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Abstract

This bachelor’s thesis focuses on design-
ing, implementing and testing a system
for real-time position estimation for micro-
particles. The system uses digital holo-
graphic microscopy (DHM) for visualiz-
ing observed micro-particles and the twin-
beams illumination method for estimat-
ing their 3D positions. The Rayleigh-
Sommerfeld back-propagation method is
used as the image reconstruction method.
Linear filtering is then implemented for
finding the micro-particles in the recon-
structed images. Implementation of this
system is in CUDA, to allow for direct cal-
culation on the GPU. The implemented
system is then deployed on an embedded
platform NVIDIA Jetson TX2. This plat-
form is then able to communicate and
send the processed positions to a main
manipulation computer. The utilized al-
gorithms are optimized to allow for time-
efficient and accurate estimates. The fi-
nal implementation then offers substantial
progress when compared to previously im-
plemented systems.
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Abstrakt

Tato bakalarska prace se zaobird néa-
vrhem, implementaci a testovanim sys-
tému pro odhad pozic mikrocastic v re-
alném case. Tento systém vyuziva di-
gitdlni holografickou mikroskopii (DHM)
pro zobrazovani pozorovanych mikroc¢és-
tic, a dale je v navrhu vyuzita dvou-
paprskova osvétlovaci metoda pro odhad
jejich 3D poloh. Rayleigh-Sommerfeldova
zpétno-propagacni metoda je pouzita jako
metoda pro rekonstrukci obrazu. Linearni
filtrovani je dale implementovano pro na-
lezeni poloh mikro-¢astic v rekonstruova-
ném obraze. Implementace systému je pro-
vedena v CUDA, pro primou kalkulaci na
GPU. Implementovany systém je nasa-
zen na platformu NVIDIA Jetson TX2.
Tento systém je dale schopen komuniko-
vat s hlavnim manipula¢nim pocitacem
a zasilat mu zpracované pozice. Pouzité
algoritmy jsou optimalizované pro c¢asové
efektivni a presné odhady pozic. Findlni
implementace tohoto systému pak nabizi
znacny pokrok oproti predchozim imple-
mentovacim systému.

Kli¢ova slova: GPU, linearni filtrovani,
digitalni holograficka mikroskopie,
CUDA

Pteklad nazvu: Zpracovani obrazu na
GPU pro zpétnovazebni
mikro-manipulaci
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Chapter 1

Introduction

This thesis focuses on implementing and testing a system for real-time position
estimation of micro-particles by the use of lensless digital holography. This
system will then later be used for tracking micro-particles in a feedback
micro-manipulation platform developed by research group AA4CCH.

Other versions of such a position estimation system have already been
implemented in the past. Our implementation then strives to serve as a clear
improvement, by achieving much higher frame rate. This would make for a
smoother micro-manipulation. In addition, achieving higher frame rate would
allow us to implement better image sensors, and thus become more accurate
as well.

In the implementation, we will be utilizing one of the image reconstruction
methods used in digital holographic microscopy and a selected object detection
algorithm. We will then implement these in CUDA, which will let us program
these methods directly on a GPU.

The final system should then be deployed on an embedded computer and
connected to the main manipulation computer via a TCP communication
protocol. The main manipulation computer should be able to control aspects
of the running system through this communication protocol. At the same
time, the system should be sending calculated results of every frame to the
main manipulation computer via this communication protocol.

. 1.1 Structure of thesis

In this thesis we will first take a look at existing methods of estimating
3D positions of micro-objects and on the original setup developed by the
members of research group AA4CC in chapter 2. Then, we select appropriate
methods for reconstructing the captured interference patterns in section [3.1
After that, we will select methods for finding and tracking the positions
of micro-particles from the reconstructed images in section 3.2 Later, we
propose an implementation of these methods on a GPU in chapter 4] and
finally we experimentally set important values and evaluate the implemented
algorithm in chapter 5|

"More information about the group at: http://aadcc.dce.fel.cvut.cz/






Chapter 2

Related works

Regular methods of observing micro-objects use a selected type of optics to
project an image of the micro-object itself. DHM, on the other hand, is a
method of capturing interference patterns, i.e., holograms of observed micro-
objects. The interference patterns form when the observed micro-objects
are illuminated with a source of coherent light, and can be captured with a
simple image sensor. Then these patterns are post-processed via computer to
visualize the observed micro-objects. Therefore a major advantage of DHM
is the lack of need for any lenses or other optics.

An interference pattern encodes the complete information about the dis-
tance and shape of the micro-object it originated from. That is encoded at
every point in the phase and amplitude of the electromagnetic wave repre-
senting the interference pattern. Part of this information is lost however,
since the image sensor only captures the intensity of light at each pixel. Thus
algorithms that wish to estimate the 3D positions of micro-objects have to
process the interference patterns just from the intensity image.

As with regular methods, estimating 2D position, or the lateral position,
is mostly straight-forward. The center of an interference pattern or of a
reconstructed image of the observed micro-particle corresponds to the lateral
position of that micro-object.

When it comes to 3D position estimation in DHM, several methods already
exist—their review can be found in [I]. Most of these then depend on
either one of two different approaches to calculating axial distance, or the
perpendicular distance from the image sensor. The first one tries to fit the
captured interference pattern to a model describing the hologram’s appearance
in proportion to its axial distance [2]. This approach can be very precise—
down to units of nanometers—but that also requires high resolution of the
captured hologram. That is possible by using additional lenses, but that
reduces observable area. This approach is also computationally heavy. The
other approach uses a process called back-propagation to calculate the axial
distance by comparing the reconstructed hologram in different heights to the
objects themselves [3], 4]. Back-propagation itself is not a computationally
intensive algorithm, but it usually has to be run multiple times for the method
to work.

