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ABSTRACT 

The monitoring of microcirculation becomes an attractive tool for 

evaluation of state of health of critically ill patients. Microcirculary 

alternations have been observed by patients with sepsis or organ failures. 

Those parameters, which describe number and distribution of vessels 

(TVD, deBacker score) can be assessed automatically, but the properties 

of blood flow (MFI, FHI) have to be determined manually. The goal of 

the thesis is to develop a software for automatic analysis of blood flow 

velocity from SDFI (sidestream dark field imaging) microcirculation 

videos.   

The software contains automatic correction of video instability, 

automatic vessel segmentation, measurement of vessel dimensions, two 

traditional (TVD, deBacker score) and two novel (optical flow descriptor 

(OFD), pixel intensity fluctuations (PIF)) descriptors.  

The function of software was verified by comparison of deBacker 

score values with those, which were determined by commercial software. 

The average difference was 25 % for deBacker score for all vessels and 

22 % for deBacker score for small vessels. OFD estimates optical flow, the 

estimation is correct up to the velocity of 17 pixels/frame in artificial 

videos. However, it is not suitable for real data assessment, because it 

estimates identical values in vessels with visually different blood flow 

velocity. We analysed the videos with both physiological and pathological 

(patients on CPB) microcirculation and used the data to create a classifier 

of pathological microcirculation. We found a significant difference in three 

from 16 (each of four descriptors was computed for the vessels in four 

different ranges of diameter) parameters (deBacker score, p=0.035), (PIF 

for all vessels (p=0.034), PIF for large vessels (p=0.001). 

The main outcome of the thesis is the software for automatic 

analysis of microcirculation, which provides two conventional and two 

novel descriptors. We found out, that software enables to classify 

pathological microcirculation. However, just a small dataset of 151 videos 

was used to train and test the classifier. We discovered, that our 

implementation of optical flow is not suitable for blood flow velocity 

estimation, probably due to unsufficient contrast and texture and 

presence of noise.   

We developed the software for automatic microcirculation analysis. 

It describes number and distribution of vessels and blood flow. 

Key words: microcirculation, optical flow, automatic vessel detection  

 

 



 
 

 

 

 

 

ABSTRAKT 

 
Monitorování mikrocirkulace je stále více považováno za významný 

nástroj při hodnocení zdravotního stavu kriticky nemocných pacientů. Změny v 
mikrocirkulaci lze sledovat například u pacientů se sepsí či orgánovými 
selháními. Zatímco parametry, které popisují množství a rozmístění cév (TVD, 
deBacker score) jsou určovány automaticky, deskriptory toku erytrocytů (MFI, 
FHI) jsou zatím určovány manuálně. Cílem práce je vyvinout software na 
automatickou analýzu mikrocirkulačních videí získaných SDFI (sidestream dark 
field imaging) technologií, přičemž důraz bude kladen na hodnocení toku krve, 
především rychlosti. 

Základem softwaru jsou stabilizace videa, automatická segmentace cév, 
měření rozměrů cév a tradiční deskriptory mikrocirkulace, jež lze určit 
automaticky. Funkce zmíněných implementací byla ověřena porovnáním hodnot 
tradičních deskriptorů s hodnotami, které byly získány analýzou komerčním 
softwarem. Hodnoty se lišily v průměru o 25 % (deBacker score) a 22 % 
(deBacker score pro malé cévy).  Následně byly implementovány dva nové 
deskriptory toku, jeden založený na odhadu optického toku (opical flow 
descriptor (OFD)), druhý na sledování časových fluktuací pixelových intenzit 
(pixel intensity fluctuations (PIF)). Z experimentu na umělých datech vyšlo 
najevo, že OFD určuje správně rychlost do 17 pixelů/snímek. Pro popis reálných 
videí se však nehodí, protože určuje totožnou rychlost u videí s vizuálně 
odlišnými rychlostmi toku. Software byl použit na analýzu souboru videí, který 
obsahoval fyziologickou (pacienti v normálním stavu) a patologickou 
mikrocirkulaci (pacienti na mimotělním oběhu). Data z analýzy byla použita na 
vytvoření klasifikátoru obou typů videí. Významný rozdíl se potvrdil u tří z 16 
hodnocených parametrů (každý ze čtyř deskriptorů byl určen pro  čtyři skupiny 
cév dělené podle velikosti), a to jak u tradičního (deBacker score, p=0.035), tak 
u nového deskriptoru (PIF pro všechny cévy (p=0.034), PIF pro velké cévy 
(p=0.001)). 

Hlavním výsledkem práce je software pro kvantitativní automatickou 
analýzu mikrocirkulace, který poskytuje dva tradiční (TVD a deBacker score) a 
dva nové (PIF, OFD) deskriptory. Experiment prokázal, že na základě PIF lze 
klasifikovat fyziologickou a patologickou mikrocirkulaci. Úskalím experimentu 
je malý objem dat (151 videí).  Zjistili jsme, že naše implementace optického 
toku není vhodná pro určování rychlosti toku červených krvinek ze SDFI videí, 
nejspíše kvůli nedostatečnému kontrastu, nedostatečné textuře uvnitř cév a 
přílišnému šumu. 

Výsledkem práce je software na automatickou kvantitativní analýzu 
mikrocirkulačních videí, který kromě stávajících parametrů jsou rozmístění či 
plocha cév, popisuje také tok krve. 

 

Klíčová slova: mikrocirkulace, optický tok, automatická detekce cév 
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1 Introduction 

 

Microcirculation has been lately widely discussed, because it 

has been demonstrated that the behaviour of blood flow is related to 

many diseases, such as septic shock, cardiac disease or  diabetes. [1] The 

automatic evaluation of number or distribution of vessels in 

microcirculation videos is common, but the reliable estimation of blood 

flow velocity is a challenging problem. Our work is dedicated to the 

software for automatic microcirculation analysis, where both traditional 

and novel descriptors are determined.   
 

1.1 Microcirculation 

By microcirculation we understand blood perfusion in vessels 

with smaller diameter than 100 μm. It is the primary site of oxygen and 

nutrient exchange. In addition to delivering nutrients and removing 

waste products essential for moment to moment function, 

microcirculation plays an essential role in fluid exchange between blood 

and tissue, delivery of hormones from endocrine glands to target organs, 

bulk delivery between organs for storage or synthesis and providing a 

line of defence against pathogens. [1,2] 

Physiological microvascular net is dense and perfusion is 

continual and homogenous. The velocity of blood cells depends on 

diameter of vessels and ranges between 0.5-1.5 mm/s [19]. 
A real time video of microcirculation can be captured, which 

means, that the area, where an important part of metabolism takes place 

can be observed. Based on the visualization, a lot has been written about 

microvascular alternations. 

It has been demonstrated that the performance of blood flow 

is related to many diseases, such as cardiac dysfunction, hypertension, 

cerebral cavernous malformations or diabetes [19]. There are 

investigators, who have reported, that the microcirculation is markedly 

altered in sepsis and that these alternations are more severe in 

nonsurvivors than in survivors [15,16,17]. Persistent microvascular 

alterations are associated with development of multiple organ failure 

and death [18]. The alterations typically include decreased capillary 
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density, there can be substantial heterogeneity in microvascular 

perfusion between areas separated just by a few millimetres as well. 

Microcirculation alternations occur by the patients with extracorporeal 

membrane oxygenation (ECMO) and intra-aortic balloon pulsation 

(IAMB) or during anaesthesia [8]. 

Another research field focuses on cardiac surgery and 

cardiopulmonary bypass (CPB). In [12] the changes of PPV during 

cardiac surgery are assessed. Moreover, the comparison of cardiac 

surgeries with and without CPB is present. The outcome of the study 

is, that the alternations of PPV are observed in cardiac surgery patients 

whether or not CPB is used. In [13] the quality of microcirculation with 

and without CPB was compared. They claim the quality decreased 

during early surgery with CPB. Off-pump resulted in a significantly 

better microcirculation compared to on-pump for three of six parameters 

during surgery. However, by the end of surgery there was no difference 

between the groups. In [14] twelve adult cardiac surgery patients 

received microvascular assessment before and after cardiopulmonary 

bypass. After cardiopulmonary bypass, sublingual microcirculation 

showed a significantly decreased microvascular flow index and increased 

heterogeneity index.  

Next, we can find in literature, that analysis of 

microcirculation videos enables to detect four types of 

shock - hypovolemic, distributive, cardiogenic, obstructive [8]. 

Hypovolemic shock is caused by the loss of blood volume because of 

gastrointestinal bleeding, extravasation of plasma, major surgery, 

trauma or severe burns. Obstructive shock is caused by an obstruction 

of circulation by pulmonary embolism or pericardial tamponade. 

Distributive shock results in an excessive vasodilation and impaired 

distribution of blood flow, patients have good capillary refill. 

Cardiogenic shock is characterized by  myocardial dysfunction resulting 

in adequate cardiac output, capillary refill is poor. [7] 

 

Practically, any kind of disease which is related to the blood 

perfusion alternation might be observed in microcirculation videos. We 

might expect, that in the future microcirculation analysis will be the 

standard method of assessing patient’s state of health. Moreover, based 

on quality of microcirculation, side-effects of such procedures like ECMO 

or CPB might be revealed. Even though it is a young field, there are 

many important findings, which show, that microvascular visualization 

is a promising direction.  

http://emedicine.medscape.com/article/760145-overview
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1.2 Visualization of microcirculation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Until late 1990s intravital microscopy (IVM) was considered a 

gold standard for microcirculation visualization. It enables imaging cells 

through an imaging window that is implanted into the tissue. However, 

IVM  could not have been  performed in patients, because there was a 

need of implantation of an imaging window. Thus, the research 

concerning microcirculation depended on animals. Another possibility of 

assessing microcirculation was laser Doppler technique, which enables 

blood flow velocity measurement. However, it provides just information 

about average of the velocities in all vessels in a defined tissue volume, 

which is not enough for complex microvascular analysis. [63] 

The boom in the observation of microcirculation started after 

introduction of non-invasive hand-held vital microscopes (HVM) based 

on  the principle of orthogonally polarized spectral imaging (OPS) in 

1999 [8]. Principle of the technique is the illumination of tissue by light 

source  (λ=548 nm) of linearly polarized light. Most of the reflected light 

retain its polarization and cannot pass through the orthogonal polarizer 

(analyser) to absorbing material in the foreground, where image is 

created. Those beams, which penetrate the tissue more deeply and 

undergo multiple scattering events become depolarized. These beams 

pass through orthogonal polarizer and back-illuminate absorbing 

material. The first generation of HVM has been replaced and is not 

available commercially anymore [8]. However, it was a milestone of 

microcirculation visualization by that time. 

Figure 1: One frame of a video of sublingual microcirculation. 
Video was captured by Microscan device with Sidestream Dark 

Field Imaging Technology from MicroVision Medical, NL 

0.7 mm 
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Second generation of HVM is commercially available and is 

called sidestream darkfield imaging (SDF).  It is based on the principle, 

that haemoglobin absorbs green light.  Green light   (λ = 548 nm)  is 

emitted by peripheral light-emitting diodes toward tissue arranged in a 

circle at the end of the light guide. The light is absorbed by RBCs, 

whereas the rest of tissue reflects the light back to the camera. This 

causes RBCs are displayed in a black color and their surrounding is 

brighter [3,63].  

Recently, a third generation of HVM, called incident darkfield 

imaging (IDF) was introduced. It is an alternative mode to SDFI with 

improved optical resolution. It has a computer controlled high-density 

image sensor synchronized to an illumination unit [65].    

 

 

 

 

 

1.3 Manual microcirculation analysis 

The main disadvantage of manual assessment is subjectivity. 

There are many rules and instructions, which try to unify the assessment 

of microcirculation, however, every human treats them differently.  

 

Figure 2: First generation of hand-held vital 
microscope with the principle of orthogonally 
polarized spectral imaging, taken from [64].  
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1.3.1 Proportion of perfused vessels (PPV) 

PPV describes the overall quality of perfusion in a video. The 

number of non-perfused vessels is defined. Vessel is considered 

non-perfused, when RBCs are present, but they do not move. Moreover, 

it is such vessel, where flow occurs, but at least 50 % of the time there 

are no RBCs in the vessel. [1] 

   

 

 𝑃𝑃𝑉 = 100 ·  
𝑁−𝑁𝑃

𝑁
 (%) . (1) 

 

where N is the total number of vessels and NP number of non-perfused 

vessels. 

 

Exact manual assessment of PPV is time-consuming [8]. It is 

difficult to specify the number of vessels for the operator. Often it is 

hard to decide, whether the vessels bifurcate or just cross in different 

depths of the tissue. Besides that, sometimes a single crooked vessel 

looks like the group of different vessels. Nevertheless, it is possible to 

roughly estimate the percentage of altered-flow vessels quite quickly.     

