
Czech Technical University in Prague

Faculty of Electronical Engineering

Department of Computer Graphics and Interaction

Bachelor thesis

Artificial Intelligence Methods for Playing Collectible

Card Games

Patrik Březina

Supervisor: MGR. Viliam Lisý, MSC., PH.D

© 2019 CTU in Prague

Artificial Intelligence Methods for Playing Collectible Card Games

Artificial Intelligence Methods for Playing Collectible Card Games

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources

of information in accordance with the Guidelines for adhering to ethical principles when

elaborating an academic final thesis.

In Prague on May 24.05.2019 ___________________________

Artificial Intelligence Methods for Playing Collectible Card Games

Acknowledgements

I would like to express my gratitude to my supervisor Viliam Lisý who offered

consultation, guidance and encouragement during the development of my thesis.

Also, I would like to thank my family for all the moral support they offered, motivating me to

keep pushing forward. I would like to express special thanks to my brother for lightening up

my mood whenever I felt miserable, my father for his assistance with various technical issues

encountered throughout my studies and for helping me to dive into the world of programming,

and my mother for taking care of me for all those years.

Access to computing and storage facilities owned by parties and projects contributing to the

National Grid Infrastructure MetaCentrum provided under the programme "Projects of Large

Research, Development, and Innovations Infrastructures" (CESNET LM2015042), is greatly

appreciated.

Artificial Intelligence Methods for Playing Collectible Card Games

 i

Abstrakt

Sběratelské karetní hry jsou populární hry, které lidi hrají nejen pro zábavu, ale i na

profesionální úrovni. Představují řadu výzev pro implementaci umělých hráčů, mezi které

patří nejistota způsobena náhodnými událostmi, vysoké větvení rozhodovacího stromu nebo

skrytá informace reprezentována neznámým obsahem protivníkova balíčku a ruky. V této

práci jsou zmíněny přístupy zabývající se touto problematikou a dva z nich jsou

reimplementovány a porovnány proti sobě v simulátoru Metastone, jenž implementuje

logiku sběratelské karetní hry Hearthstone: Heroes of Warcraft, která je použita jako

testovací prostředí.

Klíčová slova:

Umělá Inteligence

Sběratelské Karetní Hry

Hearthstone

Monte Carlo Tree Search

Neurální síť

Strojové Učení

Artificial Intelligence Methods for Playing Collectible Card Games

 ii

Abstract

Collectible Card Games are popular games played by people for recreation as well

as professionally. These games represent number of challenges for implementation of

artificial players, such as uncertainty caused by random events, high branching factor of

decision tree or hidden information represented by unknown content of opponent’s deck and

hand. In this thesis, various works addressing development of artificial player for collectible

card games are introduced. Two selected approaches are then reimplemented and compared

against each other in the Metastone simulator which implements logic of collectible card

game Hearthstone: Heroes of warcraft that is used as a testbed for the conducted

experiments.

Keywords:

Artificial Intelligence

Collectible Card Games

Hearthstone

Monte Carlo Tree Search

Neural Network

Machine Learning

Artificial Intelligence Methods for Playing Collectible Card Games

 iii

Contents

 Introduction .. 1

 Thesis Goals .. 2

 Background ... 3

 Collectible Card Games ... 3

 Description .. 3

 Challenges ... 3

 Hearthstone .. 5

 Game Description ... 5

 Game Components .. 7

 Game Board ... 7

 Cards .. 8

 Summary .. 10

 Hearthstone Simulators ... 11

 Fireplace ... 11

 Hearthbreaker ... 11

 HearthSim .. 11

 Hearthstone++ .. 11

 Metastone ... 12

 Metastone AI players .. 12

 Metastone Game System .. 13

 Summary .. 13

 Artificial intelligence techniques ... 14

 Monte Carlo Tree Search ... 14

 UCB – Upper Confidence Bound ... 15

 Neural Network .. 15

 Summary .. 16

 Artificial Intelligence Approaches in CCGs .. 17

 MCTS Enhanced with Domain Knowledge and Heuristics 17

 MCTS Methods Improved with Machine Learned Heuristic 18

 Chance Event Bucketing and Machine Learning in MCTS 19

 Card Playing Agents Based on Machine Learning .. 20

 Summary .. 21

 Approaches ... 22

 Vanilla Monte Carlo Tree Search .. 22

Artificial Intelligence Methods for Playing Collectible Card Games

 iv

 Enhanced Monte Carlo Tree Search .. 23

 MCTS with Chance Event Bucketing and Neural Network 25

 Summary .. 29

 Experiments .. 30

 MetaCentrum .. 30

 Vanilla MCTS .. 31

 Parameter Selection .. 31

 Exploration parameter ... 31

 Iterations .. 32

 Worlds ... 33

 Matches against Metastone Behaviors .. 35

 MCTS Enhanced with Domain Knowledge and Heuristics 36

 Chance Event Bucketing and Neural Network .. 38

 Depth parameter .. 38

 Chance Event Bucketing ... 39

 Neural Network ... 41

 Comparison of Methods ... 43

 Summary .. 45

 Conclusion and Future Work ... 47

 Conclusion.. 47

 Future Work ... 48

 Bibliography ... 50

 Appendix ... 52

 Predicting Opponent’s Deck .. 52

 Automated Deckbuilding ... 53

List of Figures

Figure 1 – Game Board (source Hearthstone) ... 8

Figure 2 – Description of Flametongue Totem (source Hearthstone) 10

Figure 3 – Hearthstone card examples ... 10

Figure 4 – Fully-connected feed-forward neural network. Adopted from [33] 16

Figure 5 – Example of chance node bucketing .. 26

Figure 6 – Feed-forward network architecture .. 28

Figure 7 – Time complexity base on iterations .. 32

Figure 8 – Time complexity based on worlds.. 34

Figure 9 – Results of games between Vanilla MCTS and Metastone behaviors 35

file:///C:/patrik/skola/Bakalarka/zpráva/text/Bakalarska_prace_final.docx%23_Toc9412751
file:///C:/patrik/skola/Bakalarka/zpráva/text/Bakalarska_prace_final.docx%23_Toc9412751

Artificial Intelligence Methods for Playing Collectible Card Games

 v

Figure 10 – Results of games between Enhanced MCTS and Metastone behaviors 37

Figure 11 – Time complexity based on depth .. 39

Figure 12 – Results of MCTS with card draw bucketing .. 40

Figure 13 – Results of bucketing without depth limited search .. 41

Figure 14 – Results of matches with the usage of the learned card play policy 43

Figure 15 – Win rates of depth limit, bucketing and NN .. 44

Figure 16 – Win rates of depth limit and bucketing without NN .. 44

Figure 17 – Win rates of Enhanced MCTS over Vanilla MCTS ... 45

List of Tables

Table 1 - Overview of AI Methods .. 21

Table 2 – Exploration parameter results .. 31

Table 3 – Iterations results ... 32

Table 4 – World results .. 33

Table 5 – Tree-reuse vs no Tree-reuse ... 36

Table 6 – Depth results .. 38

Table 7 – Pirate Warrior mirror matches ... 46

Table 8 – Midrange Shaman mirror matches ... 46

Table 9 – Freeze Mage mirror matches ... 46

Terminology

CCG Collectible Card Game

M:TG Magic: The Gathering

NN Neural Network

EA Evolutionary Algorithm

GSV Game State Value

MCTS Monte Carlo Tree Search

UCB Upper Confidence Bound

UCT Upper Confidence Bound Applied to Trees

PIMC Perfect Information Monte Carlo

ISMCTS Information Set Monte Carlo

file:///C:/patrik/skola/Bakalarka/zpráva/text/Bakalarska_prace_final.docx%23_Toc9412765
file:///C:/patrik/skola/Bakalarka/zpráva/text/Bakalarska_prace_final.docx%23_Toc9412765

Artificial Intelligence Methods for Playing Collectible Card Games

 1

 Introduction

With the growth of the game industry grows the expectations and demands on the quality of

the games. One of the game’s qualities can be offered challenges and how realistic the game

feels. Both these aspects can be addressed with the usage of artificial intelligence, be it an

intelligence of a non-player character in role-playing game who works on field during

daytime and attempts to find shelter when it starts raining, creating more realistic

environment of the game, or an opponent who attempts to mimic behavior of an experienced

player, challenging the player who plays the game. In recent years, development of artificial

intelligence achieved remarkable success in classic video games, Go or Poker, defeating

professional players. However, some other popular games such as collectible card games

have not been thoroughly explored yet. Their complex rules, frequent random events, high

branching factor of decision tree and unknown opponent’s deck that contains only a fraction

from thousands of possible cards make these games difficult to model and this creates a

challenging environment for developing an artificial intelligence.

Artificial Intelligence Methods for Playing Collectible Card Games

 2

 Thesis Goals

The goal of the thesis is to examine and discuss existing approaches to development of

artificial players in the collectible card games that address various challenges presented by

these games. Then to choose a specific collectible card game and review its available open-

source implementations and finally reimplement selected approaches, discuss their

parameters and compare their quality.

Artificial Intelligence Methods for Playing Collectible Card Games

 3

 Background

 Collectible Card Games

This section introduces collectible card games and describes what challenges these types of

games represent for the development of artificial intelligence.

 Description

Collectible card games (CCGs) are strategic card games that consist of specially designed

sets of playing card. Each playing card is described with an image and a text which defines

the effects of the card when it is played. Games are typically played between two players,

however there are also multiplayer formats (such as Commander format in Magic: The

Gathering). Each player constructs their own decks from the set of available cards (hundreds

or even thousands of cards) with which they play. Decks are unknown to the opponent and

therefore represent hidden information that is challenging to deal with. Collectible card

games became popular with the release of Magic: The Gathering (M:TG) by the company

Wizards of the Coast in 1993 and new sets of playing cards are still produced. CCGs enjoyed

another great rise in popularity with the release of free-to-play game Hearthstone: Heroes of

Warcraft in 2014 developed by Blizzard Entertainment. Success of these games inspired

many developers to design their own collectible card games such as Yu-Gi-Oh! (developed

by Konami), Pokémon Trading Card Game (Media Factory), Eternal (Dire Wolf Digital),

Gwent (CD Projekt Red) and many others.

 Challenges

• Imperfect information

In collectible card games each player constructs a deck from cards they own. This

can include hundreds or even thousands of different unique cards each with their own

effects. Decks typically have some limitation for how many cards it can or must

contain (in M:TG decks have to consist of 60 or more cards, in Hearthstone it is

exactly 30) Players do not know what cards the opponent’s deck contains.

Determinizing the opponent’s deck can be very beneficial for the player as it allows

them to adjust their strategy accordingly. However, each deck from which the players

Artificial Intelligence Methods for Playing Collectible Card Games

 4

draw their hands are randomly shuffled and even if the player knew what cards the

opponent’s deck consists of, they have no information about what the opponent is

currently holding in hand. Also, depending on the effect some cards can be played

face down and their effect does not execute until a certain event has occurred (such

as secret cards in Hearthstone or cards with Morph in M:TG). Each card played by

the opponent gives away information that can be used to determinize the remaining

hidden information. Correct determinization of unknown data could increase player’s

chances of winning the match. On the other hand, guessing the information

incorrectly could have opposite effect and hinder their performance.

• Chance events

Players draw cards from their deck which is randomly shuffled at the beginning of

the match. Therefore, it is difficult to predict what cards the player will hold in the

coming rounds. This complicates planning approaches as it would be necessary to

plan for all the possible outcomes of card drawing. For example, in M:TG each deck

has to contain at least 60 cards. First card draw from the deck has 60 possible

outcomes and it would be difficult to plan for all the possibilities. Furthermore,

effects of some cards can cause random events during the gameplay such as choosing

a random target, placing a random card on the board, discarding random card from

player’s hand or the execution of the effect can depend on a coin flip. All this can

lead to unpredictable and improbable game states. Therefore reduction of the

branching factor in chance events is necessary but omitting too many possible

outcomes might lead to badly informed decision-making.

