
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Strong Privacy-Preserving Multi-Agent
Planner

Radek Bumbálek

Supervisor: Michal Štolba, Ph.D.
Field of study: Open Informatics
Subfield: Computer Games and Graphics
May 2019



ii



ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

459128Osobní číslo:RadekJméno:BumbálekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačové hry a grafikaStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Multi-agentní plánovač se silnou ochranou soukromých informací

Název bakalářské práce anglicky:

Strong Privacy-Preserving Multi-Agent Planner

Pokyny pro vypracování:
Cílem práce je implementovat a experimentálně vyhodnotit teoretický koncept multi-agentního plánovače s výpočetně
silnou ochranou soukromých informací. Implementace bude založena na existujícím multi-agentním plánovači (PSM
Planner) na frameworku pro secure multi-party computation (Sharemind). Úkolem studenta je:
- Nastudovat si relevantní literaturu a pochopit témata multi-agentního plánování a secure multi-party computation.
- Seznámit se s plánovačem PSM, frameworkem Sharemind a s implementací bezpečného průniku konečných automatů
v jazyce SecreC.
- Integrovat plánovač PSM a framework Sharemind a implementovat nezbytné úpravy (např. rozhraní).
- Experimentálně vyhodnotit výsledný plánovací systém.

Seznam doporučené literatury:
- J. Tožička, J. Jakubův, A. Komenda. 'Privacy-concerned multiagent planning.' Knowledge and Information Systems 48.3
(2016): 581-618.
- J. Tožička, M. Štolba, and A. Komenda. 'The Limits of Strong Privacy Preserving Multi-Agent Planning.' in Proceedings
of the 27th International Conference on Automated Planning
and Scheduling (ICAPS),In Press , 2017.
- D. Bogdanov. 'Sharemind: programmable secure computations with practical applications.' PhD Thesis, 2013.
- R. Guanciale, D. Gurov, and P. Laud. 'Private intersection of regular languages.' in Proceedings of the Twelfth Annual
International Conference on Privacy, Security and Trust (PST) IEEE, 2014.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Michal Štolba, Ph.D., katedra počítačů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 24.05.2019Datum zadání bakalářské práce: 15.02.2019

Platnost zadání bakalářské práce: 20.09.2020

_________________________________________________________________________________
prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryMichal Štolba, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1



III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1



Acknowledgements
Primarily I would like to thank my su-

pervisor Michal Štolba, Ph.D. for his guid-
ance and willingness to help. I would also
like to thank Riivo Talviste and Share-
mind support team for responding my
questions about Sharemind.

Declaration
I declare that the presented work was

developed independently and that I have
listed all sources of information used
within it in accordance with the method-
ical instruction for observing the ethical
principles in the preparation of university
theses.

Prague, 24 May 2019

v



Abstract
The objective of this thesis is to im-

plement, experimentally evaluate and in-
troduce a privacy-preserving extension of
multi-agent planner PSM, using multi-
party computation program Sharemind.
The document also contains a description
of used planning principles, as well as de-
scription of PSM planner and Sharemind.
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Abstrakt
Cílem této bakalářské práce je vytvořit

rozšíření multi-agentního plánovače PSM
Planner, které zachovává silnou ochranu
soukromých informací. Tato ochrana je
zajištěna pomocí programu Sharemind.
Práce se zaměřuje kromě samotného po-
pisu řešení i na představení plánovače
PSM Planner, jakožto i možností pro-
gramu Sharemind. Dále práce obsahuje
experimentální analýzu řešení.

Klíčová slova: plánování, plánovač,
multi-agentní plánovač

Překlad názvu: Multi-agentní plánovač
se silnou ochranou soukromých informací
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Chapter 1
Introduction

Automated planning ranks among classical artificial intelligence approaches.
However, its problem-solving ability offers many practical applications. With
a multi-agent approach, the number of possible applications raises. Multi-
agent planning is divided into centralized and decentralized versions. The
motivation behind the distribution of the planning process is mainly to pre-
serve private information of planning agents. Up to date multi-agent planners
prevent an intentional sharing of private information, but an unintentional
leakage is often overlooked.

Automated and multi-agent planning with its general problem-solving
ability has a high potential for use in many sectors, such as transportation,
delivery services, but also creating evacuation plans or even space industry.
All these possible usages are demonstrated in benchmark problems.

However for competitive industries, next to the ability to cooperate, there
is also a need for preserving private data. On the one side, we want to share
information about our possible actions, to enable cooperation and finding the
best possible solution. On the other side, we want to hide our weaknesses or
patents which might become targetable through cooperation.

The main focus of this work is to implement a strong privacy preserving
multi-agent planner, which prevents an unintentional information leakage
via an extension to PSM planner [1]. The extension is an implementation
of the One-shot-PSM planner proposed theoretically in [2]. This work aims
to assure computation safety by using a multi-party computation software
Sharemind.

In this thesis, our goal is to describe the solution and present testing results.
To assure proper understanding and sufficient knowledge base, the thesis
starts with explanations and examples in the field of planning. The second
part focuses on the solution itself, as well as experiments. A brief introduction
to multi-party computation is also present.
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Chapter 2
Automated Planning

The most basic description of automated planning is a process, which gen-
erates a problem-solving plan. However, this definition is very broad and
therefore there are many types of planners. Before we can specify the planner,
we need to define the problem in means of automated planning.