 

 

1.3.2 Microvascular flow index (MFI) 

This descriptor evaluates the overall type of flow in the video. 

The more vessels with the insufficient perfusion the video contains, the 

smaller MFI is. Video is split into four quadrants, the operator labels 

each quadrant with a certain number according to the type of flow he 

assumes is dominant. The flow is characterized as absent (0), 

intermittent (1), sluggish (2), or normal (3). MFI is computed as the 

average of the four quadrants values. [1] MFI values ≤ 2.6 are agreed to 

identify microcirculatory alteration. [8] 

The measurement is quick, because the principle is simple. 

However, MFI is is not relevant for medical assessment in several ways. 

The score for video labelled as 1,1,2,2 is identical with the score for the 
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video assessed as 0,0,3,3, even though the difference of the flow in the 

videos is obvious by eye. On the other hand, both such microcirculations 

are probably altered, which is what MFI recognizes.  

 

1.3.3 Flow heterogeneity index (FHI) 

FHI provides an additional information based on the 

previously named descriptors. It describes the heterogeneity of the flow 

between different videos of microcirculation. That means it compares 

three to five videos from one patient between each other. Having MFI 

or PPV from these videos, it is computed as the difference of their 

extreme values divided by their mean value. [1] 

 

1.3.4 Perfused vessel density (PVD) 

 

 𝑃𝑉𝐷 =  𝑇𝑉𝐷 · 𝑃𝑃𝑉    (2) 

It describes the amount of perfused vessels in video. TVD 

(total vessel density) will be defined in 1.4.1 
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1.4 Automatic microcirculation analysis 

1.4.1  Total vessel density (TVD) 

TVD is defined as  

 

 𝑇𝑉𝐷 =  
𝑆𝑣

𝑆𝑡
    (3) 

 

where Sv refers to the total area of vessels and St total 

captured area of video. [8] 

Principle of TVD is the fact the vessels in the microcirculation 

videos are visible only if they are perfused. When the perfusion in some 

vessels is decreased so much they do not appear in the video at all, TVD 

value decreases too.  

The utility of TVD is based on the assumption, that the vessel 

net in normal microcirculation videos is very dense. However, from our 

experience it is not always true. Moreover, the reliability of TVD is 

influenced by the size of captured vessels. Occasionally, a wide vessel 

occupies a significant part of the frame which leads to the increase of 

TVD.  

Interestingly, we found a study [62], where TVD is employed 

with unit mm, which means only the length of vessel segments is taken 

into consideration.  

 

1.4.2 DeBacker score 

DeBacker score is an effective simplification of TVD during 

manual analysis. It describes the number of visible vessels without the 

need of exact summation of the perfused segments. Just as TVD it is 

based on the assumption, that the vessel net in normal microcirculation 

videos is very dense.  

The principle of the descriptor is as follows: The video is 

symmetrically split by three vertical and three horizontal lines. 
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DeBacker score is computed as the number of vessels crossing the lines 

divided by the total length of the lines in millimetres. [1] 

It is possible to extend the descriptor by using only vessel with 

certain range of diameters for computing the score. Usually, deBacker 

score for small vessels with the threshold of 20 μm and for the rest of 

the vessels is computed. 

 

 

 

 

 

 

 

 

 

 

 

  

 

1.5 Constraints of automatic analysis 

There are several aspects in microcirculation videos, which 

hamper the automatic analysis as subsurface scattering, defocus, sensor 

noise and field of view drift. [11] Scattering of light on the path from the 

capillaries to the camera reduces contrast of the images. Defocus is 

present because capillaries are embedded at varied depths while the 

depth of field of the camera is fixed, so some capillaries appear blurred. 

The instability of the video makes the video unusable for any analysis 

quite often. Not only the fact, that the recording device has to be kept 

in hand of the operator during the recording causes the drift of field of 

view. Moreover, there are motions induced by heart beat and respiration 

of the subject. [11] Moreover, pressure artefacts [2] destroy significant 

part of videos (10 % of videos in our dataset). The artefacts are caused 

by the camera, when it develops too much pressure on the captured 

tissue. Blood flow in vessels decreases and the information the video 

provides becomes unreliable.  

 

Figure 3: The principle of deBacker score. Taken from [1]. 
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1.6 Existing software tools 

Several software tools for microcirculation analysis have been developed, 

such as AVA (Microvision Medical B.V.) [9], tSICA (Microvision 

Medical B.V.) [4] or CapiScope (KK Technology). [5] 

1.6.1 AVA 

It is the most common software. Besides others, it determines deBacker 

score and PPV automatically (we consider PPV parameter of manual 

analysis, because, the decision, whether a certain vessel is perfused or 

not has to be made). AVA provides more descriptors, but we do not 

find them interesting, because they do not belong to the commonly used 

descriptors. To recognize, if the vessels are perfused or not and to 

estimate velocity of flow, space-time diagrams (STD) are used in AVA. 

STDs will be described in section 1.7.3.  Architecture of AVA software 

is displayed in figure 4. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6.2 tSICA 

Software tSICA is a faster version of  AVA. The velocity 

measurement is based on the temporal pixel intensity fluctuations. It is 

Figure 4: Architecture of AVA software, the commercial microcirculation 
analysis tool, taken from [9] 
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just a quick method, so as a result, the software only decides, whether 

the vessel is perfused or not. Time-averaged frame from the video is 

created. Next, temporal pixel intensity fluctuation picture is generated. 

It is quantified as the standard deviation of the intensities in time. [4] 

1.6.3  CapiScope 

According to [10], CapiScope computes the correlation 

between the centerlines of two sequential frames for various shifts of the 

centerlines. The shift with the biggest correlation is marked as the 

distance RBCs travelled between the frames.   

 

 

 

 

There are other approaches for complex microcirculation 

videos analysis described in [11] and [19]. In [11] 3D convolution with 

pre-defined spatial-temporal filters is implemented to assess the speed of 

RBCs. In [19] particle image velocimetry and optical flow are used. 

     

1.7 State-of-the-art of particular software 
components 

1.7.1  Correction of video instability 

Stabilization by estimating and smoothing a motion model is 

widely used. Such an approach can be divided into two categories: 2D 

methods and 3D methods, depending on the model they use. 

Theoretically, 3D methods are better, but they are fragile and slow. In 

3D methods the full 3D structure of the scene is recovered and motion 

is modelled directly using the recovered position of the camera. The 

algorithm, which is used to recover 3D structure from a video is  

sensitive to noise. [54] 2D methods are faster than 3D methods. They 

are based on the   assumption that the motion between two frames can 

be represented by a single 2D transformation matrix. It 

models  translation, rotation and scaling. However, they only work well 
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on single plain scenes or scenes, which are far away from the camera. In 

[55] four parameter transformation and in [56] six parameter 

transformation is used.  

Besides motion model methods, there are trajectory based 

methods. Video is stabilized by smoothing the extracted trajectories 

without setting up a motion model. The trajectories are extracted by 

feature tracking [54]. Extracting feature trajectories is tricky, because 

not all movements present in the video are caused by the camera. 

Sometimes the feature is not static, so it undergoes displacements that 

are caused by both the camera motion and the movements of the object 

in the scene. These moving objects need to be separated.  [57] 

In [20] a block matching algorithm is used while stabilizing 

microcirculation videos. The similarity of the blocks in consecutive 

frames is measured by cross-correlation coefficients. Block matching 

algorithms use a predefined size of blocks or even entire images to 

estimate motion vectors. However, if a window does not contain 

distinctive details, there is a high probability of mismatch. Typically, 

this happens when just background pixels are included. To avoid such 

error the processed blocks are checked to ensure they include vessels 

using Laplacian of Gaussian filtering. Gradient of the Gaussian improves 

visibility of blood vessels. The maximum values from several areas of 

the frame are chosen to be the distinctive features. Typically, branching 

points meet the condition. The blocks are implemented as follows: 25×25 

pixel window around each control point is selected as subregion. The 

cross-correlation is calculated between these sub-regions in the current 

frame and a 40×40 surrounding. The dimensions of the windows are state 

empirically.  

In [11] the stabilization is based on the patches, that are 

matched between frames using template matching. Just like in [20], the 

patches with enough texture are chosen according to the variance of 

pixel intensities.   

1.7.2 Image segmentation 

A wide range of image segmentation methods is described in 

literature. Their suitability always depends on the problem to be solved,  

there is no universal segmentation technique that works equally well in 

all situations. Generally, image segmentation methods can be 

categorized into two classes, i.e. semi-automatic and automatic. 
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Semi-automatic techniques require some sort of human input and 

usually provide better performance. In automatic techniques no operator 

intervention is needed [25]. Mostly, while segmenting an image, such 

properties like color, texture, gradient or spatial attributes are assessed. 

Namely, region growing, region splitting, region merging, 

parametric/geometric active contours, histogram thresholding, 

feature based clustering, graph-cuts or watersheds. [28] 

Concerning vessel detection, automatic methods comprise of 

vessel tracking, matched filter responses, grouping of edge pixels, model 

based locally adaptive thresholding, topology adaptive snakes and 

morphology-based techniques. In contrast, supervised methods require 

manually labeled images for training, features and classifier. From the 

training sets feature vectors are constructed and they are labeled as 

vessel or non-vessel. It is assumed, that feature vectors from a certain 

class cluster together in the feature space. In that case a classifier that 

determines a decision boundary between the different classes can be 

designed. After the training, a non-labeled feature vector can be 

classified by determining on which side of the decision boundary it is 

situated. such classifiers like k-nn, SVM or random forest can be 

employed [34]. Concerning semi-automated image segmentation, wide 

range of software tools is available. Usually, besides other functions, they 

determine sufficient features and train a classifier automatically based 

on the training data. Such tools are for example Dragonfly (Object 

Research Systems (ORS) Inc., Montreal, Canada), TurtleSeg (Oxipita 

Inc., Vancouver, Canada), Fiji [42] or Ilastik [24]. 

To facilitate vessel segmentation, Frangi filter [27] is widely 

used. It has been employed in many research projects concerning vessel 

detection [29,30,31,32,33]. It enhances contrast of tubular structures in 

image. The filtering process searches for geometrical structures which 

can be regarded as tubular. The probability that the pixel belongs to 

the tubular structure is called tubularity. It is provided by quantification 

of following parameters: deviation from a blob-like structures, the 

difference between plate-like and line-like structures, and background 

noise, respectively [33]. Information about contrast and direction is 

extracted from Hessian matrix of each pixel. Hessian matrix contains 

second order derivatives of the smoothed image. Matrix H for pixel x,y 

in smoothed image I is constructed [29]: 



 
 

 

 

24 

 

 𝐻(𝑥, 𝑦) =  

(

 
 

𝜕2𝐼

𝜕𝑥2

𝜕2𝐼

𝜕𝑥𝜕𝑦

𝜕2𝐼

𝜕𝑦𝜕𝑥

𝜕2𝐼

𝜕𝑦2
)

 
 
 (4) 

 

Gonzales [35] extracts features from Hessian matrix to train a 

tubular structure classifier. He claims, that the second-order derivatives 

used to compute the Hessian matrix do not provide a local description 

that is powerful enough to account for irregular tubular structures and 

perform in noisy images. Computing of higher-order derivatives is 

recommended. 

In both AVA software [53] and in Liu’s microcirculation 

analysis approach [11] automatic vessel detection is based on a 

automatic detector of curvilinear structures described by Steger [36]. 

Hessian matrix is employed to detect vessel centerlines. For each pixel,  

analysis of the matrix results in a vector that points in the vessel 

direction (t) and a vector in the perpendicular direction (n). The pixel 

is considered to be the candidate for the centerline pixel if the second 

order spatial derivative in direction of n, is markedly higher than in t 

direction, Candidate pixels are identified as centerline pixels if the 

intensity profile in n direction, is locally at its extremum. In [11] (v 

thesis) just the centerlines are detected, finding the complete vessel 

segments is not the purpose of the approach. In [53], besides centerlines 

vessel walls are detected. To do so, cross-sectional intensity profile of 

each centerline pixel is analysed. The wall is marked by the points where 

the cross-sectional intensity profile in each centerline pixel shows its 

maximum steepness in the direction of vector n. The cross-sectional 

intensity profile is obtained by sampling the image at sub-pixel level in 

the normal direction. 

Besides [36] there are more methods for centerline detection. 

They can be divided in two categories. In the first category vessel 

segmentation is needed. Thinning-based methods [39], which perform 

skeletonization of segmentation, and active contour-based methods [40] 

are included.  In both cases segmentation has to be created before 

finding the centerline. These techniques are efficient only when good 

segmentation is provided [41]. Thinning-based methods often produce 

disconnected components and artefacts on noisy data, which then 

require post-processing and analysis to merge into a meaningful tree. In 
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the second category, just tubular images (like in [36]) are provided. 

