
ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

469856Osobní číslo:TadeášJméno:BinderPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Pokročilý webový editor OntoUML ontologií

Název bakalářské práce anglicky:

Advanced web editor of OntoUML

Pokyny pro vypracování:
Cílem práce je vytvořit pokročilou webovou komponentu
pro tvorbu a úpravy OntoUML modelů vhodnou pro
ontologické konceptuální modelování.
1. Proveďte rešerši
a) existujících webových knihoven vhodných pro tvorbu
UML modelů
b) existujících komponent a systémů pro tvorbu OntoUML
modelů
2. Na základě bodu 1 formulujte funkční a nefunkční
požadavky na webovou komponentu pro grafickou tvorbu
OntoUML modelů
3. Navrhněte webovou komponentu. Součástí návrhu
bude i jazyk pro reprezentaci OntoUML konstruktů a
jejich vzájemných závislostí. Svůj návrh formulujte v
jazyce UML.
4. Implementujte komponentu ve vhodném JavaScript
frameworku. Součástí implementace bude i validátor
vytvářeného modelu využívající jazyk navržený v bodě 4.
5. Kvalitu implementace ověřte vhodnými automatickými
testy. Webovou komponentu porovnejte se systémy v
bodě 2b, a to na min. dvou OntoUML modelech různé
složitosti a velikosti. Proveďte uživatelský test a
zhodnoťte další využitelnost komponenty.

Seznam doporučené literatury:
[1] OntoUML Specification 1.0 - https://ontology.com.br/ontouml/spec/
[2] G.Guizzardi: Ontological Foundations of Structural Conceptual
Models. 2005. Ph.D. Thesis -
https://ris.utwente.nl/ws/portalfiles/portal/6042428
[3] Menthor editor - http://www.menthor.net

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Petr Křemen, Ph.D., skupina znalostních softwarových systémů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 24.05.2019Datum zadání bakalářské práce: 24.01.2019

Platnost zadání bakalářské práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Petr Křemen, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Advanced web editor of OntoUML
ontologies

Tadeáš Binder

Supervisor: Ing. Petr Křemen, Ph.D.
May 2019

ii

Acknowledgements
I would like to thank my supervisor, Dr.
Petr Křemen, for offering to work with
me and for having patience with me. I
am also grateful for the people that con-
tributed to testing of my project, as well
as my friends for supporting me during
tough times.

Declaration
I declare that I have made the submit-
ted work independently and that I have
listed all the sources used in line with the
Methodological Guideline on Compliance
with Ethical Principles of preparation of
academic final theses.

Prague, May 23, 2019

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 23. května 2019

......................................
Tadeáš Binder

iii

Abstract
The aim of this thesis is to document the
design, implementation, and testing of a
web component for creating and editing
OntoUML models appropriate for onto-
logical conceptual modeling. There are so-
lutions currently available that can model
ontologies, however, they are not in the
form of a web component, and there-
fore cannot be integrated into web sys-
tems. After an analysis of the require-
ments and available technologies, the com-
ponent was implemented as a React com-
ponent by heavily modifying and expand-
ing the Storm React Diagrams library.
Automated testing, user testing and com-
parisons to existing solutions revealed that
while the component is lacking in features
compared to the competition, its main
advantage as a web component in terms
of versatility suggests that the component
has a lot of potential. We would, there-
fore, recommend that future work should
be mainly directed at expanding the com-
ponent’s feature set.

Keywords: ontologies, OWL, React,
web editor, web component, XMI,
OntoUML

Supervisor: Ing. Petr Křemen, Ph.D.
Karlovo náměstí 13, Praha 2

Abstrakt
Cílem této práce je zdokumentovat návrh,
implementaci a testování webové kompo-
nenty pro tvorbu a editaci OntoUML mo-
delů vhodné pro ontologické konceptuální
modelování. V současné době jsou k dispo-
zici řešení, která ontologie modelovat umí.
Tato řešení však nejsou ve formě webové
komponenty, a proto nemohou být inte-
grována do webových systémů. Po ana-
lýze požadavků a dostupných technologií
byla komponenta implementována jako
komponenta React úpravou a rozšířením
knihovny Storm React Diagrams. Automa-
tické testy, uživatelské testy a porovnání s
existujícími řešeními ukázaly, že zatímco
komponenta ve srovnání s konkurencí po-
strádá určité funkce, její hlavní výhodou
je její povaha webové komponenty, což
jí nadzvihuje hlavně z hlediska univerzál-
nosti. Proto doporučujeme, aby budoucí
práce směřovala především na rozšiřování
funkcionality této komponenty.

Klíčová slova: ontologie, OWL, React,
webový editor, webová komponenta,
XMI, OntoUML

Překlad názvu: Pokročilý webový
editor OntoUML ontologií

iv

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Technologies 2
1.2.1 React . 2
1.2.2 OWL . 2
1.2.3 OntoUML. 3
1.2.4 XMI . 3

2 Design 5
2.1 Existing solutions 5
2.1.1 Menthor Editor 5
2.1.2 Enterprise Architect 6
2.1.3 Summary 7

2.2 Modeling libraries 7
2.2.1 Detailed analysis 8

2.3 Software design 11
2.3.1 Functional requirements 12
2.3.2 Non-functional requirements . 12
2.3.3 Use cases 13
2.3.4 User interface 13

3 Implementation 15
3.1 Architecture 16
3.2 Components 16
3.2.1 Model elements 17
3.2.2 Example 18

3.3 Advanced features 19
3.3.1 Constraints 19
3.3.2 Validation 20
3.3.3 Configuration 22
3.3.4 OWL exporting 23

4 Evaluation 25
4.1 Comparison to existing solutions 25
4.1.1 Menthor Editor 25
4.1.2 Enterprise Architect 26
4.1.3 Summary 26