A yet another approach then uses multiple sources of coherent lights to
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2. Related works

illuminate the micro-particles [5]. Here the projected holograms are shifted
with respect to each other. The magnitude of this shift corresponds to the
axial distance of the observed micro-particle. If only two sources of coherent
light are used, this method is called the twin-beams illumination method [6].

Most of these methods are not, however, intended for real-time use, but
rather for off-line post-processing.

The members of the AA4CC research group have developed a feedback
micro-manipulation platform. Because they were limited by the lack of real-
time 3D position estimation method, the feedback micro-manipulation ran on
estimating only 2D positions of observed micro-particles. Later, a real-time
method of 3D position estimation method was developed in the group [7].
This method serves as the basis for this thesis. A short introduction of this
method is included in the following section.

B 2.1 Twin-beam real-time 3D position estimation
of micro-objects

The objects of focus of the feedback micro-manipulation are polystyrene
micro-particles of diameter 50 pm. Those are suspended in water contained
in a 2 mm deep pool. Under this pool is then located an electrode array,
which serves as the manipulation unit. The manipulation process uses the
phenomenon called dielectrophoresis—by changing the potentials on on the
electrodes, force is generated on the micro-particles.

For feedback manipulation it is however necessary to utilize a tracking
mechanism, that would feed the information about the current positions of
tracked particles back to the loop. Therefore, the setup utilizes a twin-beam
method, in which two sources of coherent light—one set directly above the
pool and one in an angle of approximately 30°—illuminate the pool and
an image sensor situated below the electrode array [7, 8]. The translucent
micro-particles in the pools then partially absorb, reflect, diffract the incoming
light, as well as letting some of it pass. The resulting diffraction patterns and
scattered light then form interference patterns on the image sensor below.

The light sources utilized here are red (625 nm) and green (525 nm) LEDs
butt-coupled with plastic optical fibers. Because the LEDs emit in a narrow
band of frequencies, we can consider their light to be partially temporally
coherent. Spacial coherency is the ensured by the filtering through the fibers,
which have a diameter of 500 pm. The complete original setup is visualized
in figure [2.1l



2.1. Twin-beam real-time 3D position estimation of micro-objects
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(See3CAM 10CUG, 3.75 um/px)

Figure 2.1: Visualization of the hardware setup utilized for previous implemen-
tations. The image is reprinted from [g].
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Interference patterns caught on the image sensors form red and green pairs.
These pairs are shifted from each other in proportion to the axial distance of
the micro-particle from the image sensor. From this the axial distance can
be easily numerically calculated.

The lateral position is estimated from the positions of the interference
patterns in the green channel.

Originally, to enhance the estimation, the interference patterns were back-
propagated to a distance where they focus to a single point. This allows us
not only to more easily predict the positions of micro-particles but also The
back-propagation is explained more in depth in After that the center
of mass of predicted regions is calculated to give the exact position of the
micro-particle. The region is selected either as the close proximity of the
micro-particle’s last position or manually during the initialization process.

B 21.1 Issues

While the developed algorithm has yielded favorable results, it could still be
improved in some fields. Mainly, the algorithm itself was programmed on
Simulink Matlab and runs on the CPU. This results in a significant slow-down
during the image processing. Programming on the GPU would result in much
faster computation times in these fields. Faster computation times would
then allow us to utilize more precise image sensors and thus achieve, not only
higher calculation speeds, but also higher accuracy when predicting positions
of observed micro-particle.

In addition particles are currently only detected, if their position is selected
manually during the initialization process. Subsequently, the positions of
these particles are then estimated by calculating the center of mass around the
last known position. This could be improved by implementing an algorithm,
which can find all micro-particles in the observed environment without the
need for manual input.






Chapter 3

Selected methods

This chapter focuses on selecting an appropriate method of image reconstruc-
tion in DHM. That will not only be used for the object detection algorithm
but also to visualize current state of the observed environment. In later
sections, this chapter will discuss possible object detection algorithms, that
could be used in the given problem. The algorithms selected in this chapter
have to be suitable for real-time use and thus should be highly parallelizable.

The methods will be later implemented on a similar platform as is described
in [8]. Thus, these methods should be able to sufficiently process interference
patterns obtained via the twin-beams illumination method.

B 31 Back-Propagation

As it is possible to see in from interference patterns it is difficult to
deduce any information about the displayed objects. If interference patterns
overlap, this gets even more difficult. Object detection algorithms would have
trouble distinguishing between the pictured interference patterns.

Figure 3.1: Captured interference patterns of a dust particle next to a polystyrene
micro-particle.

Thus we need to introduce an algorithm that would transform these patterns
into a more accurate representation of the original micro-objects. One method
we could use is the Rayleigh-Sommerfeld back-propagation method. This
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3. Selected methods

method actually simulates back-propagating the interference patterns to a
set axial distance. If this axial distance is set to the actual distance of the
object from the image sensor, we will get a clear image of the micro-particle
itself. That, however, is only true when observing the micro-particle through
a homogeneous medium. A back-propagated projection of a micro-particle is
visualized in figure

- ®

Figure 3.2: Reconstructed image of a dust particle next to a polystyrene micro-
particle.

This method was already used in the original method proposed by the
AA4CC research group.