Tubularity is determined and evaluated. It can be either computed or 

classified by machine learning [41]. There are tracking methods, where 

set of seed points is initiated and high tubularity paths are recursively 

traced. It means tubularity is determined locally [38]. Or tubularity can 

be computed globally in whole image and a global objective function can 

be optimized to create the most convenient centerline tree [37]. Or, like 

in [41], the samples of centerline points are determined and connected 

by maximum probability paths. 

 

1.7.3 Velocity measurement 

Many motion estimation techniques have been employed to 

determine RBCs velocity from sequence of frames, including space-time 

images [9], cross correlation methods [66,19], optical flow [19], temporal 

pixel intensity fluctuation [4], 3D convolution with predefined 

spatio-temporal filters [11].   

Cross correlation methods search particular structure from 

consecutive frames by cross-correlation. We can find implementations of 

both 1D and 2D methods. 1D method was employed in CapiScope 

software [66]. Centerline of a certain vessel segment was compared in 

two images. In fact, centerline is a vector of pixel intensities. Vectors 

can be shifted mutually and the shift with the highest correlation is 

supposed to be the inter-frame motion. Practically, this method is 

limited because the centerline structure is not constant in time. 

Moreover, there are curved structures which influent flow unpredictably. 

2D cross-correlation method is called PIV (particle image velocimetry). 

Correlation is employed to find a window from first image in the 

subsequent frame [19]. In fact, it is the same method, which is used in 

AVA software to stabilize videos - windows with distinctive texture are 

selected and cross-correlation is used to find them in subsequent images. 

Optical flow is another possibility of velocity determination. 

This approach estimates motion vector for each pixel of region of 

interest. There are several techniques to do so. In each case a supposition 

has to be determined. In [19] comparison of both optical flow and PIV 

method is provided. The experiment on artificial microcirculation video 

was performed. The author claims, that optical flow performs better, 

but combination of both techniques works the best. Optical flow 
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determination was based on Horn-Schunck algorithm, where smoothness 

in the flow over the whole image is presumed.   

3D convolution with predefined spatio-temporal filters is based 

on the assumption, that certain flow patterns repeat in microcirculation 

videos. In that case artificial filters, which correspond with certain flow 

patterns can be generated.  Parameters of such filters are direction and 

velocity of shift. Velocity is determined according to the energy response 

of the filters. [11]  

Temporal pixel intensity fluctuation does not describe velocity 

directly, but it relates with it. It is based on observation of brightness 

changes of particular pixels in time. Naturally, in vessels with no flow 

brightness of pixels does not change in time, whereas when movement 

occurs, so do pixel intensity fluctuations.  

In STD (figure 5), each column is created by the centerline of 

the vessel from a certain frame in time order of the video. The elements, 

which occur in the centerline, change their position within the vessel 

because of the blood flow. This leads to the creation of the continuous 

lines in STD. The orientation of the line shows the direction and the 

velocity of the flow. When the lines are detected and their orientation 

is determined, quantitative analysis of the flow can be provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Space-time diagram (STD) is a common 
technique of RBCs velocity determination. Each 
column in STD is created by centerline of vessel 
from a certain frame in time order of the video. 
The orientation of lines corresponds with the 

velocity of centerline elements. 
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2  Main research goals 

 

 

The goals of the thesis are:  

 
1) to design a descriptor of blood flow velocity in microcirculation 

videos,  
 

2) to develop a software for microcirculation analysis, which will 
determine the novel  descriptor and traditional microcirculation 
descriptors, 

 
3) to process microcirculation videos by the software, 

 

4) to compare the results of analysis with results from commercial 
software  
 

5) to create a classifier of pathological and physiological 
microcirculation. 

 

We have no ground truth of RBCs velocity, so we decided to 

create artificial videos, where flow velocity is known.  

We have videos with altered circulation and with normal 

circulation at our disposal. By altered microcirculation we mean the 

videos, which were captured, while the patient was on CPB during 

cardiac surgery. Based on available literature, we expect, that on-pump 

microcirculation is altered. 

We will compare our results with AVA. It provides deBacker 

score and PPV. We will implement deBacker score in our software, 

because it does not require any qualitative assessment (unlike PPV).  
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3  Description of data 

 

While building the software, we could have used 1087 videos, 

which were recorded by Microscan device with Sidestream Dark Field 

Imaging Technology from MicroVision Medical, NL. The dataset was 

created in order to verify the assumption, that a patient with 

non-pulsatile flow on the cardiopulmonary bypass would represent the 

stage with an altered microcirculation. The videos were captured on 6 

subjects at the cardiac surgery department of Na Homolce Hospital, 

Prague, Czech Republic. We received the videos from MD, MSc David 

Macku, the leader of the experiment.  

 

 In total, there were 563 videos of on-pump subjects, 524 

videos of off-pump subjects. Each video was roughly 1 second long.  

 

There were 4 different types of off-pump videos, marked M1, M2, 

M4, M5: 

 

M1: Captured at the standard ward before surgery. 

M2: Captured after the introduction into total anesthesia. 

M4: Captured at the end of CPB, during the suture of sternotomy. 

M5: Captured at the standard ward before the patient was discharged.  

 

There were 4 different types of on-pump videos, marked M0, M45, M90, 

M120: 

 

M0: Captured during the surgery procedure after the onset of 

cardiopulmonary bypass. 

M45: Captured 45 minutes after initiation of CPB. 

M90: Captured 90 minutes after initiation of CPB. 

M120: Captured 90 minutes after initiation of CPB. 

 

3.1.1 Dataset for analysis 

The initial dataset of 1087 videos contained a lot of low-quality 

records. Common defects were: poor focus, no visible vessels, bubbles, 

scattered red blood cells all over the field of view (probably caused by 
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bleeding in the captured area), big camera motion (captured area 

changed entirely within the video). So, we sorted out the videos 

manually, we selected 260 good-quality videos - 120 off-pump videos and 

140 on-pump videos manually.  

 

We processed the selected videos by our stabilization 

algorithm and checked the stabilized videos manually. We rejected 93 

videos (36 %), which were not stabilized sufficiently. From the group of 

stable videos we eliminated those, where pressure artefact seemed to 

occur, which was in 16 cases (10 %). Finally, dataset of stable videos, 

which were sufficient for analysis, consisted of 151 videos-75 on-pump, 

76 off-pump. 

The overview of the distribution of video types, which were 

present in the final dataset, is depicted in table 1. 

 

 

 
Table 1: Distribution of videos in the dataset for analysis. In off-pump row, M1-5 labels 
when the video was captured. M1: at standard ward before surgery, M2: after 
introduction into total anesthesia, M4: at the end of CPB, M5: at the standard ward 
after surgery. In on-pump row M0-120 stand for: M0: at the beginning of surgery after 
onset of CPB,  M45: 45 minutes after onset of CPB, M90: 90 minutes after onset of 
CPB, M120: 120 minutes after onset of CPB.  
  

 

 
 
 
 
 
 
 
 
 
 
 

Off-pump: 
M1 M2 M4 M5 Total: 

12 33 19 11 75 

On-pump: 
M0 M45 M90 M120 Total: 

40 14 16 6 76 
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4 Methods 

4.1 Software 

Our approach is inspired by AVA [9], but it differs in several 

aspects. Simultaneously, Liu’s approach [11] is a guideline from time to 

time.  

In contrast with AVA, vessel segmentation in our case is based 

on machine learning instead of vessel wall detection and thresholding. 

Furthermore, we have implemented optical flow method for flow velocity 

estimation and temporal pixel intensity fluctuation-based descriptor of 

microcirculation. 

  

The structure of our software is displayed in figure 6.  
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4.2 Project workflow 

In figure 7 we display the working diagram which includes the 

steps we processed to achieve all the goals of the thesis.  
  

 

Implementation of 
correction of video 

instability  

 

Stabilization of 
21 videos 

 

Manual vessel 
labeling 

Training the 
segmentation 

classifier 

 

Segmentation 
evaluation 

Segmentation 
postprocessing 
implementation 

 
Optical flow 

implementation 

 
Implementation 
of pixel intensity 

fluctuations  TVD 
implementation 

deBacker score 
implementation 

Comparison with 
AVA 

classifier of 
pathological or 
physiological 

microcirculation 

Artificial videos 
creation 

Testing on artificial 
videos 

Flow 
descriptors 
creation 

Figure 7: Working diagram. The steps processed to achieve all the goals of the 
thesis are displayed. 
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5  Correction of video instability  

 

Our approach is based on 2D motion model estimation. We 

took the implementation of motion estimation from [50].  

5.1 Image pre-processing  

Since a natural movement of the RBCs is present in the video, 

it is challenging to recognize just the movement caused by camera while 

stabilizing. Moreover, quite often a motion between tissue layers in 

different depths appear. To prevent this, we process following steps: 

First, we enhance the contrast of the image by adapting the histogram 

of pixel intensities. Next, we blur the frames to conceal the movement 

of blood cells. Blurring is processed by a 2-D Gaussian smoothing kernel 

with the window size of 3 pixels. To get rid of the motion in different 

depths, we apply thresholding, because deeper structures appear 

brighter. Threshold is computed from each image using Otsu's 

method [26]. It assumes, that two classes of pixels are present in an 

image. It calculates the optimum threshold separating the two classes 

so that their combined intra-class variance is minimal. Like this we 

remove the bright structures and keep just the important dark 

structures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 
Segmentations of two consecutive 

frames, first one in green, second one in 
red color. Yellow color marks the area 

where both segmentations overlap. 

(a) 
Original frame, its segmentation is 

displayed in green color in (b). 

Figure 8: Segmentations of dark areas in unstabilized frames. The distinct 
structures from (a) are segmented as green color in (b). The segmentations of two 
consecutive frames (b) is used for motion model estimation. 



 
 

 

 

33 

 

5.2 Motion estimation 

The estimation of the motion model is based on spatial and 

temporal derivatives of binary frames. Once the model is estimated, the 

default frames of the video can be stabilized.   

Motion between two images I(xt-1,yt-1) and I(xt,yt) is modelled 

with a 6 parameter affine transform [50]: 

 

 (
𝑥𝑡

𝑦𝑡
) = (

𝑚1 𝑚2

𝑚3 𝑚4
) · (

𝑥𝑡−1

𝑦𝑡−1
) + (

𝑚5

𝑚6
)  (5) 

 

When we assume that picture I(xt-1,yt-1) and I(xt,yt) are the 

same, but I(xt,yt) is deformed, we can write the equation (1) as: 

 

 𝐼(𝑥𝑡, 𝑦𝑡) = 𝐼(𝑚1𝑥𝑡−1 + 𝑚2𝑦𝑡−1 + 𝑚5, 𝑚3𝑥𝑡−1 + 𝑚4𝑦𝑡−1 + 𝑚6), (6) 

where parameters m1, m2, m3, m4 control scaling and rotation and m5, 

m6 control translation. Despite the approach in [50], we found out it was 

more convenient to align all the frames to a certain frame, which is in 

the middle of the sequence, so all the frames are compared with just one 

picture. We determine I(xtm,ytm) to be the middle frame of the video 

sequence.  

In order to estimate the parameters of the model, following 

quadratic error function has to be minimized [50]: 

 
𝐸(𝑚) = ∑ [𝐼(𝑥𝑡 , 𝑦𝑡) − 𝐼(𝑚1𝑥𝑡𝑚 + 𝑚2𝑦𝑡𝑚 + 𝑚5, 𝑚3𝑥𝑡𝑚 + 𝑚4𝑦𝑡𝑚 + 𝑚1)]

2

𝑥,𝑦∈Ω

  
(7) 

Where Ω is the region of interest of the frame.   

The equation (7) is non-linear in its unknowns. To compute the 

inter-frame motion, differential motion estimation is used. We 

approximate equation (7) by the first-order truncated Taylor series 

expansion: 
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𝐸(𝑚) ≈ ∑ [𝐼 − (𝐼 + (𝑚1𝑥 + 𝑚2𝑦 + 𝑚5 − 𝑥)𝐼𝑥 + (𝑚3𝑥 + 𝑚4𝑦 + 𝑚6 − 𝑦)𝐼𝑦 − 𝐼𝑡)]
2

𝑥,𝑦∈Ω

 

 
= ∑ [𝐼𝑡 − (𝑚1𝑥 + 𝑚2𝑦 + 𝑚5 − 𝑥)𝐼𝑥 − (𝑚3𝑥 + 𝑚4𝑦 + 𝑚6 − 𝑦)𝐼𝑦]2

𝑥,𝑦∈Ω

 
(8) 

where Ix, Iy and It are partial derivatives of the image I with respect to 

position x, y and time t.  