4.2 Automated testing 26
4.3 User testing 27
5 Conclusion 29
5.1 Future work 29
Bibliography 31
A Design diagrams 33
B Example models 37
C Guide to the attachments 41

v

Figures
2.1 Menthor Editor 6
2.2 Enterprise Architect 7

3.1 The component 15
3.2 Conceptual diagram of project
components . 17

3.3 Conceptual diagram of diagram
element classes and interface 17

3.4 Example ontology visualized in the
component . 18

3.5 Object diagram of diagram element
objects . 18

A.1 Activity diagram of deployment,
modeling and viewing 33

A.2 Wireframe of the component . . . 34
A.3 Use cases . 35

B.1 The first example ontology
modeled in the component 37

B.2 The first example ontology
modeled in Menthor Editor 38

B.3 The first example ontology
modeled in Enterprise Architect . . 39

B.4 The second example ontology
modeled in the component 39

B.5 The second example ontology
modeled in Menthor Editor 40

B.6 The incomplete second example
ontology modeled in Enterprise
Architect . 40

Tables
2.1 Evaluation of modeling libraries 11

vi

Chapter 1
Introduction

The goal of this work is to design and implement an advanced web component
for the creation and editing of OntoUML models that is suitable for ontological
conceptual modeling. First, we look at the reasons why such a component
is necessary in the first place and what technologies can (and do) make it
possible to realize. Second, we propose the functions and user interface that
the component ought to have, based on currently available solutions and
our discretion. We also design the component’s architecture and choose its
underlying structure. Third, we implement the component according to the
design parameters and describe its function and basic usage. Lastly, we
evaluate our work by using various testing methods and comparing it to
other solutions. This evaluation will base the decision on where to take the
component (or its underlying functions) next.

1.1 Motivation

As time goes on, more and more aspects of human activity and society is
related to computers, increasing the amount (and types) of data that needs
to be created and managed. Organizations from both the public and the
private sector, therefore, need to design systems that allow for easy exchange
of machine-readable data between other members of an organization or other
institutions. To do so, however, it is first necessary to standardize the forms of
data, their structure and the relationships between them. From there, various
computer solutions can not only receive but also understand the nature of
transferred information contained within.

A suitable method of achieving such functionality is through the use
of ontologies – in the field of information technology, it is a term that
represents explicit formalization of the conceptualization of knowledge of a
given domain. Such knowledge can then be categorized, examined, represented
in various ways and, above all, integrated into other ontological descriptions
of knowledge.[1]

An important use of ontologies lies in the precise definition of terms or
expressions in different contexts – for example, an author in the context
of a book review may mean the author of the book or the author of the
review. Therefore, if we want software systems to understand the difference

1

1. Introduction
of such meaning, we need to divide these concepts and explicitly describe
them along with the relationships with other concepts and, in some cases, its
representation in different languages.

The aim of this work, therefore, is to design and implement a piece of
software that can work with such ontologies. More specifically, it should be a
component capable of creating and manipulating the diagram representation
(in other words, model) of these ontologies in the OntoUML language. Since
there are different categories of concepts in different types of usage contexts
in each organization, the component must allow easy expansion of the pool
of categories of concepts it is able to represent.

Furthermore, due to the nature of the assignment, the software should be
developed as a web component in order to integrate it into existing software
systems. The very idea of exchanging machine-readable data between data
in a standardized manner is heavily inspired and in part realized through the
Internet, nevertheless already existing solutions can store and make ontologies
accessible on the Web. Thus, our solution should ideally be in the form of
a web component as well, so that it is capable of integration into existing
infrastructure with as little difficulty as possible.

1.2 Technologies

Several supporting technologies and protocols are necessary to implement
the project. Previously defined and currently accepted standards for describ-
ing, graphically representing, and serializing ontologies on the Web allow
integration of the component into existing solutions.

1.2.1 React

React is a JavaScript library first created by Jordan Walke and currently
maintained by the Facebook team.[2] It is a library for easy and fast creation
of user interfaces for the Web. These interfaces consist of individual compo-
nents, which are structured together. A component can have attributes, or
states, which, among other variables, can be passed to other components via
component properties, or props.

One of the main advantages of React is the virtual DOM, which is a
concept that, in effect, greatly reduces hardware requirements for rendering
elements.[3] Another useful feature is JSX (JavaScript XML), which provides
a way to represent user interface elements via a syntax very similar to that
of HTML, for example.[4] React is one of the most used JavaScript libraries
of all time in part because of these features.[5]

1.2.2 OWL

OWL (Web Ontology Language) is a descriptor for a family of languages
defined by the World Wide Web Consortium (W3C). Their purpose is to

2

.....................................1.2. Technologies

represent ontologies, the groupings those ontologies belong to, and the re-
lationships between those ontologies. This representation is explicit and
exact to allow a meaningful exchange of ontologies between different systems
and solutions. As such, it is important for our work, since it provides an
unambiguous description of knowledge that any compatible piece of software
can understand.[6]

1.2.3 OntoUML

OntoUML is a language extension first envisioned in Giancarlo Guizzardi’s
Ph.D. thesis "Ontological foundations for structural conceptual models". In
it, he designed the UFO (Unified Foundational Ontology), that he used to
create an extension of UML (Unified Modeling Language). This extension
enables the use of UML standards to create conceptual models of ontologies
and, most importantly, visualize them and the relationships between them.[7]
OntoUML has since its inception been adopted by many public and private
organizations all around the world.[8]

1.2.4 XMI

XMI (XML Metadata Interchange) is a standard devised by the Object
Management Group that uses XML syntax to represent metadata of UML
data models.[9] This metadata is useful for our project since it gives us the
ability to transform the metamodel (in other words, the set of available model
elements) into a single serialization that is then easily distributed between
organizations or individuals. It also allows for validation – a model can be
checked for discrepancies between it and a given metamodel.

3

4

Chapter 2
Design

In this chapter, we will discuss the requirements of our potential solution. In
order to do so, we need to first study other pieces of software that aim to fulfill
similar objectives as the goals we set out to achieve, so that we may recognize
which of their features and design elements we ought to implement as well.
Next, we look at existing JavaScript libraries that support modeling and
determine which can be used as a base which we will extend to accommodate
our needs. From that, we construct requirements, both functional and non-
functional, as well as produce use cases and activities that stem from those
requirements. Lastly, we design the visual appearance of the component.

2.1 Existing solutions

There are solutions currently available claiming to fulfill some of our initially
defined criteria. Through analysis of those solutions, we can determine what
parts of our goals are they able to achieve, what parts they can’t achieve,
whether they are able to achieve those parts well, and if (or how) they can
be extended to achieve other goals. We picked examples of those pieces
of software according to our (the author’s and the supervisor’s) previous
experiences and recommendations.

