
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 8, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Finite tree automaton to tree regular expression conversion

 Student: Bc. Jakub Doupal

 Supervisor: Ing. Jan Trávníček

 Study Programme: Informatics

 Study Branch: System Programming

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2019/20

Instructions

Study the definition of finite tree automata and tree regular expressions.
Study the finite tree automaton to tree regular expression conversion using tree regular equations [1].
Design simplifying axioms on tree regular expressions.
Implement the finite tree automaton to tree regular expression conversion using tree regular equations.
Implement tree regular expression simplification by designed axioms.
Propose suitable tests and test your implementation.

References

[1] Younes Guellouma and Hadda Cherroun. From tree automata to rational tree expressions. International Journal of
Foundations of Computer Science, 29(06): 1045--1062, 2018.





Master’s thesis

Finite tree automaton to tree regular
expression conversion

Bc. Jakub Doupal

Department of Theoretical Computer Science
Supervisor: Ing. Jan Trávńıček, Ph.D.
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gestions and help with writing my thesis. I would also like to thank my family
and friends for their support while writing my thesis and throughout my entire
studies.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 7, 2019 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Jakub Doupal. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Doupal, Jakub. Finite tree automaton to tree regular expression conversion.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2019.



Abstract

This Master’s thesis studies regular tree expressions and a method for conver-
sion from a finite tree automaton to a regular tree expression using equations.
The studied method is then implemented in Algorithms Library Toolkit, which
is being developed at the Department of Theoretical Computer Science at Fac-
ulty of Information Technology, Czech Technical University in Prague. This
thesis also studies axioms for regular tree expressions and proposes new ones.
The proposed axioms are also implemented in the Algorithms Library Toolkit.

Keywords regular tree expressions, tree automata, regular tree equations,
automata library, algorithms library toolkit
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Abstrakt

Tato diplomová práce studuje regulárńı stromové výrazy a metodu převodu
ze stromového automatu na regulárńı stromový výraz pomoćı rovnic. Daná
metoda je poté implementována v knihovně algoritmů vyv́ıjené na Katedře
teoretické informatiky na Fakultě informačńıch technologíı na ČVUT v Praze.
Tato práce dále studuje axiomy pro regulárńı stromové výrazy a také navrhuje
nové. Tyto axiomy pak jsou také implementovány v knihovně algoritmů.

Kĺıčová slova regulárńı stromové výrazy, stromové automaty, regulárńı
stromové rovnice, automatová knihovna, knihovna algoritmů
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Introduction

In computer science, trees are a commonly and widely used structure. Ex-
amples of tree-structured values include markup languages such as XML or
HTML, or data structures such as trees or heaps. Sets of trees can be de-
scribed by regular tree expressions. A tree then may be matched onto such
expression.

Regular tree expressions (RTE) are mutually convertible with finite tree
automata (FTA). Study of such conversions is quite a new field, especially in
the direction from RTE to FTA. Example of a conversion from RTE to FTA
is presented in [1]. RTE may be also converted to pushdown automata. Such
methods are studied in [2] or [3]. A method for conversion of a FTA to a RTE
is presented in [4].

There exist analogies between RTEs and regular (string) expressions. In
fact, in most of the studied literature, this is also acknowledged and even
embraced, as the string regular expressions have been studied far more ex-
tensively and serve as a good starting point for many fields of research of
RTE.

As is case with every formalism, axioms for RTE also exist. The axioms
describe some properties which are non-disputable and always true. Their
common usages include resolutions of equations and modifications of RTEs,
for example for simplification of a long RTE.

The goal of this work comprises two parts: the first is to study RTEs
and the method presented in [4], and implement it in the Algorithm Library
Toolkit. The second part is to study RTE axioms and propose new ones. The
axioms are then to be implemented as well.

This work consists of eight chapters: first, some basic terms are introduced
in chapter 1. Then, in chapter 2, RTEs are studied. In chapter 3, the method
of conversion from FTA to RTE is studied and its viability for implementation
is discussed. This discussion is further extended in chapter 5, along with pro-
posed solutions. RTE axioms are studied and proposed in chapter 4. Chapter
6 then deals with the design of the implementation, while the technical details
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Introduction

of the implementation are discussed in chapter 7. Lastly, testing is described
in chapter 8.
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Chapter 1
Terminology

In this chapter, basic notions and definitions and examples thereof needed in
the scope of this work are provided.

Ranked symbol

Definition 1.1. A ranked symbol x is a pair (x′, n), where x′ is a symbol and
n ∈ N is the ranked symbol’s arity.

Note. The arity of a ranked symbol may also be called its rank.

Definition 1.2. Symbols with arity of 0 are called constants. [5]

Ranked alphabet

Definition 1.3. A ranked alphabet Σ is denoted by Σ = ∪n≥0Σn, where each
Σn denotes a set of ranked symbols of arity n. [4]

Note. A ranked alphabet may also be referred to as a graded alphabet.

Example 1.4. For Σ = {(x, 2), (y, 1), (z, 0), (a, 0)}, Σ2 = {(x, 2)}, Σ1 =
{(y, 1)}, and Σ0 = {(z, 0), (a, 0)}. The arity of symbols x, y, z, a is, respec-
tively, 2, 1, 0, 0.

Note. For simplicity, a ranked symbol x = (x′, n) may be referred to by its
symbol x′ in unambiguous cases.

Word, language

Definition 1.5. A word is a sequence of symbols from a ranked alphabet.

Definition 1.6. The set of all words over a ranked alphabet Σ is denoted Σ∗.
A language L is a subset of Σ∗.

3



1. Terminology

Regular expression

Definition 1.7. A regular expression E over ranked alphabed Σ is defined
inductively as:

– E = ∅,
– E = ε, an empty word, that is a word of length 0, without any symbols,
– E = f(E1, . . . , En),
– E = E1 + E2, an alternation of E1 and E2,
– E = E1 · E2, a concatenation of E1 and E2,
– E = E∗1 , an iteration of E1,

where f ∈ Σn and E1, . . . En are any n RTE over Σ.

Example 1.8. a∗+b(a+b(a))·a is a regular expression over a ranked alphabet
Σ = {(a, 0), (b, 1)}.

Note. Just like the multiplication operator in mathematics, the concatenation
operator may be also represented by no symbol. For instance, E1E2 is and
expression equivalent to E1 · E2, and denotes a concatenation of E1 and E2.

Definition 1.9. The language [E] denoted by a regular expression E over
ranked alphabet Σ is defined inductively by:

– [∅] = ∅,
– [ε] = ε, an empty word, that is a word of length 0, without any symbols,
– [f(E1, . . . , En)] = f([E1], . . . , [En]),
– [E1 + E2] = [E1] ∪ [E2],
– [E1 · E2] = [E1] · [E2],
– [E∗1 ] = ε ∪ [E1] ∪ [E1] · [E1] ∪ [E1] · [E1] · [E1] ∪ . . .,

where a concatenation [E1] · [E2] of languages follows: for each word from [E1]
and for each word [E2], a word is formed by appending the word from [E2] at
the end of the word from [E1].

Example 1.10. The concatenation of the words ab · cd is the word abcd.
The concatenation of languages L1 = {a, b} and L2 = {c, d} is a language
L1 · L2 = {ac, ad, bc, bd}.

Example 1.11. The iteration of the word ax, denoted (ax)∗ is a language
{ε, ax, axax, axaxax, . . .}.

Example 1.12. The language denoted by the regular expression 1.8 is
{b(a)a, b(b(a))a, ε, a, aa, aaa, aaaa, . . .}

4



Tree

Definition 1.13. A tree t over a ranked alphabet Σ is defined inductively as
t = f(t1, . . . , tn) with f ∈ Σn and t1, . . . , tn any n trees over Σ.

The set of all such trees is denoted by T (Σ). A tree language is a subset
of T (Σ). [4]

x

y x

y z

Figure 1.1: An example of a tree

Definition 1.14. In a tree t = f(t1, . . . , tn), the trees t1, . . . , tn are called
children of f and f is called a parent of trees t1, . . . , tn.

Let L1, . . . , Ln ⊆ T (Σ) and f ∈ Σn. Then f(L1, . . . Ln) = {f(t1, . . . tn) |
t1 ∈ L1, . . . , tn ∈ Ln}.

Finite tree automaton

Definition 1.15. A finite tree automaton (FTA) over a ranked alphabet Σ
is defined as a quadruple A = (Σ, Q,Qf ,∆), where Q is a finite set of states,
Qf ⊆ Q is the set of final states and ∆ = ∪n≥0Σn × Qn+1 is a finite set of
transitions.

Note. For a ranked symbol of arity n ≥ 2, the order of its children is important
and not commutable. If an automaton is being described in text, the order
is clear from the written order, for example f(a, b). When the automaton is
being depicted in a figure, the order of the children is denoted next to the
transitions, with numbers 1, . . . , n.

Example 1.16. The finite tree automaton in the figure 1.2 is an automaton
A = ({(a, 2), (b, 1), (c, 0)}, {1, 2, 3}, {3},∆), where ∆ is the set of transitions
depicted in the figure.

Definition 1.17. A FTA is considered deterministic if for x = (x′, n) ∈ Σn

and n states q1, . . . , qn ∈ Q, the number of transitions from these states using x
in ∆ is at most 1. If a FTA is not deterministic, it is called non-deterministic.

5



1. Terminology

1 2

3

c

b

b

1 2

a

b

Figure 1.2: A finite tree automaton

Definition 1.18. The output of a FTA A is denoted δ and is a function from
T (Σ) to 2Q defined inductively for any tree t = f(t1, . . . , tn) by δ(t) = {q ∈
Q | ∃(f, q1, . . . , qn, q) ∈ ∆, (∀1 ≤ i ≤ n, qi ∈ δ(ti))}. [4]

Definition 1.19. The accepted language of a FTA A is L(A) = {t ∈ T (Σ) |
δ(t) ⊆ Qf}. The state language L(q) of a state q ∈ Q is defined by L(q) =
{t ∈ T (Σ) | q ∈ δ(t)}. [4]
A tree t is accepted by the FTA A if t ∈ L(A).

