
Czech Technical University in Prague 

 

Faculty of Electronical Engineering 

 

Department of Computer Graphics and Interaction 

 

 

 

Bachelor thesis 

 

 

Artificial Intelligence Methods for Playing Collectible 

Card Games 

 

Patrik Březina  

Supervisor: MGR. Viliam Lisý, MSC., PH.D 

 

© 2019 CTU in Prague  



Artificial Intelligence Methods for Playing Collectible Card Games 

  



Artificial Intelligence Methods for Playing Collectible Card Games 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Declaration 

 

I hereby declare that the presented thesis is my own work and that I have cited all sources 

of information in accordance with the Guidelines for adhering to ethical principles when 

elaborating an academic final thesis. 

  

 

In Prague on May 24.05.2019                    ___________________________ 

 



Artificial Intelligence Methods for Playing Collectible Card Games 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 

 

I would like to express my gratitude to my supervisor Viliam Lisý who offered 

consultation, guidance and encouragement during the development of my thesis. 

Also, I would like to thank my family for all the moral support they offered, motivating me to 

keep pushing forward. I would like to express special thanks to my brother for lightening up 

my mood whenever I felt miserable, my father for his assistance with various technical issues 

encountered throughout my studies and for helping me to dive into the world of programming, 

and my mother for taking care of me for all those years. 

Access to computing and storage facilities owned by parties and projects contributing to the 

National Grid Infrastructure MetaCentrum provided under the programme "Projects of Large 

Research, Development, and Innovations Infrastructures" (CESNET LM2015042), is greatly 

appreciated.



Artificial Intelligence Methods for Playing Collectible Card Games 

 i 

Abstrakt 

 

Sběratelské karetní hry jsou populární hry, které lidi hrají nejen pro zábavu, ale i na 

profesionální úrovni. Představují řadu výzev pro implementaci umělých hráčů, mezi které 

patří nejistota způsobena náhodnými událostmi, vysoké větvení rozhodovacího stromu nebo 

skrytá informace reprezentována neznámým obsahem protivníkova balíčku a ruky. V této 

práci jsou zmíněny přístupy zabývající se touto problematikou a dva z nich jsou 

reimplementovány a porovnány proti sobě v simulátoru Metastone, jenž implementuje 

logiku sběratelské karetní hry Hearthstone: Heroes of Warcraft, která je použita jako 

testovací prostředí. 
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Abstract 

 

Collectible Card Games are popular games played by people for recreation as well 

as professionally. These games represent number of challenges for implementation of 

artificial players, such as uncertainty caused by random events, high branching factor of 

decision tree or hidden information represented by unknown content of opponent’s deck and 

hand. In this thesis, various works addressing development of artificial player for collectible 

card games are introduced. Two selected approaches are then reimplemented and compared 

against each other in the Metastone simulator which implements logic of collectible card 

game Hearthstone: Heroes of warcraft that is used as a testbed for the conducted 

experiments. 
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 Introduction 

With the growth of the game industry grows the expectations and demands on the quality of 

the games. One of the game’s qualities can be offered challenges and how realistic the game 

feels. Both these aspects can be addressed with the usage of artificial intelligence, be it an 

intelligence of a non-player character in role-playing game who works on field during 

daytime and attempts to find shelter when it starts raining, creating more realistic 

environment of the game, or an opponent who attempts to mimic behavior of an experienced 

player, challenging the player who plays the game. In recent years, development of artificial 

intelligence achieved remarkable success in classic video games, Go or Poker, defeating 

professional players. However, some other popular games such as collectible card games 

have not been thoroughly explored yet. Their complex rules, frequent random events, high 

branching factor of decision tree and unknown opponent’s deck that contains only a fraction 

from thousands of possible cards make these games difficult to model and this creates a 

challenging environment for developing an artificial intelligence.  
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 Thesis Goals 

The goal of the thesis is to examine and discuss existing approaches to development of 

artificial players in the collectible card games that address various challenges presented by 

these games. Then to choose a specific collectible card game and review its available open-

source implementations and finally reimplement selected approaches, discuss their 

parameters and compare their quality. 
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 Background 

 Collectible Card Games 

This section introduces collectible card games and describes what challenges these types of 

games represent for the development of artificial intelligence. 

 Description 

Collectible card games (CCGs) are strategic card games that consist of specially designed 

sets of playing card. Each playing card is described with an image and a text which defines 

the effects of the card when it is played. Games are typically played between two players, 

however there are also multiplayer formats (such as Commander format in Magic: The 

Gathering). Each player constructs their own decks from the set of available cards (hundreds 

or even thousands of cards) with which they play. Decks are unknown to the opponent and 

therefore represent hidden information that is challenging to deal with.  Collectible card 

games became popular with the release of Magic: The Gathering (M:TG) by the company 

Wizards of the Coast in 1993 and new sets of playing cards are still produced. CCGs enjoyed 

another great rise in popularity with the release of free-to-play game Hearthstone: Heroes of 

Warcraft in 2014 developed by Blizzard Entertainment. Success of these games inspired 

many developers to design their own collectible card games such as Yu-Gi-Oh! (developed 

by Konami), Pokémon Trading Card Game (Media Factory), Eternal (Dire Wolf Digital), 

Gwent (CD Projekt Red) and many others.  

 Challenges 

• Imperfect information 

In collectible card games each player constructs a deck from cards they own. This 

can include hundreds or even thousands of different unique cards each with their own 

effects. Decks typically have some limitation for how many cards it can or must 

contain (in M:TG decks have to consist of 60 or more cards, in Hearthstone it is 

exactly 30) Players do not know what cards the opponent’s deck contains. 

Determinizing the opponent’s deck can be very beneficial for the player as it allows 

them to adjust their strategy accordingly. However, each deck from which the players 
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draw their hands are randomly shuffled and even if the player knew what cards the 

opponent’s deck consists of, they have no information about what the opponent is 

currently holding in hand. Also, depending on the effect some cards can be played 

face down and their effect does not execute until a certain event has occurred (such 

as secret cards in Hearthstone or cards with Morph in M:TG). Each card played by 

the opponent gives away information that can be used to determinize the remaining 

hidden information. Correct determinization of unknown data could increase player’s 

chances of winning the match. On the other hand, guessing the information 

incorrectly could have opposite effect and hinder their performance. 

• Chance events 

Players draw cards from their deck which is randomly shuffled at the beginning of 

the match. Therefore, it is difficult to predict what cards the player will hold in the 

coming rounds. This complicates planning approaches as it would be necessary to 

plan for all the possible outcomes of card drawing. For example, in M:TG each deck 

has to contain at least 60 cards. First card draw from the deck has 60 possible 

outcomes and it would be difficult to plan for all the possibilities. Furthermore, 

effects of some cards can cause random events during the gameplay such as choosing 

a random target, placing a random card on the board, discarding random card from 

player’s hand or the execution of the effect can depend on a coin flip. All this can 

lead to unpredictable and improbable game states. Therefore reduction of the 

branching factor in chance events is necessary but omitting too many possible 

outcomes might lead to badly informed decision-making. 

• Game complexity 

Each card has its own effect and some of those effects can even change rules of the 

game during match. Some effects can seem to be weak at first, but in combination 

with other cards its power can be multiplied. This creates synergies between the cards 

and certain combinations of cards can lead to very explosive effects (such as never 

ending turn, killing opponent in one turn, having infinite amount of health). While 

constructing a deck it is important to consider these possible interactions between 

cards and use them to one’s advantage. Artificial intelligence could be utilized to 

detect these synergies between cards. Not only it would help the player to construct 

a strong deck, but it could also assist the game’s designers to detect possible 

synergies of newly designed cards and adjust their power accordingly or reconsider 
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their addition to the game. Also, being able to recognize synergies between cards can 

be exploited to create more accurate determinization of the opponent’s deck because 

opponent’s deck is likely to contain cards that synergize with each other. 

• Strategic game approach 

During the gameplay of CCGs players alternate in turns and can perform multiple 

actions until they decide to end the turn on their own. Players typically have limited 

amount of resources (lands in M:TG, mana crystals in Hearthstone, but also cards in 

hand or on board) which limits the number of actions players can take in their turn. 

To plan their turn optimally they need to consider each resource they have available 

and use it at its maximal potential. Players can play cards from their hands or interact 

with cards they have placed on the playing board by using their effects and attacking 

with their units. They can switch between board interaction and card playing as they 

like but can also decide to end their turn whenever they want, even if there are still 

some available actions to preserve their resources for the future or to not give 

information away to the opponent. Not only it is necessary to plan for the current 

turn but to also plan for the future turns which can prove time consuming for an 

artificial player. 

 Hearthstone 

This part describes the functionality and gameplay of collectible card game Hearthstone: 

Heroes of Warcraft that is used as a base for the experiments. This card game is popular 

among people and its ruleset is significantly reduced compared to other CCGs like M:TG, 

therefore Hearthstone is utilized as testbed for majority of research regarding CCGs. 

 Game Description 

Hearthstone is zero-sum collectible card game with imperfect information that is played 

between two players who alternate in turns. Before the match each player selects one of nine 

available heroes. Each hero has their own Hero Power - a special action different for each 

hero that can be used once a turn (for example Priest can heal any target for 2 health), and 

their own set of cards. Cards of the selected hero can be combined with neutral cards that 

are available to all heroes to construct a deck with exactly 30 cards. 
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At the beginning of a match a coin flip decides which player goes first. Player who goes first 

draws 3 cards in their starting hand and the second player draws 4 cards and gets a special 

card called “The Coin” that can be used to gain 1 additional mana crystal until end of turn. 

Drawing of starting hand is followed by mulligan phase. In mulligan phase each player 

selects any number of cards in their starting hand. Each selected card is then shuffled back 

into the player’s deck and is replaced with another card from the deck. This gives players 

some control over the contents of their initial hand. 

Every hero has 30 health at the start of the match and the goal of the game is to reduce 

opponent’s health to zero. At the beginning of their turn players draw a card from their deck, 

gain 1 additional mana crystal up to a maximum of 10 and all depleted mana crystals are 

refreshed. Hand of each player is limited to 10 cards and if player draws a card while having 

10 cards in hand the drawn card is discarded. If a card is drawn while there are no more cards 

left in the player’s deck the player draws a “Fatigue” card instead. Fatigue cards ignore hand 

size limit and are immediately played after drawing, dealing damage to the player according 

to the number of “Fatigue” cards drawn in total (first Fatigue deals 1 damage, second deals 

2, third deals 3 and so on). 

