Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Example-based Non-photorealistic
Rendering using Game Engine

Jifi Burysek

Supervisor: prof. Ing. Daniel Sykora, Ph.D.
Field of study: Open Informatics

Subfield: Computer Graphics and Interaction
May 2019

ctuthesis t1606152353

ii

Acknowledgements Declaration

Dékuji své rodiné a prateltim za moralni I declare I have accomplished my final
oporu, taktéz Honzum za jejich postiehy, thesis by myself and I have named all the
Petce za jeho pocitac a vedoucimu Danovi sources used in accordance with the Guide-
za pomoc a nekonec¢nou trpélivost. line on ethical preparation of university

final theses.

Prague, 24. May 2019

iii ctuthesis t1606152353

Abstract

This work presents a solution for video
game scene art stylization in video game
engine Unity. The example-based styliza-
tion implements the StyleBlit algorithm
and is able to provide results for an arbi-
trary art style. A plugin providing sim-
ple integration of StyleBlit method is de-
scribed and evaluated.

Keywords: Example-based stylization,
Unity, Non-photorealistic rendering,
Real-time stylization

Supervisor: prof. Ing. Daniel Sykora,

Ph.D.

ctuthesis t1606152353

iv

Abstrakt

Prace prezentuje praktické feSeni vy-
tvarné stylizace videoherni scény v hernim
enginu Unity. Metoda stylizace uziva vy-
tvarné predlohy a je zalozena na algoritmu
StyleBlit, ptricemz je schopna napodobit
libovolny vytvarny styl. Vysledny plugin,
jenz zajistuje uzivatelsky privétivou in-
tegraci metody StyleBlit, je v této praci
popsan a zhodnocen.

Klicova slova: Stylizace dle predlohy,
Unity, Nefotorealistické zobrazovani,
Stylizace v realném case

Pteklad nazvu: Nefotorealistické
zobrazovani v hernim enginu s vyuzitim
vytvarné predlohy

Contents

1 Introduction 1

2 Motivation 3
2.1 Photorealistic and

non-photorealistic rendering
2.2 Photorealism and

non-photorealism in video games. . .

2.2.1 Cel-Shading 6

2.2.2 Discussion on non-realistic
graphics variability in video games

2.3 Overview of non-realistic video
game graphics in history

2.3.1 Games utilizing own style . ..

2.3.2 Games imitating established art
style ..o

2.3.3 Games imitating realistic craft

234 Goals........ 28|
3 Related works 31
3.1 Specific art style imitation

3.2 Stylization based on contained
patterns 133

3.3 Example-based stylization

3.3.0 StyLit . oo

3.3.2 Expressive Animation of 2D

Rigid Bodies
3.3.3 ToonSynth
3.3.4 Facial animation 38
3.3.5 Stylizing video
4 StyleBlit 41|
4.1 Overview ...,
4.2 Algorithm
4.3 Implementation
4.4 Unity ... i
4.5 Results and evaluation 50l

4.5.1 Performance............... 511

4.5.2 Comparison with vanilla
VErSiON . ..o 5%}

4.5.3 Practical evaluation 56!

4.5.4 Limitations and future work .

ctuthesis t1606152353

5 Conclusion

A Bibliography

B Project Specification

ctuthesis t1606152353

vi

Figures
2.1 The Adventures of Tintin 3

2.2 Spider-Man: Into the Spider-Verse

2.3 Uncharted 4 Bl
2.4 Jet Set Radio (
2.5 Cel-Shading 0|
2.6 The Simpsons Game
2.7 Pokémon Sword and Shield 8
2.8 Borderlands 3 9
2.9 Prince of Persia
2.10 Super Mario Galaxy 2........
2.11 Team Fortress 2 12
2.12 Half Lambert illumination
2.13 Journey
214L0OVe 14
215Inside
2.16 Volumetric lighting

vii

217 Killer IsDead

2.18 The Witness
2.19 Lara Croft GO 18]
2.20 Life Is Strange
2.21 The Walking Dead
2.22 Okami
2.23 Ink wash painting............

2.24 Assassin’s Creed Chronicles:

2.25 Dreams . . . voveeee 22

2.26 Valkyria Chronicles Remastered

2.27 Ni no Kuni II: Revenant

Kingdom
228 XIIT oo
2.29 11-11: Memories Retold

2.30 Kirby and the Rainbow Curse .

2.31 Yoshi’s Woolly World
2.32 Paper Mario: Color Splash

2.33 League of Legends supplementary
visuals ... 29

ctuthesis t1606152353

2.34 Rebelle painting

3.1 Watercolor painting imitation ..

3.2 Calligraphy imitation

3.3 Chinese paintings imitation

3.5 Animated sequence imitation . . .

3.6 ToonSynth..................

3.7 Facial animation stylization

3.8 Video sequence stylization

4.1 StyleBlit overview

4.2 StyleBlit method

4.3 Seed hierarchy...............

4.4 Guidance in Unity

4.5 Chunk distribution...........

4.6 Initial result

4.7 Unity multipass degradation . ..

4.8 First plugin exemplars........

ctuthesis t1606152353

viii

4.9 Performance test sample

4.10 Plugin vs. vanilla comparison .

4.10 Plugin vs. vanilla comparison .

4.10 Plugin vs. vanilla comparison .

4.11 Watercolor scene exemplar

4.12 FIT game exemplar

4.13 Initial multi-material exemplar

4.14 Watercolor exemplar

4.15 Pencil drawing

4.16 Flat surface limitation........

=

&

&

[&

&

&

Tables

4.1 Performance test on CPU Intel
Core 15-6300HQ 2.30 GHz with GPU
Intel HD Graphics 530.

4.2 Performance test on CPU Intel
Core i5-6300HQ 2.30 GHz with GPU
2GB GeForce GTX 950M.

4.3 Performance test on CPU Intel
Core 15-7600K 3.80 GHz with GPU
6GB GeForce GTX 1060. 52

ix ctuthesis t1606152353

ctuthesis t1606152353

Chapter 1

Introduction

Non-photorealistic graphics gains higher prominence in a video game industry
each passing year. Despite this, the overall variability of stylized video games
is limited, both technically and conceptually. The goal of this work is to
provide a solution for an arbitrary stylization of a game scene in the Unity
game engine environment, usable for virtually any video game project. This
work provides an introduction into non-photorealistic stylization in video
games and list a comprehensive catalog of stylized video game projects. This
overview aids in stating the issues of stylized video games and goals for
future video games, formulating the motivation of this work. This leads to
the development of the practical solution, which implements the StyleBlit
algorithm able to provide arbitrary example-based stylization that is fit for a
limited computational budget. The implementation is tested and evaluated
for its deployment in video game development.

1 ctuthesis t1606152353

ctuthesis t1606152353

Chapter 2

Motivation

B 2.1 Photorealistic and non-photorealistic
rendering

Figure 2.1: Tintin feature movie used motion capture and photorealistic render-
ing to blend comics characters into a realistic world. Source: The Adventures of
Tintin, 2011

3D computer graphics may represent scenes in two established divisions:
Either the output image is ideally indistinguishable from captures of real-life
scenes, or the representation is stylized, possibly as an existing art form.
Despite being valid in computer graphics sphere only, this branching is easily

3 ctuthesis t1606152353

2. Motivation

recognizable and generated imagery may be categorized in this manner at
first glance.

Figure 2.2: Spider-Man: Into the Spider-Verse movie used non-photorealistic
rendering and found its style in comics drawings. Source: Spider-Man: Into the
Spider-Verse, 2018

Obviously, non-photorealistic imagery is a very broad term, however further
categorization is not an easy task and one without solid foundations, perhaps
for the fact, the 3D non-photorealistic imagery has relatively short tradition, or
simply because the aim of photorealistic imagery is so specific itself, remaining
myriads of graphical styles defy other unions than being its mere opposites,
making it hard to find footing for divisions. This becomes apparent in further
sections, where many non-realistic styles are discussed. Non-realistic designs
reach from imitating traditional art styles like painterly, to introducing their
own styles without any label. As is to be seen in various instances of non-
photorealistic styles in video games, the term non-photorealistic rendering is
problematic, since various solutions achieve the non-realistic image by other
means than rendering techniques, be it models, textures or filters. For the
sake of avoiding confusion with techniques used in listed cases, the following
chapter will refer to using terms non-realistic graphics or design, instead of
established non-photorealistic rendering.

ctuthesis t1606152353 4

2.2. Photorealism and non-photorealism in video games

Figure 2.3: Uncharted 4 is a primal example of photorealistic rendering in video
games, while being arguably one of the best looking games of its generation.
Source: Uncharted 4, 2016

B 2.2 Photorealism and non-photorealism in video
games

One of the primary applications of computer graphics involves the video game
industry and the division of generated imagery stays very much the same: The
graphical design of 3D video games generally takes either of two directions:
It strives for photorealism or imagines very much different stylization. As
computer graphics, as a field of study, and technical potential evolves, this
division comes somewhat late. That is no surprise, for the first years of
video games set in a 3D environment the technical possibilities of graphical
interpretation were so limited, the stylization was majorly based upon object
modeling, hence pinpointing the turning point for non-realistic graphics in
video games is dubious.

Similar to the race for photorealism, non-realistic graphics is limited by
the technical status quo as well. For that matter, this imagery in video
games became quickly a problem of cel-shading. Introduction of cel-shading
technique to video games came with the game Jet Set Radio (see fig. in

2000 [Luq12].

Since then, it has been used to imitate a wide range of authentic visual
styles. For one, it was used as a comic visual style, e.g. XIII, similarly
a cartoon animation like in The Simpsons Game (figure [2.6) or even ink

5 ctuthesis t1606152353

2. Motivation

Figure 2.4: Jet Set Radio videogame, released in 2000, is a primal example of
cel-shading technique. Source [Luql2]

painting sumi-e in Okami videogame.