• Game complexity

Each card has its own effect and some of those effects can even change rules of the

game during match. Some effects can seem to be weak at first, but in combination

with other cards its power can be multiplied. This creates synergies between the cards

and certain combinations of cards can lead to very explosive effects (such as never

ending turn, killing opponent in one turn, having infinite amount of health). While

constructing a deck it is important to consider these possible interactions between

cards and use them to one’s advantage. Artificial intelligence could be utilized to

detect these synergies between cards. Not only it would help the player to construct

a strong deck, but it could also assist the game’s designers to detect possible

synergies of newly designed cards and adjust their power accordingly or reconsider

Artificial Intelligence Methods for Playing Collectible Card Games

 5

their addition to the game. Also, being able to recognize synergies between cards can

be exploited to create more accurate determinization of the opponent’s deck because

opponent’s deck is likely to contain cards that synergize with each other.

• Strategic game approach

During the gameplay of CCGs players alternate in turns and can perform multiple

actions until they decide to end the turn on their own. Players typically have limited

amount of resources (lands in M:TG, mana crystals in Hearthstone, but also cards in

hand or on board) which limits the number of actions players can take in their turn.

To plan their turn optimally they need to consider each resource they have available

and use it at its maximal potential. Players can play cards from their hands or interact

with cards they have placed on the playing board by using their effects and attacking

with their units. They can switch between board interaction and card playing as they

like but can also decide to end their turn whenever they want, even if there are still

some available actions to preserve their resources for the future or to not give

information away to the opponent. Not only it is necessary to plan for the current

turn but to also plan for the future turns which can prove time consuming for an

artificial player.

 Hearthstone

This part describes the functionality and gameplay of collectible card game Hearthstone:

Heroes of Warcraft that is used as a base for the experiments. This card game is popular

among people and its ruleset is significantly reduced compared to other CCGs like M:TG,

therefore Hearthstone is utilized as testbed for majority of research regarding CCGs.

 Game Description

Hearthstone is zero-sum collectible card game with imperfect information that is played

between two players who alternate in turns. Before the match each player selects one of nine

available heroes. Each hero has their own Hero Power - a special action different for each

hero that can be used once a turn (for example Priest can heal any target for 2 health), and

their own set of cards. Cards of the selected hero can be combined with neutral cards that

are available to all heroes to construct a deck with exactly 30 cards.

Artificial Intelligence Methods for Playing Collectible Card Games

 6

At the beginning of a match a coin flip decides which player goes first. Player who goes first

draws 3 cards in their starting hand and the second player draws 4 cards and gets a special

card called “The Coin” that can be used to gain 1 additional mana crystal until end of turn.

Drawing of starting hand is followed by mulligan phase. In mulligan phase each player

selects any number of cards in their starting hand. Each selected card is then shuffled back

into the player’s deck and is replaced with another card from the deck. This gives players

some control over the contents of their initial hand.

Every hero has 30 health at the start of the match and the goal of the game is to reduce

opponent’s health to zero. At the beginning of their turn players draw a card from their deck,

gain 1 additional mana crystal up to a maximum of 10 and all depleted mana crystals are

refreshed. Hand of each player is limited to 10 cards and if player draws a card while having

10 cards in hand the drawn card is discarded. If a card is drawn while there are no more cards

left in the player’s deck the player draws a “Fatigue” card instead. Fatigue cards ignore hand

size limit and are immediately played after drawing, dealing damage to the player according

to the number of “Fatigue” cards drawn in total (first Fatigue deals 1 damage, second deals

2, third deals 3 and so on).

During their turn players can perform various actions:

• Play card

Playing a card from players hand to perform the card’s effect. Every card has its own

manacost that describes how much mana crystals have to be depleted to play the card.

Depleted mana crystals are disabled for the rest of the turn.

• Card selection

Player can place minion cards on board and equip their hero with weapons. Minions

and equipped heroes can be selected to attack one of the opponent’s minions or the

opponent.

• Target selection

When attacking or playing certain cards from hand valid target needs to be selected.

Valid targets for attacking are opponent’s hero and minions they control. However,

targeting restrictions for card’s effects depend on the played card. Some cards can

target anything present on the board, other card can only target units controlled by

the opponent or the player.

Artificial Intelligence Methods for Playing Collectible Card Games

 7

• End turn

Anytime during their turn players can choose to end it and give initiative to the

opponent. Players aren’t forced to execute all available actions and can end their turn

whenever they decide to.

Whenever health of any player is reduced to 0 the game ends and the surviving hero wins. If

health of both heroes reaches 0 at the same moment the game ends in a tie.

 Game Components

This part describes entities in a game of Hearthstone.

 Game Board

Game board is a component that represents the current state of the game. It contains all

observable information visible to the player. The game board and its components in the game

are described in figure 1. The Game board is represented by:

• Heroes

Two heroes are on the board, each representing one player. Each hero has their own

health, armor (damage is taken from armor before health), weapon, hero power, mana

crystals and secrets (specific cards played faced down represented as a question

mark). If the players wish to select opponent or themselves as target they select the

hero who represents them.

• Battlefield

Battlefield is an area where players place their minion cards. It is split in half, one

for each player. Players can have up to 7 minions placed on their half of the

battlefield. Minions placed on the battlefield can be selected for attack actions as well

as targets of other cards.

• Decks

Each player draws cards from their deck that consists of exactly 30 cards. Players

can’t see the remaining content of either deck, only the information about the

quantity of remaining cards is available.

Artificial Intelligence Methods for Playing Collectible Card Games

 8

• Hands

Each player has their own hand that can contain up to 10 cards. The player’s hand is

visible to them but hand of the opponent is hidden. However, players can see how

many cards their opponent has in their hand.

Figure 1 – Game Board (source Hearthstone)

1-Player’s hero, 2-Opponent’s hero, 3-Hero power, 4-Player’s hand,

5-Opponent’s hand, 6-Player’s mana crystals, 7-Player’s deck, 8-Opponent’s deck,

9-Opponent’s half of the battlefield, 10-Player’s half of the battlefield

 Cards

In Hearthstone each card consists of its artwork, text description of its effect, manacost that

defines how much mana crystals have to be spent to play the card and, if the card is a minion

or a weapon, also a numeric description of its health and attack (Figure 2). There are 4 types

of cards in Hearthstone:

• Minions

Minions are cards placed on the battlefield. Each minion has its own attack and

health. Attack defines how much damage the minion deals to the target when

Artificial Intelligence Methods for Playing Collectible Card Games

 9

attacking and to the attacker when being attacked. How much damage the minion

can take is based on health and when minion’s health is reduced to 0 it leaves the

battlefield. Each minion can also have its own effects. For instance, Flame Juggler

(Figure 3.a) deals 1 damage to a random enemy when played, Flametongue Totem

(Figure 2) adds 2 attack to minion on its left and on its right while it remains on the

board.

• Weapons

Like minions, each weapon has its attack value and health. Weapons are cards that

are equipped on heroes. Hero can have only 1 weapon equipped and playing a

weapon while another one is equipped will destroy the attached weapon and replace

it with the new one. During player’s turn the hero gets attack power equal to the

attack of the equipped weapon and is allowed to attack opponent’s hero or minions

to deal the weapon’s damage to the target and take damage equal to the defender’s

attack value. Each attack with the hero decreases health of the weapon by 1 and when

its health reaches 0 the weapon breaks. Weapons can have their own effects. Death’s

Bite (Figure 3.b) has 4 attack power, 2 durability and deals 1 damage to all minions

on the battlefield when it is destroyed.

• Spells

Spell are cards that cause an immediate effect when played and leave the game after

the effect is done. Some spells might require the player to select a target, such as

Fireball (Figure 3.c) that deals 6 damage to any target, while other spells might not

need a target at all, for example Arcane Intellect draws 2 cards to the player who

played it or Flamestrike that deals 4 damage to all minions on opponent’s side of the

battlefield.

• Secrets

According to game’s logic secrets are also considered spells (this is important for

cards that interact with spell cards), but unlike spells, secrets don’t have an immediate

effect on the game board. Instead they are attached to the hero face down marked as

a question mark to the opponent and wait for a triggering event. When triggered,

secrets execute their effect and leave the game afterwards. Counterspell (Figure 3.d)

is a mage secret card that triggers when opponent plays a spell. If they do,

Counterspell is triggered and the effect of the played spell is negated, doing nothing

as a result.

Artificial Intelligence Methods for Playing Collectible Card Games

 10

Figure 2 – Description of Flametongue Totem (source Hearthstone)

1-Manacost, 2-Attack value, 3-Health, 4-Card’s effect

 3.a) minion 3.b) - weapon 3.c) - spell 3.d) – secret

 Summary

In this chapter the Hearthstone collectible card game, its mechanics and how the game is

played was introduced. Then, various components of the game including the game board,

construction of player’s deck or different types of cards and their functionality were

discussed.

Figure 3 – Hearthstone card examples

Artificial Intelligence Methods for Playing Collectible Card Games

 11

 Hearthstone Simulators

This section discusses available open-source simulators for Hearthstone and functions they

offer. Afterwards the simulator Metastone that is used as a testbed for experiments in this

work is introduced.

 Fireplace

Fireplace [1] is a simulator created by community HearthSim [2]. Fireplace loads available

cards from the Hearthstone’s game files and offers an API to manually change cards or

define new ones. Simulator to play series of games between two artificial players is available

as well, however it is not possible for the user to play against the agents on their own and

the simulator offers no graphical user interface.

 Hearthbreaker

Hearthbreaker [3] is another simulator developed by community Hearthsim [2] designed for

machine learning and data mining purposes. It offers a wide variety of cards and a simple

simulator that can be used to determine synergies between cards, but it does not support

simulation of games between two players.

 HearthSim

HearthSim simulator [4] is designed for simulating a desired number of matches between

two artificial players with graphical overview of the results, computing average win rate and

confidence interval of win rate with confidence level of 95%. However, simulator offers

very limited pool of cards.

 Hearthstone++

Hearthstonepp [5] offers interface for simulations between two artificial agents in console

and in available graphical user interface, support for implementation of reinforcement

learning algorithms and about 50 different cards for deck building.

Artificial Intelligence Methods for Playing Collectible Card Games

 12

 Metastone

Metastone [6] is an open-source Hearthstone simulator that credibly replicates the flow of

the Hearthstone game. It offers a graphical user interface with a deck builder to create new

decks from about 1300 available cards, a game mode where the user can play against

artificial players as well as observe gameplay between two bots or a simulation mode to

simulate number of games between two artificial players with results overviewed at the end

of the simulation. Results give an information about the win rate of each individual player,

number of played cards, total damage taken during all simulations, most played card and

more. However, Metastone does not support simulation of games through console which

proved problematic when attempting to setup tasks in MetaCentrum computational cluster

to conduct experiments. This missing feature was added to the simulator.

 Metastone AI players

Metastone offers a variety of artificial agents that are capable of playing the game. These

agents can be used to test performance of new artificial players.

• Random agent selects available actions and targets at random.

• No Aggression agent never performs any attack actions and only plays cards

randomly from its hand. Unless the players kill themselves, it is impossible to lose

against this agent.

• Do Nothing always ends turn without performing any action.

• Greedy Optimize Move utilizes weighted heuristic to assign scores to each available

action based on the game state and selects the one with the highest score.

