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Abstract
The large data set of sleep recordings of the Sleep as Android application’s users offers an

excellent opportunity to study sleep patterns in a large population of users all over the world. We
have analyzed the influence of various factors, for example alcohol or caffeine, on sleep. Important
nation-wide events, such as presidential elections, have been observed to have significant influence
on sleep parameters of users. Several findings from sleep science literature have been confirmed
on this data set, which shows that collecting sleep scheduling data with this sleep tracking
application is valid. Various clustering approaches and data representations have been used to
find meaningful subgroups based on sleep patterns of users. Two clusters have been found to be
present in the data based on clustering sleep duration time series, which correspond to the two
chronotypes – evening and morning types.

Keywords
sleep, clustering, time series, data mining, R, classification

Abstrakt
Data set spánkových záznamů uživatel̊u aplikace Sleep as Android umožňuje studovat charak-

teristiky spánku ve velkém měř́ıtku v populaci uživatel̊u této aplikace. V této práci byl analyzován
vliv několika faktor̊u (alkohol, kofein a daľśı) na spánek. Byl pozorován vliv významných událost́ı,
jako např́ıklad prezidentské volby v USA, na spánek uživatel̊u. Data set Sleep as Android umožnil
ověřit některé poznatky z vědecké literatury, co taktéž potvrzuje validitu sběru spánkových dat s
použit́ım této aplikace. Pro nalezeńı podskupin v časových řadách délek spánku uživatel̊u byly
použity r̊uzné metody shlukováńı a několik reprezentaćı časových řad. V datech se vyskytuj́ı dva
shluky, které odpov́ıdaj́ı dvěma chronotyp̊um – ranńı a večerńı typy.

Kĺıčová slova
spánek, shlukováńı, časové řady, dobýváńı znalost́ı, R, klasifikace
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1 Introduction

The goal of this thesis is to apply statistical methods and methods of machine learning to a
large data set of sleep recordings for the purpose of quantification of sleep on a large scale. The
large data set of sleep recordings provided by the Urbandroid team offers numerous possibilities
to study sleep parameters, including parameters reflecting sleep quality and sleep patterns in
a large population of users all over the world. This database of sleep recordings suffers from
the usual quirks of large databases, such as incorrect entries or missing data. To uncover the
underlying structure of the data set we use a number of visualizations, statistical and machine
learning methods. Several interesting questions about sleep and various factors that can affect
sleep parameters are addressed. Validity of several findings about sleep supported by previous
research are tested on this data set, what also serves as validation for this sleep data collection
method. We address the question of finding meaningful user subgroups based on sleep patterns
of users throughout the year. Methods of time series clustering are used for this purpose.

First, a short introduction to sleep science is presented. Subsequently, after describing the
analyzed data set and methods that were used in analysis, we move on to the application of
these methods to the data set.

1.1 Sleep

In this section, a short review of sleep and factors that can affect sleep is presented. Several
findings presented in this section are examined and their validity is tested in the Sleep as Android
data set in section 5. Some of the other sections also rely on the findings presented in this section.

Behavioral criteria defining sleep include suppressed cognitive functions, decreased motor
activity and elevated arousal thresholds [10]. While it is clear that sleep is necessary for the
human brain to function properly, the main reasons why sleep occurs and why it has developed in
humans are not well agreed on. A number of theories have been proposed. It has been proposed,
for example, that sleep may serve the purpose of saving energy [12], which seems unlikely due
to the relatively small amount of saved energy and the large cost of losing consciousness and
being vulnerable to possible threats from the outside world. Another theory trying to explain
why sleep should occur is the removal of neurotransmitters from interstitial fluid during sleep
[13]. It was also shown that REM sleep (see section 1.1.1) contributes to detaching emotional
experiences from memories of the past [22].

Sleep is not a phenomenon unique to humans and it has been observed in most studied
animals [10]. It is well known that sleep deficiency can lead to various health problems and in
extreme cases of sleep deprivation even to death [11].

1.1.1 Sleep stages

Sleep occurs in different stages, which are all characterized by behavioral changes and
changes observable in several biological signals when measured during sleep. Sleep stages can
be accurately determined by the use of polysomnography – measurement of several biological
signals during sleep. Stages that occur during sleep are: REM (rapid eye movement), N1, N2, N3

1



2 1. INTRODUCTION

- non-REM (NREM) sleep. Each of the sleep stages is characterized by different manifestations
in polysomnographic measurements and effects on physiological functions. Manifestations of
these stages in a polysomnogram in the most basic set-up, where only three signals are measured
(EEG - electroencephalography, EOG - electrooculography, EMG - electromyography), are shown
in Fig. 1.1.

Electroencephalography measures changes in electric potential on the scalp resulting from the
brain’s electrical activity. The movement of eyes is recorded by electrooculography by the means
of measuring the electrical activity near the eye. Finally, electromyography records electrical
activity of muscles and can be used to evaluate movement and tension of the measured muscles.

The state of wakefulness is characterized by alpha and beta waves in the EEG with signal
energy at theta and delta frequencies being low. Eye movements and muscle tension is present,
as can be seen from the electrooculographic and electromyographic measurements. The first sleep
stage that occurs during normal sleep is the N1 stage in which theta waves can be seen to be
present in the EEG and slow eye movements with lowered tension of the muscles is observed. [7]

In the next sleep stage N2, eye movements are no longer present. The muscle tension remains
somewhat lowered and so called K-complexes and spindles (see Fig. 1.1) can appear in the EEG
signal recording. The next stage N3 is somewhat similar to N2 stage, but waves at even lower
frequency (delta) are present in the EEG recording. Finally, in the rapid eye movement (REM)
sleep stage, muscle tension is lowered even beyond the point of NREM sleep and as the name
suggests, bursts of quick eye movements can be observed during this stage. [7]

This cycle of changing sleep stages repeats several times during the night and for normal
duration of sleep occurs on average around five times in one night, while rapid eye movement
sleep stages tend to get longer throughout the night [7].

Fig. 1.1: Characteristics of signals in sleep stages measured during polysomnography. Taken from: [7]

1.1.2 Factors affecting sleep

Age The recommended duration of normal sleep based on observed sleep durations varies with
age and is the highest for newborns and young children and gets lower with increasing age, with
seniors being recommended the shortest sleep periods. Need for sleep varies in different age
groups, with average adult between 20-50 years needing 7.5–8.5 hours of sleep [7].

Elderly people report shorter sleeping periods (around 6–7 hours) in the night, compared to
their sleep durations when younger [7]. Studies also show that elderly people have more regular
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Fig. 1.2: Sleep stage sequence through the night. Taken from: [48]

sleep scheduling than young people [3] and tend to go to sleep earlier and wake up earlier [6],
thus showing that the chronotype (see paragraph Chronotype in this section) of a person can
also change with age.

In a study that analyzed sleep data obtained by the use of a smartphone application, age
had the most dominant influence on determining the sleep timing (midsleep – the time in the
middle between bedtime and wake time). The study also reported earlier occurrence of sleep
(bedtime) in the age group of 18–19 years compared to the age group of 20–24 years [2].

Chronotypes In some individuals, the circadian rhythm is phase shifted, resulting in either
highly delayed or advanced sleep period compared to other people. Chronotypes are usually
determined in studies by the use of questionnaires (e.g. Morningness-Eveningness Questionnaire
(MEQ)).

There are two chronotypes depending on the direction of the phase shift of sleep cycle. People
with highly delayed sleep periods are called evening types (ETs, commonly called owls), whereas
people with advanced sleep periods are called morning types (MTs, commonly called larks).
Around forty percent of population belongs into one of these categories, i.e. forty percent of
population displays behavior that could be attributed to one of the chronotypes. The rest of the
population does not belong to either of these chronotypes and is called neither type (NT) [7].

It is known that evening types can be more likely to build up a ”sleep debt” during weekdays,
since they tend to schedule their sleep later, but cannot schedule a later wake time, because
of work or other responsibilities during work. This results in reduced sleep duration during
weekdays and accumulation of sleep debt during week. Evening types thus tend to sleep longer
on weekends to compensate for their sleep debt accumulated throughout the week[7].

It was shown that morningness and eveningness depend on factors such as age, sex, exposure
to light, altitude and latitude of residence and even photoperiod (time between sunrise and
sunset) at birth [6]. People born in autumn or winter (during the period of year with shorter
photoperiod) are more likely to be morning types, whereas people born in spring and summer
(during the period of year with longer photoperiod) are observed to be evening types more often,
while this difference was found to be more pronounced in males. [6].

Chronotype of a person can change significantly throughout their lifespan, with morningness
decreasing from early childhood into early adolescence. For example in [4] eveningness reached
its peak at approximately 16 years of age for girls and 17 years of age for boys. After this age,
eveningness decreases throughout lifetime with the elderly having a significantly more pronounced
morningness [3] than other age groups.

Gender Gender differences in sleep had been reported in literature. Women schedule more
sleep in nearly every age group. The difference between genders was most pronounced in the age
group 30–60 years in [2]. Chronotype frequency had been also found to differ among the two
genders. Larks (morning types) were found to be more common among females, whereas owls
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(evening types) were found to be more typical among males [6]. It has also been observed that
women tend to schedule sleep earlier with a longer sleeping period than men [7].

Circadian rhythm A study comparing the expected effect of sun (using a mathematical model
of the ascending arousal system coupled to a model of the circadian clock) on sleep scheduling to
actual sleep scheduling data suggests that the effect of sunset on sleep in the evening is weaker
than expected. It has been proposed that these effects are ignored in real life due to social
pressure and use of artificial lighting. Influence of sunrise and sunset on wake times and bedtimes
was shown to be particularly strong in some subgroups, mainly women, older people and people
that reported outdoor lighting as typical for them. [2].

These findings are in contrast with a study examining sleep patterns in three preindustrial
societies and shows that sleep patterns in these groups are not that different from those of ”modern”
humans with access to artificial lighting [14]. This study, however, found the temperature to
be a major predictor of sleep scheduling, with increase in sleep duration by about one hour in
the winter. The authors argue that this influence of temperature can be suppressed in modern
society as a result of indoor temperature being relatively constant during the year in households.
It must be noted, however, that the small sample of people living in these societies may not be a
representative group of people without lighting and social pressures, and that the results may
not provide an accurate picture of sleep scheduling in the whole population without artificial
lighting or social pressures.

Alcohol Alcohol is commonly known for its relaxing effect on the body. Research suggests
that ingestion of alcohol before bedtime affects sleep in unfavorable ways. It has been confirmed
that it causes a reduction in sleep latency, but delays the onset of the first REM period and
decreases the overall percentage of REM sleep [15]. Because of its muscle-relaxing effect, alcohol
may also cause more intensive snoring during the night.

Caffeine Caffeine is known to increase sleep latency, decrease total sleep duration and reduce
the percentage of N3 and N4 sleep [17]. These effects are more pronounced for larger doses of
caffeine.

Other Summary of different variables that can also have an effect on parameters of sleep is
shown in Fig. 1.4.

Fig. 1.3: Mean wake time and bedtime by country. Taken from: [2]
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Fig. 1.4: Factors affecting sleep. Taken from: [7]

A country to country difference in sleep timing has been observed, where country was found
to be more important in determining bedtimes than wake times [2]. Bedtimes and wake times
for various countries are shown in Fig. 1.3.

Another important variable in determining sleep duration and intensity of sleep is the time
spent awake since the last sleep period before sleeping. The longer the awake time after last
period of sleep is, the longer the subsequent sleep duration will be (this is also called homeostatic
sleep drive) [7]. Periods in which an individual did not get enough sleep, cause a heightened urge
to sleep even during times of day normally not usual for the individual and subsequent prolonged
sleep. This phenomenon is called sleep rebound.



2 Data

In this chapter, the data set of sleep recordings used in this thesis is introduced.
Sleep patterns are usually studied in a controlled environment using polysomnography and

questionnaires on sleeping habits. However, with now ubiquitous smartphone devices and
increasing popularity of sleep tracking applications recording data, it has become possible to
analyze sleep patterns of a very large population of their users. In this thesis, data from one
such application are analyzed.

Data analyzed in this thesis were provided by the Sleep as Android application’s developers
from the Urbandroid team. The data are anonymized and contain information about the
application’s users and their sleep parameters.

2.1 Sleep as Android application

Sleep as Android is an application available for the Android operating system which allows
users to track their sleeping habits. For this purpose, user’s movement during sleep is measured
either via built-in smartphone sensors or using external wearable devices. In the case when
sensors in the user’s smartphone are used, the phone should be placed on the bed close to the
user and activity of the user during sleep is tracked using either the phone’s accelerometer or
using the ”sonar” function. Users can also opt to record sound during the night and thus keep
track of their snoring or sleep talking.

The application tries to automatically detect the user’s sleep stages, namely Light sleep,
Deep sleep and REM, and tries to wake the user in the Light sleep period which is supposed to
help the user wake up more easily. The users have to start the recording after lying down and
stop the recording after waking up themselves. The recording can be set to start after a certain
period which can be set by user.