For notational convenience, the parameters m1-6  are dropped 

and k and c are given as:  

 

 𝑘 = 𝐼𝑡 + 𝑥𝐼𝑥+𝑦𝐼𝑦 (9) 

 

 𝒄 = (𝑥𝐼𝑥    𝑦𝐼𝑥    𝑥𝐼𝑦    𝑦𝐼𝑦    𝐼𝑥    𝐼𝑦) (10) 

 

Finally, the approximation of the error function is:  

 
𝐸(𝒎) ≈ ∑[𝑘 − 𝒄𝑇𝒎]2

Ω

 
(11) 

 

The quadratic error function is now linear in its unknowns and 

can be minimized analytically by differentiating with respect to m. 

Setting the result equal to zero and solving for m: 

 
 

 𝑚 = [∑𝒄𝒄𝑇

Ω

]

−1

[∑𝒄𝑘

Ω

] (12) 

Since we want to control just rotation and translation, but not 

scale, we extract the rotation angle θ from the affine parameters [21]: 
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 𝜃 = 𝑎𝑟𝑐𝑡𝑔 (
𝑚3

𝑚4
) (13) 

We can now deform the image I(xtyt) and create I(xt’yt’), which is aligned 

with the reference frame I(xtmytm). First, we rotate and translate the 

coordinates [22]: 

 (
𝑥𝑡′

𝑦𝑡′
) = (

𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

) · (
𝑥𝑡

𝑦𝑡
) + (

𝑚5

𝑚6
) (14) 

 

By xt’ and yt’ the query points for an interpolation are defined. Image 

I(xt’yt’) is obtained by the cubic interpolation of I(xtyt). 

 

5.2.1 Coarse to fine method 

We use the implementation described in [50] of coarse to fine 

method to estimate large motion, typically more than 10 pixels. The 

motion is estimated in different resolutions like displayed in figure 9. 

The motion estimated at coarser level is used to warp the frame at the 

next finer level, until the finest level of the pyramid is reached. Like 

this, large motion estimation from the coarse level is iteratively refined. 

When warping the image in a finer level, the estimation of translation 

vector (m5, m6) from the coarser level has to be multiplied by 2. The 

way the affine estimation parameters are accumulated is described in 

equations (16 - 18).   
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In our case image segmentations are used to estimate the 

motion, so the actual video frames are not warped during the process. 

We need to find the finest motion estimation and apply it on the video 

frame. We accumulate the model parameters during the multiresolution 

process like described in [50]. The transformation of the original image 

coordinates by the parameters estimated in level n is given by: 

 (
𝑥𝑡′

𝑦𝑡′
) = (

𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

) · (
𝑥𝑡

𝑦𝑡
) + (

2𝑛−1𝑚5

2𝑛−1𝑚6

) (15) 

Like this the coordinates are transformed repeatedly during 

multiresolution. When  we declare 

 𝐴 = (
𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

)      𝑎𝑛𝑑      𝒕 =  (
𝑚5

𝑚6
) ,    (16) 

 

repeated coordinates transformation by A and t obtained in 

different levels n and n-1 can be written as: 

Figure 9: Multiresolution method of motion estimation. Images are down sampled 
n times. Motion is estimated on small images, so bigger velocity can be recognized. 
In finer level the estimation is enhanced. Small images are up sampled, estimated 
translation vector is multiplied by 2 and one of the images is warped. Motion is 
estimated again. Like this, iteratively, the finest level estimation is achieved.  

nth level 

motion estimation 

Image 1 Image 2 

coarse 

fine 

motion estimation 

motion estimation 

nth level 
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(
𝑥𝑡′

𝑦𝑡′
) = 𝐴𝑛−1𝐴𝑛 (

𝑥𝑡

𝑦𝑡
) + 𝐴𝑛−1𝒕𝑛 + 𝒕𝑛−1 

 

(17) 

In the manner of equation (17) the model parameters from 

different levels are accumulated. The combination of coarser and finer 

level estimation is given by: 

 

While setting up the maximum level of the pyramid, resolution 

of the original image should be considered. In equation (12) it is assumed 

that the first term, a 6 × 6 matrix, is invertible. To be so, integrating 

over sufficient amount of pixels is needed. In our case the resolution can 

be reduced six times at most. Original resolution of the videos is 

960×1280 pixels. Minimal resolution, which is necessary to solve 

equation (11) is (960/26)×(1280/26), which is 15×20 pixels. 

 

We filter the images before down sampling from level n to level 

n-1 by binomial filter (1/4, 1/2, 1/4) twice along each spatial dimension, 

as proposed in [23]. In figure 4 down sampled image with and without 

filtering is displayed. In the filtered image more details are preserved. 

By filtering incorrect edges are created, so we reduce roi by 3 pixels from 

each side. Moreover, when frames are transformed, edges without any 

content remain on their sides. To prevent the edges from disturbing the 

model estimation in finer levels, roi is determined not to cover the edges 

of the frames, which were warped according to the estimation from 

coarser levels. 
  

 

 

 

 

 

𝐴 = 𝐴𝑛−1𝐴𝑛       𝒕 =  𝐴𝑛−1𝒕𝑛 + 𝒕𝑛−1 (18) 
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5.3 Region of interest in stabilized videos 

 

After the frames are deformed, edges with no content are created. The 

edges have to be considered when the video content is analysed. So the 

mask of interest is created. By the mask of interest we mean such a 

mask, where the area of edges by all the video frames is labeled by zero, 

the rest is labeled by one. The mask of interest is created as follows: 

Individual mask of interest is created after each frame of the sequence 

is warped. The individual masks are summed up when all the frames are 

deformed. In the summation mask, the value, which equals the number 

of frames in the video, labels the pixel, where no edges occurred within 

the video. Any other value corresponds to edges. 

 

 

 

 

 

 

  
Figure 11: Scheme of how the mask of interest is created. The area of edges is 
labeled by 0 in each warped frame, the rest is labeled by 1 (yellow). All the 
consecutive masks are summed up. In the summation, the area, which equals the 
number of the frames (green), is chosen to be the region of interest. 

frame 2 frame 1 frame 50 summation 

(a) 
 

(b) 
 

(c) 
 

Figure 10: The effect of filtering during the reduction of 

resolution, (a) original resolution, (b) 5× reduced resolution with 

no filtering, (c) 5× reduced resolution, filtered twice in each level.     
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5.4  Efficacy of implementation 

We stabilized 260 videos and checked the effect of stabilization 

manually. We selected those videos, where, visually, stabilization was 

not efficient enough. From 260 videos 167 were well stabilized, which is 

64.2 %. 93 videos were not stable enough, which is 35.8 %.  

The effect of stabilization is depicted in figure 2. Mean image 

in time is displayed before and after stabilization. When the stabilization 

is successful, the mean image turns from blurred into sharp (fig. 12a,c). 

Moreover, the space-time image created by stacking nth column of pixels 

from each frame of the video next to each other is attached. The selected 

n columns are marked by the green line in the mean image. After 

stabilization the crooked lines become straight (fig. 12b,d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12: Demonstration of successful stabilization. Temporal average 

image turns from blurred into sharp after stabilization (a,b), 
space-time image turns from crooked to straight (c,d). 

(b) Mean image in time after 
video stabilization 

(a) Mean image in time before 
video stabilization 

(c) Space-time image before 
video stabilization 

(d) Space-time image after 
video stabilization 
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5.5  Summary  

We have implemented an algorithm for automatic correction of video 

instability and checked its function. The stabilization is successful in 

64 % of cases. Generally, there are two reasons of unsatisfactory 

stabilization:  

 

1) Motion of camera is too big, typically more than 50 pixels between 

subsequent frames. This is the reason in 21 from 93 cases (22.6 %) of 

unsatisfactory stabilization. In such videos, frames are usually blurry 

due to the motion, so they do not provide good quality information 

anyway. Moreover, big motion causes that small roi is provided, as 

depicted in figure 13. From these reasons we do not suppose it is 

important to deal with this problem on the software basis at present. It 

is rather important to maintain stability during capturing process.  

 

 

 

 

 

 

 

 

 

 

 

 

2) There is motion between different layers of the captured area, which 

occurs in 72 from 93 cases (77.4 %). From our experience, this is a 

frequent problem. The ideal stabilizing solution should recognize those 

structures, which are deeper and in addition it should recognize, whether 

those structures move in relation with the structures in shallow layer. 

The moving structures should be removed and the others should be kept.   
 
 
 
 
 
 

Figure 13: Region of interest in a stabilized video, where big motion of 
camera occurs. Big edges are created on the sides due to the 

transformation of frames and much information is lost. 
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6  Automatic vessel detection 
 

6.1 Introduction 

Vessel detection is necessary in order to measure red blood 

cells velocity inside vessels. The aim is to implement an algorithm, which 

creates an individual vessel segment mask (fig. 14c) for each 

microcirculation video. In individual vessel segment mask all the pixels 

of a certain segment are lebeled by the same non-zero number. The 

number is specific for each segment. Number zero labels the area with 

no vessels. In fig. 14c different label values of individual segments are 

visualized by different colors. When such a mask is created, blood cell 

velocity in any labeled segment across the video can be calculated.  

 

There re two main stages of vessel detection in our software. 

Firstly, binary vessel segmentation is created (fig. 14b). Secondly, 

individual vessel segment mask is created from binary segmentation.  

Based on the search, we decided to employ a semi-automatic 

technique to obtain binary segmentation, because it usually performs 

better than automatic methods. We created training data and employed 

an automated segmentation tool to train the classifier.  

A thinning-based method is used to label vessel segments.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 14: Diagram of vessel detection. Based on the temporal mean 
image(a),  binary vessel segmentation (b) is created. Binary segmentation 
is further processed to create individual vessel segment mask (c). 

(a) temporal mean image  

(b) binary vessel segmentation  (c) individual vessel segment mask 
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6.2 Binary segmentation  

Training dataset was created manually. We worked with 

temporal mean images of microcirculation videos, like proposed in 

approach of AVA [53]. Mean images are convenient, because they have 

better contrast than individual frames. Moreover, in some vessels blood 

flow is intermittent, so they are not visible on all the frames. By 

averaging these segments become apparent. We segmented 21 mean 

images manually. Based on the video content we decide to employ 4 

classes of segmentation: 

 

1)  Clearly visible vessels. This class labels the areas, which we want to 

analyse for sure 

2) Blurred vessels in deep layers, where blood flow is not recognizable. 

We determine these structures by a specific label, because in 

numerous videos they occupy large areas, but they do not provide 

any information. We suppose they are recognizable, because they 

are brighter then clearly visible vessels, but darker than background. 
3) Background. We attempt to label the areas, which do not contain 

any structures but noise.  

4) Isolated distinct dark structures with different than tubular shape. 

We use this class, because sometimes there are structures, where we 

are not sure, whether they are vessels or not. They are as dark as 

well visible vessels, but we do not want them to be included in 

clearly visible vessels class, because they do not have tubular shape. 

It is the least common category. 
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 To create manual segmentations, we used Gimp image 

editor [44]. From Gimp we exported the completed segmentations in png 

format. No interpolation and transformation is applied in png format, 

so no other than four label values are exported to the image.    

 

 

To segment the vessels Ilastik software [24] is employed. It is 

a free tool, which enables machine-learning based pixel classification. 

Once the classifier is trained, it can be used in „headless“ mode, so Ilastik 

GUI is not needed anymore. So it is possible to implement the classifier 

into an automatic detecting algorithm. Ilastik workflow offers a choice 

of generic pixel features, such as smoothed pixel intensity, edge filters 

and texture descriptors. Once the features are selected, a random forest 

classifier is trained on training data, which, in our case, were manual 

vessel segmentations. 

 

 

 

 

 

(b) Manual segmentation 
 

(a) Input image - average 
image of video in time  

Figure 15: The example of manual segmentation  
 

  

 1) clearly visible vessels 
 2) blurred vessels in deep layers 
 3) background 
 4) isolated distinct dark structures 
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6.2.1 Features selection 

Pixel features are used to discriminate between the different 

classes of pixels. Three classes of features are provided in Ilastik:  

 

Color/Intensity: Should be selected if the color or brightness can be used 

to discern objects. 

 

Edge: should be selected if brightness or color gradients can be used to 

discern objects. 

 

Texture: Should be selected if the objects in the image have a special 

textural appearance 

 

All the features can be selected on different scales. The scales 

correspond to the sigma of the Gaussian which is used to smooth the 

image before application of the filter. Filters with larger sigmas can thus 

pull in information from larger neighbourhoods, but average out the fine 

details. [24] 

It is recommended to choose as many features as possible in 

wide range of scales in the beginning of the training process, because one 

barely knows, which features are significant in a particular experiment. 

However, with more features computational time is bigger. So, we made 

several experimental segmentations with different combinations of 

features to see how particular features influent the results. In the first 

stage,  the experiment was performed on small images, so the classifier 

was trained quickly (fig. 16). Based on the experiment we decided to 

choose color/intensity features and texture features. We rejected edge 

features, because they do not contribute to classification significantly. 

