1/4) twice along each spatial dimension,
as proposed in [23]. In figure 4 down sampled image with and without
filtering is displayed. In the filtered image more details are preserved.
By filtering incorrect edges are created, so we reduce roi by 3 pixels from
each side. Moreover, when frames are transformed, edges without any
content remain on their sides. To prevent the edges from disturbing the
model estimation in finer levels, roi is determined not to cover the edges
of the frames, which were warped according to the estimation from
coarser levels.

37



—all
(b)

Figure 10: The effect of filtering during the reduction of
resolution, (a) original resolution, (b) 5x reduced resolution with
no filtering, (¢) 5x reduced resolution, filtered twice in each level.

5.3 Region of interest in stabilized videos

After the frames are deformed, edges with no content are created. The
edges have to be considered when the video content is analysed. So the
mask of interest is created. By the mask of interest we mean such a
mask, where the area of edges by all the video frames is labeled by zero,
the rest is labeled by one. The mask of interest is created as follows:
Individual mask of interest is created after each frame of the sequence
is warped. The individual masks are summed up when all the frames are
deformed. In the summation mask, the value, which equals the number
of frames in the video, labels the pixel, where no edges occurred within
the video. Any other value corresponds to edges.

frame 1 frame 2 frame 50 summation
o1 |1|1f1]1 of1|1|1f1]1 ol1l1]1]11 0 |44 505050 s0
o1 |1]|1f1]1 of1|1f|1f1]1 ol 11111 0 |s50|s0|50(50]50
oO|1f(1f/1]1[1 + oOj1]1f1]1]1 + eoe0 + 01|11 |1]|1 ﬂ 15 [ 50 | 50 | 50 | 50 | 50
111110 01 1 1 1 1 o|1|1|1]1]|1 20 [ 50 | 50 | 50 | 50 | 42
1(1)1|1]|1(0 of1|1f(1}|1]1 o|1|1|1]1]|1 12 | 50 | 50 | 50 | 50 | 41
1j1|1j0fjo0fo0 0jo0o|0|O0|0O|O i/1/0/0/0]|0 1422120 5|3 |2

Figure 11: Scheme of how the mask of interest is created. The area of edges is
labeled by 0 in each warped frame, the rest is labeled by 1 (yellow). All the
consecutive masks are summed up. In the summation, the area, which equals the
number of the frames (green), is chosen to be the region of interest.
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5.4 Efficacy of implementation

We stabilized 260 videos and checked the effect of stabilization
manually. We selected those videos, where, visually, stabilization was
not efficient enough. From 260 videos 167 were well stabilized, which is
64.2 %. 93 videos were not stable enough, which is 35.8 %.

The effect of stabilization is depicted in figure 2. Mean image
in time is displayed before and after stabilization. When the stabilization
is successful, the mean image turns from blurred into sharp (fig. 12a,c).
Moreover, the space-time image created by stacking n' column of pixels
from each frame of the video next to each other is attached. The selected
n columns are marked by the green line in the mean image. After
stabilization the crooked lines become straight (fig. 12b,d).

(a) Mean image in time before (b) Mean image in time after
video stabilization video stabilization

(d) Space-time image after

(c) Space-time image before video stabilization

video stabilization

Figure 12: Demonstration of successful stabilization. Temporal average
image turns from blurred into sharp after stabilization (a,b),
space-time image turns from crooked to straight (c,d).
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5.5 Summary

We have implemented an algorithm for automatic correction of video
instability and checked its function. The stabilization is successful in
64 % of cases. Generally, there are two reasons of unsatisfactory
stabilization:

1) Motion of camera is too big, typically more than 50 pixels between
subsequent frames. This is the reason in 21 from 93 cases (22.6 %) of
unsatisfactory stabilization. In such videos, frames are usually blurry
due to the motion, so they do not provide good quality information
anyway. Moreover, big motion causes that small roi is provided, as
depicted in figure 13. From these reasons we do not suppose it is
important to deal with this problem on the software basis at present. It
is rather important to maintain stability during capturing process.

Figure 13: Region of interest in a stabilized video, where big motion of
camera occurs. Big edges are created on the sides due to the
transformation of frames and much information is lost.

2) There is motion between different layers of the captured area, which
occurs in 72 from 93 cases (77.4 %). From our experience, this is a
frequent problem. The ideal stabilizing solution should recognize those
structures, which are deeper and in addition it should recognize, whether
those structures move in relation with the structures in shallow layer.
The moving structures should be removed and the others should be kept.
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6 Automatic vessel detection

6.1 Introduction

Vessel detection is necessary in order to measure red blood
cells velocity inside vessels. The aim is to implement an algorithm, which
creates an individual vessel segment mask (fig. 14c) for each
microcirculation video. In individual vessel segment mask all the pixels
of a certain segment are lebeled by the same non-zero number. The
number is specific for each segment. Number zero labels the area with
no vessels. In fig. 14c different label values of individual segments are
visualized by different colors. When such a mask is created, blood cell
velocity in any labeled segment across the video can be calculated.

There re two main stages of vessel detection in our software.
Firstly, binary vessel segmentation is created (fig. 14b). Secondly,
individual vessel segment mask is created from binary segmentation.

Based on the search, we decided to employ a semi-automatic
technique to obtain binary segmentation, because it usually performs
better than automatic methods. We created training data and employed
an automated segmentation tool to train the classifier.

A thinning-based method is used to label vessel segments.

e \
CASHARNY
) \

=

(b) binary vessel segmentation  (c) individual vessel segment mask

Figure 14: Diagram of vessel detection. Based on the temporal mean
image(a), binary vessel segmentation (b) is created. Binary segmentation
is further processed to create individual vessel segment mask (c).
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6.2 Binary segmentation

Training dataset was created manually. We worked with
temporal mean images of microcirculation videos, like proposed in
approach of AVA [53]. Mean images are convenient, because they have
better contrast than individual frames. Moreover, in some vessels blood
flow is intermittent, so they are not visible on all the frames. By
averaging these segments become apparent. We segmented 21 mean
images manually. Based on the video content we decide to employ 4
classes of segmentation:

1) Clearly visible vessels. This class labels the areas, which we want to
analyse for sure

2) Blurred vessels in deep layers, where blood flow is not recognizable.
We determine these structures by a specific label, because in
numerous videos they occupy large areas, but they do not provide
any information. We suppose they are recognizable, because they
are brighter then clearly visible vessels, but darker than background.

3) Background. We attempt to label the areas, which do not contain
any structures but noise.

4) Isolated distinct dark structures with different than tubular shape.
We use this class, because sometimes there are structures, where we
are not sure, whether they are vessels or not. They are as dark as
well visible vessels, but we do not want them to be included in
clearly visible vessels class, because they do not have tubular shape.
It is the least common category.
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(a) Input image - average (b) Manual segmentation

: £ vi L
image of video in time B 1) clearly visible vessels

H 2) blurred vessels in deep layers
m 3) background
4) isolated distinct dark structures

Figure 15: The example of manual segmentation

To create manual segmentations, we used Gimp image
editor [44]. From Gimp we exported the completed segmentations in png
format. No interpolation and transformation is applied in png format,
so no other than four label values are exported to the image.