B 3.1.1 Calculation

This method is in our case calculated by convolving the taken image with
the Rayleigh-Sommerfeld propagator. This is also a numerical solution to the
Rayleigh-Sommerfeld diffraction integral. That can be seen in the expression

L(z,y) = FH{H_.(fa, f) F{I(z,9)}}, (3.1)

where (z,y) are the image coordinates, (f;, fy) are the spatial frequencies, I
is the original image, I, is the image back-propagated to a distance z a .#
and .Z ! are Fourier and inverse Fourier transformations respectively. The
Fourier transform of the propagator is then given by the expression

P Afa Y; n
H.(fe fy) = ef’fp<@2”ZM1—< SO (5)2), [ fRs
0, otherwise,

(3.2)
where A is the wave length of the illumination and n is refractive index of
the surrounding medium. The distance to which the image is propagated to
is then given by z.
From this we can see that the method has a clear advantage in being highly
parallelizable and thus suited for calculation on the GPU.
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3.2. Object detection and tracking

B 3.1.2 Issues

The 3.2 equation expects that the medium between the micro-particle and
the image sensor is homogeneous. This however is clearly not through, as
the light has to pass through several layers of different mediums, such as the
protective glass or the electrode array. This means that the distance z put
to the calculation of the expression [3.2] does not actually represent the real
axial distance—it is however proportional to it. That does not actually pose
a problem in our situation. We only use the back-propagated images to allow
for more comprehensible representation of the observed micro-particles for
both a human user and the object detection algorithm.

N 32 Object detection and tracking

After reconstructing the images to a more representative state, we are faced
with a problem of actually finding the now visualized objects and interpolating
their spatial position. We are still pressed by speed demands of a real-time
estimation. Therefore the selected algorithm needs to be highly time-effective.

One such algorithm offers itself in this situation. Linear filtering [9] 10] is a
very simple feature detection algorithm based on 2D convolution, that will be
further discussed in the next section. Major advantages in choosing such an
algorithm is in the shape of tracked micro-particles and their surroundings.
Firstly the shape of these micro-particles varies only very slightly between
one another and the micro-particles are circularly symmetric. Secondly, the
background is largely homogeneous. The non-tracked micro-objects, such as
random dust particles, found are substantially different to the desired objects.

B 3.2.1 Linear filtering

Linear filtering works on a very similarly to 2D convolution. It works by
sliding a 2D filter, otherwise called a kernel, across an image. At each step,
the overlaying elements are multiplied and the total of these products form a
new 2D image of extracted features.

Since the environment in which we track the micro-particles is monotonous
and few similar looking invasive particles are present, we can utilize this
for objection detection by making a kernel of the size of one tracked micro-
particle. By experimentally setting its values, we can accurately find the
two-dimensional positions of desired objects. Linear filtering of an image f
of size M x N with a filter h of size m x n is then formally defined by the
expression

a b
g(z,y) = Z Z h(s,t)h(z + s,y + t), (3.3)

s=—at=—b

where a = (m —1)/2 and b = (n—1)/2. g(z,y) is then a new filtered pixel
at position (x,y). To get complete filtered image, this expression must be
applied for all x going from 0 to M-1 and y going from 0 to N-1 [10]. From

9



3. Selected methods

this we can see that to convolute an image f with a kernel h, (M x N)(m x n)
multiplications and (M x N)(m x n — 1) additions need to be calculated.
Thus the time complexity of this algorithm is O(M, N, m,n) = M Nmn [9].
The problem here is that the complexity is proportional to the product
of the filter’s dimensions. If we choose a very large kernel, which is actually
advantageous in the given problem, the filtering calculation might take way
too much time to be worth using. Luckily, there are ways to lower the
proportion of time complexity to the size of used filter by a large margin.

B Separable filters

The most obvious way is to use a separable filter. A two-dimensional filter
is separable, if there are two one-dimensional filters, one horizontal and one
vertical, which when multiplied return the original two-dimensional filter.
The filtering is then carried by first filtering the original image with either
one of the one-dimensional filters and then filtering the result with the
second filter. The time complexity with a separable filter is then given as
O(M,N,m,n) = MN(m+mn) [9].

The obvious problem here is that not all two-dimensional filters are separa-
ble, and as such we would be very limited when choosing appropriate filters.
Also, while the speed-up is definitely significant, we are still limited by the
size of the filter.

B Linear filtering in frequency domain

As was mentioned before, linear filtering is very closely based on 2D convolu-
tion [10]. We can show that, if we take a look at the expression which defines
2D convolution of discrete functions f(z,y) and h(z,y) of the size M x N:

M-1N-1

Pl )« hley) = e S 3 flmmh(e —my—n)  (34)

m=0 n=0

Here we can see that the linear filtering in (3.3) only differs in two ways:

® Function h is mirrored by the origin, which is emphasized by the minus
signs.

®m Li filtering lacks the leadi tant of .
inear filtering lacks the leading constant of -

Thus, if the filter is mirrored by the origin, we can use 2D convolution
for the same effect. Then, if we define F(u,v) and H(u,v) as the Fourier
transforms of f(z,y) and h(x,y), respectively, from the properties of the
Fourier transformation we know that

F{f(z,y) * h(z,y)} = F(u,v)H (u,v). (3.5)

This leads to possibly the best version of the convolution algorithm for the
current problem. By getting the Fourier transform of both the filter and the

10



3.2. Object detection and tracking

original image, we can drastically lower impact of the filter’s size on the time
complexity. Actually, the time complexity now only depends on the size of
the original image [10, [9].

B Issues

In the project behind this thesis, we utilized linear filtering algorithm in the
frequency domain as our micro-particle detection algorithm. Linear filtering
does however have a couple disadvantages disregarding its speed.

® As was already mentioned, linear filtering, or in our case 2D convolution,
requires monotonous environment. Under the coherent lighting in the
used setup, this requirement is well satisfied.

8 There should be no invasive particles with similar geometry as the tracked
particles. It’s not really possible to ensure this, however other algorithms
struggle with this problem as well.

B [f tracked micro-particles get too close together and overlap, convolution
might have a problem detecting individual particles. This is not possible
to easily solve with linear filtering.

B Other options

Obvious choice when doing any object detection would be the use of convolu-
tional neural networks (CNN). In this case, their use might actually prove
to be less effective than the earlier proposed method. The only issue, which
poses a real problem for regular linear filtering would also pose a problem
for CNNs. This is of course the issue of overlapping particles. However, this
changes if we were to track multiple types of particles. A CNN based on the
Single shot multibox detector (SSD) [I1] might prove to be more effective in
such situations. Similarly, micro-particles that are not circularly symmetric
would be way harder to track with linear filtering.