2.1 Domains and Problems

In the simplest form we assume there is an entity (agent) in a specific en-
vironment (world) where it can achieve some goal. The domain describes
the world as a set of states and deterministic actions. An agent is in a state
and applying an action will change it. The current state also defines which
actions can be used. The state which agent is in, at the beginning of the
planning process is called the initial state. The agent wants to achieve a goal
state by applying a sequence of actions. If this sequence leads from the initial
state to a goal state and it is executable, we call it a plan. The initial state
and the goal state is the problem.

A formal definition used in most of the literature follows. We have not
included events in this definition hence we are not considering them in prob-
lems. This definition otherwise implies the classical planning model.

. Π is a quadruple representing agent’s problem: < S,A, I,G >. S is a finite set of states. A is a set of actions. I ∈ S is an initial state.G ∈ S is a goal state. γ : S ×A→ S is a transition function

5



2. Automated Planning .................................
If the domain is defined in this general manner, many different problems

can be solved by the same planner. It is called domain-independent planning.
Enhancing the planner with some specific information may cause a significant
planning speed increase, but it also can restrain some planners from solving
the problem. With the need for a specific planner for a specific domain, we use
term domain dependent planning. We will focus only on domain-independent
planning.

Example 1. Imagine a navigation problem. Our agent is a car. States are
towns. Actions are representing movement on roads between them. The initial
state is then the town where we start and the goal is our desired destination.

2.2 Planning as a state space search

In the initial state, we assume a set of applicable actions. Applying each of
them reveals us new reachable states. If we apply actions recursively, we will
obtain a graph structure of reachable state space. A graph can contain loops
and cycles, which are undesirable. Search algorithms break these cycles and
therefore we will refer to these graphs as state space trees. If the goal is in
this space, the problem has a solution. The plan is a path in the tree leading
towards the goal state leaf.

The planning algorithm then must search this tree to find a solution. There-
fore it might appear that a planning problem shrinks to a search tree problem.
It might seem that for example, a simple breadth-first search might be suffi-
cient to solve any planning problem, but it would not be efficient. State space
trees tend to grow at a very fast pace. The amount of memory or running time
necessary to search through each possible state then grows over realistic values.

Example 2. Imagine a previous navigation problem. With 10 roads leading
from each town and 20 towns on our way, the state space tree will have over
1020 nodes. Even with navigation able to search 1 billion states per second,
we would have to wait over 3 thousand years to get our path.

As seen in Example 2., it is necessary to reduce the state space size, prevent
cycling and in general avoid the blind search. Therefore search algorithms
are usually customized and enhanced. For classical planning problems where
nonoptimal solutions are acceptable, the search algorithm that is used most
frequently is Greedy Best-First Search [3]. Another strong enhancement is
heuristic functions. A heuristic function evaluates each new state with an
estimated cost or a distance from the goal. These estimations help to focus
search towards some goal.

6



................................. 2.3. Multi-agent planning

2.2.1 Planning as a plan space search

While the state space search uses actions to discover new states until a goal
state is found. A plan is generated at the end of the algorithm, after finding
the goal as a route to that goal. The plan space search uses the opposite
approach. The plan space search instead of discovering new states by applying
actions, it uses actions to discover new plans.

Adding, subtracting or changing actions in already created plans refines
new plans. All plans create a plan space that is being searched through via
these actions. If there is a plan which solves the problem, it is contained in
the plan space. However, the plan space is infinite. This is one of the biggest
drawbacks which causes plan space search algorithms to be in general slower
and less used [3].

Also, a lack of explicit states prevents the usage of some heuristic and
control knowledge. Therefore the state space search scales better with bigger
problems [4].

The output of a plan state planner might not be a direct sequence of actions.
Actions in a plan might be ordered more loosely, while some parts of the plan
have to be executed in exact order, others have not. This allows alternative
approaches to the plans, such as using a single data structure for storing
multiple plans. A convenient structure is, for example, a finite state machine.

2.3 Multi-agent planning

There are several different motivations behind multi-agent planning. Each of
them leads towards different problems and therefore different approaches. We
distinct cooperative and opponent agents. We define a pair of opponent agents
when their goals are different and reaching a goal state for one agent prevents
the possibility to reach a goal state for the other agent [5]. Competitive
agents often lead more towards game theory and strategical analysis, than
planning, therefore we will be focusing on cooperative agents only.

With multiple agents, it is necessary to adjust our problem definition.
For multi-agent planning, the most commonly used problem formalization is
MA-STRIPS [7]. However, before we define our problems in MA-STRIPS,
we have to adjust our previous definition to STRIPS [8].

. Π is a quadruple representing agent’s problem: < P,A, I,G >. P is a finite set of atoms (facts, propositions)

7



2. Automated Planning .................................
States defined earlier are collections of these propositions: ∀s ∈ S, s ⊆ P .