Definition 1.20. For a ranked symbol c ∈ Σ0, the c-product is the operation
·c defined for any tree t ∈ T (Σ) and for any tree language L by:

t · L =


L if t = c,

{d} if t = d ∈ Σ0 \ {c},
f(t1 ·c L, . . . , tn ·c L) otherwise if t = f(t1, . . . tn).

(1.1)

[4]

Definition 1.21. The iterated c-product is the operation n,c recursively de-
fined for any integer n by:

L0,c = {c}
Ln+1,c = Ln,c ∪ L ·c Ln,c

(1.2)

[4]

Definition 1.22. The c-closure is the operation ∗c defined by L∗c = ∪n≥0L
n,c.

[4]

Note. The c-closure operation may also be called iteration over c, or iteration.
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Regular tree expression

Regular tree expressions over Σ describe a set of trees over Σ.

Definition 1.23. A regular tree expression (RTE) E over ranked alphabet Σ
is inductively defined by:

– E = ∅,
– E = f(E1, . . . , En),
– E = E1 + E2, an alternation of E1 and E2,
– E = E1 ·c E2, a concatenation of E1 and E2 through c,
– E = E∗c1 , an iteration of E1 over c,

where f ∈ Σn, c ∈ Σ0 and E1, . . . En are any n RTE over Σ. [4]

Definition 1.24. The language denoted by E is the tree language [E], defined
inductively by:

– [∅] = ∅,
– [f(E1, . . . , En)] = f([E1], . . . , [En]),
– [E1 + E2] = [E1] ∪ [E2],
– [E1 ·c E2] = [E1] ·c [E2],
– [E∗c1 ] = [E1]∗c,

where f ∈ Σn, c ∈ Σ0 and E1, . . . En are any n RTE over Σ. [4]

Definition 1.25. Two RTEs E and F are equivalent ⇔ [E] = [F ]. [4]

Auxiliary terms and definitions

Definition 1.26. For a non-negative integer n ∈ N, n̂ is defined as a set of
integers {1, . . . , n}.

7





Chapter 2
Study of regular tree expressions

This chapter studies regular tree expressions, their operators, and the lan-
guages denoted by them. It also reviews regular expressions and goes through
similarities and differences between them and RTEs.

A tree language denoted by a RTE E over Σ is [E]. What that means
is the tree language is described by a set of rules given by the RTE, and all
trees over Σ which satisfy these rules belong to [E] and all the other trees do
not. A tree which is denoted by a RTE E is also accepted by a FTA A and
generated by a regular tree grammar G. Regular tree expressions, finite tree
automata, and regular tree grammars are all mutually convertible. Regular
tree grammars are not a subject of this work. In case the reader is interested
in them, they may follow [6].

2.1 Regular expressions

For regular expressions, all of the operators are very straightforward and
should be easy to comprehend. The alternation operator says ”either the
first or the second operand”. Informally, iteration of x means ”zero or more
occurrences of x”, and concatenation of x and y is ”appending y at the end
of x”.

2.2 Regular tree expressions

Regular tree expressions are, in contrast with regular expressions, which de-
scribe languages over words and strings, used to describe sets of tree-structured
values. [7]

Tree-structured values are commonly used in programming and computer
science in general. As an example, XML or HTML files are tree-structured.
A regular tree expression then may be used to describe such file which is
valid, satisfies some property, belongs to a given category, etc. A finite tree

9



2. Study of regular tree expressions

automaton then may be used to accept or reject a given RTE. Given the FTAs
and RTEs are mutually convertible, there exist methods in both directions –
for example, a method of conversion of a FTA into a RTE is a subject of this
thesis. A method of construction of a FTA from a RTE is described in [1]. A
method of conversion from a RTE to a push-down automaton is described in
[2] and [3].

As tree-structured values differ from words or strings, the description of
regular expressions built over them must differ as well. Therefore, regular
tree expressions are in its core built over the same principle as regular (string)
expressions, but there are differences which need to be addressed.

2.3 Study of RTE operators

The regular tree expression operators were formally described in definitions
1.20, 1.22, and 1.23. The languages denoted by them were described in def-
inition 1.24. In this section, the RTE operators are studied and explained
further, along with examples.

2.3.1 Alternation

The alternation operator is arguably the easiest one to comprehend of all.
As can be deduced from the equation [E1 + E2] = [E1] ∪ [E2] mentioned in
definition 1.24, use of this operator simply means a union of the language
denoted by E1 and the language denoted by E2 is denoted by E1 +E2. In this
regard, it is identical to the alternation operator in regular expressions.

Example 2.1. For the RTE f(a, b)+h(c), the language denoted contains two
trees depicted in figure 2.1.

f

a b

h

c

Figure 2.1: The language denoted by f(a, b) + h(c)

2.3.2 Ranked symbol

A language denoted by a regular tree expression f(t1, . . . , tn) with f being a
ranked symbol of rank n can be visualized as a set of trees with f as the root
and all possible t1, . . . , tn as its children. Again, there is no difference from
regular expressions here.

10



2.3. Study of RTE operators

Example 2.2. For the RTE f(a + b, c), the language denoted contains two
trees depicted in figure 2.2.

f

a b

f

a c

Figure 2.2: The language denoted by f(a+ b, c)

2.3.3 Concatenation

The concatenation operator ·c for RTEs is different from the concatenation
operator · for regular expression in one crucial matter. While for regular
expressions the right operand is always appended at the end of the left operand
and there is no symbol in the concatenation operator, as in the following
example:

Example 2.3. f(a, b, a) · (x+ y) yields f(a, b, a)x and f(a, b, a)y,

for RTEs the resultant language is obtained by replacing the constant c (a
part of the concatenation operator) in all trees denoted by the left operand
by all trees denoted by the right operand, which results in different outcomes,
as the following example demonstrates:

Example 2.4. f(a, b, a)·a (x+y) yields f(x, b, x), f(x, b, y), f(y, b, x), f(y, b, y).
If the concatenation symbol is changed from a to b, then f(a, b, a) ·b (x + y)
yields f(a, x, a) and f(a, y, a).

f

x b x

f

x b y
f

y b x

f

y b y

Figure 2.3: The language denoted by f(a, b, a) ·a (x+ y)
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2. Study of regular tree expressions

f

a x a

f

a y a

Figure 2.4: The language denoted by f(a, b, a) ·b (x+ y)

2.3.4 Iteration

As is the case with the concatenation operator, the iteration operator also
differs for regular expressions and RTEs. While for regular expressions, the
operator ∗ simply means ”zero or more occurrences of the operand”, and no
symbol is a part of the operator, as is the case in the following example:

Example 2.5. f(c, x)∗ yields ε, f(c, x), f(c, x)f(c, x), f(c, x)f(c, x)f(c, x), . . .,

for RTEs the operator ∗c yields either the constant c (which is evidently
a part of the iteration operator) or a set of trees where all occurrences of c
are replaced by the operand. If the operand contains c, then the replacement
may be performed again in successive iterations.

Example 2.6. For the RTE (f(x, c))∗c, the denoted language is the set of
trees depicted in figure 2.5.

c

f

x c

f

x f

x c

f

x f

x f

x c . . .

Figure 2.5: The trees denoted by (f(c, x))∗c

Note. Note that in each successive iteration, the tree with root f and children
x, c takes place of the constant c.

12



2.4. Tree languages

2.4 Tree languages

In tree languages, the concatenation and iteration operators are often used
together. Informally said, while the iteration denotes an infinite set of trees
with a symbol which will be replaced in the next iteration, the concatenation
then denotes the final result by replacing the placeholder symbol with its right
operand.

Example 2.7. For the RTE f(x, c)∗c ·c f(y, z), the denoted language is the
set of trees depicted in figure 2.6.

f

y z

f

x f

y z

f

x f

x f

y z . . .

Figure 2.6: The language denoted by f(c, x)∗c ·c f(y, z)

Note. Note that unlike in the previous example 2.6 without concatenation, c,
the symbol over which f(c, x) is iterated, is not present and is instead replaced
by f(y, z).
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Chapter 3
FTA to RTE conversion

In this chapter, the proposal of construction of a RTE from a FTA via a
rational equation system presented in [4] is studied. It is not presented in
such detail as the source, omitting some lemmas and proofs, which the reader
may find in the source if they are interested. Then, it is discussed as to how
the proposal is viable for implementation and what are its challenges.

The method proposal in question generalizes the method for construction
of a regular (string) expression from a finite automaton. However, there are
some crucial differences which need to be addressed.

3.1 RTE equation system

Equation systems have been studied before, for example in [7]. To be con-
sistent throughout the chapter, definitions from [4] will be used, and other
literature is only used to confirm consistency.

To allow for a resolution of an equation system, the RTE definition 1.23
needs to be extended. The extension is to include variables.

Definition 3.1. Let X = X1, . . . ,Xk be a set of k variables. A RTE E over
(Σ, X) is then defined inductively by:

– E = ∅,

– E = Xj ,

– E = f(E1, . . . , En),

– E = E1 + E2, an alternation of E1 and E2,

– E = E1 ·c E2, a concatenation of E1 and E2 through c,

– E = E∗c1 , an iteration of E1 over c,

where f ∈ Σn, c ∈ Σ0, E1, . . . En are any n RTE over Σ, and j ∈ k̂. [4]
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3. FTA to RTE conversion

As the definition of a RTE has been extended, the definition of language
denoted by the extended RTE also needs to be updated. For the extended
RTE, the language denoted needs context to be computed, which means any
variable has to be evaluated according to a tree language.

Definition 3.2. Let L = (L1, . . . , Lk) be a k-tuple of tree languages over Σ.
The L-language denoted by E is the tree language [E]L, defined inductively
by:

– [∅]L = ∅,
– [Xj ]L = Lj

– [f(E1, . . . , En)]L = f([E1]L, . . . , [En]L),
– [E1 + E2] = [E1]L ∪ [E2]L,
– [E1 ·c E2] = [E1]L ·c [E2]L,
– [E∗c1 ] = [E1]∗cL ,

where f ∈ Σn, c ∈ Σ0, E1, . . . En are any n RTE, and j ∈ k̂. [4]

What the definition above says can be explained as every variable having
its own associated language and right-hand side. An evaluation of a variable
then yields its associated language.