Another methods suggest that instead of immediately using the filter to
find tracked micro-particles, different smaller filters could be used beforehand
to pre-process the reconstructed image and highlight some features. This
could render the final filtering more effective.

B 3.2.2 Particle tracking

After finding the individual micro-particles it is also important to be able to
follow each micro-particle through the manipulation process. User should
be able to both pick individual subject micro-particles to be tracked in the
initialization process or not select any so that the algorithm can keep track
of them all.

Luckily, in our case we can assume that the micro-particles will not change
their position significantly between frames. Thus, in each frame we can
assume that the new position is the closest position to the one in the frame
before.

11



3. Selected methods

B Issues

Issues with this method arise again from the problem of overlapping particles.
If two or more micro-particles get too close together, this algorithm might
estimate that the particles switched and classify them wrong. Such a problem
will probably occur only if the observed micro-particles overlap completely.

B Possible improvements

Any problems stemming from using the previously proposed tracking algo-
rithm would be fixed by implementing linear quadratic estimation, other-
wise known as Kalman filtering. This algorithm is a widely used recursive
prediction-update based state estimator algorithm. Its goal is to estimate
a state of a process (in our case the positions of individual micro-particles),
while minimizing the squared error [12, [13].

12



Chapter 4

Implementation

After finding the appropriate methods it is time to propose how to connect
them to make a working 3D position estimation system and then implement/'|
it on our setup.

In this chapter, we will take a look at the hardware setup utilized for our
implementation. Later we will mention the APIs used. After that we will
propose the basic structure of the implemented process. Then, finally, we
will try to propose the fastest implementation for the methods selected in
the previous chapters.

In the following sections, we will often refer to the green channel and red
channel. That is because the coherent light sources are of red and green colors
and their effects can therefore be separated from each other by converting
the image to the RGB format. Thus the red channel corresponds to an
image, where the effects of the red light source are observable and the green
channel corresponds to an image, where the effects of the green light source
are observable.

. 4.1 Hardware

For the implementation of the image processing pipeline we used two pieces
of commercial hardware. First, we needed a powerful, yet cost-effective, com-
puting platform, which would serve as the image processing unit. Therefore,
we are looking for a platform with a powerful GPU. For this we selected
the Jetson TX2 embedded computer developed by NVIDIA. We used the
LI-TX1-CB by Leopard Imaging to dock this computer.

Second, we required an image sensor that can capture and feed frames to
the pipeline at appropriate speeds of at least 30 FPS. Another requirement
for the camera is pixel size of at most 2 x 2pm

Apart from these two, we utilize the experimental feedback micro-manipulation
platform. That is then built around the selected image sensor.

L All the code implementation of the algorithms described in this chapter can be found
in an online repository: https://github.com/aacc/twinbeam-setup

13



4. Implementation

B 4.1.1 Jetson TX2

The Jetson TX2 is an embedded computer designed by NVIDIA with Al and
image processing in mind. Compared to regular GPUs for personal computer
uses, it has two major advantages. Firstly, regular GPUs have their own
dedicated RAM units separated from the RAM designated for the CPU. In
the Jetson TX2, however, the 8 GBs of dynamic RAM is shared between all
the CPU cores and the GPU. As such transfer of data between GPU and
CPU processes is almost much faster than on a regular computer. Secondly,
the architecture is designed to continuously receive images from up to 6 4K
cameras through the camera serial interface (CSI) at 30 FPS. Both of these
points will increase the speed of our pipeline in the proposed implementation.

B 4.1.2 Image sensor

For the image sensor, the LI-IMX477-MIPI camera board by Leopard Imaging
was chosen. The pixel size of the sensor is 1.55 pm, which is well in the
requested specification. It can also be connected to the Jetson TX2 via the
camera serial interface (CSI), which has a bandwidth of 2.5 Gb/s. Such
bandwidth is enough for streaming 4K (4056 x 3040 pixels) in 30 FPS.

B 4.1.3 Experimental platform

The experimental platform utilized in our implementation is, at the time of
finishing this thesis, being developed by members of the AA4CC research
group. The author of this thesis does not partake on this development.

The platform itself is built on top of the IMX477 image sensor and does
not vary much from the original setup mentioned in section The cross
section of this setup with description of relevant parts is visible on the figure
The inside look to the platform is then photographed on figure

a) red light source
green light source

b)
C) shielding from global light
d) image sensor

€) observable area

Figure 4.1: The experimental setup for feedback micro-manipulation of micro-
particles.
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4.1. Hardware

Figure 4.2: A photo of the experimental setup for feedback micro-manipulation
of micro-particles.

The light sources in this setup are again formed by a green (525 nm) LED
and a red (625 nm) LED. Unlike in the original setup however they are not
butt-coupled to plastic optical fibers. Instead, a thin layer of aluminum is
attached to the LED. A circular hole of 50 pm is pierced through it. This
hole then ensures better partial spatial coherency of light than the plastic
optical fiber utilized before. The light source is clearly visible on figure 4.3

Figure 4.3: The green light source. There is a slightly visible hole in the
aluminum layer. Behind is situated a green LED.

The setup used in this implementation lacks the electrode array required
for feedback micro-manipulation. In addition the pool of water in which
the micro-particles would normally be contained is missing as well. The
micro-particles are thus only dropped on a layer of protective glass. These
parts are missing due to manufacturing issues, but they will be added in the
soon future.
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4. Implementation

B 22 APIs

Several APIs were used for the implementation of the methods selected in
previous chapters. In this section we will only mention the ones crucial to
successfully finish the implementation. Those are CUDA, EGL and LibArgus.