There are not many significant edges in the vessels and in the 

background, so there is no need to recognize them. By this we reduced 

time to train a classifier on a small image from 3 to 2 minutes. We were 

assessing the effect of scale σ as well. We believe that wide range of 

sigma is important. However, to estimate the ideal range of scale, size 

of the image has to be concerned. So, in the second stage, we were 

searching for the ideal range of σ  in full-resolution images.  

Summary of pixel features and scales, that we decided to 

employ in classification of microcirculation images, is presented in 

table 2. It took approximately 24 hours to train a classifier with the 

training set containing 14 images. 
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Table 2: Summary of pixel features, which were chosen for pixel classification 
process in Ilastik. One color/intensity feature and two texture features were 

employed. All the features were used in wide range of scale σ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Features 

 Color/intensity Texture 

 
gaussian 

smoothing 
structure tensor 

eigenvalue 

hessian of 
gaussian 

eigenvalues 

σ 0.7, 1, 1.6, 3.5, 5, 10, 30, 50 
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(b) Original image. We labeled 
pixels manually (a) and trained 

the classifier. 
 

(a) Manual labeling of (b) 
 

  clearly visible vessels 
  background 

 

Training data 

Experiment concerning pixel features selection 
 

Testing data 

(c) Input data for automatic 
classification 

Probability maps 

(d) Included feature groups: 
color/intensity, edges, texture 

σ: 0.7, 1, 1.6, 3.5, 5, 10 

(e) Included feature groups: 
color/intensity, texture 

σ: 0.7, 1, 1.6, 3.5, 5, 10 

(f) Included feature groups: 
color/intensity, texture 

σ: 0.7, 1, 1.6, 3.5 

  clearly visible vessels,    background 
 

Figure 16: Experiment concerning pixel features selection. We were training the classifier 
on training data (a,b). We were choosing various combinations of pixel features groups 

(color/intensity, edges, texture) and scale σ. We were assessing probability maps of the 
classifications visually (d,e,f). In probability map, color intensity specifies the probability 
of a a correct classification of a particular pixel into a class. Darker tones indicate bigger 
uncertainty of classification. We display the first stage of experiment, when small pictures 
were employed to save time during training and classifying process.  We found out, that 
texture based features do not participate in classification significantly - comparison 
between (d) and (e). However, scale definition plays an important role - (e) vs. (f). In (f), 
where scale is smaller, more details are classified correctly, but probability in bigger 
objects decreases.  
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6.2.2 Individual objects extraction 

We unite classes 2), 3) and 4) in probability map into one 

class, so two classes probability map is created (vessels and background).  

We blur the two-classes probability map and then we transform it into 

individual objects by thresholding.  

We were looking for two parameters, while extracting 

individual vessels: radius R of circular averaging filter and threshold 

probability value t. Blurring by averaging filter enhances the accuracy 

of segmentation in some cases, because it removes small holes and ragged 

edges in final binary segmentation. 

We stated the parameters as follows: We had 7 manual 

segmentations of 7 pictures, which were not used for training the 

classifier (testing segmentations). We let the classifier create a 

probability map for each of these 7 images. Subsequently, we were 

blurring each map by filters with various radius. We thresholded each 

blurred probability map by various thresholds. In each case we 

computed the number of incorrectly classified pixels in comparison with 

training segmentation. We chose the combination of filter size and 

threshold, where the number of mistakes was minimal. Scheme of the 

procedure is displayed in figure 17.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Determination of ideal filter size and threshold while extracting 
individual objects from probability map. Two classes probability map is blurred 
by a filter of certain size D. Then thresholding in different levels t is employed. 
For each combination of D and t the number of incorrectly classified pixels F is 
computed. The procedure is repeated many times for various D. Combination D 
and t, where F is minimal, is considered the best. 

D = 0.5 

t = 0.2 

t = 0.21 

t = 0.22 

F = 12347 

F = 12456 

F = 12527 

blurring 

thresholding 
number of incorrectly 

classified pixels 
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The combinations of filter size and threshold, which lead to 

minimal amount of incorrectly classified pixels for all testing pictures 

are displayed in table 3.  

 

We use the average of values from all the testing pictures as 

the parameters of individual objects extraction procedure (column 

‘average’ in table 3).   

 

 

 
Table 3: Combination of threshold value and averaging filler diameter, which lead to 
minimal amount of incorrectly classified pixels. P1 - 7 are training pictures. We 
created their segmentations manually and compared manual segmentation with 
automatic segmentation.    

 

 P1 P2 P3 P4 P5 P6 P7 average 

radius 6.5 7 7 6 5.5 7 6 6.5 

threshold 0.486 0.518 0.549 0.506 0.478 0.514 0.498 0.507 

 

 

6.2.3 Segmentation accuracy  

In table 4 we present the accuracy of segmentation. 7 testing 

images were classified. The probability maps were smoothed by circular 

averaging filter with radius 6.5 pixels and thresholded by level 0.507. 

We computed  accuracy ACC of segmentation for each testing image P: 

 

 𝐴𝐶𝐶 = 
𝑇

𝑁
 · 100    (%) (19) 

 

 where T is number of correctly classified pixels and N number 

of pixels in image.   

 

Next, we determined accuracy of vessel pixels classification 

ACCV: 
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 𝐴𝑐𝑐𝑉 = 
𝑇𝑉

𝑁𝑉

· 100    (%) (20) 

 

where TV is the number of correctly classified vessel pixels and 

NV  the number of vessel pixels in manual segmentation. 

 

Furthermore, we counted the ratio RV  of correctly classified 

vessel pixels TV  and number of vessel pixels in automatic segmentation 

NVS 

 

 

 𝐴𝑐𝑐𝑉 = 
𝑇𝑉

𝑁𝑉𝑆

· 100   (%) (21) 

 

 

 
Table 4: Accuracy of segmentation. P1-7 are testing pictures. We compared manual 
segmentations of these pictures with automatic segmentation. The average accuracy 
of two-classes segmentation is 93 % (parameter ACC). Concerning vessels, 78 % of 
vessel pixels from original image are classified as vessels in binary segmentation on 
average (parameter ACCV). 80 % of vessel pixels in binary segmentation are labeled 
correctly on average (parameter RV).   

 
 P1 P2 P3 P4 P5 P6 P7 average 

ACC 0.96 0.93 0.93 0.90 0.92 0.91 0.96 0.93 

ACCV  0.80 0.92 0.75 0.71 0.82 0.68 0.83 0.78 

RV 0.87 0.75 0.84 0.67 0.81 0.93 0.72 0.80 

 

 

 

 

Average accuracy of two-classes segmentation is 93 % (parameter ACC). 

Both vessels and background classes are included in this parameter and 

there several times more background pixels in binary segmentation than 

vessels. To describe the accuracy of vessel pixels classification we 

compute ACCV and RV. ACCV describes, how many of vessel pixels from 

original image is classified as vessels in binary segmentation. In our 
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algorithm, 78 % of vessel pixels from original image are classified as 

vessels in binary segmentation. RV describes, how many of vessel pixels 

in binary segmentation are labeled correctly. In average, 80 % of vessel 

pixels in binary segmentation are labeled correctly. 

 

 

6.3 Individual segment identification 

The diagram of individual segment identification process is 

displayed in fig.18 We find skeletons in binary image. Subsequently, we 

find branching points in the skeleton. We remove the branching points 

to separate individual skeleton segments. Separated continuous objects 

are labeled by unique identifiers in skeleton image. Based on the 

distance, vessel pixels are matched with close skeletons and labeled by 

their identifiers.     

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) distance transformation 

(e) labeled skeleton segments 

(f) individual vessel 
segment mask 

(c)  skeleton segments 

 

b(a) binary segmentation 

 

(b) skeleton  

 

Figure 18: Process diagram of segments labeling and dimensions measurement. 
Binary segmentation is an input. Mask, where each segment is labeled by unique 

classifier is the output.  
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Skeletonization is based on thinning of the binary image. 

Medial axis transformation described in [49] is used in the algorithm. 

While thinning, the neighbourhood of 4 pixels is used. Such thinning 

leads to the pruned skeleton without short branches. 

 

We separate skeleton segments by removing branching points. 

Each non-zero pixel, which has at least 3 another non-zero pixels in its 

3×3 neighbourhood is labeled as a branching point. By removing the 

branching points we find out, how many individual vessels the frame 

contains. The individual vessel is meant to be the segment of the vessel 

between bifurcations. Naturally, bifurcation is the place, where diameter 

of vessel and blood flow velocity change.    

To separate skeleton, we dilate the branching points into the 

disks with the radius of 9 pixels. We stated the radius empirically. 

Afterwards the branching points can be removed and separate skeleton 

segments remain. 

Once the segments are separated, we find all the continuous 

areas, which is each 8-connected component. We sum the pixels in each 

continuous area to find out their lengths. In this stage it is easy to 

remove those segments, which are not long enough. Binary segmentation 

always contains some short segments, which do not label vessels. We 

remove the skeleton segments, which consist of 50 pixels and less. 

Afterwards each skeleton segment is labelled by a certain brightness 

value, which is a unique identifier. 

 

6.3.1 Individual vessel segment mask creation  

We create individual vessel segment mask by uniting circles 

along each centerline. Each centerline pixel is the center of one circle. 

The diameter of the circle equals distance of the centerline pixel from 

closest background pixel. All the circles along the centerline are united 

and the covered area is labeled by centerline’s identifier. This approach 

causes, that individual vessel segment mask is cleaner than binary 

segmentation. Since we have removed too short centerlines, pixel along 

these centerlines are not included in individual vessel segment mask. 

Such pixels are displayed in grey color in figure 19. These are pixels we 

do not want to include into analysis, because they mostly belong to 

background or to too blurred vessels with insufficient contrast. This 
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approach leads to unsatisfactory labeling close to bifurcations of thin 

and wide vessels. In such area the distance transform value of thin vessel 

centerline pixels is bigger than in the rest of the vessel. So, big circle is 

created (fig. 19a). We solve this problem by replacing the actual vessel 

radius by the average vessel radius in each centerline pixel, where the 

actual value is bigger than the average (fig. 19b).  

 

 

 

 

 

 

 

 

 

 

 

 

 
There are two drawbacks in our labeling approach:  

- The end of thin vessel is sometimes involved in large vessel. (fig.20a) 

- Labeled area does not entirely  follow the vessel in binary vessel     

segmentation image. (fig.20b) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) before correction 

 
Figure 19: Correction of diameter determination close to the bifurcations 

(b) after correction 

 

(a) 

Small vessel (orange) is not labeled 
correctly in the area (blue outline), 
which is close to the bifurcation with 
large vessel (yellow). Blue outline 
should be filled by yellow color, 
because the area belongs to the large 
vessels. 

 

(b) 

labeled area does not follow the 
vessel in binary vessel segmentation 
image entirely   

  correctly labeled area (true positive pixels) 
 false negative pixels - they are not labeled,  
 even though they should be 
 false positive pixels - they are labeled,  
 even though they should not be 

Figure 20: Imperfections of labeling algorithm 
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6.4 Vessel segments radius measurement 

We measure radius r by distance transform. It calculates 

euclidean distance from background in each non-background pixel. 

Distance from background is determined for each non-zero pixel, so it is 

determined for centerlines as well. Distance rn of centerline pixel from 

background equals the radius of the segment measured in pixels in a 

certain section. As we know how many centerline pixels particular 

segment contains (N), we can compute the average radius  of each vessel 

segment:   

 

 �̅� =  
1

𝑁
∑ 𝑟𝑛

𝑁

𝑛=1

 (22) 
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7 Straight vessel segments extraction 

 

The aim of the operation is to obtain an image, which contains 

only the pixels, which belong to long enough straight part of the vessel 

as in figure 22g. We extract the segments to estimate optical flow there.  

 

The process is based on Hough transform [47] of the vessel 

segment centerline.  

The algorithm is based on the parametric representation of a line [47]: 

  = 𝑥 · 𝑐𝑜𝑠() + 𝑦 · 𝑠𝑖𝑛 () (23) 

 

 is the distance from the origin to the line along a vector 

perpendicular to the line.  is the angle between the x-axis (figure 23a) 

and this vector. The peaks in Hough matrix represent potential lines in 

the input image. [48] 
Deeper explanation of Hough transformation is provided in 

figure 23.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Original image 
 

θ 
 

ρ 
 

Figure 21: Explanation of Hough transform for line detection in binary image. Original 
binary image (a) contains two white lines. Each possible line can be determined by the 

distance from origin ρ and angle θ. Both parameters are displayed for longer line in 
original image. Based on original image Hough transform matrix (b), which is 2D 
histogram of lines occurnces,  is created as follows: Through each white pixel of original 
imge imaginary lines with various directionns are drawn. Each of these lines is described 

by ρ and θ and added into appropriate bin in Hough transform matrix. When some white 
pixels are in a line in original image, appropriate bins in Hough matrix grow and get 
brighter, because imaginary line, which have direction of real line in original image, are 

added into the same bin.  The brightest spots in Hough transform matrix indicate ρ and 

θ of real lines in original image (arrows).   