The application also provides other functions such as the lullaby function in which the user
can listen to a chosen sound track before falling asleep which is supposed to help them relax
while falling asleep and reduce their sleep latency (the time it takes to fall asleep after lying
down).

Statistics of various parameters of sleep are provided by the application for users to keep
track of their sleeping habits. After a user chooses the desired duration of sleep for each day, the
application notifies them to go to sleep at the ideal time calculated from the time of the alarm
set for the following day. The application also calculates ”sleep debt” as the difference between
desired and actual sleep duration.

After a sufficient number of sleep recordings is accumulated, advice on modifying the sleep
duration and bed time to improve sleep quality and the ratio of deep sleep is given based on
regression models. Users can also set goals they want to accomplish, such as increasing the
average sleep duration by a chosen percentage in a chosen number of days or improving sleep
scheduling regularity.

6
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2.2 Recorded parameters

The basic list and explanation of the available parameters in the original data set is included
in this section. A more detailed look on the recorded values and their distributions is given in
section 4. The original data set contains 15 905 401 recordings of these 24 parameters:

Recorded parameters
• id – unique identification number of sleep recording
• userId – unique anonymized identification number of user
• timeZone – time zone set on the user’s device
• from, to – time of the start and the end of recording (all of the times are encoded as a

number of milliseconds from 01.01.1970 00:00 UTC)
• commentTags – contains optional sleep tags or comments entered by the users. Some

of the tags are generated automatically. See section 5.3 for more on commentTags.
• avgNoiseLevel – average noise during recording
• noOfCycles – total number of detected sleep cycles
• snoringTime – time spent snoring in seconds
• subjectiveRating – user’s subjective rating of sleep quality. Contains values between 0

and 5.
• deepSleepRatio – ratio of deep sleep duration to total sleep duration
• geoLatitude, geoLongitude – fields containing the user’s location
• netSleepLength – total sleep duration in minutes
• gender – contains values ”MALE”, ”FEMALE” or ”” (not known)
• height, weight – height in centimeters, weight in kilograms
• birthdate – date of birth
• alarmTime – time of set alarm
• netSleepAdjustment – duration of intervals in which the user did not sleep during

recording (includes duration of paused recording and the standard fall asleep period, if
it is set by user)

• civilSunrise, civilSunset – times of sunrise and sunset
• device – names of users’ smartphone devices are recorded
• sleepStart – time of the first detection of sleep by the software

Apart from these values, actigraph and noise recordings were available for each sleep recording.
A data set of events generated by the software was also available. These data sets were, however,
not used for the purpose of this thesis.
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Fig. 2.1: Screenshot from the Sleep as Android application. The recorded actigraph and calculated sleep
cycles are shown.

Sleep as Android’s output after a night of sleep is shown in Fig. 2.1. In the upper part,
parameters such as total sleep duration, difference in sleep duration and the desired duration set
by user, ratio of deep sleep and snoring time are shown. Users can rate their perceived quality of
sleep using the stars shown in the figure. The application also shows the recorded actigraph and
sleep stages detected from the actigraph. Users can add comments to the sleep recording using
the button in the right bottom corner.

2.3 Remarks on data quality

One of the advantages of this approach to sleep data collection is that a very large data
set of sleep recordings is obtained easily. It is therefore possible to analyze sleep patterns of
the population of users worldwide and on a large scale. Another advantage of this kind of
data collection methods is that the collected sleep recordings come from ”real world” (in situ)
conditions. This, at the same time, may be considered a disadvantage. Since these data do not
originate from a controlled environment, the researcher does not have control over the conditions
of the recording. Incorrect use or other factors such as different sensors being used among various
smartphone or wearable devices may be another cause for inaccuracies.

It must be noted that as the sleep parameters were measured only by the use of actigraphy, the
accuracy of these calculated parameters may be low compared to polysomnographic experiments.
The actigraphic measurements were not validated against polysomnographic recordings and
studies show that detection of sleep stages by actigraphy by some health monitoring devices can
yield poor results [42].

The method by which the sleep recordings are obtained may also be a source of inaccuracy
in the measurements. For example, actigraphic recordings obtained from smartphone sensors
with the smartphone placed on bed may be inaccurate in certain situations, such as when more
than one person sleeps in the same bed, the person sleeps with a pet, etc. We will, therefore,
abstain from using the parameters which rely on the actigraphic measurement in analysis and
focus more on the parameters related to sleep scheduling and information about users.
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Missing data is also one of the problems of the data set. Some parameters, mainly the ones
relating to users’ demographics, contain large proportions of missing data.

Big emphasis must therefore be given on the data preprocessing step in order for the analysis
to be possible and to avoid false conclusions.

2.4 Previous studies

A short summary of previous studies working with similar data sets to uncover sleep patterns
in population is presented.

A study working with perhaps the most similar data set obtained from a smartphone
application is A global quantification of “normal” sleep schedules using smartphone data [2]. In
this study, data from a smartphone application called ENTRAIN are used. The application
collects data in a form of a questionnaire, where users can record their normal sleep times, typical
lighting, time zone, subjective jet-lag experiences etc. The study analyzed reported sleep patterns
of 5 450 users in total and used multivariate regression models to model sleep parameters wake
time, bedtime, sleep duration and midsleep based on predictors gender, age, typical lighting,
sunrise, sunset, travel frequency and country. Focus is given mainly on characterizing sleep
and variability of sleep parameters among different countries, age groups and genders. One of
the main conclusions of this study is related to ”social jet-lag” which can be thought of as a
disruption of circadian rhythm caused by social pressures or habits prevalent in society. By
comparison with a model of circadian rhythm, it is concluded that social pressures cause people
to delay their bedtime and thus shorten their total sleep duration. Moreover, the study shows
that mobile technologies are a viable source of collecting sleep data.

Another study Harnessing the Web for Population-Scale Physiological Sensing: A Case Study
of Sleep and Performance [20] analyses data obtained from wearable devices (Microsoft Band) to
relate sleep parameters to cognitive performance, measured through interactions with a search
engine. The study analyses a data set of 3 million nights from 31 thousand users recorded with
wearable sensors. The study uses the variability of sleep duration by gender and in different
age groups to validate its data collection method. The study demonstrated that performance
varies throughout the day and is related to chronotype and prior sleep, in close agreement with
small-scale laboratory-based studies [20].



3 Methods

Methods that are going to be used to analyze the data set in the later chapters are presented
in this chapter.

3.1 Data mining

For the purpose of uncovering the structure of the data and relationships between parameters,
methods of data mining are used. There are plenty of definitions of data mining with minor
differences between them, but in general it can be said that data mining is a process which
discovers knowledge from data using statistical and machine learning tools. Two primary goals of
data mining are prediction and description. The predictive approach to data mining focuses on
creating models of the data and applying these models to the prediction of new data observations.
The second approach is descriptive data mining which tries to come up with new information
based on the available data [1]. Most of this thesis is concerned with description of the data set,
but some predictive tasks are also addressed.

3.2 R

Most of the statistical and machine learning algorithms used in this thesis have been pro-
grammed in the R programming language [40] with the use of packages from the CRAN archive
(see References section).

Because the original data set is a relatively large file (almost 4GB), some computations on
this data set could not be performed with the data in memory. The ff package [18] in R was
used to work with the original data set. This package introduces new data structures, which
allow working with data that are stored on disk, but behave as if they were stored in RAM in R.

3.3 Hypothesis testing

Procedures that were used for hypothesis testing are described in this section. Hypothesis
tests for equality of means of two samples are used in this thesis and presented in this section.

One of the most commonly used procedures to test whether the means of two distributions
are equal is the Student’s t-test. The t statistic for two samples x1 and x2 of size n1 and n2
respectively is calculated as [43]

t = x1 − x2

s

√
1
n1

+ 1
n2

(3.1)

where x1 and x2 are the sample means of the two samples and s can be obtained from the
equation

s2 = (n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2 (3.2)

10
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where s1 and s2 are estimates of variance in the two groups. The t-test assumes normal
distribution and equal variance in the samples. However, the t-test is very robust to the normality
assumption for large samples even for highly skewed distributions (see [44]). The size of the
sample does not, however, play a big role when the equal variance assumption is violated.

Instead of the Student’s t-test, we therefore use the Welch’s t-test also known as unequal
variance t-test. As the name suggests, this test does not rely on the assumption of equal variances
and works well even if the variances are equal [45], it is therefore preferred to the Student’s t-test.
The t statistic for the unequal variance t-test is calculated as

t = x1 − x2√
s2

1
n1

+ s2
2
n2

(3.3)

When the assumptions for the previous tests are violated, non-parametric tests can be
used. One such test, which will be used later on in this thesis, is the non-parametric bootstrap
hypothesis test which does not make any assumptions about the underlying distribution of the
tested parameter. Bootstrapping in statistics refers to methods which use resampling techniques
with replacement. To test equality of means using the bootstrap, first the samples are centered
to their combined mean x (sample mean calculated from samples x1 and x2 combined)

x̃1 = x1 − x1 + x (3.4)
x̃2 = x2 − x2 + x (3.5)

We obtain B bootstrap data sets x∗1b and x∗2b (for b = 1, 2, . . . , B) of the same size as x1 and x2
respectively by sampling x̃1 and x̃2 with replacement. This means that the bootstrap samples
are sampled under the null hypothesis of equal means. For each bootstrap data set, the t statistic
for unequal variances is evaluated

t(b) = x∗1b − x∗2b√
s∗21b
n1

+ s∗22b
n2

b = 1, 2, . . . , B (3.6)

The distribution of t(b) approximates the distribution of the parameter if the means are equal.
The resulting p-value is thus calculated as

pboot = #{t(b) ≥ tobs}
B

(3.7)

where #{·} denotes the number of cases where the condition is satisfied and tobs is the observed
t statistic calculated from the original samples.

Multiple hypothesis testing and data dredging The relatively high number of recorded
parameters and a large number of comment tags used by users to tag their sleep give rise
to a huge set of subgroups and hypothesis tests of difference of sleep parameters in these
subgroups that could be performed. However, if such a number of hypothesis tests was
performed, some percentage of these tests (depending on the confidence level used) would
reject the null hypothesis as a result of pure chance. The practice of testing a large number of
hypotheses and choosing the ones which rejected the null hypothesis is called data dredging
and can lead to false conclusions and measures should be taken to avoid this practice. In this
thesis, a lower cutoff p-value (α = 0.001) is therefore generally used for hypothesis testing and
corrections of confidence levels for multiple testing are also used. The Bonferroni correction
is used which corrects the α value to α/m for m tested hypotheses. Testing hypotheses
suggested by the data is being avoided in this thesis and all hypotheses are formed prior to
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testing.

3.4 Classification

3.4.1 Introduction

Classification is an approach where observations are classified into two or more classes based
on values of other parameters (features) as accurately as possible. A classifier takes features
as input and outputs the class based on the values of the features. To be able to differentiate
between classes, the classifier must find a decision boundary based on which it will give its
decisions. The process of finding such a decision boundary is called training of a classifier. For
the purpose of classifier training, a subset of the data set is chosen – the training set. The
classifier tries to find a decision boundary which separates the classes well and its goal is to
achieve the maximum accuracy of classification. The classifier must be able to generalize and
give reasonable classification results for new data. There are numerous methods by which the
ability of the classifier to generalize can be assessed:

1. Holdout method. In the most basic case, data set is divided into two smaller data sets – the
training and testing data set. To avoid too optimistic estimates of accuracy on the testing
data set, a validation data set, on which the classifier’s output is evaluated when optimizing
the parameters of a classifier, can be included. The classifier with the best result on the
validating data set is then tested on the testing set. This results in more realistic estimates
of classification accuracy on new data, since the testing set was not involved in the process
of choosing the classifier’s parameters.

2. k-fold cross validation. The data set is randomly divided into k distinct samples. In every
one of k iterations, one sample is used as a testing set and the other ones are used for
training. A mean accuracy can then be calculated. In the extreme case when k is equal to
the number of observations in the data set, this method is known as leave-one-out. This
method, however, has large computational requirements.

3. Bootstrap. The bootstrap is a resampling technique which generates a certain number of
sets of the same size as the original set by resampling the original data set with replacement.

Since the number of observations in this thesis is generally very high, we use hold-out methods
to estimate performance of classifiers.

There are numerous available classification algorithms and none of them is the most suitable
for all applications (this is known as the no free lunch theorem in machine learning). Therefore,
different approaches must be tried and compared for every classification problem.

3.4.2 Feature selection

In some cases, the algorithms used for classification can benefit from reducing the number of
features and classifier performance can be increased when some of the features are left out. This
is because some features can be irrelevant or can contain noisy information. Also, if the number
of features is high, the curse of dimensionality can occur. There are three main approaches to
feature selection:

1. Filtering methods. Metods which select features based on a measure calculated from the
data i.e. features are selected prior to classification

2. Wrapper methods. Methods which use the output of a classification algorithm to determine
the subset of features that leads to the best performance of the classifier. Different subgroups
of features are selected and the output of the classifier is examined. Since the number of
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possible subsets is generally too high, greedy algorithms are usually used, what can lead to
non-optimal solutions.