To segment the vessels Ilastik software [24] is employed. It is
a free tool, which enables machine-learning based pixel classification.
Once the classifier is trained, it can be used in ,headless mode, so Ilastik
GUI is not needed anymore. So it is possible to implement the classifier
into an automatic detecting algorithm. Ilastik workflow offers a choice
of generic pixel features, such as smoothed pixel intensity, edge filters
and texture descriptors. Once the features are selected, a random forest
classifier is trained on training data, which, in our case, were manual
vessel segmentations.
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6.2.1 Features selection

Pixel features are used to discriminate between the different
classes of pixels. Three classes of features are provided in Ilastik:

Color /Intensity: Should be selected if the color or brightness can be used
to discern objects.

Edge: should be selected if brightness or color gradients can be used to
discern objects.

Texture: Should be selected if the objects in the image have a special
textural appearance

All the features can be selected on different scales. The scales
correspond to the sigma of the Gaussian which is used to smooth the
image before application of the filter. Filters with larger sigmas can thus
pull in information from larger neighbourhoods, but average out the fine
details. [24]

It is recommended to choose as many features as possible in
wide range of scales in the beginning of the training process, because one
barely knows, which features are significant in a particular experiment.
However, with more features computational time is bigger. So, we made
several experimental segmentations with different combinations of
features to see how particular features influent the results. In the first
stage, the experiment was performed on small images, so the classifier
was trained quickly (fig. 16). Based on the experiment we decided to
choose color/intensity features and texture features. We rejected edge
features, because they do not contribute to classification significantly.
There are not many significant edges in the vessels and in the
background, so there is no need to recognize them. By this we reduced
time to train a classifier on a small image from 3 to 2 minutes. We were
assessing the effect of scale o as well. We believe that wide range of
sigma is important. However, to estimate the ideal range of scale, size
of the image has to be concerned. So, in the second stage, we were
searching for the ideal range of o in full-resolution images.

Summary of pixel features and scales, that we decided to
employ in classification of microcirculation images, is presented in
table 2. It took approximately 24 hours to train a classifier with the
training set containing 14 images.
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Table 2: Summary of pixel features, which were chosen for pixel classification
process in Ilastik. One color/intensity feature and two texture features were

employed. All the features were used in wide range of scale o.

Features
Color /intensity Texture
. hessian of
gausslan structure tensor .
- . gaussian
smoothing eigenvalue .
eigenvalues

0.7, 1, 1.6, 3.5, 5, 10, 30, 50
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Experiment concerning pixel features selection

Training data

— T

i 1%

(a) Manual labeling of (b) (b) Original image. We labeled
pixels manually (a) and trained
B clearly visible vessels the classifier.

m background

Testing data
\

e

(c) Input data for automatic
classification

Probability maps

mclearly visible vessels, mbackground

(d) Included feature groups:  (e) Included feature groups:  (f) Included feature groups:
color /intensity, edges, texture color/intensity, texture color/intensity, texture

0:0.7, 1, 1.6, 3.5, 5, 10 0:0.7, 1, 1.6, 3.5, 5, 10 0:0.7, 1, 1.6, 3.5

Figure 16: Experiment concerning pixel features selection. We were training the classifier
on training data (a,b). We were choosing various combinations of pixel features groups
(color/intensity, edges, texture) and scale 0. We were assessing probability maps of the
classifications visually (d,e,f). In probability map, color intensity specifies the probability
of a a correct classification of a particular pixel into a class. Darker tones indicate bigger
uncertainty of classification. We display the first stage of experiment, when small pictures
were employed to save time during training and classifying process. We found out, that
texture based features do not participate in classification significantly - comparison
between (d) and (e). However, scale definition plays an important role - (e) vs. (f). In (f),
where scale is smaller, more details are classified correctly, but probability in bigger
objects decreases.
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6.2.2 Individual objects extraction

We unite classes 2), 3) and 4) in probability map into one
class, so two classes probability map is created (vessels and background).
We blur the two-classes probability map and then we transform it into
individual objects by thresholding.

We were looking for two parameters, while extracting
individual vessels: radius R of circular averaging filter and threshold
probability value ¢. Blurring by averaging filter enhances the accuracy
of segmentation in some cases, because it removes small holes and ragged
edges in final binary segmentation.

We stated the parameters as follows: We had 7 manual
segmentations of 7 pictures, which were not used for training the
classifier (testing segmentations). We let the classifier create a
probability map for each of these 7 images. Subsequently, we were
blurring each map by filters with various radius. We thresholded each
blurred probability map by various thresholds. In each case we
computed the number of incorrectly classified pixels in comparison with
training segmentation. We chose the combination of filter size and
threshold, where the number of mistakes was minimal. Scheme of the
procedure is displayed in figure 17.

number of incorrectly

thresholding classified pixels
blurring t=0.2 » [ F=12347
D=05 t =021 [—»| F=12456
. t=022 |~ ”| F=12527
° °
® . . °
. ° :

Figure 17: Determination of ideal filter size and threshold while extracting
individual objects from probability map. Two classes probability map is blurred
by a filter of certain size D. Then thresholding in different levels ¢ is employed.
For each combination of D and ¢ the number of incorrectly classified pixels F'is
computed. The procedure is repeated many times for various 1. Combination D
and ¢, where F'is minimal, is considered the best.
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The combinations of filter size and threshold, which lead to
minimal amount of incorrectly classified pixels for all testing pictures
are displayed in table 3.

We use the average of values from all the testing pictures as
the parameters of individual objects extraction procedure (column
‘average’ in table 3).

Table 3: Combination of threshold value and averaging filler diameter, which lead to
minimal amount of incorrectly classified pixels. P1 - 7 are training pictures. We
created their segmentations manually and compared manual segmentation with
automatic segmentation.

P1 P2 P3 P4 P5 P6 P7 | average
radius 6.5 7 7 6 5.5 7 6 6.5
threshold | 0.486 | 0.518 | 0.549 | 0.506 | 0.478 | 0.514 | 0.498 | 0.507

6.2.3 Segmentation accuracy

In table 4 we present the accuracy of segmentation. 7 testing
images were classified. The probability maps were smoothed by circular
averaging filter with radius 6.5 pixels and thresholded by level 0.507.
We computed accuracy ACC of segmentation for each testing image P:

T
ACC =+ -100 (%) (19)

where 7'is number of correctly classified pixels and /Vnumber
of pixels in image.

Next, we determined accuracy of vessel pixels classification
ACCy:
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T,
Acc, = N_z 100 (%) (20)

where 7' is the number of correctly classified vessel pixels and
Ny the number of vessel pixels in manual segmentation.

Furthermore, we counted the ratio Ry of correctly classified

vessel pixels 7 and number of vessel pixels in automatic segmentation
NVS

T,
Acc, = N_:s 100 (%) (21)

Table 4: Accuracy of segmentation. P1-7 are testing pictures. We compared manual
segmentations of these pictures with automatic segmentation. The average accuracy
of two-classes segmentation is 93 % (parameter ACC). Concerning vessels, 78 % of
vessel pixels from original image are classified as vessels in binary segmentation on
average (parameter ACCy). 80 % of vessel pixels in binary segmentation are labeled
correctly on average (parameter Ry).