B 4.2.1 CUDA

CUDA itself consists of a driver, a runtime, an API and other mathematical
libraries. Its main purpose is to exploit the computing capabilities of a GPU
via the use of kernels - sections of code that are designated to run on a number
of GPU threads. Therefore, it allows us to fully utilize the parallelization
capabilities of the used GPU.

The APIs also include several mathematical functions that will become
necessary in our implementation. For example, the fully parallelized imple-
mentation of fast fourier transform (FFT) will be used whenever there is a
need to calculate either the direct of inverse Fourier transform.

B 4.2.2 libargus

libargus is a low-level API for acquiring images and other meta-data from
cameras. Here it is utilized to transfer captured frames from the image sensor
and transfer it directly to GPU memory for CUDA usage. It follows a fairly
strict initialization process. Through this API we can also set parameters for
image capture such as the requested resolution, exposure time or analog gain
of the camera.

It also allows us to manage direct requests for the camera. That is done by
initializing an output stream for the camera. Then by repeatedly calling the
request, we can pass the captured frames to an EGLStream entity. EGLStream
is then capable of passing the frame directly to the GPU’s texture memory
for post-processing by CUDA.

B 423 EGL
We use the EGL library, because it allows us to connect the libargus pipeline

to CUDA through the use of the entity EGLStream.

. 4.3 Process structure

The proposed pipeline is built in four main CPU threads plus a debug thread
for easier control during implementation. Each of these controls a separate
part of the process.

Main processing loop thread — This thread controls both the initializa-

tion of libargus pipeline and the main loop for receiving and processing
the captured frames.
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4.3. Process structure

Displaying thread — This thread displays the current back-propagated
image on an external display every third cycle of the main processing
loop.

Input thread — This thread takes care of processing the TCP communi-
cation with Matlab running on the main manipulation computer. The
whole process can be started and put to sleep from this thread.

Output thread —Every frame the calculated positions of the micro-particles
is first processed to an array of positions and later sent from this thread
to the main manipulation computer. Per request this thread can also
send the current processed image.

Keyboard input thread — During the implementation it was useful to
have the opportunity to control the process from the keyboard. It has
the same functionality as the input thread and serves only for debugging.
That is because in the final setup, the Jetson will not be connected to a
keyboard. This thread does not require further description.

In the following sections we will go through the functionalities of each of
these individual threads.

Bl 4.3.1 Main processing loop

The main processing loop should takes care of a number of repeating steps
that proceed in the following order.

1. Initializing the camera driver through the libargus API.
2. Allocating the necessary GPU memory.

3. Setting the parameters of the libargus output stream and requests.

Here the exposition time, maximum FPS and capture size are be set.
4. Creating an EGLStream entity and attaching it to a CUDA consumer.

5. Requesting a new frame from the camera and passing it to texture
memory.

We can access the texture memory, by binding CUDA texture references
to appropriate pointers. Texture memory is cached directly on the GPU
chip and thus using it can achieve higher bandwidths than using regular
RAM. However, the texture memory is limited in size and harder to
operate and so is not used further.

6. Decoding the color format to the RGB format and passing red and green
channels to RAM.

The libargus can only fetch frames in the YUV-420 format. This means
that to separate the red and green channels we first need to convert the
image to the appropriate RGB format. The blue channel is useless in our
process. The conversion algorithm is further explained in section [4.4.1.
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7. Back-propagating both channels.

Here the back-propagation method proposed in section|3.1|is implemented.
However, in this step the method does not end, as the inverse Fourier
transformation is run after convolving both channels in the next step.
The inverse Fourier transformation is then only run on the green channel,
as the red channel is not needed for visualization. FF'T implemented in
CUDA library CUFFT is utilized in this step. The implementation is
further explained in section |4.4.2.

8. Convolving both channels with appropriate filters.

Here the frequency domain convolution proposed in section [3.2.1]is im-
plemented. The direct Fourier transformation does not have to be run on
the individual channels, as we can use the transformed channels from the
previous step. After this step finishes, the convolved channels are trans-
formed with the inverse Fourier transformation. The implementation of
this step is further explained in section 4.4.3.

9. Finding the local maxims in the filtered channels.

In this step we find the local maxims in both of the filtered channels. This
should highlight only the centers of each particle and nothing else. Later
the processed channels are passed to the output thread for ordering.

10. Check for interrupt signal from the input thread. If the signal is detected
proceed to next step. Otherwise, repeat steps 5-10.

11. Deallocate GPU memory and reset the output stream.

12. Wait for the starting signal from the input thread and then repeat steps
2-12.

B 4.3.2 Displaying thread

Every three cycles of the main processing loop we want to visualize the
current state of the observed environment. That is done simply by copying
the current back-propagated image in the green channel to temporary GPU
memory and using the openCV API to visualize this array on an external
display.

To prevent any memory conflicts when copying the current image, we lock
either the main processing loop thread or the displaying thread whenever the
other is using the afflicted memory. For this reason we copy the memory to
another GPU array, instead of directly to CPU, which is, even on the Jetson
TX2, marginally slower.

B 4.3.3 Input thread

When the Jetson TX2 is started, this process will automatically start and takes
care of parsing packets from the main manipulation computer. According to
the provided guidelines, the protocol was designed using TCP packets and,
apart from connecting to the Jetson TX2, has the following functionalities:
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4.3. Process structure

B Initialize

When the process is woken up from the sleep state by sending the starting
signal, it captures and runs one loop of the main processing loop. After that
the Jetson TX2 will send an image with a set of found micro-particles. On the
main manipulation computer, user can manually set, which of these particles
are to be tracked throughout the process. If no particles are selected, the
process tracks all particles in the observable area.