3. Embedded methods. Methods where feature selection is part of the classifying algorithm

Relief In this thesis, the Relief algorithm for feature selection was used. The algorithm
evaluates a function for each feature in order to determine the quality of the feature, without
directly optimizing a classification model. It is therefore a filtering method. Relief is scalable for
data sets containing large number of samples and data sets with high dimensionality, while also
being unaffected by noise and feature interaction. The algorithm, however, cannot help with
removing redundant (highly correlated) features [1].

Relief algorithm randomly chooses m observations from the training data set, where m is a
user-defined parameter. Based on this subset a quality score W for i-th feature Ai is calculated
as

Wnew(Ai) = Wold(Ai)− ((X[Ai]−H[Ai])2 + (X[Ai]−M [Ai])2)/m (3.8)

where X is an observation from the randomly chosen subset, H is the nearest hit (nearest
belonging to the the same class) and M is the nearest miss (nearest observations belonging to a
different class). W is initialized as zero and updated for each observation from the m chosen
observations.

Based on the calculated values of W , features which have W over a selected threshold can be
selected.

3.4.3 Measures of classifier performance

Measures of classifier performance that were used for the purpose of this thesis are defined in
this section using the numbers in the contingency table Tab. 3.1.

Pred
Ref 0 1

0 A B
1 C D

Tab. 3.1: Contingency table. Pred – Predicted class, Ref – Reference class

Accuracy of classification is the ratio of the number of observations classified correctly to the
number of all observations.

Accuracy = A+D

A+B + C +D
(3.9)

Sensitivity reflects the accuracy of classifying the positive (1) class and is calculated as

Sensitivity = D

B +D
(3.10)

Specificity reflects the accuracy of classifying the negative (0) class and is calculated as

Specificity = A

A+ C
(3.11)

Positive predictive value (PPV) and negative predictive value (NPV) are calculated as

PPV = D

D + C
(3.12)

NPV = A

A+B
(3.13)
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Balanced accuracy is the average of sensitivity and specificity

BalancedAccuracy = (Specificity + Sensitivity)/2 (3.14)

The area under the curve (AUC ) is calculated as the are under the ROC (receiver operating
characteristic) curve. ROC is created by plotting the false positive rates (C in 3.1) against the
true positive rates (D in 3.1) for various decision thresholds. AUC is used in this thesis for
comparison of classifiers.

3.4.4 Classifier algorithms

k-nearest neighbors (kNN) kNN is one of the most basic classifier algorithms which does
not need training. The classifier instead memorizes all of the training data and calculates the
nearest k nearest neighbors (using Euclidean distance) to the input data. The class of the input
observation is then determined by a majority vote of the classes of the nearest neighbors.

Logistic regression Logistic regression models the probability that an observation belongs
to a certain class. In classification problems with two classes, the classes are encoded as 0 and
1. Rather than modeling a linear relationship, logistic regression models the logistic function.
Logistic function for variables x1, . . . , xp and regression coefficients β0, . . . , βp has the form:

p(x1, . . . , xp) = eβ0+β1x1+···+βpxp

1 + eβ0+β1x1+···+βpxp
(3.15)

The logistic function takes on values between 0 and 1 for all values of x. The regression coefficients
βi are determined using maximum likelihood. [35]

Naive Bayes Naive Bayes classifier tries to estimate the probability that observation x1, ..., xp
belongs to the class c: P (C = c|X1 = x1, . . . , Xp = xp) [26] using the Bayes theorem:

P (C = c|X1 = x1, . . . , Xp = xp) = P (X1 = x1, . . . , Xp = xp|C = c)P (C = c)
P (X1 = x1, . . . , Xp = xp)

(3.16)

The probability P (C = c) can be estimated from the training data set as the ratio of observations
belonging to class c to the number of all observations. The classifier is called ”naive”, because it
assumes that the variables X1, ..., Xp are conditionally independent of each other and therefore
the probability can be calculated as

P (C = c|X1 = x1, . . . , Xp = xp) =
∏p
i=1 P (Xi = xi|C = c)P (C = c)
P (X1 = x1, . . . , Xp = xp)

(3.17)

If the feature variables are categorical, the probability P (Xi = xi|C = c) can be determined
simply as the ratio of observations with the value xi in the class c to the number of observations in
class c. To avoid problems with zero probability when no such observation is available, parameter
α can be used (Laplacian smoothing). Parameter α is added to the numerator and αmi, where
mi is the number of distinct values of variable xi, is added to the denominator.

To generalize this classifier to numeric variables, the variable can be either discretized or a
probability distribution is assumed for the data. Most commonly the Gaussian distribution is
used and its parameters mean and variance are estimated from the training set as the mean and
variance of the variable in the class.
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Linear discriminant analysis (LDA) Similarly to the Naive Bayes classifier, LDA tries
to estimate the probability that observation x1, ..., xp belongs to the class c: P (C = c|X1 =
x1, . . . , Xp = xp) using the Bayes theorem. Linear discriminant analysis does not rely on
the assumption of independence of variables X1, ..., Xp. The conditional probability P (X1 =
x1, . . . , Xp = xp|C = c) is instead assumed to have multivariate Gaussian distribution. Parameters
of the Gaussian distribution and prior probabilities P (C = c) need to be estimated. Observations
are then classified to the class for which the estimated probability is the highest.

Linear discriminant analysis is more stable than logistic regression in some cases and can
classify observations to more than two classes without any extensions. [35]

Decision trees Decision tree is a method of classifying data by dividing the sample space
into regions based on the values of the input variables by the use of decision rules. A typical
univariate tree consists of nodes at which one of the features is tested. Outgoing branches must
cover all of the possible outcomes of the tested feature. The first node is called the root node
and the terminal nodes of the tree, which assign the observations to a class, are called leaf nodes.

There are numbers of algorithms for creating decision trees which vary in how the splits are
generated, the method used for handling of missing values, pruning, etc. In this thesis the CART
(Classification and Regression Trees) algorithm is used.

CART uses the Gini index to evaluate the quality of a split. The Gini index for a set S is
calculated as [1]

Gini(S) = 1−
c∑
i=1

p2
i (3.18)

where c is the number of classes and pi is the fraction of the observations which belong to the
i-th class in the set. It is a measure of partition purity in such a way that partitions favoring one
class will result in lower values of the index. The quality of the split is calculated as a weighted
sum of Gini indexes of the resulting k subsets

Ginisplit =
k∑
i=1

|Si|
|S|

Gini(Si) (3.19)

Split with minimum value of Ginisplit is chosen.
One of the main advantages of CART is its robustness to outliers [1].

3.4.4.1 Ensemble learning

Ensemble methods in which not one classifier, but a combined decision of more classifiers
determines the resulting class, may in some cases greatly increase the performance of a classifier.
There are various approaches to generating the individual classifiers which will be combined to
an ensemble and can be divided into these categories [1]:

1. each classifier is trained using a different classification algorithm
2. each classifier is trained using the same classification algorithm with different parameters
3. classifiers are trained using different input representations (e.g. subsets of input features)
4. classifiers are trained using different subsets of input data

Bagging Bagging (or bootstrap aggregating) trains classifiers using different subsets of input
data. The training subsets are created using bootstrap sampling where sets of the same size as
the original set are obtained by the use of random sampling with replacement. The classifiers’
combined decision is determined by voting.

Bagging can lead to improved classification performance when unstable classifiers with small
changes in the training set resulting in large changes in performance are used [1].
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Random Forest Random forest also uses bootstrap samples for training its classifiers. The
classifiers are decision trees, but only a random subset of features is considered when generating
each split.

Boosting Boosting uses only one set for training its classifiers. Classifiers (weak learners) are
added and the observations in the training set are weighted iteratively so that the newly added
classifiers are focused more on the previously misclassified observations.

This approach to ensemble learning can be very effective, but can also be sensitive to outliers
[1].

3.5 Clustering

3.5.1 Introduction

Clustering is an unsupervised data mining method, where no target variable is specified and
the algorithm tries to find subgroups based on all of the present variables. Clustering tries to
find subgroups or clusters in the data, such that observations present in one cluster should be as
similar as possible, while observations from different clusters should be as dissimilar as possible.
The number of clusters is determined by the algorithm itself, or is an input to the algorithm
calculating the clusters. While there are plenty objective measures of clustering quality, the
clustering should contain subgroups which help subjective interpretation of data and improve
understanding of the data problem at hand.

There are lots of clustering algorithms which use different approaches to the clustering
problem and are more suitable for certain types of data or finding clusters of different shapes.
Clustering is said to be crisp, when each observation belongs to just one cluster, while in fuzzy
or soft clustering, observation can be in more clusters at once with a probability of assignment
to each cluster.

In the following sections, first, the problem of clustering static data is addressed. Some of the
commonly used methods are summarized in the next section, as these algorithms can be in their
modified form, used for clustering time series. The next section summarizes the most common
methods for clustering data with static observations.. Then the problem of clustering time series
is presented.

3.5.2 Static data clustering

1. partitioning

(a) crisp
(b) fuzzy

2. hierarchical

(a) agglomerative
(b) divisive

3. density-based
4. model-based

(a) statistical
(b) neural networks

1. partitioning The most common partitioning algorithm, which is also one of the most
well-known clustering algorithms, is the k-means algorithm. k-means is an iterative algorithm
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which is suitable for finding spherically shaped clusters. k-means creates a crisp partitioning of
the data, meaning that every observation belongs to exactly one cluster. The number of cluster k
has to be specified prior to the calculation. There are, however, number of methods for choosing
the most suitable number of clusters. The k-means algorithm can be summarized as follows:

1. choose k random observations which are called centroids
2. calculate Euclidean distance of every observation from the centroids
3. assign every observation to the closest centroid
4. calculate means in every cluster and set them as the new centroids
5. repeat 2.-4. until the assignment of observations does not change

It can be shown that k-means algorithm minimizes the average inter-cluster distance of all
clusters (CAD):

CAD =
K∑
k=1

1
nk

nk∑
i=1

nk∑
j=1
‖xki − xkj‖2 (3.20)

where K is the number of clusters and nk is the number of observations belonging to the cluster
k.

A similar partitioning method, which is more robust, is called k-medoids. The most common
algorithm to compute k-medoids is a greedy algorithm called PAM (partitioning around medoids).
The algorithm can be summarized as follows:

1. choose k random observations which are called medoids
2. for each medoid and for every other observation, swap the medoid and the observation and

calculate the cost function
3. if the cost increased, undo previous step
4. repeat 2.-3. while the cost decreases

The advantage of k-medoids is that the resulting medoids are observations from the original data
set, as opposed to centroids in k-means, which are means of observations in the clusters, which
in some cases may lead to better interpretability of clusters.

2. hierarchical Hierarchical clustering methods can be either agglomerative or divisive. In
the agglomerative approach, first, every observation is considered to be one cluster. The most
similar clusters are then merged until only one cluster remains. The advantage of hierarchical
methods lies in that the number of clusters does not need to be specified prior to the calculation.
Results of hierarchical clustering can be plotted in the form of dendrogram which is a binary
tree where the height of each node is proportional to the distance of the merged daughter nodes.
The dendrogram can be ”cut” at any point and clustering with various numbers of clusters can
be examined.

Distance measures that can be used to calculate distances between two observations are
mentioned in section 3.5.2.1. To be able to cluster observations using the hierarchical approach,
distance between two clusters must also be calculated. Distance measures that can be used are

• single linkage – the distance between two clusters is calculated as the distance of two
observations from different clusters which are closest to each other. This distance measure
usually results in a larger number of smaller clusters compared to complete link.

• complete linkage – the distance between two clusters is calculated as the distance of two
observations from different clusters which are farthest from each other. Complete link
generally results in larger clusters than single link.

• average linkage – the distance is calculated as the mean of distances of observations from
the two clusters. This method has the advantage that it is robust to noise compared to the
two previous ones.
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3. density-based Density-based clustering methods rely on the assumption that clusters are
regions with high density of observations separated from each other by regions with low density of
observations. One of the commonly used density-based clustering algorithms is called DBSCAN.
DBSCAN has two input parameters ε (size of neighborhood) and m (minimum points). The
algorithm then finds such a clustering that for each point in a cluster there are at least m points
in its ε neighborhood. Experiments show that m = 4 is a good choice for minimum points and
clusters with m > 4 do not significantly differ [1].

The algorithm classifies each observation as a core point (contains at least m observations in
ε neighborhood), border point (is in the neighborhood of a core point, but is not a core point
itself) and noise point (is neither core point nor border point).

DBSCAN has the advantage of being able to work with noisy data. It can also find clusters
of any shape and the number of clusters does not have to be specified prior to clustering. The
algorithm may not, however, be suitable in situations where the clusters are not well separated
by a region with low density.