(b) Hough transform matrix 
of original image 
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First, we choose a segment (fig. 22a). We detect straight parts 

of its centerline by Hough transform (green line in figure 22c). Next we 

find the borders for cropping. The border points (red crosses) lie on the 

blue lines displayed in fig. 22c, which intersect the green line endpoints 

and hold the right angle with the green line. The euclidean distance of 

the border points from the endpoints equals the radius of the vessel. 

Since we know the angle , we can rotate the image (fig. 22e). Then we 

crop the rotated image (fig. 22f). The horizontal centerline of the 

cropped area is the horizontal centerline of the rotated image and the 

height of the cropped area equals to the diameter of the vessel. We 

remove all the rows and columns from the cropped image, which contain 

zeros, to obtain the final vessel extraction (fig. 22g). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

(a) Definition of vessel 
segment 

(b) Hough transform of the 
centerline 

(c) Cropping dimensions 

 

(d) Cropped segment 

 

(e) Rotated segment 
 

(f) Cropped image 

 

(g) Straight vessel segment 
 

Figure 22: Diagram of straight vessel segment extraction. (a) vessel segment is selected, (b) 
Hough transform of vessel segment centerline to detect straight section, (c) roi determination, 
(d) cropping and rotating of roi, (e,f) another roi definition and cropping, (e) resulting 
horizontally oriented straight vessel segment. 
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Figure 23: Detection of straight vessel segments within whole 
image. Segments will be extracted from the regions of interest, 

which are marked by red rectangles. 
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8 Artificial videos 

By artificial videos we simulate RBCs flow. We try to imitate 

the inner structure of straight vessel segments (fig. 24). The diagram of 

artificial video acquiring is displayed in fig. 25. Initial 10×225 array with 

uniformly distributed random intensity values in range 0 - 255 was 

generated. The array was smoothed by gaussian filter. Each video is a 

sequence of 10 10×175 images, which were obtained from the initial 

array. First image of each video contains 1st - 175th column of the initial 

array. Depending on the inter-frame motion n, the second image of the 

video contains from 1+nth to 175+nth column of the initial array. Shifting 

the region of interest over the initiation array about n pixels, 10 frames 

of the video are created. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frame 3 
 

Initial array 
 

Frame 1 
 

Frame 2 
 

n 
 

Figure 25: Creation of artificial videos. Region of 
interest is shifted by n pixels over the initial array, 
which simulates the pattern of real vessels. 

Figure 24: Comparison of texture, (a) real vessel segments, (b) artificial video. 

(a)  
Texture of three 

different real vessels  
 

(b)  
Texture of artificial video 
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9  Velocity measurement 

9.1 Maximal blood flow velocity 

We determine maximal RBCs velocity, because it is important 

to know the range of motion we need to measure. According to [19] 

RBCs velocity v can reach up to 1.5 mm‧s-1. Frame rate FR of our videos 

is 43 fps, motion a between two frames caused by maximal velocity v is 

 

 𝑎 =  
𝑣

𝐹𝑅
= 35 𝜇𝑚 (24) 

 

 

Each pixel of MicroScan videos occupies the area S = 0.56 μm2 [58], so 

length l of pixel side is  

 𝑙 =  √𝑆 = 0.75 𝜇𝑚   (25) 

 

Interframe motion m (in pixels) performed by RBCs at velocity v is then 

 𝑚 = 
𝑎

𝑙
= 46.7 𝑝𝑖𝑥𝑒𝑙𝑠   (26) 

 

Ideally, we need to be able to detect the interframe motion of 

around 50 pixels to cover the range of RBCs velocity.  

 

 

 

 

 

 

 

 

 

  



 
 

 

 

59 

 

9.2  Optical flow 

We decided to implement optical flow, as recommended 

in [19]. Unlike [19] we implemented Lucas-Kanade method. 

 

Optical flow is a field of motion vector per each pixel of an 

image. The vectors show movement of the pixel between two sequential 

pictures in time. That is, what optical flow equation for a pixel x,y  

claims [51]:   

where Ix(x,y), Iy(x,y), It(x,y) are the partial derivatives of the 

image I with respect to position x, y and time t and (vx, vy) is the motion 

vector.  

 

Lucas-Kanade method is based on the assumption, that the 

displacement of the image contents between following frames is small 

and locally approximately constant. So there is the same motion vector 

(vx, vy) for all pixels within a window. The compromise solution is based 

on the least squares method.  

 

The optical flow equations for all n pixels of the window can 

be written in a matrix form  

 

 𝐴𝒗 = 𝒃 , (28) 

 

where 

 

 𝐴 = [

𝐼𝑥(𝑥1, 𝑦1) 𝐼𝑦(𝑥1, 𝑦1)

⋮ ⋮
𝐼𝑥(𝑥𝑛, 𝑦𝑛) 𝐼𝑦(𝑥𝑛, 𝑦𝑛)

]    𝒗 =  [
𝒗𝑥

𝒗𝑦
]    𝑏 =  [

−𝐼𝑡(𝑥1, 𝑦1)
⋮

−𝐼𝑡(𝑥𝑛, 𝑦𝑛), (𝑥𝑛, 𝑦𝑛)
]     (29) 

 

Equation (28) resembles equation (7) in section 5.2 (section 

Motion estimation in chapter Correction of video instability). Unlike 

(28) eq. (7) has a form of error function. The equations differ in the 

number of parameters to be estimated.  In eq. (7) 3 parameters for each 

spatial direction are assessed, in equation (28) just 1 parameter for each 

 
𝐼𝑥(𝑥, 𝑦)𝒗𝑥 + 𝐼𝑦(𝑥, 𝑦)𝒗𝑦 = −𝐼𝑡(𝑥, 𝑦) 

 
(27) 
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spatial direction is estimated. Moreover, in eq. (7) all the pixels of an 

image are included. In contrast, Lucas Kanade method estimates the 

motion vector just for a local area. 

Vector v is computed by least squares method as: 

 

      [
𝒗𝑥

𝒗𝑦
]  =  

[
 
 
 
 
 ∑𝑤𝑖𝐼𝑥(𝑥𝑖 , 𝑦𝑖)

2

𝑛

𝑖=1

∑𝑤𝑖𝐼𝑥(𝑥𝑖 , 𝑦𝑖)𝐼𝑦(𝑥𝑖 , 𝑦𝑖)

𝑛

𝑖=1

∑𝑤𝑖𝐼𝑦(𝑥𝑖 , 𝑦𝑖)𝐼𝑥(𝑥𝑖 , 𝑦𝑖)

𝑛

𝑖=1

∑𝑤𝑖𝐼𝑦(𝑥𝑖 , 𝑦𝑖)
2

𝑛

𝑖=1 ]
 
 
 
 
 
−1

   

[
 
 
 
 
 −∑𝑤𝑖𝐼𝑥(𝑥𝑖 , 𝑦𝑖)𝐼𝑡(𝑥𝑖 , 𝑦𝑖)

𝑛

𝑖=1

−∑𝑤𝑖𝐼𝑦(𝑥𝑖 , 𝑦𝑖)𝐼𝑡(𝑥𝑖 , 𝑦𝑖)

𝑛

𝑖=1 ]
 
 
 
 
 

  (30) 

Equation (30) resembles eq. (12) in section 5.2, but, as we have 

mentioned, both approaches differ in number of parameters. 

 

 

 

We implement equation (30) as follows: 

 

      [
𝒗𝑥

𝒗𝑦
]  =  [

𝐼𝑥𝑥(𝑥, 𝑦) 𝐼𝑥𝑦(𝑥, 𝑦)

𝐼𝑥𝑦(𝑥, 𝑦) 𝐼𝑦𝑦(𝑥, 𝑦)
]

−1

     

[
 
 
 
 
 − ∑ 𝑤𝑖𝐼𝑥(𝑥𝑖, 𝑦𝑖

)𝐼𝑡(𝑥𝑖, 𝑦𝑖
)

𝑛

𝑖=1

− ∑𝑤𝑖𝐼𝑦(𝑥𝑖, 𝑦𝑖
)𝐼𝑡(𝑥𝑖, 𝑦𝑖

)

𝑛

𝑖=1 ]
 
 
 
 
 

  (31) 

 

where  

 

 𝐼𝑥𝑥 = 𝐼𝑥
2 ∗ 𝑊 (32) 

𝐼𝑦𝑦 = 𝐼𝑦
2 ∗ 𝑊 

𝐼𝑥𝑦 = 𝐼𝑥𝐼𝑦 ∗ 𝑊 

 

where Ix is partial derivative of image I with respect to x and 

Iy is partial derivative of image I with respect to y. W is matrix of n2 

elements, where the central element equals 1 and every other element 
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p(i,j) equals a Gaussian function of its distance from central element of 

the matrix:  

 𝑝(𝑖, 𝑗) =  
1

√2𝜋
𝑒−

𝑑2

2  (33) 

 

where d is distance of element p(i,j) from the central element 

of the matrix in pixels. 

 We compute partial derivatives as convolution of image I with 

kernel d = 1/12[-1,8,0,-8,1], as proposed in [61]. For Ix kernel is oriented 

horizontally, for Iy vertically. 

 

Ixx , Iyy , Ixy are such matrices, where each element equals the 

sum of weighted partial derivatives in a window of side n. So, each 

element of appropriate matrix equals the appropriate summing 

expression in matrix in equation (30).  

 

The derivative in respect to time is computed as the difference 

of consecutive frames I(t) and I(t+1) : 
     

 𝐼𝑡 =  𝐼(𝑡 + 1) − 𝐼(𝑡) (34) 

 

We implemented multiresolution technique to enlarge the 

recognition range of optical flow (just like in section 5.2.1, where the 

approach of finding affine transformation model of an image in different 

scales is described) 

Multiresolution method is based on reducing the image 

resolution. However, the width of some vessel segments is quite often 

just around 10 pixels and the window size is typically around 10×10 

pixels. We need enough pixels in the region of interest to fit the window, 

so we can not change the resolution of vessels too much. We solve this 

problem by reducing just one dimension of vessel segment. When the 

initial size of vessel segment is 10×100 we reduce it to 10×50. Like this 

fitting of window is enabled. We suppose, that RBCs move just in one 

direction, so reduction of resolution in another direction is not necessary. 

To ensure this, we extract straight vessel segments and rotate them, so 

they are always oriented vertically.  

https://en.wikipedia.org/wiki/Gaussian_distribution
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In the coarsest level L resolution of frame is m×n. Initial array 

of motion vector vxL, vyL with dimensions m×n is estimated. In a finer 

level, L-1, resolution of frame is 2m×2n. To adapt the resolution of 

motion vector array for level L-1, it is interpolated, so its resolution 

equals the resolution of frame 2m×2n. To transfer the value of motion 

vector into level L-1, vxL is multiplied by 2, vyL remains the same, because 

we do not change the resolution in vertical direction (eq. 35).  

  

     𝑣𝑥𝐿−1 =  2𝑣𝑥𝐿  (35) 

𝑣𝑦𝐿−1 = 𝑣𝑦𝐿  

 

In level L-1, coordinates of local window of frame I(t+1) are 

transformed 

   𝑥′
𝑖  =  𝑥 + 𝑣𝑥𝐿−1  (36) 

 

  𝑦′
𝑖
 =  𝑦 + 𝑣𝑦𝐿−1  

 

and the window is interpolated. Again, motion vector vx, vy is 

computed and the result is added to current estimation. Then the value 

of vector is transferred into finer level: 

  

     𝑣𝑥𝐿−2 = 2(𝑣𝑥𝐿−1 + 𝑣𝑥) (37) 

 

     𝑣𝑦𝐿−2 = 𝑣𝑥𝐿−1 + 𝑣𝑥 
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Equations (34-36) describe the estimation of motion vector 

during multiresolution process. Finally, vector v we search for, is the 

estimation from the finest level 1. 

 𝒗 =   [
𝑣𝑥1

𝑣𝑦1
]  (38) 

 

 

 

Finally, we compute the size s of motion vector: 

 𝑠 = √𝑣𝑥1
2 + 𝑣𝑦1

2  (39) 

 

Size of motion vector describes the interframe motion (in 

pixels) of a certain pixel between two frames.  

 

The lengths of the vessel segments vary from 60 to 160 pixels 

in our videos. So, we apply 5-levels multiresolution on each vessel and 

we can be sure, that in some level the window fits into the frame. 