B Change settings

Almost all settings need to be adjustable from the main manipulation com-
puter. Thus, when in the sleeping mode, a change settings signal can be sent
to change the following parameters:

m Size of the observable area — By default this is given by (w,h) =
(1024, 1024), where w is the width and h is the height of the observable

area. This corresponds to approximately 1.5 x 1.5 mm?.

® QOffset — This sets the position of the top left pixel of the observable
area. By default it is given by (w,, ho) = (1500, 1000), where w, is the
horizontal coordinate and h,, is the vertical coordinate. This places the
default observable area roughly to the center of the 4K frame fetched by
the camera. For the settings to be accepted these conditions must be
true: 0 > w + w, < 4056 and 0 > h + h, < 2578. This is because the
observable area must fit into the captured frame.

B Back-propagation distance — With different samples it might become
advantageous to reconstruct the captured frames in different distances
from the sensor. As such two values can be pass for the back-propagation
distance for both the red and green channels. By default it is given by
(2g,2r) = (0.0025,0.0025). These values correspond to the distance of
2.5 mm.

B FEzposition time — This is mostly an experimental parameter, since it is
unlikely to be changed for any reason during the implementation.

The settings can be changed via a dialog window that can be seen in figure
4.4l

B Picture request

User can send a request signal, after which Jetson TX2 will send the current
back-propagated image.

B Put to sleep

When the user wishes to end the tracking process, he can send an exit signal.
After that an interrupt signal is sent to all threads to end all loops and wait
for starting signal.
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(4] New settings - >
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Figure 4.4: Dialog window for changing the image processing settings.

B Handshake

If the user wants to check the connection status, he can send a handshake
signal, to which the Jetson TX2 should respond with a corresponding message.

Bl 4.3.4 Output thread

The output thread takes care of sending the found locations to the main
manipulation computer. The positions of found micro-particles in both
channels are sent every frame after being extracted from the maps of local
extremes. The position estimation then runs on the main manipulation
computer.

If requested or during the starting sequence, this thread can also send the
current back-propagated picture. This picture is down-sampled. To prevent
any conflicts during accessing the memory area, where back-propagated
images are saved, this thread locks all other threads trying to access the same
bit of memory.

B a4 Implementation of proposed methods

In this section, we will describe the implementation of methods selected in
[3. In addition we will describe the converting process from the YUV-420 to
RGB color format.
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B 4.4.1 Format conversion

The libargus API can only pass frames in the YUV-420 format. Therefore, if
we want to separate the red and green channels, we first need to convert this
format to the RGB format. During this process, the captured frame is bound
to parts in the texture memory. Converted pixels then move to RAM.

B Yuv-420

This format consists of three components. Y represents the luminance, or the
brightness of pixel, and we get one value per every pixel. The UV components
represent the chrominance, or the color of the pixel, and we get one U value
and one V value per every square of 4 pixels. This is visualized in the figure
4.0l

YUV420 to RGB

Y VALUES RGB PIXELS
Y1]Y2|Y3|Y4 P1|P2|P3 | P4
Y7|Y8|Y9 (Y10 P7|P8|P9
Y13Y14)Y15)Y16[Y17|Y18 P13P14/P15 P17|P18

—>
Y19Y20)Y21[Y22)Y23)Y24

UV VALUES f
u1|v1|u2 vzm
U4|V4|U5|V5 |U6| V6

Figure 4.5: Visualization of conversion from YUV-420 to RGB color format.
Each Y value corresponds to one RGB pixel. Each pair of UV values then
corresponds to 4 RGB pixels.

P19P20[P21 P23[P24

B Conversion

For conversion we only care about the red and green channels and so we can
completely omit conversion to the blue channel. Then the conversion between
individual components is given by the following expressions:

R = 1.164383(Y — 16) +1.596027(V — 128),

4.1
G =1.164383(Y — 16) — 0.391762(U — 128) — 0.812968(V — 128), (4.1)

where R represents a red pixel and G represents a green pixel.

B 4.4.2 Back-propagation
Back-propagation is implemented in four steps.

1. Calculate the Fourier transforms of the Rayleigh-Sommerfeld’s propa-
gators for both channels. The equation for these is given in 3.2 These
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Fourier transforms do not theoretically need to be calculated each cycle,
however, the time it takes to calculate them is negligible. The resulting
arrays need to have the same amount of elements as the appropriate
channels.

2. Calculate the Fourier transform of the appropriate channel by the use of
CUFFT.

3. Multiply each of the elements in the Fourier transform of a channel with
the corresponding elements from the appropriate propagator transform.

4. Calculate the inverse Fourier transform of the product.

The final step is only calculated for the green channel as the result of
the inverse Fourier transform is in our implementation only utilized for
visualization. The image detection algorithm then uses the back-propagated
images still in the frequency domain.

B 4.4.3 Linear filtering

The method is is implemented to highlight the centers of individual micro-
particles. We are doing that by filtering the back-propagated channel with a
filter of similar size to a micro-particle. On the back-propagated image, the
micro-particles are much darker than their surrounding area. Therefore, we
can set the center area of the filter to be negative and a small ring around it
to be positive. This way the bright environment surrounding the particles
will be filtered to negative values, while the dark particles will be filtered to
positive values. Such a filter is visualized in figure [4.6.

x>0

Figure 4.6: Visualization of the proposed filter. Values of x in the picture
represent the values of pixels set in the individual rings. The outer ring has
positive values of pixels, the middle ring has pixels set to zero and the inner
circle has negative values of pixels.
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4.4. Implementation of proposed methods

For the filtering itself we are utilizing 2D convolution in the frequency
domain as discussed in section 3.2.1. That can be reasoned by two points.

1. Time complexity does not depend on the size of the utilized filter. This
is particularly important since we are using large filters.

2. We do not have to run another FFT operations as we can simply utilize
the intermediate results of the back-propagation.