Definition 3.3. For ranked alphabet Σ and a set of n variablesX = {X1, . . . ,Xn},
an equation over (Σ, X) is an expression Xj = Fj , where j ∈ k̂ and Fj is a
RTE over (Σ, X).

Definition 3.4. An equation Xj = Fj is variable-free if Fj is a RTE over Σ.
If a RTE E is variable-free, then [E]L = [E].

Definition 3.5. An equation system over (Σ, X) is a set X = {Xj = Fj | j ∈
n̂} of n equations.

Definition 3.6. An occurrence of a constant is said to be bounded if it appears
as either the operand of iteration, the left operand of concatenation, or if it
is a symbol of the iteration or concatenation operator. A symbol is said to
be bounded if it has at least one bounded occurrence in the equation system.
Symbols which are not bounded are called free. [7] [4]

Definition 3.7. Let L = (L1, . . . , Ln) be a n-tuple of tree languages. L is a
solution for an equation Xj = Fj if Lj = [Fj ]L. [4] [7]
L is a solution for an equation system X if for any equation Xj = Fj in X , L
is a solution of the equation.

Definition 3.8. Two systems over the same set of variables are equivalent if
they admit the same set of languages as solutions. [4] [7]
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3.2. Gaussian-elimination-like method

Example 3.9. An example of a RTE equation system provided in [4] is the
following:

X =


X1 = f(X1,X1) + f(X2,X4)
X2 = b+ f(X2,X4)
X3 = a+ h(X4)
X4 = a+ h(X3)

The six definitions above have established a RTE equation system, which
is used in a Gaussian-elimination-like (GEL) method described further in the
following section.

3.2 Gaussian-elimination-like method

The main idea behind the method proposal is to transform a RTE equation
system X = {Xj = Fj | j ∈ n̂} into an equivalent RTE equation system
X ′ = {X′j = F ′j | j ∈ n̂}, which is without variables. [4] As the resultant
equation system is without variables, it is a RTE over a ranked alphabet Σ
and can therefore denote a language over Σ.

To describe the GEL method, substitution over RTE needs to be defined.

Definition 3.10. For a RTE E, EX←E′ denotes the expression obtained by
substituting any occurrence of the variable X by the RTE E′ in the RTE E.
Such transformation is then defined inductively as:

– aX←E′ = a,
– ∅X←E′ = ∅,
– YX←E′ = Y,
– XX←E′ = E′,
– (f(E1, . . . , En))X←E′ = f((E1)X←E′ , . . . , (En)X←E′),
– (E1 + E2)X←E′ = (E1)X←E′ + (E2)X←E′ ,
– (E1 ·c E2)X←E′ = (E1)X←E′ ·c (E2)X←E′ ,
– (E∗c1 )X←E′ = ((E1)X←E′)∗c,

where a, c ∈ Σ0, f ∈ Σ, X 6= Y are two variables in X, and E1, . . . , En are any
n RTEs over (Σ, X). [4]

The substitution of Xk = Fk, k ∈ n̂ in a RTE equation system X = {Xj =
Fj | j ∈ n} over n variables then gives the system X k = {Xk = Fk} ∪ {Xj =
(Fj)Xk←Fk

| j 6= k ∧ j ∈ n̂}. The systems X and X k are then equivalent. [4]
Given X is an equation system with n equations over (Σ, X), ϕ is a permu-

tation on n̂, then GEL equation system Xϕ is the n-th term of the sequence
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3. FTA to RTE conversion

{
X1 = Xϕ(1)

Xi = X
ϕ(i)
i−1 .

Then, X and Xϕ are equivalent.

Definition 3.11. The relation <X for any two variables Xj ,Xk from a RTE
equation system over n variables X = {Xj = Fj | j ∈ n̂} is defined by:

Xj <X Xk ⇔ Xj appears in Fk.

The relation �X is defined as the transitive closure of <X . If Xk <X Xk, the
equation Xk = Fk is called recursive. A system is called recursive if a symbol
Xk such that Xk �X Xk exist. [4]

3.3 Non-recursive case

If X is a non-recursive RTE equation system, then there exists a permutation
ϕ on n̂ for which Xϕ is a system without variables. [4]

This means that for a non-recursive case, it is sufficient to find a sequence
of variables to replace to find an equivalent equation system without variables,
which yields a solution.

Example 3.12. Consider the following RTE equation system:

X =


X1 = f(X2)
X2 = f(X3) + c

X3 = a+ b

Then, substituting X3 by its associated RTE a+ b results in:

X =


X1 = f(X2)
X2 = f(a+ b) + c

X3 = a+ b

And substituting X2 by its associated RTE f(a+ b) + c results in an equation
system without variables.

X =


X1 = f(f(a+ b) + c)
X2 = f(a+ b) + c

X3 = a+ b
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3.4. Recursive case

3.4 Recursive case

If a RTE equation system is recursive, using substitutions is not sufficient to
obtain a solution for such system.

Arden’s lemma states that for a regular expression equation X = A·X∪B,
A∗ ·B is the smallest language that is a solution for the equation X. [8] It is
then used for the following lemma:

Lemma 3.13. Let A and B be two tree languages over Σ and EA, EB be two
RTEs over Σ such that [EA] = A and [EB] = B. Then the RTE E∗cA ·c EB

denotes the smallest language over Σ satisfying L = A ·c L ∪B. [4]

In lemma 3.13, the bounded language, which is the language containing
the variable causing recursion, is treated as A and the free language (not
containing the recursion causing variable) is treated as B.

Any recursive equation system can be transformed into an equivalent equa-
tion system for which there exists a symbol Xj satisfying Xj <X Xj .

Any RTE E can be transformed into an equivalent RTE E′ + E′′ such
that a variable X figures in E′ and not in E′′. [4]

Example 3.14. For the RTE E = f(a,X1) + h(b), the split over the variable
X1 is E′ = f(a,X1), and E′′ = h(b).

To allow for such transformation of any RTE E, first the decomposition of
E needs to be defined.

Definition 3.15. The decomposition of E is defined inductively as:

dec(E) =


{E} if E = c, E = X, E = f(E1, . . . , En),

E = E1 ·c E2, or E = E∗c1
dec(E1) ∪ dec(E2) if E = E1 + E2

Then, for a given variable X, decX(E) = {F ∈ dec(E) | X appears in f},
and decX̄(E) = dec(E) \ decX(E).

Definition 3.16. For an integer j, the j-split of an expression E over (Σ, {X1, . . . ,X2})
is the pair defined by:

j-split(E) = (
∑

F∈decXj
(E) F,

∑
F∈decX̄j

(E) F )

Then, through proposing that [E]L = [(E)X←a ·a X]L, and L is a language
over an alphabet which does not contain constants appearing in either the
concatenation or iteration operators in Fj , the following two conditions are
equivalent:

(1) L is a solution for Xk = Fj ,
(2) L is a solution for (F ′j)Xj←a ·a Xj + F ′′j .
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3. FTA to RTE conversion

Then, contraction of Xk = Fk is defined as Xk = (F ′k)∗c ·c F ′′k . Such an
operation is used together with the j-split of a RTE. [4]

Example 3.17. Given the equation system from example 3.9, the 2-split of
X2 = b+ f(X2,X4) is (f(X2,X4), b). Then, using a concatenation symbol x2,
the next step yields f(x2,X4) ·x2 X2 + b. Using contraction, the final result is
f(x2,X4)∗x2 ·x2 b.

The problem of such approach is that the expression produced is not guar-
anteed to be equivalent. The cause of this problem is the wording of the
proposal which uses language L over an alphabet not containing constants
appearing in either the concatenation or iteration operators. However, it can
be remedied by defining a property in order to detect which systems are solv-
able.

The property in question is called closedness. An expression is said to be
closed if all occurrences of a bounded symbol are bounded. [4]

Example 3.18. In the RTE E = f(x1, a) ·x1 b, x1 is a bounded symbol,
because it appears as the symbol of the concatenation operator. E is also
closed, because all occurrences of x1 are bounded.
On the other hand, the RTE E′ = f(x1, a) ·x1 x1 is not closed, because not
every occurrence of x1 is bounded.

Then, using the lemma that for two closed expressions F, F ′ over (Σ,X),
FXk←F ′ is also closed, it is possible to get to the result that for a closed RTE
E = F ·c F ′ + F ′′, F ∗c ·c F ′′ is also closed. [4] The proofs and corollaries are
omitted here and can be found in the source.

The closedness is a satisfactory condition for an equation system being
solvable. However, it is not a necessary condition. A system which is not
closed may still be solvable.

Then, an equation system X admits a solution over a set of symbols which
are not bounded. It is proven recurrently that since a closed systems of one
equation, and closed systems which are not recursive, admit such solution,
and it is possible to transform a recursive equation into a non-recursive one
using the j-split. [4]

3.5 Construction of RTE equation system from
FTA

Now that it is established how to solve a RTE equation system, it is pos-
sible to move to constructing the equation system from a given FTA. The
proposed method is the following: given a FTA A = (Σ, Q,Qf ,∆), its associ-
ated equation system is the set of equations XA over the variables X1, . . . ,Xn

defined by XA = {Xq = Fq | q ∈ Q}, where for any state q ∈ Q, Fq =
Σ(f,q1,...,qn,q)∈∆f(Xq1 , . . . ,Xqn).
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3.5. Construction of RTE equation system from FTA

Definition 3.19. Then, for such a FTA, and (E1, . . . , En) being a solution of
its associated equation system, L(A) is denoted by the RTE Σqj∈Qf

Ej . [4]

In the source, it is noted that the equation system can be solved when
it is closed. To ensure closedness, to each equation is associated an extra
constant not in Σ0, to be used in the iteration and concatenation operators
while solving the equation system.

After such an equation system is obtained, it can be solved by successive
substitutions and using the j-split.