4. model-based Model-based clustering approaches divide data to subgroups by creating a
model of the data. An example of a statistical model-based clustering method is the use of
Gaussian mixture models (GMM).

GMM assumes that the data in each cluster (the number of clusters k has to be specified
prior to clustering) come from a multivariate Gaussian distribution. The parameters of the
distributions are then estimated so that the data has maximum likelihood of being generated by
the model using the iterative expectation maximization algorithm (EM). For each observation,
GMM calculates probabilities of assignment to all of the k clusters, it is thus a ”soft” clustering
algorithm [26].

Data can also be clustered using artificial neural networks (Kohonen networks also called
self-organizing maps [52]). This approach was, however, not used for the purpose of this thesis.

3.5.2.1 Distance measures for static data

Distance between two objects A and B is a function d which fulfills these criteria:

d(A,B) = d(B,A) (3.21)
d(A,B) = 0⇔ A = B (3.22)
d(A,B) ≥ 0 (3.23)

for every A, B, C [29]. If the distance function also fulfills the criterion

d(A,C) ≤ d(A,B) + d(B,C) (3.24)

it is called metric.
One of the commonly used distances for numerical variables is the Minkowski distance.

Minkowski distance between two vectors x and y which contain p values (or features in the
context of clustering) is defined by

d(x, y) = k

√√√√ p∑
i=1
|xi − yi|k (3.25)

where k > 0 [28]. For k = 1, the distance function is called Manhattan distance and for k = 2,
the function is called Euclidean distance.

For categorical variables, the simplest measure of distance is the proportion of values which
differ among the two vectors. For example for two categorical vectors x and y consisting of p
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values, the distance would be
d(x, y) = 1− m

p
(3.26)

where m is the number of values which agree in the two vectors.

3.5.3 Clustering of time series data

Time series clustering algorithms are procedures which try to find groups of similar time series.
There are various approaches which can cluster time series of one variable or more variables
(multivariate time series) and which can be used for time series with the same length or for time
series with varying lengths. A lot of these algorithms are similar to the ones used for static data
clustering, but can use different approaches to accommodate for time series.

One approach is to try to modify algorithms that are used for static data and transform
them in such a way that they can be used for time series. This can be accomplished by replacing
distance measures used for static data with appropriate distance measures for time series. The
quality of clustering then lies in finding the best distance measure for given time series. A review
of commonly used distance measures for time series is in section 3.5.3.1.

The other approach is to convert time series data to static data by either extracting features
from the data or creating a model of the time series and then using parameters of this model.

Thus, there are three main approaches that fall into these categories, based on what is the
input to the clustering algorithm [9]:

1. raw data
2. features
3. model parameters

These approaches are also summarized in Fig. 3.1.

Fig. 3.1: Three time series clustering approaches: (a) raw-data-based, (b) feature-based, (c) model-based.
Taken from: [9]

3.5.3.1 Distance measures for time series

As the most basic distance measure, Minkowski distance measures mentioned in 3.5.2.1 can
be used.

Other distance measures, which are applicable to time series, are the Pearson correlation
coefficient and other related distance measures. Pearson correlation coefficient r of two p-
dimensional vectors x and y is defined as

rx,y =
∑p
k=1(xk − x̄)(yk − ȳ)

SxSy
(3.27)
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where Sx and Sy are the sample standard deviations.
Another distance measure based on correlation, which is used by authors of [47] in fuzzy

c-means time series clustering, is

d1
cc =

(1− cc
1 + cc

)β
(3.28)

and
d2
cc = 2(1− cc) (3.29)

Dynamic time warping (DTW) is a distance measure for time series which creates a mapping
between two time series so that the distance (such as Minkowski distance) between them is
minimized. DTW can be used also for time series of different length, since many-to-one mapping
is allowed [26]. Illustration of dynamic time warping is in Fig. 3.2.

Fig. 3.2: Illustration of dynamic time warping. Taken from: [26]

For two time series of length m and n, an m× n matrix of distances between points is calculated.
A warping path with the minimum distance which starts and finishes at the opposite corners
of the matrix and also satisfies conditions of monotonicity and continuity is searched for using
dynamic programming. To prevent warpings where a small part of the time series maps on a
large part of the other time series, global constraints for the warping path are used (restricted
zones are introduced in the distance matrix). Lower bounds for DTW are introduced to further
speed up the computation (for example LB keogh [27]).

3.5.3.2 Raw time series clustering algorithms

Hierarchical clustering methods for static data can be applied to time series, when an
appropriate distance for time series is chosen. Partitional clustering also works similarly for time
series with an appropriate distance measure for time series.

The basic principles of two algorithms, which were developed to cluster time series and are
used in this thesis, are explained in the next paragraphs.

TADPole TADPole (Time-series Anytime Density Peaks) is a clustering algorithm introduced
in [31] based on the density peaks (DP) algorithm [32] and using DTW distance measure. DP is
a density-based algorithm and assumes that cluster centers are points with higher local density
surrounded by points with lower local density and their distance from another points with higher
local density is relatively high.

Input parameters to TADPole are dc (cutoff distance) and k (number of clusters). The
TADPole algorithm uses upper bound (Euclidean distance) and lower bound (Keogh [27]) on
DTW distance. The algorithm uses these bounds to calculate points which have a lot of neighbors
(distance lower than dc). TADPole then tries to prune as many DTW distance calculations as
possible and finds the centroids in the highest density regions [33].
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k-Shape k-Shape is a partitional algorithm for clustering time series with a distance measure
called shape-based distance (SBD) [34]. SBD is a distance measure based on cross-correlation
and for two time series x and y is calculated as

SBD(x, y) = 1−max
w

(
CCw(x, y)√

R0(x, x)R0(y, y)

)
(3.30)

where CCw is the cross-correlation computed for shift w and R0(x, x), R0(y, y) are the autocor-
relations of the two series at zero shift. This distance measure has values between 0 and 2. The
algorithm works similarly to k-means, the centroids are, however, not calculated as a simple
mean. The centroid is calculated as the time series that minimizes the sum of squared SBD
distances from other observations in the same cluster.

3.5.3.3 Time series representations

Representation of time series x with length n is a model of the time series such that it approx-
imates x and its dimensionality p is reduced (p < n) [49]. Calculating time series representations
serves the purpose of reducing dimensionality to avoid the curse of dimensionality, reducing
computational requirements and handling of noise. The following time series representations
were chosen for the purposes of this thesis:

• Seasonal profile (SP) – the series are divided into sub-series of chosen length and mean
of all the sub-series is calculated

• Generalized additive models (GAM) – regression coefficients of the model are taken as
the representation

• Discrete Fourier transform (DFT) – a chosen number of coefficients are taken as the
representation

• Discrete wavelet transform (DWT) – a chosen number of coefficients are taken as the
representation

• Discrete cosine transform (DCT) – a chosen number of coefficients are taken as the
representation

• Piecewise aggregate approximation (PAA) – divides the series into sub-series of chosen
length. For each sub-series, mean is calculated and dimensionality is thus reduced

3.5.4 Clustering validation

In clustering as an unsupervised method, there is usually no response variable to assess the
quality and correctness of the resulting clustering. Therefore, different methods from the ones
used in classification are used to analyze the clusters and assess their validity. Two possible
approaches, which were used to analyze clusters in this thesis, are internal and stability measures.

3.5.4.1 Internal measures

Internal measures are clustering quality measures that reflect properties of the resulting
clusters such as compactness of clusters or separation between them and are calculated from the
parameters of the observations in the resulting clusters.

Internal measures used in this thesis are Davies-Bouldin index, silhouette width and Dunn
index.

The Davies-Bouldin (DB) index is defined as [25]

DB = 1
N

N∑
i=1

max
j,i6=j

{
Si + Sj
Mij

}
(3.31)
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where Si and Sj are the dispersions (standard deviations) of cluster i and j respectively and Mij

is the distance between centroids of the two clusters (vectors which are chosen as characteristic
of the clusters).

”The Dunn Index is the ratio of the smallest distance between observations not in the same
cluster to the largest intra-cluster distance.” [23] The value of this index should be maximized.

The silhouette width is calculated as the average value of silhouette (s) of each observation.
The silhouette value of i-th observation is calculated as [24]

s(i) = b(i)− a(i)
max{b(i), a(i)} (3.32)

where a(i) is the average distance of i-th observation to other observations in the same cluster
and b(i) is the average distance of i-th observation to observations in the nearest cluster (to
which i does not belong). The silhouette width (Sil) is then calculated as the average of s(i) of
all observations.

3.5.4.2 Stability measures

Stability measures are based on the comparison of clusterings where one of the variables was
removed compared to the clustering on the full data set. Four stability measures were used in
this thesis and were calculated using the clValid R package [23].

Average proportion of non-overlap (APN ) is calculated as

APN = 1
MN

N∑
i=1

M∑
l=1

1−

∣∣∣Ci,l ∩ Ci,o∣∣∣
|Ci,o|

 (3.33)

where N is the number of observations, M is the number of variables, Ci,l is the cluster containing
the i-th observation resulting from clustering with the l-th variable removed and Ci,o is the
cluster resulting from clustering using all of the variables. This measure takes on values between
zero and one with values close to zero denoting more stable clustering.

Average distance (AD) is calculated as

AD = 1
MN

N∑
i=1

M∑
l=1

 1
|Ci,l| |Ci,o|

 ∑
i∈Ci,o,j∈Ci,l

dist(i, j)

 (3.34)

and has the meaning of average distance between clusters of observations in the same cluster
resulting from clustering with one of the variables removed and clustering with all of the variables.
Small values of this measure denote stable clustering.

Average distance between means (ADM) is calculated as

ADM = 1
MN

N∑
i=1

M∑
l=1

dist (x̄Ci,l , x̄Ci,o) (3.35)

where x̄Ci,l is the average of observations in cluster Ci,l. This measure computes the average
distance between averages of observations in clustering with all of the variables and with one of
the variables removed. ADM should, again, be minimized to obtain a stable clustering.

Figure of merit (FOM) is calculated as (K is the number of clusters)

FOM = 1
M

M∑
l=1

√√√√√ 1
N

K∑
k=1

∑
i∈Ck(l)

dist(xi,l, x̄Ck(l)) (3.36)

and calculates the average distance of the observations in the left-out column xi,l from the mean
of the cluster resulting from clustering without the l-th column Ck(l).



4 Exploratory Data Analysis

Exploratory data analysis was performed on a subset of sleep recordings of the original data set
which was created by excluding incorrect values and outliers (see Preprocessing). Subsequently,
a subset of users satisfying certain conditions was chosen and a set of summarizing features was
extracted for every user, which allowed to explore variations of sleep parameters between users
rather than between recordings.

4.1 Recordings

The original data set from the Sleep as Android application consist of 15 905 401 sleep
recordings. For each sleep recording 24 parameters were saved and the actigraph was recorded.
Noise levels were recorded for some of the recordings.

4.1.1 Preprocessing

The basic preprocessing step was removing the incorrect entries such as negative values of
sleep duration and other parameters. In the next step, extreme outliers were removed from the
data set by visual inspection of histograms. The fields id, netSleepAdjustment and device were
deleted from the data set, since they were not used in any of the following analyses.

New features were calculated from the existing ones, such as BMI, timeToSleep (sleep
latency – time that it takes to fall asleep, calculated as sleepStart− from and saved in hours),
alarmWakeDiff (difference between the time of set alarm and actual wake time, calculated as
alarmTime− to and saved in hours), midsleep (calculated as the time in the middle between
bedtime and wake time).

4.1.2 from, to

These fields contain the start and end of recording (time in milliseconds since 01/01/1970
00:00:00 UTC). Recordings were collected between 2009 and September 2017. The first two years
were not used for analysis, since they contain only a very small portion of the recordings (Fig.
4.1c).

These original fields were not used for analysis, but were transformed to the fields bedtime
and waketime which contain a real number between 0 and 24 representing the time in hours in
the user’s local time zone. Fields year and yday (number of day in the year) were calculated to
keep the information about date.

In some of the used algorithms, a modified bedtime field was used, which contains values
between 15 and 39 and was created by adding the number 24 to every value of bedtime which
was less than 15, was used for simplicity. This change will be pointed out again in sections where
it was used.

Histograms of bedtime and waketime parameters can be seen in Fig. 4.1.

23
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Fig. 4.1: Histograms of (a) bedtime and (b) wake time, (c) number of recordings by year

(a) (b) (c)

Fig. 4.2: Locations of users in three time zones with the most recordings (a) America/New York, (b)
Europe/Berlin, (c) Europe/London

4.1.3 timeZone

This field contains the time zone which is set on the user’s device in the format Continent/City
(e.g. Europe/Prague). Numbers of recordings present in seven largest time zones can be seen in
Tab. 4.1. Locations of users in the four time zones that contain the most recordings can be seen
in figure 4.2 (these plots were created using the fields geoLatitude and geoLongitude with the R
package ggmap [19]).