P1 P2 P3 P4 P5 P6 p7 average
ACC 0.96 0.93 0.93 0.90 0.92 0.91 | 0.96 0.93
ACCy 0.80 0.92 0.75 0.71 0.82 0.68 | 0.83 0.78
Ry 0.87 0.75 0.84 0.67 0.81 0.93 | 0.72 0.80

Average accuracy of two-classes segmentation is 93 % (parameter ACC).
Both vessels and background classes are included in this parameter and
there several times more background pixels in binary segmentation than
vessels. To describe the accuracy of vessel pixels classification we
compute ACCy and Ry. ACCy describes, how many of vessel pixels from
original image is classified as vessels in binary segmentation. In our
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algorithm, 78 % of vessel pixels from original image are classified as
vessels in binary segmentation. Ry describes, how many of vessel pixels
in binary segmentation are labeled correctly. In average, 80 % of vessel
pixels in binary segmentation are labeled correctly.

6.3 Individual segment identification

The diagram of individual segment identification process is
displayed in fig.18 We find skeletons in binary image. Subsequently, we
find branching points in the skeleton. We remove the branching points
to separate individual skeleton segments. Separated continuous objects
are labeled by unique identifiers in skeleton image. Based on the
distance, vessel pixels are matched with close skeletons and labeled by
their identifiers.

€ —

\

(a) binary segmentation \ (b) skeleton
(d) distance transformation

S
""\ wﬁ\ (

f) individual vessel (c) skeleton segments
segment mask \.
P \"\.

(e) labeled skeleton segments

Figure 18: Process diagram of segments labeling and dimensions measurement.
Binary segmentation is an input. Mask, where each segment is labeled by unique
classifier is the output.
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Skeletonization is based on thinning of the binary image.
Medial axis transformation described in [49] is used in the algorithm.
While thinning, the neighbourhood of 4 pixels is used. Such thinning
leads to the pruned skeleton without short branches.

We separate skeleton segments by removing branching points.
Each non-zero pixel, which has at least 3 another non-zero pixels in its
3x3 neighbourhood is labeled as a branching point. By removing the
branching points we find out, how many individual vessels the frame
contains. The individual vessel is meant to be the segment of the vessel
between bifurcations. Naturally, bifurcation is the place, where diameter
of vessel and blood flow velocity change.

To separate skeleton, we dilate the branching points into the
disks with the radius of 9 pixels. We stated the radius empirically.
Afterwards the branching points can be removed and separate skeleton
segments remain.

Once the segments are separated, we find all the continuous
areas, which is each 8-connected component. We sum the pixels in each
continuous area to find out their lengths. In this stage it is easy to
remove those segments, which are not long enough. Binary segmentation
always contains some short segments, which do not label vessels. We
remove the skeleton segments, which consist of 50 pixels and less.
Afterwards each skeleton segment is labelled by a certain brightness
value, which is a unique identifier.

6.3.1 Individual vessel segment mask creation

We create individual vessel segment mask by uniting circles
along each centerline. Each centerline pixel is the center of one circle.
The diameter of the circle equals distance of the centerline pixel from
closest background pixel. All the circles along the centerline are united
and the covered area is labeled by centerline’s identifier. This approach
causes, that individual vessel segment mask is cleaner than binary
segmentation. Since we have removed too short centerlines, pixel along
these centerlines are not included in individual vessel segment mask.
Such pixels are displayed in grey color in figure 19. These are pixels we
do not want to include into analysis, because they mostly belong to
background or to too blurred vessels with insufficient contrast. This
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approach leads to unsatisfactory labeling close to bifurcations of thin
and wide vessels. In such area the distance transform value of thin vessel
centerline pixels is bigger than in the rest of the vessel. So, big circle is
created (fig. 19a). We solve this problem by replacing the actual vessel
radius by the average vessel radius in each centerline pixel, where the
actual value is bigger than the average (fig. 19b).

(a) before correction (b) after correction

Figure 19: Correction of diameter determination close to the bifurcations

There are two drawbacks in our labeling approach:

- The end of thin vessel is sometimes involved in large vessel. (fig.20a)

- Labeled area does not entirely follow the vessel in binary vessel
segmentation image. (fig.20b)

\‘ LY
b LY
v B
(a) (b)
Small vessel (orange) is not labeled labeled area does not follow the
correctly in the area (blue outline), vessel in binary vessel segmentation
which is close to the bifurcation with image entirely

large vessel (yellow). Blue outline
should be filled by yellow color,
because the area belongs to the large
vessels.

correctly labeled area (true positive pixels)
M false negative pixels - they are not labeled,
even though they should be
M false positive pixels - they are labeled,
even though they should not be

Figure 20: Imperfections of labeling algorithm
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6.4 Vessel segments radius measurement

We measure radius r by distance transform. It calculates
euclidean distance from background in each non-background pixel.
Distance from background is determined for each non-zero pixel, so it is
determined for centerlines as well. Distance r, of centerline pixel from
background equals the radius of the segment measured in pixels in a
certain section. As we know how many centerline pixels particular
segment contains (/V), we can compute the average radius of each vessel
segment:
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7 Straight vessel segments extraction

The aim of the operation is to obtain an image, which contains
only the pixels, which belong to long enough straight part of the vessel
as in figure 22g. We extract the segments to estimate optical flow there.

The process is based on Hough transform [47] of the vessel
segment centerline.
The algorithm is based on the parametric representation of a line [47]:

p=x-cos(0) +y-sin(6) (23)

p is the distance from the origin to the line along a vector
perpendicular to the line. @ is the angle between the x-axis (figure 23a)
and this vector. The peaks in Hough matrix represent potential lines in
the input image. [48]

Deeper explanation of Hough transformation is provided in
figure 23.

o
a

(a) Original image (b) Hough transform matrix
of original image

Figure 21: Explanation of Hough transform for line detection in binary image. Original
binary image (a) contains two white lines. Each possible line can be determined by the
distance from origin p and angle 6. Both parameters are displayed for longer line in
original image. Based on original image Hough transform matrix (b), which is 2D
histogram of lines occurnces, is created as follows: Through each white pixel of original
imge imaginary lines with various directionns are drawn. Each of these lines is described
by p and 6 and added into appropriate bin in Hough transform matrix. When some white
pixels are in a line in original image, appropriate bins in Hough matrix grow and get
brighter, because imaginary line, which have direction of real line in original image, are
added into the same bin. The brightest spots in Hough transform matrix indicate p and

6 of real lines in original image (arrows).
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First, we choose a segment (fig. 22a). We detect straight parts
of its centerline by Hough transform (green line in figure 22¢). Next we
find the borders for cropping. The border points (red crosses) lie on the
blue lines displayed in fig. 22¢, which intersect the green line endpoints
and hold the right angle with the green line. The euclidean distance of
the border points from the endpoints equals the radius of the vessel.
Since we know the angle 6, we can rotate the image (fig. 22e). Then we
crop the rotated image (fig. 22f). The horizontal centerline of the
cropped area is the horizontal centerline of the rotated image and the
height of the cropped area equals to the diameter of the vessel. We
remove all the rows and columns from the cropped image, which contain
zeros, to obtain the final vessel extraction (fig. 22g).