During their turn players can perform various actions: 

• Play card  

Playing a card from players hand to perform the card’s effect. Every card has its own 

manacost that describes how much mana crystals have to be depleted to play the card. 

Depleted mana crystals are disabled for the rest of the turn. 

• Card selection 

Player can place minion cards on board and equip their hero with weapons. Minions 

and equipped heroes can be selected to attack one of the opponent’s minions or the 

opponent. 

• Target selection 

When attacking or playing certain cards from hand valid target needs to be selected. 

Valid targets for attacking are opponent’s hero and minions they control. However, 

targeting restrictions for card’s effects depend on the played card. Some cards can 

target anything present on the board, other card can only target units controlled by 

the opponent or the player. 

  



Artificial Intelligence Methods for Playing Collectible Card Games 

 7 

• End turn 

Anytime during their turn players can choose to end it and give initiative to the 

opponent. Players aren’t forced to execute all available actions and can end their turn 

whenever they decide to. 

Whenever health of any player is reduced to 0 the game ends and the surviving hero wins. If 

health of both heroes reaches 0 at the same moment the game ends in a tie. 

 Game Components 

This part describes entities in a game of Hearthstone. 

 Game Board 

Game board is a component that represents the current state of the game. It contains all 

observable information visible to the player. The game board and its components in the game 

are described in figure 1. The Game board is represented by: 

• Heroes 

Two heroes are on the board, each representing one player. Each hero has their own 

health, armor (damage is taken from armor before health), weapon, hero power, mana 

crystals and secrets (specific cards played faced down represented as a question 

mark). If the players wish to select opponent or themselves as target they select the 

hero who represents them. 

• Battlefield 

Battlefield is an area where players place their minion cards. It is split in half, one 

for each player. Players can have up to 7 minions placed on their half of the 

battlefield. Minions placed on the battlefield can be selected for attack actions as well 

as targets of other cards. 

• Decks 

Each player draws cards from their deck that consists of exactly 30 cards. Players 

can’t see the remaining content of either deck, only the information about the 

quantity of remaining cards is available. 
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• Hands 

Each player has their own hand that can contain up to 10 cards. The player’s hand is 

visible to them but hand of the opponent is hidden. However, players can see how 

many cards their opponent has in their hand. 

 

 

Figure 1 – Game Board (source Hearthstone) 

1-Player’s hero, 2-Opponent’s hero, 3-Hero power, 4-Player’s hand, 

5-Opponent’s hand, 6-Player’s mana crystals, 7-Player’s deck, 8-Opponent’s deck, 

9-Opponent’s half of the battlefield, 10-Player’s half of the battlefield 

 Cards 

In Hearthstone each card consists of its artwork, text description of its effect, manacost that 

defines how much mana crystals have to be spent to play the card and, if the card is a minion 

or a weapon, also a numeric description of its health and attack (Figure 2). There are 4 types 

of cards in Hearthstone: 

• Minions 

Minions are cards placed on the battlefield. Each minion has its own attack and 

health. Attack defines how much damage the minion deals to the target when 
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attacking and to the attacker when being attacked. How much damage the minion 

can take is based on health and when minion’s health is reduced to 0 it leaves the 

battlefield. Each minion can also have its own effects. For instance, Flame Juggler 

(Figure 3.a) deals 1 damage to a random enemy when played, Flametongue Totem 

(Figure 2) adds 2 attack to minion on its left and on its right while it remains on the 

board. 

• Weapons 

Like minions, each weapon has its attack value and health. Weapons are cards that 

are equipped on heroes. Hero can have only 1 weapon equipped and playing a 

weapon while another one is equipped will destroy the attached weapon and replace 

it with the new one. During player’s turn the hero gets attack power equal to the 

attack of the equipped weapon and is allowed to attack opponent’s hero or minions 

to deal the weapon’s damage to the target and take damage equal to the defender’s 

attack value. Each attack with the hero decreases health of the weapon by 1 and when 

its health reaches 0 the weapon breaks. Weapons can have their own effects. Death’s 

Bite (Figure 3.b) has 4 attack power, 2 durability and deals 1 damage to all minions 

on the battlefield when it is destroyed. 

• Spells 

Spell are cards that cause an immediate effect when played and leave the game after 

the effect is done. Some spells might require the player to select a target, such as 

Fireball (Figure 3.c) that deals 6 damage to any target, while other spells might not 

need a target at all, for example Arcane Intellect draws 2 cards to the player who 

played it or Flamestrike that deals 4 damage to all minions on opponent’s side of the 

battlefield. 

• Secrets 

According to game’s logic secrets are also considered spells (this is important for 

cards that interact with spell cards), but unlike spells, secrets don’t have an immediate 

effect on the game board. Instead they are attached to the hero face down marked as 

a question mark to the opponent and wait for a triggering event. When triggered, 

secrets execute their effect and leave the game afterwards. Counterspell (Figure 3.d) 

is a mage secret card that triggers when opponent plays a spell. If they do, 

Counterspell is triggered and the effect of the played spell is negated, doing nothing 

as a result. 
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Figure 2 – Description of Flametongue Totem (source Hearthstone) 

1-Manacost, 2-Attack value, 3-Health, 4-Card’s effect       

          3.a) minion                          3.b) - weapon                         3.c) - spell                            3.d) – secret 

 Summary 

In this chapter the Hearthstone collectible card game, its mechanics and how the game is 

played was introduced. Then, various components of the game including the game board, 

construction of player’s deck or different types of cards and their functionality were 

discussed.  

  

Figure 3 – Hearthstone card examples 
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 Hearthstone Simulators 

This section discusses available open-source simulators for Hearthstone and functions they 

offer. Afterwards the simulator Metastone that is used as a testbed for experiments in this 

work is introduced. 

 Fireplace 

Fireplace [1] is a simulator created by community HearthSim [2]. Fireplace loads available 

cards from the Hearthstone’s game files and offers an API to manually change cards or 

define new ones. Simulator to play series of games between two artificial players is available 

as well, however it is not possible for the user to play against the agents on their own and 

the simulator offers no graphical user interface. 

 Hearthbreaker 

Hearthbreaker [3] is another simulator developed by community Hearthsim [2] designed for 

machine learning and data mining purposes. It offers a wide variety of cards and a simple 

simulator that can be used to determine synergies between cards, but it does not support 

simulation of games between two players. 

 HearthSim 

HearthSim simulator [4] is designed for simulating a desired number of matches between 

two artificial players with graphical overview of the results, computing average win rate and 

confidence interval of win rate with confidence level of 95%. However, simulator offers 

very limited pool of cards. 

 Hearthstone++ 

Hearthstonepp [5] offers interface for simulations between two artificial agents in console 

and in available graphical user interface, support for implementation of reinforcement 

learning algorithms and about 50 different cards for deck building. 
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 Metastone 

Metastone [6] is an open-source Hearthstone simulator that credibly replicates the flow of 

the Hearthstone game. It offers a graphical user interface with a deck builder to create new 

decks from about 1300 available cards, a game mode where the user can play against 

artificial players as well as observe gameplay between two bots or a simulation mode to 

simulate number of games between two artificial players with results overviewed at the end 

of the simulation. Results give an information about the win rate of each individual player, 

number of played cards, total damage taken during all simulations, most played card and 

more. However, Metastone does not support simulation of games through console which 

proved problematic when attempting to setup tasks in MetaCentrum computational cluster 

to conduct experiments. This missing feature was added to the simulator. 

 Metastone AI players 

Metastone offers a variety of artificial agents that are capable of playing the game. These 

agents can be used to test performance of new artificial players. 

• Random agent selects available actions and targets at random. 

• No Aggression agent never performs any attack actions and only plays cards 

randomly from its hand. Unless the players kill themselves, it is impossible to lose 

against this agent. 

• Do Nothing always ends turn without performing any action. 

• Greedy Optimize Move utilizes weighted heuristic to assign scores to each available 

action based on the game state and selects the one with the highest score. 

• Greedy Optimize Turn assigns scores to each available action using alpha-beta 

pruning algorithm that is driven by the same weighted heuristic as Greedy Optimize 

Move and returns the action with the highest score. 

• The Game State Value uses an alpha-beta pruning algorithm to assign scores to 

available actions that is driven by a threat-based heuristic with weights optimized 

using an evolutionary approach. The heuristic counts a threat level based on the 

current state of the board. Goal is to minimize threat level of the opponent and 

maximize player’s threat towards the opponent. The move with the highest score is 

selected. This is the strongest artificial player available in Metastone simulator. 
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• Flat Monte Carlo for each available action number of random simulations is played 

until the terminal state of the game is reached. The action is then scored according to 

the number of won simulations and the action with the most wins is returned. 

 Metastone Game System 

Metastone implements complete logic of the game of Hearthstone. GameContext class 

contains all the information about the current state of the game as well as the gameplay logic 

for action execution. Each player has their own deck, hand, minions they control, behavior 

parameter that describes assigned artificial player and hero who is tied with available mana 

crystals, health, armor, equipped weapon and played secrets. After the initialization of 

GameContext the game begins. The player who goes first is selected randomly with a coin 

flip and is marked as an activePlayer. The game is played in cycles until health of one of the 

players reaches 0. In each cycle the activePlayer is requested to perform an action from a list 

of valid actions offered by the GameContext. Type of the action is determined by an enum 

parameter. If an end turn action is returned the current player gives the initiative to their 

opponent and opponent begins their turn. 

Each unique card is saved as a json file. The content of these files includes information about 

the card’s name, its manacost, type of the card (minion, spell, …), description of the card’s 

effect (type of the effect, whether it requires a target, what a valid target is, effect’s values) 

and, if the card is a minion or a weapon, also an attack power and health values. Metastone 

supports only some of the selected card effects because in real Hearthstone the card effects 

are diverse and it is difficult to generalize them. Therefore, if the card’s effect cannot be 

described with the defined rules in a json file it is possible to implement the Play() function 

for the card to perform the card’s effect. Each available deck is also described in a json file 

by its name, hero and collection of contained cards. 