Planning algorithms’ main tool are actions. Their application expands the
state space and thus allows finding goals. In STRIPS formalization actions
now does not change whole state, but only some of atoms which define that
state. This allows more compact representation, dividing action (a) into its
preconditions (pre(a)), add effects (add(a)) and delete effects (del(a)). This
is a formally written example for action a which changes state sx into sy:

sx, sy ∈ S ⇒ sx, sy ⊆ P, a ∈ A, a =< pre(a), add(a), del(a) >

(sy = a(sx)) ⇐⇒ ((pre(a) ⊆ sx) ∧ (sy = (sx \ del(a) ∧ sx ∪ add(a))))

MA-STRIPS is then just a simple extenstion:

. Φ is set of k agents, Φ = {ϕi}ki=1. The multi-agent problem M is a set of local STRIPS problems M =
{Πi}ki=1

2.3.1 Centralized

Example 3. Imagine a delivery problem. We have two agents, one is collecting
packages from senders and the other is then delivering packages to recipients.

Example 4. Imagine a traffic problem. We have two trains on one railway
track. Each of them is heading towards different stations, but they might
share part of their track, where they can not avoid each other.

Both examples show us multi-agent problems, which can be solved by
centralized planning, even though these problems are very different. In Exam-
ple 3. we have two agents that share a common goal. They need to cooperate
with their actions in order to achieve it.

In Example 4. goals of each agent are different. However, they share an
environment. Actions of one influence the possibilities of the other. Therefore
it is necessary to plan their plans together to avoid collisions.

Despite differences, if a problem can be solved centrally, we can merge
agents with their states and then solve it as a one-agent problem. The initial
state then became a combination of initial states of each agent. Even though
the action of one agent will not change the current state of the other agent,
merging their states creates a new combination. In Example 4. different goals
can be again merged into one state, which fulfills goals of each agent. In

8



................................. 2.3. Multi-agent planning

STRIPS representation, merging states is simple conjunction of atoms.

2.3.2 Distributed

The same problem, which can be solved by centralized planning can be also
solved by the distributed version. Even though that problems might not differ
(we could even reuse Example 3. and Example 4.), the procedures are very
different. However, distributed planning is usually much more difficult to
implement. Moreover, it does not guarantee higher time efficiency.

The reasons behind using distributed multi-agent planning derives from
practical use. In real-life problems, we deal with multiple agents having their
own goals, and it is often impractical or undesirable to create the plan for all
agents centrally [6]. Also, decentralization may be forced by the uniqueness of
each agent. Last but not least, we sometimes need to distribute the planning
process in order to preserve the privacy of each agent.

In distributed planning, we have to distinguish actions as well as states.
Some actions may influence other agents. Therefore it is necessary to share
them so other agents could create their plans in accordance with possible
actions of the first agent. Both states and actions are defined by atoms.
Therefore it is logical to start distinguishing them first, into internal and
public.

We call p ∈ P internal for agent ϕi if other agents can not require p for
any of their actions and none of their actions may have p in add or delete
effects. If p ∈ P is not internal then it is public.

. p ∈ P int
i ⇐⇒ (∀j 6= i)(∀a ∈ Aj)(p /∈ pre(a) ∧ p /∈ add(a) ∧ p /∈ del(a)). p ∈ P pub ⇐⇒ (∀i)(p /∈ P int

i )

The problem of the agent ϕi is then redefined as:. Πi =< P int
i ∪ P pub, Ai, Ii, Gi >

If an action has a public fact in its preconditions, add or delete effects, it
is public. Otherwise, it is internal. Public actions cannot be explicitly shared
because they contain internal facts as well. Therefore we create a public
projection a. of each public action a. A public projection of action contains
only public facts in preconditions, add and delete effects.

. a ∈ Apub
i ⇐⇒ (pre(a) ∪ add(a) ∪ del(a)) ∩ P pub 6= ∅

9



2. Automated Planning .................................
. a ∈ Aint

i ⇐⇒ (pre(a) ∪ add(a) ∪ del(a)) ∩ P pub = ∅. a. =< pre(a) ∩ P pub, add(a) ∩ P pub, del(a) ∩ P pub >. a ∈ Aproj
i ⇐⇒ (∃j 6= i)(∃b ∈ Apub

j )(a = b.). Πi =< P int
i ∪ P pub, Aint

i ∪A
pub
i ∪Aproj

i , Ii, Gi >

Sharing internal information would be at least ineffective because it would
increase the size of the state space and therefore slow the algorithm. And in
case of privacy concerned planning, needless sharing of any internal informa-
tion goes against its principles.

We can now strictly distinguish which atoms and actions to share and which
to keep private. By sharing necessary information, it is assured that a state
space generated for each agent will contain goal states if they are reachable.
However plan of one agent may depend on other agents and therefore it is
necessary to ensure compatibility of plans. To do so, we introduce public
plans and extensibility.

A plan πi is a solution to a problem Πi of an agent ϕi. The plan πi contains
both, internal and non-internal actions. However internal actions cannot
influence other agents. We create a public plan πBi by removing internal
actions and creating public projections of public actions used. In order to
ensure compatibility we only need to make public plans compatible, which
means that by adding private actions of the agent ϕj to πBi , we can create
a solution to the problem Πj of the agent ϕj . Than we call the public plan
j-extensible.

. πi is a solution to a problem Πi of an agent ϕi. πBi = {a|a ∈ πi ∩Aproj
i ∨ (b ∈ πi ∩Apub

i ∧ a = b.)}. πBi is j-extensible ⇐⇒ ∃πj , π
B
j = πBi

If we find a public plan which is extensible for all agents, we found a solution
of multi-agent problem M .[2]

Some multi-agent planners generate a few local plans for each agent and
then compare their public projections until they find a match. Since security
is our main concern, we will make a comparison using secure computation
software.