1

2 34 ab
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h

2
1

f
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Figure 3.1: FTA A

Example 3.20. The RTE equation system associated with the FTA A from
figure 3.1 is the following:

X =


X1 = f(X1,X1) + f(X2,X4)
X2 = b+ f(X2,X4)
X3 = a+ h(X4)
X4 = a+ h(X3)

The equation system X 4 is obtained through replacing all occurrences of X4
by its right-hand side in equations for other variables.
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3. FTA to RTE conversion

X 4 =


X1 = f(X1,X1) + f(X2, a+ h(X3))
X2 = b+ f(X2, a+ h(X3))
X3 = a+ h(a+ h(X3))
X4 = a+ h(X3)

Then, the following closed subsystem can be solved
X1 = f(X1,X1) + f(X2, a+ h(X3))
X2 = b+ f(X2, a+ h(X3))
X3 = a+ h(a+ h(X3))

.

As no equation is non-recursive now, a j-split is performed. With j being
chosen as 3, the 3-split of a + h(a + h(X3)) leads, through factorization and
contraction, to (h(a+h(x3)))∗x3 ·x3 a. By substitution of X3, whose recursion
has been removed now, in the remaining equations, the new subsystem to
solve is obtained.{

X1 = f(X1,X1) + f(X2, a+ h((h(a+ h(x3)))∗x3 ·x3 a)))
X2 = b+ f(X2, a+ h((h(a+ h(x3)))∗x3 ·x3 a)))

Again, both equations being recursive, a j-split with j = 2 is performed. The
2-split of b+f(X2, a+h((h(a+h(x3)))∗x3 ·x3 a)) leads, through factorization and
contraction, to (f(x2, a+h((h(a+h(x3)))∗x3 ·x3 a)))∗x2 ·x2 b. By substituting
X2 in the equation of X1, it remains to solve

X1 = f(X1,X1) + f((f(x2, a+ h((h(a+ h(x3)))∗x3 ·x3 a)))∗x2 ·x2 b, a+
h((h(a+ h(x3)))∗x3 ·x3 a))).

The 1-split of the above right hand side yields:

(f(x1, x1))∗x1 ·x1 f((f(x2, a+ h((h(a+ h(x3)))∗x3 ·x3 a)))∗x2 ·x2 b, a+
h((h(a+ h(x3)))∗x3 ·x3 a))).

As all states are recursion free now, the solution is obtained by replacing the
variable occurrences by the resultant right hand sides.

X1 = (f(x1, x1))∗x1 ·x1 f((f(x2, a+ h((h(a+ h(x3)))∗x3 ·x3 a)))∗x2 ·x2 b,

a+ h((h(a+ h(x3)))∗x3 ·x3 a)))
X2 = (f(x2, a+ h((h(a+ h(x3)))∗x3 ·x3 a)))∗x2 ·x2 b

X3 = (h(a+ h(x3)))∗x3 ·x3 a

X4 = a+ h((h(a+ h(x3)))∗x3 ·x3 a)

Since the final states are 1 and 3, as per definition 3.19, L(A) is denoted
by:

(f(x1, x1))∗x1 ·x1 f((f(x2, a+ h((h(a+ h(x3)))∗x3 ·x3 a)))∗x2 ·x2 b, a+
h((h(a+ h(x3)))∗x3 ·x3 a))) + (h(a+ h(x3)))∗x3 ·x3 a.
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3.6. Viability and challenges

3.6 Viability and challenges

The method presented in this chapter is quite straightforward and easy to
understand. However, there are two challenges that need to be addressed
before the implementation design can be proposed. They will be presented
here and solutions will be proposed in further chapters.

3.6.1 Number of alternation elements

As per definition 1.23, an alternation is of the form E1 +E2. However, in the
previous sections, the construction of a RTE equation for a state of a FTA is
presented as a sum of transitions into the state. While this can be achieved by
nesting alternations into each other, for implementation purposes, this would
be very impractical.
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Figure 3.2: FTA A

Example 3.21. Consider the FTA from figure 3.2. Each of the states has
three transitions going into it, with state 4 having four. For such state, the
equation constructed could look like X4 = (f(X3) + g(X4)) + (a+ h(X1)).
Then, while performing a 4-split, f(X3) would get ”stuck” in X′4, and be in the
operand for iteration and concatenation, while not containing the symbol X4.
While the result would be valid, readability would be improved by allowing
more elements in alternations.

3.6.2 j-split

The challenge for a j-split is that for some RTE equation denoted by right
hand side E, the second set, E′′, could be empty. By applying the RTE equa-
tion method on E, according to the definition of j-split 3.16, and through
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3. FTA to RTE conversion

substitution and contraction, E would be (E′)∗c ·c ∅. However, the equa-
tion system may still admit solutions and such challenge only be a result of
unfortunately chosen sequence of variables to split.
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Chapter 4
RTE axioms

The RTE axioms are an important part of this work for several reasons.
Firstly, it is not difficult imagining a regular tree expression which could be
easily simplified while remaining equivalent. However, such changes need to
be formalized, which the axioms achieve. Secondly, as implementation of an
algorithm whose output is a RTE is a part of this work, simplifying the final
result to be more easily readable – both by humans and by computers – is
definitely a desirable outcome. Thirdly, they will show to help resolve the
challenges of the conversion method presented in the previous chapter. And
lastly, while it may not show immediately, a further study of RTEs may show
the proposed axioms find their use elsewhere.

4.1 Former work on RTE axioms

Regular tree expression axioms have been studied, along with other properties
of RTEs, in [2] and [7]. In [2], numerous axioms were proposed, mainly based
on established axioms for regular (string) expressions. For the purposes of his
work, the author augmented the RTEs to be over alphabet Σ∪K, withK being
a set of constants, c ∈ K, with Σ ∩K = ∅. Note that this is equivalent with
extending the alphabet Σ0 with concatenation and iteration symbols to ensure
closedness in the FTA to RTE conversion method. The constants from K are
used as parts of the concatenation and iteration operators, that is E1 ·c E2 and
E∗c. This is consistent with the definitions used in previous chapters, where
constants such as x1, . . . , xn were used as the placeholder symbols. Then,
given x, y, z ∈ T (Σ∪K), a ∈ T (Σ∪K \ c) and k, l ∈ T (Σ∪K) \T (Σ∪K \ c),
and ε being a special constant denoting an empty word, the following axioms
were proposed.
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4. RTE axioms

Alternation

Given definition 1.24 stating that [E1 +E2] = [E1]∪ [E2], it is concluded that
the following axioms apply.

The following axioms are in line with known axioms for regular expressions.
[9] [7]

RTE Axiom 1. (A1). x+ (y + z) = (x+ y) + z

RTE Axiom 2. (A2). x+ y = y + x

RTE Axiom 3. (A3). x+ ∅ = x

RTE Axiom 4. (A4). x+ x = x

Concatenation

For concatenation, not every regular string axiom was possible to transform
into a RTE one. The reason for this is the difference between the concatenation
operators in regular expressions and RTEs.

RTE Axiom 5. (A5). x ·c (y ·c z) = (x ·c y) ·c z

RTE Axiom 6. (B1). ε ·c x = ε

RTE Axiom 7. (B2). ∅ ·c x = ∅

RTE Axiom 8. (B3). c ·c x = x

RTE Axiom 9. (B4). a ·c x = a

RTE Axiom 10. (B5) k ·c ε ∈ T (Σ ∪K \ c)

RTE Axiom 11. (B6). k ·c ∅ = ∅

RTE Axiom 12. (B7). k ·c c = k

RTE Axiom 13. (B8). k ·c a ∈ T (Σ ∪K \ c)

RTE Axiom 14. (B9). k ·c l ∈ T (Σ ∪K) \ T (Σ ∪K \ c)

RTE Axiom 15. (A8). x ·c (y + z) = x ·c y + x ·c z if x does not contain
more than one occurrence of the concatenation symbol c

RTE Axiom 16. (A9). (x+ y) ·c z = x ·c y + y ·c z
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4.2. Alteration of axioms

Iteration

For iteration, the axioms are derived from existing regular expression axioms.
[2] [9]

RTE Axiom 17. (A10). x∗c = ε+ x∗c ·c x

RTE Axiom 18. (A11). x∗c = (ε+ x)∗c

Regular equations

The axioms for regular equations are also derived from existing regular ex-
pression axioms. Note that the axiom (A13). found its use in the conversion
method presented in previous chapters.

RTE Axiom 19. (A12). x = x ·c α+ β ⇒ x = β ·c α∗c

RTE Axiom 20. (A13). x = α ·c x+ β ⇒ x = α∗c ·c β

4.2 Alteration of axioms

In this section, axioms from section 4.1 which need to be altered are discussed
and the changes are proposed.

4.2.1 Axiom (B6)

In axiom (B6), it is proposed that for k ∈ T (Σ∪K)\T (Σ∪K\c), the following
applies: k ·c ∅ = ∅. However, upon closer inspection it was found out that this
is not always the case and the axiom needs to be altered.

Example 4.1. Consider the following RTE: (f(c) + f(a))∗c ·c ∅. Clearly,
(f(c) +f(a))∗c ∈ T (Σ∪K)\T (Σ∪K \ c). However, one of the trees described
by such RTE is f(a). Then, in accordance with axiom (B4), f(a) ·c x = f(a).
Therefore, the described language is not empty and the axiom (B6) needs to
be changed.

As can be seen from the example provided above, the condition that k ∈
T (Σ∪K) \ T (Σ∪K \ c) is not strong enough, as even such trees can describe
languages which contain RTEs not containing c. Clearly, the language that k
is describing must not contain any RTE from T (Σ ∪K \ c) at all. With that
in consideration, the following is proposed:

RTE Axiom 21. (B6-1). k ·c ∅ = ∅ if [k] ∩ T (Σ ∪K \ c) = ∅

It is clear that for k which does not match the above condition, even a
concatenation with ∅ as the right operand still describes a non-empty language.
It is now a question of finding out what language it describes. However, one
thing is certain: it does not contain any occurrences of c.
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4. RTE axioms

RTE Axiom 22. (B6-2). k ·c ∅ ∈ T (Σ ∪K \ c)

4.3 Unbounded RTE

As was mentioned in subsection 3.6.1, to make implementation and readability
easier, it would be helpful to allow more than two elements in an alternation.
Therefore, unbounded regular tree expressions were defined.

Definition 4.2. An unbounded regular tree expression E over ranked alphabet
Σ is inductively defined by:

– E = 0,

– E = f(E1, . . . , En),

– E = E1 + . . .+ Em,

– E = E1 ·c E2,

– E = E∗1c,

where f ∈ Σn, c ∈ Σ0, E1, . . . En are any n unbounded RTE over Σ, and
E1, . . . Em are any m > 0 unbounded RTE over Σ.