2.1.1 Menthor Editor

Web address: http://www.menthor.net/menthor-editor.html

Author: Menthor

Analyzed version: 1.1.9

Menthor Editor is a Java-based application for creating ontologies with
a large amount of functionality. It can model ontologies in the OntoUML
language as well as export it to various serialization standards, validate
ontologies, or generate documentation. In addition, it is available for download
for free without restriction of use as an open-source application.

If a user wants to alter or expand the application’s code, however, they will
run into significant problems. For example, the definition of the metamodel

5

http://www.menthor.net/menthor-editor.html

2. Design..

Figure 2.1: Menthor Editor

is located in a single file in the source code. Therefore, a person technically
could change the pool of available diagram elements. The problem, though,
is in how that definition is connected to the rest of the application. Since the
other components heavily rely on the vanilla version of the metamodel, simply
changing it would significantly break the application, so any seemingly simple
change brings with it large consequences in terms of requiring a rewrite of
major parts of the application. Not to mention, even if such a change were
able to be easily done, Menthor Editor is currently unable to dynamically
import other versions of the metamodel in a way that would facilitate simple
integration into other systems, as our requirements explicitly require.

Another problem with Menthor Editor is its instability. Basic modeling
is, from our experience, mostly uninterrupted by software issues, however,
the reliability of more advanced functions, such as exporting and validation,
is highly volatile. For example, simple changes of cardinalities of certain
relationships can break simple exporting to OWL.

2.1.2 Enterprise Architect

Web address: https://sparxsystems.com/products/ea/index.html

Author: Sparx Systems

Analyzed version: 12

Enterprise Architect presents a way to create detailed diagrams of various
types and specifications for purposes of modeling, analysis, testing and
maintaining of systems, processes, and architectures. It supports many
standards commonly used to assist software development (mainly UML) and
for those use cases, it offers a very generous amount of functions. Enterprise
Architect does not officially support OntoUML out of the box, nevertheless it

6

https://sparxsystems.com/products/ea/index.html

.................................. 2.2. Modeling libraries

Figure 2.2: Enterprise Architect

supports extensions, and as such can be supplanted with OntoUML elements
and standards.1

However, as the application’s focus is mainly towards aiding software design
and development, not ontology modeling, it is generally not suitable for use
cases stemming from our defined goals. In addition, the license requirements
pose a significant problem for the adoption of a potential extension that
we would develop, as Sparx Systems ask 230 US dollars for an entry-level
license.[10]

2.1.3 Summary

The solutions analyzed above do not present a valid solution or a base of
a solution for our requirements, mainly because both do not fulfill the key
requirement of being a web component that can be integrated into other web
applications. Furthermore, although both applications can be improved with
additional functionality, the way that the applications can be extended and
the process of implementing those extensions leave much to be desired in
both cases. However, there are design elements that we considered important
enough to include them in our design, such as the ergonomics/user interface
components of basic modeling processes.

2.2 Modeling libraries

Thanks to the architecture of the React library, we can aid the development
of the solution with an adequate pick of an underlying library that is designed
to allow graphical representation and modification of diagrams. By usefully
evaluating and selecting such library, we can significantly ease development,
since we will gain a base upon which we can build extensions that we won’t

1For example, the extension developed by Menthor Editor authors, available at https:
//github.com/MenthorTools/plugin-enterprise-architect.

7

https://github.com/MenthorTools/plugin-enterprise-architect
https://github.com/MenthorTools/plugin-enterprise-architect

2. Design..
have to create from scratch. By choosing poorly, however, we invite the risk
of using a base that cannot be improved with additional functionality, or can
be, but with significant difficulties. Therefore, choosing the right criteria for
determining which library is the best for our needs is crucial.

After analysis of our needs, the following criteria were chosen:

Extensibility. Whether it is possible to extend the library with additional
functionality, and if so, how difficult is such an extension, and what parts
of the library can be extended. This is important because of two reasons:
firstly, because we need to include features that almost certainly will
not be included in the base library in a form that is useful to us, such
as exporting or validation, and secondly, it is necessary to develop the
component in such a way that users down the line are able to extend
the finished product themselves, since it should be able to potentially
work with as many types of ontologies as possible.

License. Denotes the type of license agreement that is available to users
of the library. An ideal pick would be one which has no restrictions
to commercial and non-commercial use, both with standard use of the
library and with modification of the library’s source code.

Documentation. Here, we evaluate the completeness (what percentage of
functionality does the documentation cover), quality (where it lies on a
continuum between, for example, a mere mention of a function’s existence
and a detailed explanation including examples, etc.) and availability
(whether it is available as a complete document, wiki, forum posts, or
other forms).

Functionality. In other words, what percentage of the functionality we need
is already implemented in the vanilla version of the library and what is
the quality (in terms of reliability) of those functions.

Compatibility. Our component needs to be able to communicate with
other components/software solutions. Therefore, this criterion describes
the simplicity of transforming data of a given model, the component’s
settings, or the metamodel in such a way that it is possible to use that
data in a meaningful exchange between other computer systems.

All of these criteria are subjective, and as such can only be evaluated ordinally;
in other words, ranked from worst to best.

2.2.1 Detailed analysis

The five libraries subject to evaluation were found using the Google search
engine based on "JavaScript", "UML", "diagram", and "React" keywords and
chosen according to their popularity in the search results as well as their
ability to fulfill our needs.

8

.................................. 2.2. Modeling libraries

JointJS

Web address: www.jointjs.com/opensource

Author: client IO s.r.o.

In development: Yes

Licence: MPL

The modular library JointJS can model a large number of types of diagrams.
The documentation is short but describes all categories of use of the library.
Extension of the library is possible but very difficult. You can add other types
of diagrams relatively easily, however, due to the nature of the internals of
the library, any meaningful extension that would add significant functionality
to the library would involve rewrites of major parts of the core source code.

Storm React Diagrams

Web address: www.npmjs.com/package/storm-react-diagrams

Author: Dylan Vorster

In development: No

Licence: MIT

Storm React Diagrams is the only library in this list that takes full advantage
of the React library and it can be integrated with other React components,
as well as exchange information with them. The documentation and the list
of already implemented functions is small compared to other libraries on this
list, but that is compensated with the fact that the library’s customization
and extension is simple and can be done at any level of the source code.