10



Chapter 3
Secure computation

In the previous chapter, we have described a multi-agent planning problem.
In order to implement a secure system, we can not let agents share their plans
with others. Even though they need to compare only public projections of
their plans, important data may leak during this comparison. Therefore we
need a third party software to make a secure comparison of plans to find a
global solution suitable for all agents.

There are many approaches to achieve security which means guaranteeing
the correctness of the output as well as the privacy of the agents’ inputs. Our
choice may be influenced by various factors such as speed, scalability or a
type of malicious agents. We can divide agents into:. Honest - Normally working agent.. Semi-honest (curious, passive) - Agent cooperates and follows given

algorithm, however he is trying to obtain additional information about
other agents..Malicious - Agent does not cooperate. His intentions may be corrupting
system with false data or abort it completly.

We consider semi-honest (curious, passive) agents, which would not try
to disrupt the whole process but cooperate to gather additional information
about other agents. Let’s describe the two most significant methods used,
homomorphic encryption and multi-party computation.

3.1 Homomorphic encryption

Homomorphic encryption is a specific type of encryption, where encrypted
data can be treated in a similar way as original data. We can apply the
desired function on encrypted data and after decryption, we will get the same
result as if we applied the function on the original input. Therefore the third
party does not require decryption key and even if some data would leak,
without the key would be worthless.

11



3. Secure computation..................................
However classical homomorphic encryption allows only a specific function

to be used, based on the encryption approach. Therefore it is impractical.
More commonly used is full-homomorphic encryption, which allows almost
any function to be applied and get a correct, encrypted solution.

3.2 Multi-party computation

The multi-party computation uses a different approach. Algorithms divide
data into parts, which then can be processed individually and the final result
is then composed of partial results. As long as some parts of the system
remain secure, leaked data will not be sufficient to compose the original input.
However, there is no general way of dividing data. It may depend on the type
of data, as well as the type of operation.

Multi-party computation is a vast part of cryptography, offering computa-
tion safety as well as efficiency. It is often used for example for processing
confidential data or data-mining. Therefore there are many solutions and
programs offering privacy-preserving property.

12



Chapter 4
Related work

4.1 Privacy preserving planning

Despite a high amount of planners, privacy specialization is rare. Guy Shani in
[13] offers a theoretical approach to algorithms. However, the most important
foundation for this planner was [2]. In this paper are described as different
approaches as well as their limits. Algorithms are divided into three basic
types, each covering two of three main attributes as seen on Figure 4.1. Those
attributes are completness, Efficiency and Strong privacy preserving. Paper
also contains the very important theorem of impossibility, which precludes
algorithm having all three attributes at once.

Figure 4.1: Scheme of PSM-based planners properties, from [2]

Brafman describes an algorithm as strongly private if no agent can deduce
information beyond the information that can be deduced from its own actions’
description, the public projection of other agents’ actions, and the public
projection of the solution plan, about the existence of a value or a variable
that is private to another agent, or about the model of an action [12].

Completeness is perceived as the ability of a planner to always find a solu-
tion if the solution exists. Efficiency is an ability to find a solution without

13



4. Related work.....................................
searching through the whole state space. A state space is usually enormous
and being able to find the solution without the need to search through each
state offers a major speed improvement.

In the paper [2] are considered 3 algorithms. Iterative planning, where
agents generate only a small amount of plans and exchange their public
projections. If they match, a solution is founded. If not, agents use public
projections of other agents to enhance their search. They evaluate public
actions used by other agents in order to increase the probability of the ap-
pearance of these actions in their next plans. It is considered to be Complete
and Efficient. However not privacy preserving, because by each comparison,
agents can predict the existence of some private atoms of other agents. The
only way how to prevent data leakage is by applying comparison only once.

The remaining two algorithms are similar. It is the Full and the One-shot
algorithm. The full version considers searching through the whole state
space, generating every plan of every agent. If there is a solution, then
it has to be found. A comparison of a set of plans is then applied only
at the end of the algorithm and therefore no additional information can
not leak. However, searching for all plans is very inefficient. For big prob-
lems, there is no guarantee that the program would finish in a reasonable time.

Therefore we decided to implement a One-shot algorithm. Each agent
generates only a limited set of plans. The limit may be a number of plans,
however since a run time is our other concern, next to privacy-preserving,
we use a time limitation. After a specified time period, agents shut down
their planning algorithms and gather all plans generated so far. Then plans
are compared. We can guarantee Efficiency and Privacy preserving, but a
solution may not be found.

Even though that lack of Completness may seem like a big drawback, it is
still the better option, since the only other option to keep Privacy preserving
ability is to search the whole state space. On big problems, it is practically
guaranteed that the Full algorithm would not end in a specified time and
therefore it would fail. The One-shot gives us at least a chance to actually
find a solution.

4.2 PSM planner

The privacy-preserving planner is an extension to PSM planner [14]. PSM
means Planning State Machine. It is a specific structure for storing plans,
which PSM planner uses. The planning state machine is a finite state machine
structure modified for planning purposes. However, in our solution, we omit
PSMs and we make use of standard plans.