B 2.2.1 Cel-Shading

Figure 2.5: A teapot model rendered photorealistically (left) and using cartoon-
looking method (right), which later became known as cel-shading. Source

[Decad]

This technique’s goal is to visualize a model in a way that is common
in cartoons and other visual media that effectively reduce the complexity
of any given object they capture. The technique simplifies the illumination
model, leaving input object with flat colors, discarding color gradients and
instead presenting layers of singular colors, while any contour or distinctive

ctuthesis t1606152353 6

2.2. Photorealism and non-photorealism in video games

color transition is enhanced with a thick line. Naturally, this technique
is prone to different approaches to its implementation and enhancement.
One representative is a video game series Borderlands (figure [2.8), which
makes use of cel-shading while supporting it with some level of a peculiar
textural and model stylization. Other games, for example, Assassin’s Creed
Chronicles series, blends this technique with a variety of other different
rendering techniques and particle effects, creating its own design with carved-
like characterization.

Figure 2.6: The Simpsons Game utilized the cel-shading technique to cope with
original drawings being partly invariant to different perspectives (e.g. hair of
the characters). Source: The Simpsons Game, 2007

Although there are many different approaches towards cel-shaded style,
the core design remains still the same and being one of the most common
non-realistic graphics technique in video games, effectively limiting the overall
variety of stylization in video games.

B 2.2.2 Discussion on non-realistic graphics variability in video
games

Even though the technological limits are ever-pushed back, there seem to be
limits of imagination in regard to non-realistic game graphics. As per any
graphical concept, there is an immense difference of realization possibilities in
terms of deployment: Using video game terminology, comparing pre-rendered
graphics and graphics rendered in real-time, the feasibility constraints reach
entirely different levels. Put in plain perspective, for each technique used in
the computer graphics field, the game developer figuratively asks a question,
whether this technique’s process might do in 60 frames per second, therefore
video game graphics often uses different rendering mechanics, frequently

7 ctuthesis t1606152353

2. Motivation

relying on heuristics and solutions only imitating the exact or expected results.
One example is reflection visuals, using methods such as cube mapping or
screen space reflections to create an unfaithful, yet feasible reflection without
providing an exact one.

Figure 2.7: Pokémon Sword and Shield installments’ may be perceived as an
evolution to the cel-shading style, adding finesse to the formula. Source Pokémon
Sword and Shield, 2019

It is not without interest that big budget video games, or AAA games, as
they are called, usually race for ideal photorealistic rendering. In reality, the
number of top-budget games released each year offers just a small fraction of
games using non-realistic graphics. This is apparent from data of top budget

games [Hod19).

One primal example of AAA game to utilize stylized graphics might be the
beforementioned Borderlands series (figure . The biggest games delivering
in this objective, non-realistic design, often come from Japanese company
Nintendo, which houses brands like Mario and Pokémon. Those series offer
some other examples for the given topic, naming Super Mario Galaxy, that is
portrayed in generic 3D cartoon style, or Pokémon, both Sword and Shield
editions (see figure . This Pokémon installment delves into cel-shading
technique once more, but reformulates the idea: It does flatten the color
surfaces of the model, only this time the areas mix a limited palette of colors,
further enhancing areas with various gradient intensity. This approach often
yields great results as it shows human-like touch to the style; the system is
simple enough to imitate cartoon animation and at the same time complex
enough to mask the 3D nature of the models.

These are some examples to prove the video game industry evidently shows

ctuthesis t1606152353 8

2.2. Photorealism and non-photorealism in video games

Figure 2.8: Fair share of Borderlands series’ fame comes from its non-realistic
art style. Source Borderlands 3, 2019

endeavors to capture various visual styles and yet there is a lack of titles
that proved in their respective fields. As a customer, a player, one would
expect common traditional art styles, for instance, watercolor painting, to
break into the design of many video games, nevertheless to find a video game
that successfully captures this art style is next to impossible. As discussed,
the obvious drag is technological advancement. Additionally, it was already
pointed out that big budget titles usually pursuit photorealism, which, in a
collision with technological progress in certain fields, might prove fatal. To
simplify the matter, it can hardly be expected for non-realistic graphics in
video games to advance in any measure close to realistic rendering, because
there is neither enough resources nor demand for this kind of visual design.
Non-realistic graphics is commonly reserved for indie games or at least side
projects of major companies. To further elevate the speculation, even if
non-realistic graphics becomes a topic for a big budget project backed by
great working force, it is still no guarantee of any progress. Looking back
at the reboot of Prince of Persia from 2008 (figure 2.9), the game itself
came from hugely successful series, traditional name and one of the biggest
companies in the video game industry. Yet the art style still benefits from
the same old cel-shading style with somewhat realistic textures. As video
games grow large budget-wise, the less experimenting they usually take. This
is understandable, as they aim at the largest cut of a potential audience,
including so-called casual gamers. This phenomenon is well known in the
gameplay of such games, the same as their story or narrative. The notion
behind this may very well be to supply a player with just enough novelty as
he might possibly take, which, for the broad audience isn’t much. Nowadays
it seems genuinely unlikely to see a major title with watercolor-imitating
graphics, as any such attempt would compromise the accessibility of the title

9 ctuthesis t1606152353

2. Motivation

Figure 2.9: Prince of Persia represents one of the big budget games featuring
non-realistic style: Another spin off the cel-shading style. Source Prince of
Persia, 2008

for the masses. From the perspective of a developer or publisher respectively,
it makes sense to “play it safe” with a release of something familiar, which
may ironically be another cel-shaded title. This attitude effectively limits the
mass audience’s familiarity with new attempts in non-realistic design, thus
completing the catch-22.

Another explanation for the lack of stylized video game titles is the tech-
nological and artistic duality of such. Analogically to other industries, the
central figures engaged in the game development may be uneducated or simply
unaware of possibilities in certain related fields comprising the game develop-
ment as a whole. Head designer may lack technological background altogether,
while still being in charge of decisions in the game development art-wise.
Naturally, the problem deepens with the scale of any such project. To back
this matter with an example, the game segments that delve into experimental
parts, say during hallucinations or dreams of the protagonist, seem all very
similar throughout many games of certain era, be it Far Cry, Arkham series,
Metro or Mass Effect: Whenever those games visually break the graphical
style in those segments, they seem to remix colors, imitate malfunctioning
TV screen, realign geometry, or use plain filters as if that was something the
art designer can approach from his perspective. The flickering, color shift,
jittering, it is all there, even though from the perspective of graphics engineer,
this seems as thinking inside a box. All in all, this vacuum in the variety of
stylization might very well be a symptom that is in its general sense common
across different industries and simply comes from the unfamiliarity with given
field despite being a figure responsible for it.

ctuthesis t1606152353 10

2.3. Overview of non-realistic video game graphics in history

Figure 2.10: Super Mario Galaxy 2 follows the graphical stylization of dated
kids-friendly platform video games, its style being more of a generic one. Source
Super Mario Galaxy 2, 2010

B 2.3 Overview of non-realistic video game graphics
in history

This section provides an extensive overview of many video games in relation
to their unique graphical style. As repeatedly mentioned, the prominent
technique remains to be cel-shading from [Dec96]. Generic approach to cel-
shading is to render object’s outlines and edges as uniform ink lines while
flattening surfaces where shades are presented as layered uniform color areas.
Even though the steps are subjects to change, the overall image is instantly
recognizable, therefore the following overview lists mostly those video games
to strive for unique image or art style imitation.

The overview is divided into two sections: Firstly, the games built around
their particular style, which is unlike any existing visual style or technique
from real life. Secondly, there are video games to try and capture a visual
style that has some level of tradition in real life. Those two categories may
seem to overlap, which is usually caused by selected techniques, that are very
much similar to each other.

11 ctuthesis t1606152353

2. Motivation

B 2.3.1 Games utilizing own style

B Team Fortress 2

Figure 2.11: Team Fortress 2 pioneered the comic style reminding of plastique
figures. Source Team Fortress 2, 2007

Team Fortress 2 uses a visual style to remind of the early to mid-20th-
century commercial illustrators J. C. Leyendecker, Dean Cornwell, and Nor-
man Rockwell. The resulting characters may be described as plastic figures
of sorts. This is achieved by combining a number of techniques [MFEQ7].
Thanks to the openness in regards to the development of the game, it is
possible to study used techniques in detail.

Notable technical inspiration for the developed style is the Gooch shading as
described in [GGSCO8]. The idea behind this technique is to render surfaces
in a shift from “warm® to “cool” hue. Intuitively, the warm color tints the
surface facing the light source and vice versa for the cool color. The result
is traditionally outlined in black ink as for cel-shading. This technique was
originally developed for technical illustration, though eventually found its
way into a number of video games.

Valve, developer of Team Fortress 2, is also renowned for popularizing Half
Lambert illumination (see fig. , which is worth mentioning in relation to
other games in the list.

ctuthesis t1606152353 12

2.3. Overview of non-realistic video game graphics in history

(a) : Lambert diffuse (b) : Half-Lambert

Figure 2.12: Visualisation of Lambert and Half-Lambert (used in Team Fortress
2) diffuse illumination. Source: sfdm.scad.edu

kq |a(R) + Z cw((a(@-T;) + B)7) (2.1)

where L is the number of lights, 7 is the light index, ¢; is the color of light ¢, kg
is the albedo of the object sampled from a texture map, 7 - 1; is a traditional
unclamped Lambertian term with respect to light i, the scalar constants «,
and 7 are a scale, bias and exponent applied to the Lambertian term, a() is
a function which evaluates a directional ambient term as a function of the
per-pixel normal 7 and w() is a warping function which maps a scalar in the
range of 0..1 to an RGB color.

Equation is view-independent lighting term used in Team Fortress 2.
Lambert reflectance is used as a model for diffuse reflection. Constants of
scale, bias and exponentiation applied to the Lambertian term cause the
lighting to fade with gentle graduality on the object model, preserving the
shape on the rear surface as apparent on figure

B Journey

Uniquity of Journey roots from the utter simplicity of the game world, where
environment and game objects are often depicted as mere silhouettes. Shadows
cast inside the game world often cover huge areas without complicating the
density of the scene. Yet the graphic design doesn’t seem underwhelming, as
it makes great use of soft shading, ease color gradients and lighting, all in
combination with widespread particle effects. The absence of some traditional

13 ctuthesis t1606152353

2. Motivation

Figure 2.13: Journey displays minimalistic, yet very original art direction.
Source: Journey, 2012

artwork model used in the design of Journey accents the achievement of the
game’ style: The still images might seem handcrafted without easy saying of
what makes the style tick.