Rappid

Web address: www.jointjs.com

Author: client IO s.r.o.

In development: Yes

Licence: Commercial

Rappid is an extended, commercial version of JointJS. In addition to
features contained within JointJS, this library is able to perform additional
tasks, such as exporting and diagram canvas manipulation. Furthermore, the
user can take advantage of a pool of already implemented tools and menu
bars to use in their application. The authors also provide professional support
and consultations, if needed.

9

www.jointjs.com/opensource
www.npmjs.com/package/storm-react-diagrams
www.jointjs.com

2. Design..
GoJS

Web address: www.gojs.net

Author: Northwoods Software

In development: Yes

Licence: Commercial

The largest advantage of using GoJS is its versatility. Hundreds of examples
of use cases and implementations of various types of diagrams, for example
UML, spiderweb-like mind maps and graphs, are available at the library’s web
site. As a result, the documentation of this library is thorough and extensive.

jsUML 2

Web address: www.uco.es/~in1rosaj/tool_jsUML2.html

Author: José Raúl Romero, PhD. et al.

In development: No

Licence: GPL3

This library, designed by a professor from a Spanish university in Cordoba,
has a large amount of functionality available out of the box, such as exporting,
stereotype defining, or tabs (which allows editing multiple diagrams at the
same time). On the other hand, extensibility of the library is remarkably
difficult, in part due to bare documentation in Spanish and also due to source
code that is not prepared for the addition of new functions.

Licences

GoJS and Rappid both use commercial licences. Therefore, they can’t be used
for the development of internal (for use within the organization that ordered
it) nor external (for further distribution to other organizations) software
solutions without a certain fee. In the case of GoJS, this fee is differentiated
between external and internal licenses.[11] Commercial licenses in general are
the ones that are favored the least in our solution, since high prices limit
the ability to distribute the component between as many organizations as
possible, the modification of source code is accessible for a higher price or
prohibited altogether, and the use of the component/library may be subject
to other laws. This relationship between the developer, distributor, and user
is further complicated if any of the parties reside in different countries.

The MPL (Mozilla Public Licence) license employed by JointJS is much
more flexible. In this case, any unchanged code of the library must be
distributed under the MPL license, whereas the license of any modified code
or code added on top is up to the developer’s discretion.[12] GPL3 (General

10

www.gojs.net
www.uco.es/~in1rosaj/tool_jsUML2.html

................................... 2.3. Software design

Public License) chosen by jsUML2 ’s developers differs from MPL in that the
modified or additional code must also be licensed under GPL3.[13]

The MIT license is by far the most lax. If we were to use Storm React
diagrams for any use, commercial or non-commercial, all we have to do is to
include a copy of the MIT license into the source code.[14]

Functionality

All of the libraries mentioned above support important functions such as
serialization and deserialization, definition of custom diagram elements (rela-
tionships and classes), interactive diagramming (in other words, the ability to
edit diagrams in a visual interface, without having to define diagrams in code)
and keyboard shortcuts. GoJS as a solution is specifically focused towards
providing the user with the largest possible pool of available tools for creating
diagrams in general – for example, transactions, connected buttons, diagram
trees (and graphs overall), or model debugging. On the other hand, Rappid’s
main objective is to offer a mostly complete (but still expandable) solution
with already implemented panels, menu bars, drop-downs, help functions,
diagram maps, etc.

Results

The chosen libraries were evaluated according to the criteria defined above
on a range from 1-5 (1 being the most favorable, 5 being the least favorable).
These evaluations were done at our discretion with regards to the solution’s
requirements and the detailed analysis of the chosen libraries.

Extensibility Licence Documentation Functionality Compatibility Mean
JointJS 3 2 2 3 2 2,4
Storm React Diagrams 2 1 3 3 1 2
Rappid 3 5 1 2 2 2,6
GoJS 3 5 2 2 3 3
jsUML 2 4 2 4 3 3 3,2

Table 2.1: Evaluation of modeling libraries

After careful consideration and analysis, we selected the Storm React
Diagrams library for our component. Compared to the other freely available
libraries, it if the most easily modifiable and extensible. It already takes
advantage of the React library and does not have to be edited to fit into the
existing solution. Its design makes it easy to implement the features necessary
to meet our requirements.

2.3 Software design

In this section, we seek to define and describe the exact requirements of the
project, its possible use cases and base architecture.

11

2. Design..
2.3.1 Functional requirements

The functional requirements defined for the projects are as follows:

Ontological modeling. The component is, at its core, an ontology modeling
tool. As such, it is crucial that it is able to perform all the basic tasks that
are required for that use, such as providing a canvas for manipulating
diagram elements, having the ability to name elements and add attributes
of various types to them in multiple languages, enabling the user to view
models in read-only mode, naming models, and saving/loading them.

Customization. As mentioned previously, ontologies can take many forms.
Because of that, necessary steps need to be made to ensure that a user
can modify the available pool of elements and their features, such as
graphical representation, names, and underlying information, as well as
attribute types, cardinalities, and languages.

Conversion. One of the main purposes of ontologies is that they can be
shared and parsed by multiple software solutions in a meaningful way.
In order to facilitate that, our project has to provide a way to convert
models created within the component into a serialization that is useful
to other users. The standard we have chosen for that function is OWL.
Next, the component must be able to interact with serialized definitions
of stereotypes and include them into the available stereotypes the user
can place in a model, as well as transfer those that the user created in
the component to a form that can be shared with others.

Validation. To determine whether a model conforms to certain standards
in terms of what diagram elements were used and in what way, the user
has to have the option to validate that model against either the settings
the component is operating under at that time or a settings file that
was created from a certain configuration that the user created/received
previously. To implement this, a definition of a language based on UML
standards is required.

Constraints. During modeling, the user needs to be able to evaluate the
model created using certain constraints that the user can define. They can
then see what constraints were violated and where the violation occurred.
As the model and its elements are represented via objects in Storm React
Diagrams, the choice of language is relatively straightforward: OCL
(Object Constraint Language).

2.3.2 Non-functional requirements

The non-functional requirements defined for the projects are as follows:

Reliability. The reliability, or vulnerability towards bugs and unintended
behavior, will be measured in automated testing for the base algorithms
and with user testing for the user experience.

12

................................... 2.3. Software design

Documentation. As the component is directed towards use by other users,
general documentation for the use of the component ought to be provided.