Time zone Recordings Percentage
America/New York 1492334 9.4%
Europe/Berlin 1438375 9.0%
Europe/London 1141170 7.2%
America/Chicago 1064308 6.7%
America/Los Angeles 938371 5.9%
Europe/Amsterdam 797973 5.0%
Asia/Tokyo 723015 4.5%

Tab. 4.1: Number of recordings in the seven time zones with the most recordings
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(a) (b) (c)

(d) (e) (f)

Fig. 4.3: Locations of users in continents (a) Europe, (b) North America, (c) South America, (d) Asia,
(e) Australia, (f) Africa

4.1.4 geoLatitude, geoLongitude

Information about the user’s location in the form of latitude and longitude are recorded in
the fields geoLatitude and geoLongitude. Entries of users’ locations are present approximately
in 56% of recordings. Numbers of recordings on continents which contain the most recordings
are present in Tab. 4.2. Locations are plotted in figure 4.3. These figures were created using the
R package ggmap [19].

Location Recordings Percentage
Europe 7947854 50%
Americas 5307041 33%
Asia 1683958 11%
Australia 530056 3%
Africa 136607 1%

Tab. 4.2: Number of recordings by continents

4.1.5 commentTags

The field commentTags contains comments that users can use to label their sleep recordings
with various additional information. One sleep recording can contain multiple comment tags.
While some of the comment tags are automatically generated by the software, users can also
add their own comment tags. Some examples of the comment tags generated automatically by
software include:



26 4. EXPLORATORY DATA ANALYSIS

• #watch – is generated when other wearable devices (smart watches) are used for sleep
tracking

• #newmoon – is generated automatically in recordings from nights when the moon is in the
new moon phase

• #fullmoon – is generated automatically in recordings from nights when the moon is in the
full moon phase

• #home, #geo0, #geo1, #geo2 – the application logs users’ most used locations and labels
the recordings accordingly by these tags

• #lullaby – is generated when the user uses the lullaby function to play a lullaby before
falling asleep

Users can choose from some standard tags (see Fig. 4.4), or can include their own tags. Examples
of some standard user tags, from which users can choose include:

• #sport
• #food
• #stress
• #work
• #med (medication)
• #gooddream, #baddream
• #caffeine
• #alcohol

A table of the most common tags of recordings is given in Tab. 4.3. In the figure 4.4, the screen
on which user can add comment tags to the recording is shown. Users can choose from standard
tags by clicking on the pictures or add their own comment.

Tag Recordings
– 6082214
#home 3858457
#watch;#home 976793
#watch 503293
#geo1 344232
#sonar;#home 256260
#newmoon;#home 191403
#fullmoon;#home 186111
#cloud 185538
#sonar 168544
#newmoon 144270
#fullmoon 143091
#geo0 103840
#lullaby;#home 80204
#watch;#geo1 78376
#geo2 77191
#lullaby 76770
#alcohol 49700

Tab. 4.3: Comment tags sorted by number of recordings
in which they appear

Fig. 4.4: Adding comment tags in the
Sleep as Android application
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Fig. 4.5: Histograms of avgNoiseLevel (a) with zero values, (b) without zero values

4.1.6 avgNoiseLevel

This field contains the average level of noise picked up by the smartphone’s microphone. In
a large number of recordings (6 247 550) average noise level has a zero value. These are the
recordings where noise recording was not used. It can be seen from histograms shown in figures
4.5a and 4.5b of avgNoiseLevel and avgNoiseLevel without the zero values that this parameter
has a right skewed distribution. Summary of parameters of the distribution of avgNoiseLevel
without zero values is given in Tab. 4.4.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.03620 0.07347 0.10633 0.13664 1.00000

Tab. 4.4: Summary statistics of avgNoiseLevel variable

4.1.7 noOfCycles

Number of sleep cycles detected during the sleep recording by the software is contained in
the field noOfCycles. noOfCycles is usually a number between 1 and 10, but the dotplot in
Fig. 4.6b shows that it takes on different values in the oldest and newest recordings. The zero
values that are present in the older recordings could be missing values or could mean that a
change had been made in the detection algorithm. The values higher than 10 in newer recordings
could also mean a change in the detection algorithm, or simply the change of maximum possible
detected cycles and the parameter should therefore be used with caution.

A bar plot for noOfCycles is shown in Fig. 4.6a. Summary of the variable is in Tab. 4.5.

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.0 3.0 5.0 4.8 6.0 21.0 2282735

Tab. 4.5: Summary statistics of variable noOfCycles

4.1.8 snoringTime

Total time of snoring in seconds is stored in the field snoringT ime. Total of 3 461 511 values
are zero. This may mean that the user either did not snore or that sound recording was not used.
Histograms of snoringT ime with and without zero values are in figures 4.7a and 4.7b.
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Fig. 4.6: (a) histogram and (b) dotplot of noOfCycles
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Fig. 4.7: snoringT ime: (a) histogram, (b) histogram without zero values, (c) dotplot

As with some of the previously mentioned variables the problem of abrupt changes in range
is also present in snoringT ime (see Fig. 4.7c).

4.1.9 netSleepLength

Total sleep duration is recorded in the field netSleepLength. netSleepLength is recorded in
minutes and excludes the intervals in which the recording was paused by user.

Histogram of netSleepLength can be seen in Fig. 4.8. The histogram contains two peaks:
one above 400 minutes (6 hours and 40 minutes) which corresponds to normal sleep recordings in
the night. Sleep as Android can also be used to record sleep during ”naps” with a default length
of 30 minutes. Most of the recordings near the lower peak at around 30 minutes are probably
recordings of these naps.

4.1.10 subjectiveRating

The field subjectiveRating contains a number from 0 to 5 which reflects the user’s subjective
rating of perceived sleep quality. The subjective rating of a sleep recording can be inserted to
the application in a form of stars (see Fig. 2.1), where the maximum is five stars, but even a
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Fig. 4.8: Histogram of sleep duration
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Fig. 4.9: subjectiveRating: (a) barplot and (b) dotplot

non-integer value can be chosen. Subjective rating is present in 5 337 454 recordings.

Histogram of subjectiveRating is shown in Fig. 4.9a. The dot plot shown in 4.9b reveals that
values which the parameter can take on were modified early on and that some values different
from the standard ones are occasionally present.

4.1.11 deepSleepRatio

The ratio of deep sleep duration to total sleep duration is recorded in the field deepSleepRatio
and it can be seen from the histogram in Fig. 4.10a that the most common values are around 0.5
to 0.6. The distribution is slightly skewed to the right.

In earlier recordings, zero values are present, as can be seen from the dot plot in Fig. 4.10b.
It can also be seen that the skewness tends to get smaller in newer recordings. Also, abrupt
change in range can be seen in newer recordings.

4.1.12 gender

Information about the user’s gender is present in some of the recordings, although as
can be seen in Fig. 4.11 and Tab. 4.6, in most of the recordings (85%) this field is miss-



30 4. EXPLORATORY DATA ANALYSIS

Ratio of Deep Sleep [−]

F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5
0
0
0
0
0

1
5
0
0
0
0
0

(a) (b)

Fig. 4.10: deepSleepRatio: (a) histogram and (b) dotplot

ing. The number of recordings labeled as female is particularly low (only 2% of the recordings).
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Fig. 4.11: Barplot of gender

Gender Recordings Percentage
MALE 2076760 13%
FEMALE 298616 2%
NA 13530025 85%

Tab. 4.6: Number of recordings by gender

4.1.13 height, weight

Height and weight data are present in approx. 44% (7 116 965 for height and 7 143 797 for
weight) of the recordings. Histograms of these parameters are shown in figures 4.12a and 4.12b.

BMI was calculated for the recordings in which both height and weight were present
(7 055 381), as the ratio of weight in kilograms to the square of height in meters. Histogram of
the resulting parameter BMI is shown in Fig. 4.13a. Placement of users to BMI groups is
shown in Fig. 4.13b.

4.1.14 birthdate

Information about users’ birth date is present in some of the users’ recordings. This entry
is, however, present only in approximately 14% of the recordings. In most of the analyses age
rather than birth date was used. The histogram of age is shown in Fig. 4.14.
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Fig. 4.12: Histograms of (a) height and (b) weight
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Fig. 4.13: BMI: (a) histogram, (b) barplot of BMI classes
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4.2 Users

There are 88879 users in total with 13632 users having more than 365 recordings. The
following table 4.7 displays numbers of users that have available sleep recordings on more than
80% of days in one year.

Year Users
2014 2631
2015 3952
2016 5806
2017 1407

Tab. 4.7: Number of users with more than 80% of recordings in a year

For an exploratory analysis of users a subset of recordings which satisfy following conditions
was chosen:

BMI - 15 to 40
age - between 15 and 60 years
gender - male
year - 2016
bedtime - after 6 P.M.
wake time - before 1 P.M.
subjective rating - is not a missing value

Subsequently, users that have more than 20 recordings available in this subset were chosen.
For every user eleven features were calculated. After this procedure 1 446 users without missing
values remained. The extracted features are:

• BMI – mean BMI of the user
• age – mean age of the user
• mid wday – average midsleep on weekdays
• mid diff – difference of average midsleep on weekends and weekdays
• length wend – average duration of sleep during weekends
• length diff – difference of average sleep duration on weekends and weekdays
• rating wday – average subjective sleep quality rating on weekdays
• rating wend – average subjective sleep quality rating on weekends
• snoring – average time spent snoring in seconds
• DSratio wday – average deep sleep ratio on weekdays
• DSratio wend – average deep sleep ratio on weekends

The eleven features calculated for each user are displayed in a matrix in Fig. 4.15. On the
diagonal, a histogram is plotted. Above the diagonal Pearson correlation coefficients between the
two parameters are shown. Below the diagonal scatter plots of the two parameters with linear
trends are shown.

While most of the correlation coefficients in Fig. 4.15 show negligible correlations (using
the rule of thumb from [21]), low correlations are present between BMI and age (positive),
mid wday and mid diff (negative), mid wday and length wend (negative), snoring and BMI
and also age (positive). Moderate positive correlations are present between length wend and
length diff , rating wday and rating wend. A very high positive correlation is present between
DSratio wday and DSratio wend.
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Fig. 4.15: Grid plot of extracted features. Histogram is plotted on the diagonal. Above the diagonal,
Pearson correlation coefficients are shown. Scatter plots and linear trends are shown below the diagonal



5 Analysis of the Sleep as Android Data Set

This chapter contains the results of applying the methods presented in chapter 3 to the Sleep
as Android data set.

5.1 Chronotype analysis

In section 1.1 (Chronotypes), it was mentioned that eveningness and morningness changes
throughout lifespan. To analyze chronotypes a subset of users satisfying these conditions were
chosen:

age - between 15 and 70
gender - male
number of available recordings - more than 20

Total of 6366 users were chosen by these conditions. Variables length diff (difference between
mean sleep duration on weekends and weekdays, see section 4.2) or mid diff (difference between
mean midsleep on weekends and weekdays) could provide some measure of a person’s chronotype
since evening types tend to accumulate sleep debt during the week and sleep longer on weekends.
It can be seen in Fig. 4.15 that no linear correlation with age is present. We chose the variable
length diff to analyze chronotypes.

The users were divided into six age groups (15-20, 20-30, . . . , 60-70 years). The difference in
chronotypes should be most pronounced between the youngest age group, where eveningness has
its peak and the oldest age group, where morningness is more common. We therefore have a
hypothesis that length diff should be higher in the youngest age group compared to the oldest
age group. Since the numbers of users in the two groups were not particularly high and the
older group does not seem to come from a normal distribution (visual comparison to normal
distribution using qq plot), we used the bootstrap hypothesis test with 10 000 bootstrap samples
to test the equality of means. The results of the test is in Tab. 5.1. The resulting p-value of an
unequal variance t-test is also presented for comparison.

We therefore reject the null hypothesis at the significance level α = 0.001 and conclude that
the mean difference in sleep duration between weekends and weekdays is higher by at least 13.97
minutes (LCB – CI 95%) compared to the older group. As can be seen in Fig. 5.1, the other age
groups do not seem to differ from each other.

Parameter N1 N2 Mean1 Mean2 Diff. CI (95%) p-value pboot Sig.
length diff 508 100 35.61 12.22 13.97 (LCB) 0.00003 < 0.0001 X

Tab. 5.1: Results of hypothesis testing for length diff

34
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Fig. 5.1: Distribution of length diff in age groups



36 5. ANALYSIS OF THE SLEEP AS ANDROID DATA SET

5.2 Analysis of Effects of Important Events on Sleep Scheduling

Two events which could possibly alter sleeping habits of the population were chosen. Namely
the vote in the United Kingdom to leave the European Union (Brexit vote) and presidential
elections in the United States of America which were won by Donald Trump.