 Summary 

This chapter presented some of the available open-source simulators for Hearthstone and 

briefly described each of them. Lastly, the Metastone simulator which is utilized for the 

experiments conducted in this work, its artificial players and its game system are discussed. 
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 Artificial intelligence techniques 

This chapter discusses artificial intelligence techniques that are used in this work to design 

artificial players. 

 Monte Carlo Tree Search 

Monte Carlo Tree Search (MCTS) [7] is a family of search methods designed to address 

sequential decision-making problems. The method is based on analysis of the most 

promising nodes and constructs the search tree during its execution, starting in the current 

state where a decision is required. Each node in the tree is scored according to simulations 

between AI-controlled players who play moves (randomly or driven by a quick decision-

making process such as heuristic) until they reach the terminal state of the game, using the 

game’s result to score the nodes. With each iteration the most promising nodes (nodes that 

lead to the most victories) are expanded with new nodes, constructing an uneven tree. The 

method is suitable for implementation of artificial players in games with high branching 

factors such as Go [8] and its stochastic nature of the simulations allows the method to handle 

randomness as well. 

The MCTS search algorithm consists of 4 phases: 

1. Selection: In this phase selection function is applied recursively to traverse the tree 

in order to find a new node to expand (a leaf node or a node not fully expanded). The 

goal of the traversal in the selection function is to balance between exploitation (the 

best action so far) and exploration (action that hasn’t been thoroughly explored) 

based on the available information from simulations. 

2. Expansion: One or more children of the selected node are added to the search tree. 

Children are states reachable from the selected node.  

3. Simulation (rollout): For each expanded node one or more simulations between two 

AI-controlled players are played until a terminal state or a defined depth is reached. 

The games can be played randomly or be guided by a quick decision-making process. 

The nodes are then scored based on the game’s result (typically +1 if the player won 

the game, +0 otherwise). 

4. Back-Propagation: Results of rollouts are propagated to all nodes that were visited 

from the root state along the path to the newly added node. 
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 UCB – Upper Confidence Bound 

As was mentioned in the description of the simulation phase, its goal is to achieve a balance 

between exploration and exploitation of the tree. A commonly used policy to achieve this 

balance is Upper Confidence Bound (UCB) [9]. Each node of the tree contains two 

information: 

1. The number of times the node was visited in all the carried simulations 

2. The number of victorious simulations from the node. 

This information is used to guide the tree traversal based on the following formula: 

𝑊(𝑛)

𝑉(𝑛)
+ 𝑐√

ln 𝑉(𝑝)

𝑉(𝑛)
 

Where W(n) is the number of victories achieved in node n, V(n) is the number of visits of 

node n, p is the parent node of node n and c is an exploration parameter that balances 

selection between the most successful and less explored nodes. For UCT (Upper Confidence 

Bound applied to Trees) the exploration parameter is selected empirically. This is computed 

for each child node of current node and the one with the highest value is selected. With 

infinite amount of simulations from each node MCTS is guaranteed to converge to minimax 

tree when utilizing UCB [10].  

 Neural Network 

Artificial neural networks [33] are computing systems inspired by the biological neural 

networks and are intended to replicate learning processes of human brain. The goal of an 

artificial neural network is to find patterns among the training data and use the acquired 

knowledge to recognize between the entities it was trained for. Artificial neural networks 

have been used on a variety of tasks including speech recognition, image recognition or game 

playing. 

Artificial neural network is based on entities called neurons. Each neuron takes number of 

input signals and computes a weighted sum of the inputs, generating an output signal value.  

The activation equation looks like this: 

𝑎′ = 𝜎(𝑤1𝑎1 + 𝑤2𝑎2 + ⋯ + 𝑤𝑛𝑎𝑛 − 𝑏) 

Where 𝑎′ is activation value of the neuron, 𝑎𝑛 is input value from other neuron, 𝑤𝑛 is weight 

of the neuron, 𝑏 is bias (activation threshold) and 𝜎(𝑥) is an activation function.  
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The neural network is structured into layers – an input layer that receives encoding of the 

initial input to be evaluated, an output layer which returns results of the evaluations (output 

signals) and hidden layers that process the input values. Figure 4 depicts a fully-connected 

network with 6 input values, 2 hidden layers and 1 output value. 

 

 

Figure 4 – Fully-connected feed-forward neural network. Adopted from [33] 

 

To teach neural network a set of training data is required where each individual input is also 

labeled with the expected output. Once the batch of training data is evaluated the network’s 

output is compared to the expected output. A cost function calculates how incorrect the 

evaluation is compared to the expectation. The goal of the learning process is to minimize 

the cost function of the output. To achieve this goal, gradient descend is utilized, moving in 

the opposite direction of the gradient to move towards the minimum. However, the cost 

function can depend on thousands of variables, making it difficult to calculate its gradient. 

For this objective a backpropagation algorithm was designed. This algorithm walks 

backwards through the neural network, propagating calculated errors to the neurons and 

determining how the parameters influencing the neuron’s activation should change to 

achieve descend towards minimum of the cost function. 

 Summary 

In this chapter Monte Carlo Tree Search, a method designed for decision-making problems, 

was introduced. Afterwards the policy called Upper Confidence Bound to balance the 

exploration and exploitation of the MCTS was discussed and finally artificial neural network 

and a brief summary of its functionality were presented.  
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 Artificial Intelligence Approaches in CCGs 

This chapter presents several works related to creation of artificial players in collectible card 

games. Because of Hearthstone’s high popularity it was used as a testing environment for 

majority of researches related to collectible card games. 

 MCTS Enhanced with Domain Knowledge and Heuristics 

In [19] a modified Monte Carlo Tree Search utilizing expert knowledge to deal with 

unknown information and heuristic driven rollouts is proposed as a card playing agent in 

Hearthstone. The approach modifies selection and rollout phases of the MCTS: 

 

Selection 

In order to achieve balance between exploration and exploitation the upper confidence bound 

is applied during the selection phase. To further refine this balance expert knowledge is 

added to the UCB formula via progressive bias [20] in form of heuristic: 

𝑊(𝑛)

𝑉(𝑛)
+ 𝑐√

ln 𝑉(𝑝)

𝑉(𝑛)
+

𝐻(𝑝)

1 + 𝑉(𝑝)
 

Where H(p) is heuristic value of the parent node returned by heuristic function and V(p) is 

number of parent node visits. 

 

Rollout 

Two modifications are applied to the rollout phase. In simulation phase the games are played 

until terminal state is reached. To dealt with hidden information a deck database of premade 

decks is utilized. Based on cards played by the opponent a deck is selected from the database 

with the most co-occurrent cards and is assigned to the opponent during the rollouts. 

The second modification adopts a tournament selection [21] approach commonly used in 

evolutionary algorithms. At each simulation step k actions are sampled at random from all 

available actions. Every selected action is scored according to a heuristic function and action 

with the highest value is selected as the next move. 

Selection and rollout phases rely on a heuristic function to evaluate game states and inform 

the action and node selection. A heuristic considering selected features of the game was 

designed and its weights optimized by genetic programming where an agent driven by this 
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heuristic played series of games against the GreedyOptimizeMove behavior in Metastone 

with various decks. The heuristic was compared to threat-based heuristic employed by GSV 

behavior but achieved worse results. For the final experiments the evolved heuristic was 

replaced by threat-based one. 

Basic version of MCTS and MCTS with proposed improvements were matched against 

artificial players in Metastone. Both approaches achieved win rate near 100% against 

Random and No-Aggression players. Against GreedyOptimizeMove basic MCTS won 40% 

of the games while modified MCTS won over 60%. Against the Game State Value player 

basic MCTS performed with only 21% win rate while enhanced MCTS was able to reach 

win rate of 42%. Based on the results the proposed MCTS approach performed significantly 

better than the basic unmodified MCTS. 

 MCTS Methods Improved with Machine Learned Heuristic 

In [22] an algorithm combining Perfect information MCTS (PIMC) [23] and Information 

Set MCTS [24] (ISMCTS) is proposed as a solution to the card playing agent in Hearthstone 

and is further augmented by the use of machine learning. 

Transposition table is constructed instead of search tree in order to detect duplicate states 

reachable with different sequences of actions. To access table entries, information sets, an 

information observable by active player, serve as keys to the transposition table and value 

of the entry is a list of available actions executable in the information set where score is 

assigned to each action. In each iteration a perfect information state is determinized and 

based on the current information set, available actions in the current state are looked up in 

the table. If an entry was found, next action is selected according to UCT policy and executed 

in the current determinization, otherwise the table is expanded with the new entry. 

During player’s turn the selection of actions which includes playing cards as well as 

performing attack actions with minions on board can be done in different sequences 

(permutations). However, when attacking most of the permutations lead to the same resulting 

state. A heuristic oriented attack solver has been designed to generate an optimal sequence 

of attack actions for the given state and all attack actions were replaced with a single action 

called “attack solver” that can be selected at any point during player’s turn. This way the 

MCTS only needs to decide between playing cards, using “attack solver” and ending its turn, 

reducing the search space of available actions 
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Lastly, a heuristic function based on a machine learned prediction model is utilized in 

multiple stages of the MCTS. During the selection stage the heuristic evaluation is included 

together with the UCB formula via a progressive bias [20].  In simulation phase greedy action 

selector is utilized to select guide the rollouts with respect to a heuristic. The simulations are 

limited to a certain depth and the last reached state is evaluated. The evaluation is based on 

a fully connected neural network which for an input state returns a prediction of the winning 

player. The neural network is trained from a dataset of vectors describing various game states 

with an information about the winner created from simulations played between two MCTS 

bots. The approach reliably wins 100% of games against random oriented player and was 

matched against Legend rank Hearthstone player (legend is the highest achievable rank in 

Hearthstone). The human players reported that the artificial player performed well and was 

challenging to play against. 

 Chance Event Bucketing and Machine Learning in MCTS 

In this work [25], two improvements to the MCTS are proposed: usage of chance event 

bucketing and pre-sampling to deal with large branching factor caused by chance nodes and 

a machine-learned policy to guide rollouts during simulation phase of MCTS. 