• Greedy Optimize Turn assigns scores to each available action using alpha-beta

pruning algorithm that is driven by the same weighted heuristic as Greedy Optimize

Move and returns the action with the highest score.

• The Game State Value uses an alpha-beta pruning algorithm to assign scores to

available actions that is driven by a threat-based heuristic with weights optimized

using an evolutionary approach. The heuristic counts a threat level based on the

current state of the board. Goal is to minimize threat level of the opponent and

maximize player’s threat towards the opponent. The move with the highest score is

selected. This is the strongest artificial player available in Metastone simulator.

Artificial Intelligence Methods for Playing Collectible Card Games

 13

• Flat Monte Carlo for each available action number of random simulations is played

until the terminal state of the game is reached. The action is then scored according to

the number of won simulations and the action with the most wins is returned.

 Metastone Game System

Metastone implements complete logic of the game of Hearthstone. GameContext class

contains all the information about the current state of the game as well as the gameplay logic

for action execution. Each player has their own deck, hand, minions they control, behavior

parameter that describes assigned artificial player and hero who is tied with available mana

crystals, health, armor, equipped weapon and played secrets. After the initialization of

GameContext the game begins. The player who goes first is selected randomly with a coin

flip and is marked as an activePlayer. The game is played in cycles until health of one of the

players reaches 0. In each cycle the activePlayer is requested to perform an action from a list

of valid actions offered by the GameContext. Type of the action is determined by an enum

parameter. If an end turn action is returned the current player gives the initiative to their

opponent and opponent begins their turn.

Each unique card is saved as a json file. The content of these files includes information about

the card’s name, its manacost, type of the card (minion, spell, …), description of the card’s

effect (type of the effect, whether it requires a target, what a valid target is, effect’s values)

and, if the card is a minion or a weapon, also an attack power and health values. Metastone

supports only some of the selected card effects because in real Hearthstone the card effects

are diverse and it is difficult to generalize them. Therefore, if the card’s effect cannot be

described with the defined rules in a json file it is possible to implement the Play() function

for the card to perform the card’s effect. Each available deck is also described in a json file

by its name, hero and collection of contained cards.

 Summary

This chapter presented some of the available open-source simulators for Hearthstone and

briefly described each of them. Lastly, the Metastone simulator which is utilized for the

experiments conducted in this work, its artificial players and its game system are discussed.

Artificial Intelligence Methods for Playing Collectible Card Games

 14

 Artificial intelligence techniques

This chapter discusses artificial intelligence techniques that are used in this work to design

artificial players.

 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [7] is a family of search methods designed to address

sequential decision-making problems. The method is based on analysis of the most

promising nodes and constructs the search tree during its execution, starting in the current

state where a decision is required. Each node in the tree is scored according to simulations

between AI-controlled players who play moves (randomly or driven by a quick decision-

making process such as heuristic) until they reach the terminal state of the game, using the

game’s result to score the nodes. With each iteration the most promising nodes (nodes that

lead to the most victories) are expanded with new nodes, constructing an uneven tree. The

method is suitable for implementation of artificial players in games with high branching

factors such as Go [8] and its stochastic nature of the simulations allows the method to handle

randomness as well.

The MCTS search algorithm consists of 4 phases:

1. Selection: In this phase selection function is applied recursively to traverse the tree

in order to find a new node to expand (a leaf node or a node not fully expanded). The

goal of the traversal in the selection function is to balance between exploitation (the

best action so far) and exploration (action that hasn’t been thoroughly explored)

based on the available information from simulations.

2. Expansion: One or more children of the selected node are added to the search tree.

Children are states reachable from the selected node.

3. Simulation (rollout): For each expanded node one or more simulations between two

AI-controlled players are played until a terminal state or a defined depth is reached.

The games can be played randomly or be guided by a quick decision-making process.

The nodes are then scored based on the game’s result (typically +1 if the player won

the game, +0 otherwise).

4. Back-Propagation: Results of rollouts are propagated to all nodes that were visited

from the root state along the path to the newly added node.

Artificial Intelligence Methods for Playing Collectible Card Games

 15

 UCB – Upper Confidence Bound

As was mentioned in the description of the simulation phase, its goal is to achieve a balance

between exploration and exploitation of the tree. A commonly used policy to achieve this

balance is Upper Confidence Bound (UCB) [9]. Each node of the tree contains two

information:

1. The number of times the node was visited in all the carried simulations

2. The number of victorious simulations from the node.

This information is used to guide the tree traversal based on the following formula:

𝑊(𝑛)

𝑉(𝑛)
+ 𝑐√

ln 𝑉(𝑝)

𝑉(𝑛)

Where W(n) is the number of victories achieved in node n, V(n) is the number of visits of

node n, p is the parent node of node n and c is an exploration parameter that balances

selection between the most successful and less explored nodes. For UCT (Upper Confidence

Bound applied to Trees) the exploration parameter is selected empirically. This is computed

for each child node of current node and the one with the highest value is selected. With

infinite amount of simulations from each node MCTS is guaranteed to converge to minimax

tree when utilizing UCB [10].

 Neural Network

Artificial neural networks [33] are computing systems inspired by the biological neural

networks and are intended to replicate learning processes of human brain. The goal of an

artificial neural network is to find patterns among the training data and use the acquired

knowledge to recognize between the entities it was trained for. Artificial neural networks

have been used on a variety of tasks including speech recognition, image recognition or game

playing.

Artificial neural network is based on entities called neurons. Each neuron takes number of

input signals and computes a weighted sum of the inputs, generating an output signal value.

The activation equation looks like this:

𝑎′ = 𝜎(𝑤1𝑎1 + 𝑤2𝑎2 + ⋯ + 𝑤𝑛𝑎𝑛 − 𝑏)

Where 𝑎′ is activation value of the neuron, 𝑎𝑛 is input value from other neuron, 𝑤𝑛 is weight

of the neuron, 𝑏 is bias (activation threshold) and 𝜎(𝑥) is an activation function.

Artificial Intelligence Methods for Playing Collectible Card Games

 16

The neural network is structured into layers – an input layer that receives encoding of the

initial input to be evaluated, an output layer which returns results of the evaluations (output

signals) and hidden layers that process the input values. Figure 4 depicts a fully-connected

network with 6 input values, 2 hidden layers and 1 output value.

Figure 4 – Fully-connected feed-forward neural network. Adopted from [33]

To teach neural network a set of training data is required where each individual input is also

labeled with the expected output. Once the batch of training data is evaluated the network’s

output is compared to the expected output. A cost function calculates how incorrect the

evaluation is compared to the expectation. The goal of the learning process is to minimize

the cost function of the output. To achieve this goal, gradient descend is utilized, moving in

the opposite direction of the gradient to move towards the minimum. However, the cost

function can depend on thousands of variables, making it difficult to calculate its gradient.

For this objective a backpropagation algorithm was designed. This algorithm walks

backwards through the neural network, propagating calculated errors to the neurons and

determining how the parameters influencing the neuron’s activation should change to

achieve descend towards minimum of the cost function.

 Summary

In this chapter Monte Carlo Tree Search, a method designed for decision-making problems,

was introduced. Afterwards the policy called Upper Confidence Bound to balance the

exploration and exploitation of the MCTS was discussed and finally artificial neural network

and a brief summary of its functionality were presented.

Artificial Intelligence Methods for Playing Collectible Card Games

 17

 Artificial Intelligence Approaches in CCGs

This chapter presents several works related to creation of artificial players in collectible card

games. Because of Hearthstone’s high popularity it was used as a testing environment for

majority of researches related to collectible card games.

 MCTS Enhanced with Domain Knowledge and Heuristics

In [19] a modified Monte Carlo Tree Search utilizing expert knowledge to deal with

unknown information and heuristic driven rollouts is proposed as a card playing agent in

Hearthstone. The approach modifies selection and rollout phases of the MCTS:

Selection

In order to achieve balance between exploration and exploitation the upper confidence bound

is applied during the selection phase. To further refine this balance expert knowledge is

added to the UCB formula via progressive bias [20] in form of heuristic:

𝑊(𝑛)

𝑉(𝑛)
+ 𝑐√

ln 𝑉(𝑝)

𝑉(𝑛)
+

𝐻(𝑝)

1 + 𝑉(𝑝)

Where H(p) is heuristic value of the parent node returned by heuristic function and V(p) is

number of parent node visits.

Rollout

Two modifications are applied to the rollout phase. In simulation phase the games are played

until terminal state is reached. To dealt with hidden information a deck database of premade

decks is utilized. Based on cards played by the opponent a deck is selected from the database

with the most co-occurrent cards and is assigned to the opponent during the rollouts.

The second modification adopts a tournament selection [21] approach commonly used in

evolutionary algorithms. At each simulation step k actions are sampled at random from all

available actions. Every selected action is scored according to a heuristic function and action

with the highest value is selected as the next move.

Selection and rollout phases rely on a heuristic function to evaluate game states and inform

the action and node selection. A heuristic considering selected features of the game was

designed and its weights optimized by genetic programming where an agent driven by this

Artificial Intelligence Methods for Playing Collectible Card Games

 18

heuristic played series of games against the GreedyOptimizeMove behavior in Metastone

with various decks. The heuristic was compared to threat-based heuristic employed by GSV

behavior but achieved worse results. For the final experiments the evolved heuristic was

replaced by threat-based one.

Basic version of MCTS and MCTS with proposed improvements were matched against

artificial players in Metastone. Both approaches achieved win rate near 100% against

Random and No-Aggression players. Against GreedyOptimizeMove basic MCTS won 40%

of the games while modified MCTS won over 60%. Against the Game State Value player

basic MCTS performed with only 21% win rate while enhanced MCTS was able to reach

win rate of 42%. Based on the results the proposed MCTS approach performed significantly

better than the basic unmodified MCTS.

 MCTS Methods Improved with Machine Learned Heuristic

In [22] an algorithm combining Perfect information MCTS (PIMC) [23] and Information

Set MCTS [24] (ISMCTS) is proposed as a solution to the card playing agent in Hearthstone

and is further augmented by the use of machine learning.

Transposition table is constructed instead of search tree in order to detect duplicate states

reachable with different sequences of actions. To access table entries, information sets, an

information observable by active player, serve as keys to the transposition table and value

of the entry is a list of available actions executable in the information set where score is

assigned to each action. In each iteration a perfect information state is determinized and

based on the current information set, available actions in the current state are looked up in

the table. If an entry was found, next action is selected according to UCT policy and executed

in the current determinization, otherwise the table is expanded with the new entry.

During player’s turn the selection of actions which includes playing cards as well as

performing attack actions with minions on board can be done in different sequences

(permutations). However, when attacking most of the permutations lead to the same resulting

state. A heuristic oriented attack solver has been designed to generate an optimal sequence

of attack actions for the given state and all attack actions were replaced with a single action

called “attack solver” that can be selected at any point during player’s turn. This way the

MCTS only needs to decide between playing cards, using “attack solver” and ending its turn,

reducing the search space of available actions

Artificial Intelligence Methods for Playing Collectible Card Games

 19

Lastly, a heuristic function based on a machine learned prediction model is utilized in

multiple stages of the MCTS. During the selection stage the heuristic evaluation is included

together with the UCB formula via a progressive bias [20]. In simulation phase greedy action

selector is utilized to select guide the rollouts with respect to a heuristic. The simulations are

limited to a certain depth and the last reached state is evaluated. The evaluation is based on

a fully connected neural network which for an input state returns a prediction of the winning

player. The neural network is trained from a dataset of vectors describing various game states

with an information about the winner created from simulations played between two MCTS

bots. The approach reliably wins 100% of games against random oriented player and was

matched against Legend rank Hearthstone player (legend is the highest achievable rank in

Hearthstone). The human players reported that the artificial player performed well and was

challenging to play against.