B Love

Figure 2.14: Despite not being an aim of the stylization, Love’s art design comes
close to watercolor painting style. Source: Love, 2010

Small game Love’s art design uses a rather simple approach as each frame
is first drawn into an off-screen buffer and, subsequently, the frame undergoes
effect filtering and color correction [Ste]. Resulting image materializes fuzzy

ctuthesis t1606152353 14

2.3. Overview of non-realistic video game graphics in history

or wobbly contours and shifting color tones. The outcome reminds of non-
complex imitation of watercolor painting while maintaining enough of the
original style.

B Inside

Figure 2.15: Inside shares graphical similarities with Team Fortress 2, although
the mood and settings are entirely different. Source: Inside, 2016

Inside focuses on subtle visuals with emphasis on silhouettes, thus its
environment draws a comparison to Journey mentioned earlier. There are
many techniques the game utilizes [GDC16], from extensive use of bloom
effect, smooth color grading to volumetric lighting. The game heavily relies
on fog effects, which allow the light to create distinguishable volumetric
shapes, including eclipsing the light source locally to diminish the illumination
intensity in any such area (see figure 2.16). The shading varies for different
sorts of objects and situations. Scenes make us of Bounce Lighting, which
is similar to the lighting model of Team Fortress 2, Half Lambert, discussed
earlier, and as may be observed, the similarity makes for the games being
very close in terms of the overall style. The Bounce Light reduces the steep
fall off of object illumination, thus a point light source of this manner recalls
more of an area light. The plastique style of the whole image is contributed
by a number of ambient occlusion decals, as they differ for various object
nature. For instance, boxes handle ambient occlusion in a particular way,
accenting the box’s sides. Although subtle, there is a number of levels in
the game that lean on reflections, usually accommodated by screen space

15 ctuthesis t1606152353

2. Motivation

reflections. Their usage is somewhat special in the matter of possibilities and
simplification as Inside is a 2.5 game, which makes for those solutions, that
may be naturally different than those of 3D games.

Figure 2.16: Inside relies heavily on volumetric lighting and fog effects. Source:
segoinsulation.com

B Killer Is Dead

Figure 2.17: Killer Is Dead is obviously a Japanese game. Source: Killer Is
Dead, 2013

Killer Is Dead’s graphical design may be perceived as an evolution to
the cel-shading style. It is far more sophisticated, outlines take on different
contrast colors and the style doesn’t suppress any reflections, on the contrary,
it enhances them in the overall image in a form of specular highlights. Flat
colored surfaces are uniform once again, however, they are far more layered

ctuthesis t1606152353 16

2.3. Overview of non-realistic video game graphics in history

and delicate. All in all, it is safe to say this take on the toon style is very
much unrivaled.

B The Witness

Figure 2.18: A 'stylized realism" of The Witness. Source: the-witness.net

The Witness makes for an argument in an issue stated earlier: The rendering
does not necessarily shape the stylization of the game. To be precise, The
Witness’ art design is, in developer words “stylized realism” [And14], without
resorting to unorthodox technicalities on the rendering side. For one, the
stylization of the game world comes from deliberately reducing the complexity
of environment and game objects and adding rough cuts to the geometry. In
certain cases, the result basically comes close to any respective object model
from a dated 3D video game. This design choice coincides with the rendering
technique, that plays on the fact that the game itself is very static. Excluding
grass and foliage, there are relatively very few movable objects in general.
This fact comes along with the choice of attempted global illumination [Blo10]:
The system in place makes use of precomputed lightmaps to illuminate the
environment, creating mellow and subtle visuals that feel very tender in the
gameplay experience. Curiously enough, to tackle the problem of changing
illuminance, e.g. during the door opening, the lightmaps are layered with
supplementary ones that are used to approximate the result.

17 ctuthesis t1606152353

2. Motivation

Figure 2.19: Low-poly art style of Lara Croft GO is lightweight for mobile
devices. Source: Lara Croft GO, 2015

B GO series

The GO series of video games by Square Enix, namely Hitman GO, Lara
Croft Go, and Deus Ex GO was initially developed for mobile devices in
mind, therefore the graphics of those titles is simple by nature. Each title has
its distinct style, with Hitman having the look imitating board games with
plastic figures, Lara Croft having low-polygon look with flat surface colors
and Deus Ex being somewhere in the middle of the road, emphasizing more
on effects such as reflections, bloom, and particles. Arguably most intriguing
is the graphics style of Lara Croft title that reminds of The Witness game,
with its design boiled down to the essence. Lara Croft GO has its way in
balancing rough and soft edges or geometry details in contrast to flat surfaces,
making the complete title very lightweight both in style and performance

[Mon).

B Life Is Strange

Life is Strange tackled the non-realistic design with one idea in mind: To make
the game look like a concept artwork [Capl6]. Object shapes are modeled
realistically, the lighting is plain, but what makes the game stand out is the
texture design. Each texture was manually painted, effectively rendering the
unique style.

ctuthesis t1606152353 18

2.3. Overview of non-realistic video game graphics in history

Figure 2.20: Life Is Strange’s art design tries to capture the essence of concept
artwork, where each texture is hand-drawn (observe the jeans in detail). Source:
Life Is Strange, 2015

B The Walking Dead

Figure 2.21: The Walking Dead video game imitates the comics original by
relying mostly on texture stylization. Source: The Walking Dead, 2012

The Walking Dead game series seems like another case of cel-shading,
similar to Borderlands, as the static images of both games seem very close
in terms of stylization. Oddly enough, The Walking Dead shares more
similarities with Life is Strange graphics. The Walking Dead is based on a

19 ctuthesis t1606152353

2. Motivation

comic book series, hence the stylization. Omitting later installments of the
series, the original design was mostly built on plain textures drawn in a form
of their comic roots. It is nevertheless a curious case of playing on the players’
anticipation since at the end of the day the game’s art seems very familiar,
yet off from what those players are accustomed to.

B 2.3.2 Games imitating established art style

B Okami

N =

rE

A\ "’,? !‘ \

Figure 2.22: Okami draws visual inspiration in Japanese ink wash painting,
though the result is "crowded" in comparison with original art style works. Source:
Okami, 2006

Okami goes the distance to exhibit oriental ink wash painting known as
sumi-e as an interactive visual style. The very idea is bold, as sumi-e art
actively follows strictly minimal representation: Objects represented in sumi-e
art are merely shortcuts capturing the essence of the real world objects with
as little ink as possible [Maml12]. For this reason any attempts to bring
the style to animated work have been very sparse and often distant from
the original paintings. Okami delivers on this premise using the well-known
cel-shading technique to create packed virtual world. The result is clearly
reminiscent of the original sumi-e style, though lack of depth in technical
section to appropriate the style drags the result to an artistically more general
one.

ctuthesis t1606152353 20

2.3. Overview of non-realistic video game graphics in history

Figure 2.23: Old ink wash painting. This traditional art style served as a model
for both Okami and Assassin’s Creed Chronicles: China video games. The final
products differ immensely. Source: Katsushika Hokusai, c. 1848

B Assassin’s Creed Chronicles

Assassin’s Creed Chronicles series adapts various designs through its install-
ments. Despite being hard to classify as adapting one general art style, China
installment, in particular, draws strong inspiration from sumi-e style and
oriental painting across the board. It makes up for a good comparison with
Okami as both games follow the same visual idea. Unlike Okami though,
Assassin’s Creed uses bits and pieces of the style to visualize only certain
parts of the environment and props; foliage and textile are usually fabricated
in this manner, creating partly transparent objects as spilled ink spots. The
game doesn’t force the matter, producing a visual style that does not make
compromises for getting “as close” to some visual style.

21 ctuthesis t1606152353

2. Motivation

HEAVY ATTAK Y
ATTACK X

B
P A

Figure 2.24: Similarly to Okami, Assassin’s Creed Chronicles: China built its
visual to resemble oriental ink wash paintings, though just enough to create own
identity. Source: Assassin’s Creed Chronicles: China, 2015

Figure 2.25: The visual style imitation of Dreams is not unified, however the
art styles are often traditional. Source: Dreams, 2019

B Dreams

Much like the previous series, the Dreams game implements techniques as a
rendition of traditional visual styles, though without particular denomination,
mostly reminding of aquarelle paintings. The environment and objects within
are heterogeneous in terms of graphical presentations; the game characters
often adapting image of plastic figures or stuffed dolls.

ctuthesis t1606152353 22

2.3. Overview of non-realistic video game graphics in history

B Valkyria Chronicles

Figure 2.26: Valkyria Chronicles series aims to combine watercolor paintings
with pencil drawings. Source: Valkyria Chronicles Remastered, 2016

Valkyria Chronicles is a series that found its image in several art techniques;
notably watercolor painting, which marks indistinct outlines and color bleeding
without affecting the clarity of the design. Additionally, pencil drawing
technique and likeness is applied. This is most prominent in backgrounds or
shadows, that are crosshatched, smoothly blending with the watercolor basis.

Bl Ni No Kuni

Ni No Kuni series imitates Japanese anime art style [RicI8], rendering its
position favorable, for this particular style of animation builds upon simple
imagery. The game itself uses cel-shading style and, visually speaking, achieves
its goal. Still images from the game are unrecognizable from anime stills. This
combination speaks in the game odds since cel-shading style is nowadays often
used in anime cinematography. The style usage in the game is not punctual
however, and the environment and animation do not carry the anime illusion
to the motion.

23 ctuthesis t1606152353

2. Motivation

LS

Figure 2.27: Ni No Kuni series imitates Japanese anime, which is convenient
for its art simplicity. The game makes due with simpler cel-shading method.
Source: Ni no Kuni II: Revenant Kingdom, 2018

Figure 2.28: XIII was released in 2003 and was part of a first wave of cel-shaded
video games. The style was the main reason for its prominence. Source: XIII,
2003

B X

XIIT finds itself in a similar position as Ni No Kuni, where the source material
for the game comes from a comic book series. Thus the game imitates the
art style of comic books, where the simplistic nature of cel-shaded graphics
works well, applied to realistic models with rough shading. The game even

ctuthesis t1606152353 24

2.3. Overview of non-realistic video game graphics in history

features classical comic book onomatopoeic effects, that visually spell the
sound effects occurring in place.