14



................................4.3. Multi-party computation

The PSM planner does not contain a planning algorithm implementation.
It preprocesses data from PDDL to STRIPS (MA-STRIPS) format, via a
process called grounding. Then it creates threads for each agent as well as a
single special thread called broker, which synchronizes agents and processes
an output. Each agent runs a fast-downward [15] planner via a script. The
PSM planner is implemented in Java. The algorithm in detail is described in
chapter 5.

4.2.1 Fast-downward

Fast Downward is a classical planning system based on ideas of heuristic
forward search and hierarchical problem decomposition [16]. Fast-downward
itself is a state of the art planner. Moreover, it can process landmarks of
states in order to enhance the heuristic search. This was specifically useful for
the original iterative multiagent planning. Reusing Fast-downward provides
a more compact implementation.

4.3 Multi-party computation

As mentioned in chapter 4, multi-party computation is a vital part of secure
privacy-preserving planning. Desired operation to compute is a set intersec-
tion. Even though this operation is among basic MPC functions and division
of threads into independent agents leads to MPC solution, we have decided
to use a trusted third party software which guarantees data security.

In [2] is proposed the usage of the privacy-preserving intersection of deter-
ministic finite automata [18]. The presented algorithm can use finite state
machines as an input and is implemented in the language secreC 2, executing
on the Sharemind platform. We decided to implement a set intersection of
plans instead. The reasons were mainly practical. Operating directly with
plans allows easier testing. The algorithm itself is simplified, as well as the
input. However, we decided to use Sharemind as a solution platform, mainly
for its security guarantees.

4.3.1 Sharemind

Sharemind is a novel database and application server that collects data in
an encrypted form and uses techniques like homomorphic encryption, secure
multi-party computation and hardware isolation to process it without leak-
ing the private inputs even to the machine memory, providing end-to-end
encrypted data processing [17].

The solution was implemented on the Sharemind Academic Server environ-
ment, which is distributed as a virtual box image, running on Debian. The
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4. Related work.....................................
Sharemind Academic Server also contains (with a need of a specific license) a
CSV-importer, which allows importing data into the database via CSV and
XML files.

Sharemind offers variable licenses. The Application Server License runs
computations on separate servers. In our case, for testing purposes, we use
local separated threads instead of dedicated servers. However, the application
works identically. In both cases, scripts are written in SecreC 2 language and
the approach is the same, thus functionality on separated servers is guaranteed.
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Chapter 5
Implementation

The solution consists of the extension of PSM-planner written in Java and
the Sharemind set intersection script written in SecreC 2. Moreover, we used
bash scripts for tests and evaluation, which will be briefly mentioned in the
sixth chapter.

5.1 Planner

The PSM planner run changes dramatically based on the problem which it
is solving. Also, multiple simultaneously running threads make description
more difficult. We can divide the process into preprocessing of the problem
and planning itself as well as threads can be distinguished as Agents and a
Broker.

An agent can not communicate with other agents. They are all connected
to the broker (centralized communication) who provides information exchange.
For a better understanding of changes made a description of the original
program follows.

5.1.1 Original PSM planner

The original PSM-iterative planner starts with the preparation of a problem
and a domain (viz uml sequence diagram Figure 5.1). This preprocess does
not only prepare data for the planner but also contains a relaxed planning
algorithm and sets initial landmarks. Landmarks are used to evaluate the
probability of actions to lead towards the solution. The planner is trying to
primarily use marked actions.

Preprocessing does not share private actions and facts directly. However,
there is a possibility of privacy information leakage because of public fact
sharing during relaxed planning. Determining the amount of information
leaked is difficult. Removing completely relaxed planning would need changes
in the whole preprocessing. Without the possibility to measure information
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5. Implementation....................................
leakage, we can not easily adjust the algorithm and finally any changes of the
preprocessing algorithm would need completely new testing, which is very
time demanding.

Therefore we decided to keep this change for future work and not change
preprocessing when implementing our extension. Also, input is strictly deter-
mined in [19] and thus will not be changed.

Main

Agent
Create Agents

Create Broker
Broker

Preprocessing

Iterative Planning

Login

Actions' Names

Constants

Relaxed Planning

Public Actions

Alternative

[Is Publicly Solvable]

[Else]

Public plan

Extension

Figure 5.1: Distributed planning algorithm scheme

Preprocessing

The main function needs a location of the factored problem directory. Based
on files inside this directory, corresponding agents’ threads are created as well
as the broker. After connecting each agent to the broker, problems are read.
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....................................... 5.1. Planner

For purposes of easier composing of the output, the algorithm starts with
exchanging original names of actions.

Each agent determines and exchanges constants. Constants are predicates
which cannot be changed by actions and thus remain constant during planning.
Next step is relaxed planning, depicted by scheme Figure 5.2.

Agent

Agent

Agent

Apply All Actions 
Repeatedly

Send public facts

Broker

Recieve public facts 
from all agents

New public 
facts?

Abort program All 
goals 

satisfied?

Yes

No
New iteration did not bring 
any new facts. Therefore 
all reachable facts has 
been achieved and it is 
not enough to solve the 

problem.

Send new public 
facts to all agents

Create 
landmarks

Yes

No

Relaxed planning 
succeded.

Solution was not found in this iteration. However new discovered facts might 
cause unapplied actions to become applicable, which might lead to solution in 

next iterations.