 Chance Event Bucketing and Machine Learning in MCTS

In this work [25], two improvements to the MCTS are proposed: usage of chance event

bucketing and pre-sampling to deal with large branching factor caused by chance nodes and

a machine-learned policy to guide rollouts during simulation phase of MCTS.

Perfect Information Monte Carlo Tree Search (PIMC) [23] is utilized to deal with the

unknown information, a determinized variation of MCTS that samples number of worlds

from the available information and traverses each of the sampled worlds. Results of each

world are then summed together and action with the highest score is returned.

To mitigate high branching factor in chance event nodes, chance event bucketing method

is applied. This method groups similar possible outcomes of the chance event into buckets

and then selects one or more of the outcomes to represent all the possibilities contained

within the bucket. Bucketing is applied to the most frequent chance event – card drawing. In

Hearthstone, manacost of cards usually reflects their power. This is used as a criterion for

bucketing of card draw outcomes, grouping cards with similar manacost into one bucket.

Each bucket has different probability based on number of sampled outcomes. When

bucketed node is visited during selection, a bucket is selected with respect to the probability

and finally one of the sampled outcomes is chosen as the final destination. MCTS with

chance bucketing was tested against an AI player available in the silverfish simulator and

won 72.3% of games.

Artificial Intelligence Methods for Playing Collectible Card Games

 20

To further improve the playing strength of the agent, neural network trained for card playing

decisions during the rollout phase of MCTS is employed. The trained policy returns a vector

that assigns probability to each card. The probabilities indicate how probable it is for each

card to be played in the current state. This trained policy is utilized in the rollout phase for

selection of card playing actions. Dependent target selections are then evaluated with a

heuristic function and the one with the highest score is selected. MCTS with chance

bucketing and the trained policy for rollouts was then tested against the silverfish agent and

achieved win rate of 75.3% which is a slight improvement.

 Card Playing Agents Based on Machine Learning

In [26] an approach based only on machine learning techniques is proposed to create 4

different card playing agents. Goal of each agent was to construct an optimal action sequence

for the given state.

The first two agents are based on reinforcement learning, rewarding the agent with positive

value if victory was achieved and negative value if the game was lost. The search space of

both agents is separated into two sections: hand actions consisting of card play and hero

power actions, and board actions for selection of attacking minions and their targets. Board

models of both agents are learned based on the Q-learning algorithm taken from [27]

utilizing multilayer perceptron Q-function in matches against a heuristic-oriented player

from [28]. The board model of the first agent selects from up to 57 actions (there can be up

to 7 minions on player’s half of the battlefield and up to 8 targets for each of them plus an

action to do nothing). The second agent separates attacker and target selection from each

other and solves both parts individually. The hand model constructs all possible hand action

sequences and requests the board model to assign rewards to each sequence. Sequence with

the highest score is executed. Both agents utilize the same hand model.

The other two agents are based on an action tree that is built from the available actions. One

path from root node to leaf represent an action sequence ending with end turn action. These

agents do not separate actions into board actions and hand action and therefore are able to

change between them. Traversing the whole action tree would be time consuming, therefore

a pruning (possibly alpha-beta) is utilized to quickly find the optimal action sequence. Each

agent employs a different metric to measure the leaf node states and guide the pruning

algorithm. The first agent utilizes machine learned policy that assigns probability of winning

Artificial Intelligence Methods for Playing Collectible Card Games

 21

in state reachable with the action sequence. The second agent is based on machine-learned

threat metric, predicting threat level of the player and the opponent and choosing the action

that maximizes player’s threat and minimizes opponent’s threat. Finally an experiment was

conducted where each agent played 10 000 games against heuristic oriented agent from [28].

The first Q-learning agent selecting from 57 actions achieved win rate of 32.21%, the second

Q-learning based agent solving attacker selection and target selection separately won

44.79% of games played. The third agent utilizing action tree with victory prediction metric

reached win rate of 59.55% while the performance of the fourth agent based on a threat level

metric peaked at 72.90% win rate.

 Summary

There is a large variety of aspects in collectible card games that can be addressed with the

use of the artificial intelligence. To conclude the chapter an overview of the mentioned

methods related with creation of artificial players is presented in Table 1:

Section name MCTS
Determinized

MCTS

Expert

knowledge
NN EA RL

Deck

Aprox

MCTS Enhanced with

Domain knowledge and

Heuristic [19]

MCTS Methods

Improved with

Machine Learned

Heuristics [22]

Chance Event

Bucketing and Machine

Learning in MCTS [25]

Card Playing Agents

Based on Machine

Learning [25]

Table 1 - Overview of AI Methods

NN (Neural Networks), EA (Evolutionary Algorithms), RL (Reinforcement Learning)

Each of the presented game playing approaches utilized different simulators and different

behaviors for opponents in conducted experiments and therefore it is difficult to predict how

these approaches would perform against each other.

Artificial Intelligence Methods for Playing Collectible Card Games

 22

 Approaches

In this section the implementation and description of methods used in the following

experiments are discussed.

 Vanilla Monte Carlo Tree Search

This is the basic variant of Monte

Carlo Tree Search described in

section 4.1 designed to play

matches in Hearthstone. The

approach is depicted in

Algorithm 1. To deal with the

hidden information represented

by the opponent’s deck, hand and

secrets the artificial player

utilized a Perfect Information

MCTS approach [23]. In this approach, the hidden information is guessed randomly,

constructing a deck with randomly selected cards from the available card pool. This deck is

assigned to the opponent and his hand is filled with randomly drawn cards from the assigned

deck. If the opponent has secrets attached to their hero they are selected randomly as well.

The random determinization only selects from cards that are available to the hero the

opponent plays with, therefore it cannot give a Priest card to an opponent who plays as a

Warlock (although in real game of Hearthstone Warlock might get access to some of the

Priest specific cards during gameplay due to effects of some cards). Before the MCTS search

loop, number of possible randomized worlds are sampled beforehand and each of them is

searched individually. Scores of each available action is then summed together across all

the worlds and the action with the highest score is returned. To balance between exploration

and exploitation during selection phase the Upper Confidence Bound is utilized. Random

driven rollouts are performed up to a terminal state of the game to assign scores to nodes in

the search tree.

Artificial Intelligence Methods for Playing Collectible Card Games

 23

 Enhanced Monte Carlo Tree Search

This approach utilizes enhancements

to Monte Carlo Tree Search proposed

in [19] and discussed in section 5.1.

The implementation of the approach

can be found [14]. The enhancements

are taken from the available

implementation and are fitted into the

Vanilla MCTS.

During the selection phase of MCTS algorithm a domain specific knowledge is added to the

UCB selection formula. This knowledge is given by the Threat Based heuristic utilized by

GSV behavior which is used to evaluate game state associated with the node. This

knowledge has high impact on node selection within first few iterations when the

construction of the tree has just begun, reflecting the decision-making of GSV behavior.

To deal with the hidden information usage of deck database is proposed. Hearthstone players

typically keep track of momentarily popular decks for each of the heroes. During gameplay

they assume their opponent uses one of the momentarily popular decks based on the hero

selection of the opponent. With each card played by the opponent the player receives

additional information that can be used to further reduce the number of possibilities. The

usage of deck database is inspired by this thought process. The bot utilizes a set of

preconstructed decks that is assigned to the opponent during rollouts based on the cards

played by the opponent. The deck with the most cards in common with the played cards is

assigned. Cards already played by the opponent are removed from the deck and cards in hand

are drawn randomly from the assigned deck. This is done before the execution of rollout

function. Pseudocode is displayed in Algorithm 2. In practice, this is an effective way to

cope with unknown contents of opponent’s deck because players tend to use the decks that

perform the best in the current environment. Although there are usually numerous variations

of popular decks, the difference is often in only few cards. Of course, if the opponent plays

with a deck that is completely different from decks in the database, the artificial player would

determine the unknown information completely wrong which would have negative effect on

Artificial Intelligence Methods for Playing Collectible Card Games

 24

its performance. However, even an experienced human player is unable to guess the

opponent’s deck in such a situation.

To increase the credibility of

simulations during the rollout

phase the approach makes use

of heuristic evaluation to guide

the action selection during

rollouts. In the work [19] a

heuristic was designed that

considers selected components

of the game state to evaluate it.

The weights were then tuned by

application of evolutionary

algorithms and compared to

Threat Based heuristic of GSV behavior. The threat-based heuristic proved to achieve better

performance as its weights were also tuned by evolutionary algorithms but considers more

components than the proposed heuristic. In the end, the threat-based heuristic was used in

the final configuration of the approach and therefore the evolutionary approach is not

examined in this work. To guide the action selection during rollouts each player is assigned

with a greedy action selector that utilizes threat-based heuristic for state evaluation.

However, with high number of iterations the rollouts can be very time-consuming. To

alleviate this issue a tournament selection is applied whenever an action is required.

Tournament selection reduces the amount of valid actions be sampling a percentage of the

available actions at random and the action selector considers only the sampled actions.

Sampled actions are then evaluated by the heuristic function. The action selector

distinguishes between the players, selecting action with the highest score if artificial player

is the active player and action with the worst score if active player is the opponent. The

functions utilized to guide the rollout decision-making are viewed in Algorithm 3.

Finally, during the player’s turn the approach attempts to reuse the tree constructed in

previous search. When an action is return, the node and state associated with it is saved.

When artificial agent is requested to select an action, it compares the current game state with

the remembered state and if these states are marked identical, the saved node is selected as

current root. Otherwise, new root is initialized and the tree construction begins anew. To

Artificial Intelligence Methods for Playing Collectible Card Games

 25

determine whether the states are identical, valid actions of the current state are compared

with actions that can be performed in the saved state. If all the actions associated with the

saved node are among the valid actions of the current state, the states are considered

identical.

 MCTS with Chance Event Bucketing and Neural Network

This artificial agent is inspired by techniques described in section 5.3 and the methods are

incorporated to the Vanilla MCTS from section 6.1.

The approach employs depth-limited simulations during rollout phase. Whenever a

simulation is launched it is played until either a terminal state or the limit of played turns is

reached. The simulation counts number of executed end turn actions and when the counter

is higher than the depth the simulation is terminated. If reached state is not terminal it is

evaluated with a heuristic function. However, in the mentioned work heuristic available in

the Silverfish simulator was used for this purpose. Because this heuristic is not present in the

Metastone simulator the threat-based heuristic is utilized instead. The reached state is

evaluated from player’s and opponent’s perspective and the one with higher heuristic value

is predicted as the winning player (the higher the heuristic value the higher threat the player

represents towards his opponent).

To incorporate randomness into the tree search process, chance event bucketing method is

applied. Specifically, this method is applied to the most common chance event that occurs

throughout the game, the card drawing. Chance event bucketing takes all possible outcomes

of a chance event and groups them into number of buckets based on a selected criterion.