Source code availability. The source code of the application must be avail-
able so that other users can expand the functionality of the component
if they so desire.

Extensibility. The component must be designed and implemented in such
a way as to open the avenues through which to expand the functionality
as widely as possible.

2.3.3 Use cases

We can deduce the possible use cases and available activities of the component
through our requirements. These activities and the actors that can perform
those activities are shown in figure A.3. An activity diagram showing an
example of possible activities is in figure A.1.

Actors

In a given use case, actors can have one of three possible roles:. Viewer – a user who can only view an embedded, read-only version of
the model, for example on a web page..Modeler – someone who uses the component for the purposes of model
creation and manipulation but does not have access to the source code..Developer – a person who integrates the component into a web page/-
software system and has access to the source code.

2.3.4 User interface

The design of the user interface was influenced by the analysis of other
solutions (see section Existing solutions) and was created with consideration
to React and Storm React Diagrams’ limitations.

The list of stereotypes and the connection between them is present on the
left panel; when you select a diagram element on the canvas, a panel appears
on the right with a detailed description of the element and its attributes,
complete with forms to change those attributes.

A menu bar on top shows the model’s name and a series of drop-downs
containing most of the component’s tools and features. Selecting an option
requiring further input will open a modal dialog. If the user decides to evaluate
the diagram’s constraints, a panel on the bottom will appear detailing the
failed constraints.

A wireframe detailing the component’s user interface is available in appendix
A.2.

13

14

Chapter 3
Implementation

The component is based on the React library and uses Storm React Diagrams
as the underlying base package that enables it to provide a diagram canvas
on which models can be created and modified. Due to the fact that Storm
React Diagrams’ available documentation does not present a detailed expla-
nation of how the library work at its core, the process of understanding the
library’s architecture and taking advantage of it was quite challenging at first.
Storm React Diagrams’ code hides within it several peculiarities that are not
described thoroughly, if at all, in the documentation; however, after taking
the time to master those oddities, the main challenges of implementing the
project’s requirements were mainly the question of designing algorithms that
correctly fulfill the desired tasks or taking advantage of the right JavaScript
packages that provide the required functionality, for example, user interface
elements, serialization, or document fetching.

The implementation is available at the web address https://gitlab.fel.
cvut.cz/bindetad/oUML-diagram-app/tree/bachelorProject and the lat-
est version (as of May 24th, 2019) is included in the attachments.

Figure 3.1: The component

15

https://gitlab.fel.cvut.cz/bindetad/oUML-diagram-app/tree/bachelorProject
https://gitlab.fel.cvut.cz/bindetad/oUML-diagram-app/tree/bachelorProject

3. Implementation....................................
3.1 Architecture

The Storm React Diagrams library is based on the Model-View-Controller
architecture, where each diagram element (stereotype or relation) exists in a
data form (or model) and in a visual form (or view) that is bound to that
data form. All of these elements are categorized by the diagram controller
that keeps a list of each diagram element in the form of an object. As a result,
models can be easily expanded with new features/attributes, and theoretically
allow serialization of the chart with a variety of standards, such as JSON or
RDF/XML. It also simplifies communication between components wherever
needed. Element visuals are based on SVG graphics.

In addition, the project uses additional support libraries, especially for
constructing the user interface - react-bootstrap1 for general appearance, such
as tabs, buttons, menus and modal dialogues; rdf-ext2 to load and parse RDF
serializations for the purpose of loading new diagram elements; ECore.js3 to
load, parse and create serializations of component settings; OCL.js to build
and evaluate contraints4; sax.js to construct XMI-compliant serializations5.

The component offers an interface for various properties:

. loadSettings: accepts an XMI serialization to fetch settings.

. loadDiagram: loads a diagram from a serialization.

. readOnly: sets the component mode to read-only mode. Any action that
would alter the diagram is prohibited. Accepts boolean values.

. loadOntology: loads stereotypes from a .ttl external source.

3.2 Components

The structure of the component is divided into 6 main React components
unified under the main DiagramApp class - the menu bar, the left panel
for selecting diagram elements, the right panel for detailed description and
modification of diagram elements’ properties, the bottom panel for evalu-
ating constraints, the context menu, and the canvas itself. Panels and the
context menu are ordinary React components that occasionally refer back
to the diagram controller - but the canvas is a component created from a
modified Storm React Diagrams core that is extended with the ability to
allow communication between other components.

1Available at https://react-bootstrap.github.io/.
2Available at https://github.com/rdf-ext/rdf-ext/.
3Available at http://emfjson.org/projects/ecorejs/latest/.
4Available at https://ocl.stekoe.de/.
5Available at https://github.com/isaacs/sax-js/.

16

https://react-bootstrap.github.io/.
https://github.com/rdf-ext/rdf-ext/
http://emfjson.org/projects/ecorejs/latest/
https://ocl.stekoe.de/
https://github.com/isaacs/sax-js/

.....................................3.2. Components

Figure 3.2: Conceptual diagram of project components

3.2.1 Model elements

Every stereotype is an instance of the same class. Information about its name
and definition is taken from the left panel when the object is created. The
same is true for relationships, but with one difference: since each relationship
can have a different look (in terms of lines and ends – for example arrows or
points), a specific view must be manually assigned to each defined session.
Stereotypes can be loaded automatically from a predefined .ttl file when the
component is started - the component takes the appropriate classes from the
file, which it then offers for use in the left panel.

Figure 3.3: Conceptual diagram of diagram element classes and interface

17

3. Implementation....................................
3.2.2 Example

Consider an example ontology with a Person, who has an ID and a name
whose role is a Patient that is characterized by one or more Symptoms. There

Figure 3.4: Example ontology visualized in the component

are five elements in this diagram - 3 stereotypes and 2 relationships, which
are described in Czech and English. What the end user sees on the screen are
the visual elements - they take information about the stereotype, attributes,
cardinalities, etc. from the element model. The object model of the patient,
the symptom, and their relation from the implementation point of view is
shown in figure 3.5.

Figure 3.5: Object diagram of diagram element objects

18

.................................. 3.3. Advanced features

3.3 Advanced features

This section contains the specifics of more advanced features, including their
implementation and basic usage.