Figure 5.2: Relaxed planning scheme

The agent applies repeatedly all actions as long as new facts are generated.
Then it sends those facts, which are public to the broker. If the broker
does not acquire new public facts from at least one agent, it means that all
possibilities have been searched through and the solution was not found. If
it gets some new public facts, compares it with goals to be reached. If all
goals are reached, the algorithm ends successfully. If goals are not reached,
all public facts are sent back to agents. At least some agents acquire new
facts which may lead to new applications of actions, thus to new reachable
facts to be revealed.

Relaxed planning is a heuristic approach where planning proceeds without
negative effects of actions. As a heuristic, its function is to fasten planning,
which is achieved by evaluating facts by landmarks. However relaxed planning
fulfills more purposes in this case. It also provides reachability analysis. If
goals are not reachable by relaxed planning, the problem does not have a
solution and planning ends.
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5. Implementation....................................
Otherwise, the algorithm continues by grounding and exchanging public

projections of actions. Now it is determined whether the goal of each agent
can be reached by his own actions only. If so, the broker generates a public
plan and agents only create their extensions to that plan. The output is then
generated and the program ends. Otherwise, the distributed planning itself
takes place.

Planning

After grounding problems into STRIPS, Fast-downward can be used. The
broker calls a new iteration and each agent uses FD to generate several plans.
Then public projections are created and compared. Each agent checks the
extensibility of each plan. If there is a plan extensible by all agents, the
program found a solution and generates output.

However, if there is no plan extensible by all agents, planning continues.
Non-extensible plans are used to adjust landmarks of public actions used in
order to higher the chance of finding an extensible plan in following iterations.
The broker then calls the next iteration and the planning process repeats
until a solution is found.

5.1.2 One-shot algorithm implementation

As being said earlier, the preprocessing remains the same (viz uml sequence
diagram Figure 5.3). We have only slightly adjusted an input in order to ease
testing. Making a problem and a time limit as main functions’ arguments
allows us to use bash scripts to solve several problems in an automated
sequence. Because the preprocessing is not changed, in some cases planner
solves the problem even without calling the One-shot algorithm.
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....................................... 5.1. Planner

Main

Agent
Create Agents

Create Broker
Broker

Preprocessing

Planning

Alternative

[Is Publicly Solvable]

[Else]

Public plan

Extension

Start Sharemind Severs
Sharemind

Import hashes

Import Agent count

Set Intersection

Publish solution

Re-send solution

Run

Figure 5.3: One-shot planning algorithm scheme

After grounding One-shot agents call Fast-downward in a loop. Each call
returns several plans which are saved for future use. When the time limit
expires, all Fast-downward threads are killed. Agents then make public pro-
jections of plans they have found. Different plans may share the same public
projection. These duplicates are found and deleted. We always compare plans
before deletion and the shortest plan is kept, while others are removed.

To justify the next step, we need to explain the Sharemind input first.
Sharemind itself does not have a simple input, the language secreC 2 does
not allow scripts to be run with additional arguments. Sharemind was im-
plemented for operations over big tables of data, therefore we need to create
these tables.

The iterative algorithm makes use of knowledge of how similar plans are.
Based on similarity and usage of public actions, landmarks are set. However,
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5. Implementation....................................
in the One-shot algorithm, only one comparison is made. Any additional
information could not be used anyway. Therefore we only need a simple
comparison, whether the plans are the same, or not. Therefore we can use
encryption on the whole plan. We decided for hashing our public projections
with SHA256.

Because public plans are strings of variable lengths usually much longer
than is a hash size, it is possible that different plans would be encrypted
with the same hash. However, it is extremely unprobable. In test situations
we usually have 2-8 agents, each generating roughly 30-100 original public
projections. Counting the probability leads to the so-called birthday problem.
Rough estimation via Taylors polynomial leads to:

p(n, d) ≈ 1− e
−n2

2d

Where d is size of hash d = 2256 and n is a number of plans. Even if we use
a ridiculously huge estimation such as n = 1010 we still get the probability of
collision:

1− e
−1020
2257 = 4.31× 10−68

Hashed plans are then saved into the table database as sets of four 64bit
Longs. Hashes are much easier to compare than sets of strings of variable
length. Also hashing increase security in case of eavesdropping on the input
or the output of the Sharemind script. The table database is created via
Sharemind CSV importer. Each agent creates a CSV file containing hashes
and XML file with a description of tables to be imported. Then they call the
import command.

The broker also creates CSV and XML files with simple information about
the number of agents for the Sharemind script. Name conventions are based
on the numbering of agents, therefore knowledge of their count is crucial.
After all, agents import their hashed plans, the broker calls set intersection
script. The script returns a hash of a common plan if there is at least one.
The broker then resends it back to agents so everyone could reload the original
plan based on the hash and create an output.

For purposes of testing, there is a specific pattern of the output, where
all actions (both public and private without distinction) are numbered by
their order and saved in a single file. In order to achieve it, agents send their
private plans back to the broker which merges them. However, this option
is only for testing purposes and thus violates privacy preserving quality. In
normal use this function would be turned off (by a special variable).
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......................................5.2. Sharemind

5.2 Sharemind

Sharemind is operated via built-in commands and created scripts. These
scripts as already mentioned are written in the secreC 2 language. This
language is rather limited and resembles the C language. The specific part of
this language is privacy types, which are annotated with a privacy domain [20].