B 11-11: Memories Retold

Figure 2.29: Technically, 11-11: Memories Retold is possibly the most successful
representative of watercolor style-imitating video game. Source: 11-11: Memories
Retold, 2018

11-11: Memories Retold is an ambitious project co-developed with Aardman
Studios, best known for stop motion clay animated movies Wallace and Gromit
or Shaun the Sheep. The game pursuits impressionistic visual style [Amilg].
The design is not complicated and the images are homogenous: Without
too much detail, the image is rendered with even brush strokes, controlled
primarily by the stroke width and direction alongside possible adjustments
to the coherence and life-cycle of the strokes. The result is a modernistic

looking game imitating works of artists such as Turner and Monet.

B 2.3.3 Games imitating realistic craft

Listing games imitating art style, games presented above endeavor imitating
either drawn or painted style, while other games were omitted. This comes
from the nature of rendering mechanics, since games imitating, say sculpting
techniques imitate plain real-life objects. To put it another way, those games
are expected to provide a realistic rendering of those objects, thus marking
them as using non-realistic graphics techniques is technically incorrect. Of

25 ctuthesis t1606152353

2. Motivation

course, they still apply for the list of games imitating art styles, so to complete
the list in a meaningful sense, few examples of games done in particular crafting
manner are presented. All of the games listed below come from Nintendo
company, thanks to its devotion to artistically experiment with virtually any
of its titles.

B Kirby and the Rainbow Curse

Figure 2.30: Kirby and the Rainbow Curse produced a full-fledged clay environ-
ment. Source: Kirby and the Rainbow Curse, 2015

Kirby and the Rainbow Curse was done in claymation art style [Vogl5],
imitating the look of polymer clay. Using such style is not particularly unique;
what makes it original, however, is the fact the style is purely imitated,
whereas claymation has its place in games usually backed with real life stop
motion clay animation, for instance in titles Armikrog or The Neverhood. To
come as close to the original art style as possible, Kirby game uses methods
such as lowering the framerate to leave the game with signature stop motion
feel.

B Yoshi’s Woolly World

Yoshi’s Woolly World features characters taking shapes of yarn knitted dolls.
Environment and game objects are also either woolen knits or props made
of fabric, leather, plastic or various other materials usually used in home
do-it-yourself craftship.

ctuthesis t1606152353 26

2.3. Overview of non-realistic video game graphics in history

Figure 2.31: Yoshi’s Woolly World crafts most of its world from yarn. This
design is almost unique. Source: Yoshi’s Woolly World, 2015

B Paper Mario: Color Splash

Paper Mario: Color Splash is one of the entries in the long-running Paper
Mario series. The series presents characters as paper cutouts, where the
Color Splash title came technically furthest, which allowed for almost every
environment and game object to be virtually crafted out of paper with high
fidelity [Farl6]. This attitude is similar to Yoshi’s Woolly World, whereas the
material is different obviously. The game imitates various types of paper, alters
its weight and wear, and builds the scene realistically, which results in details
like cut out clouds hanging from threads or background folds and seams being
visible. This game, in particular, is a great argument in a discussion about
categorizing games imitating realistic art crafts, as considered above. Color
Splash involves random real-life objects such as lemons or fire extinguishers,
or even complete common life environments e.g. a kitchen, rendered without
any stylization, photorealistically. The paper world doesn’t shatter the overall
image, hence the technicality of stylization comes from the craft chosen, not
the non-realistic rendering.

27 ctuthesis t1606152353

2. Motivation

G»50/s0

Figure 2.32: Paper Mario: Color Splash crafts every object from virtual paper,
including sheets of paper as backgrounds. Source: Paper Mario: Color Splash,
2016

B 234 Goals

The vision for non-realistic graphics in games is everpresent, regardless of
the quality of this direction in each respective game. Taking an example
of League of Legends, the game is already stylized in toon graphics, while
the design of supplementary graphical media is even more innovative. It
benefits from suppressed interactivity of such media, for instance, the login
screens are paintings brought to motion by layering parts of illustrations [Bro|,
which in turn allows for the image to gain a slight possibility of movement
in certain points, affecting attached areas. To name another addition to the
games media, a short movie called ANNIE: Origins was introduced to further
develop the lore of the game [R(G18]. The movie was put together from an
initial state of 3D scenes stylized in painterly design. Afterward, each frame
gained further work and details manually, getting closer to the idea of the
movie being hand painted completely. The result may mark a milestone
for certain games, where those games virtually deny the 3D object nature,
leaving only the 2D impression, without the need of manual revision.

Ideally, games like The Banner Saga, which is played in isometric view
with characters hand drawn, should be indistinguishable in terms of art and
animation from games rendered using non-realistic graphics techniques. At
the same time, it is necessary to avoid a “rotoscoping syndrome”, meaning
the animation carries over the structural quality of three dimensions, which is
usually undesirable, as it gives away the frames are merely redrawn from the
3D foundations, as observable in films made with the rotoscoping technique.

ctuthesis t1606152353 28

2.3. Overview of non-realistic video game graphics in history

(b) : Short film Annie, prepared in 3D and finalized manually.

Figure 2.33: Supplementary visuals for League of Legends video game.

It is worth noting that software solutions for artist is, as per usual, ahead
of consumer products. Naming one, the Rebelle software by Escape Motions
is a showcase of drawing and painting capabilities, should one resort to
the computer as a drawing and painting tool [Blal6]. Rebelle is very much
physical simulation of artistic tools and paints reacting with paper foundations,
imitating techniques as paint splatters, blending or drying with textures, to
list just a few. It is safe to proclaim works made with this software are in
instances truly indistinguishable to artworks made with real-life tools, thus
crossing the threshold the video game industry is still waiting for.

29 ctuthesis t1606152353

2. Motivation

Figure 2.34: A painting produced with Rebelle software. Source: Philipp
Neundorf, 2018

ctuthesis t1606152353 30

Chapter 3

Related works

It is apparent from the presented overview of video games there are many
various approaches toward the non-photorealistic rendering. The primal
difference of those comes from the art style demand - how versatile the
method could be: It is arguably less complicated to imitate some particular
art style, rather than to create a unified solution for arbitrary stylization, due
to the possibility to concentrate effort on singular issues of the style.

B 31 Specific art style imitation

Montesdeoca et al. presented multiple works [MSR16, MSRB17, MSB*17|
on imitating the watercolor painting style. They propose a system [MSR16]
which divides the inclusive method into a routine of simulating singular effects
occurring during the watercolor painting, using a number of shaders in its
rendering pipeline to apply individual effects.

Those effects are divided into categories with regard to the input data:
Image-space simulations and Object-space simulations. Object-space simula-
tions process the scene on a scale of objects, each object being susceptible to
some local stylization, whereas Image-space simulations shape the stylization
of an image as a whole, which is necessary for simulating effects like bleeding,
that occur in conjunction of multiple objects. Both categories of simulations
complement each other and are not to be separated.

31 ctuthesis t1606152353

3. Related works

Figure 3.1: A particular art style imitation: Watercolor paintings. An output
of Montesdeoca et al. methods. Source [MSB*17]

Starting with Object-space simulations on a vertex shader, the transfor-
mation of vertices from object space to the projection space is deformed by
“Wet-in-Wet” and “Hand Tremor” deformations: The former allows simulat-
ing an effect of bleeding, thus spreading the pigment put on already wet areas
outside of the placement areas, by translating vertices outside the original
geometry; the latter allows for creating jitter edges caused by involuntary
tremor from the nervous system, which is achieved by slightly offsetting
the vertices of objects, once they are transformed to the projection space.
Other methods deal with a dilution of the pigment, that makes up for the
characteristic translucency found in the artwork; cangiante, which describes
a change in color hue on areas of shifting brightness; or pigment turbulence,
an uneven distribution of the pigment on given areas accommodated by a
noise of low frequency.

Moving to the Image-space simulations, the system uses additional textures,
the paper textures, and its normal map, and a low-pass filtered color image,
altogether paving the way for additional effects: The color bleeding effect is
applied to ensure the pigment diffuses on a paper foundation. This step is
followed by edge darkening, which simulates pigment accumulation on the
edges of colored areas caused by surface tension, implemented with Difference
of Gaussians algorithm for feature enhancements. The final step considers the
physical structural quality of paper foundations, causing effects of distortion
and granulation that further affect the scatter of pigment.

Without additional setting, the result of these steps comes very artificially,
without human imperfections and entropy bound to the art. Thus, an addi-
tional layer - a control image is introduced, further affecting local alterations
of the outcome. The control concept is handled by simple imagery, with each

ctuthesis t1606152353 32

3.2. Stylization based on contained patterns

one of RGBA channels disjointed into affecting different simulation effects:
Red channel controls paper distortion, green controls paper granulation, blue
controls edge darkening and color bleeding, and alpha controls pigment tur-
bulence and pigment fading. This concept finally ensures the imperfections
that make the result feel human-conceived. Of course, the downside is this is
partially true, as the control image conception is supposedly exercised by the
artist using the system.

In a similar manner, the subject is further developed adding more singular
simulations, e.g. [MSB™17] elaborates on perfecting the artwork edges and
advanced occurrences in pigment reactions.

The issue with this manner of stylization, where singular simulations are
applied, is the bond to each particular simulation the result is dependent
upon, whilst it is dubious to state the steps needed to enhance the result. A
method that addresses the granulation of simulations, may be based upon
using predefined patterns or generalized “brush” strokes to synthesize the
result.

B 32 Stylization based on contained patterns

Following in the vein for listed video game art styles, there are many algorithms
that focus on imitating oriental paintings and art style, using a predefined
set of patterns and brush strokes, couple of those is listed below to provide
an insight into this type of imitation methods.

IMTDO04] proposed a system, which synthesizes the brush strokes used
in Chinese calligraphy and painting. This work may be perceived as an
evolutionary step that led to the development of techniques like [WLS02].