Before the filtering itself, the filter has to be expanded to the size of the
back-propagated channel. That is done by shifting the original filter cyclically,
so that the central element of the kernel is in the top left corner of the new
array [14]. That is visualized in 4.7.

CHE
10

11234 112
5.78 14|15]16 13
9 (10{11]12 ::> O
13/14[15|16

213 |4 1

Figure 4.7: Visualization of cyclical shifting of a filter used for 2D convolution
in the frequency domain.

The filtering itself is then implemented from the expression 3.5, It is run
after the third step of the back-propagation algorithm to skip redundant FFT
calculations.

B 4.4.4 Position estimation and tracking

Position estimation implemented here is based on the simple prediction
method proposed in [3.2.2. Since it is reasonable to expect at most a couple
tens of observable particles, this part of the process was moved to the main
manipulation computer. That is enforced by the fact that the process of
tracking individual particles is not easily parallelizable.

The micro-particle tracking runs in 3 steps.

1. Clean the received positions.

The object detection algorithm sometimes sends two very close possible
results for one micro-particle. That can be caused by a slightly different
shape of the micro-particle, or its close environment. However, this can
be fixed by taking the average between these two values and taking it
for the actual position.

23



4. Implementation

2. Find the corresponding particle in the red channel.

The red channel is shifted in respect to the green channel, so that the
corresponding images of the same particle have on average the same
position in both channels. Thus, finding which micro-particle in the red
channel corresponds to which in the green channel can be figured out
very easily. The positions closest to each other between channels form
the corresponding pair. This method will work even when the particles
will be able to change their axial distance as at most the difference in
shift will be in a couple tens of pixels.

3. Number the individual particles.

When the first set of positions is received, it is numbered and stored for
later set. When the next set arrives and is processed by the first two
steps, we compare the new set of positions to the last one. For each
numbered micro-particle we look for its new position by looking for the
closest position in the new set in a small radius around the last position.
If such a position is found, it updates the last position and takes its
number. If not, the position remains unchanged. If a new position is
not found for a number of frames, the corresponding micro-particle is
considered to be lost.
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Chapter 5

Experiments

In this chapter, we will focus on experimentally finding values of several
variables used in the implementation: back-propagation distances of both
channels and shapes of the filters used in linear filtering. After that, we will
test the implemented method on an environment of unmoving micro-particles
and discuss the results. Finally, we will propose experiments that should take
place in the future.

. 5.1 Back-propagation distances

Back-propagation itself is a process, in which we can simulate actual back-
propagation of interference patterns to a plane in a set distance z from
the image sensor. That distance is then what we call the back-propagation
distance. Setting this distance to a specific value could then allow us to see a
picture of the micro-particle itself. In a homogeneous environment, this value
would be equal to the actual distance of the particle from the sensor.

In the final experimental setup, micro-particles can move freely in a pool
of water. That means their axial distance will not be constant as it is with
the setup used for the current implementation. Thus, we are looking for such
a value of z, that would return comprehensible results for micro-particles at
all accessible axial distances.

Setting z to such a value would take care of two things beneficial in our
implementation:

® Create an image comprehensible for a human observer.

8 Define shapes of the observed micro-particles to allow for easier object
detection.

B 5.1.1 Green channel

Non back-propagated picture of micro-particle in the green channel is pictured
on figure |5.1. From this picture it is possible to deduce only very little about
the shape of pictured objects, let alone about their exact position.

Starting from an original value of back-propagation distance in the green
channel z, = 2100 pm we increased the value by the same increment until we
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Figure 5.1: Non back-propagated picture in the green channel of a polystyrene
micro-particle next to a dust particle.

found the desired distance of 2750 pym. The same micro-particle from figure
[.1]is visualized after back-propagating to different distances in figure 5.2l In
that figure we can see that the selected distance of 2750 pm results in the
most well defined pictures of the observed micro-particle.

Yet another comparison between different values of z, can be seen in the
case of a picture of 5 grouped micro-particles. Comparison of that situation
in three different back-propagation distances is visualized in figure [5.3. The
image back-propagated with z, = 2750 pm has the most well defined shapes
of the observed micro-particles.

(@) : z=2.1mm (b) : 2=2.75mm (¢): z2=31mm

Figure 5.2: Micro-particle next to a dust particle reconstructed in different
back-propagation distances. All pictures taken from the green channel.

B 5.1.2 Red channel

The value of z, chosen for the red channel differs from the one for the green
channel. That is because the red light falls down at the image sensor at an
angle of 30° from the the vertical. This causes the interference patterns to
be skewed. The used back-propagation method therefore cannot correctly
visualize the observed micro-particles. That is not a large problem, as we do
not have the need to display the red channel anywhere. On the other hand it
might make it harder to implicitly design a filter for linear filtering of the red
channel.

An example of a skewed interference pattern in the red channel is captured in
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(@) : z=2.5mm (b) : z=2.75mm (¢) : z2=29mm

Figure 5.3: An image of 5 micro-particles grouped together in 3 different back-
propagation distances.

figure The non back-propagated image is actually more incomprehensible
in the red channel than it was in the green channel.

Figure 5.4: Non back-propagated picture in the red channel of a polystyrene
particle next to a dust particle.

This time we found the desired value of z, = 3.1 mm. The process of
acquiring this value is the same as it was with the green channel. As is
visible in figure back-propagating the interference patterns to the selected
distance does not result in well defined reconstructions. However, these
reconstructions are the most fitted for linear filtering with a filter of the shape

proposed in section [4.4.3]

Figure 5.5: Two images in the red channel back-propagated to the selected
distance of z = 3.1 pm. a) shows a picture of 5 grouped micro-particles. b) shows
a picture of a micro-particle next to a dust particle.
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B 5.1.3 Issues

The obvious problem with the selected values of z,. and z; comes from the
fact that the used experimental setup is bound to change after adding both
the electrode array and the pool of water. When that happens, these values
have to be selected again for the new environment.