We hypothesize that these large scale events could alter the population’s sleeping habits and
lower the sleep duration, as people are waiting for the results or debating about the outcomes of
these votes.
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Fig. 5.2: Mean sleep lengths in Great Britain. The black vertical line denotes the night of the Brexit vote.

5.2.1 Brexit

Recordings from the United Kingdom with sleep duration longer than four hours and shorter
than twelve hours were chosen. Mean sleep durations of users from the United Kingdom in the
nights around the Brexit vote from years 2014 through 2017 are plotted in Fig. 5.2 (the sleep
duration sequences in each year were aligned to the closest dates such that the days of the week are
the same). A shorter mean sleep duration in comparison to other years in year 2016 in which the
vote took place is evident. To test whether the differences are statistically significant, bootstrap
hypothesis tests for difference in means were calculated pairwise among the years. Confidence
intervals (95%) for difference in means were calculated using bootstrap confidence intervals
(BCa). Ten thousand bootstrap samples were used in the calculation. Number of recordings for
each year are in Tab. 5.2. Resulting p-values were corrected for multiple comparisons using the
Bonferroni correction. The results in Tab. 5.2 show that the mean sleep duration in 2016 is
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shorter than in the other years with a p-value less than 0.001. No difference is observed between
the other years (Tab. 5.3).

Year No. of recordings Mean sleep length [minutes] Observed diff. CI (UCB) p-value
2014 329 427.4 -27.1 -17.9 < 0.001
2015 445 425.0 -24.6 -16.7 < 0.001
2016 453 400.3 – – –
2017 493 422.1 -21.7 -13.4 < 0.001

Tab. 5.2: Results of sleep duration tests in the UK for the night of the Brexit vote. The table contains
the observed difference between mean sleep length in year 2016 and other years. The upper bounded
confidence interval for the difference is presented (CI (UCB))

Years Observed diff. CI p-value
2015-2014 -2.4 (-13.32, 7.836) 0.62
2017-2014 -5.3 (-15.66, 5.004) 0.31
2015-2017 2.9 (-6.098, 12.21) 0.51

Tab. 5.3: Results of pairwise comparisons of sleep duration in the UK in years 2014, 2015, 2017

5.2.2 Presidential elections in the USA
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Fig. 5.3: Mean sleep durations in the United States of America. The black vertical line denotes the night
of the presidential elections.

The same procedure was repeated for the presidential elections in the United States of
America. Fig. 5.3 shows the mean sleep durations of users from the United States (the sleep
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duration sequences in each year were aligned to the closest dates such that the days of the week
are the same). In this case, however, data from year 2017 were not available for this time of the
year. To test the hypothesis of mean sleep duration being shorter in 2016, the same method as
the one used for Brexit was used. The results show that the null hypothesis can be rejected with
a p-value less than 0.001. No difference was observed between the other two years (Tab. 5.5)

Year No. of recordings Mean sleep length [minutes] Observed diff. CI (UCB) p-value
2014 685 426.6 -37.1 -30.8 < 0.001
2015 878 424.3 -34.8 -28.8 < 0.001
2016 1095 389.5 – – –

Tab. 5.4: Results of sleep duration tests in the US for the night of the presidential elections. The table
contains the observed difference between mean sleep durations in year 2016 and other years. The upper
bounded confidence interval for the difference is presented (CI (UCB))

Years Observed diff. CI p-value
2014-2015 2.3 (-5.414, 10.12) 0.57

Tab. 5.5: Results of comparisons of sleep duration in the US in years 2014 and 2015

5.3 Analysis of comment tags

Variabilities in sleep parameters among groups of sleep recordings containing different tags
are examined in this section. For each pair of tags chosen for analysis, a set of hypotheses on
how these tags could affect various parameters of sleep was formed. These hypotheses were then
tested using the Welch’s t-test and by bootstrapping the distribution of the parameter under
null hypotheses. For each two groups that were compared, confidence levels were corrected for
multiple comparisons. For the purpose of comparisons, a subgroup of users satisfying these
conditions was chosen:

sleep duration - 4 to 14 hours

to exclude recordings of naps, outliers and recordings which were not stopped by the user. All of
the recordings which had the tested parameter available were subsequently chosen for each test.
The modified version of bedtime, which was mentioned in section 4, was used in this section.

Parameters in chosen groups were tested for difference in means. Since the number of
observations in these groups was generally very high (tens of thousands to millions), an unequal
variance t test should be sufficient. However, p-values of bootstrap hypothesis tests with 1 000
bootstrap samples are presented for comparison.

Results presented in the tables include values N1, N2 – number of observations in the first
and second group, Mean1, Mean2 – sample mean in the two groups, Diff. CI (95%) – 95%
confidence interval for the difference in means, p-value of the unequal variance t-test, pboot –
p-value of bootstrap hypothesis test with 1 000 bootstrap samples.

All of the presented confidence intervals of difference in means between the groups were
calculated for 95% confidence. The intervals are presented either as upper bounded (UCB - upper
confidence bounded), lower bounded (LCB - lower confidence bounded) or with both lower and
upper bounds, depending on the null hypothesis. Bonferroni correction for multiple comparisons
was used to correct the threshold p-value α for hypothesis testing.
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5.3.1 How does alcohol affect sleep?

Recordings tagged with the #alcohol tag were compared to recordings tagged with the #home
tag. It was found that users using the alcohol tag have mean sleep latency lower by at least 3.2
minutes (UCB). Sleep latency being lower does confirm previous findings summarized in [15], but
the value of the difference is quite low. The alcohol group also has later bedtime, midsleep and
wake times, with the biggest difference observed in wake times - at least 20.9 minutes (LCB).
Mean sleep duration of recordings labeled with alcohol was found to be higher by at least 9.6
minutes (LCB).

It was hypothesized that snoring could be more common in the alcohol group (based on the
findings in [16]). We can see that the alcohol group has higher mean snoring time by at least
28 seconds. The overall negative effects alcohol has on sleep quality could reflect in a lower
subjective rating. The alcohol group has mean subjective rating lower by at least 0.17 (UCB).

Total of seven parameters were compared, the corrected α is therefore α = 0.001/7 ≈ 0, 00014.
The results are summarized in Tab. 5.6.

Parameter N1 N2 Mean1 Mean2 Diff. CI (95%) p-value pboot Sig
timeToSleep [h] 130217 5550070 0.41 0.47 -0.053 (UCB) < 0.00001 < 0.001 X
midsleep [h] 161738 5619291 4.46 4.17 0.284 (LCB) < 0.00001 < 0.001 X
bedtime [h] 161738 5619291 24.75 24.51 0.231 (LCB) < 0.00001 < 0.001 X
waketime [h] 161738 5619291 8.16 7.81 0.348 (LCB) < 0.00001 < 0.001 X
netSleepLength [min] 161738 5619291 434.89 424.93 9.617 (LCB) < 0.00001 < 0.001 X
snoringTime [s] 73524 3042614 691.73 655.82 28.59 (LCB) < 0.00001 < 0.001 X
subjectiveRating [-] 114098 2250504 2.96 3.14 -0.17 (UCB) < 0.00001 < 0.001 X

Tab. 5.6: Results of comparisons of recordings with #alcohol (group 1) and #home (group 2) tags

5.3.2 How does caffeine affect sleep?

Recordings tagged with the #caffeine tag were again compared to the #home tagged
recordings. Based on several studies [17] it was hypothesized that the caffeine group should have
a harder time falling asleep and the sleep latency should therefore be increased. However, the
null hypothesis could not be rejected. Differences in means of sleep duration, bedtimes and wake
times were observed, but the absolute values are quite low and their practical significance is
doubtful. Mean snoring time was observed to be lower in the caffeine group by approximately 1
to 1.5 minute. Subjective rating was found to be slightly lower in the caffeine group by at least
-0.05 (UCB).

Total of seven parameters were compared, the corrected α is therefore α = 0.001/7 ≈ 0, 00014.
The results are summarized in Tab. 5.7.

Parameter N1 N2 Mean1 Mean2 Diff. CI (95%) p-value pboot Sig
timeToSleep [h] 41112 5550070 0.39 0.47 -0.10 (LCB) 1.00 1.00 ×
midsleep [h] 49229 5619291 4.25 4.17 (0.066,0.105) < 0.00001 < 0.001 X
bedtime [h] 49229 5619291 24.56 24.51 (0.034,0.075) < 0.00001 < 0.001 X
waketime [h] 49229 5619291 7.92 7.81 (0.092,0.134) < 0.00001 < 0.001 X
netSleepLength [min] 49229 5619291 429.80 424.93 (4.13,5.62) < 0.00001 < 0.001 X
snoringTime [s] 23003 3042614 571.63 655.82 (-98.83,-69.54) < 0.00001 < 0.001 X
subjectiveRating [-] 34057 2250504 3.08 3.14 -0.050 (UCB) < 0.00001 < 0.001 X

Tab. 5.7: Results of comparisons of recordings with #caffeine (group 1) and #home (group 2) tags
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5.3.3 Do lullabies improve sleep?

Lullaby tagged recordings were compared to the home tagged recordings. Reduced sleep
latency in the lullaby tagged recordings was not observed in the data set. Although research
suggest that music-aided relaxation can lead to heightened sleep quality [50], subjective quality
rating was not found to be improved in the lullaby group in our data set. Snoring appears to
be less common when using a lullaby. Snoring time appears to be lower by at least 39 seconds
(UCB) when using a lullaby.

Total of three parameters were compared, the corrected α is therefore α = 0.001/3 ≈ 0, 00033.
The results are summarized in Tab. 5.8.

Parameter N1 N2 Mean1 Mean2 Diff. CI (95%) p-value pboot Sig
timeToSleep [h] 109413 5550070 0.56 0.47 0.10 (UCB) 1 1.00 ×
snoringTime [s] 58434 3042614 607.73 655.82 -39.22 (UCB) < 0.00001 < 0.001 X
subjectiveRating [-] 44233 2250504 3.15 3.14 0.005 (LCB) 0.004 0.01 ×

Tab. 5.8: Results of comparisons of recordings with #lullaby (group 1) and #home (group 2) tags

5.3.4 Does the moon phase affect sleep?

To see the effect the moon phase has on sleep parameters, #newmoon and #fullmoon tagged
recordings were compared. Difference between means of sleep latency, midsleep, wake time and
sleep duration in the two groups were determined to be statistically significant. The differences
are, however, so small that we do not consider them to be practically significant.

Total of seven parameters were compared, the corrected α is therefore α = 0.001/7 ≈ 0, 00014.
Results are displayed in Tab. 5.9.

Parameter N1 N2 Mean1 Mean2 Diff. CI (95%) p-value pboot Sig
timeToSleep [h] 447122 439172 0.49 0.46 (0.020,0.045) < 0.00001 < 0.001 X
midsleep [h] 458255 450612 4.18 4.20 (-0.035,-0.018) < 0.00001 < 0.001 X
bedtime [h] 458255 450612 24.50 24.53 (-0.033,-0.015) < 0.00001 < 0.001 X
waketime [h] 458255 450612 7.83 7.85 (-0.037,-0.019) < 0.00001 < 0.001 X
netSleepLength [min] 458255 450612 427.13 426.77 (0.01,0.70) 0.04 0.04 ×
snoringTime [s] 230596 226834 642.80 655.21 (-19.61,-5.20) 0.0007 0.002 ×
subjectiveRating [-] 176535 173160 3.14 3.14 (-0.005,0.008) 0.68 0.69 ×

Tab. 5.9: Results of comparisons of recordings with #newmoon (group 1) and #fullmoon (group 2) tags

5.3.5 How does sickness affect sleep?

Tags #sick and #home were compared. Mean subjective sleep quality rating was observed to
be lower by at least 0.37 (UCB) in the sick group. Mean wake time was found to be later by at
least 24 minutes (LCB) for sick tagged recordings. Mean sleep duration is at least 29.9 minutes
(LCB) longer for #sick tagged recordings. Mean bedtime is occurring a few minutes earlier in
the sick group. Sick tagged recordings have a higher mean snoring time by at least 71 seconds
(LCB).

Total of seven parameters were compared, the corrected α is therefore α = 0.001/7 ≈ 0, 00014.
The results are summarized in Tab. 5.10.
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Parameter N1 N2 Mean1 Mean2 Diff. CI (95%) p-value pboot Sig
timeToSleep [h] 32690 5550070 0.52 0.47 (0.009,0.078) 0.014 0.01 ×
midsleep [h] 41201 5619291 4.32 4.17 (0.13,0.17) < 0.00001 < 0.001 X
bedtime [h] 41201 5619291 24.38 24.51 (-0.15,-0.10) < 0.00001 < 0.001 X
waketime [h] 41201 5619291 8.22 7.81 0.40 (LCB) < 0.00001 < 0.001 X
netSleepLength [min] 41201 5619291 455.65 424.93 29.94 (LCB) < 0.00001 < 0.001 X
snoringTime [s] 19045 3042614 741.64 655.82 71.02 (LCB) < 0.00001 < 0.001 X
subjectiveRating [-] 31354 2250504 2.76 3.14 -0.37 (UCB) < 0.00001 < 0.001 X

Tab. 5.10: Results of comparisons of recordings with #sick (group 1) and #home (group 2) tags

5.3.6 How do dreams affect sleep?

Recordings tagged #gooddream and #baddream were compared. Subjective rating is higher
for good dreams by almost 1 point (LCB). Mean sleep duration was observed to be longer by 4
to 6 minutes (CI 95%) for nights with good dreams. Wake time was also found to be later by 6
to 12 minutes (CI 95%).