(b) Hough transform of the

(a) Definition of vessel
centerline

segment

Py -

f) Cropped i 1mage

(g) Straight vessel segment (e) Rotated segment

(c) Cropping dimensions ‘

<

(d) Cropped segment

Figure 22: Diagram of straight vessel segment extraction. (a) vessel segment is selected, (b)
Hough transform of vessel segment centerline to detect straight section, (c) roi determination,
(d) cropping and rotating of roi, (e,f) another roi definition and cropping, (e) resulting
horizontally oriented straight vessel segment.
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Figure 23: Detection of straight vessel segments within whole
image. Segments will be extracted from the regions of interest,
which are marked by red rectangles.
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8 Artificial videos

By artificial videos we simulate RBCs flow. We try to imitate
the inner structure of straight vessel segments (fig. 24). The diagram of
artificial video acquiring is displayed in fig. 25. Initial 10%225 array with
uniformly distributed random intensity values in range 0 - 255 was
generated. The array was smoothed by gaussian filter. Each video is a
sequence of 10 10x175 images, which were obtained from the initial
array. First image of each video contains 1% - 175" column of the initial
array. Depending on the inter-frame motion n, the second image of the
video contains from 1+n™ to 1754 n" column of the initial array. Shifting
the region of interest over the initiation array about n pixels, 10 frames
of the video are created.

iy
- ™
PN [T ™

(a)

‘Texture of three Texture of artificial video
different real vessels

Figure 24: Comparison of texture, (a) real vessel segments, (b) artificial video.

1 Initial array

T e
|\

Frame 1 Frame 2 Frame 3
Figure 25: Creation of artificial videos. Region of

interest is shifted by n pixels over the initial array,
which simulates the pattern of real vessels.
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9 Velocity measurement

9.1 Maximal blood flow velocity

We determine maximal RBCs velocity, because it is important
to know the range of motion we need to measure. According to [19]
RBCs velocity v can reach up to 1.5 mm-s'. Frame rate FR of our videos
is 43 fps, motion a between two frames caused by maximal velocity v is

v
a= ﬁ=35um (24)

Each pixel of MicroScan videos occupies the area S = 0.56 pm? [58], so
length 7 of pixel side is

l=+5=075um (25)

Interframe motion m (in pixels) performed by RBCs at velocity vis then

a .
m= - = 46.7 pixels (26)

Ideally, we need to be able to detect the interframe motion of
around 50 pixels to cover the range of RBCs velocity.
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9.2 Optical flow

We decided to implement optical flow, as recommended
in [19]. Unlike [19] we implemented Lucas-Kanade method.

Optical flow is a field of motion vector per each pixel of an
image. The vectors show movement of the pixel between two sequential
pictures in time. That is, what optical flow equation for a pixel x,y
claims [51]:

L, )0, + 1, (x, )0y, = 1 (x, ) (27)

where L(x,y), I,(x,y), I:(x,y) are the partial derivatives of the
image /with respect to position x, y and time ¢ and (i, v;) is the motion
vector.

Lucas-Kanade method is based on the assumption, that the
displacement of the image contents between following frames is small
and locally approximately constant. So there is the same motion vector
(v, vy) for all pixels within a window. The compromise solution is based
on the least squares method.

The optical flow equations for all n pixels of the window can
be written in a matrix form

Av=D>b, (28)
where

L (x1,y1) I, (x1,¥1)

. . [zi] - [ —It(x:1:3’1)

_It(xnr yn): (xnr yn)

Ix (xn' }’n) Iy (xn: yn)

Equation (28) resembles equation (7) in section 5.2 (section
Motion estimation in chapter Correction of video instability). Unlike
(28) eq. (7) has a form of error function. The equations differ in the
number of parameters to be estimated. In eq. (7) 3 parameters for each
spatial direction are assessed, in equation (28) just 1 parameter for each
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spatial direction is estimated. Moreover, in eq. (7) all the pixels of an
image are included. In contrast, Lucas Kanade method estimates the
motion vector just for a local area.

Vector vis computed by least squares method as:

-1

[ Wil (X, :)? Z wily (x;, Yi)ly(xi'yi)] [— Z wily (g, yi) I (x4, J’z)l
=1 i
|

Uy = i=
[vy] =|n ' n n (30)
wily, (i, i) L (X3, yi) Z wily (x;, ;)? J [— Z wil,, (xirJ’i)It(xirYi)J
i=1 i=1 i=1
Equation (30) resembles eq. (12) in section 5.2, but, as we have
mentioned, both approaches differ in number of parameters.
We implement equation (30) as follows:
-1 [_Zwilx(xi'yi)lt(xi'yi)]
[vx] _ [l Cey) Ly y) | = I
ol T @y by | | (31)
l_ Z Wily(xiJ yi)lt(xi’ yl)J

i=1

where

Lie= L**W (32)
Ly = L**W
Ly = L, * W

where I.is partial derivative of image / with respect to x and
I, is partial derivative of image 7 with respect to y. W is matrix of r?
elements, where the central element equals 1 and every other element
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p(1,j) equals a Gaussian function of its distance from central element of
the matrix:

dZ

1
p(i,j) = Ee_T (33)

where d is distance of element p(7,j) from the central element
of the matrix in pixels.

We compute partial derivatives as convolution of image /with
kernel d = 1/12[-1,8,0,-8,1], as proposed in [61]. For Z kernel is oriented
horizontally, for 7, vertically.

L, I, I, are such matrices, where each element equals the
sum of weighted partial derivatives in a window of side n. So, each
element of appropriate matrix equals the appropriate summing
expression in matrix in equation (30).

The derivative in respect to time is computed as the difference
of consecutive frames /(%) and I(t+1) :

I, = 1(t+1)—1(t) (34)

We implemented multiresolution technique to enlarge the
recognition range of optical flow (just like in section 5.2.1, where the
approach of finding affine transformation model of an image in different
scales is described)

Multiresolution method is based on reducing the image
resolution. However, the width of some vessel segments is quite often
just around 10 pixels and the window size is typically around 10x10
pixels. We need enough pixels in the region of interest to fit the window,
so we can not change the resolution of vessels too much. We solve this
problem by reducing just one dimension of vessel segment. When the
initial size of vessel segment is 10x100 we reduce it to 10x50. Like this
fitting of window is enabled. We suppose, that RBCs move just in one
direction, so reduction of resolution in another direction is not necessary.
To ensure this, we extract straight vessel segments and rotate them, so
they are always oriented vertically.
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In the coarsest level L resolution of frame is mxn. Initial array
of motion vector vy, v,z with dimensions mxn is estimated. In a finer
level, L-1, resolution of frame is 2mx2n. To adapt the resolution of
motion vector array for level L-1, it is interpolated, so its resolution
equals the resolution of frame 2mx2n. To transfer the value of motion
vector into level L-1, vy is multiplied by 2, v,z remains the same, because
we do not change the resolution in vertical direction (eq. 35).

V-1 = 2Vyy (35)

In level Z-1, coordinates of local window of frame /(¢+1) are
transformed

4

Xj = X+ Uy (36)

!

yi = y+vyL—1

and the window is interpolated. Again, motion vector v, vy is
computed and the result is added to current estimation. Then the value
of vector is transferred into finer level:

Vxp—2 = 2(Vxp—1 + Vx) (37)

Vyr—2 = VUxp—1 + Vx
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Equations (34-36) describe the estimation of motion vector
during multiresolution process. Finally, vector v we search for, is the
estimation from the finest level 1.

v=[,] (38)

Uyl

Finally, we compute the size s of motion vector:
§= /v£1 + v (39)

Size of motion vector describes the interframe motion (in
pixels) of a certain pixel between two frames.