As one of the operators has been re-defined, the language denoted by
unbounded regular tree expressions also needs to be re-defined.

Definition 4.3. The language denoted by an unbounded RTE E is the tree
language [E], defined inductively by:

– [∅] = ∅,

– [f(E1, . . . , En)] = f([E1], . . . , [En]),

– [E1 + . . .+ Em] = [E1] ∪ . . . ∪ [Em],

– [E1 ·c E2] = [E1] ·c [E2],

– [E∗1c] = [E1]∗c,

where f ∈ Σn, c ∈ Σ0, E1, . . . En are any n RTE, and E1, . . . Em are any
m > 0 unbounded RTE over Σ.

4.3.1 Impact on formerly proposed axioms

Obviously, the only axioms the new definition could have affected are the ones
with an alternation operator in them. They will be listed below, with U after
their respective numbers to reflect the fact they are used for unbounded RTEs.
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4.4. Proposal of new RTE axioms

Alternation

The only affected axiom is (A1), which allows for removing the parentheses
in unbounded RTEs.

RTE Axiom 23. (A1U). x+ (y + z) = (x+ y) + z = x+ y + z

The other axioms from this group do not need to be modified, as for larger
number of elements they can be deduced from the not-unbounded ones.

Concatenation

The axioms for concatenation distributivity (A8), (A9) need to be modified
to allow for an unlimited number of elements in alternation.

RTE Axiom 24. (A8U). x ·c (y1 + . . .+ yn) = x ·c y1 + . . .+x ·c yn if x does
not contain more than one occurrence of the concatenation symbol c

RTE Axiom 25. (A9U). (x1 + . . .+ xn) ·c y = x1 ·c y + . . .+ xn ·c y

The other axioms from this group do not need to be modified.

Iteration and regular equations

No axioms from these groups need to be modified.

4.4 Proposal of new RTE axioms

For the proposal of new RTE axioms, the inspiration came from different
sources: preexisting regular expression axioms [9], some of which were also
implemented or described in [10], and study of languages denoted by the
RTEs, as presented in definitions 1.24 and 4.3.

Note. The newly proposed axioms’ names start with the letter N, as for new.
In order to keep consistency, the prerequisites and definitions from section 4.1
are kept.

Ranked symbol

These axioms describe how a RTE describing a ranked symbol of arity n can
be transformed.

RTE Axiom 26. (N1). f(x1 ·c z, . . . , xn ·c z) = f(x1, . . . , xn) ·c z

The above axiom (N1) is analogous to the axiom (A9). If all children of
the ranked symbol f are a concatenation through c ∈ K, then the concate-
nation can be placed outside f and f ’s children modified by removing the
concatenation, and vice versa.
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RTE Axiom 27. (N2). f(y1, . . . , yj , x1 + x2, z1, . . . , zk) = f(y1, . . . , yj , x1,
z1, . . . , zk) + f(y1, . . . , yj , x2, z1, . . . , zk)

The axiom (N2) needs to be modified for unbounded RTEs.

RTE Axiom 28. (N2U). f(y1, . . . , yj , x1 + . . .+xn, z1, . . . , zk) = f(y1, . . . , yj ,
x1, z1, . . . , zk) + . . .+ f(y1, . . . , yj , xn, z1, . . . , zk)

RTE Axiom 29. (N3). f(x1, . . . , ∅, . . . , xn) = ∅

Iteration

This section proposes axioms for RTEs with an iteration operator. Most of
them are analogous to regular expression axioms. [9]

RTE Axiom 30. (N4). x∗c = (x∗c)∗c

RTE Axiom 31. (N5). (x+ y)∗c = (x∗c + y∗c)∗c

The axiom (N5) needs to be modified for unbounded RTEs.

RTE Axiom 32. (N5U). (x1 + . . .+xn)∗c = (
∑

i∈N1 x
∗c
i +

∑
j∈N2 xj)∗c, N1 ∪

N2 = n̂, N1 ∩N2 = ∅

Axiom (N5U) is a generalization of axiom (N5). It says that if the operand
of an iteration over c is an alternation, any of the elements of the alternation
may be written as either themselves in unchanged form or as an iteration of
themselves over c, and vice versa.

RTE Axiom 33. (N6). x∗c = x∗c + c

RTE Axiom 34. (N7). (x+ y)∗c = (x∗c ·c y∗c)∗c = (y∗c ·c x∗c)∗c

RTE Axiom 35. (N8). x∗c = x∗c ·c x+ c

RTE Axiom 36. (N9). x∗c = (x+ c)∗c

RTE Axiom 37. (N10). x∗c = x∗c + x

RTE Axiom 38. (N11). a∗c = a+ c

RTE Axiom 39. (N12). ∅∗c = c

The following axiom describes a subset property of the iteration operator.

RTE Axiom 40. (N13). x∗c ⊆ (x+ y)∗c
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Concatenation

The following two axioms describe subset properties of the concatenation op-
erator.

RTE Axiom 41. (N14). x ·c y ⊆ x ·c (y + z)

RTE Axiom 42. (N15). x ·c z ⊆ (x+ y) ·c z
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Chapter 5
Resolving challenges in the

conversion method

The challenges of the method presented in chapter 3 were shown in subsec-
tions 3.6.1 and 3.6.2. By proposing an unbounded RTE in definition 4.2, the
first challenge has been resolved. This chapter will then focus on the second
challenge, regarding j-split.

5.1 Demonstrating the problem

Throughout this chapter, an example tree automaton from the Algorithm Li-
brary Toolkit [10] will be used. The tree automaton is defined as follows:
A = ({(a, 2), (b, 1), (c, 0)}, {1, 2, 3, 4, 5}, {3, 4, 5},∆), where the set of transi-
tions ∆ is described in table 5.1.

Then, a RTE equation system can be constructed from such automaton.

Example 5.1. The RTE equation system for automaton A:

X =



X1 = b(X2) + b(X5)
X2 = a(X3,X3) + a(X3,X4) + a(X3,X5)
X3 = c

X4 = a(X1,X3) + a(X1,X4) + a(X1,X5)
X5 = a(X4,X3) + a(X4,X4) + a(X4,X5)

+a(X5,X3) + a(X5,X4) + a(X5,X5)

The equations for X1, X2, and X3 are non-recursive, so the first three steps
of the conversion method will be to substitute them (in any order) and solve
a subsystem without them.

33



5. Resolving challenges in the conversion method

Symbol From To
c 3
b 2 1
b 5 1
a 3, 3 2
a 3, 4 2
a 3, 5 2
a 1, 3 4
a 1, 4 4
a 1, 5 4
a 4, 3 5
a 4, 4 5
a 4, 5 5
a 5, 3 5
a 5, 4 5
a 5, 5 5

Table 5.1: Transitions of the FTA A



X2 = a(X3,X3) + a(X3,X4) + a(X3,X5)
X3 = c

X4 = a(b(X2) + b(X5),X3) + a(b(X2) + b(X5),X4) + a(b(X2) + b(X5),X5)
X5 = a(X4,X3) + a(X4,X4) + a(X4,X5)

+a(X5,X3) + a(X5,X4) + a(X5,X5)

X3 = c

X4 = a(b(a(X3,X3) + a(X3,X4) + a(X3,X5)) + b(X5),X3)
+a(b(a(X3,X3) + a(X3,X4) + a(X3,X5)) + b(X5),X4)
+a(b(a(X3,X3) + a(X3,X4) + a(X3,X5)) + b(X5),X5)

X5 = a(X4,X3) + a(X4,X4) + a(X4,X5)
+a(X5,X3) + a(X5,X4) + a(X5,X5)

X4 = a(b(a(c, c) + a(c,X4) + a(c,X5)) + b(X5), c)
+a(b(a(c, c) + a(c,X4) + a(c,X5)) + b(X5),X4)
+a(b(a(c, c) + a(c,X4) + a(c,X5)) + b(X5),X5)

X5 = a(X4, c) + a(X4,X4) + a(X4,X5)
+a(X5, c) + a(X5,X4) + a(X5,X5)

Where the challenge comes in is now. Both equations for X4 and X5 are
recursive, so a j-split needs to be performed. Assume the 4-split is performed
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first. Then, the right hand side of X4 is

a(b(a(c, c) + a(c,X4) + a(c,X5)) + b(X5), c)
+a(b(a(c, c) + a(c,X4) + a(c,X5)) + b(X5),X4)
+a(b(a(c, c) + a(c,X4) + a(c,X5)) + b(X5),X5)

(5.1)

which is an alternation of three occurrences of the ranked symbol (a, 2). All
of its occurrences contain the symbol X4, so for the 4-split of such RTE, X′′4
would be empty.

5.2 Solution using RTE axioms

With the alteration of axiom (B6), it is clear that even a concatenation X′4 ·x4 ∅
may be describing a non-empty language. However, it is not defined what
exactly such concatenation is describing and the problem can be remedied in
another way – using axioms (A4), (N2U), (N13), (N14), (N15), (A3), (N3),
(N12), (B2), (B6-1), and (B6-2).

The proposed idea is the following:

1. Since x+ x = x (A4), then x+ (x+ y) = (x+ x) + y = x+ y.

2. This means that if a right hand side of an equation is taken and its
subset appended to it in an alternation, the RTE remains equivalent.

3. It is known how to take a subset from an alternation. Since the denoted
language of E1+E2 is [E1]∪[E2], if only some of the operands are picked,
such action results in a subset.