N 5.2 Object detection

After setting the used back-propagation distances it is time to find the
appropriate filters. The selected shape of the filters used in our implementation
was proposed in section [4.4.3. These filters will then be tested on the
observable environment and the processed results will then be discussed.

B 5.2.1 Selecting filters

Finding the individual filters is based on a simple method. First we set the
display thread in our implementation to display the back-propagated image
of a selected channel. At the same time this image is filtered by the tested
filter and then in the resulting image we find local maximums. The resulting
map is then projected on top of the currently displayed image so that we see
the positions predicted by the chosen filter.

In the filter of the proposed shape we can change 5 different values to affect
the results of the filtering. These values are defined in figure |5.6

® Radius r; of the negative inner circle.

® Inner and outer radii of the outer positive ring. These are represented
by 70 and 7., respectively.

B Value z; set to pixels in the inner negative circle.

® Value x, set to pixels in the outer positive ring.

The radii are then set so that the inner circle is just barely larger than the
projection of the observed micro-particle. The other values are then tinkered
with until we see favorable results. This way we found working filters for
both the green and red channel. Their visualization along with all set values
is on figure [5.6.
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(a) : Green filter (b) : Red filter

Figure 5.6: Visualization of filters used for linear filtering in both channels.

B 522 Testing

Now that we have the filters set up it is time to see how they fare on the
observed environment. In the observable environment, we have found a couple
of sample situations that we need the filters to be able to process correctly.

8 Micro-particles are by themselves in an empty space.

8 Micro-particles are grouped closely together.

® Dust particle is covering part of the micro-particle.

B8 Presence of dust particle that has a slightly similar shape to that of an
observer micro-particle.

B Green channel

When run through the sample situations, the green filter gives results visible
in figure |5.7. As it is possible to see, in almost all of the expected samples it
is successful. That is with the exception of the sample situation with grouped
micro-particles. This issue was already predicted in section 3.2.2| and might
not be possible to solve with linear filtering,.
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Figure 5.7: Pictures of sample situations in the green channel with found
positions projected on top in the form of red crosses.

Il Red channel

When run through the samples, the red channel gives results visible in figure
[5.8. Here we can see that the results are very far from perfect. That is
however not a problem in the red channel since as long as centers of the
particles are highlighted, the position estimation algorithm should correctly
pair the positions found on the green channel with the ones on the red channel.
In addition, the extra positions found in the group sample have much lower
values in the map of maximums than the actual centers of observed micro-
particles. As such it should be fairly simple to filter out these extra values.
Even when taking in mind the changing axial distance, the projections in the
red channel will move at most by a couple tens of pixels. This should still
allow us to pair the centers quite accurately.
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Figure 5.8: Pictures of sample situations in the red channel with found positions
projected on top in the form of red crosses.

B 53 Time efficiency

One of the main goals of our implementation was to achieve higher calculation
speeds while being more accurate than the original algorithm. The original
algorithm ran at approximately 10 Hz, while processing frames the size of
only 400 x 400 pixels [§].

In our implementation the default size of a processed frame is 1024 x 1024
pixels. The values for time measurements used in this part are taken by timing
a large number of cycles of the main processing loop thread and averaging the
result. The measurements were taken with the displaying thread turned both
on and off as it will probably have the highest impact on the time efficiency.
That is due to copying the whole processed frame from GPU memory to CPU
memory.

From this we have found out that with the displaying thread turned off,
a single cycle of the main processing thread takes on average 38.6 ms. This
corresponds to roughly 26 FPS. Such a result is definitely an improvement.

On the other hand, a single cycle of the main processing thread with the
displaying thread turned on takes on average 44.2 ms. This corresponds to
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roughly 23 FPS. While still an improvement, the impact of memory copying
is significant.

B 54 Future experiments

During the implementation, the experimental lacked—due to manufacturing
problems—the electrode array which would allow us to test our object tracking
algorithm on actually moving particles. Unfortunately, because of this problem
we did not conduct any relevant experiments.

In the near future, the experimental platform will be completed and, thus,
we will be able to track actually moving particles.

In addition, all micro-particles currently are all stuck to the same axial
distance and thus any estimation of it is pointless. However, when the
electrode array is added to the setup, we will, suddenly, be able to change the
axial distances of individual particles. Then we will be able to experimentally
find the proportion of the shift between the positions in the red and green
channel to the axial distance of a particle.
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Chapter 6

Conclusion

In this thesis we implemented a system for estimating 3D positions of micro-
particles by the use of twin-beams illumination method and DHM.

First, we split the color channels produced by the twin-beams method
by converting to the RGB format and operated on both of the channels
separately. Then we had to find a suitable algorithm for reconstructing
captured interference patterns. For this we chose the Rayleigh-Sommerfeld
back-propagation method. Later, we had to find an algorithm for detecting
the positions of micro-particles in the reconstructed images. For this we
selected linear filtering.

After filtering and thus finding the center points of all projections, we
were only one step away from finding the actual 3D positions of the observed
micro-particles. If the particles could change their axial distance in the
current experimental setup, we could find the proportion between the shift of
positions of each micro-particle in both color channels. In the current version
of the experimental setup that however was not possible.

For object tracking we chose a simple method of checking for the detected
position, the closest to the old position.

After choosing the methods we went on to implement said methods in
CUDA and deployed them on an embedded computer, Jetson TX2 developed
by NVIDIA. The implemented process is then able to communicate with a
main manipulation computer which runs Matlab.

Finally, we experimentally set the values for both the filters utilized in linear
filtering and the back-propagation distances for the image reconstruction
algorithm. Then we discussed the results. After that we measured the speed
of the implemented process and compared it to the original method. From
this we found out that the implemented method runs at 2.5 times the FPS of
the original method, while also processing 6.5 times as many pixels.
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