The lengths of the vessel segments vary from 60 to 160 pixels
in our videos. So, we apply 5-levels multiresolution on each vessel and
we can be sure, that in some level the window fits into the frame.

We filter the images before down sampling from level n to level
n-1 by binomial filter (1/4, 1/2, 1/4) along horizontal dimension, as
proposed in [23]. We never up sample the reduced images, but we always
down sample the original image to reach demanded resolution.

We use the square window with % elements, where n equals 7.
We do so, because such a window fits into the most frames we analyse.
The minimum height of the frames to be analysed is 7 pixels in our case.
Bigger window leads to a more precise estimation of velocity vector.
From our experience, window with the side of 7 pixels is a good
compromise between the demand of the image size and estimation
quality.
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9.2.1 Experiment with artificial vessel segments

We executed an experiment, where we examined, whether
blood flow velocity is determined correctly. We tested the algorithm on
artificial videos with known inter-frame motion. 50 videos were included
in the experiment. There was a specific inter-frame motion in each video
in the range from 1 to 50 pixels/frame. We tested the performance of the
algorithm in this range of velocities, because such range should be found
in real microcirculation videos.

We used histograms of estimations vectors. FEstimations
vector, is a group of all the estimated sizes of optical flow vectors from
all the frames within the video (except the last frame).

We display a histogram of estimations vector in figure 26. The
vector was extracted from artificial video with inter-frame motion
n = 5 pixels. We can see, that the most of the estimated motions rank
among 4.5 and 5.5 pixels. It is a correct value, because the real inter-
frame motion is 5 pixels-frame'. However, other estimated values occur
in the histogram as well, which means the algorithm is not perfect and
the estimation is not always correct.

1000 -
500 - 1
0 I I L I . . A——

1 2 3 4 5 6 7 8 9
Mation vector size {px)

Figure 26: Histogram of motion vector sizes estimated in a sequence of
frames of artificial vessel segment. Blood flow velocity descriptor is
extracted from this histogram. In this particular case the descriptor equals
5, because most of the estimated motion vector sizes within the frame
sequence rank among 4.5 and 5.5 pixels.

To see efficiency of the algorithm in a full range of requested
velocities, we extracted estimations vectors for all videos. We created
2D histogram, where all the histograms of all estimations vectors are
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included (fig. 27). We did so in order to see the distribution of optical
flow estimation in dependence on the inter-frame motion.

In fig. 27 one 2D histogram from three different views is
displayed. In (a) and (b) perspective view is provided. In (c) the view
from above is shown. In all cases x axes denotes to the real interframe
motion and on y axis the particular estimations vector is displayed. We
can see, that when the real motion is small, approximately up to 10
pixels-frame!, a significant amount of estimations vector elements are
assessed correctly. Obviously, when the real motion is bigger, correct
estimations occur as well, we can observe this up to the motion of around
30 pixels. However, the bins with correctly assessed values become less
dominant with increasing velocity. To complete the information about
how our algorithm is efficient or not, we provide an ideal histogram
(fig. 28), which would describe the performance of a faultless algorithm,
if it was included in our experiment. In contrast with the ideal
implementation, real algorithm fails, when the real motion is bigger than
approximately 20 pixels-frame?!, because the bin with correctly
estimated values become smaller than the faulty bins.
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Figure  27:  Optical flow
estimation in dependence on the
inter-frame motion. One 2D
histogram  from 3  views
perspective (a,b), from above
c)) is displayed. By the real
motion up to 10 pixels-frame,
vast number of  velocity
estimations are correct. With
bigger real motion, number of
right estimations decreases. By
real motion  bigger than
approximately 20 pixels, faulty
too low estimated values
become dominant.
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Figure 28: Ideal optical flow estimation in dependence on the inter-frame
motion. This graph illustrates, how the optical flow would be estimated by
the faultless algorithm. We can compare this graph with the performance of
real algorithm (27c) to see the limits of the real implementation. Ideal

algorithm would be able to estimate the motion up to 50 pixels-frame’!, so
that it could measure whole range of RBCs velocity. However, real algorithm
fails when the real motion is bigger than 20 pixels.

9.2.2 Optical flow-based velocity descriptor

The goal of the implementation of velocity measurement
algorithm is to obtain a descriptor of the flow in a whole video. To do
so, we first create a descriptor of flow in a single vessel segment. It is
the highest bin of the histogram of estimations vector, when the edges
of histogram are half-integers (which means it is the most frequent
estimation). Having a set of these individual descriptors (for each vessel
segment of video, or group of segments) we can process it to create an
overall velocity descriptor. Again, we choose the most frequent value to
be the descriptor of video.
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10 Temporal pixel intensity
fluctuations

We are interested in temporal changes in intensity of each
pixel of a vessel segment. Since the average brightness of each vessel
segment is different, standard deviation is a suitable tool for
compensating such variances [4]. So, we compute average value s of
changes in temporal intensity of particular pixel (/(x,y)) as a standard
deviation:

N
1 ~
s = mza(x,y) —1)? (40)
i=1

where NV stands for number of frames in video and I is the
average intensity of pixels in a video segment within a video:

N
- AN 2iea [Geyn)
RIS W)

where n is the number of pixels of vessel segment.

As a descriptor of flow in a particular segment we choose the
most frequent value s - the tallest bin in a histogram of intensity
fluctuations s.

To describe whole video (or a group of vessels) we use the
most frequent value of descriptors obtained from individual vessels. We
display a histogram of individual vessel descriptors extracted from real
video in figure 29. In this particular case the video descriptor equals 110.
From now we will use an acronym PIF (pixel intensity fluctuations) for
this descriptor.
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Figure 29: Histogram of descriptors of individual vessels from
one video. Highest peak of the histogram is chosen to be the
descriptor of the video (110).

10.1 Experiment with real vessel segments

We extracted 30 segments with good contrast and various flow
velocities (visually apparent) from real videos and generated histograms
of intensity fluctuations for each of them. Based on the visual assessment
of several histograms we decided to set the edges to the multiples of 20.
We display some histograms of intensity fluctuations from two real
segments to show, that fluctuations in real vessels differ (fig. 30). We
can see, that the highest peak in histogram is different in both cases
(green arrow), so it makes sense to accept it as a distinctive descriptor
of vessel segment. We provide values of descriptor of flow in each vessel
segment in figure 31. Based on fig. 31, we believe, that pixel intensity
fluctuations are different in real vessel segments with various flow
velocity.
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Figure 30: Comparison of histograms of pixel intensity fluctuations
from two different real vessels. Difference of those vessels was
apparent in video visually. Vessel (a) was thin, flow was intermittent
and fast. Vessel (b) was thick, flow was continuous, velocity was
heterogenous, RBCs were very dense.
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Figure 31: Intensity fluctuations of 30 real vessel segments with different velocities. In
the graph we can see, that pixel intensity fluctuations are different in vessel segments
with various flow velocity.
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11 Implementation of conventional
descriptors

11.1 TVD

TVD is implemented as

TVD = N (42)

where /V, is the number of pixels in vessels and /V number of
pixels in a frame.