4. The axiom (N13) shows how to get a subset from an iteration.

5. Thanks to axioms (N14) and (N15), it is known how to get a subset
from concatenation.

6. The axiom (N2U) shows how to get a subset from a ranked symbol, if
it contains an alternation within.

With such proposal in mind, a function subset-without can be defined for
RTE E over (Σ,X), and a variable Xj ∈ X or a symbol d ∈ Σ0:

Definition 5.2. The function subset-without: RTE(Σ ∪ X) × {Σ ∪ X} →
RTE(Σ∪X), where RTE(Σ∪X) is the set of all RTEs over Σ∪X, is defined
inductively as follows:

– subset-without(c,Xj) = c for any c ∈ Σ0,

– subset-without(c, d) = c for any c ∈ Σ0, c 6= d,

– subset-without(d, d) = ∅,
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– subset-without(Xi,Xj) = Xi, for i 6= j,

– subset-without(Xi, d) = Xi,

– subset-without(Xj ,Xj) = ∅,

– subset-without(∅,Xj) = ∅,

– subset-without(∅, d) = ∅,

– subset-without(f(E1, . . . , En),Xj) = f(subset-without(E1,Xj), . . . ,
subset-without(En,Xj)),

– subset-without(f(E1, . . . , En), d) = f(subset-without(E1, d), . . . ,
subset-without(En, d)),

– subset-without(E1 + . . .+ En,Xj) =subset-without(E1,Xj) + . . .+
subset-without(En,Xj),

– subset-without(E1 + . . .+ En, d) =subset-without(E1, d) + . . .+
subset-without(En, d),

– subset-without(E∗c,Xj) = (subset-without (E,Xj))∗c,

– subset-without(E∗c, d) = (subset-without (E, d))∗c,

– subset-without(E∗d, d) =subset-without (E, d),

– subset-without(E1 ·c E2,Xj) =subset-without(E1,Xj)·c
subset-without(E2,Xj),

– subset-without(E1 ·c E2, d) =subset-without(E1, d)·c
subset-without(E2, d)

Now axioms which simplify RTEs containing the empty set ∅ will be uti-
lized.

1. Thanks to axiom (A3), it is known that x+∅ = x. Thus, subset-without
of an alternation will be the elements of the alternation which either
did not contain the variable being removed, or modified RTEs from the
other RTE types. Only if all alternation elements contain the variable or
constant and it cannot be removed from a single one, will the resulting
RTE be an empty set.

2. Thanks to axiom (N3), it is known that if any of the child elements of a
ranked symbol are an empty set, the whole symbol yields an empty set.
From this it can be concluded that subset-without of a ranked symbol
is either the symbol with its child elements modified not to contain the
variable or constant being removed, or an empty set in case it is not
possible to modify at least one of them.
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3. The axiom (N12) says that an iteration of an empty set can be simplified
to the iteration symbol. Therefore, if the operand of the iteration cannot
be modified to remove the variable or constant in question, the iteration
can be simplified to the constant, otherwise the modified RTE is an
iteration over the same constant, with a modified operand.

4. Axiom (B2) says that if the left operand of the concatenation operator
is an empty set, the whole concatenation can be simplified to an empty
set.

5. Axioms (B6-1) and (B6-2) say that if the right operand of the concatena-
tion operator is an empty set, the whole concatenation can be simplified
to either an empty set, or a subset of the left operand not containing
the concatenation symbol. Therefore, for concatenation E = F1 ·d F2 if
subset-without of the right operand F2 is an empty set, the outcome is
subset-without(F1, d).

6. Lastly, if both operands of a concatenation are not empty sets, the modi-
fied RTE will be a concatenation over the same constants, with modified
operands.

With this knowledge, the next step is performing the 4-split. The RTE
on right hand side of X4 is an alternation of three ranked symbols (a, 2). The
second occurrence of a contains X4 as the sole second element, therefore there
is no way of modifying the occurrence to be without X4.

However, the first and third occurrence of a in the alternation have c and
X5, respectively, as the sole second element of a, so the next step is to look at
the first element of a, which is

b(a(c, c) + a(c,X4) + a(c,X5)) + b(X5) (5.2)

It is an alternation of two symbols b of arity 1. The second occurrence of b
contains only X5, so it does not need to be modified, and the first occurrence
is an alternation of three occurrences of the symbol a, two of which do not
contain the symbol X4.

Therefore, the equation system can be modified as follows:

X4 = a(b(a(c, c) + a(c,X4) + a(c,X5)) + b(X5), c)
+a(b(a(c, c) + a(c,X4) + a(c,X5)) + b(X5),X4)
+a(b(a(c, c) + a(c,X4) + a(c,X5)) + b(X5),X5)
+a(b(a(c, c) + a(c,X5)) + b(X5), c)
+a(b(a(c, c) + a(c,X5)) + b(X5),X5)

X5 = a(X4, c) + a(X4,X4) + a(X4,X5)
+a(X5, c) + a(X5,X4) + a(X5,X5)
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Now, after performing the 4-split with contraction, the equation system
will change to the following:

X4 = (a(b(a(c, c) + a(c, x4) + a(c,X5)) + b(X5), c)
+a(b(a(c, c) + a(c, x4) + a(c,X5)) + b(X5), x4)
+a(b(a(c, c) + a(c, x4) + a(c,X5)) + b(X5),X5))∗x4

·x4 (a(b(a(c, c) + a(c,X5)) + b(X5), c)
+a(b(a(c, c) + a(c,X5)) + b(X5),X5))

X5 = a(X4, c) + a(X4,X4) + a(X4,X5)
+a(X5, c) + a(X5,X4) + a(X5,X5)

Note. The variable X4 is not substituted in X5 here because it is repeated
multiple times, to allow for brevity.

The last remaining unresolved variable is X5. It is an alternation of six
occurrences of the symbol a of arity 2. Four of its occurrences contain X5 as
the sole first or second element of a and cannot therefore be modified to not
contain X5. The first two occurrences, a(X4, c) and a(X4,X4), contain X5 in
X4.

X4 is a concatenation through x4. Its right operand is

(a(b(a(c, c) + a(c,X5)) + b(X5), c)
+a(b(a(c, c) + a(c,X5)) + b(X5),X5))

(5.3)

which is an alternation of two occurrences of the ranked symbol (a, 2). The
second occurrence contains X5 as the sole second element and cannot therefore
be modified. The first occurrence contains c as the sole second element, and
the first element is an alternation of two occurrences of (b, 1). The second
occurrence contains X5 as its operand and cannot therefore be modified. The
first occurrence contains the alternation a(c, c) + a(c,X5) and will therefore
yield a(c, c). The subset-without of the right operand is then a(b(a(c, c)), c).

The left operand is an iteration over x4. Its operand is an alternation of
three occurrences of the ranked symbol (a, 2). The third occurrence contains
X5 as the sole second element and cannot therefore be modified. The first two
occurrences contain c and x4, respectively, as the sole second elements, so the
first element can be inspected then. It is an alternation of two occurrences of
(b, 1), where the second occurrence contains X5 as its sole operand. The first
occurrence is an alternation a(c, c)+a(c, x4)+a(c,X5) and will therefore yield
a(c, c) + a(c, x4). The subset-without of the left operand is then (a(b(a(c, c) +
a(c, x4)), c) + a(b(a(c, c) + a(c, x4)), x4))∗x4 .

Put together, the subset-without(X4,X5) is the following:

(a(b(a(c, c) + a(c, x4)), c) + a(b(a(c, c) + a(c, x4)), x4))∗x4

·x4 (a(b(a(c, c)), c))
(5.4)
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Then the equation for X5 can be modified as follows:
X5 = a(X4, c) + a(X4,X4) + a(X4,X5)

+a(X5, c) + a(X5,X4) + a(X5,X5)
+a(subset-without(X4,X5), c)
+a(subset-without(X4,X5), subset-without(X4,X5))

As the last two occurrences of a do not contain X5, the 5-split may be
performed, with the first six occurrences of a being in X′5 and the last two in
X′′5. Through contraction, the following is obtained:

X5 = (a(X4, c)X5←x5 + a(X4,X4)X5←x5 + a(X4, x5)X5←x5

+a(x5, c) + a(x5,X4)X5←x5 + a(x5, x5))∗x5

·x5 (a(subset-without(X4,X5), c)
+a(subset-without(X4,X5), subset-without(X4,X5)))

Note. As before, X4 is not substituted here to allow for brevity. The expres-
sion a(X4, c)X5←x5 denotes that all occurrences of X5 have been substituted
by x5 in X4.

The resultant RTE is then obtained by substituting all occurrences of X5
with the outcome of the 5-split and creating an alternation of right hand sides
of X3, X4, and X5.
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Chapter 6
Design

In this chapter, the final proposed design for the implementations of the con-
version method described in chapters 3 and 5 is presented. The design for
implementation of axioms introduced in chapter 4 is also presented.

The design in this chapter is described in high-level approach, in form
of algorithms. The technical details of the implementation are described in
chapter 7.

6.1 FTA to RTE conversion

The design of the algorithm for conversion from FTA to RTE follows the
method described in chapter 3.

For the whole algorithm, the input is a finite tree automaton and the
output is a regular tree expression. There are several subroutines which may
have different inputs and outputs.

The method for FTA to RTE conversion consists of the following subprob-
lems:

1. Construction of a RTE equation system from the given FTA.

2. Solution of the RTE equation system constructed in the previous step.

a) Determining which variable to solve next.

b) j-split, factorization, and contraction of the chosen variable.

c) Replacing the variable with its associated RTE.

d) Construction of the resultant RTE.

3. Optimization of the resultant RTE.
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6.1.1 Construction of a RTE equation system

The following algorithm describes how to construct a RTE equation system
for a given FTA. It follows the method described in section 3.5.

Algorithm 6.1. Construction of a RTE equation system from the given FTA.
Input: FTA A = (Σ, Q,Qf ,∆), where |Q| = n

Output: RTE equation system X = {Xj = Fj | j ∈ n̂}

1. For every state q ∈ Q, create an empty RTE, Xq. This denotes an empty
alternation.

2. For every transition δ ∈ ∆, δ = (f, q1, . . . , qm, q), where m is arity of the
ranked symbol f , add to the alternation of the RTE associated to the
state q, Xq, the following: f(Xq1 , . . . ,Xqm).

3. After all transitions have been visited and added to the corresponding
alternations, the RTE equation system X is ready to be solved.

6.1.2 Solution of the RTE equation system

The following algorithm outlines the algorithm for solution of the RTE equa-
tion system. It contains references to several algorithms which solve given
subproblems, which are defined later in this chapter.