The trees synthesized with the stated algorithm are processed on a texture
level, where every generated tree silhouette is subjected to determining various
aspects: Orientation of the texture, its distribution, dependency on view,
and ways of preserving the painting-view. The algorithm generates various
reference maps, analyzing the geometry and shading, consequently generating
the tree textures and mapping them within the imagery. Despite being able
to adjust the technique for different types of tree, varying both in shape and

33 ctuthesis t1606152353

3. Related works

Figure 3.2: A horse painting created with simulated calligraphy brushes. Source
MTDO04

Figure 3.3: A result of 3D trees processed with method for imitating Chinese

paintings. Source [WLS02]

the brush strokes nature, the system is so specifical it epitomizes the general
issue with systems build upon synthesizing contained art techniques: The

ctuthesis t1606152353 34

3.3. Example-based stylization

output is limited by the spectrum of defined patterns, or brush strokes in
this case, leading to very low versatility of the system.

That shifts the topic that leads to imitation type used in this work.

B 33 Example-based stylization

Taking prepared artworks, it is possible to create a system, which is not
dependent on any particular art technique, and at the same time being able
to imitate idiosyncrasies of the given style. Such techniques establish the
stylization on a provided example artwork.

B 3.3.1 Stylit

StyLit algorithm introduced in [FJLT16| yields great results in synthesizing
imagery based on provided examples. The algorithm itself is based on
illumination guidance and the input is a triplet - user provides a model
artwork, which serves as an imitation basis; the same model is rendered
as Light Path Expression (LPE), a technique used to separate different
illumination effects into isolated components, e.g. direct diffuse render, direct
specular render, etc; the final input comes from a target object render,
rendered as the very same LPE. This means both source input images are
aligned, featuring the same scene in a sense of geometry and placement.

The algorithm runs several iterations, each of those carries over patches of
the source style artwork and applies them into the target to be synthesized.
The process is guided by the aforementioned images of LPE, where the best-
matching patch for each respective region is chosen accordingly to the local
similarities of the source model and target images.

It is intended for the patch usage to be uniform, where an often occurring
issue emerges: Distribution and size of regions of similar illumination on
both the source model and the target are likely different. Thus, to meet
the uniformity constraint, the algorithm would enforce patches that are
inappropriate for some areas of the target. This is resolved by calculating the
error “budget”, that results in constraining the feasible solution. Running

35 ctuthesis t1606152353

3. Related works

Figure 3.4: An arbitrary art style imitation achieved by the StyLit algorithm.
Left: Source style and model. Right: Result image. Source

the algorithm in several instances, as mentioned, initially creates a coarse
result, which is further fine-tuned to the optimal result.

The method provides great outputs for arbitrary stylization, imitating
every part of the source style imagery, objects, shadows, and backgrounds.
While unsuitable for real-time application, the system is a starting point for
many other following algorithms.

B 3.3.2 Expressive Animation of 2D Rigid Bodies

ﬂm introduced a system using example-based stylization for animating
2D rigid bodies. The system is capable of replicating motion style, transferring
it to given new animation defined by a series of “rigid” frames. The stylization
impacts the visual style the same as the characteristics of motion, protruding
in deformities of the object.

Figure 3.5: An imitation of a visual and motion style in an animated sequence.
Left: Target sequence. Right: Resulting stylization. Source

ctuthesis t1606152353 36

3.3. Example-based stylization

The algorithm draws inspiration from classical 2D animation, which is
usually crafted using keyframing: A set of frames defining the points of
parametric change in a film, e.g. timing, where the frames in-between
keyframes represent a routine change for a smooth transition. The input
of the algorithm consists of a set of animation frames as a reference of the
source rigid animation, a set of corresponding stylized animation frames, and
a set of frames as a target for stylized animation. The algorithm trickles-
down the hierarchy of frames scaled for each level: key events level, pose
to pose level, and frame to frame level as a final animation level. Through
decomposing the source samples into geometric deformations, the system
synthesizes parametric deformations, enforcing them to the target, while the
visual appearance imitation is handled by StyLit algorithm from [FJLT16].

B 3.3.3 ToonSynth

Similar subject to the previous work may be found in [DLGKS18|. The task
formulated there is to transfer 2D animation, both it’s visual and motion
style, given existing stylized sequence and respective skeletal animation, to
a new animation sequence defined by a new skeletal animation. Again, the
algorithm combines StyLit algorithm for visual style transfer, with
a method to capture and replicate the motion characteristics.

Figure 3.6: Two animation sequences produced by the ToonSynth algorithm,
using the skeletal target sequence from the top row. Source [DLGKSIS]

Animation subject provided as an input is required to offer its decomposition
into layers, literal dismemberment of self. The method creates a style-aware
puppet, consisting of the stylized layers - the body parts, connected at junction
points. This allows for carrying out a procedure to register the deformation

37 ctuthesis t1606152353

3. Related works

of puppet parts. Obtaining a target frame puppet, the method searches for
the closest-similarity sub-sequence of the source skeletal animation, where
intersecting result sub-sequences are blended together for synthesising the
output animation.

B 3.3.4 Facial animation

Another use of the technique StyLit comes from a method for an
example-based stylization of facial animations proposed in [FJST17]. The
method is able to synthesize stylized facial animation, provided the real-life
footage of such, as well as style artwork image as an input. The complexity of
such stylization is substantial since it requires translation of each source facial
feature onto the corresponding target region, therefore the method analyzes
and creates the facial structure guidance.

Figure 3.7: Art styles (top row) transfer to the target image of a face (bottom

left). Source [FJST17]

The guidance uses several channels to transfer the source patches (substi-
tuting the original StyLit guidance): Segmentation guide is generated as an
image representing the subdivision of facial regions, e.g. eyes, mouth, hair,
nose. Connecting to the Positional guide, this channel is a deformation field,
propagating the source and target facial structure shift, effectively resulting in
the source patches being transferred to similar relative positions in the target
image. Appearance guide is a grayscale channel, that is used to maintain
the facial identity, capturing the shading gradients of the target. As human
perception is sensitive to the subtlest local differences in the course of facial
recognition, the subjects identity perception may be easily severed. Thus, this
guidance channel analyses the global intensity levels and local contrast values
in the source image to recreate the same ambiance for the target. Finally, the
Temporal guide deals with the balance of temporal coherence coming along

ctuthesis t1606152353 38

3.3. Example-based stylization

with the animation: While perfecting the coherence would seem wrong, as
the hand-drawn animation lacks high-frequency coherence, to preserve the
dynamics the coherence needs to be preserved at low frequency. The guidance
channel uses blurred images of source style and previously rendered stylized
frame, resulting in temporal flickering, which may be further controlled by
the blurring kernel.

The system even takes into account issues connected to the facial animation
that is opening and closing mouth and eyes, which need to be acknowledged
and dealt with to avoid disturbing effects. Provided the guides, the system is
able to recreate stylized facial animation generally indifferent to the art style
provided.

B 3.3.5 Stylizing video

Similarly to the previous work, [JvSTT19] introduced a stylization method
for a video sequence, albeit unlike the previous one, it is possible to stylize
arbitrary video sequence, should user provide stylized keyframes. In this case,
the keyframe is a stylized video frame, prepared by an artist, which serves
as a foundation for the stylization of additional frames. Input keyframes are
not limited by quantity, on the contrary, the video sequence structure is not
constrained and scene elements involved are variable, hence it may prove
necessary to provide further stylized keyframes.

Figure 3.8: An original video sequence containing frames (b), (d) and (f) stylized
using keyframe (a). Frames (c) and (e) are the products of the stylization. Source

As another method using the technique of StyLit [FILT16], this algorithm
requires generating a set of guides to transfer the style patches. Those are
semantically similar to the ones followed in [EJS*17]. Besides the input frames,
they involve Mask guide, Positional guide, Edge guide, and Temporal guide.
The Mask guide is not obligatory, as it encourages the stylization to respect
the object boundaries and occlusions, although if the accuracy is not tight
for the purpose of stylization, it may be omitted. The channel represents the

39 ctuthesis t1606152353

3. Related works

boundaries of the objects. Positional guide is used to maintain the structural
quality of the scene, controlling the style transfer to appropriate regions.
This channel uses coordinate mapping, where corresponding coordinates of
keyframe propagate to their respective positions in the sequence frames,
utilizing the motion field. Edge guide is generated using edge detection and
is applied for the style to avoid losing sharpness around the edges. Temporal
guide uses previous synthesized frames to maintain the coherence, where the
currently synthesized frame is enforced to follow similar transfer procedure
path as the previous ones, keeping the animation fluent.

As discussed, the method may be provided with a number of keyframes,
thus creating an issue of potentially corrupting stylization cohesiveness. The
method proposes a nontrivial solution of blending multiple synthesized frames
of the same, each stylized accordingly to different keyframes.

This brings the focus to StyleBlit algorithm, an example-based technique,
sharing similarities with previous works; the rest of this paper is devoted to
this algorithm.

ctuthesis t1606152353 40

Chapter 4

StyleBlit

. 4.1 Overview

To translate any arbitrary art technique to video game environment is beyond
feasibility potential of methods presented up to this point. Following chapter
presents a method that is capable of providing stylized imagery required for
video game environment at framerate required by the medium, and detailing
the implementation of this method in Unity game engine.

StyleBlit, as proposed in ﬂm, shares similarities with StyLit algorithm
from , as desribed earlier, using guidance channels to appropriately
transfer patches of original textures. As it turns out, using fine guidance and
relying on the source style texture to be stochastic - absent of regularities,
which usually comes along with hand-drawn samples, the textural coherence
becomes less of a problem, since local guides implicitly encourage coherent
placement, while stochastic nature of texture helps to mask the seams between
patches.

This finding initiated the development of a solution, which relieves StyLit’s
endeavor for textural coherence, and, consequently, is able to provide real-time
results.

41 ctuthesis t1606152353

4. StyleBlit

(a) : Top: (b) : Target guide. (c) : Resulting stylized
Source guide. image.

Btm: Style

texture.

Figure 4.1: An overview of inputs required for stylization and a resulting output.