11.2 deBacker score

deBack 1000c
eBacker score = ——
3VS(m + n) (43)

where ¢ is the number of crossing points, S'is the area of one pixel, m,n
are the dimensions of video in pixels.

We determine ¢ as follows: A matrix of size mxn with three straight
lines in x and y direction is created. Lines equal one and the background
equals zero. We multiply matrix with lines with centerline image of a
video, where ones label vessel segments centerlines and the rest equals
zero. After multiplication the intersection of centerlines and lines equals
one, rest equals zero. We sum up all the continuous objects to obtain
number of intersections.
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Figure 32: Determination of crossing points in deBacker score.
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12 Classification of microcirculation

We defined three groups of vessels according to their diameter
(based on the observation, so that all the groups have about the same
amount of members in a video)

Table 5: Three groups of vessel segments in relation to their diameter, which we used
in classification experiment.

vessel category ‘ diameter (um)

small (0,13)
middle (13,20
large >20

We extracted OFD, TVD, PIF and deBacker score for each
group of vessels from each video in our dataset. We created description
vector for each video. An example of such a vector is shown in table 6.
We generated deBacker score for small+middle vessels (DB s+m) too
(which means for vessel with diameter up to 20 pum), because AVA
generates such parameter.

Table 6: Example of description vector, which is the outcome of video analysis. PIF:
pixel intensity fluctuations, DB: deBacker score, TVD: total vessel density.

OFD | OFD | OFD | OFD | PIF | PIF PIF PIF DB DB DB DB DB | TVD | TVD | TVD | TVD
all small | middle | large | all | small | middle | large all small | middle | large | s+m all small | middle | large
o1 | 1 [ 1 | so | 120 | 130 [ s0 [6.662 3807 | 1427 | 1427 | 2855 | 0.151 | 0.041 | 0.052 | 0.057

We generated description vectors from 75 on-pump videos and
76 off-pump videos. We created testing dataset so, that we chose one
third from each group randomly. The rest was training dataset.

We trained SVM (support vectors machine) to discover a
possible linear separability of data. We trained a linear classifier, because
the dataset is small. We employed R statistical language [69] to do so.
The aim of our investigation was to find out, whether any of parameters
in description vector enables linear separation of pathological and
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physiological microcirculation. We did not combine the parameters, we
trained a classifier for each of them. In each case we did 10-fold cross
validation.
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Estimated velocity (px/frame)

13 Results

13.1 Optical flow

We present the dependence of estimated velocity value on the
real velocity of flow in figure 33. Green color marks the correct velocity
estimation, red color codes the false estimation. The graph illustrates,
that up to the velocity of 17 pixels/frame and for velocities 21, 25 and
29 pixels/frame the estimation was correct. Velocities in the range from
18 to 50 pixels/frame, except 21, 25 and 29 pixels/frame were not
determined correctly.
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Figure 33: Performance of optical flow-based velocity estimation. Real flow velocity in artificial
vessel segments on x axes, estimated velocity value on y axes. Green color marks the correct velocity
estimation, red color codes the false estimation. The graph illustrates, that up to the velocity of
17 pixels/frame, velocity in artificial vessel segments is determined correctly by optical flow. In
higher velocities it is mostly misleading.
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13.2 Comparison of deBacker score with

reference values

There are two deBacker score parameters, which both our and
AVA measured on identical data - deBacker score for all vessels and
deBacker score for small vessels with diameter up to 20 um.

We provide comparison of both performances. We computed
difference D of parameter values P:

Paya—P
D = AVA

. 0
P ‘ 100 (%), (44)

where Py is the value AVA determined and P value obtained
by our algorithm. The average difference D was computed

1 N
b= NZ Dr, (45)
n=1

where NV = 72, which is is the amount of videos we analysed.

In parameter deBacker score, the average difference of values
generated by both compared algorithms was 25.03 %. Histogram of
differences is displayed in figure 34a.

In parameter deBacker-small, where only vessels with

diameter up to 20 um were included, the average difference was 22.42 %.
Histogram is shown in figure 34b.
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Figure 34: Histograms of differences in results achieved from commercial software and our

algorithm. 72 videos were assessed. (a) parameter deBacker score (all), the most of the
differences range between 0 and 40 %. (b) parameter deBacker score (small), the most of the

differences range between 0 and 40 %.

13.3 Classification of pathological and
physiological microcirculation

We trained SVM classifier for the parameters our software
provides - TVD, deBacker score (DB), PIF, OFD. Each parameter was

assessed in 4 groups of vessels according to their dimensions - small,
middle, large and all.

Accuracy and p-value of all the classifiers is displayed in
table 7. Based on table 7 we claim, that we found a significant difference
between pathological microcirculation (patients on CPB) and
physiological microcirculation for three of the measured parameters:
pixel intensity fluctuations, PIF (all), (p=0.034), pixel intensity
fluctuations, PIF (large), (p=0.001), deBacker score (all), (p=0.035).
The difference between other measurements were not statistically
significant.
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Table 7: Accuracy of classification of testing data. In each column performance of one
classifier is displayed. Such cases, where we found significant difference, are
highlighted.

OFD | OFD | OFD | OFD | PIF PIF PIF PIF
all small | middle | large all small | middle | large

accuracy 0.5 0.5 0.5 0.5 0.64 0.62 0.60 0.72
p-value | 0.556 | 0.556 | 0.556 | 0.556 | 0.034 | 0.059 | 0.102 | 0.001

DB DB DB DB TVD | TVD TVD TVD
all small | middle | large all small | middle | large

accuracy | 0.64 0.54 0.58 0.50 0.62 0.53 0.55 0.5
p-value | 0.035 | 0.336 | 0.161 | 0.556 | 0.059 | 0.335 | 0.342 | 0.556
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14 Discussion

Our work provides three significant findings concerning pixel
intensity fluctuations, difference of on-pump and off-pump videos and
optical flow. 1) We do not suppose optical flow computed by
Lucas-Kanade method is sufficient for microcirculation analysis. 2) We
suppose, that pixel intensity fluctuation is promising quantitative
descriptor of microcirculation. 3) We found significant difference
between on-pump and off-pump videos. All the statements will be
discussed.