Private variables are being treated in a very specific way. Each variable is
divided into three parts, one for each sharemind servers. Every operation over
these variables is done in means of multi-party computation. Declassification
can be done only by a declassify expression.

5.2.1 Set intersection

We get a set intersection by a simple comparison each element of a set A with
each element of a set B. The set created by comparison of two previous sets
is then used for comparing with the next set until the complete intersection
is made.

Figure 5.4: Set intersection algorithm

Function loadSet (Figure 5.4, line 1) is used to load data from the table
database into 2 dimensional privacy type array denoted as pd_shared3p
<Type> [[n of dimensions]]. Function setIntersection (in detail Figure 5.5)
makes an intersection of given arguments, by comparing each member of the
first argument, with each member of the second argument.
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5. Implementation....................................

Figure 5.5: Set comparison algorithm

Because of the encryption, we can not directly declare whether two numbers
are equal. However, we can apply basic arithmetic operations such as subtrac-
tion, or retype the variable from a number to a boolean. By a subtraction
and retyping is guaranteed that the declassification of the variable will not
expose original values.

The output of the script is the first hashed plan in the resultant set or an
empty set in case the algorithm will end with an empty intersection. The
output is read by the broker and resent to agents. In case of an empty
intersection, the broker terminates the program.
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Chapter 6
Experiments

Experimental testing is divided into two main parts. Testing of the planner
and testing of the sharemind set intersection algorithm. Because of the char-
acter of the one-shot algorithm, we can not easily compare its planning speed,
because it will always use the maximum time given for planning. However, we
can observe efficiency with changing time. Also, we want to measure a time
consumption of the sharemind set intersection script. We need to account
this time when we start our planner in order to assure that the algorithm
will finish before the time limit.

6.1 Planner experiments

Our main concern is planner efficiency in the time limit given in [19], which
is 30 minutes. We have prepared testing bash scripts, which are included in
planner files (TestScript.sh, ValidationScript.sh, iterativeScript). As noted in
chapter 4, sharemind is distributed as a virtual box image. The virtual box
allows us to strictly set properties of the virtual machine. We used settings
from [19] which allows 4 thread processor and 8GB of RAM.

Firstly we denote domains (viz. Table 6.1), where a public plan solution
was found and the one-shot algorithm itself was not started.

Domain Solved
Blocksworld 20/20

Depot 17/20
Driver log 20/20
Logistics 20/20
Sokoban 17/20
Taxi 20/20

Woodworking 20/20

Table 6.1: Problems solved during preprocessing

The one-shot algorithm was used to solve domains: Elevators, Rovers,
Satellites, and Zenotravel. We tested the algorithm with three settings, giving
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6. Experiments .....................................
the planning part 100, 300 and 1740 seconds. We assume one-minute time
reserve for the preprocessing and the set intersection.

Elevators Rovers Satellites Zenotravel
100 300 1740 100 300 1740 100 300 1740 100 300 1740

1 3 3 3 3 3 3 3 3 3 7 7 7

2 7 7 7 3 3 3 3 3 3 7 7 7

3 7 7 7 3 3 3 3 3 3 7 7 7

4 7 7 7 3 3 3 3 3 3 7 7 7

5 7 7 7 3 3 3 3 3 3 7 7 7

6 7 7 7 3 3 3 3 3 3 7 7 7

7 7 7 7 3 3 3 3 3 3 7 7 7

8 7 7 7 3 3 3 3 3 3 7 7 7

9 7 7 7 7 3 3 7 7 7 7 7 7

10 7 7 7 7 7 3 3 3 3 7 7 7

11 7 7 7 7 7 7 3 3 3 7 7 7

12 7 7 7 7 3 3 7 7 7 7 7 7

13 7 7 7 7 7 7 3 3 3 7 7 7

14 7 7 7 7 7 7 7 7 7 7 7 7

15 7 7 7 7 7 7 7 7 7 7 7 7

16 7 7 7 7 7 3 7 7 7 7 7 7

17 7 7 7 7 7 7 7 7 7 7 7 7

18 7 7 7 7 7 7 7 7 7 7 7 7

19 7 7 7 7 7 7 7 7 7 7 7 7

20 7 7 7 7 7 7 7 7 7 7 7 7

Table 6.2: Problems solved by One-shot algorithm

Even though the planner did not solve even half of the problems, the effi-
ciency has to be put in the context by comparing it with the original planner.
Virtualization and running all agents on a single device may lower efficiency
significantly when compared with the results of the CoDmap competition.
Therefore we tested the iterative algorithm as well.

We can see that in some domains (Table 6.2 - Elevators, Zenotravel) our
solution offers unconvincing results. However, problem type Rovers and
Satellites were solved with noticeable success. In some domains, the planner
succeeded even with a small amount of planning time, but efficiency boost
with a long time is rather limited. This is caused by the rapidly growing state
space during a search. The pace in which the planner is finding new plans is
declining rapidly with time.