Then, for each bucket some of the outcomes are selected as representative values. In this

case, the bucketing criterion is the manacost of cards. Figure 5 depicts an example where a

card draw event is separated into 4 buckets - 1 containing cards with manacosts 0-2, 1 with

cards with manacosts 3-4, 1 for cards with manacosts 5-6 and 1 for cards with manacost 7

and above - and each bucket has 2 representative values. When transitioning to bucketed

node during selection phase of MCTS, one of the buckets is selected as a destination

with respect to probability that is defined by the number of samples contained within the

bucket compared to the total number of samples. In Figure 5 each bucket has the same

probability, but if the first bucket contained 4 samples and total number of samples was 10

the probability of transitioning to the first bucket would be 40% and probability of other

Artificial Intelligence Methods for Playing Collectible Card Games

 26

buckets would be 20%. Finally, one of

the samples within the bucket is

selected at random as the final

outcome. This way effects of random

events are introduced into the scores of

tree nodes that are associated with the

chance events. To give even better

estimation of the node’s score, more

than one bucket could be explored

when transitioning to a chance node. The approach in this thesis distributes outcomes of card

draw events into 5 buckets with manacosts 0-1, 2, 3-4, 5-6, 7+. If 1 card is drawn 10 possible

outcomes are sampled in total among all the buckets. At least one sample is assigned to a

bucket if there is at least 1 card that fits the bucket’s criterion. The remaining samples are

then distributed among the buckets with respect to the number of their possible outcomes

(bucket with the most possibilities contains the highest number of samples). If 2 or more

cards are drawn 5, possible outcomes are sampled for each card draw instead of 10 (if 2 cards

are drawn there are 52 possible outcomes in total).

Figure 5 – Example of chance node bucketing

To further improve performance of the approach, machine-learned card play policy utilizing

neural network is employed to guide the action selection during rollouts. The goal of the

neural network is to assign probability to each card that describes how probable it is for a

card to be played in the current situation. However, some cards may require dependent action

after being played such as target selection. Once a card play action has been selected its

dependent actions are resolved using greedy heuristic-oriented action selector. Therefore,

Artificial Intelligence Methods for Playing Collectible Card Games

 27

whenever an action needs to be selected the current state is encoded and evaluated by the

neural network. Network outputs probability for each card and card in hand with the highest

probability is played. If no card play actions are available among the valid actions the

remaining actions are resolved by the action selector. As the action selector,

GreedyOptimizeMove behavior available in the Metastone simulator is used.

To encode the state of Hearthstone for the neural network, 3 features are considered:

• Global features: Global features are represented as a single vector encoding current

health of each player using a 5-bit binary representation for each player, the player’s

remaining mana, the opponent’s available mana on the next turn, whether the player

and opponent have a weapon equipped, which of the two players played first and

whether the total attack value of player’s minions is higher than the total health of

opponent’s minions.

• Hand features: A vector that one-hot encodes contents of each players hand. Each

card in the simulator is encoded with a vector that represents how many instances of

the card are in each player’s hand, whether the card is playable by the players and if

there is a possible follow-up card play after the card is played.

• Board features: A single vector one-hot encoding the current state of the game

board. Instances of each minion that can appear in the game are encoded into a matrix

where rows represent current health value (5 different health values are

distinguished – 0-1, 2-3, 4-5, 6-7, 8+) of the minion and columns stand for the

number of instances of the minion with the particular amount of health controlled by

the players. This matrix is then flattened into a single vector and an information

whether the minion is a legendary minion and whether it has an aura (an effect that

does something while the minion is on board) is appended.

The training data for the neural network was generated from simulations between two

GameStateValue behaviors, which is the strongest artificial player offered by the

Metastone simulator. 27 000 open-handed mirror matches were played with each of the

3 decks that were selected for the following experiments (Pirate Warrior, Midrange

Shaman, Freeze Mage) for a total of 81 000 matches. Every turn with different maximum

mana value from each player’s perspective (for a total of 20 turns) is observed and all

card play actions performed in these turns are encoded and saved into the training file

with the played card as the expect output of the encoding. In the end the training data file

contained about 4 million training samples. It is important to note that the size of

Artificial Intelligence Methods for Playing Collectible Card Games

 28

encoding depends on the number of cards available in the simulator. Metastone simulator

offers nearly 1 300 different cards and encoding of a single state included about 60 000

values. File that contained training samples from only 1 000 matches required about

3.5GB of memory space. To save data from 81 000 matches would require over 280GB.

To lower the memory requirements the available card pool was limited to 100 cards

consisting of each card that appears in the 3 selected decks and a few additional cards to

reduce accuracy of random determinization of hidden information used by Vanilla

MCTS and this approach.

The neural network used for card play action selection employs feedforward neural

network topology consisting of 3 hidden fully-connected layers (Figure 6). Each of the

layers utilizes leaky ReLU activation function with parameter 𝛼 = 0.2 and 50% dropout

to handle overfitting. The output layer outputs 𝑘 values where 𝑘 is the number of

different available cards. For parameter initialization Uniform Xavier Initialization was

used. For training the adaptive moment estimation (ADAM) with parameters 𝛼 = 103,

decay √𝑡/3, 𝛽1 = 0.9 and 𝛽2 = 0.999 is used with minibatch size of 200. The network

was trained for 5 epochs, learning for about 23 hours.

Figure 6 – Feed-forward network architecture

Artificial Intelligence Methods for Playing Collectible Card Games

 29

 Summary

In this chapter the approaches used in the following experiments and their implementation

are discussed. First, the basic Monte Carlo Tree Search in a form of Vanilla MCTS and its

application to a game of Hearthstone is examined. Then the Vanilla MCTS was enhanced

with methods mentioned in section 5.1, creating first enhanced version of the MCTS

algorithm, and finally a second improved version of MCTS was developed with the use of

chance event bucketing and rollouts guided by a machine learned policy from section 5.3.

Artificial Intelligence Methods for Playing Collectible Card Games

 30

 Experiments

In this chapter the experiments for the implemented approaches are conducted. In these

experiments the proposed approaches are tested against behaviors that are available in the

Metastone simulator, namely PlayRandomBehavior (Random) that chooses random actions,

OptimizeMoveBehavior (Greedy) which evaluates each available action with heuristic

function and chooses the one with the highest score, and GameStateValueBehavior (GSV)

utilizing Alpha-Beta pruning algorithm driven by Threat Based heuristic and is the strongest

of the Metastone behaviors. For the experiments the limited card pool mentioned in section

6.3 is used and 3 different decks are selected where each represents one of the general

strategies (Aggressive, Midrange, Control):

• Pirate Warrior: Aggressive deck with goal to kill the opponent’s hero as fast as

possible

• Midrange Shaman: This deck concentrates on maintaining dominance over the

battlefield with usage of stronger (but more expensive) minions and spells

• Freeze Mage: Deck based around control strategy. The goal of the deck is to

eliminate all threats from the board with the usage of spells and to survive for as long

as possible until its win condition is drawn (typically a combination of cards that is

able to kill the opponent’s hero in 1 or 2 turns)

In each individual experiment 5 series of 50 simulations for a total of 250 matches are played

between 2 selected bots where both players have the same deck (mirror matches). Each bot

has unlimited thinking time to make its decision.

 MetaCentrum

MetaCentrum [30] [31] is an activity of CESNET association that operates and manages

National Grid Infrastructure (NGI) in Czech Republic as part of the pan-European

infrastructure built in the framework of the EGI [32] project. MetaCentrum supports research

projects in many research disciplines and enables researchers to easily share computing and

storage resources. Registered users have access to available resources and are allowed to use

them free of charge. Grid infrastructure managed by MetaCentrum was utilized to conduct

experiments in this chapter.

Artificial Intelligence Methods for Playing Collectible Card Games

 31

 Vanilla MCTS

Vanilla MCTS from section 6.1 is the basic implementation of PIMC that utilizes random

oriented rollouts to estimate value of available actions and deals with hidden information by

randomly sampling the unknown data and creating number of possible worlds.

 Parameter Selection

Performance of Vanilla MCTS depends on 3 parameters: Number of iterations, number of

sampled worlds and exploration parameter C used in UCT. To test various values for the

parameters a round-robin tournament with Pirate Warrior deck is run with 250 games per

match and afterwards each candidate is matched against GSV bot. Pirate Warrior is selected

because in mirror match it is important to alter between aggression and board control based

on current state of the game.

 Exploration parameter

First the effect of the exploration parameter on Vanilla MCTS is explored. The candidates

for the exploration parameter are {0.5, 0.6, 0.7, 0.9, 1.1}. Number of iterations is set to 250

and number of sampled worlds to 7.

According to the results in Table 2 the performance of parameters 0.5, 0.6 and 0.7 is similar

and with further increase of the parameter the performance begins to decline. With too large

exploration parameter the algorithm will not spend as much time exploiting the promising

moves and will expand the search tree more evenly which could lead to selection of worse

moves. From now on value 0.7 will be used for the Vanilla MCTS as it has the most balanced

results and seemingly the best performance against GSV player.

 0.5 0.6 0.7 0.9 1.1 GSV

0.5 - 47.6 49.6 54.4 55.6 36.8

0.6 52.4 - 45.2 50.8 57.6 35.6

0.7 50.4 54.8 - 51.6 50.4 38.0

0.9 45.6 49.2 48.4 - 47.6 29.6

1.1 44.4 42.4 49.6 52.4 - 31.6

Table 2 – Exploration parameter results

Artificial Intelligence Methods for Playing Collectible Card Games

 32

 Iterations

The number of iterations defines how many expansions occur during the algorithm’s

execution and how many simulations are played out to estimate the value of each node in

the tree. The values are selected from set of parameters {100, 250, 500, 750, 1000} and for

each value its performance and time consumption are measured. Exploration constant is set

to 0.7 and number of sampled worlds to 7.

In table 3 are summarized experiment results. Surprisingly in round-robin tournament it

seems that number of iterations has no significant effect on the performance of MCTS,

however when matched against GSV low number of iterations show low performance

compared to higher values as is expected because more iterations mean more thinking time

until deciding. Performance peaks at 500 iterations and further increases seem to have no

significant effect on the playing strength.

 100 250 500 750 1000 GSV

100 - 50.0% 49.6% 46.4% 50.4% 22.4%

250 50.0% - 45.2% 46.4% 50.0% 28.4%

500 50.4% 54.8% - 48.8% 49.6% 32.4%

750 53.6% 53.6% 51.2% - 50.0% 31.2%

1000 49.6% 50.0% 50.4% 50.0% - 30.8%

Table 3 – Iterations results

Figure 7 – Time complexity base on iterations

4,53

10,73

20,29

29,47

40,23

0

5

10

15

20

25

30

35

40

45

50

100 250 500 750 1000

Se
co

n
d

s
p

er
 d

es
ic

io
n

Iterations

Time complexity based on number of iterations

Artificial Intelligence Methods for Playing Collectible Card Games

 33

In Figure 7 the average thinking time for action selection in seconds is overviewed with

vertical lines representing 95% confidence interval for each selected iteration. As was

anticipated, increasing the number of iterations increases the time needed to decide. For the

following experiments value of 500 iterations will be used as it is sufficient enough to

achieve reasonable results. However, it is important to note that in game of Hearthstone each

player has 75 seconds to play their turn and can perform multiple actions until they decide

to end it. With 20 seconds per action selection the player would be able to perform only 3

actions until their turn is ended by the game which might be only a small fraction of all the

actions that could have been done. Reducing the amount of time needed to make a decision

or distributing available time budget to available actions could be explored in further works.

 Worlds

This parameter determines the number of randomly sampled worlds based on the current

state to deal with the hidden information (opponent’s hand, deck and secrets). The set of

candidate values for this parameter is {5, 7, 9, 11, 13}. Performance and time requirements

of each value is examined. Number of iterations is set to 500 and exploration parameter to

0.7.

The results in table 4 indicate that increasing the number of sampled worlds increases the

performance of the Vanilla MCTS. With few samples the search may not encounter some of

the possible moves the opponent could perform and therefore the MCTS could not consider

these moves when selecting its next action. Increasing the number of samples allows the

player to search higher number of different possible situations and chose an action that

performs well in all the considered situations.