Algorithm 6.2. Solution of a RTE equation system.
Input: RTE equation system X = {Xj = Fj | j ∈ n̂}

Output: RTE F

1. Initialize the set of unresolved variables to all variables.

2. While the set of unresolved variables is not empty, do the following:

a) If there are any non-recursive variables, replace all of their occur-
rences with their associated RTEs using algorithm 6.5 and remove
them from the set of unresolved variables.

b) If there are no more unresolved variables, break from this loop.
c) Determine which variable to solve next using algorithm 6.3.
d) Perform the j-split, factorization, and contraction for the chosen

variable using algorithm 6.4 and replace the associated RTE of the
chosen variable by its outcome.

e) Replace all occurrences of the chosen variable with its associated
RTE using algorithm 6.5 and remove the chosen variable from the
set of unresolved variables.

42



6.1. FTA to RTE conversion

3. Construct the resultant RTE using algorithm 6.6.

The next algorithm describes how to choose the next unresolved variable
to solve. While it would be correct to simply choose a random one, it is
proposed to sort the associated RTEs of unresolved variables by their depth,
to allow for shorter resultant RTEs.

Algorithm 6.3. Determining which variable to solve next.
Input: RTE equation system X = {Xj = Fj | j ∈ n̂}

Output: Variable Xj

1. For each variable in the set of unresolved variables, compute the depth
of the variable Xq’s associated RTE, FXq . The computation of depth for
RTE F is defined recursively as follows:

a) For an alternation F = E1+. . .+En, return 1+max(depth(E1), . . . ,
depth(En)).

b) For a ranked symbol F = f(E1, . . . , En) of arity n, return 1 +
max(depth(E1), . . . , depth(En)).

c) For an empty set F = ∅, return 1.
d) For an iteration F = E∗c, return 1 + depth(E).
e) For a concatenation F = E1 ·c E2, return 1 + max(depth(E1),

depth(E2)).

2. Sort the set of unresolved variables by depth.

3. Choose the variable with lowest depth.

The following algorithm describes how to modify a variable’s associated
RTE by performing a j-split with factorization and contraction on it. It follows
the method described in chapter 3.

Algorithm 6.4. j-split, factorization, and contraction for a given variable.
Input: Variable Xj and its associated RTE Fj

Output: Modified RTE F split
j

1. Take Fj as an alternation. If it is not an alternation, it can be represented
as an alternation of one element.

2. For elements of Fj as an alternation, create a pair (F ′j , F ′′j ) where Fj

is an alternation of elements containing Xj and F ′′j is an alternation of
elements not containing Xj .
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3. If F ′′j is empty, assign to F ′′j subset-without(F ′j ,Xj) as defined in defini-
tion 5.2.

4. Create a constant xj not yet in Σ0 and replace all occurrences of Xj in
F ′j and F ′′j by it.

5. The modified RTE F split
j is then F ′j ·xj F

′′
j .

Note. In the above algorithm, unlike F ′′j , F ′j cannot be empty. The reason
for this is step 2a in algorithm 6.2, which removes all non-recursive variables.
Fj must therefore be recursive and contain at least one occurrence of Xj .

The following algorithm describes how to replace a given variable with a
given RTE. It is used with either the variable’s associated RTE, or a newly
created constant used as a concatenation symbol.

Algorithm 6.5. Replacing the variable with a given RTE.
Input: RTE equation system X = {Xj = Fj | j ∈ n̂}, variable Xk, where

k ∈ n̂, and RTE Er

Output: Modified RTE equation system X ′ = {Xj = F ′j | j ∈ n̂}

1. The replacement for RTE F is defined recursively.

a) For an alternation F = E1 + . . . + En, if any of E1, . . . , En are
Xk, replace them by Er. Perform the replacement method on the
remaining elements.

b) For a ranked symbol F = f(E1, . . . , En) of arity n, if any of
E1, . . . , En are Xk, replace them by Er. Perform the replacement
method on the remaining elements.

c) For an empty set F = ∅, do nothing.
d) For an iteration F = E∗c, if E is Xk, replace it by Er. Perform the

replacement method on E otherwise.
e) For a concatenation F = E1 ·c E2, if any of E1, E2 are Xk, replace

them by Er. Perform the replacement method on the remaining
elements.

The final result is, according to chapter 3, an union of RTEs of all RTEs
associated to variables of final states.

Algorithm 6.6. Construction of the resultant RTE.
Input: RTE equation system X = {Xj = Fj | j ∈ n̂}
Output: RTE F

1. Create a RTE representing an empty alternation.

2. For all final states q ∈ Qf , add the RTE associated to their associated
variables Xq to the alternation.
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6.2. RTE axioms

6.1.3 Optimization of the resultant RTE

The optimization of a RTE is performed through applying different axioms on
it. In this context, optimization means making the RTE shorter and better
readable.

Algorithm 6.7. Optimization of a given RTE.
Input: RTE F

Output: RTE Fopt

1. While any of the axioms may be applied on F , apply it.

2. Application of an axiom changes F and a different axiom which may not
have been applicable before may have become applicable.

3. Fopt is the final RTE when no axioms are applicable anymore.

6.2 RTE axioms

The implementations of RTE axioms vary depending on the axiom, but the
common property is that they all are only applicable on a given type of a RTE
and they all change the RTE.

Algorithm 6.8. Implementation of a given axiom.
Input: RTE F

Output: RTE Fopt

1. Inspect if the axiom is applicable to F in the given direction.

2. An axiom may change the type of some of the RTE elements. For
example, axiom (N12) changes an iteration to a constant. Depending
on the implementation, this may be necessary to deal with.

3. After the axiom is applied on F , Fopt is the result.
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Chapter 7
Implementation

7.1 Algorithms Library Toolkit

The Algorithms Library Toolkit (ALT), formerly known as Automata Library,
is a set of implementations of structures such as automata, grammars, reg-
ular (tree) expressions and others, and algorithms over the aforementioned
structures. It is constantly being updated and developed at the Department
of Theoretical Computer Science at the Faculty of Information Technology,
Czech Technical University in Prague. [10] The library is always growing and
evolving, receiving updates from faculty members as well as students as part
of their bachelor’s or Master’s thesis.

The ALT is written in pure C++. C++ is a widely known and one of
the most used programming languages in the world [11]. Originally devel-
oped as an extension of the C language, being called ”C with Classes”, C++
has since developed into a general-purpose programming language, combining
object-oriented, imperative, and generic paradigms, while providing both C-
like access to low-level memory and high-level-language-like features such as
containers in its standard library.

As the programmer is able to manage memory themself, C++ is regarded
as a very efficient and high-performance language. This makes it ideal for
implementations of performance-sensitive algorithms, which the ALT fulfills.

The C++ language is still being actively developed as of May 2019. The
latest standard of C++ is C++17 and the next standard planned is C++20. The
ALT utilizes new features from C++17.

The ALT is built by CMake. CMake is an ”open-source, cross-platform
family of tools designed to build, test and package software,” used to control
compilation of the project independently on the platform and compiler. [12]
However, as of the writing of this thesis, the ALT is only available on UNIX
platforms.

The ALT consists of two binaries, a command line interface executable
and a GUI environment. This is a recent development, formerly the ALT used
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to consist of several specialized executable files, for example agenerate2 for
generation of random structures, and aconversions2 for conversions between
different structures such as RTEs and FTAs. The ALT also consists of several
libraries, such as alib2algo, which contains the algorithms themselves, and
alib2data, which contains classes representing the data structures.

Extensions of the standard C++ library can also be found in the alib2std
library, in the ext namespace. Such extensions include pointer vectors, nullary,
unary, binary, and varary nodes, and others.

Upon launching the CLI executable, the user may input a series of com-
mands. An input for a command may either be read from the command line,
from a variable or from a file. The most common file type in the examples2
folder, which contains categorized examples of the data structures imple-
mented, is XML. Each structure has its own XML composer and XML parser
implemented.

Code 7.1. The following is a XML representation of a deterministic FTA.

<DFTA >
<states >

<Set ><Unsigned >1</ Unsigned ></Set >
</ states >
<finalStates >

<Set ><Unsigned >1</ Unsigned ></Set >
</ finalStates >
<rankedInputAlphabet >

<RankedSymbol ><Character >97</ Character ><Unsigned >1</
↪→ Unsigned ></ RankedSymbol >

<RankedSymbol ><Character >98</ Character ><Unsigned >0<
↪→ Unsigned ></ RankedSymbol >

</ rankedInputAlphabet >
<transitions >

<transition >
<input ><RankedSymbol ><Character >97</ Character ><

↪→ Unsigned >1</ Unsigned ></ RankedSymbol ></input >
<from ><Set ><Unsigned >1</ Unsigned ></Set ></from >
<to><Set ><Unsigned >1</ Unsigned ></Set ></to>

</ transition >
<transition >

<input ><RankedSymbol ><Character >98</ Character ><
↪→ Unsigned >0</ Unsigned ></ RankedSymbol ></input >

<from/>
<to><Set ><Unsigned >1</ Unsigned ></Set ></to>

</ transition >
</ transitions >

</DFTA >

It is a FTA with the ranked alphabet of {(a, 1), (b, 0)}, one state 1, which is
also a final state, and two transitions depicted in figure 7.1.
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7.1. Algorithms Library Toolkit

Note. The lowercase letter a is represented by number 97 and lowercase b is
represented by number 98 in ASCII.

1 ab

Figure 7.1: The finite tree automaton represented by example 7.1

Code 7.2. The following sets of commands:

execute automaton :: generate :: RandomTreeAutomatonFactory
↪→ ( size_t )5 ( size_t )3 ( size_t )3 (bool)true ( double )
↪→ "0.5" > $fta

execute $fta | automaton :: convert :: ToRegTreeExp -
quit

will generate a random tree automaton with the given parameters and store it
into the variable fta. Then, it will pass it as a parameter through the pipeline
to the algorithm for conversion to a RTE. With the quit command, the CLI
executable will quit.

After the name of the algorithm (with the corresponding namespaces) is
provided, the exact method to be executed is chosen from a list of overloads
of registered methods. The best candidate is chosen based on the number and
types of parameters.

Code 7.3. The following is a snippet of code showing registration of algo-
rithms performing conversions from a finite automaton to a regular expression.
This code is in the namespace automaton::convert.