Perfect Information Monte Carlo Tree Search (PIMC) [23] is utilized to deal with the 

unknown information, a determinized variation of MCTS that samples number of worlds 

from the available information and traverses each of the sampled worlds. Results of each 

world are then summed together and action with the highest score is returned. 

To mitigate high branching factor in chance event nodes, chance event bucketing method 

is applied. This method groups similar possible outcomes of the chance event into buckets 

and then selects one or more of the outcomes to represent all the possibilities contained 

within the bucket. Bucketing is applied to the most frequent chance event – card drawing. In 

Hearthstone, manacost of cards usually reflects their power. This is used as a criterion for 

bucketing of card draw outcomes, grouping cards with similar manacost into one bucket. 

Each bucket has different probability based on number of sampled outcomes. When 

bucketed node is visited during selection, a bucket is selected with respect to the probability 

and finally one of the sampled outcomes is chosen as the final destination.  MCTS with 

chance bucketing was tested against an AI player available in the silverfish simulator and 

won 72.3% of games. 
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To further improve the playing strength of the agent, neural network trained for card playing 

decisions during the rollout phase of MCTS is employed. The trained policy returns a vector 

that assigns probability to each card. The probabilities indicate how probable it is for each 

card to be played in the current state. This trained policy is utilized in the rollout phase for 

selection of card playing actions. Dependent target selections are then evaluated with a 

heuristic function and the one with the highest score is selected. MCTS with chance 

bucketing and the trained policy for rollouts was then tested against the silverfish agent and 

achieved win rate of 75.3% which is a slight improvement. 

 Card Playing Agents Based on Machine Learning 

In [26] an approach based only on machine learning techniques is proposed to create 4 

different card playing agents. Goal of each agent was to construct an optimal action sequence 

for the given state.  

The first two agents are based on reinforcement learning, rewarding the agent with positive 

value if victory was achieved and negative value if the game was lost. The search space of 

both agents is separated into two sections: hand actions consisting of card play and hero 

power actions, and board actions for selection of attacking minions and their targets. Board 

models of both agents are learned based on the Q-learning algorithm taken from [27] 

utilizing multilayer perceptron Q-function in matches against a heuristic-oriented player 

from [28]. The board model of the first agent selects from up to 57 actions (there can be up 

to 7 minions on player’s half of the battlefield and up to 8 targets for each of them plus an 

action to do nothing). The second agent separates attacker and target selection from each 

other and solves both parts individually. The hand model constructs all possible hand action 

sequences and requests the board model to assign rewards to each sequence. Sequence with 

the highest score is executed. Both agents utilize the same hand model. 

The other two agents are based on an action tree that is built from the available actions. One 

path from root node to leaf represent an action sequence ending with end turn action. These 

agents do not separate actions into board actions and hand action and therefore are able to 

change between them. Traversing the whole action tree would be time consuming, therefore 

a pruning (possibly alpha-beta) is utilized to quickly find the optimal action sequence. Each 

agent employs a different metric to measure the leaf node states and guide the pruning 

algorithm. The first agent utilizes machine learned policy that assigns probability of winning 
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in state reachable with the action sequence. The second agent is based on machine-learned 

threat metric, predicting threat level of the player and the opponent and choosing the action 

that maximizes player’s threat and minimizes opponent’s threat. Finally an experiment was 

conducted where each agent played 10 000 games against heuristic oriented agent from [28]. 

The first Q-learning agent selecting from 57 actions achieved win rate of 32.21%, the second 

Q-learning based agent solving attacker selection and target selection separately won 

44.79% of games played. The third agent utilizing action tree with victory prediction metric 

reached win rate of 59.55% while the performance of the fourth agent based on a threat level 

metric peaked at 72.90% win rate. 

 Summary 

There is a large variety of aspects in collectible card games that can be addressed with the 

use of the artificial intelligence. To conclude the chapter an overview of the mentioned 

methods related with creation of artificial players is presented in Table 1: 

Section name MCTS 
Determinized 

MCTS 

Expert 

knowledge 
NN EA RL 

Deck 

Aprox 

MCTS Enhanced with 

Domain knowledge and 

Heuristic [19] 

       

MCTS Methods 

Improved with 

Machine Learned 

Heuristics [22] 

       

Chance Event 

Bucketing and Machine 

Learning in MCTS [25] 

       

Card Playing Agents 

Based on Machine 

Learning [25] 

       

Table 1 - Overview of AI Methods 

NN (Neural Networks), EA (Evolutionary Algorithms), RL (Reinforcement Learning) 

 

Each of the presented game playing approaches utilized different simulators and different 

behaviors for opponents in conducted experiments and therefore it is difficult to predict how 

these approaches would perform against each other. 
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 Approaches 

In this section the implementation and description of methods used in the following 

experiments are discussed. 

 Vanilla Monte Carlo Tree Search 

This is the basic variant of Monte 

Carlo Tree Search described in 

section 4.1 designed to play 

matches in Hearthstone. The 

approach is depicted in 

Algorithm 1. To deal with the 

hidden information represented 

by the opponent’s deck, hand and 

secrets the artificial player 

utilized a Perfect Information 

MCTS approach [23]. In this approach, the hidden information is guessed randomly, 

constructing a deck with randomly selected cards from the available card pool. This deck is 

assigned to the opponent and his hand is filled with randomly drawn cards from the assigned 

deck. If the opponent has secrets attached to their hero they are selected randomly as well. 

The random determinization only selects from cards that are available to the hero the 

opponent plays with, therefore it cannot give a Priest card to an opponent who plays as a 

Warlock (although in real game of Hearthstone Warlock might get access to some of the 

Priest specific cards during gameplay due to effects of some cards). Before the MCTS search 

loop, number of possible randomized worlds are sampled beforehand and each of them is 

searched individually.  Scores of each available action is then summed together across all 

the worlds and the action with the highest score is returned. To balance between exploration 

and exploitation during selection phase the Upper Confidence Bound is utilized. Random 

driven rollouts are performed up to a terminal state of the game to assign scores to nodes in 

the search tree. 
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 Enhanced Monte Carlo Tree Search 

This approach utilizes enhancements 

to Monte Carlo Tree Search proposed 

in [19] and discussed in section 5.1. 

The implementation of the approach 

can be found [14]. The enhancements 

are taken from the available 

implementation and are fitted into the 

Vanilla MCTS. 

During the selection phase of MCTS algorithm a domain specific knowledge is added to the 

UCB selection formula. This knowledge is given by the Threat Based heuristic utilized by 

GSV behavior which is used to evaluate game state associated with the node. This 

knowledge has high impact on node selection within first few iterations when the 

construction of the tree has just begun, reflecting the decision-making of GSV behavior. 

To deal with the hidden information usage of deck database is proposed. Hearthstone players 

typically keep track of momentarily popular decks for each of the heroes. During gameplay 

they assume their opponent uses one of the momentarily popular decks based on the hero 

selection of the opponent. With each card played by the opponent the player receives 

additional information that can be used to further reduce the number of possibilities. The 

usage of deck database is inspired by this thought process. The bot utilizes a set of 

preconstructed decks that is assigned to the opponent during rollouts based on the cards 

played by the opponent. The deck with the most cards in common with the played cards is 

assigned. Cards already played by the opponent are removed from the deck and cards in hand 

are drawn randomly from the assigned deck. This is done before the execution of rollout 

function. Pseudocode is displayed in Algorithm 2. In practice, this is an effective way to 

cope with unknown contents of opponent’s deck because players tend to use the decks that 

perform the best in the current environment. Although there are usually numerous variations 

of popular decks, the difference is often in only few cards. Of course, if the opponent plays 

with a deck that is completely different from decks in the database, the artificial player would 

determine the unknown information completely wrong which would have negative effect on 
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its performance. However, even an experienced human player is unable to guess the 

opponent’s deck in such a situation. 

To increase the credibility of 

simulations during the rollout 

phase the approach makes use 

of heuristic evaluation to guide 

the action selection during 

rollouts. In the work [19] a 

heuristic was designed that 

considers selected components 

of the game state to evaluate it. 

The weights were then tuned by 

application of evolutionary 

algorithms and compared to 

Threat Based heuristic of GSV behavior. The threat-based heuristic proved to achieve better 

performance as its weights were also tuned by evolutionary algorithms but considers more 

components than the proposed heuristic. In the end, the threat-based heuristic was used in 

the final configuration of the approach and therefore the evolutionary approach is not 

examined in this work. To guide the action selection during rollouts each player is assigned 

with a greedy action selector that utilizes threat-based heuristic for state evaluation. 

However, with high number of iterations the rollouts can be very time-consuming. To 

alleviate this issue a tournament selection is applied whenever an action is required. 

Tournament selection reduces the amount of valid actions be sampling a percentage of the 

available actions at random and the action selector considers only the sampled actions. 

Sampled actions are then evaluated by the heuristic function. The action selector 

distinguishes between the players, selecting action with the highest score if artificial player 

is the active player and action with the worst score if active player is the opponent. The 

functions utilized to guide the rollout decision-making are viewed in Algorithm 3. 

Finally, during the player’s turn the approach attempts to reuse the tree constructed in 

previous search. When an action is return, the node and state associated with it is saved. 

When artificial agent is requested to select an action, it compares the current game state with 

the remembered state and if these states are marked identical, the saved node is selected as 

current root. Otherwise, new root is initialized and the tree construction begins anew. To 
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determine whether the states are identical, valid actions of the current state are compared 

with actions that can be performed in the saved state. If all the actions associated with the 

saved node are among the valid actions of the current state, the states are considered 

identical. 

 MCTS with Chance Event Bucketing and Neural Network 

This artificial agent is inspired by techniques described in section 5.3 and the methods are 

incorporated to the Vanilla MCTS from section 6.1. 

The approach employs depth-limited simulations during rollout phase. Whenever a 

simulation is launched it is played until either a terminal state or the limit of played turns is 

reached. The simulation counts number of executed end turn actions and when the counter 

is higher than the depth the simulation is terminated. If reached state is not terminal it is 

evaluated with a heuristic function. However, in the mentioned work heuristic available in 

the Silverfish simulator was used for this purpose. Because this heuristic is not present in the 

Metastone simulator the threat-based heuristic is utilized instead. The reached state is 

evaluated from player’s and opponent’s perspective and the one with higher heuristic value 

is predicted as the winning player (the higher the heuristic value the higher threat the player 

represents towards his opponent). 