 5 7 9 11 13 GSV

5 - 47.6% 42.8% 40.4% 42.8% 27.2%

7 52.4% - 52.4% 43.2% 40.0% 35.2%

9 57.2% 47.6% - 49.2% 44.8% 36.8%

11 59.6% 56.8% 50.8% - 48.4% 37.6%

13 57.2% 60.0% 55.2% 51.6% - 38.4%

Table 4 – World results

Artificial Intelligence Methods for Playing Collectible Card Games

 34

Figure 8 shows the average time in seconds needed to decide based on the number of sampled

worlds. Similarly to iterations, increasing the number of worlds increases the time

complexity because each of the sampled worlds needs to be explored. 11 worlds are chosen

for the next experiments as a setting that presents sufficient playing strength while requiring

reasonable amount of time to decide.

Figure 8 – Time complexity based on worlds

The final configuration of Vanilla MCTS is:

• 0.7 exploration parameter

• 500 iterations

• 11 sampled worlds

14,52

21,4
23,5

26,92

36,42

0

5

10

15

20

25

30

35

40

45

5 7 9 11 13

Se
co

n
d

s
p

er
 d

ec
is

io
n

Number of sampled worlds

Time complexity based on number of worlds

Artificial Intelligence Methods for Playing Collectible Card Games

 35

 Matches against Metastone Behaviors

To conclude the section about Vanilla MCTS the approach is matched against the artificial

players in the Metastone simulator with results depicted in Figure 9. Vanilla MCTS with the

selected parameters is able to win every game against randomly playing agent and wins

majority of matches against the Greedy behavior, achieving win rate of 70.8% in Freeze

Mage mirror match, 79.6% with Midrange Shaman and 88.8% against Pirate Warrior.

Against GSV behavior Vanilla MCTS presented an underwhelming performance in Pirate

Warrior and Midrange Shaman mirror matches with 31.2% and 37.2% win rates

respectively. However, it shows substantially better performance in the Freeze Mage mirror

match achieving win rate of 66.40%. This significant win rate difference between Freeze

Mage and other decks is likely caused by the need of resource management and planning

during the gameplay with the Freeze Mage deck. In order to win the game the player needs

to preserve the cards that are part of the deck’s winning card combination. If these cards are

used early in order to control the board or without the presence of other combo pieces the

players might put themselves further from the winning position or even make it near

impossible for them to win. The GSV does not plan past its own turn and therefore is unable

to realize this, resulting in worse performance.

Figure 9 – Results of games between Vanilla MCTS and Metastone behaviors

Pirate Warrior Midrange Shaman Freeze Mage

Random 100% 99,60% 100%

Greedy 88,80% 79,60% 70,80%

GSV 31,20% 37,20% 66,40%

0%

20%

40%

60%

80%

100%

120%

Vanilla MCTS matches results

Artificial Intelligence Methods for Playing Collectible Card Games

 36

 MCTS Enhanced with Domain Knowledge and Heuristics

In this part experiments for the approach proposed in sections 5.1 and 6.2 that utilizes

heuristic oriented rollouts, deck database to deal with the unknown information and random

action sampling are performed. For the experiments the most successful parameter

configuration carried out in the work [19] is selected. However, this configuration includes

usage of tree reuse during players turn. Because of the random nature of Hearthstone

performing the selected action might lead to a different state than the expect state saved in

the search tree. Such a state has not been explored and the search tree needs to be constructed

anew. In the implementation each random event is represented with 1 possible outcome. It

is improbable that the sampled outcome is also contained within the search tree and any time

a chance event is encountered the tree cannot be reused. To determine whether the usage of

tree reuse has effect on the performance of the artificial player an experiment is conducted.

6 series of 50 simulations for a total of 300 matches are played between one bot utilizing

tree-reuse and the other without the tree-reuse method. Pirate Warrior deck is selected for

the experiment as it has the lowest quantity of cards with effects causing random events from

the selected decks. Table 5 contains results of the experiments. Win rate of both approaches

is close to 50%. The 95% confidence interval of the bot utilizing Tree-reuse is

< 43.59; 52.41 >, therefore the usage of the Tree-reuse method has no significant effect

on the playing strength of the artificial player.

 Win rate Standard Deviation 95% Confidence Interval

Tree-reuse 48% 5.513 < 43.59; 52.41 >

No Tree-reuse 52% 5.513 < 47.59; 56.41 >

Table 5 – Tree-reuse vs no Tree-reuse

The final selection of parameters for this approach looks like this:

• Iterations: 60 (number of tree expansions)

• Rollouts: 20 (number of rollouts executed to determine score for the expanded node)

• Action sampling for the player: 75%

• Action sampling for the opponent: 50%

• Heuristic: Threat Based Heuristic (heuristic used by GSV)

• Tree-Reuse: No

Artificial Intelligence Methods for Playing Collectible Card Games

 37

Now the approach is matched against the available behaviors in the Metastone simulator.

The average win rates and 95% confidence intervals of these matches are depicted in

Figure 10. The enhanced version of MCTS was able to win every game against the random

playing behavior, reaching 100% win rate in each mirror match similarly to the Vanilla

MCTS. It is also able to reliably defeat the Greedy behavior driven only by heuristic

evaluation with win rate of 96% with Pirate Warrior, 87,6% with Freeze Mage and 80,4%

in Midrange Shaman mirror match which is an improvement compared to the Vanilla

version. When matched against the GSV behavior the bot is underperforming in Pirate

Warrior match with 36% of the games won and against Midrange Shaman with 39.20%.

These results are very similar to those achieved in the work that inspired this method. In

Freeze Mage mirror match the enhanced approach shows excellent performance with win

rate of 88,4%, winning most of the matches. This is a significant improvement compared to

the Vanilla version that is likely caused by the ability to accurately determine the contents

of the opponent’s deck. It is worthwhile to note that this approach with its current parameter

setup needs 11.67 seconds on average to decide. The average is 2.3 times lower than the

average time complexity of Vanilla MCTS, however its performance is higher. Win the same

thinking time as Vanilla MCTS it would likely be able to achieve even better results than

with the current configuration with only 60 iterations.

Figure 10 – Results of games between Enhanced MCTS and Metastone behaviors

Pirate Warrior Midrange Shaman Freeze Mage

Random 100% 100% 100%

Greedy 96% 80,40% 87,60%

GSV 36% 39,20% 88,40%

0%

20%

40%

60%

80%

100%

120%

Enhanced MCTS matches results

Artificial Intelligence Methods for Playing Collectible Card Games

 38

 Chance Event Bucketing and Neural Network

The experiments regarding addition of depth limited search, chance event bucketing and

neural network to guide rollouts are carried out in this section. First, various selections for

depth parameter are explored, then the effects of chance event bucketing and depth limited

search on the performance are examined and finally neural network is applied to the rollout

phase of the approach and matched against Metastone behaviors.

 Depth parameter

The approach utilizes depth limited rollouts to estimate value of tree nodes. Rollout is played

until certain depth and if reached state is not terminal it is evaluated with threat-based

heuristic used by GSV and player with higher heuristic value is predicted as a winner. The

candidate set of values for the experiment is {5, 7, 9, 11, 13}. The tests are run with Pirate

Warrior deck, 500 iterations, 11 worlds and 0.7 exploration parameter against Metastone

behaviors. Round Robin tournament is not performed because addition of depth limit caused

issue where the bot utilizing the method labeled as player 1 lost almost every match in the

tournament regardless of the selected parameters. (being player 1 does not necessarily mean

the player goes first. Number 1 resembles identification number to distinguish players in the

simulator). Based on observation of simulations the bot made reasonable decisions and the

reason for this unexpected behavior is unknown. Results of candidate depths are contained

in table 6. According to the data, artificial player reaches peak performance with 7 depths

and then begins to decrease with increasing depth value. The decrease of performance with

higher depth is surprising. The reason for this could be that with Pirate Warrior the player is

able to empty their hand in the first 4-5 turns and available actions in future turns heavily

depend on cards drawn. Using only 1 sample for card draw outcomes does not provide

sufficient score estimation of available actions.

 5 7 9 11 13

Random 100% 100% 100% 100% 100%

Greedy 96.4% 97.2% 96.0% 93,6% 92,0%

GSV 56.6% 57.2% 52.8% 47.6% 47.6%

Table 6 – Depth results

Artificial Intelligence Methods for Playing Collectible Card Games

 39

Figure 11 – Time complexity based on depth

In Figure 11, time in seconds needed to decide based on selected depth value is depicted.

The raise of depth increases the time complexity which is anticipated. The approach employs

the same parameters as Vanilla MCTS, however it needs nearly 7 times less decision time

with 7 depths while achieving better performance. This is a significant improvement because

with 4.41 seconds to decide the approach could be utilized as artificial player in a real game

of Hearthstone.

 Chance Event Bucketing

Chance event bucketing separates possible outcomes into number of buckets where each

contains similar outcomes. Results in Figure 12 show that this approach performs

significantly better in Pirate Warrior and Midrange Shaman mirror matches against GSV

behavior with win rates of 56.8% and 44.8% respectively in comparison with Vanilla MCTS,

but on the other hand achieves worse results in Freeze Mage mirror match with 96.8% win

rate against Random behavior, 51.6% against Greedy behavior and 44.0% against GSV

which represents a decrease in comparison with Vanilla MCTS. However, the results of the

Pirate Warrior matches are very similar to values in Table 6. The differences between win

rates are likely caused by the addition of depth limited rollouts and not the bucketing. To

support this claim more experiments are conducted without the use of depth limited search.

4,07
4,41

4,95

5,46
5,91

0

1

2

3

4

5

6

7

5 7 9 11 13

Se
co

n
d

s
p

er
 D

ec
is

io
n

Depth

Time complexity based on depth

Artificial Intelligence Methods for Playing Collectible Card Games

 40

Figure 12 – Results of MCTS with card draw bucketing

According to results in Figure 13 the radical change in win rates is indeed caused by the use

of depth limited search, but only partially. Without the depth limit the artificial player

performed significantly better in the Freeze Mage mirror matches, winning 76.4% of

matches against GSV, as it was able to better plan the usage of its resources with unlimited

depth which is crucial in Freeze Mage deck as was mentioned earlier. In Pirate Warrior and

Midrange Shaman matches the bot performed worse than in the previous experiment.

However, in comparison with the Vanilla MCTS the addition of card draw bucketing had

beneficial effect on Pirate Warrior (from 31.2% to 48.8%) and Freeze Mage (66.4% to

76.4%) mirror matches against both GSV and Greedy behaviors. This supports the previous

claim about decrease of win rate of Pirate Warrior deck with increasing depth caused by high

dependency of available actions based on cards drawn. With only one possible outcome

present in the tree the action selection is centered around the single selected outcome,

however with bucketing the action is selected with respect to other outcomes as well,

providing better score estimation for available actions. Therefore, the usage of bucketing

alleviates deprecation of score estimation of actions with increasing depth. However, in

Midrange Shaman mirror match its performance against GSV rapidly decreased. This

decrease is surprising because the addition of bucketing was expected to help in matches

where card drawing events happen frequently. In Pirate Warrior deck cards are drawn only

at the beginning of each turn. On the other hand Freeze Mage deck contains high number of

Pirate Warrior Midrange Shaman Freeze Mage

Random 100% 100% 96,80%

Greedy 96,40% 86,80% 51,60%

GSV 56,80% 44,80% 44,00%

0%

20%

40%

60%

80%

100%

120%

Results of matches with bucketing

Artificial Intelligence Methods for Playing Collectible Card Games

 41

cards that draw additional cards and the event can happen multiple times during player’s

turn. In both cases, bucketing had positive effect on player’s performance. Midrange Shaman

deck has only few cards that invoke card draw event. Card drawing happens more frequently

than in Pirate Warrior deck but with much lower frequency than in Freeze Mage deck, but

addition of bucketing reduced its performance against GSV while retaining similar

performance against Greedy behavior.