Total of five parameters were compared, the corrected α is therefore α = 0.001/5 ≈ 0, 0002.
The results are summarized in Tab. 5.11.

Parameter N1 N2 Mean1 Mean2 Diff. CI (95%) p-value pboot Sig
waketime 40670 40007 8.21 8.01 (0.16,0.22) < 0.00001 < 0.001 X
bedtime 40670 40007 24.54 24.40 (0.11,0.17) < 0.00001 < 0.001 X
netSleepLength 40670 40007 445.57 440.38 (4.01,6.37) < 0.00001 < 0.001 X
snoringTime 21497 21570 543.95 592.45 (-70.18,-26.83) 0.00001 < 0.001 X
subjectiveRating 33631 30236 3.67 2.67 0.995 (LCB) < 0.00001 < 0.001 X

Tab. 5.11: Results of comparisons of recordings with #gooddream (group 1) and #baddream (group 2)
tags

5.4 Classification

In this section we try to determine how well the user is going to rate their sleep quality
(subjectiveRating) based on the recorded sleep parameters. Classification, rather than regression
was chosen, because the values of subjectiveRating take only on few discrete values and since the
rating is subjective, a classification into fewer classes is more suitable. Classification into two
classes is considered, where the two classes refer to recordings in which users rated their sleep as
bad or good.

In addition to classifying, we are also interested in which of the features are the most important
ones to determine sleep quality. Feature selection and models in which some measure of variable
importance can be calculated are used for this purpose.

Variables used as inputs to the classifier were selected using the Relief algorithm. The
following 9 variables were selected: age, timeToSleep, alarmWakeDiff, netSleepLength, BMI,
bedtime, snoringTime, waketime, midsleep. Since the variable midsleep is calculated from values of
bedtime and waketime, it was removed and thus 8 input variables remained. The sleep recordings
were ranked according to subjective rating as bad (0) for values of subjectiveRating 0-2 and
good(1) for values 4-5.

Recordings from the years 2015 and 2016 with non-missing values of the selected features and
response (subjectiveRating) were selected and divided into training set (80%) and validation set
(20%). Parameters of classifiers were optimized on the validation set. Data from the year 2017
were used as a testing set. The classifier algorithms that were used are
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• CART (Classification and Regression Trees) – the implementation in R’s rpart package
[36] was used

• Bagging – the bagging algorithm using classification trees (CART) as single classifiers,
the implementation in R’s adabag package [37] was used

• kNN (k nearest neighbors) – the implementation in R’s class package [38] was used
• Naive Bayes – the implementation in R’s e1071 package [39] was used
• Boosting – the AdaBoost algorithm using classification trees (CART) as single classifiers,

the implementation in R’s adabag package [37] was used
• LDA – the implementation in R’s MASS package [38] was used
• Logistic regression (Log. reg.) – the implementation in R’s stats package [40] was used
• Random forest – the implementation in R’s randomForest package [41] was used

Performances of these classifier algorithms on the test set are in Tab. 5.12.

Classifier Accuracy Sensitivity Specificity PPV NPV Balanced acc. AUC
CART 0.6307 0.8089 0.3752 0.6500 0.5778 0.5920 0.6159
Bagging 0.6300 0.7987 0.3881 0.6519 0.5734 0.5934 0.6178
kNN (3) 0.6507 0.7185 0.5536 0.6978 0.5782 0.6360 0.6360
Naive Bayes 0.6340 0.8089 0.3831 0.6529 0.5829 0.5960 0.6486
Boosting 0.6323 0.7719 0.4322 0.6610 0.5691 0.6020 0.6595
LDA 0.6380 0.8654 0.3118 0.6434 0.6176 0.5886 0.6672
Log. reg. 0.6385 0.8622 0.3175 0.6444 0.6164 0.5899 0.6676
Random Forest 0.6817 0.7767 0.5454 0.7102 0.6299 0.6610 0.7164

Tab. 5.12: Performances of classifier algorithms on the test set (sorted by AUC)

It can be seen that the performance gained by bagging and boosting to increase the per-
formance of a single CART classifier is relatively low and that even some of the simple linear
classifiers have better performance. Most of the classifiers exhibit a relatively low specificity
(accuracy of classification of sleep recordings labeled as ”bad”). Random forest has the best
performance amongst the classifiers in terms of the AUC and accuracy.

Variable importance ranking
Variable Log. reg. CART Bag Boost Random Forest Avg
netSleepLength 1 1 1 3 3 1.8
BMI 7 2 3 1 1 2.8
age 5 3 2 2 2 2.8
alarmWakeDiff 2 5 5 4 4 4.0
waketime 4 4 4 5 5 4.4
bedtime 6 7 6 8 6 6.6
snoringTime 3 8 7 7 8 6.6
timeToSleep 8 6 8 6 7 7.0

Tab. 5.13: Ranking of variables by importance

Measures of importance of variables were calculated for classifiers for which such a calculation
is possible. In logistic regression, the absolute value of the t-statistic for each model parameter
was used to measure variable importance. For random forest classifier, the mean decrease in Gini
index was used. In CART decision tree, the reduction in the mean squared error attributed to
each variable at each split is calculated and the sum is used to measure variable importance. In
bagged trees, the same methodology for single tree is applied to all trees.
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Since several different importance measures were used amongst the classifiers, only the ranking
of the variables by importance was compared between the classifiers. Ranking of variables by
importance in each of the classifiers is in Tab. 5.13. The variables are sorted by their average
ranking.

Sleep duration was determined to be the most important variable in determining the subjective
rating of sleep quality. Age along with BMI were determined to the next most important variables.
Sleep latency was found to be the least important variable for determining rating.

5.5 Clustering

The goal of this section is to find meaningful subgroups of users based on their sleep parameters,
which could lead to new insights and aid in interpretation of the data. Since there can be more
data points for each recorded parameter of each user, the data of one user have a form of
multivariate time series rather than static data. Therefore, the problem of clustering time series
is addressed. A short review of clustering algorithms and approaches used in this chapter is given
in section 3.5. The described clustering algorithms are applied to the Sleep as Android data set.

5.5.1 Preprocessing

Time series For the purpose of clustering time series, time series of one year of the parameter
netSleepLength (sleep duration) were chosen. The year 2016 was chosen since it contains the
most recordings. Users with more than 250 sleep recordings with sleep durations between 4 to 14
hours in 2016 were selected. Only users who have less than 5 subsequent missing recordings were
chosen.

The missing values were approximated by linear approximation separately for weekday and
weekend recordings. Missing values at the start and end of the recordings were imputed with
median value (also separately for weekdays and weekends).

The time series were first clustered without smoothing, subsequently also time series smoothed
using Local Polynomial Regression Fitting (function loess in R) with α = 0.1 separately for
weekdays and weekends were used (see Fig. 5.4 for comparison of the smoothed and original
time series).

Each of the time series was normalized to have mean zero and standard deviation of 1 prior
to clustering.

Features The subset of users that was chosen and features that were extracted is the same as
in section 4.2 (without the limitation on BMI). However, since the correlation of the parameters
which contain deep sleep ratios on weekend and weekdays is very high, only one parameter of
these was kept (DSratio wday). Therefore, total of 10 features were used for clustering. All of
the features were scaled to have mean zero and standard deviation of 1 before clustering.
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Fig. 5.4: Comparison of smoothed and original sleep duration series of one user

5.5.2 Clustering extracted features

First, the simplest case where features were extracted from the time series and clustering is
performed on these features as static data is realized.

Algorithm Index
Clusters 2 3 4 5 6 7 8 9

k-means
DB 2.38 2.12 2.02 1.90 1.68 1.76 1.82 1.69
Dunn 0.05 0.06 0.02 0.02 0.02 0.05 0.03 0.05
Sil 0.13 0.11 0.12 0.10 0.10 0.10 0.09 0.09

PAM
DB 2.85 2.19 2.18 2.09 1.91 2.00 1.86 1.90
Dunn 0.05 0.05 0.05 0.05 0.04 0.01 0.01 0.01
Silhouette 0.10 0.11 0.10 0.08 0.08 0.08 0.08 0.07

GAM
DB 3.05 3.53 3.84 3.49 2.89 2.64 2.97 4.40
Dunn 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.04
Silhouette 0.09 0.01 0.01 −0.01 −0.00 −0.01 0.03 0.01

H.
DB 1.70 1.01 1.04 1.05 1.05 1.05 1.05 1.10
Dunn 0.12 0.13 0.09 0.09 0.10 0.08 0.09 0.09
Silhouette 0.22 0.24 0.13 0.16 0.16 0.13 0.14 0.13

Tab. 5.14: Feature clustering results. Green fields denote the best value for the algorithm, red fields
denote the best value overall.

Various clustering algorithms with the number of clusters ranging from 2 to 9 were used
on the data and were compared using internal and stability measures. At the first run, two
clusters were determined to be the best number. However, one of the clusters contained only 3
observations which were dismissed as outliers and the process was repeated. The performance of
various algorithms as measured by internal measures are in Tab. 5.14. The best algorithms and
number of clusters according to stability measures are in Tab. 5.15.

When we look at the three clusters created using hierarchical clustering, which were determined
to be the best using internal measures, one of the clusters consists only of four observations. We
therefore examine two clusters created by hierarchical clustering, which is also determined to be
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the best number of clusters by two of the stability indexes and has the second best values of
internal measures. The number of observations in the second of the clusters is still relatively low
(34) compared to the other cluster (1818). Next, we examine the distributions of parameters in
the two clusters which are displayed in Fig. 5.5.
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Fig. 5.5: Distributions of parameters in clusters

Measure Score Method Clusters
APN 0.0016 hierarchical 2
AD 3.5548 kmeans 9
ADM 0.0210 hierarchical 2
FOM 0.9507 kmeans 9

Tab. 5.15: Best results for stability measures of feature clustering
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5.5.3 Clustering time series representations

Next, various representations of time series were calculated and clustered. The calculation
of time series representations serves mainly for dimension reduction and the resulting represen-
tations can be then clustered with the use of algorithms commonly used for static data. The
representations were calculated using the TSrepr package [30] and subsequently clustered using
the PAM algorithm. Clustering was calculated for numbers of clusters ranging from 2 to 9
and for each clustering three internal clustering validity measures were calculated. Total of six
representations of time series were calculated. The representations that were used are described
in 3.5.3.3.

The resulting values of three internal clustering validity measures for 2 to 9 clusters and
various representations are shown in Tab. 5.16. Results for 2 clusters with the SP and GAM
representations are very alike and the centroids of the clusters are similar to the ones obtained
by hierarchical clustering in Fig. 5.6. Other representations do not yield very good results for
any number of clusters with the resulting clusters’ centroids being very much alike.