 

We filter the images before down sampling from level n to level 

n-1 by binomial filter (1/4, 1/2, 1/4)  along horizontal dimension, as 

proposed in [23]. We never up sample the reduced images, but we always 

down sample the original image to reach demanded resolution.  

 

We use the square window with n2 elements, where n equals 7. 

We do so, because such a window fits into the most frames we analyse. 

The minimum height of the frames to be analysed is 7 pixels in our case. 

Bigger window leads to a more precise estimation of velocity vector.  

From our experience, window with the side of 7 pixels is a good 

compromise between the demand of the image size and estimation 

quality. 
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9.2.1 Experiment with artificial vessel segments 

We executed an experiment, where we examined, whether 

blood flow velocity is determined correctly. We tested the algorithm on 

artificial videos with known inter-frame motion. 50 videos were included 

in the experiment. There was a specific inter-frame motion in each video 

in the range from 1 to 50 pixels/frame. We tested the performance of the 

algorithm in this range of velocities, because such range should be found 

in real microcirculation videos. 

 

We used histograms of estimations vectors. Estimations 

vector, is a group of all the estimated sizes of optical flow vectors from 

all the frames within the video (except the last frame).   

We display a histogram of estimations vector in figure 26. The 

vector was extracted from artificial video with inter-frame motion 

n = 5 pixels. We can see, that the most of the estimated motions rank 

among 4.5 and 5.5 pixels. It is a correct value, because the real inter-

frame motion is 5 pixels‧frame-1. However, other estimated values occur 

in the histogram as well, which means the algorithm is not perfect and 

the estimation is not always correct.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To see efficiency of the algorithm in a full range of requested 

velocities, we extracted estimations vectors for all videos. We created 

2D histogram, where all the histograms of all estimations vectors are 

Figure 26: Histogram of motion vector sizes estimated in a sequence of 
frames of artificial vessel segment. Blood flow velocity descriptor is 
extracted from this histogram. In this particular case the descriptor equals 
5, because most of the estimated motion vector sizes within the frame 
sequence  rank among 4.5 and 5.5 pixels.  
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included (fig. 27). We did so in order to see the distribution of optical 

flow estimation in dependence on the inter-frame motion.  

 

In fig. 27 one 2D histogram from three different views is 

displayed. In (a) and (b) perspective view is provided. In (c) the view 

from above is shown. In all cases x axes denotes to the real interframe 

motion and on y axis the particular estimations vector is displayed. We 

can see, that when the real motion is small, approximately up to 10 

pixels‧frame-1, a significant amount of estimations vector elements are 

assessed correctly. Obviously, when the real motion is bigger, correct 

estimations occur as well, we can observe this up to the motion of around 

30 pixels.  However, the bins with correctly assessed values become less 

dominant with increasing velocity. To complete the information about 

how our algorithm is efficient or not, we provide an ideal histogram 

(fig. 28), which would describe the performance of a faultless algorithm, 

if it was included in our experiment. In contrast with the ideal 

implementation, real algorithm fails, when the real motion is bigger than 

approximately 20 pixels‧frame-1, because the bin with correctly 

estimated values become smaller than the faulty bins.  
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Figure 27: Optical flow 
estimation in dependence on the 
inter-frame motion. One 2D 
histogram from 3 views 
(perspective (a,b), from above 
(c)) is displayed. By the real 

motion up to 10 pixels‧frame-1, 
vast number of velocity 
estimations are correct. With 
bigger real motion, number of 
right estimations decreases. By 
real motion bigger than 
approximately 20 pixels, faulty 
too low estimated values 
become dominant. 
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9.2.2 Optical flow-based velocity descriptor 

 

The goal of the implementation of velocity measurement 

algorithm is to obtain a descriptor of the flow in a whole video. To do 

so, we first create a descriptor of flow in a single vessel segment. It is 

the highest bin of the histogram of estimations vector, when the edges 

of histogram are half-integers (which means it is the most frequent 

estimation). Having a set of these individual descriptors (for each vessel 

segment of video, or group of segments) we can process it to create an 

overall velocity descriptor. Again, we choose the most frequent value to 

be the descriptor of video.  
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Figure 28: Ideal optical flow estimation in dependence on the inter-frame 
motion. This graph illustrates, how the optical flow would be estimated by 
the faultless algorithm. We can compare this graph with the performance of  
real algorithm (27c) to see the limits of the real implementation. Ideal 

algorithm would be able to estimate the motion up to 50 pixels‧frame-1, so 
that it could measure whole range of RBCs velocity. However, real algorithm 
fails when the real motion is bigger than 20 pixels.  
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10  Temporal pixel intensity  
  fluctuations 
 

 

We are interested in temporal changes in intensity of each 

pixel of a vessel segment. Since the average brightness of each vessel 

segment is different, standard deviation is a suitable tool for 

compensating such variances [4]. So, we compute average value s of 

changes in temporal intensity of particular pixel (I(x,y))  as a standard 

deviation: 

 

 𝑠 = √
1

𝑁 − 1
∑(𝐼(𝑥, 𝑦) − 𝐼)̅2

𝑁

𝑖=1

 (40) 

where N stands for number of frames in video and 𝐼 ̅ is the 

average intensity of pixels in a video segment within a video: 

 

 

𝐼 ̅ =
1

𝑁
∑

∑ 𝐼(𝑥𝑛𝑦𝑛)𝑛
𝑖=1

𝑛

𝑁

𝑖=1

 (41) 

 

 

where n is the number of pixels of vessel segment. 

 

As a descriptor of flow in a particular segment we choose the 

most frequent value s - the  tallest bin in a histogram of intensity 

fluctuations s.  

To describe whole video (or a group of vessels) we use the 

most frequent value of  descriptors obtained from individual vessels. We 

display a histogram of individual vessel descriptors extracted from real 

video in figure 29. In this particular case the video descriptor equals 110. 

From now we will use an acronym PIF (pixel intensity fluctuations) for 

this descriptor.   
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10.1 Experiment with real vessel segments 

We extracted 30 segments with good contrast and various flow 

velocities (visually apparent) from real videos and generated histograms 

of intensity fluctuations for each of them. Based on the visual assessment 

of several histograms we decided to set the edges to the multiples of 20. 

We display some histograms of intensity fluctuations from two real 

segments to show, that fluctuations in real vessels differ (fig. 30). We 

can see, that the highest peak in histogram is different in both cases 

(green arrow), so it makes sense to accept it as a distinctive descriptor 

of vessel segment. We provide values of descriptor of flow in each vessel 

segment in figure 31. Based on fig. 31, we believe, that pixel intensity 

fluctuations are different in real vessel segments with various flow 

velocity.  

 

 

 

 

 

 

S = 110  
 

Figure 29: Histogram of descriptors of individual vessels from 
one video. Highest peak of the histogram is chosen to be the 

descriptor of the video (110).  
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Figure 30: Comparison of histograms of pixel intensity fluctuations 
from two different real vessels. Difference of those vessels was 
apparent in video visually. Vessel (a) was thin, flow was intermittent 
and fast. Vessel (b) was thick, flow was continuous, velocity was 
heterogenous, RBCs were very dense.   
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Figure 31: Intensity fluctuations of 30 real vessel segments with different velocities. In 
the graph we can see, that pixel intensity fluctuations are different in vessel segments 
with various flow velocity.  
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11 Implementation of conventional   
descriptors 

11.1 TVD  

TVD is implemented as 

 

 𝑇𝑉𝐷 =  
𝑁𝑣

𝑁
 (42) 

 

 

where Nv is the number of pixels in vessels and N number of 

pixels in a frame. 

 

  

11.2  deBacker score 

 

 𝑑𝑒𝐵𝑎𝑐𝑘𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 =  
1000𝑐

3√𝑆(𝑚 + 𝑛)
 (43) 

 

 

where c is the number of crossing points, S is the area of one pixel, m,n 

are the dimensions of video in pixels.   

 

We determine c as follows: A matrix of size m×n with three straight 

lines in x and y direction is created. Lines equal one and the background 

equals zero. We multiply matrix with lines with centerline image of a 

video, where ones label vessel segments centerlines and the rest equals 

zero. After multiplication the intersection of centerlines and lines equals 

one, rest equals zero. We sum up all the continuous objects to obtain 

number of intersections.  
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Figure 32: Determination of crossing points in deBacker score. 
 

 

(a) Multipliacation of centerline 
image and deBacker lines image 

 

(b) Crossing points 
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12   Classification of microcirculation 

 

 

We defined three groups of vessels according to their diameter  

(based on the observation, so that all the groups have about the same 

amount of members in a video)  
 

 
Table 5: Three groups of vessel segments in relation to their diameter, which we used 
in classification experiment. 

 

vessel category diameter (μm) 

small (0,13〉 
middle (13,20〉 

large >20 

 

 

We extracted OFD, TVD, PIF and deBacker score for each 

group of vessels from each video in our dataset. We created description 

vector for each video. An example of such a vector is shown in table 6. 

We generated deBacker score for small+middle vessels (DB s+m) too 

(which means for vessel with diameter up to 20 μm), because AVA 

generates such parameter. 

 
 

Table 6: Example of description vector, which is the outcome of video analysis. PIF: 
pixel intensity fluctuations, DB: deBacker score, TVD: total vessel density.   

 

 

 

We generated description vectors from 75 on-pump videos and 

76 off-pump videos. We created testing dataset so, that we chose one 

third from each group randomly. The rest was training dataset. 
We trained SVM (support vectors machine) to discover a 

possible linear separability of data. We trained a linear classifier, because 

the dataset is small. We employed R statistical language [69] to do so. 

The aim of our investigation was to find out, whether any of parameters 

in description vector enables linear separation of pathological and 

OFD 
all 

OFD 
small 

OFD 
middle 

OFD 
large 

PIF 
all 

PIF 
small 

PIF 
middle 

PIF 
large 

DB 
all 

DB 
small 

DB 
middle 

DB 
large 

DB 
s+m 

TVD 
all 

TVD 
small 

TVD 
middle 

TVD 
large 

1 1 1 1 80 120 130 80 6.662 3.807 1.427 1.427 2.855 0.151 0.041 0.052 0.057 
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physiological microcirculation. We did not combine the parameters, we 

trained a classifier for each of them. In each case we did 10-fold cross 

validation. 
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13  Results 

 

13.1  Optical flow 

 

We present the dependence of estimated velocity value on the 

real velocity of flow in figure 33. Green color marks the correct velocity 

estimation, red color codes the false estimation. The graph illustrates, 

that up to the velocity of 17 pixels/frame and for velocities 21, 25 and 

29 pixels/frame the estimation was correct. Velocities in the range from 

18 to 50 pixels/frame, except 21, 25 and 29 pixels/frame were not 

determined correctly.  
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Figure 33: Performance of optical flow-based velocity estimation. Real flow velocity in artificial 
vessel segments on x axes, estimated velocity value on y axes. Green color marks the correct velocity 
estimation, red color codes the false estimation. The graph illustrates, that up to the velocity of 
17 pixels/frame, velocity in artificial vessel segments is determined correctly by optical flow. In 
higher velocities it is mostly misleading.  
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13.2 Comparison of deBacker score with 

reference values 

There are two deBacker score parameters, which both our and 

AVA measured on identical data - deBacker score for all vessels and 

deBacker score for small vessels with diameter up to 20 μm.  

 

We provide comparison of both performances. We computed 

difference D of parameter values P: 

 

 

 𝐷 =     
𝑃𝐴𝑉𝐴 − 𝑃

𝑃𝐴𝑉𝐴
    · 100      (%), (44) 

where PAVA is the value AVA determined and P value obtained 

by our algorithm. The average difference 𝐷 was computed 

 

 𝐷 =
1

𝑁
∑ 𝐷𝑛

𝑁

𝑛=1

 (45) 

where N = 72, which is is the amount of videos we analysed. 

 

In parameter deBacker score, the average difference of values  

generated by both compared algorithms was 25.03 %. Histogram of 

differences is displayed in figure 34a.  

 

In parameter deBacker-small, where only vessels with 

diameter up to 20 μm were included, the average difference was 22.42 %. 

Histogram is shown in figure 34b. 
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13.3 Classification of pathological and   
physiological microcirculation 

 

We trained SVM classifier for the parameters our software 

provides - TVD, deBacker score (DB), PIF, OFD. Each parameter was 

assessed in 4 groups of vessels according to their dimensions - small, 

middle, large and all.  

 

Accuracy and p-value of all the classifiers is displayed in 

table 7. Based on table 7 we claim, that we found a significant difference 

between pathological microcirculation (patients on CPB) and 

physiological microcirculation for three of the measured parameters: 

pixel intensity fluctuations, PIF (all), (p=0.034),  pixel intensity 

fluctuations, PIF (large), (p=0.001), deBacker score (all), (p=0.035). 

The difference between other measurements were not statistically 

significant. 