B 22 Algorithm

The method is designed to transfer chunks of the source style texture to the
corresponding region on a target image. For better understanding of the
algorithm, it is important to realize the pixels comprising each chunk is a 1:1
region of the source texture. That means the generic version of the algorithm
processes an “anchor” point, with surrounding region pixels being relative to
this point. Coordinating pixel placement is achieved by using local guidance
system, i.e. normal maps, texture coordinates, etc. Whatever guide is used,
the algorithm uses values of both source and target guides to spatially align
the chunks:

The placement location is determined by either a processed pixel obtained
in scan-line order or using a random seed in the target image. By calculating
distance values between the source and target guides in local spatially-aligned
regions around the processed point, it is determined whether the target region
pixels belong in the same chunk by comparing said distance values with a
given threshold distance value. If so, each corresponding source pixel is copied
to the target image, eventually covering it whole after repeating the search
and copying step.

ctuthesis t1606152353 42

4.2. Algorithm

Figure 4.2: Visualization of the method: For each random seed (b) a correspond-
ing position in a source exemplar is located according to the guidance (normal)
value (a). For each corresponding target and source pixel pair in a spatially
aligned region around the seed, their guidance values are compared. If the
guidance value difference is below the threshold, the pixel is set in the same
chunk (c¢). The chunk is transferred to the target (d), where repeating the process
fills the whole target mosaic (e). Source: [SIT*19)

Algorithm 1: Brute force StyleBlit
Inputs: source style exemplar C'g, source guides Gg,

target guides Gr, threshold t.
Output: target stylized image Cr.

Function styleblit(Cg, Gg, G, t):

foreach each pizel p € Cpr do

if Crlp| is empty then

u* = argminy||Gr[p] — Gs(u]]

foreach each pizel ¢ € Cg do

if Crlp+ (¢ — u*)] is empty then
e = [|Grlp+ (¢ —u")] — Gsldll|
if e <t then

| Crlp+ (¢ u)] = Csld]

return Cp

The brute force version of the algorithm from Algorithm [1I| demonstrates
the straightforward and expressive approach, though it is understandably
inadequate in terms of performance, making up for an easy interpretation.
The parallel version (using seed grids) is elaborated on in details in the
following section concerning implementation.

43 ctuthesis t1606152353

4. StyleBlit

To accelerate the step of retrieving the source texture pixel corresponding to
the guidance value, it is vital to use either some look-up table, suitable should
the guidance be simple, or search trees, should the guidance be advanced.

An additional (voting) step is applicable for smoothing out seams or
suppressing scant noise by using linear blending.

B a3 Implementation

The implementation utilizes Parallel StyleBlit algorithm version presented in
Algorithm [2l This version of the algorithm realizes suggested seed hierarchy:
A grid of implicit seeds is defined - their distance decreased by a factor of 2
on each level, while their position is randomly displaced. Stretching from the
algorithm, this effectively means each chunk is subjected to appropriate seed;
for any processed pixel, the seed search is performed, which either satisfies
the distance constraint, in which case the source pixel is transferred, or the
search resumes on a lower level, making for maximizing the chunk sizes.

Figure 4.3: The seed hierarchy represented by blue and black points. For a
target pixel p (in red), the algorithm descends the seed grid levels (visualized
by dot size), where the space between seeds decreases with each lower level. In
this case the pixel p first finds the closest top level seed ¢3. If the guidance value
between the two is higher than the threshold, then the search continues on gzand
possibly ¢1, until an appropriate fit is found. Source: |[SJTT19]

The Unity implementation consists of a main shader of three passes written
in HLSL and a supplementary C# script.

The implementation uses normal maps as guides for style transfer, hence it
is required to obtain a normal map for each object. This is an objective of
the first pass of the shader. Normal values are retained invariant to camera

ctuthesis t1606152353 44

4.3. Implementation

position, thus their spectrum remains the same, aligned to view space. The
normal map is rendered for another pass in a form of texture.

The second pass is an essential implementation of the Algorithm [2l To
picture the process, the seed hierarchy in relation to the rendered normal
map is virtually a sampler of map’s normal values comprised of different
region sizes and shapes, funding the chunks the algorithm resolves to. Each
target pixel undergoes the search for nearest seed, where the guidance error
is calculated to determine whether the target pixel is fit to belong to the
seed-defined region, hence whether the corresponding source pixel is fit to be
copied into target place. The implementation utilizes suggested look-up table
for translating normal values to corresponding coordinates of the source style
image, thus the final step might very well involve simple translation of said
coordinate between the source style texture, albeit to smoothen the result,
suppress the seams and stranded noise pixels, an another pass is applied to
realize the aforementioned voting step:

Coordinate values are not straight up translated; they are carried over to
the final pass as a texture. This pass is fashioned to average the neighboring
pixel values before the final translation and copying of the corresponding
pixel.

The supplementary script has a couple of functions: Firstly, it implements a
method, which renders the look-up table, mapping coordinates of style texture
pixels into red and green color channels of the texture. Those coordinates are
positioned accordingly to red and green channel values of the source guidance
texture. This process allows simple retrieval of source texture pixel for an
arbitrary normal value that is encountered, simply by using the normal values
as texture coordinates, where returned values are used as UV coordinates to
retrieve the source texture pixel.

Additionally, the script renders random noise texture, which is utilized
in the seed search. The use of jitter values affects the “shape” of the seed
region, meaning the perpetual jitter changes the spatial characteristics of the
chunks comprising the final image. This results in adjustable loss of temporal
coherence, important for the imagery to look like hand-drawn.

The script further augments the temporal coherence, limiting the framerate
and noise texture rendering to approach the ideal of drawn animation.

45 ctuthesis t1606152353

4. StyleBlit

Algorithm 2: Parallel StyleBlit

Inputs: target pixel p, source style exemplar Cg, source guides Gg,
target guides G, threshold ¢, number of levels L.
Output: stylized target pixel color Cr[p].

Function SeedPoint (pizel p, seed spacing h):
b=}
j = RandomJitterTable[b]
return |h(b+ j)]

Function NearestSeed (pizel p, seed spacing h):
d=1inf
for x € {-1,0,+1} do
for y € {—1,0,+1} do
s = SeedPoint(p + h(x,y), h)
d = |[s —pl|
if d < d* then
st =s

d*=d

return s*

Function ParallelStyleBlit (pizel p):
foreach level | € L{n,...,1} do

q = NearestSeed(p, 2')

u* = argmin,||Grlq] — Gslul||

e = [|Gr[p] — Gs[u* + (p — a)]l|

if e < t then
Crlpl = Cslu* + (p — q1)]
break
return

ctuthesis t1606152353 46

4.4. Unity

B 2.4 unity

With an additional layer of a software environment in the form of a game
engine, a middleware, in reality, the development is limited to the extent of the
graphical possibilities of the engine. Therefore, as may be expected, the im-
plementation utilizes some specific solutions for the game engine environment
of Unity.

Figure 4.4: The first pass output: A Unity-generated normal target guide.

First and foremost, the issue which projected into many parts of the
implementation process was the very effectivity and potential of a Unity
multi-pass shader, which is crucial for the implementation. In an initial
version of the plugin, much effort was put into creating a workaround for
the multipass implementation. The reason is twofold: The multi-pass, as
executed by Unity, raises quality problems with very limited control over
its state. The pass output texture rendered for the following pass suffers a
quality loss that is almost unnoticeable, however, provided with coordinate
values bound into the color channels of the texture, the coordinate values
must preserve its quality. If this texture’s pixels are translated into the source
style imagery, the image exhibits strong quality loss, rendering the result
worthless. The second reason comes from the technical infectivity of the
multipass execution, where the pass texture captures much of the screen
view, merely complicating any process localizing pixel neighborhood, such as
the second pass of the implementation. Eventually, the performance of the
multi-pass might become a concern.

47 ctuthesis t1606152353

4. StyleBlit

Figure 4.5: An early iteration of a sample chunk distribution.

Unity offers a method to render objects into texture, which enables one
to obtain textures usable for their respective shaders by adjusting a camera
and a special texture. This process is suggestable as a substitute for some
multi-pass shaders since it offers much higher control of the process and the
quality. After running many tests with this technique, adjusting the pipeline
accordingly, it turned out the adjustments and settings of the scene tools and
cameras are overly complicated, amplified by the fact that the whole StyleBlit
plugin for Unity is required to be as compact as possible, allowing for easy
installation and usage. This effort was simply unfeasible and it panned out
any adjustments to solve the stated issues of the multi-pass solution are
preferable over the rising issues of rendering to texture.

Another notion to bear in mind during the implementation was the method’s
indifference towards the stylized imagery scale, or, put from the opposite
perspective, the source style texture patches maintaining their scale. For
the Unity environment, this means calculating screen space positions and
gathering additional texture parameters.

Furthermore, the implementation made ready for video games revealed
several challenges in the gameplay rank. One of the typical problems in first-
person-viewed games surges with camera angle being too wide. This causes
stretching of the objects on screen edges, which, in combination with the
stylization method, creates repetitive maps on the objects, as the stretching
leads to the guidance channel to exhibit little to no shift, technically acting
similar to a flat surface. This was addressed in the implementation by
adjusting the camera angle accordingly, although should the gameplay require
it, the problem may ask for specific treatment. Similar challenge attached to
the gameplay is directed towards the framerate capping. It was already stated

ctuthesis t1606152353 48

4.4. Unity

(a) : A visual representation of the (b) : An early coarse result of pixel
second pass output: A texture of retrieval from the texture coordinates,
coordinates for retrieving the source without the voting step.

texture pixel.

Figure 4.6: A visualized result of the second pass, before and after the source
pixel retrieval.

the implementation caps the framerate so that imagery resembles hand-drawn
animation. Clearly, there is a discord between the framerate scored and
required by actual gameplay, and the framerate common for hand-drawn
animation; the former usually scoring at least 30 frames per second (fps),
the latter at least 12 fps. As became evident from the tests ran through the
implementation phase, the cap settings must reflect the level of control over
the camera. A free camera-control game, such as a shooter, may drop the 30
fps requirement very tightly, whereas camera-static game might prove viable
in as low as 12 fps. However, the implementation exploits the dichotomy
of actual animation and the stylization process: Providing the animation
frames at, say 24 fps (the implementation caps fps at that rate as well), it is
sufficient to render the noise texture on every other frame, i.e. the stylization
property changes at 12 fps. This process retains the dynamic clarity of a scene
while imitating hand-drawn quality. Naturally, it is not necessary to render
noise texture for each object individually, in fact, this may cause performance
issues.