Repr. Index
Clusters 2 3 4 5 6 7 8 9

SP(7)

DB 1.05 1.14 1.64 1.69 1.28 1.90 1.37 1.53
Dunn 0.03 0.03 0.01 0.01 0.03 0.01 0.03 0.03
Silhouette 0.36 0.25 0.17 0.15 0.14 0.13 0.12 0.11

GAM(7)

DB 0.93 1.06 1.42 1.37 1.65 1.16 1.79 1.60
Dunn 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Silhouette 0.40 0.26 0.23 0.18 0.17 0.15 0.14 0.15

DFT(21)

DB 4.63 4.05 4.16 3.85 3.90 3.97 4.03 3.94
Dunn 0.13 0.16 0.15 0.15 0.13 0.15 0.15 0.15
Silhouette 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02

DWT(haar)

DB 3.76 3.36 3.12 3.65 3.42 2.61 3.36 3.39
Dunn 0.14 0.15 0.03 0.16 0.16 0.16 0.16 0.16
Silhouette 0.06 0.04 0.04 0.03 0.03 0.03 0.02 0.02

DCT(21)

DB 3.26 3.90 3.89 3.77 3.18 3.16 3.31 2.47
Dunn 0.14 0.13 0.09 0.09 0.14 0.14 0.13 0.13
Silhouette 0.07 0.04 0.03 0.03 0.03 0.03 0.03 0.03

PAA(7)

DB 5.27 4.84 5.30 5.42 4.24 4.28 4.45 4.08
Dunn 0.25 0.25 0.25 0.10 0.11 0.11 0.11 0.11
Silhouette 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01

Tab. 5.16: Reults of clustering time series representations. Green color denotes the best value of the index
for the representation. SP(7) - mean seasonal profile for 7 days. DFT(21) - discrete Fourier transform
(first 21 coefficients). DWT(haar) - wavelet transform, haar wavelet, DCT(21) - cosine transform (first 21
coefficients), PAA(7) - piecewise aggregate approximation (mean of 7 days)

5.5.4 Raw data clustering

First, the unsmoothed time series were clustered using various approaches. Results can be
seen in Tab. 5.17. The best clustering as determined by the three internal validity indexes is
hierarchical clustering with two clusters. The resulting centroids from this clustering are shown
in Fig. 5.6. The numbers of observations in the two clusters are : N1 = 1435, N2 = 189.
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Algorithm Index
Clusters 2 3 4 5 6 7 8 9

PAM (L2)

DB 2.78 1.87 1.93 2.38 2.38 2.00 2.19 2.44
Dunn 0.51 0.64 0.69 0.49 0.53 0.68 0.49 0.48
Silhouette 0.02 0.04 0.04 0.01 0.01 0.03 0.00 0.01

PAM (DTW)

DB 2.26 2.01 2.05 2.19 2.08 2.04 2.06 2.11
Dunn 0.55 0.64 0.66 0.63 0.02 0.66 0.02 0.60
Silhouette 0.01 0.01 0.00 0.00 −0.00 −0.00 −0.00 −0.01

H. (L2, avg)

DB 1.23 1.74 1.80 1.84 1.94 1.96 1.99 1.99
Dunn 0.72 0.72 0.72 0.72 0.71 0.71 0.71 0.71
Silhouette 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03

TADPole

DB 12.24 12.58 13.69 14.18 15.94 17.24 16.62 17.09
Dunn
Silhouette

k-shape

DB 2.01 2.31 2.90 3.98 6.17 3.69 3.40 3.56
Dunn 0.57 0.57 0.53 0.49 0.32 0.43 0.48 0.47
Silhouette 0.04 0.04 0.04 0.02 −0.00 0.01 0.02 0.01

Tab. 5.17: Green value denotes the best value of index for each algorithm. Red value denotes the best
value of index overall. H. – Hierarchical clustering

Fig. 5.6: Centroids for hierarchical clustering with two clusters, L2 distance and average linkage. The
median is displayed in red, the black dotted lines are the 1st and the 3rd quartiles. N1 = 1435, N2 = 189

The clusterings with more than two clusters, which were determined by some internal validity
indexes as the best, were also examined. The additional clusters are, however, usually very
similar and do not provide any interesting grouping (see Fig. 5.7 for centroids of PAM (L2)
clustering with four clusters).
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Fig. 5.7: Centroids for PAM (L2) clustering. The median is displayed in red, the black dotted lines are
the 1st and the 3rd quartiles. N1 = 142, N2 = 1105, N3 = 237, N4 = 140

Results of clustering the smoothed time series are in Tab. 5.18. Hierarchical clustering with
two clusters was again determined to be the best by two of the three internal validity indexes.
The resulting centroids of hierarchical clustering with two clusters are in Fig. 5.8. Numbers of
observations in the two clusters are: N1 = 1373, N2 = 251.

Algorithm Index
Clusters 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

PAM (L2)

DB 1.35 1.70 1.82 1.89 2.66 2.66 2.69 2.42
Dunn 0.48 0.46 0.49 0.42 0.28 0.28 0.28 0.35
Silhouette 0.13 0.10 0.11 0.08 0.02 0.02 0.02 0.03

PAM (DTW)

DB 2.00 2.28 2.16 2.10 2.15 2.14 2.34 2.01
Dunn 0.39 0.37 0.44 0.44 0.40 0.41 0.40 0.40
Silhouette 0.07 0.02 0.02 0.02 0.01 0.00 0.00 0.00

H. (L2, avg)

DB 1.22 1.67 1.81 1.87 1.86 1.86 1.83 1.91
Dunn 0.51 0.49 0.49 0.50 0.50 0.50 0.50 0.50
Silhouette 0.12 0.11 0.09 0.09 0.09 0.08 0.08 0.08

TADPole

DB 9.39 13.11 13.61 14.74 14.35 13.49 14.64 13.96
Dunn
Silhouette

k-shape

DB 1.43 1.66 4.00 2.81 3.31 2.86 2.98 3.60
Dunn 0.25 0.26 0.13 0.18 0.16 0.15 0.16 0.12
Silhouette 0.16 0.13 0.02 0.05 0.03 0.03 0.03 0.01

Tab. 5.18: Green value denotes the best value of index for each algorithm. Red value denotes the best
value of index overall. H. – Hierarchical clustering
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Fig. 5.8: Centroids for hierarchical clustering with two clusters, L2 distance and average linkage. The
median is displayed in red, the black dotted lines are the 1st and the 3rd quartiles. N1 = 1373, N2 = 251
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Fig. 5.9: Distributions of parameters in clusters obtained by hierarchical clustering

Resulting centroids for the k-shape clustering which was determined to be the best in terms
of the silhouette width is in Fig. 5.10.

Fig. 5.10: Centroids for k-shape clustering. The median is displayed in red, the black dotted lines are the
1st and the 3rd quartiles. N1 = 943, N2 = 681

We also examined the clusterings with more than two clusters, however, some of the clusters
tend to be very similar, see Fig. 5.11 , where centroids are displayed for four clusters resulting
from PAM with L2 distance. Three of these centroids seem to be very similar.
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Fig. 5.11: Centroids for PAM (L2) clustering. The median is displayed in red, the black dotted lines are
the 1st and the 3rd quartiles. N1 = 173, N2 = 211, N3 = 131, N4 = 1109

5.5.5 Clustering conclusion

It seems that two is the most appropriate number of clusters for the studied data. Similar
clusters were obtained using different clustering methods, although the numbers of time series in
the clusters tend to differ. From the results of clustering time series representations we can see
that the time series are clustered by the users’ sleeping habits during week rather than changes
of sleeping habits during the year, since clustering of seasonal profiles of one week yields similar
results to other methods. On the other hand, the piecewise aggregate approximation of seven
days, which effectively cancels the influence of sleeping habits during weekdays, does not yield
any interpretable results.

Smoothing the time series led to more robust results with almost all of the validity indexes
indicating two to be the best number of clusters for every clustering algorithm. Subjectively, the
hierarchical clustering with Euclidean distance and with average linkage used on the smoothed
time series and even on the original time series seems to be the best choice for the data. k-Shape
has also good results, but the resulting cluster centroids subjectively seem to be more similar to
each other than the ones obtained by hierarchical clustering.

One of the resulting clusters includes users who tend to sleep longer on weekends. These
users are evening types and sleep longer on weekends due to the sleep debt accumulated during
the week.

The other group contains users whose sleep durations are comparable on weekdays and
weekends or their sleeping schedule is ”inverted” compared to the users in the first cluster. It
also seems that the BMI of these users tends to be higher and their snoring time lower (see Fig.
5.9 – the ”notches” on the boxplots signify 95% confidence interval for the median). The users in
the second cluster also seem to have more irregular sleep during weekdays.



6 Conclusion

In the first part of data analysis we have tested several hypotheses about sleep parameters.
We have carried out t-test for unequal variances and bootstrap hypothesis tests and we observed
that the resulting p values tend to be very similar. Therefore, we conclude that the t-test for
unequal variances is sufficient for the purposes of this thesis, where the number of observations in
the tested samples was generally very high, ranging from tens of thousands to millions. Several
findings related to sleep science were confirmed in this thesis with the use of the data from the
Sleep as Android data set.

For example, we have observed elderly people to have significantly lower eveningness than
the youngest age group. Next, we observed that alcohol reduces sleep latency, which confirms
previous findings. The difference in means is, however, rather low – based on our results alcohol
reduces the time needed to fall asleep only by 3.2 minutes. Alcohol reduced sleep quality rating
by at least 0.17 points (all of the numbers presented are based on 95% confidence intervals for the
difference in means from section 5.3). The recordings with alcohol label were observed to have
later bedtimes, midsleep and wake times, which was expected since alcohol is usually consumed
as a part of social activities and celebrations when people tend to go to sleep at later times.
Users were found to snore more after ingestion of alcohol by at least 28.59 seconds. We must
note that although our findings about alcohol confirm the findings from scientific literature, we
have no information about the time when alcohol was ingested and in what amounts do users
ingest alcoholic beverages. These factors may greatly affect how alcohol influences sleep.

We have also observed a small drop in sleep quality rating for users using caffeine, but only by
0.05 points. We could, however, not confirm that caffeine causes prolonged sleep latency, which
was observed previously in scientific literature. As with alcohol, we do not have information
about the time of ingestion or the doses in which caffeine was used.

On the other hand, we could not confirm that lullabies decrease sleep latency or subjective
rating. We did, however, observe that users using lullabies tend to snore less by at least 39.22
seconds. To our knowledge there is no study that relates lullabies to shortened snoring periods.
This finding should therefore be studied more thoroughly. There are, however, studies that
relate listening to music before sleeping to improved sleep quality [50]. In the Sleep as Android
application there are several sound tracks that users can choose from to use as a lullaby, including
binaural beats, but we do not possess the information about which one of them was used by the
user or for how long it was being played prior to falling asleep. These factors may have an effect
on the influence of lullabies on sleep quality, since the previously carried out studies identified
only certain styles of music, such as jazz or classical music, to aid the sleeping process.

We did not observe moon phase to affect sleep duration. We have found that users who
tag their recordings with the sick tag have a longer sleep duration by at least 29.9 minutes,
have higher snoring time by at least 71 seconds and rate their sleep quality lower by at least
0.37 points. Sleep duration has been found to be the most important variable in determining
subjective sleep quality rating. The sick users, however, tend to rate their sleep lower even when
their sleep duration is prolonged. Medication could also contribute to altering sleep parameters.
Furthermore, dreams have been found to affect sleep quality ratings in such a way that sleep
recordings with good dreams have had higher ratings than bad dreams by at least 1 point.
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Another of our findings is that important nation-wide events have impact on users’ sleep
scheduling. We compared sleep durations in the United Kingdom during the Brexit vote to
sleep durations of other years. We did the same for presidential elections in the United States of
America. We have found that both of these events impacted users’ sleep durations and caused
them to sleep less, which is in accordance with our initial hypothesis.

Moreover, we addressed the clustering problem and tried various approaches to finding
subgroups based on users’ sleep patterns. We selected time series of sleep durations of length one
year for the purpose of clustering. We have evaluated the clustering results by the use of internal
clustering validity measures and stability measures. First, we have tried extracting summarizing
features for each user’s time series and subsequently clustering them. This approach is very
simple, but tended to result in small clusters which could be dismissed as outliers. We also
tried clustering various time series representations as well as the original and smoothed time
series. Based on clustering the time series representations, we have arrived to the conclusion
that users tend to get clustered based on their sleep scheduling habits during the week rather
than by slower monthly or yearly trends. Clustering the smoothed time series proved to be the
most robust approach since almost all of the resulting internal measures of clusters suggested the
same number of clusters to be the best option. We examined resulting clusterings with various
number of clusters, but we have found that for number of clusters higher than two, some of the
clusters tend to be very similar. Therefore we conclude that there are two clusters present among
the users. These clusters correspond to the two chronotypes – evening and morning types. One
of the groups has a relatively large difference in their sleep scheduling between weekdays and
weekends in terms of sleep duration and midsleep and corresponds to the evening types, i.e. owls.
This group has also been observed to have lower median of BMI and higher snoring time. The
other group corresponds to morning types and differs from the other group mostly by a lower
difference of sleep duration between weekdays and weekends.

The Sleep as Android data set offers many more opportunities for sleep parameters to be
studied. For example, country-to-country differences in sleep parameters or influence of daylight
saving time on sleep could be analyzed. Another interesting question that was not addressed in
this thesis is the effect of sun on sleep parameters. Further intriguing question is whether the
smart alarm does really help users to wake up more easily. Recordings could be classified by
subjective sleep quality rating for each user individually. Including tags which were found to alter
sleep quality rating as features could help improving the classifier performance. Studying the
issue of sleep deprivation affecting users’ cognitive performance would also be very interesting,
but that question is not possible to address with the current data from the application. Since
the information about users’ gender is present in a relatively low number of recordings and the
number of recordings labeled as female is particularly low, we have not addressed sleep differences
among genders.

Usage of sleep monitoring applications or wearable devices could have an immense social
impact and has potential to improve health of their users by advising and motivating them
to have better sleep habits. It could also lead to improved users’ safety by detecting sleep
deprivation and advising users not to attempt any activities that could be dangerous when their
cognitive performance is lowered.

From our findings we conclude that this method of collecting sleep scheduling data by
smartphone application is valid and because of its ease of use, it can be used to study sleep
scheduling in the large population of its users. However, to make use of parameters such as deep
sleep ratio and number of sleep cycles, the sleep stage detection method should be validated
against polysomnography. Research would also benefit from more detailed information about
users and their recorded parameters.
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