Figure 13 – Results of bucketing without depth limited search

 Neural Network

In this part the effects of neural network application to simulations of rollout phase is

examined. The neural network was trained to mimic the card play action selection of GSV

behavior. First, the accuracy of neural network’s predictions is tested. To measure the

accuracy, 100 mirror matches with each deck are played between GSV players and each card

play action of players is compared to the prediction of the neural network. Network achieved

only 34.22% accuracy with Pirate Warrior, 35.22% with Midrange Shaman and 28,40%

accuracy in Freeze Mage mirror match, reaching only 32.61% average accuracy. On top of

that, one evaluation of the neural network takes 43.85 milliseconds. With the selected

parameters for the MCTS in previous sections 5 500 simulations are played up to a depth of

7, playing at most 44 000 turns until a decision is made. If 1 card play action was executed

every turn 44 000 evaluations via the neural network would be required. This process would

Pirate Warrior Midrange Shaman Freeze Mage

Random 100% 100% 100%

Greedy 95,20% 81,20% 77,20%

GSV 48,80% 26,00% 76,40%

0%

20%

40%

60%

80%

100%

120%

Results of matches with bucketing without depth

Artificial Intelligence Methods for Playing Collectible Card Games

 42

take 1 929 400 milliseconds which is about 32 minutes required to make a single card play

decision. In comparison with the outputs in [25] where the deep feedforward neural network

supposedly achieved 74.725% accuracy on average requiring only 140 microseconds for an

evaluation the results of the implemented neural network are very discouraging. The

architecture and configuration of the neural network is design according to the description

in the mention work, however the differences are significant. The difference in accuracy

could possibly be caused by different amount of time used to learn the network, however the

cause of the radical difference in evaluation’s time complexity is unknown, especially after

considering that the game state encoding in this thesis is smaller than the encoding in the

mentioned work thanks to the usage of limited card pool.

In order to perform experiments with the neural network the time required to decide is

reduced by decreasing parameters of Monte Carlo Tree Search to 100 iterations, 6 sampled

worlds and depth 6. With this configuration, selecting a card play action requires about 3

minutes. Even with the reduced configuration simulating 1 game might take several hours,

therefore the experiments are reduced to 5 series of 20 simulations for a total of 100 games

per mirror match. Matches against random playing behavior are not performed because the

win rate against the bot would most likely be 100% as it was in every previous experiments.

According to data in Figure 14, the approach performed significantly worse in the Pirate

Warrior and Midrange Shaman mirror matches. This decrease is cause by the reduction of

the MCTS parameters. Therefore, the tree is not searched as thoroughly as it was in previous

experiments. On the other hand in the Freeze Mage mirror match the approach utilizing the

neural network achieved average win rate of 79% against the GSV behavior which is the

second highest win rate against Freeze Mage among all the experiments conducted even with

the reduced parameters. Apparently, the replacement of randomly oriented rollout by a

reasonable action selector in the MCTS utilizing the depth limited search and card draw

event bucketing had very beneficial effect on the performance in the Freeze Mage mirror

match, increasing win rate from 44% to 79%. If faster and more accurate action selector to

guide the simulations during the rollout phase was utilized while retaining the original

parameter configuration this approach could prove as a strong artificial player with

reasonable amount of time to decide.

Artificial Intelligence Methods for Playing Collectible Card Games

 43

Figure 14 – Results of matches with the usage of the learned card play policy

 Comparison of Methods

In this final section the implemented approaches are matched against each other to compare

their playing strength. Because of reduction of parameters of the MCTS utilizing neural

network which ultimately reduced performance of the depth limit and card draw event

bucketing methods, both these MCTS variations are tested individually against other agents.

5 series of 50 simulations for each mirror match are played except for the matches where

neural network is present in which the number of simulations is reduced to 20 per series.

Figure 15 depicts the win rates of MCTS utilizing neural network against Vanilla and

Enhanced MCTS. In Midrange Shaman mirror matches the approach underperformed with

about 20% win rate in comparison with the other approaches, however despite the reduction

of MCTS parameters its performance in Pirate Warrior mirror matches is not as poor as

expected, winning approximately 40% of games. Against Freeze Mage its performance is

similar to the Enhanced MCTS and a slight improvement can be observed against Vanilla

MCTS.

Pirate Warrior Midrange Shaman Freeze Mage

Greedy 80,00% 59% 79%

GSV 18% 20% 79%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Matches with Neural Network Evaluation

Artificial Intelligence Methods for Playing Collectible Card Games

 44

Figure 15 – Win rates of depth limit, bucketing and NN

In Figure 16 are the win rates of MCTS utilizing only depth limited search and bucketing

against other implemented approaches. The artificial player shows dominant performance

with Pirate Warrior (56.0% against Vanilla and 70.0% against Enhanced) and Midrange

Shaman (64.4% against Vanilla and 56.0% against Enhanced), on the other hand its results

in Freeze Mage mirror matches are poor as was expected based on observations from

previous experiments, winning 24.8% against Vanilla and 22.0% of games against

Enhanced. However, according to the results of MCTS with neural network matches,

performance of this approach can be significantly improved if an action selector was

incorporated into its rollout decision-making.

Figure 16 – Win rates of depth limit and bucketing without NN

Pirate Warrior Midrange Shaman Freeze Mage

Vanilla 37,00% 23,00% 59,00%

Enhanced MCTS 40,00% 17,00% 47,00%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

Neural Network Win rates

Pirate Warrior Midrange Shaman Freeze Mage

Vanilla 56,00% 64,40% 24,80%

Enhanced 70,00% 56,00% 22,00%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

Depth and Bucketing without NN Win rates

Artificial Intelligence Methods for Playing Collectible Card Games

 45

Figure 17 shows results of matches

between Vanilla MCTS and its

Enhanced version. The performance

of both approaches is similar in

Pirate Warrior mirror match, but

against Midrange shaman a slight

improvement can be observed and in

Freeze Mage matchup the enhanced

variation wins 74.40% of games. It is

safe to say that the addition of greedy

heuristic-oriented action selector to

MCTS rollouts and the deck database to determine unknown information improved the

performance of Vanilla MCTS, especially since the enhanced version needs 2.3 less thinking

time to make a decision with its current configuration than its Vanilla counterpart.

 Summary

In this section, experiments with the implemented approaches were conducted. At first, the

parameter selection for the Vanilla MCTS was discussed, finalizing its configuration with

500 iterations, 11 worlds and 0.7 exploration parameter. Afterwards it was matched against

artificial players available in the Metastone simulator. The approach won every game against

random oriented agent and showed dominant performance over Greedy player, however it

underperformed against the GSV behavior. Its enhanced variation achieved even higher win

rates against Greedy behavior and won 88.4% of matches against GSV in Freeze Mage

mirror match. However, just like the Vanilla MCTS it was unable to reliably defeat the GSV

player with Pirate Warrior and Midrange Shaman decks. Then, the second improvement of

the Vanilla MCTS was matched against the Metastone players. With the addition of depth

limited search and card draw chance event bucketing the approach achieved the best

performance against GSV in Pirate Warrior and Midrange Shaman mirror matches.

However, win rate against Freeze Mage was significantly reduced. Afterwards the neural

network was integrated into the approach, but the evaluation of the network proved to be

time consuming and the parameters of MCTS and range of the experiments had to be

decreased. This had negative effect on the performance of the approach in Pirate Warrior

Pirate
Warrior

Midrange
Shaman

Freeze Mage

Vanilla 50,40% 58,00% 74,40%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

Enhanced MCTS vs Vanilla

Figure 17 – Win rates of Enhanced MCTS over Vanilla MCTS

Artificial Intelligence Methods for Playing Collectible Card Games

 46

and Midrange Shaman matches, however against Freeze Mage the win rate increased

significantly, showing that the addition of action selector to rollouts can have beneficial

effects on the players performance despite the parameter reduction. Finally, the implemented

approaches were matched against each other. Enhanced MCTS achieved the best results in

Freeze Mage mirror matches, however MCTS with depth limited search and bucketing was

the most successful in Pirate Warrior and Midrange Shaman games. According to statistics

available in MetaCentrum a total of 351 jobs were computed in the cluster with the total of

518.8 CPU days spent.

Results of most of the matches are summarized in tables 7 (Pirate Warrior), 8 (Midrange

Shaman) and 9 (Freeze Mage):

 GSV Vanilla Enhanced No-Neural Neural

Vanilla 31.2% - 49.6% 44.0% 63%

Enhanced 36.0% 50.4% - 30.0% 60.0%

No-Neural 56.8% 56.0% 70.0% - -

Neural 18.0% 37.0% 40.0% - -

Table 7 – Pirate Warrior mirror matches

 GSV Vanilla Enhanced No-Neural Neural

Vanilla 37.2% - 42.0% 35.6% 77.0%

Enhanced 39.2% 58.0% - 44.0% 83.0%

No-Neural 44.8% 64.4% 56.0% - -

Neural 20.0% 23.0% 17.0% - -

Table 8 – Midrange Shaman mirror matches

 GSV Vanilla Enhanced No-Neural Neural

Vanilla 66.4% - 25.6% 75.2% 41.0%

Enhanced 88.4% 74.4% - 78.0% 53.0%

No-Neural 44.0% 24.8% 22.0% - -

Neural 79.0% 59,0% 47.0% - -

Table 9 – Freeze Mage mirror matches

Artificial Intelligence Methods for Playing Collectible Card Games

 47

 Conclusion and Future Work

This chapter concludes the thesis and gives few suggestions for future work.

 Conclusion

In this thesis the collectible card games and challenges they represent for the development

of artificial intelligence were introduced. Afterwards CCG Hearthstone was presented as

testbed for the conducted research and experiments, utilizing an open-source simulator

called Metastone that offers variety of artificial players.

To play Hearthstone, Vanilla MCTS was designed utilizing Perfect Information approach to

deal with the unknown information. This approach required 27 seconds to decide and

reliably defeats random playing player, winning every match, as well as prevailing over the

greedy heuristic oriented agent with 80% average win rate. The approach also achieved

66.4% win rate in Freeze Mage mirror matches against GameStateValue behavior, which is

the strongest artificial player offered by Metastone, however it underperformed against GSV

in Pirate Warrior and Midrange Shaman matches, winning 31.2% and 37.2% of games

played respectively. Two improved variants of the Vanilla MCTS are designed according to

existing works.

The first is the Enhanced MCTS variation, utilizing deck database to determine hidden

information and rollout driven by greedy action selector with respect to a heuristic. The

improvements increased the win rates of Vanilla MCTS in all matches, winning 88,4% of

games against GSV in Freeze Mage mirror match. However, in matches with other decks

the Enhanced MCTS underperformed with win rates slightly below 40%. Based on results

of matches with Metastone players as well as games played with Vanilla MCTS the

enhancements truly improved the performance of the previous method while requiring only

11.67 seconds of thinking time with its configuration.

The second improvement utilized depth limited search, chance event bucketing applied to

card draw events that samples some of the possible outcomes during construction of the

search tree, and machine learned card play policy to guide rollouts. The addition of depth

limit and bucketing accomplished the best results with only 4.41 seconds thinking time

against GSV in Pirate Warrior and Midrange Shaman mirror matches with win rates 56.8%

Artificial Intelligence Methods for Playing Collectible Card Games

 48

and 44.8% respectively but its performance against Freeze Mage was significantly reduced

from 66.4% to 44.0%.

The neural network showed disappointing performance with only 32.61% accuracy and an

average evaluation time of 43.85 milliseconds. With the original MCTS configuration about

44 000 evaluations are needed to decide, requiring nearly 32 minutes to select an action.