49 ctuthesis t1606152353

4. StyleBlit

Figure 4.7: An early iteration of a resulting image from the third, voting pass.
Notice the quality degradation caused by the multipass.

. 4.5 Results and evaluation

The final plugin was evaluated with respect to various aspects: Performance,
practical usage, aesthetics, and compared to the vanilla version of StyleBlit,
produced as a showcase for the original project.

e

Figure 4.8: First stylized animated exemplars produced by the plugin. Tiger
model source: Zealous Interactive, iguana model source: Junnichi Suko

ctuthesis t1606152353 50

4.5. Results and evaluation

B 4.5.1 Performance

For the purpose of performance testing, the key was to create a benchmark
project, which simulates a video game environment, and at the same time
provides a technical challenge. Thus, the testing employed a Unity multi-
material animated asset by 3DMaesen and was conducted on three computing
configurations. The scene consisted of approximately 12000 triangles. Fps
capping was obviously disabled. The scene pictures a fighting knight, as seen

of figure

Figure 4.9: A performance test scene capture. Model source: 3DMaesen

The tests were run with different quality levels set by Unity itself (version
2019.1.1). The major trait confirms it is possible to create a full game
scene using the StyleBlit stylization, thus creating a full-fledged video game
using this method. What may come as a surprise is the trend following
the quality scaling: The framerate increase step does not evenly follow the
quality settings level regression. Oddly enough, the framerate periodically
decreases with a lower quality level. This phenomenon reflects the fact that
this graphical stylization lacks advanced graphical effects, let alone lighting
issue in general. The primal quality settings impact then resides within
texture quality, filtering, and anti-aliasing method and quality.

51 ctuthesis t1606152353

4. StyleBlit

In conclusion, the results data demonstrate it is possible to play a video

game utilizing StyleBlit on a gaming computer with as high as 60 fps and
more.

Res./Fps Ultra Very high High Medium Low Very low

1366 x 768 29 30 37 42 42 43
1920 x 1080 19 20 24 28 29 29

Table 4.1: Performance test on CPU Intel Core 15-6300HQ 2.30 GHz with GPU
Intel HD Graphics 530.

Res./Fps Ultra Very high High Medium Low Very low

1366 x 768 146 125 148 147 138 147

1920 x 1080 96 93 132 133 136 136

Table 4.2: Performance test on CPU Intel Core 15-6300HQ 2.30 GHz with GPU
2GB GeForce GTX 950M.

Res./Fps Ultra Very high High Medium Low Very low
1920 x 1080 379 378 460 521 563 550
2550 x 1440 259 260 318 382 386 386

Table 4.3: Performance test on CPU Intel Core i5-7600K 3.80 GHz with GPU
6GB GeForce GTX 1060.

ctuthesis t1606152353 52

4.5. Results and evaluation

B 45.2 Comparison with vanilla version

The vanilla version of StyleBlit program visualizes a stylized image of golem
figure, therefore the same model was used in Unity testing, along with the same
selection of style textures. This makes a direct comparison available, see figure
As evident from the images, both versions are visually corresponding,
the prime difference being the smooth edge-to-background transition. This
shortcoming on the Unity plugin side appears in edge transition between
non-stylized objects and environment, however overlapping stylized objects
exhibit smooth transition.

' iii\

Figure 4.10a: StyleBlit plugin comparison with vanilla version. Left: Unity,
Right: Vanilla

53 ctuthesis t1606152353

4. StyleBlit

Figure 4.10b: StyleBlit plugin comparison with vanilla version. Left: Unity,
Right: Vanilla

ctuthesis t1606152353 54

4.5. Results and evaluation

Figure 4.10c: StyleBlit plugin comparison with vanilla version. Left: Unity,
Right: Vanilla

55 ctuthesis t1606152353

4. StyleBlit

B 4.5.3 Practical evaluation

Figure 4.11: A watercolor stylization of a complex model with matching art
environment. Model source: Unity Technologies Japan

The plugin was evaluated in game development: A point-and-click adven-
ture game viewed from an isometric point of view. This is fitting settings for
a stylization - the amount of scene objects is relatively low and the camera is
mostly fixed, though this creates a stylization challenge for the environment.
Rather than creating a specific solution, for instance, the one seen as on
figure where the environment is established by style-similar images, the
development team decided to go with the fully material-stylized environment,
utilizing StyleBlit on each environmental object. This might feel confusing or
distracting during the user experience, for stylized objects flicker, creating an
illusion of hand-drawn animation in process, hence a constant flickering of the
whole scene might become tiresome for the player. Noted by the development
team was a suggestion the StyleBlit may be very well used on objects with flat
surfaces, should it be provided with appropriate style texture. This suggestion
stems from the realization that even though StyleBlit’s usage on monotonous
surfaces is tricky, the stylization process ensures uniform coverage of the
object with the style texture patterns. The small video game was successfully
produced, figure shows a sample scene from the game.

ctuthesis t1606152353 56

4.5. Results and evaluation

Figure 4.12: A screenshot of a simple video game developed using StyleBlit
plugin. Source: FIT CTU

The plugin was studied on various animated objects as well as on sequences
featuring a moving camera, both with preset trajectory and free-control of
the camera. The results were well aesthetically evaluated and may be seen
on attached figures.

One of the great advances of the plugin is its ability to seamlessly combine
various materials, or source styles in this context, applied to one individual
object. This was first studied on a simpler model of few materials (see figure
with a basic set of source textures.

The multi-material objects provide developers with innumerable possibilities
to capture either traditional or their own art style which is unified in any way.
Practical experiments were conducted on two scenes, as seen on figures
4.14 and [4.15] These experiments show it is possible to create watercolor and
pencil-drawn imagery using the plugin, with employable results required for
video game development. On the other hand, those experiments revealed
some limitations of technical and aesthetical character.

57 ctuthesis t1606152353

4. StyleBlit

Figure 4.13: Multi-material testing on a single model. Model source: $DMaesen

ctuthesis t1606152353 58

4.5. Results and evaluation

Figure 4.14: A watercolor imitation on a simple scene. Model source: Reallusion,
Vertex Studio

59 ctuthesis t1606152353

4. StyleBlit

Figure 4.15: A pencil-drawn image imitation on a simple scene. Scene source:
astro3d

ctuthesis t1606152353 60

4.5. Results and evaluation

B 4.5.4 Limitations and future work

As was mentioned numerous times, the inherent issue of the StyleBlit method
concerns monotonous surfaces, i.e. surfaces with constant guidance values
or little shift of those values: On any such surface, the source style texture
is applied in a form of small equal patch(es), repeated over and over along
the surface, creating pattern maps. Thus, use of StyleBlit on a surface such
as the one on a figure 4.16 exhibits this phenomenon on each of the object’s
sides. Naturally, this behavior occurs in a detailed close-up view of virtually
any object.

Figure 4.16: The body of a barrel exhibits unappealing repeated patterns
because of the constitution of flat surfaces. Model source: Wand And Circles

It is also advisable to subject the model creation/selection to the art style
of the project. Generally, well-rounded objects lacking hard edges are more
fit to be stylized, as they are more likely to minimize the number of flat and
monotonous surfaces, and at the same time complement most of the styles by
nature. For instance, figures and both involve watercolor stylization,
however, the man in an armchair seems more fitting for the style, blending
different colors and variations, whereas the Japanese character seems too
complex for the applied style. This was later confirmed with the pencil-drawn
stylization (see figure , where the non-complex character of the fruit
props is just fitting for the style exhibiting suppression of art complexity.

Of course, any limitation of the original StyleBlit algorithm is generally
inherited by the Unity implementation, which includes non-enforcement of
chunk coherency - textures featuring regular patterns are disjointed. This
further demonstrates the notion the StyleBlit achieves the best result with
stochastic textures. Other limitations include effectiveness decline if guidance

61 ctuthesis t1606152353

4. StyleBlit

is strongly misaligned - e.g. if rotated upside down, in which case the method
reduces the size of transferred texture chunks.

There are a few technical limitations of the plugin itself. One of them is the
demand for limiting the angle of the camera or producing a workaround, as
further explained in Unity setting and pitfalls section. Also, the practical use
of the plugin is prone to corruption by inadequate settings by the developer,
and the overall quality of the result is highly dependent on the settings of the
video game. This reflects the fact that the method uses auxiliary textures,
that need to be as precise as possible, e.g. the source guidance texture, which
is used to produce the LUT. Violation of the highest quality input demand
may cause fuzzy or blurred results, although, from the standpoint of Unity
plugin creation, there is only so much that can be done to ensure the highest
quality settings. Respecting the quality demands, especially the source style
texture, is up to a developer.

ctuthesis t1606152353 62

Chapter 5

Conclusion

A plugin for Unity game engine, which implemented the StyleBlit algorithm,
was successfully created. The plugin, provided with a texture of arbitrary
style, is capable of producing complete stylized scenes. The plugin was tested
during game development, collecting development inputs that were used to
enhance the plugin. Performance test ran on a sample scene show it is possible
to deploy the plugin in video game project development. A comparison with a
vanilla version of StyleBlit implementation was evaluated with positive results.
The plugin is capable of producing stylized scenes with objects consisting of
multiple materials, combining different style textures.

63 ctuthesis t1606152353

ctuthesis t1606152353

64

Appendix A

Bibliography

[Amil8]

[And14]

[Bla16]

[Blo10]

[Bro]

[Capl6]

[DBB+17]

[Dec96]

[DLGKS18]

Amid Amidi. Aardman’s new video game 11-11: Memories retold
shows a different side of the studio. Cartoon Brew, Sep 2018.

Eric A. Anderson. On the rocks... http://the-witness.net/
mnews/2013/09/on-the-rocks| Sep 2014.