To incorporate randomness into the tree search process, chance event bucketing method is 

applied. Specifically, this method is applied to the most common chance event that occurs 

throughout the game, the card drawing. Chance event bucketing takes all possible outcomes 

of a chance event and groups them into number of buckets based on a selected criterion. 

Then, for each bucket some of the outcomes are selected as representative values. In this 

case, the bucketing criterion is the manacost of cards. Figure 5 depicts an example where a 

card draw event is separated into 4 buckets - 1 containing cards with manacosts 0-2, 1 with 

cards with manacosts 3-4, 1 for cards with manacosts 5-6 and 1 for cards with manacost 7 

and above - and each bucket has 2 representative values. When transitioning to bucketed 

node during selection phase of MCTS, one of the buckets is selected as a destination 

with respect to probability that is defined by the number of samples contained within the 

bucket compared to the total number of samples. In Figure 5 each bucket has the same 

probability, but if the first bucket contained 4 samples and total number of samples was 10 

the probability of transitioning to the first bucket would be 40% and probability of other 
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buckets would be 20%. Finally, one of 

the samples within the bucket is 

selected at random as the final 

outcome.  This way effects of random 

events are introduced into the scores of 

tree nodes that are associated with the 

chance events. To give even better 

estimation of the node’s score, more 

than one bucket could be explored 

when transitioning to a chance node. The approach in this thesis distributes outcomes of card 

draw events into 5 buckets with manacosts 0-1, 2, 3-4, 5-6, 7+. If 1 card is drawn 10 possible 

outcomes are sampled in total among all the buckets. At least one sample is assigned to a 

bucket if there is at least 1 card that fits the bucket’s criterion. The remaining samples are 

then distributed among the buckets with respect to the number of their possible outcomes 

(bucket with the most possibilities contains the highest number of samples). If 2 or more 

cards are drawn 5, possible outcomes are sampled for each card draw instead of 10 (if 2 cards 

are drawn there are 52 possible outcomes in total). 

 

 

Figure 5 – Example of chance node bucketing 

 

To further improve performance of the approach, machine-learned card play policy utilizing 

neural network is employed to guide the action selection during rollouts. The goal of the 

neural network is to assign probability to each card that describes how probable it is for a 

card to be played in the current situation. However, some cards may require dependent action 

after being played such as target selection. Once a card play action has been selected its 

dependent actions are resolved using greedy heuristic-oriented action selector. Therefore, 
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whenever an action needs to be selected the current state is encoded and evaluated by the 

neural network. Network outputs probability for each card and card in hand with the highest 

probability is played. If no card play actions are available among the valid actions the 

remaining actions are resolved by the action selector. As the action selector, 

GreedyOptimizeMove behavior available in the Metastone simulator is used. 

To encode the state of Hearthstone for the neural network, 3 features are considered: 

• Global features: Global features are represented as a single vector encoding current 

health of each player using a 5-bit binary representation for each player, the player’s 

remaining mana, the opponent’s available mana on the next turn, whether the player 

and opponent have a weapon equipped, which of the two players played first and 

whether the total attack value of player’s minions is higher than the total health of 

opponent’s minions. 

• Hand features: A vector that one-hot encodes contents of each players hand. Each 

card in the simulator is encoded with a vector that represents how many instances of 

the card are in each player’s hand, whether the card is playable by the players and if 

there is a possible follow-up card play after the card is played. 

• Board features: A single vector one-hot encoding the current state of the game 

board. Instances of each minion that can appear in the game are encoded into a matrix 

where rows represent current health value (5 different health values are 

distinguished – 0-1, 2-3, 4-5, 6-7, 8+) of the minion and columns stand for the 

number of instances of the minion with the particular amount of health controlled by 

the players. This matrix is then flattened into a single vector and an information 

whether the minion is a legendary minion and whether it has an aura (an effect that 

does something while the minion is on board) is appended. 

The training data for the neural network was generated from simulations between two 

GameStateValue behaviors, which is the strongest artificial player offered by the 

Metastone simulator. 27 000 open-handed mirror matches were played with each of the 

3 decks that were selected for the following experiments (Pirate Warrior, Midrange 

Shaman, Freeze Mage) for a total of 81 000 matches. Every turn with different maximum 

mana value from each player’s perspective (for a total of 20 turns) is observed and all 

card play actions performed in these turns are encoded and saved into the training file 

with the played card as the expect output of the encoding. In the end the training data file 

contained about 4 million training samples. It is important to note that the size of 
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encoding depends on the number of cards available in the simulator. Metastone simulator 

offers nearly 1 300 different cards and encoding of a single state included about 60 000 

values. File that contained training samples from only 1 000 matches required about 

3.5GB of memory space. To save data from 81 000 matches would require over 280GB. 

To lower the memory requirements the available card pool was limited to 100 cards 

consisting of each card that appears in the 3 selected decks and a few additional cards to 

reduce accuracy of random determinization of hidden information used by Vanilla 

MCTS and this approach. 

The neural network used for card play action selection employs feedforward neural 

network topology consisting of 3 hidden fully-connected layers (Figure 6). Each of the 

layers utilizes leaky ReLU activation function with parameter 𝛼 = 0.2 and 50% dropout 

to handle overfitting. The output layer outputs 𝑘 values where 𝑘 is the number of 

different available cards. For parameter initialization Uniform Xavier Initialization was 

used. For training the adaptive moment estimation (ADAM) with parameters 𝛼 = 103, 

decay √𝑡/3, 𝛽1 = 0.9 and  𝛽2 = 0.999 is used with minibatch size of 200. The network 

was trained for 5 epochs, learning for about 23 hours. 

 

 

Figure 6 – Feed-forward network architecture  
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 Summary 

In this chapter the approaches used in the following experiments and their implementation 

are discussed. First, the basic Monte Carlo Tree Search in a form of Vanilla MCTS and its 

application to a game of Hearthstone is examined. Then the Vanilla MCTS was enhanced 

with methods mentioned in section 5.1, creating first enhanced version of the MCTS 

algorithm, and finally a second improved version of MCTS was developed with the use of 

chance event bucketing and rollouts guided by a machine learned policy from section 5.3. 
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 Experiments 

In this chapter the experiments for the implemented approaches are conducted. In these 

experiments the proposed approaches are tested against behaviors that are available in the 

Metastone simulator, namely PlayRandomBehavior (Random) that chooses random actions, 

OptimizeMoveBehavior (Greedy) which evaluates each available action with heuristic 

function and chooses the one with the highest score, and GameStateValueBehavior (GSV) 

utilizing Alpha-Beta pruning algorithm driven by Threat Based heuristic and is the strongest 

of the Metastone behaviors. For the experiments the limited card pool mentioned in section 

6.3 is used and 3 different decks are selected where each represents one of the general 

strategies (Aggressive, Midrange, Control): 

• Pirate Warrior: Aggressive deck with goal to kill the opponent’s hero as fast as 

possible 

• Midrange Shaman: This deck concentrates on maintaining dominance over the 

battlefield with usage of stronger (but more expensive) minions and spells 

• Freeze Mage: Deck based around control strategy. The goal of the deck is to 

eliminate all threats from the board with the usage of spells and to survive for as long 

as possible until its win condition is drawn (typically a combination of cards that is 

able to kill the opponent’s hero in 1 or 2 turns) 

In each individual experiment 5 series of 50 simulations for a total of 250 matches are played 

between 2 selected bots where both players have the same deck (mirror matches). Each bot 

has unlimited thinking time to make its decision. 

 MetaCentrum 

MetaCentrum [30] [31] is an activity of CESNET association that operates and manages 

National Grid Infrastructure (NGI) in Czech Republic as part of the pan-European 

infrastructure built in the framework of the EGI [32] project. MetaCentrum supports research 

projects in many research disciplines and enables researchers to easily share computing and 

storage resources. Registered users have access to available resources and are allowed to use 

them free of charge. Grid infrastructure managed by MetaCentrum was utilized to conduct 

experiments in this chapter. 
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 Vanilla MCTS 

Vanilla MCTS from section 6.1 is the basic implementation of PIMC that utilizes random 

oriented rollouts to estimate value of available actions and deals with hidden information by 

randomly sampling the unknown data and creating number of possible worlds. 

 Parameter Selection 

Performance of Vanilla MCTS depends on 3 parameters: Number of iterations, number of 

sampled worlds and exploration parameter C used in UCT. To test various values for the 

parameters a round-robin tournament with Pirate Warrior deck is run with 250 games per 

match and afterwards each candidate is matched against GSV bot. Pirate Warrior is selected 

because in mirror match it is important to alter between aggression and board control based 

on current state of the game. 

 Exploration parameter 

First the effect of the exploration parameter on Vanilla MCTS is explored. The candidates 

for the exploration parameter are {0.5, 0.6, 0.7, 0.9, 1.1}. Number of iterations is set to 250 

and number of sampled worlds to 7. 

According to the results in Table 2 the performance of parameters 0.5, 0.6 and 0.7 is similar 

and with further increase of the parameter the performance begins to decline. With too large 

exploration parameter the algorithm will not spend as much time exploiting the promising 

moves and will expand the search tree more evenly which could lead to selection of worse 

moves. From now on value 0.7 will be used for the Vanilla MCTS as it has the most balanced 

results and seemingly the best performance against GSV player. 

 

 0.5 0.6 0.7 0.9 1.1 GSV 

0.5 - 47.6 49.6 54.4 55.6 36.8 

0.6 52.4 - 45.2 50.8 57.6 35.6 

0.7 50.4 54.8 - 51.6 50.4 38.0 

0.9 45.6 49.2 48.4 - 47.6 29.6 

1.1 44.4 42.4 49.6 52.4 - 31.6 

Table 2 – Exploration parameter results 
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 Iterations 

The number of iterations defines how many expansions occur during the algorithm’s 

execution and how many simulations are played out to estimate the value of each node in 

the tree. The values are selected from set of parameters {100, 250, 500, 750, 1000} and for 

each value its performance and time consumption are measured. Exploration constant is set 

to 0.7 and number of sampled worlds to 7. 