3.3.1 Constraints

Constraints of the model are implemented through collections of OCL state-
ments pertaining to given relationship types. For instance, if a user wanted
to include a constraint of "a Kind cannot be a subclass of a Phase", that
constraint would be realized through the Generalization relationship; there-
fore, that statement would be in effect re-framed as "if a Generalization
relationship has a Kind at its source, then a Phase cannot be its target",
where the source and target refer to the element from which the relationship
is created and the element to which the element is connected, respectively.

OCL (Object Constraint Language) is the language used to produce these
constraints. Functions enabling access to diagram elements’ attributes were
created in order to make the construction of OCL statements as simple as
possible. These include:. for relationships:. getSourceNode(): returns the stereotype of the source end of the

relationship. getTargetNode(): returns the stereotype of the target end of the
relationship.. getLinktype(): the type of the relationship, for example “General-
ization”.. getName(language): the name of the relationship in a given lan-
guage.. getSourceCardinality(): the cardinality at the source end of the
relationship.. getTargetCardinality(): the cardinality at the target end of the
relationship.. for stereotypes:. getName(language): the name of the stereotype in a given language.. getRDF(): the RDF source of the stereotype.. getStereotype(): the type of the stereotype, for example “Kind” or
“Relator”.. getAttributes(language): a list of attributes in a given language,
where attribute.getName() returns the name of the attribute and
attribute.getType() returns the type of the attribute.

Using these functions and OCL syntax, we can construct the statement
mentioned above as:

19

3. Implementation....................................
s e l f . getSourceNode () . g e tSte r eo type () = " Kind "
i m p l i e s
s e l f . getTargetNode () . g e tSte r eo type () <> " Phase "

This statement would be included in Generalization relationships.

Evaluation

After creating constraints and building a model, the user can evaluate the
constraints using the "Evaluate" tool available on the menu bar. Upon
activating the tool, the bottom panel appears with the list of relationships
whose constraint checks failed. The user can then investigate and remedy
any issues.

3.3.2 Validation

The act of "validating" in the context of the component compares the settings
(that is, the list of available stereotypes, relationships, OCL constraints,
cardinalities, languages, and attribute types) to either different settings or a
particular model. There are three modes that the component supports:
Comparing the current model to the current settings. This option adds

up diagram elements and their properties and tests if the model can be
recreated with the component’s current settings.

Comparing the current model to an external file. In this case, the com-
ponent takes an XMI input (see below) and validates the current model
with it.

Comparing the current settings to an external file. Here, the XMI in-
put is analyzed to find out if the current settings of the component and
the input are one and the same.

A potential use case of validation is comparing a model or settings to a certain
standard. For example, an organization could have its own set of defined
stereotypes, relationships, constraints, etc. with which to create models.
Therefore, they might want to find out whether an imported model or settings
are in conformance with their standard.

As mentioned above, in certain cases, the validation tool accepts an external
input as a source for comparison. This input is based on XMI and ECore
standards. More specifically: XMI syntax is used to convey ECore elements.
These elements represent the elements available in the component or the
elements present in a model.

ECore structure

ECore is a standard within the Eclipse modeling framework which allows for
definition of metamodels.6 A definition of a single metamodel, or a package,

6For more information, visit https://wiki.eclipse.org/Eclipse_Modeling_
Framework

20

https://wiki.eclipse.org/Eclipse_Modeling_Framework
https://wiki.eclipse.org/Eclipse_Modeling_Framework

.................................. 3.3. Advanced features

contains within it definitions of all diagram elements and attribute types,
or classes. A package has a name, a URI source, and a prefix, where prefix
refers to a shorthand for the source. For instance, if we were to serialize a
metamodel with a www.example.com source and an ex prefix, a Kind class
within the metamodel could be referred to as ex:Kind, which would translate
to www.example.com/Kind.

In the context of the component, there are five classes that act as categories
(or supertypes in ECore terminology) that are analogous to abstract classes
from which other classes are derived. These five supertypes are:. Stereotype,. Relationship,. Attribute Type,. Cardinality,. Language.

Every class is individually encapsulated in an eClassifiers tag and it also
has several attributes: a name, which is mandatory (for example Kind, if
we’re considering a stereotype), a supertype, and any additional attributes
that are defined according to the abstract class from which the class was
derived from. These attributes are defined as eAnnotations within the class
definition, and each eAnnotations contains a source, meaning a URI source
for the attribute type, and a key-value pair that describes the attribute’s
value.

Consider a relationship of the Mediation type with the following attributes:. linkEnd = "Empty",. labeled = true,. dashed = false.

21

3. Implementation....................................
Here, the relationship would be transformed into this XMI notation:

<e C l a s s i f i e r s
x s i : type=" ecore : EClass "
name=" Mater ia l "
a b s t r a c t =" f a l s e "
i n t e r f a c e =" f a l s e "
eSuperTypes="// Re la t i on sh ip ">
<eAnnotat ions source ="ex : l inkEnd">

<d e t a i l s key="linkEnd " value="Empty"/>
</eAnnotations>
<eAnnotat ions source ="ex : l a b e l e d ">

<d e t a i l s key=" l a b e l e d " value=" true "/>
</eAnnotations>
<eAnnotat ions source ="ex : dashed">

<d e t a i l s key="dashed " va lue=" f a l s e "/>
</eAnnotations>

</ e C l a s s i f i e r s >

Now, continuing with our www.example.com example, after compiling all
classes into the package, we get:
<?xml v e r s i o n ="1.0" encoding="UTF−8"?>
<ecore : EPackage

xmi : v e r s i o n ="2.0"
xmlns : xmi="http ://www. omg . org /XMI"
xmlns : x s i ="http ://www. w3 . org /2001/XMLSchema−i n s t a n c e "
xmlns : e co re ="http ://www. e c l i p s e . org /emf /2002/ Ecore "
name="Example "
nsURI="www. example . com/"
nsPre f i x ="ex">

. . . e C l a s s i f i e r s . . .

</ecore : EPackage>

This XMI serialization can then be used to store the component’s settings
in a single file for purposes of validation and importing settings.

3.3.3 Configuration

There are four main ways through which the user can customize the compo-
nent.

Configuration dialogues

The Settings drop-down on the menu bar contains options to create and
delete stereotypes, constraints, attribute types, languages, and cardinalities
via modal dialogues. They can, therefore, be modified right through the
component itself.