14.1 Optical flow

Our implementation of Lucas Kanade method in combination
with multiresolution performs quite well on artificial data. In artificial
videos with wide range of velocities (1-17 pixels/frame) the algorithm
estimates velocity correctly. There is a hint of correct estimation even
in higher velocities up to 30 pixels/frame (the descriptor would have to
be improved). However, optical flow fails in real data. It seems it does
not provide any relevant information about real videos. We see several
causations. Firstly, there is lack of significant texture in vessel segments.
The vessel content is just blurry without any corners or edges quite
often. Moreover, when texture is present, it changes between frames, so
there is no chance to find similarities. Furthermore, pictures are too
noisy. We tried to filter the images by diffusion filter, but it did not
bring any improvement in performance of optical flow. In addition, the
content of extracted vessel segments might be insufficient in some cases
because of wrong segmentation and straight segment extraction. We did
not have enough time to check all the extracted areas, whether they
really include just area of vessels. Finally, according to the experiment
with artificial video, our implementation fails by higher velocities than
17 pixels/frame. In some cases this may be the reason of dysfunction in
real videos, because velocities over 17 pixels/frame are supposed to be
normal in capillaries.
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14.2 Pixel intensity fluctuations

Pixel intensity fluctuations seem to be wuseful tool for
quantitative microcirculation analysis, because it passed through all our
experiments successfully. We found out it related with flow velocity in
artificial vessels, it differed for real vessels with various flow velocity and
it enabled statistically significant linear classification of pathological and
physiological microcirculation either in all or just in large vessels. PIF
just describes the video content without any estimations and
assumptions, which we consider convenient. It is relatively resistant to
noise and lack of contrast because of averaging. Nevertheless, we should
mention, that one estimation in PIF determination process exists. It is
the width of bins in histogram of parameter s for particular vessel. We
accept the centre value of the tallest bin of histogram as the descriptor
of particular vessel. We stated the width of bins to be 20 empirically,
which is not an ideal solution. If the width of bin was different, PIF
values would differ too.

More data from various patients would be needed to analyse,
what really PIF describes. There is actually no reason not to accept it
as a quantitative descriptor for scientific purposes. Informational value
of the descriptor might be revealed in the future, when enough data
from various patients would be gained for statistical analysis.

14.3 Difference of on-pump and off-pump videos

We found a significant difference in 3 from 16 parameters
between on-pump and off-pump patients, which confirms the
assumption, that the difference exists. However, the dataset was very
small, just 76 off-pump and 75 on-pump videos. We used
cross-validation when training classifiers to compensate the lack of data.
Moreover, the videos are very diverse. We suppose, that there are
off-pump and on-pump videos, but they have many subcategories.
On-pump videos include patients both before and after surgery and in
anaesthesia. All these videos might differ from each other. We can find
literature, which claims, that there is significant difference between
microcirculation of subjects with and without anaesthesia [8,67].
Considering off-pump videos, they were captured in different stages of
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surgeries. In [13] quality of microcirculation with and without CPB was
compared, significant difference was registered in the beginning of
surgery, but no variation was found in later stages.

We found difference in deBacker score and in PIF. DeBacker
score relates to the amount of vessels and their distribution in captured
area, but it does not provide any information about vessel content. In
contrast, PIF describes flow, but it has nothing in common with amount
of vessels or their dimensions. It means we found a difference both in
vessel amount and flow. TVD relates to the area vessels occupy in
captured area. We did not find any significant difference in this
parameter.

14.4 Software

There are some flaws, which negatively influence the reliability
of microcirculation descriptors. Firstly, stabilization of videos is never
perfect. We controlled the stability visually and kept those videos, which
we subjectively considered stable enough, but in some cases some vessel
segments were not stable entirely. However, we could not have risked to
reject more videos because of lack of data. Moreover, subjective
evaluation of stability causes, that the quality differs within dataset.
Automatic control of stability would be useful in this case.

Automatic vessel segmentation is performed by classifier,
trained on 14 training pictures, which is not too much. Machine
learning-based segmentation is attractive, but the creation of training
and testing data is time-consuming. Looking at the automatic
segmentation we should remember, that approximately 20 % of vessel
pixels are classified wrong and that roughly 22 % of vessel pixels from
original image are not included among vessel pixels of automatic
segmentation. Another inaccuracy is caused by dividing segmentation
objects into individual segments. Firstly, areas around bifurcations are
tricky in our software. No border recognition is implemented, so
sometimes a vessel segment ends in the area of another segment. Part
of the information from such segment is misleading, because it contains
information from two different vessels. Another distortion is caused by
the fact, that we always separate vessels in bifurcations. In case there is
a long thick vessel and there are three bifurcations along its length, we
divide this vessel into three segments. Subsequently, the analysis
contains data from this vessel three times instead of once.
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14.5 Comparison with AVA

The difference of deBacker score determined by our software
and deBacker score from AVA is roughly 25 %. We only compared 72
values, because there were no more suitable videos. We accept values
from AVA as reference, because we assume it is more accurate software
than ours. The difference is caused by the imprecisions of our software.
DeBacker score value depends on the number and distribution of
detected vessels. Inaccuracy in stabilization and subsequent automatic
vessel segmentation causes, that not all vessels are detected, which
influences deBacker score value. On top of that, we can not be sure, how
precise AVA is in stabilization and vessel detection.
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15 Conclusion

We created a functional software for automated analysis of
microcirculation videos. Video stabilization, automatic vessel detection
and their dimensions measurement are implemented. MatLab [68] was
used to implement stabilization and dimensions measurement, Ilastik
tool [24] is employed for vessel detection. The software provides
quantitative analysis of microcirculation (implemented in MatLab). It
determines two conventional (deBacker score, total vessel density
(TVD)) and two novel descriptors (pixel intensity fluctuations (PIF)),
(optical flow descriptor (OFD)) automatically. We compared our
deBacker score values with those from commercial tool. The average
difference was approximately 25 %.

We designed and constructed two novel microcirculation
descriptors. OFD is based on the analyse of microcirculation velocity
profile. Flow velocity is estimated by optical flow method. We
discovered experimentally, that the descriptor estimates flow velocity in
range 0-17 pixels/frame correctly in artificial videos. However, we found
out it was not suitable for assessment of real videos due to insufficient
texture and noise. For this reason we did not implement it as an
automatic feature of the software. However, it can be added any time,
if better quality videos would be analysed.

The second novel descriptor (PIF) is based on the analyse of
profile of pixel intensity fluctuations in video. Despite OFD it performs
well on real videos.

All the descriptors are assessed for small, middle and large
vessels, just like for all the vessels at once. We determined these
parameters for 151 videos, which of 76 were captured on normal subjects
and 75 on subjects with CPB. We trained linear SVM classifier to
distinguish on-pump and off-pump videos. We employed R to create the
classifier. We found significant difference in 3 parameters: PIF (all
vessels), (p=0.034), PIF (large vessels), (p=0.001), deBacker score (all
vessels), (p=0.035).

The instructions for the use software are described in
Appendix.
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Appendix

Description of ,,Appendix“ folder content (the folder is
included on CD, which is attached to the printed thesis):

There are three subfolders and ilastik-1.3.2post1-win64.exe in Appendix
folder:

= T

N Otevitt ybrat vie
J H
avit Zrugit wbér

o @ Historie 5 Invertovat vibér
Uspofadat Nowvé Oteviit Viybrat

> Appendix > v|& | Profledat.. o

(o) Nazev

Typ Velikost
™ Additional material
“ AMALYSE

8 ilastik-1.3.2post1-win4

subfolder Appendix-ANALYSE

- It includes the software for automated analysis of
microcirculation videos. Moreover, there are 4 exemplary
microcirculation videos.