In table 3 are summarized experiment results. Surprisingly in round-robin tournament it 

seems that number of iterations has no significant effect on the performance of MCTS, 

however when matched against GSV low number of iterations show low performance 

compared to higher values as is expected because more iterations mean more thinking time 

until deciding. Performance peaks at 500 iterations and further increases seem to have no 

significant effect on the playing strength. 

 

 100 250 500 750 1000 GSV 

100 - 50.0% 49.6% 46.4% 50.4% 22.4% 

250 50.0% - 45.2% 46.4% 50.0% 28.4% 

500 50.4% 54.8% - 48.8% 49.6% 32.4% 

750 53.6% 53.6% 51.2% - 50.0% 31.2% 

1000 49.6% 50.0% 50.4% 50.0% - 30.8% 

Table 3 – Iterations results 

 

 

Figure 7 – Time complexity base on iterations 
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In Figure 7 the average thinking time for action selection in seconds is overviewed with 

vertical lines representing 95% confidence interval for each selected iteration. As was 

anticipated, increasing the number of iterations increases the time needed to decide. For the 

following experiments value of 500 iterations will be used as it is sufficient enough to 

achieve reasonable results. However, it is important to note that in game of Hearthstone each 

player has 75 seconds to play their turn and can perform multiple actions until they decide 

to end it. With 20 seconds per action selection the player would be able to perform only 3 

actions until their turn is ended by the game which might be only a small fraction of all the 

actions that could have been done. Reducing the amount of time needed to make a decision 

or distributing available time budget to available actions could be explored in further works. 

 Worlds 

This parameter determines the number of randomly sampled worlds based on the current 

state to deal with the hidden information (opponent’s hand, deck and secrets). The set of 

candidate values for this parameter is {5, 7, 9, 11, 13}. Performance and time requirements 

of each value is examined. Number of iterations is set to 500 and exploration parameter to 

0.7. 

The results in table 4 indicate that increasing the number of sampled worlds increases the 

performance of the Vanilla MCTS. With few samples the search may not encounter some of 

the possible moves the opponent could perform and therefore the MCTS could not consider 

these moves when selecting its next action. Increasing the number of samples allows the 

player to search higher number of different possible situations and chose an action that 

performs well in all the considered situations. 

 

 5 7 9 11 13 GSV 

5 - 47.6% 42.8% 40.4% 42.8% 27.2% 

7 52.4% - 52.4% 43.2% 40.0% 35.2% 

9 57.2% 47.6% - 49.2% 44.8% 36.8% 

11 59.6% 56.8% 50.8% - 48.4% 37.6% 

13 57.2% 60.0% 55.2% 51.6% - 38.4% 

Table 4 – World results 
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Figure 8 shows the average time in seconds needed to decide based on the number of sampled 

worlds. Similarly to iterations, increasing the number of worlds increases the time 

complexity because each of the sampled worlds needs to be explored. 11 worlds are chosen 

for the next experiments as a setting that presents sufficient playing strength while requiring 

reasonable amount of time to decide. 

 

 
Figure 8 – Time complexity based on worlds 
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 Matches against Metastone Behaviors 

To conclude the section about Vanilla MCTS the approach is matched against the artificial 

players in the Metastone simulator with results depicted in Figure 9. Vanilla MCTS with the 

selected parameters is able to win every game against randomly playing agent and wins 

majority of matches against the Greedy behavior, achieving win rate of 70.8% in Freeze 

Mage mirror match, 79.6% with Midrange Shaman and 88.8% against Pirate Warrior. 

Against GSV behavior Vanilla MCTS presented an underwhelming performance in Pirate 

Warrior and Midrange Shaman mirror matches with 31.2% and 37.2% win rates 

respectively. However, it shows substantially better performance in the Freeze Mage mirror 

match achieving win rate of 66.40%. This significant win rate difference between Freeze 

Mage and other decks is likely caused by the need of resource management and planning 

during the gameplay with the Freeze Mage deck. In order to win the game the player needs 

to preserve the cards that are part of the deck’s winning card combination. If these cards are 

used early in order to control the board or without the presence of other combo pieces the 

players might put themselves further from the winning position or even make it near 

impossible for them to win. The GSV does not plan past its own turn and therefore is unable 

to realize this, resulting in worse performance. 

 

 

Figure 9 – Results of games between Vanilla MCTS and Metastone behaviors 
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 MCTS Enhanced with Domain Knowledge and Heuristics 

In this part experiments for the approach proposed in sections 5.1 and 6.2 that utilizes 

heuristic oriented rollouts, deck database to deal with the unknown information and random 

action sampling are performed. For the experiments the most successful parameter 

configuration carried out in the work [19] is selected. However, this configuration includes 

usage of tree reuse during players turn. Because of the random nature of Hearthstone 

performing the selected action might lead to a different state than the expect state saved in 

the search tree. Such a state has not been explored and the search tree needs to be constructed 

anew. In the implementation each random event is represented with 1 possible outcome. It 

is improbable that the sampled outcome is also contained within the search tree and any time 

a chance event is encountered the tree cannot be reused. To determine whether the usage of 

tree reuse has effect on the performance of the artificial player an experiment is conducted. 

6 series of 50 simulations for a total of 300 matches are played between one bot utilizing 

tree-reuse and the other without the tree-reuse method. Pirate Warrior deck is selected for 

the experiment as it has the lowest quantity of cards with effects causing random events from 

the selected decks. Table 5 contains results of the experiments. Win rate of both approaches 

is close to 50%. The 95% confidence interval of the bot utilizing Tree-reuse is 

<  43.59;  52.41 >, therefore the usage of the Tree-reuse method has no significant effect 

on the playing strength of the artificial player. 

 

 Win rate Standard Deviation 95% Confidence Interval 

Tree-reuse 48% 5.513 < 43.59;  52.41 > 

No Tree-reuse 52% 5.513 < 47.59;  56.41 > 

Table 5 – Tree-reuse vs no Tree-reuse 

The final selection of parameters for this approach looks like this: 

• Iterations: 60 (number of tree expansions) 

• Rollouts: 20 (number of rollouts executed to determine score for the expanded node)  

• Action sampling for the player: 75% 

• Action sampling for the opponent: 50% 

• Heuristic: Threat Based Heuristic (heuristic used by GSV) 

• Tree-Reuse: No 
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Now the approach is matched against the available behaviors in the Metastone simulator. 

The average win rates and 95% confidence intervals of these matches are depicted in 

Figure 10. The enhanced version of MCTS was able to win every game against the random 

playing behavior, reaching 100% win rate in each mirror match similarly to the Vanilla 

MCTS. It is also able to reliably defeat the Greedy behavior driven only by heuristic 

evaluation with win rate of 96% with Pirate Warrior, 87,6% with Freeze Mage and 80,4% 

in Midrange Shaman mirror match which is an improvement compared to the Vanilla 

version. When matched against the GSV behavior the bot is underperforming in Pirate 

Warrior match with 36% of the games won and against Midrange Shaman with 39.20%. 

These results are very similar to those achieved in the work that inspired this method. In 

Freeze Mage mirror match the enhanced approach shows excellent performance with win 

rate of 88,4%, winning most of the matches. This is a significant improvement compared to 

the Vanilla version that is likely caused by the ability to accurately determine the contents 

of the opponent’s deck. It is worthwhile to note that this approach with its current parameter 

setup needs 11.67 seconds on average to decide. The average is 2.3 times lower than the 

average time complexity of Vanilla MCTS, however its performance is higher. Win the same 

thinking time as Vanilla MCTS it would likely be able to achieve even better results than 

with the current configuration with only 60 iterations. 

 

 

Figure 10 – Results of games between Enhanced MCTS and Metastone behaviors 

Pirate Warrior Midrange Shaman Freeze Mage

Random 100% 100% 100%

Greedy 96% 80,40% 87,60%

GSV 36% 39,20% 88,40%

0%

20%

40%

60%

80%

100%

120%

Enhanced MCTS matches results



Artificial Intelligence Methods for Playing Collectible Card Games 

 38 

 Chance Event Bucketing and Neural Network 

The experiments regarding addition of depth limited search, chance event bucketing and 

neural network to guide rollouts are carried out in this section. First, various selections for 

depth parameter are explored, then the effects of chance event bucketing and depth limited 

search on the performance are examined and finally neural network is applied to the rollout 

phase of the approach and matched against Metastone behaviors. 

 Depth parameter 

The approach utilizes depth limited rollouts to estimate value of tree nodes. Rollout is played 

until certain depth and if reached state is not terminal it is evaluated with threat-based 

heuristic used by GSV and player with higher heuristic value is predicted as a winner. The 

candidate set of values for the experiment is {5, 7, 9, 11, 13}.  The tests are run with Pirate 

Warrior deck, 500 iterations, 11 worlds and 0.7 exploration parameter against Metastone 

behaviors. Round Robin tournament is not performed because addition of depth limit caused 

issue where the bot utilizing the method labeled as player 1 lost almost every match in the 

tournament regardless of the selected parameters. (being player 1 does not necessarily mean 

the player goes first. Number 1 resembles identification number to distinguish players in the 

simulator). Based on observation of simulations the bot made reasonable decisions and the 

reason for this unexpected behavior is unknown. Results of candidate depths are contained 

in table 6. According to the data, artificial player reaches peak performance with 7 depths 

and then begins to decrease with increasing depth value. The decrease of performance with 

higher depth is surprising. The reason for this could be that with Pirate Warrior the player is 

able to empty their hand in the first 4-5 turns and available actions in future turns heavily 

depend on cards drawn. Using only 1 sample for card draw outcomes does not provide 

sufficient score estimation of available actions. 

 

 5 7 9 11 13 

Random 100% 100% 100% 100% 100% 

Greedy 96.4% 97.2% 96.0% 93,6% 92,0% 

GSV 56.6% 57.2% 52.8% 47.6% 47.6% 

Table 6 – Depth results 
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Figure 11 – Time complexity based on depth 

In Figure 11, time in seconds needed to decide based on selected depth value is depicted. 

The raise of depth increases the time complexity which is anticipated. The approach employs 

the same parameters as Vanilla MCTS, however it needs nearly 7 times less decision time 

with 7 depths while achieving better performance. This is a significant improvement because 

with 4.41 seconds to decide the approach could be utilized as artificial player in a real game 

of Hearthstone. 