Peter Blaskovic. Rebelle: Real watercolor and acrylic painting
software. In ACM SIGGRAPH 2016 Appy Hour, SIGGRAPH
"16, pages 3:1-3:2, New York, NY, USA, 2016. ACM.

Jonathan Blow. Graphics tech: Precomputed
lighting. http://the-witness.net/news/2010/03/
lgraphics-tech-precomputed-lighting, Mar 2010.

Nikki Brown. Making the ultimate lux login — league of
legends. https://nexus.leagueoflegends.com/en-us/2016/
[12/making-the-ultimate-lux-loginl

Edouard Caplain. The artist behind life is strange. 80 level, Mar
2016.

Marek Dvoroznédk, Pierre Bénard, Pascal Barla, Oliver Wang,
and Daniel Sykora. Example-based expressive animation of 2d
rigid bodies. ACM Transactions on Graphics, 36, 07 2017.

Philippe Decaudin. Cartoon-looking rendering of 3d-scenes.
Syntim Project Inria, 6, 1996.

Marek Dvoroznak, Wilmot Li, Vladimir G. Kim, and Daniel
Sykora. Toonsynth: Example-based synthesis of hand-colored

65 ctuthesis t1606152353

http://the-witness.net/news/2013/09/on-the-rocks
http://the-witness.net/news/2013/09/on-the-rocks
http://the-witness.net/news/2010/03/graphics-tech-precomputed-lighting
http://the-witness.net/news/2010/03/graphics-tech-precomputed-lighting
https://nexus.leagueoflegends.com/en-us/2016/12/making-the-ultimate-lux-login
https://nexus.leagueoflegends.com/en-us/2016/12/making-the-ultimate-lux-login

A. Bibliography

[Farl6]

[FIL*16]

[FIS+17]

[GDC16]

[GGSC98)

[Hod19]

[JvST*19]

[Luql12]

[Mam12]

[MFEO7]

[Mon]

[MRO5)

[MSBT17]

cartoon animations. ACM Transactions on Graphics, 37:1-11,
07 2018.

Brian Fargo. Paper mario: Color splash dev on paint inspiration,
approach to combat, says team put in its full effort. Nintendo
Everything, Dec 2016.

Jakub Fiser, Ondiej Jamriska, Michal Lukac¢, Eli Shecht-
man, Paul Asente, Jingwan Lu, and Daniel Sykora. Stylit:
illumination-guided example-based stylization of 3d renderings.
ACM Transactions on Graphics, 35:1-11, 07 2016.

Jakub Fiser, Ondrej Jamriska, David Simons, Eli Shechtman,
Jingwan Lu, Paul Asente, Michal Lukac¢, and Daniel Sykora.
Example-based synthesis of stylized facial animations. ACM
Transactions on Graphics, 36:1-11, 07 2017.

GDC. Low complexity, high fidelity: The rendering of inside.
https://www.youtube.com/watch?v=RdANO6EGXn9E, Dec 2016.

Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A
non-photorealistic lighting model for automatic technical illus-
tration. In SIGGRAPH, volume 98, pages 447-452, 1998.

Christopher Hodges. The 30 most expensive video games ever
made. TheGamer, Mar 2019.

Ondfej Jamriska, Sarka Sochorova, Ondiej Texler, Michal Luka¢,
Jakub Fiser, Jingwan Lu, Eli Shechtman, and Daniel Sykora.
Stylizing video by example. ACM Transactions on Graphics,
38(4), 2019.

Raul Reyes Luque. The cel shading technique. Technical report,
Citeseer, 2012.

Jordan Mammo. The aesthetic failure of okami. Unwinnable,
Jun 2012.

Jason L Mitchell, Moby Francke, and Dhabih Eng. Illustrative
rendering in team fortress 2. In ACM SIGGRAPH 2007 courses,
pages 19-32. ACM, 2007.

Square Enix Montreal. Making lara croft go. Unity Connect.

Maic Masuch and Niklas Réber. Game graphics beyond realism:
Then, now, and tomorrow. 01 2005.

Santiago E Montesdeoca, Hock Soon Seah, Pierre Bénard, Ro-
main Vergne, Joélle Thollot, Hans-Martin Rall, and Davide
Benvenuti. Edge-and substrate-based effects for watercolor styl-
ization. In Proceedings of the Symposium on Non-Photorealistic
Animation and Rendering, page 2. ACM, 2017.

ctuthesis t1606152353 66

https://www.youtube.com/watch?v=RdN06E6Xn9E

[MSR16]

[MSRB17]

[MTDOA]

[RG18]

[Ric18]

[SIT+19]

SS02]

[Ste]

[Vogl15]

[WLS02]

A. Bibliography

Santiago E Montesdeoca, Hock Soon Seah, and H-M Rall. Art-
directed watercolor rendered animation. In Proceedings of the
Joint Symposium on Computational Aesthetics and Sketch Based
Interfaces and Modeling and Non-Photorealistic Animation and
Rendering, pages 51-58. Furographics Association, 2016.

Santiago E Montesdeoca, Hock Soon Seah, H-M Rall, and Davide
Benvenuti. Art-directed watercolor stylization of 3d animations
in real-time. Computers & Graphics, 65:60-72, 2017.

Xiao-Feng Mi, Min Tang, and Jin-Xiang Dong. Droplet: a
virtual brush model to simulate chinese calligraphy and painting.
Journal of Computer Science and Technology, 19(3):393, 2004.

Inc. Riot Games. Annie: Origins | behind the scenes | league
of legends - youtube. https://www.youtube.com/watch?v=
v2n-1Cjwf6g, Feb 2018.

Madeline Ricchiuto. Go behind the scenes of ni no kuni ii:
Graphics, lighting, and roland. Bleeding Cool, Mar 2018.

Daniel Sykora, Ondrej Jamriska, Ondrej Texler, Jakub Fiser,
Michal Luké¢, Jingwan Lu, and Eli Shechtman. StyleBlit: Fast
example-based stylization with local guidance. Computer Graph-
ics Forum, 38(2):83-91, 2019.

Thomas Strothotte and Stefan Schlechtweg. Non-photorealistic
Computer Graphics: Modeling, Rendering, and Animation. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

Eskil Steenberg. Love - online procedural adventiure game.
http://www.quelsolaar.com/love/development.html|

Mitch Vogel. Kirby and the rainbow curse developers give
background on design decisions. Nintendo Life, Feb 2015.

Der-Lor Way, Yu-Ru Lin, and Zen-Chung Shih. The synthesis of
trees in chinese landscape painting using silhouette and texture
strokes. Journal of WSCG, 10:499-506, 01 2002.

67 ctuthesis t1606152353

https://www.youtube.com/watch?v=v2n-1Cjwf6g
https://www.youtube.com/watch?v=v2n-1Cjwf6g
http://www.quelsolaar.com/love/development.html

ctuthesis t1606152353

68

¢vut ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCEN| TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
4 =
Ptijmeni: Burysek Jméno: Jifi Osobni ¢islo: 398126

Fakulta/Gstav: Fakulta elektrotechnicka
Zadavajici katedra/Ustav: Katedra poéitaéové grafiky a interakce

Studijni program: Oteviena informatika

\ Studijni obor: Pocitatova grafika a interakce

.
Il. UDAJE K DIPLOMOVE PRACI
7 N

Nazev diplomové prace:

Nefotorealistické zobrazovani v hernim enginu s vyuzitim vytvarné pfedlohy

Nazev diplomové prace anglicky:

Example-based Non-photorealistic Rendering using Game Engine

Pokyny pro vypracovani:

Prostudujte algoritmy fesici problém pfenosu stylu z vytvarné pfediohy na sloZit&ji 3D modely [1, 2]. Implementujte
algoritmus StyleBlit [2] v hernim enginu Unity Gpravou jeho vykreslovaciho fet&zce prostfednictvim specializovanych
shader(i a multipass renderingu. Vyhodnotte vysledky implementace z hlediska kvality pfenosu vytvarného stylu a z
hlediska rychlosti zobrazovani. Vyhodnotte potencial implementace pro uplatnéni ve sloZit&j§im hernim prostiedi. Testovani
provedte na nejméné dvou interaktivnich scénach rlizné sloZitosti.

Seznam doporuéené literatury:

[1] Fiser et al.: StyLit: llumination-Guided Example-Based Stylization of 3D Renderings, ACM Transactions on Graphics
35(4):92, 2016.
[2] Sykora et al.: StyleBlit: Fast Example-Based Stylization with Local Guidance, submitted to SIGGRAPH 2018.

Jméno a pracovisté vedouci(ho) diplomové prace:

doc. Ing. Daniel Sykora, Ph.D., Katedra pocitacové grafiky a interakce

Jmeéno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 15.02.2018 Termin odevzdani diplomové prace: 24,05 1) 19
Platnost zadani diplomové prace: 30.09.2019
% s, R e % o L
“doc. Ing. Daniel Sykora, Ph.D. podpis vefA’O/éf(hO) Ustavurkatedry prof, lng Pavel Ripka, CSc.
podpis vedouci(ho) prace podpis dékana(ky) _J
A

Ill. PREVZETi ZADANI d

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomaoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych prament a jmen konzultantl je tieba uvést v diplomoveé praci.

; - Vo
20 72 L0718 Py’
Datum pfevzeti zadani “Podpis studenta
/

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

	Introduction
	Motivation
	Photorealistic and non-photorealistic rendering
	Photorealism and non-photorealism in video games
	Cel-Shading
	Discussion on non-realistic graphics variability in video games

	Overview of non-realistic video game graphics in history
	Games utilizing own style
	Games imitating established art style
	Games imitating realistic craft
	Goals

	Related works
	Specific art style imitation
	Stylization based on contained patterns
	Example-based stylization
	StyLit
	Expressive Animation of 2D Rigid Bodies
	ToonSynth
	Facial animation
	Stylizing video

	StyleBlit
	Overview
	Algorithm
	Implementation
	Unity
	Results and evaluation
	Performance
	Comparison with vanilla version
	Practical evaluation
	Limitations and future work

	Conclusion
	Bibliography
	Project Specification