Turtle importing

The component supports importing stereotypes with a .ttl (Turtle) file. When
importing, the component is specifically looking for owl:Class definitions

22

.................................. 3.3. Advanced features

with rdf:label@language descriptions, where language is the specified
language code you are looking for. For example, these triples
<http :// onto . f e l . cvut . cz / o n t o l o g i e s / ufo /kind>
r d f : type owl : Class ;
r d f s : subClassOf

<http :// onto . f e l . cvut . cz / o n t o l o g i e s / ufo /non−r i g i d −type >;
r d f s : l a b e l

" Kind "@en ,
" Kind " @cs .

with the en language parameter return a
http://onto.fel.cvut.cz/ontologies/ufo/kind: "Kind" stereotype.

The file can be imported via a hyperlink in either the local configuration
or the Stereotypes option in the Settings on the menu bar.

XMI importing

The XMI serializations mentioned in section 3.3.2 can be used to import
settings that have been previously created.

Local configuration

If the user does not want to use XMI files to configure the component nor
the settings modal dialogues within the component itself, or perhaps they
wish to translate the component, they can customize the settings located
in the src/config folder. In these files, the user can change the default
settings that are present without any external sources. The instructions for
customizing these are within the files themselves.

3.3.4 OWL exporting

Since no JavaScript library that supports OWL serialization and is compatible
with the component is available on the Internet, a custom function that
serializes the current model into OWL language had to be implemented. This
function was designed by studying Menthor Editor ’s OWL "simple" output
with various models.

23

24

Chapter 4
Evaluation

In this chapter, we will evaluate the work we have done over the previous
chapters, how it stands up to existing solutions, what testing strategies we
have employed to assess the component’s viability and what were the results.

4.1 Comparison to existing solutions

To make the comparison as formal as it can be, let us consider two examples
of ontologies that we will use to judge the solutions’ comparative strengths
and weaknesses.

First, consider an ontology in which a Person has a name and a date of
birth that can be categorized into either a Man or a Woman, where a Man
and a Woman can be related to one another via Marriage as Husband and
Wife. Figure B.1 portrays this ontology in the component.

The second example looks at a similar concept, but through a different
lens: in it, we have a Person that is a member of a Family with a Head of
family. The Family is located at a Home, which is a role of a Property. A
Property can be either a House or an Apartment. The Property is located in
a City. A Person can also enroll in a School, which functions in a Property.
Figure B.4 portrays this ontology in the component.

4.1.1 Menthor Editor

The user experience of modeling with Menthor Editor is on a subjective level
slightly more bothersome than our component, because sometimes certain
actions cause unintended behavior - for example, confirming a dialogue some-
times does not save the data inputted within or making lines of relationships
look the way the user wants them to requires precision that other solutions
do not require. Also, implementing a 2..* cardinality necessary for one
relationship in the second example is not possible. However, there is one
significant advantage – in OntoUML, the Derivation relationship is special
in that is not drawn between two stereotypes, but between a stereotype and
a relationship, which is currently not supported in our component. It is,
therefore, able to correctly portray the Enrollment part of the second example.
Exporting the models to OWL in "simple" mode produces very similar results

25

4. Evaluation
to our component – this is to be expected since our exporting algorithm was
based on the results of Menthor Editor ’s algorithm. Figures B.2 and B.5
show the representation of the example models in Menthor Editor.

4.1.2 Enterprise Architect

As Enterprise Architect is a professional commercial application, its modeling
experience and tool set is excellent. The extension used also provided prefab
patterns, allowing for instance a Kind with two Sub-kinds connected via
Generalization to be added via a single drag of the mouse. Nonetheless,
OWL exporting is nonexistent; the option is there, however selecting it
produces an empty XML document. Default OntoUML constraints were also
added in out of the box, and Enterprise Architect automatically suggests
constraint-conforming relationships when connecting stereotypes. However,
the extension’s constraints contain a bug affecting this feature, which forbade
the modeling of the Enrollment section of the second example, which is
why that part is not present in the figure. Figures B.3 and B.6 show the
representation of the example models in Enterprise Architect.

4.1.3 Summary

The component’s main advantage that makes it stand out from the rest
is its nature as a web component; neither of the two other solutions allow
integration into web systems. This, combined with its comparably simple
import/export capability of not only the model, but settings as well put the
component into its own category.

This is not to say that the other solutions do not have their advantages –
as mentioned above, Enterprise Architect’s design makes modeling a breeze,
while Menthor Editor ’s feature set relevant to OntoUML modeling is vast
compared to our component. The most glaring omission is the lack of support
for Derivation’s connectivity, another is the inflexibility of stereotypes – they
currently cannot be resized, for example. These facts are not unchangeable,
however – there are not, as far as we can tell, insurmountable issues that
would prevent our component to catch up, feature-wise, to the other solutions.

4.2 Automated testing

Automated testing was implemented via Jest, a library designed for testing
React components.1 Twenty tests were designed to check the internals of the
component, more specifically the functions that are used in modeling and
interfacing with OWL, XMI and Turtle standards. Specific examples include:.Manual modeling - because model elements are JavaScript objects with

attributes, they can be tested using conventional object testing without
using the user interface at all.

1Available at https://jestjs.io.

26

https://jestjs.io

..................................... 4.3. User testing

. Constraints - whether OCL statements of various complexity can be
evaluated.. Interfaces - checks fetching, importing and exporting functionality.. Configuration testing - assesses the reliability of modeling with various
configurations - different element pools, unusual setups, etc.

After automatic testing, conventional modeling was evaluated without
problems – this result is expected since almost all functionality tested is ei-
ther getters/setters or implemented through the Storm React Diagrams base.
However, some bugs were found during the testing of importing, exporting
and validation, which were then promptly fixed. Interfaces and configura-
tion implementation did not import non-compliant inputs and recognized
compliant ones.

4.3 User testing

User testing was devised in order to test the user experience of the component.
Three scenarios analogous to common usage were created and handed to test
subjects along with a user’s manual and forms that they filled out describing
their experiences. Unfortunately, due to time constraints, only one person
out of six was able to participate in testing. The scenarios, user’s manual,
forms, and results are available in the attachments.