6.1.1 Validator

CoDmap competition organizers also offer a validation program that checks
whether the given plan fulfills all goals and it is executable. However, a
special format of the plan is needed. This format contains all actions in one
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Domain Iterative One Shot Total
Blocksworld 20 20 20

Depot 17 17 20
Driver log 20 20 20
Elevators 12 1 20
Logistics 20 20 20
Rovers 14 12 20

Satellites 11 11 20
Sokoban 17 17 20
Taxi 20 20 20

Woodworking 20 20 20
Zenotravel 8 0 20∑ 179 158 220

(81.4%) (71.8%) (100%)

Table 6.3: Problems solved by iterative planning

file, with a given order.

Example 5. Part of solution from Satellite problem 2 (directory p6):
21: (take_image satellite0 instrument0 star9 infrared1)
22: (turn_to satellite2 star7 star10)
23: (take_image satellite2 instrument4 star7 infrared3)
24: (switch_off satellite1 instrument3)

Therefore plan extensions have to be passed to the broker which orders
them and creates an output compatible with the validator. However, this
process violates the strong privacy preserving character of the algorithm,
therefore it is included only as an optional function.

All plans created by our one-shot algorithm had passed the test, validator
marked them as possible and leading to the goal.

6.2 Sharemind experiments

We prepared a program for generating sets of hashes to simulate problems
that the Sharemind script will be solving. Because of the character of used
data (hashes) artificially manufactured sets are indistinguishable from the
original. Therefore we can faithfully imitate real problems in a controlled
environment.

We can control nature of the problem by 3 main attributes: Sizes of sets,
Number of sets (corresponding to the number of agents) and similarity rate,
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6. Experiments .....................................
which defines percentage loss of plans in each intersection iteration.

Example 6. With 3 sets of size 100 and the similarity rate 50%, each iteration
eliminates 50% of plans. After 1 iteration (comparing the first 2 sets) only
50 plans remain. After the second iteration (the result of the first iteration
intersected with the third set) only 25 plans remain.

We assume 5 sets, because of the average number of agents. We also assume
each set holding 200 members. Higher set sizes allow us to better observe
similarity rate impact because, with a lower number of members in each set,
low similarity rate would cause intersection to contain only one member in a
small number of iterations.
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Figure 6.1: Sharemind script time complexity based on similarity of sets

We can see in Figure 6.1 that the growth is unstable. This is caused by
the random shuffling of set members. In some occasions, sets intersect very
fast with a comparison of the only the first couple of members. The role of
chance is more noticeable when a difference between member count of sets is
higher. This difference lowers with higher similarity rate.

Example 7. With similarity rate 1.0, member count of each set 75, we com-
pare 5 identical sets in 4 iterations. When all set members are present in both
sets, we always make

∑75
i=1 i comparisons per iteration, 1560 comparisons in
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................................ 6.2. Sharemind experiments

total, with no difference between shuffled and unshuffled sets. But with a low
similarity rate such as 0.2, we compare 75 with 75 members only in the first
iteration. In the second iteration, we will compare only 15 members with 75
and in the third only 3 members of the intersection with 75 members of the
fourth set. Based on shuffle, we can make between 6 (1 + 2 + 3) and 222 (73
+ 74 + 75) comparisons.

Next, we examined time complexity grow with an increase of set sizes. We
were always comparing 5 sets and a similarity rate of 75%. We use a higher
similarity rate in order to lower the impact of the random plan shuffle.
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Figure 6.2: Sharemind script time complexity based on set size (blue), and
polynomial approximation of rank 2 (red).

The intersection of n sets with m members is done by comparing their
m×m members n times which leads to O(m2), as observed from the experi-
ment in Figure 6.2.

Lastly, we observe time complexity with the growing number of sets. We
used to set size 200 and 75% similarity rate.
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Figure 6.3: Sharemind script time complexity based on number of sets (blue),
and logaritmic approximation (red).

As we can see, even with a high amount of agents, time complexity grows
slowly, because intersection will get very small after a couple of iterations as
seen in Figure 6.3.

In conclusion, we are aware, that our proposed set intersection algorithm is
not very efficient. Higher efficiency is usually achieved by sorting sets, which
allows their comparison in a single run. However, in order to use such a
method, we need to not only compare two members but also to determine
which of the members is higher. However, we do not want to declassify the
actual values of variables.

We can see clearly from experiments, that for normal size of problems
(50-120 members in each set) is our solution sufficient. Even a growing number
of agents will not increase the time cost significantly. Time complexity starts
to be problematic with big sets of plans. However, to find more plans, we
have to search for greater state space, where complexity grows even faster.
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6.3 Conclusion

Our goal was to implement and test a one-shot algorithm as a PSM planner
extension. Implementing the extension has been successful, however for per-
fect privacy preserving capability, adjusting preprocessing would be necessary.
We leave this adjustment for future work.

Our solution has proven to be capable of solving some problems. We have
noticed only a slight decline in the efficiency of the planner (9.6% due to
Table 6.3), however, this is caused by the majority of problems being solved
in preprocessing. If we compare only domains where One Shot-PSM take
place, the decline is more significant, but this was the expected outcome of
strong preserving of private information.

We also experimentally used and tested Sharemind software for secure
multi-party computation. Our script proves efficient enough not to disrupt
planning potential with restricting planning time too much. For future work
we expect a simple set intersection to be exchanged for planning machine
intersection, which offers higher potential success.

To sum up, the original goal of creating a PSM extension and Sharemind
script has been achieved.
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