 Chance Event Bucketing 

Chance event bucketing separates possible outcomes into number of buckets where each 

contains similar outcomes. Results in Figure 12 show that this approach performs 

significantly better in Pirate Warrior and Midrange Shaman mirror matches against GSV 

behavior with win rates of 56.8% and 44.8% respectively in comparison with Vanilla MCTS, 

but on the other hand achieves worse results in Freeze Mage mirror match with 96.8% win 

rate against Random behavior, 51.6% against Greedy behavior and 44.0% against GSV 

which represents a decrease in comparison with Vanilla MCTS. However, the results of the 

Pirate Warrior matches are very similar to values in Table 6. The differences between win 

rates are likely caused by the addition of depth limited rollouts and not the bucketing. To 

support this claim more experiments are conducted without the use of depth limited search. 
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Figure 12 – Results of MCTS with card draw bucketing 

 

According to results in Figure 13 the radical change in win rates is indeed caused by the use 

of depth limited search, but only partially. Without the depth limit the artificial player 

performed significantly better in the Freeze Mage mirror matches, winning 76.4% of 

matches against GSV, as it was able to better plan the usage of its resources with unlimited 

depth which is crucial in Freeze Mage deck as was mentioned earlier. In Pirate Warrior and 

Midrange Shaman matches the bot performed worse than in the previous experiment. 

However, in comparison with the Vanilla MCTS the addition of card draw bucketing had 

beneficial effect on Pirate Warrior (from 31.2% to 48.8%) and Freeze Mage (66.4% to 

76.4%) mirror matches against both GSV and Greedy behaviors. This supports the previous 

claim about decrease of win rate of Pirate Warrior deck with increasing depth caused by high 

dependency of available actions based on cards drawn. With only one possible outcome 

present in the tree the action selection is centered around the single selected outcome, 

however with bucketing the action is selected with respect to other outcomes as well, 

providing better score estimation for available actions. Therefore, the usage of bucketing 

alleviates deprecation of score estimation of actions with increasing depth.  However, in 

Midrange Shaman mirror match its performance against GSV rapidly decreased. This 

decrease is surprising because the addition of bucketing was expected to help in matches 

where card drawing events happen frequently. In Pirate Warrior deck cards are drawn only 

at the beginning of each turn. On the other hand Freeze Mage deck contains high number of 

Pirate Warrior Midrange Shaman Freeze Mage

Random 100% 100% 96,80%

Greedy 96,40% 86,80% 51,60%

GSV 56,80% 44,80% 44,00%

0%

20%

40%

60%

80%

100%

120%

Results of matches with bucketing



Artificial Intelligence Methods for Playing Collectible Card Games 

 41 

cards that draw additional cards and the event can happen multiple times during player’s 

turn. In both cases, bucketing had positive effect on player’s performance. Midrange Shaman 

deck has only few cards that invoke card draw event. Card drawing happens more frequently 

than in Pirate Warrior deck but with much lower frequency than in Freeze Mage deck, but 

addition of bucketing reduced its performance against GSV while retaining similar 

performance against Greedy behavior. 

 

 

Figure 13 – Results of bucketing without depth limited search 

 Neural Network 

In this part the effects of neural network application to simulations of rollout phase is 

examined. The neural network was trained to mimic the card play action selection of GSV 

behavior. First, the accuracy of neural network’s predictions is tested. To measure the 

accuracy, 100 mirror matches with each deck are played between GSV players and each card 

play action of players is compared to the prediction of the neural network. Network achieved 

only 34.22% accuracy with Pirate Warrior, 35.22% with Midrange Shaman and 28,40% 

accuracy in Freeze Mage mirror match, reaching only 32.61% average accuracy. On top of 

that, one evaluation of the neural network takes 43.85 milliseconds. With the selected 

parameters for the MCTS in previous sections 5 500 simulations are played up to a depth of 

7, playing at most 44 000 turns until a decision is made. If 1 card play action was executed 

every turn 44 000 evaluations via the neural network would be required. This process would 
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take 1 929 400 milliseconds which is about 32 minutes required to make a single card play 

decision. In comparison with the outputs in [25] where the deep feedforward neural network 

supposedly achieved 74.725% accuracy on average requiring only 140 microseconds for an 

evaluation the results of the implemented neural network are very discouraging. The 

architecture and configuration of the neural network is design according to the description 

in the mention work, however the differences are significant. The difference in accuracy 

could possibly be caused by different amount of time used to learn the network, however the 

cause of the radical difference in evaluation’s time complexity is unknown, especially after 

considering that the game state encoding in this thesis is smaller than the encoding in the 

mentioned work thanks to the usage of limited card pool. 

In order to perform experiments with the neural network the time required to decide is 

reduced by decreasing parameters of Monte Carlo Tree Search to 100 iterations, 6 sampled 

worlds and depth 6. With this configuration, selecting a card play action requires about 3 

minutes. Even with the reduced configuration simulating 1 game might take several hours, 

therefore the experiments are reduced to 5 series of 20 simulations for a total of 100 games 

per mirror match. Matches against random playing behavior are not performed because the 

win rate against the bot would most likely be 100% as it was in every previous experiments. 

According to data in Figure 14, the approach performed significantly worse in the Pirate 

Warrior and Midrange Shaman mirror matches. This decrease is cause by the reduction of 

the MCTS parameters. Therefore, the tree is not searched as thoroughly as it was in previous 

experiments. On the other hand in the Freeze Mage mirror match the approach utilizing the 

neural network achieved average win rate of 79% against the GSV behavior which is the 

second highest win rate against Freeze Mage among all the experiments conducted even with 

the reduced parameters. Apparently, the replacement of randomly oriented rollout by a 

reasonable action selector in the MCTS utilizing the depth limited search and card draw 

event bucketing had very beneficial effect on the performance in the Freeze Mage mirror 

match, increasing win rate from 44% to 79%. If faster and more accurate action selector to 

guide the simulations during the rollout phase was utilized while retaining the original 

parameter configuration this approach could prove as a strong artificial player with 

reasonable amount of time to decide. 
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Figure 14 – Results of matches with the usage of the learned card play policy 

 Comparison of Methods 

In this final section the implemented approaches are matched against each other to compare 

their playing strength. Because of reduction of parameters of the MCTS utilizing neural 

network which ultimately reduced performance of the depth limit and card draw event 

bucketing methods, both these MCTS variations are tested individually against other agents. 

5 series of 50 simulations for each mirror match are played except for the matches where 

neural network is present in which the number of simulations is reduced to 20 per series. 

Figure 15 depicts the win rates of MCTS utilizing neural network against Vanilla and 

Enhanced MCTS. In Midrange Shaman mirror matches the approach underperformed with 

about 20% win rate in comparison with the other approaches, however despite the reduction 

of MCTS parameters its performance in Pirate Warrior mirror matches is not as poor as 

expected, winning approximately 40% of games. Against Freeze Mage its performance is 

similar to the Enhanced MCTS and a slight improvement can be observed against Vanilla 

MCTS. 
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Figure 15 – Win rates of depth limit, bucketing and NN                                                                  

In Figure 16 are the win rates of MCTS utilizing only depth limited search and bucketing 

against other implemented approaches. The artificial player shows dominant performance 

with Pirate Warrior (56.0% against Vanilla and 70.0% against Enhanced) and Midrange 

Shaman (64.4% against Vanilla and 56.0% against Enhanced), on the other hand its results 

in Freeze Mage mirror matches are poor as was expected based on observations from 

previous experiments, winning 24.8% against Vanilla and 22.0% of games against 

Enhanced. However, according to the results of MCTS with neural network matches, 

performance of this approach can be significantly improved if an action selector was 

incorporated into its rollout decision-making. 

 

 

Figure 16 – Win rates of depth limit and bucketing without NN 
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Figure 17 shows results of matches 

between Vanilla MCTS and its 

Enhanced version. The performance 

of both approaches is similar in 

Pirate Warrior mirror match, but 

against Midrange shaman a slight 

improvement can be observed and in 

Freeze Mage matchup the enhanced 

variation wins 74.40% of games. It is 

safe to say that the addition of greedy 

heuristic-oriented action selector to 

MCTS rollouts and the deck database to determine unknown information improved the 

performance of Vanilla MCTS, especially since the enhanced version needs 2.3 less thinking 

time to make a decision with its current configuration than its Vanilla counterpart.  

 Summary 

In this section, experiments with the implemented approaches were conducted. At first, the 

parameter selection for the Vanilla MCTS was discussed, finalizing its configuration with 

500 iterations, 11 worlds and 0.7 exploration parameter. Afterwards it was matched against 

artificial players available in the Metastone simulator. The approach won every game against 

random oriented agent and showed dominant performance over Greedy player, however it 

underperformed against the GSV behavior. Its enhanced variation achieved even higher win 

rates against Greedy behavior and won 88.4% of matches against GSV in Freeze Mage 

mirror match. However, just like the Vanilla MCTS it was unable to reliably defeat the GSV 

player with Pirate Warrior and Midrange Shaman decks. Then, the second improvement of 

the Vanilla MCTS was matched against the Metastone players. With the addition of depth 

limited search and card draw chance event bucketing the approach achieved the best 

performance against GSV in Pirate Warrior and Midrange Shaman mirror matches. 