27

28

Chapter 5
Conclusion

The goal of our work was to design, implement and evaluate an advanced web
component for the creation and editing of OntoUML models that is suitable for
ontological conceptual modeling. We started with defining our requirements
and use cases, designing the interface and selecting the adequate JavaScript
package serving as the base for our modeling feature. Implementation of the
component had its challenges, but we were able to meet all of our functional
requirements, the most important of which are graphical modeling, OWL
exporting, constraint evaluation, settings importing/exporting, and validation.
Comparing the component to other solutions and testing revealed that while
the component has a few bugs and the amount of implemented functionality
is relatively smaller, its nature as a web component gives it a significant
advantage in terms of expandability and interoperability.

5.1 Future work

We recommend that future work is directed at bug fixing and expanding
functionality, especially in terms of exporting – the component could support
more types of OWL languages and various UML exporting protocols. The
experience of modeling itself could also be improved, for example with allowing
realignment of elements, resizing stereotypes, and so on. Also, significantly
more time needs to be dedicated towards testing, especially user testing, and
integration testing with other web components and web systems.

29

30

Bibliography

[1] "What Is An Ontology?". 2019. www-ksl.stanford.edu. Accessed May
22 2019. http://www-ksl.stanford.edu/kst/what-is-an-ontology.
html.

[2] "The History Of React.Js On A Timeline | @Risingstack".
2018. Risingstack Engineering - Node.Js Tutorials & Re-
sources. Accessed May 23 2019. https://blog.risingstack.com/
the-history-of-react-js-on-a-timeline/.

[3] "Virtual DOM And Internals – React". 2019. reactjs.org. Accessed May
22 2019. https://reactjs.org/docs/faq-internals.html.

[4] "Introducing JSX – React". 2019. reactjs.org. Accessed May 22 2019.
https://reactjs.org/docs/introducing-jsx.html.

[5] "npm". 2019. npmjs.com. Accessed May 22 2019. https://www.npmjs.
com/browse/depended.

[6] "OWL 2 Web Ontology Language Primer (Second Edition)". 2019.
W3.org. Accessed May 22 2019. https://www.w3.org/TR/2012/
REC-owl2-primer-20121211/.

[7] Guizzardi, Giancarlo, Gerd Wagner, João Paulo Andrade Almeida, and
Renata S.S. Guizzardi. 2015. "Towards Ontological Foundations For Con-
ceptual Modeling: The Unified Foundational Ontology (UFO) Story".
Applied Ontology 10 (3-4): 259-271. IOS Press. doi:10.3233/ao-150157.

[8] "OntoUML". 2016. OntoUML Community Portal. Accessed May 22 2019.
https://ontouml.org/ontouml/.

[9] "What Is XMI (XML Metadata Interchange)? - Definition
From Whatis.Com". 2019. searchmicroservices.techtarget.com. Ac-
cessed May 22 2019. https://searchmicroservices.techtarget.com/
definition/XMI-XML-Metadata-Interchange.

[10] "Pricing - Enterprise Architect | Sparx Systems". 2019. sparxsystems.com.
Accessed May 22 2019. https://sparxsystems.com/products/ea/
shop/index.html.

31

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/
https://reactjs.org/docs/faq-internals.html
https://reactjs.org/docs/introducing-jsx.html
https://www.npmjs.com/browse/depended
https://www.npmjs.com/browse/depended
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://ontouml.org/ontouml/
https://searchmicroservices.techtarget.com/definition/XMI-XML-Metadata-Interchange
https://searchmicroservices.techtarget.com/definition/XMI-XML-Metadata-Interchange
https://sparxsystems.com/products/ea/shop/index.html
https://sparxsystems.com/products/ea/shop/index.html

Bibliography
[11] "Pricing And Ordering". 2019. nwoods.com. Accessed May 22 2019.

https://www.nwoods.com/sales/index.html.

[12] "MPL 2.0 FAQ". 2019. Mozilla. Accessed May 22 2019. https://www.
mozilla.org/en-US/MPL/2.0/FAQ/.

[13] "A Quick Guide To Gplv3 - GNU Project - Free Software Foundation".
2019. Gnu.Org. Accessed May 22 2019. https://www.gnu.org/licenses/
quick-guide-gplv3.html.

[14] "The MIT License | Open Source Initiative". 2019. Opensource.Org.
Accessed May 22 2019. https://opensource.org/licenses/MIT.

32

https://www.nwoods.com/sales/index.html
https://www.mozilla.org/en-US/MPL/2.0/FAQ/
https://www.mozilla.org/en-US/MPL/2.0/FAQ/
https://www.gnu.org/licenses/quick-guide-gplv3.html
https://www.gnu.org/licenses/quick-guide-gplv3.html
https://opensource.org/licenses/MIT

Appendix A
Design diagrams

Figure A.1: Activity diagram of deployment, modeling and viewing

33

A. Design diagrams

Figure
A
.2:

W
irefram

e
ofthe

com
ponent

34

....................................A. Design diagrams

Fi
gu

re
A
.3
:
U
se

ca
se
s

35

36

Appendix B
Example models

Figure B.1: The first example ontology modeled in the component

37

B. Example models

Figure B.2: The first example ontology modeled in Menthor Editor

38

....................................B. Example models

Figure B.3: The first example ontology modeled in Enterprise Architect

Figure B.4: The second example ontology modeled in the component

39

B. Example models

Figure B.5: The second example ontology modeled in Menthor Editor

Figure B.6: The incomplete second example ontology modeled in Enterprise
Architect

40

Appendix C
Guide to the attachments

. readme.txt - short description of attachment contents. src/ - the component’s source code. user-testing-manual - the user’s manual, testing scenarios, and feed-
back forms. user-testing-results - the results of user testing

41

	Introduction
	Motivation
	Technologies
	React
	OWL
	OntoUML
	XMI

	Design
	Existing solutions
	Menthor Editor
	Enterprise Architect
	Summary

	Modeling libraries
	Detailed analysis

	Software design
	Functional requirements
	Non-functional requirements
	Use cases
	User interface

	Implementation
	Architecture
	Components
	Model elements
	Example

	Advanced features
	Constraints
	Validation
	Configuration
	OWL exporting

	Evaluation
	Comparison to existing solutions
	Menthor Editor
	Enterprise Architect
	Summary

	Automated testing
	User testing

	Conclusion
	Future work

	Bibliography
	Design diagrams
	Example models
	Guide to the attachments