 

 

 

Figure 34: Histograms of differences in results achieved from commercial software and our 

algorithm. 72 videos were assessed. (a) parameter deBacker score (all), the most of the 
differences range between 0 and 40 %. (b) parameter deBacker score (small), the most of the 
differences range between 0 and 40 %.   

(a) deBacker score (all) difference (%) 
 

(b) deBacker score (small) difference (%) 
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Table 7: Accuracy of classification of testing data. In each column performance of one 
classifier is displayed. Such cases, where we found significant difference, are 
highlighted. 

 

 

 

 

 

 

 

 

 

 

 
  

 
OFD 
all 

OFD 
small 

OFD 
middle 

OFD 
large 

PIF 
all 

PIF 
small 

PIF 
middle 

PIF 
large 

accuracy 0.5 0.5 0.5 0.5 0.64 0.62 0.60 0.72 

p-value 0.556 0.556 0.556 0.556 0.034 0.059 0.102 0.001 

 
DB 
all 

DB 
small 

DB 
middle 

DB 
large 

TVD 
all 

TVD 
small 

TVD 
middle 

TVD 
large 

accuracy 0.64 0.54 0.58 0.50 0.62 0.53 0.55 0.5 

p-value 0.035 0.336 0.161 0.556 0.059 0.335 0.342 0.556 
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14  Discussion 

 

Our work provides three significant findings concerning pixel 

intensity fluctuations, difference of on-pump and off-pump videos and 

optical flow. 1) We do not suppose optical flow computed by 

Lucas-Kanade method is sufficient for microcirculation analysis. 2) We 

suppose, that pixel intensity fluctuation is promising quantitative 

descriptor of microcirculation. 3) We found significant difference 

between on-pump and off-pump videos. All the statements will be 

discussed. 

14.1 Optical flow  

Our implementation of Lucas Kanade method in combination 

with multiresolution performs quite well on artificial data. In artificial 

videos with wide range of velocities (1-17 pixels/frame) the algorithm 

estimates velocity correctly. There is a hint of correct estimation even 

in higher velocities up to 30 pixels/frame (the descriptor would have to 

be improved). However, optical flow fails in real data. It seems it does 

not provide any relevant information about real videos. We see several 

causations. Firstly, there is lack of significant texture in vessel segments. 

The vessel content is just blurry without any corners or edges quite 

often. Moreover, when texture is present, it changes between frames, so 

there is no chance to find similarities. Furthermore, pictures are too 

noisy. We tried to filter the images by diffusion filter, but it did not 

bring any improvement in performance of optical flow. In addition, the 

content of extracted vessel segments might be insufficient in some cases 

because of wrong segmentation and straight segment extraction. We did 

not have enough time to check all the extracted areas, whether they 

really include just area of vessels. Finally, according to the experiment 

with artificial video, our implementation fails by higher velocities than 

17 pixels/frame. In some cases this may be the reason of dysfunction in 

real videos, because velocities over 17 pixels/frame are supposed to be 

normal in capillaries. 
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14.2  Pixel intensity fluctuations   

Pixel intensity fluctuations seem to be useful tool for 

quantitative microcirculation analysis, because it passed through all our 

experiments successfully. We found out it related with flow velocity in 

artificial vessels, it differed for real vessels with various flow velocity and 

it enabled statistically significant linear classification of pathological and 

physiological microcirculation either in all or just in large vessels.  PIF 

just describes the video content without any estimations and 

assumptions, which we consider convenient. It is relatively resistant to 

noise and lack of contrast because of averaging. Nevertheless, we should 

mention, that one estimation in PIF determination process exists. It is 

the width of bins in histogram of parameter s for particular vessel. We 

accept the centre value of the tallest bin of histogram as the descriptor 

of particular vessel. We stated the width of bins to be 20 empirically, 

which is not an ideal solution. If the width of bin was different, PIF 

values would differ too.  
More data from various patients would be needed to analyse, 

what really PIF describes. There is actually no reason not to accept it 

as a quantitative descriptor for scientific purposes. Informational value 

of the descriptor might be revealed in the future, when enough data 

from various patients would be gained for statistical analysis. 

 

14.3   Difference of on-pump and off-pump videos 

We found a significant difference in 3 from 16 parameters 

between on-pump and off-pump patients, which confirms the 

assumption, that the difference exists. However, the dataset was very 

small, just 76 off-pump and 75 on-pump videos. We used 

cross-validation when training classifiers to compensate the lack of data. 

Moreover, the videos are very diverse. We suppose, that there are 

off-pump and on-pump videos, but they have many subcategories. 

On-pump videos include patients both before and after surgery and in 

anaesthesia. All these videos might differ from each other. We can find 

literature, which claims, that there is significant difference between 

microcirculation of subjects with and without anaesthesia [8,67]. 

Considering off-pump videos, they were captured in different stages of 
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surgeries. In [13] quality of microcirculation with and without CPB was 

compared, significant difference was registered in the beginning of 

surgery, but no variation was found in later stages. 

We found difference in deBacker score and in PIF. DeBacker 

score relates to the amount of vessels and their distribution in captured 

area, but it does not provide any information about vessel content. In 

contrast, PIF describes flow, but it has nothing in common with amount 

of vessels or their dimensions. It means we found a difference both in 

vessel amount and flow. TVD relates to the area vessels occupy in 

captured area. We did not find any significant difference in this 

parameter.  

14.4   Software 

There are some flaws, which negatively influence the reliability 

of microcirculation descriptors. Firstly, stabilization of videos is never 

perfect. We controlled the stability visually and kept those videos, which 

we subjectively considered stable enough, but in some cases some vessel 

segments were not stable entirely. However, we could not have risked to 

reject more videos because of lack of data. Moreover, subjective 

evaluation of stability causes, that the quality differs within dataset. 

Automatic control of stability would be useful in this case. 

Automatic vessel segmentation is performed by classifier, 

trained on 14 training pictures, which is not too much. Machine 

learning-based segmentation is attractive, but the creation of training 

and testing data is time-consuming. Looking at the automatic 

segmentation we should remember, that  approximately 20 % of vessel 

pixels are classified wrong and that roughly 22 % of vessel pixels from 

original image are not included among vessel pixels of automatic 

segmentation. Another inaccuracy is caused by dividing segmentation 

objects into individual segments. Firstly, areas around bifurcations are 

tricky in our software. No border recognition is implemented, so 

sometimes a vessel segment ends in the area of another segment. Part 

of the information from such segment is misleading, because it contains 

information from two different vessels. Another distortion is caused by 

the fact, that we always separate vessels in bifurcations. In case there is 

a long thick vessel and there are three bifurcations along its length, we 

divide this vessel into three segments. Subsequently, the analysis 

contains data from this vessel three times instead of once.  
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14.5 Comparison with AVA 

The difference of deBacker score determined by our software 

and deBacker score from AVA is roughly 25 %. We only compared 72 

values, because there were no more suitable videos. We accept values 

from AVA as reference, because we assume it is more accurate software 

than ours. The difference is caused by the imprecisions of our software.  

DeBacker score value depends on the number and distribution of 

detected vessels. Inaccuracy in stabilization and subsequent automatic 

vessel segmentation causes, that not all vessels are detected, which 

influences deBacker score value. On top of that, we can not be sure, how 

precise AVA is in stabilization and vessel detection.  

 

  

 

 
  

 

 

 
  



 
 

 

 

83 

 

15  Conclusion 

We created a functional software for automated analysis of 

microcirculation videos. Video stabilization, automatic vessel detection 

and their dimensions measurement are implemented. MatLab [68] was 

used to implement stabilization and dimensions measurement, Ilastik 

tool [24] is employed for vessel detection. The software provides 

quantitative analysis of microcirculation (implemented in MatLab). It 

determines two conventional (deBacker score, total vessel density 

(TVD)) and two novel descriptors (pixel intensity fluctuations (PIF)), 

(optical flow descriptor (OFD)) automatically. We compared our 

deBacker score values with those from commercial tool. The average 

difference was approximately 25 %.  

We designed and constructed two novel microcirculation 

descriptors. OFD is based on the analyse of microcirculation velocity 

profile. Flow velocity is estimated by optical flow method. We 

discovered experimentally, that the descriptor estimates flow velocity in 

range 0-17 pixels/frame correctly in artificial videos. However, we found 

out it was not suitable for assessment of real videos due to insufficient 

texture and noise. For this reason we did not implement it as an 

automatic feature of the software. However, it can be added any time, 

if better quality videos would be analysed. 

The second novel descriptor (PIF) is based on the analyse of 

profile of pixel intensity fluctuations in video. Despite OFD it performs 

well on real videos. 

All the descriptors are assessed for small, middle and large 

vessels, just like for all the vessels at once. We determined these 

parameters for 151 videos, which of 76 were captured on normal subjects 

and 75 on subjects with CPB. We trained linear SVM classifier to 

distinguish on-pump and off-pump videos. We employed R to create the 

classifier. We found significant difference in 3 parameters: PIF (all 

vessels), (p=0.034), PIF (large vessels), (p=0.001), deBacker score (all 

vessels), (p=0.035). 

The instructions for the use software are described in 

Appendix.  
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Appendix 
 

Description of „Appendix“ folder content (the folder is 
included on CD, which is attached to the printed thesis): 
 

 

There are three subfolders and ilastik-1.3.2post1-win64.exe in Appendix 

folder: 

 

 

 

 

 

 

 

 
 
 
subfolder Appendix-ANALYSE 

- It includes the software for automated analysis of 
microcirculation videos. Moreover, there are 4 exemplary 
microcirculation videos. 

 

Instructions for automated analysis software 

 

- The software was created in MatLab R2018b on Windows 10 

- To run automatic analysis software, you need MatLab (with 
Image Processing Toolbox) and Ilastik 1.3.2  (tool for automatic 
image segmentation) 

 
1) Install MatLab and Image Processing Toolbox 
2) Install Ilastik: 

- either from Appendix folder (ilastik-1.3.2post1-win64.exe): 

 

 

 

 

- or from website: https://www.ilastik.org/download.html 

https://www.ilastik.org/download.html


 
 

 

 

 

 

Run automatic analysis: 

- Go to ANALYSE folder 

 

 

 

 

 

- Put the videos you want to analyse into ANALYSE folder: (There 
are four exemplary videos right now). We use .avi videos, but another 
formats should be possible as well. 

Besides videos, there are: Segmenter, software and Analyse. The only 

thing you need to open is Analyse. Do not remove or manipulate 

software and Segmenter. Software includes Matlab functions, 

segmenter is a classifier for automated vessel segmentation.  

 

 

 

 

 

 

 

 

- Open Matlab script Analyse.m and add the folder „software“ into 
Matlab path: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

You need to define two variables in Analyse.m: 

 
1) The path to the folder, where your Ilastik is installed  

(example: 'C:\Program Files\ilastik-1.3.2') 

 
2) The real area, which is covered by one pixel of the video (in 

sqaured micrometres - µm2)  The preset value 0.56 is for 
MicroScan USB 3. 

 

 

 

 

 

 

 

 

 

 

- You can choose, if you want to include OFD descriptor - define 
OF = 1 (yes), or OF = 0 (no) 

- You can define the range of diameters for small, middle and 
large vessels (in micrometers) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

Now you are ready to run Analyse.m and let the software work: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What will happen:  

 

- Each video will be processed one by one. It takes cca. 15 minutes to 
analyse 1 video, which is 1 second long (resolution 960x1280). 

 

- There are 4 stages in the analysing process for each video: 

 

1) Pre-processing. This stage lasts approximately 30 seconds. 

 
 
 
 

 

 

 

 

 



 
 

 

 

 

 

 

 

2) Stabilizing. This stage lasts approximately 5 minutes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3) Vessel detection. This stage lasts approximately 8 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 
4) Extraction of microcirculation descriptors. This stage lasts 

approximately 2 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After all the videos are processed, folder Analysis complete is created 

automatically 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

It contains a folder for each analysed video. There is information about 
analysis in each of these folders: stabilized video, picture with overview 
of stabilization, picture with segmented vessels and descriptors in .txt 
and .xls.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stabilization overview 

segmentation overview 

descriptors 



 
 

 

 

 

 

 

Moreover, folder Analysis complete contatins the table with all the 

descriptors from all the analysed videos both in .txt and .xls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

subfolder Appendix-Additional material 
 

  

o Data for classification: It is a dataset, which was gained from 151 
videos. It was used to train linear SVM classifier to explore the 
differences between on-pump and off-pump videos 

 

o SVM: Folder with R script (Classify.R), which contains linear SVM 
classifiers. It is pre-set for the .xls table which is produced by 
autmatic analysis. When you run it, the videos will be classified 
according to PIF and deBacker score. The table with predictions 
will be created. There are more detailed instructions in the folder.  

 

o Videos: Those videos, from which data for classification were 
obtained. 

 

 

 

 

 

 

 
 