However, win rate against Freeze Mage was significantly reduced. Afterwards the neural 

network was integrated into the approach, but the evaluation of the network proved to be 

time consuming and the parameters of MCTS and range of the experiments had to be 

decreased. This had negative effect on the performance of the approach in Pirate Warrior 
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Figure 17 – Win rates of Enhanced MCTS over Vanilla MCTS 
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and Midrange Shaman matches, however against Freeze Mage the win rate increased 

significantly, showing that the addition of action selector to rollouts can have beneficial 

effects on the players performance despite the parameter reduction. Finally, the implemented 

approaches were matched against each other. Enhanced MCTS achieved the best results in 

Freeze Mage mirror matches, however MCTS with depth limited search and bucketing was 

the most successful in Pirate Warrior and Midrange Shaman games. According to statistics 

available in MetaCentrum a total of 351 jobs were computed in the cluster with the total of 

518.8 CPU days spent. 

Results of most of the matches are summarized in tables 7 (Pirate Warrior), 8 (Midrange 

Shaman) and 9 (Freeze Mage): 

 

 GSV Vanilla Enhanced No-Neural Neural 

Vanilla 31.2% - 49.6% 44.0% 63% 

Enhanced 36.0% 50.4% - 30.0% 60.0% 

No-Neural 56.8% 56.0% 70.0% - - 

Neural 18.0% 37.0% 40.0% - - 

Table 7 – Pirate Warrior mirror matches 

 

 GSV Vanilla Enhanced No-Neural Neural 

Vanilla 37.2% - 42.0% 35.6% 77.0% 

Enhanced 39.2% 58.0% - 44.0% 83.0% 

No-Neural 44.8% 64.4% 56.0% - - 

Neural 20.0% 23.0% 17.0% - - 

Table 8 – Midrange Shaman mirror matches 

 

 GSV Vanilla Enhanced No-Neural Neural 

Vanilla 66.4% - 25.6% 75.2% 41.0% 

Enhanced 88.4% 74.4% - 78.0% 53.0% 

No-Neural 44.0% 24.8% 22.0% - - 

Neural 79.0% 59,0% 47.0% - - 

Table 9 – Freeze Mage mirror matches 
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 Conclusion and Future Work 

This chapter concludes the thesis and gives few suggestions for future work. 

 Conclusion 

In this thesis the collectible card games and challenges they represent for the development 

of artificial intelligence were introduced. Afterwards CCG Hearthstone was presented as 

testbed for the conducted research and experiments, utilizing an open-source simulator 

called Metastone that offers variety of artificial players. 

To play Hearthstone, Vanilla MCTS was designed utilizing Perfect Information approach to 

deal with the unknown information. This approach required 27 seconds to decide and 

reliably defeats random playing player, winning every match, as well as prevailing over the 

greedy heuristic oriented agent with 80% average win rate. The approach also achieved 

66.4% win rate in Freeze Mage mirror matches against GameStateValue behavior, which is 

the strongest artificial player offered by Metastone, however it underperformed against GSV 

in Pirate Warrior and Midrange Shaman matches, winning 31.2% and 37.2% of games 

played respectively. Two improved variants of the Vanilla MCTS are designed according to 

existing works. 

The first is the Enhanced MCTS variation, utilizing deck database to determine hidden 

information and rollout driven by greedy action selector with respect to a heuristic. The 

improvements increased the win rates of Vanilla MCTS in all matches, winning 88,4% of 

games against GSV in Freeze Mage mirror match. However, in matches with other decks 

the Enhanced MCTS underperformed with win rates slightly below 40%. Based on results 

of matches with Metastone players as well as games played with Vanilla MCTS the 

enhancements truly improved the performance of the previous method while requiring only 

11.67 seconds of thinking time with its configuration. 

The second improvement utilized depth limited search, chance event bucketing applied to 

card draw events that samples some of the possible outcomes during construction of the 

search tree, and machine learned card play policy to guide rollouts. The addition of depth 

limit and bucketing accomplished the best results with only 4.41 seconds thinking time 

against GSV in Pirate Warrior and Midrange Shaman mirror matches with win rates 56.8% 
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and 44.8% respectively but its performance against Freeze Mage was significantly reduced 

from 66.4% to 44.0%. 

The neural network showed disappointing performance with only 32.61% accuracy and an 

average evaluation time of 43.85 milliseconds. With the original MCTS configuration about 

44 000 evaluations are needed to decide, requiring nearly 32 minutes to select an action. 

Because of the slow evaluation the MCTS parameters had to be toned down to perform the 

experiments. The final approach required 3 minutes to decide but performed poorly with 

Pirate Warrior and Midrange Shaman decks against the GSV, winning less than 20% of 

matches, as well as Vanilla and Enhanced MCTS with about 40% win rate against Pirate 

Warrior and 20% win rate with Midrange Shaman. However, its results with Freeze Mage 

deck show that the performance of depth limited MCTS with bucketing can be significantly 

improved with the addition of fast and reasonable action selector to guide rollouts, achieving 

79% win rate against GSV, 59% against Vanilla MCTS and 47% in Enhanced MCTS 

matches. 

To perform the experiments a computational cluster MetaCentrum was utilized. According 

to the statistics offered by MetaCentrum a total of 351 jobs were computed with 518.8 CPU 

days spent with the evaluations. 

 Future Work 

The application of the neural network could be revisited in order to lower its time 

requirements for evaluations and increase its accuracy by choosing a different network 

architecture or designing a new way to encode the game states. With a fast and effective 

action selector during rollouts the depth limited MCTS with bucketing could achieve high 

playing strength. 

The bucketing MCTS employs randomized determinization of the hidden information. In 

order to create better determinization of the hidden information the deck database used by 

the Enhanced MCTS could be incorporated, or a completely different method could be 

utilized as well. For example, a machine learned method that takes an encoding describing 

cards played by the opponent player as an input and for each card outputs a probability with 

which the card could appear in opponent’s deck. The deck would then be filled with the most 

probable cards. Other possibility would be to keep track of currently popular cards among 

players, considering only the cards frequently used. This could significantly decrease 
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number of cards available for determinization because in every CCG there is a high amount 

of cards that are generally weak in comparison with others and are almost never seen played.  

Replacement of PIMC with ISMCTS could also be an interesting subject for further 

examination. 

The determinization method of the Enhanced MCTS could be improved as well. If the 

database is regularly updated the bot will be able to accurately determine the opponent’s 

deck. However, opponent’s hand and secrets are guessed randomly. Each deck could be 

assigned with a strategy it employs and based on the strategy each card could have a different 

probability of being in opponent’s hand. For example, if the opponent plays an aggressive 

deck with a few high manacost cards, the higher probabilities could be assigned to lower 

manacost cards to mimic the aggressive gameplay and increase the probability of higher cost 

cards with each passed turn. 

During the game of Hearthstone the effect of some actions might depend on previously 

executed actions, however that is not always the case. For some action sequences it does not 

matter in which order they are performed and always lead to the same state. For a sequence 

of actions that leads to the same state no matter the order they are executed in it is inefficient 

to explore each of the possible action permutations. Instead, a single possible permutation 

can be selected to represent the action sequence and the remaining permutations are not 

considered. This allows MCTS to get better estimation of the score for the selected sequence, 

using the time budget more efficiently. 

Each of the proposed approaches had unlimited thinking time, but in Hearthstone player’s 

turn is limited to 75 seconds. During player’s turn it is unknown how many actions the player 

will perform, making it hard to distribute the available time budget. Approaches to reduce 

the time complexity of implemented agents and a method that distributes the available time 

budget to agent’s decision-making process could be explored in future work. 
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 Appendix 

 Predicting Opponent’s Deck 

Before the match begins each player constructs a deck of 30 cards from over 1000 available 

cards and the selected deck is unknown to the opponent. Being able to predict the content of 

the opponent’s deck can be beneficial for the player as it allows them to adjust their strategy 

accordingly. 

Ellie Bursztein proposed in his work [15] to utilize a neural network to predict the opponent’s 

deck. According to his work there are multiple reason why deck construction is predictable: 

1. Some cards are restricted to certain heroes. Therefore, Holy Light, which is a spell 

specific to Paladin, can’t be a part of a Warlock’s deck 

2. Some cards are designed to work well with each other (synergize) 

3. Some cards are simply weaker in comparison with a different card with the same 

manacost and are never seen played in competitive scene 

4. Netdecking. A process where players attempt to replicate successful decks (a winning 

deck in a tournament or a deck used by a professional streamer). These decks become 

popular among the player base and are often encountered while playing the game. 

 

The method is based on machine learned ranking system that models relations between cards 

as a set of bigrams (a sequence of two adjacent elements). The learning data consists of a set of 

game replays with sequence of cards played by the opponent during the match. For each replay 

a combination of all possible bigrams of played cards is constructed. These bigrams are then 

used to construct an occurrence table where each bigram is assigned with the number of games 

in which these two cards were played together (regardless of order). 

During the game, whenever opponent plays a card, the occurrence table is searched for all 

bigrams that contain the played card. This way a set of cards that co-occurred with the played 

card is received. This is done for each card played by the opponent during the game. All 

received sets are then added together into one set (therefore, if two different sets contained the 

same card, the co-occurrence numbers of the card are summed together) and the cards with the 

highest number of co-occurrences are the most probable to be contained in the opponent’s deck 

(Figure). 
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Figure - Card prediction example 

Image adopted from [15]. Source Hearthstone 

 

 Automated Deckbuilding 

Deck creation is an important aspect of collectible card games. It is typical for decks to have its 

strengths and its weaknesses. However, some decks are in general performing better than other 

decks, which leads to establishment of a so called “meta”. Meta is a set of the most popular 

decks in the current environment and these decks are often encountered while playing the game. 

But each deck has its weaknesses that can be exploited by other decks to increase their 

performance against them. The win rate of the targeted deck then begins to decline and other 

decks replace it at the top of the ladder. This represents an interesting challenge as it forms a 

changing environment in which the decks have to be constantly adapting to the current situation 

 

The matter is examined in [12] where an evolutionary algorithm is suggested to create an 

optimal deck against a specific meta. The evolutionary algorithm follows steps described in 

section 4.2. An initial set of random decks is created and their quality is described by a fitness 

function. This function considers three parameters: 

1. Correctness: Each deck has to consists of exactly 30 cards and can have up to 2 copies 

of a non-legendary card and 1 copy of a legendary rarity card. If the deck breaks these 

rules its fitness value is set to minimum. 
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2. Victories: Each deck plays 16 simulation in Metastone simulator against each targeted 

deck in the current meta. The value is equal to the total number of victories achieved 

and should be as high as possible 

3. Standard Deviation: The goal of the deck is to perform well against all targeted decks 

and not only few of them. After evaluating, the standard deviation of achieved victories 

is computed. This value is to be minimized. 

This method was used to create optimal decks against a set of human-made decks that were 

considered to be strong at the time of the research. Two experiments were conducted with two 

resulting decks: A Hunter deck and a Mage deck. These decks were able to perform 

extraordinarily well against some targeted decks (evolved Hunter deck was able to win all 16 

games against targeted druid deck) but were underperforming against others (37.5% win rate 

of evolved hunter against targeted priest deck).  

 

 

 