Because of the slow evaluation the MCTS parameters had to be toned down to perform the

experiments. The final approach required 3 minutes to decide but performed poorly with

Pirate Warrior and Midrange Shaman decks against the GSV, winning less than 20% of

matches, as well as Vanilla and Enhanced MCTS with about 40% win rate against Pirate

Warrior and 20% win rate with Midrange Shaman. However, its results with Freeze Mage

deck show that the performance of depth limited MCTS with bucketing can be significantly

improved with the addition of fast and reasonable action selector to guide rollouts, achieving

79% win rate against GSV, 59% against Vanilla MCTS and 47% in Enhanced MCTS

matches.

To perform the experiments a computational cluster MetaCentrum was utilized. According

to the statistics offered by MetaCentrum a total of 351 jobs were computed with 518.8 CPU

days spent with the evaluations.

 Future Work

The application of the neural network could be revisited in order to lower its time

requirements for evaluations and increase its accuracy by choosing a different network

architecture or designing a new way to encode the game states. With a fast and effective

action selector during rollouts the depth limited MCTS with bucketing could achieve high

playing strength.

The bucketing MCTS employs randomized determinization of the hidden information. In

order to create better determinization of the hidden information the deck database used by

the Enhanced MCTS could be incorporated, or a completely different method could be

utilized as well. For example, a machine learned method that takes an encoding describing

cards played by the opponent player as an input and for each card outputs a probability with

which the card could appear in opponent’s deck. The deck would then be filled with the most

probable cards. Other possibility would be to keep track of currently popular cards among

players, considering only the cards frequently used. This could significantly decrease

Artificial Intelligence Methods for Playing Collectible Card Games

 49

number of cards available for determinization because in every CCG there is a high amount

of cards that are generally weak in comparison with others and are almost never seen played.

Replacement of PIMC with ISMCTS could also be an interesting subject for further

examination.

The determinization method of the Enhanced MCTS could be improved as well. If the

database is regularly updated the bot will be able to accurately determine the opponent’s

deck. However, opponent’s hand and secrets are guessed randomly. Each deck could be

assigned with a strategy it employs and based on the strategy each card could have a different

probability of being in opponent’s hand. For example, if the opponent plays an aggressive

deck with a few high manacost cards, the higher probabilities could be assigned to lower

manacost cards to mimic the aggressive gameplay and increase the probability of higher cost

cards with each passed turn.

During the game of Hearthstone the effect of some actions might depend on previously

executed actions, however that is not always the case. For some action sequences it does not

matter in which order they are performed and always lead to the same state. For a sequence

of actions that leads to the same state no matter the order they are executed in it is inefficient

to explore each of the possible action permutations. Instead, a single possible permutation

can be selected to represent the action sequence and the remaining permutations are not

considered. This allows MCTS to get better estimation of the score for the selected sequence,

using the time budget more efficiently.

Each of the proposed approaches had unlimited thinking time, but in Hearthstone player’s

turn is limited to 75 seconds. During player’s turn it is unknown how many actions the player

will perform, making it hard to distribute the available time budget. Approaches to reduce

the time complexity of implemented agents and a method that distributes the available time

budget to agent’s decision-making process could be explored in future work.

Artificial Intelligence Methods for Playing Collectible Card Games

 50

 Bibliography

[1] jleclanche, „fireplace“, https://github.com/jleclanche/fireplace

[2] HearthSim community, https://hearthsim.info/

[3] danielyule, „hearthbreaker“, https://github.com/danielyule/hearthbreaker

[4] oyachai, „HearthSim“, https://github.com/oyachai/HearthSim

[5] utilForever, „HearthStonepp“, https://github.com/utilForever/Hearthstonepp

[6] demilich1, „Metastone“, https://github.com/demilich1/metastone

[7] Guillaume Chaslot, Sander Bakkes, Istvan SzitaandPieter Spronck, „Monte-Carlo Tree

Search: A New Framework for Game AI“, Proceedings of the Fourth Artificial Intelligence

and Interactive Digital Entertainment Conference, pp 216-217

[8] G. Chaslot, J.-T. Saito, B. Bouzy, J. Uiterwijk, and H. J. Van Den Herik, “Monte Carlo

strategies for computer Go,” in Proceedings of the 18th BeNeLux Conference on Artificial

Intelligence, Namur, Belgium, 2006, pp. 83–91.

[9] P. Auer, N. Cesa-Bianchi, and P. Fisher, “Finite-time analysis of the multiarmed bandit

problem,” Machine Learning, vol. 47, pp. 235–256, 2002.

[10] L. Kocsis and C. Szepesvari, “Bandit based Monte-Carlo planning,” in Proc. 17th Eur.

Conf. Machine Learning, 2006, pp. 282–293.

[11] Eckart Zitzler, Evolutionary, „Algorithms for Multiobjective Optimization: Methods

and Applications“

[12] P. García Sánchez, A. Tonda, G. Squillero, A. M. Mora and J. J. Merelo, “Evolutionary

Deckbuilding in HearthStone”, 2016 IEEE Conference on Computational Intelligence and

Games (CIG), Santorini, Greece, 2016. To appear. doi: To Appear.

[13] André Santos, Pedro A. Santos, Francisco S. Melo, “Monte Carlo Tree Search

Experiments in Hearthstone”, IEEE Conference on Computational Intelligence and Games

2017, pp. 272-279

[14] https://www.andremlsantos.com/research

[15] E. Bursztein, “I am a legend: Hacking “Hearthstone” using statistical learning

methods,” in Proc. 2016 IEEE Int. Conf. Computational Intelligence in Games, 2016.

[16] Andrzej Janusz, Tomasz Tajmajer, Maciej Świechowski “Helping AI to Play

Hearthstone: AAIA’17 Data Mining Challenge”

[17] Łukasz Grad, “Helping AI to Play Hearthstone using Neural Networks”, Proceedings

of the Federated Conference on Computer Science and Information Systems pp. 131–134

https://github.com/jleclanche/fireplace
https://hearthsim.info/
https://github.com/danielyule/hearthbreaker
https://github.com/oyachai/HearthSim
https://github.com/utilForever/Hearthstonepp
https://github.com/demilich1/metastone

Artificial Intelligence Methods for Playing Collectible Card Games

 51

[18] Evgeny Patekha, “Application of machine learning to help AI to play Hearthstone”,

Communication papers of the Federated Conference on Computer Science and Information

Systems, pp. 45–48

[19] André Santos, Pedro A. Santos, Francisco S. Melo, “Monte Carlo Tree Search

Experiments in Hearthstone“, IEEE Conference on Computational Intelligence and Games

2017, pp. 272-279

[20] G. Chaslot, M. Winands, H. van den Herik, J. Uiterwijk, and B. Bouzy, “Progressive

strategies for Monte-Carlo tree search,” New Mathematics and Natural Computation, vol. 4,

no. 3, pp. 343–357, 2008.

[21] B. Miller and D. Goldberg, “Genetic algorithms, tournament selection, and the effects

of noise,” Complex Systems, vol. 9, pp. 193–212., 1995.

[22] Maciej Świechowski, Tomasz Tajmajer, Andrzej Janusz, „Improving Hearthstone AI

by Combining MCTS and Supervised Learning Algorithms“

[23] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding the success of

perfect information monte carlo sampling in game tree search.” in AAAI, 2010.

[24] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information set monte carlo tree

search,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 4, no. 2,

pp. 120–143, 2012.

[25] Shuyi Zhang, Michael Buro, “Improving Hearthstone AI by Learning High-Level

Rollout Policies and Bucketing Chance Node Events”

[26] Ilya Kachalsky, Ilya Zakirzyanov, Vladimir Ulyantsev ,“Applying reinforcement

learning and supervised learning techniques to play Hearthstone”

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.

Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

[28] J. Zhu, “Will our new robot overlords play Hearthstone with us?,” CS 229 Final Report,

2016.

[29] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–

292, 1992.

[30] https://metavo.metacentrum.cz/en/index.html

[31] https://www.metacentrum.cz/en/

[32] https://www.egi.eu/

[33] Michael Nielsen, “Neural Networks and Deep Learning”, 2018.

https://metavo.metacentrum.cz/en/index.html
https://www.metacentrum.cz/en/
https://www.egi.eu/

 52

 Appendix

 Predicting Opponent’s Deck

Before the match begins each player constructs a deck of 30 cards from over 1000 available

cards and the selected deck is unknown to the opponent. Being able to predict the content of

the opponent’s deck can be beneficial for the player as it allows them to adjust their strategy

accordingly.

Ellie Bursztein proposed in his work [15] to utilize a neural network to predict the opponent’s

deck. According to his work there are multiple reason why deck construction is predictable:

1. Some cards are restricted to certain heroes. Therefore, Holy Light, which is a spell

specific to Paladin, can’t be a part of a Warlock’s deck

2. Some cards are designed to work well with each other (synergize)

3. Some cards are simply weaker in comparison with a different card with the same

manacost and are never seen played in competitive scene

4. Netdecking. A process where players attempt to replicate successful decks (a winning

deck in a tournament or a deck used by a professional streamer). These decks become

popular among the player base and are often encountered while playing the game.

The method is based on machine learned ranking system that models relations between cards

as a set of bigrams (a sequence of two adjacent elements). The learning data consists of a set of

game replays with sequence of cards played by the opponent during the match. For each replay

a combination of all possible bigrams of played cards is constructed. These bigrams are then

used to construct an occurrence table where each bigram is assigned with the number of games

in which these two cards were played together (regardless of order).

During the game, whenever opponent plays a card, the occurrence table is searched for all

bigrams that contain the played card. This way a set of cards that co-occurred with the played

card is received. This is done for each card played by the opponent during the game. All

received sets are then added together into one set (therefore, if two different sets contained the

same card, the co-occurrence numbers of the card are summed together) and the cards with the

highest number of co-occurrences are the most probable to be contained in the opponent’s deck

(Figure).

 53

Figure - Card prediction example

Image adopted from [15]. Source Hearthstone

 Automated Deckbuilding

Deck creation is an important aspect of collectible card games. It is typical for decks to have its

strengths and its weaknesses. However, some decks are in general performing better than other

decks, which leads to establishment of a so called “meta”. Meta is a set of the most popular

decks in the current environment and these decks are often encountered while playing the game.

But each deck has its weaknesses that can be exploited by other decks to increase their

performance against them. The win rate of the targeted deck then begins to decline and other

decks replace it at the top of the ladder. This represents an interesting challenge as it forms a

changing environment in which the decks have to be constantly adapting to the current situation

The matter is examined in [12] where an evolutionary algorithm is suggested to create an

optimal deck against a specific meta. The evolutionary algorithm follows steps described in

section 4.2. An initial set of random decks is created and their quality is described by a fitness

function. This function considers three parameters:

1. Correctness: Each deck has to consists of exactly 30 cards and can have up to 2 copies

of a non-legendary card and 1 copy of a legendary rarity card. If the deck breaks these

rules its fitness value is set to minimum.

 54

2. Victories: Each deck plays 16 simulation in Metastone simulator against each targeted

deck in the current meta. The value is equal to the total number of victories achieved

and should be as high as possible

3. Standard Deviation: The goal of the deck is to perform well against all targeted decks

and not only few of them. After evaluating, the standard deviation of achieved victories

is computed. This value is to be minimized.

This method was used to create optimal decks against a set of human-made decks that were

considered to be strong at the time of the research. Two experiments were conducted with two

resulting decks: A Hunter deck and a Mage deck. These decks were able to perform

extraordinarily well against some targeted decks (evolved Hunter deck was able to win all 16

games against targeted druid deck) but were underperforming against others (37.5% win rate

of evolved hunter against targeted priest deck).