Instructions for automated analysis software

- The software was created in MatLab R2018b on Windows 10

- To run automatic analysis software, you need MatLab (with
Image Processing Toolbox) and Ilastik 1.3.2 (tool for automatic
image segmentation)

1) Install MatLab and Image Processing Toolbox
2) Install Ilastik:

- either from Appendix folder (ilastik-1.3.2post1-win64.exe):

Appendix v & | Prohl

“  Nazev Velikast

* Additional material
“ ANALVSE
5 ilastik-13.2post1-win64

- or from website: https://www.ilastik.org/download.html


https://www.ilastik.org/download.html

Run automatic analysis:
- Go to ANALYSE folder

Appendix v/ | Prohleds
A Nizev Datun zmény Tye Velikost
" Additional material Slozka soubord
" ANALYSE Slozka soubord
30 ilastik-1.3.2post1-wingd Aplikace 321523 kB

- Put the videos you want to analyse into ANALYSE folder: (There
are four exemplary videos right now). We use .avi videos, but another
formats should be possible as well.

Besides videos, there are: Segmenter, software and Analyse. The only
thing you need to open is Analyse. Do not remove or manipulate
software and Segmenter. Software includes Matlab functions,
segmenter is a classifier for automated vessel segmentation.

Appendix » ANALYSE > v O Prohle
"~ Nazev Datum Typ Velikost Doba trvéni
" software 1 Slozka soubord
5 Analyse MATLAE Code
[=} captured 1.of 1.20.. 2 Soubor AV
|2} captured_1_of_1_20... Soubor AV
|2} captured_1_of 1.20.. 2 9 Soubor AV
|2} captured_1_of 1.20.. 2 18 Soubor AV
Segmenter .06 ilastik project

Open Matlab script Analyse.m and add the folder ,software® into

Matlab path:

4\ MATLAB R2

ot ) i i -

e (g roaries
2 0 =
| Compare v GoTo v Comment % g (7

Show in Explorer
Create Zip Fie
Rename

Delete

New
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cu
Copy
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ocis » Desktop » DPLOMKA » P
® 9 x




You need to define two variables in Analyse.m:

The path to the folder, where your Ilastik is installed
(example: "C:\Program Files\ilastik-1.3.2")

The real area, which is covered by one pixel of the video (in

sqaured micrometres - pm?) The preset value 0.56 is for
MicroScan USB 3.

| Analysem |+ |

1 f¥define the wvariables: ‘

2

2 = Ilastik _path ; %¥Write down the path t
4 — pixel area = v one pixel in sguared m
&l

&

You can choose, if you want to include OFD descriptor - define
OF =1 (yes), or OF = 0 (no)

You can define the range of diameters for small, middle and
large vessels (in micrometers)

2 %% you can change variables:

anges of small, middle and large vessels:

Details

Workspace

Name

Value 35




Now you are ready to run Analyse.m and let the software work:

4\ MATLAB R201b

{IIJ = E [ Find Fiies & o
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What will happen:

Each video will be processed one by one. It takes cca. 15 minutes to
analyse 1 video, which is 1 second long (resolution 960x1280).

There are 4 stages in the analysing process for each video:

1) Pre-processing. This stage lasts approximately 30 seconds.

L At g b C: b Users » kocis » Desktop b DIPLOMKA b ANALVSE »
Current Folder ® | [# Editor - C:\Users\kocis\Desktop\DIPLOMKA\ANALYSE\Analyse.m
Name + | Analysem | + |
software _Zl %define the variables:
%) Analysem 22
[} captured 100.avi 23 —
[3) captured 101.2vi 21 —
I segmenterilp =
26
27 4 - X
28 O [
29
e Video 1: captured 100.avi  Pre-processing...
- a
software (Folder) ~ |32 adless --project=ts —-export_sc
33 - List = dir('*.a
Workspace ) 34 — names = {List.name};
Name = Value ‘ 1<




2) Stabilizing. This stage lasts approximately 5 minutes.

PUBLISH S 9 S S RI@ scorch Documentation
Insert 5 fx -~ m
o2 o g @ e = Fun ect
[ Compare ~  CGoTo = Comment % g %3 = igjfnsesen
H o Breakpoi Pause Run and - Advance Run and
Frint ~ (Find = - ~  Advance Time
FlLE NAVIGATE

@ HhaE b C: b Users b kocis » Desktop » DIPLOMKA » AMNALYSE »
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3) Vessel detection. This stage lasts approximately 8 minutes.
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Loading ilastik from "C:\Program Files\ilastik-1l.3.2\ilastik-meta"
INFO lazyflow.operators.filterOperators: Using fast filters.
WARNING __ init__.py(11): UserWarning: init: Could not import tiktorch classifier
INFC ilastik main: Starting ilastik from "C:\Program Files\ilastik-1.3.2".




4) Extraction of microcirculation descriptors. This stage lasts

approximately 2 minutes.
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After all the videos are
automatically

processed, folder Analysis

complete is created
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It contains a folder for each analysed video. There is information about
analysis in each of these folders: stabilized video, picture with overview

of stabilization, picture with segmented vessels and descriptors in .txt
and .xls.

- x
razeni ~ @
K vyimout x I [} Mova polozka = [ Oteviit B vybrat vie

Kopirovat cestu * - £ snadny pfistup = Tupravit  GE Zrusit wibér
Piesunout Kopirofat  Odstranit Piejmenovat |~ Nova Viastnosti -
] vioit zastupce d o o slofka ~ @Histoie 2 invertovat wibér
spoiadat Hové Oteviit Vybrat
> Appendix > ANALVSE > Analysls_complete v @/ | Prohledat... o
A Nazev Datum zmény Typ Velikost
. ™ 1-captured_1_of 1.20180626_114052.avi ..  2105.2012 11:47 Slozka soubord
B 2-captured_1_of 120180629 081418.avi...  21.03.2019 12:09 Slozka soubord
* B 3-captured_1_of 120180726 101908.avi...  21.05.2019 12:28 Slozka soubord
* ™ d-captured_1_of 1.20180726_111854.avi ..  21.05.2012 12:44 Slozka soubori
- =1 analysis_all 21.05.2019 12:44 Textovy dokument 1kB
* analysis_all 21.05.2019 13:03 List Microsoft Exc... TkB
#*

ompatibiity - Fxce

t Q Rekn

T 4 . = 1 o By | = futosum - A,
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[

Mean image, pixel columns: 320, 640, 960

column 320

stabilization overview

column 960

segmentation overview




Moreover, folder Analysis complete contatins the table with all the
descriptors from all the analysed videos both in .txt and .xls

T3 Nova palope = ‘ﬁ [ vybrat vie
y 1] snadpefpiistup ~ Zrugit vibér
Odstrant Nové Viastnosti o ;
- slozka o @ Historie £ Invertovat vibér
Uspofadat Nové Oteviit Vybrat
> Appendix > ANALYSE > Analysis_complete

A Nazev Datum zmény Typ Velikost

-captured_1_of_1_20180626_114032@vi ... 2
i 2-captured_1_of_1_20180629_0&1418.avi ...
I_1_of_1_2018p726_101908.avi ...
I_1_of 1,20180726_111854.avi ...
1kB
TkB

subfolder Appendix-Additional material

o Data for classification: It is a dataset, which was gained from 151
videos. It was used to train linear SVM classifier to explore the
differences between on-pump and off-pump videos

o SVM: Folder with R script (Classify.R), which contains linear SVM
classifiers. It is pre-set for the .xls table which is produced by
autmatic analysis. When you run it, the videos will be classified
according to PIF and deBacker score. The table with predictions
will be created. There are more detailed instructions in the folder.

o Videos: Those videos, from which data for classification were
obtained.



