Bachelor thesis: Description and Analysis of the Mathematical Model of Impedance Characteristics of Nanoparticle Covered Integrated Sensors

Author: Shangzhou Xia
Thesis supervisor: RNDr. Ilona Bláhová, Ph.D.
Thesis opponent: Ing. Lavr Vetoshkin

Rating (1 – 5)
(1 = best; 5 = worst):

1. Fulfillment of assignment requirements:
 1
2. Systematic solutions of individual tasks:
 1
3. Ability to apply knowledge and to use literature:
 2
4. Thesis formal and language level:
 2
5. Thesis readability and structuring:
 1
6. Thesis professional level:
 2
7. Conclusions and their formulation:
 2
8. Final mark evaluation (A, B, C, D, E, F):
 verbal: B

Brief summary evaluation of the thesis (compulsory):

Despite minor mistakes in text (such as repetition on page 23, paragraph 3 and others), the overall language level of the thesis is high. Also, the author throughout the text is inconsistent in the usage of resistor symbols. For instance, figures 1.7, 1.8, 2.7, 2.10 and 2.12 use both IEC and ANSI symbols. From the definition of impedance at the first paragraph on p. 15, one can wrongly conclude that impedance represents only a resistive component in the circuit. The author afterwards outlines that impedance consists of two-part real and imaginary. However, he does not explicitly explain the meaning of the imaginary part.

Furthermore, the second equation on the same page in the definition of the impedance has minus instead of plus. In authors defense, one can easily mistype a character, yet this is quite misleading. The author well-described problems encountered using free software. Especially, peculiar changes that should be made before importing data into System Analyzer software. In regards to the comparison of the results, the author uses only Mean Absolute Error. However, it is better to use Mean Square Error as well, since those two metrics provide different information about results. Nevertheless, the comparison is adequate.
Questions:
1. Please explain the meaning of imaginary impedance sign (equation 2)?
2. What is the difference between Mean Absolute Error and Mean Square Error?
3. Can you name other possible metrics for error assessment?

Date: 31.05.19

Signature:
Notes:
1) The total thesis evaluation needn’t be determined by the partial evaluations average.
2) The total evaluation (item 8) should be from the following scale:

<table>
<thead>
<tr>
<th>excellent</th>
<th>very good</th>
<th>good</th>
<th>satisfactory</th>
<th>sufficient</th>
<th>insufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
</tbody>
</table>