// non - deterministic finite automaton
auto ToRegExpAlgebraicNFA = registration ::

↪→ AbstractRegister < ToRegExpAlgebraic , regexp ::
↪→ UnboundedRegExp < >, const automaton :: NFA < > & >
↪→ ( ToRegExpAlgebraic :: convert , " automaton " ).
↪→ setDocumentation ("...")

// deterministic finite automaton
auto ToRegExpAlgebraicDFA = registration ::

↪→ AbstractRegister < ToRegExpAlgebraic , regexp ::
↪→ UnboundedRegExp < >, const automaton :: DFA < > & >
↪→ ( ToRegExpAlgebraic :: convert , " automaton " ).
↪→ setDocumentation ("...")

UnboundedRegExp is the returned type, NFA or DFA is the argument which was
passed from the CLI.
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The integration tests for the ALT are run during the installation, or ex-
plicitly by calling make test.

7.2 Preexisting data structures used

The ALT already contained many data structures which were possible to reuse
in the algorithms described in previous chapters.

DFTA

One such structure already in the ALT is DFTA - a deterministic finite tree
automaton. A snippet highlighting some of the most important properties
and methods is shown in code 7.4.

Code 7.4. Snippet of DFTA class.

template < class SymbolTypeT = DefaultSymbolType , class
↪→ RankTypeT = DefaultRankType , class StateTypeT =
↪→ DefaultStateType >

class DFTA final : public ext :: CompareOperators < DFTA <
↪→ SymbolTypeT , RankTypeT , StateTypeT > >, public
↪→ core :: Components < DFTA < SymbolTypeT , RankTypeT ,
↪→ StateTypeT >, ext :: set < common :: ranked_symbol <
↪→ SymbolTypeT , RankTypeT > >, component ::Set ,
↪→ InputAlphabet , ext :: set < StateTypeT >, component
↪→ ::Set , std :: tuple < States , FinalStates > > {

ext :: map < ext :: pair < common :: ranked_symbol <
↪→ SymbolType , RankType >, ext :: vector < StateType >
↪→ >, StateType > transitions ;

const ext ::set <StateType >& getStates () const & {
return this -> template accessComponent <States > ().get ()

↪→ ;
}

bool addState ( StateType state ) {
return this -> template accessComponent <States > ().add (

↪→ std :: move ( state ) );
}

const ext :: map <ext :: pair <common :: ranked_symbol <
↪→ SymbolType , RankType >, ext :: vector <StateType > >,
↪→ StateType > & getTransitions () const & {

return transitions ;
}
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bool addTransition ( common :: ranked_symbol < SymbolType ,
↪→ RankType > current , ext :: vector < StateType >
↪→ children , StateType next );

}

As can be seen, the class is implemented through templates, and access to
properties common for all automata, such as states, is implemented through
the templates. Transitions differ for each type of automaton and therefore are
implemented in this class as a map of pairs of a symbol and a vector of states.
For example, a transition (f, q1, q2, q) is then represented as (f, (q1, q2, q)).

FormalRTE and related

The ALT already contained classes for FormalRTE and related classes. Types
of RTE are implemented as classes, inheriting from FormalRTEElement.
FormalRTE then contains a FormalRTEStructure member, which points to an
instance of a class extending FormalRTEElement.

The implemented algorithm works with unbounded RTEs. However, the
final result is, because of compatibility, transformed into a formal RTE. Code
snippets showing unbounded RTEs and related are shown in the following
section so they are omitted here as they are similar.

7.3 New data structures implemented

UnboundedRTE and related

Unbounded RTE is represented by the UnboundedRTE class. It uses templates
and inheritance from common classes, which is used to access the alphabet,
for example, and contains an instance of a UnboundedRTEStructure class, as
is shown in the following code snippet. The structure of classes describing
unbounded RTEs was derived from classes describing formal RTEs.

Code 7.5. UnboundedRTE class.

template < class SymbolType = DefaultSymbolType , class
↪→ RankType = DefaultRankType >

class UnboundedRTE final : public ext :: CompareOperators <
↪→ UnboundedRTE < SymbolType , RankType > >, public core
↪→ :: Components < UnboundedRTE < SymbolType , RankType
↪→ >, ext :: set < common :: ranked_symbol < SymbolType ,
↪→ RankType > >, component ::Set , std :: tuple <
↪→ GeneralAlphabet , ConstantAlphabet > > {

UnboundedRTEStructure < SymbolType , RankType > m_rte;
// constructors , methods ,...
}
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7. Implementation

The UnboundedRTEStructure class describes the structure of the RTE
itself.

Code 7.6. UnboundedRTEStructure class.

template < class SymbolType , class RankType >
class UnboundedRTEStructure final {
ext :: smart_ptr < UnboundedRTEElement < SymbolType ,

↪→ RankType > > m_structure ;
const UnboundedRTEElement < SymbolType , RankType > &

↪→ getStructure ( ) const;
void setStructure ( const UnboundedRTEElement <

↪→ SymbolType , RankType > & structure );
// other constructors , methods ...
}

The different types of RTEs are described by the following classes, which
all inherit from UnboundedRTEElement.

– UnboundedRTEAlternation

– UnboundedRTEIteration

– UnboundedRTESubstitution - this represents concatenation. The name
substitution was chosen to remain consistent with the formal implemen-
tation.

– UnboundedRTESymbolAlphabet

– UnboundedRTESymbolSubst for constants used in iterations and concate-
nations

– UnboundedRTEEmpty for the empty set ∅

Structure of the UnboundedRTEElement class is shown below.

Code 7.7. UnboundedRTEElement class.

template < class SymbolType , class RankType >
class UnboundedRTEElement : public ext :: CompareOperators

↪→ < UnboundedRTEElement < SymbolType , RankType > >,
↪→ public ext :: BaseNode < UnboundedRTEElement <
↪→ SymbolType , RankType > > {

virtual ext :: smart_ptr <UnboundedRTEElement < SymbolType
↪→ , RankType > > cloneWithoutSymbol ( const common ::
↪→ ranked_symbol < SymbolType , RankType > & symbol )
↪→ const = 0;

virtual void replaceAllOccurrences ( const
↪→ UnboundedRTESymbolAlphabet < SymbolType , RankType
↪→ > & replaced , const UnboundedRTEElement <
↪→ SymbolType , RankType > & by ) = 0;
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virtual bool testSymbol ( const common :: ranked_symbol <
↪→ SymbolType , RankType > & symbol ) const = 0;

virtual unsigned int getSymbolDepth ( ) const = 0;
virtual ext :: smart_ptr <FormalRTEElement < SymbolType ,

↪→ RankType > > asFormal ( ) const = 0;
// other methods , constructors , ...
}

The code snippet above shows some of the common methods for all RTE
types. For example, cloneWithoutSymbol() returns a clone of the given ele-
ment without any references to a given symbol, following the function subset-
without defined in definition 5.2. The replaceAllOccurrences() method
implements algorithm 6.5, getSymbolDepth() implements the depth method
described in algorithm 6.3, testSymbol() returns a Boolean value depending
on whether the RTE contains the given symbol.

All types of RTE inherit from BaseNode, and depending on the number
of children elements the RTE type can have, a concrete implementation of it
– NullaryNode for zero, as is case for empty set and substitution symbols,
UnaryNode for one, as is case for iteration, BinaryNode for two, as is case for
concatenation, and VararyNode for any integer, as is case for alternation and
ranked symbols.

All RTE elements also contain a method asFormal() which returns the
element’s equivalent as a formal RTE. Its implementation is trivial in all cases
but alternation, which is constrained by two elements for formal RTEs, and
thus for unbounded alternations containing more than two elements, needs to
be transformed through nesting. For example, a+ b+ c+ d+ e is transformed
into (a+ (b+ c)) + (d+ e).

RegularTreeEquationSolver

A new class for a solver of RTE equations was added. The following snippet
shows its structure.

Code 7.8. Structure of the RegularTreeEquationSolver class.

template < class SymbolType , class RankType , class
↪→ VariableType >

class RegularTreeEquationSolver {
public :

rte :: UnboundedRTE < SymbolType , RankType > solve ();
void addVariableNonFinalSymbol ( const VariableType &

↪→ state );
void addVariableFinalSymbol ( const VariableType &

↪→ state );
void addTransition ( const VariableType & to , const

↪→ common :: ranked_symbol < SymbolType , RankType > &
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↪→ rankedSymbol , const ext :: vector < VariableType
↪→ > & fromStates );

private :
ext :: map < rte :: UnboundedRTESymbolAlphabet < SymbolType ,

↪→ RankType >, rte :: UnboundedRTEAlternation <
↪→ SymbolType , RankType > > equations ;

ext :: map < VariableType , rte :: UnboundedRTESymbolAlphabet
↪→ < SymbolType , RankType > > stateToVariable ;

ext :: map < VariableType , rte :: UnboundedRTESymbolSubst <
↪→ SymbolType , RankType > > stateToSubst ;

ext :: vector < ext :: pair < VariableType , unsigned int > >
↪→ unresolvedStates ;

void jSplit ( const VariableType & state );
bool isRecursive ( const VariableType & state );

// and others ...
}

The solve() method implements algorithm 6.2. It utilizes, among others,
methods jSplit() and isRecursive(). Each state has its associated variable
and substitution symbol. Both are represented as constants. The equation
is a map from a variable to its associated RTE, which is represented as an
alternation. At the end of the solve() method, the RTE is optimized and all
alternations of one element are transformed into the one element.

7.4 Implementation of the conversion method

In the namespace automaton::convert, a class ToRegTreeExp was created.
This class has one method, convert(), which creates an instance of
RegularTreeEquationSolver, adds the corresponding states and transitions
on it, and gets a result through the solve() method. The obtained unbounded
RTE is then transformed into formal RTE using the asFormal() method.

The solve() method of the equation solver follows algorithm 6.2. The
equations are represented as a map from a symbol, representing the variable,
to an alternation. Each state has its associated variable and substitution
symbols. After the j-split for a chosen variable, its associated RTE is opti-
mized before replacing its variable in all other equations. In the end, a new
UnboundedRTEStructure is created and its RTE is set to a newly created
alternation of RTEs of variables of the final states. This alternation is then
optimized.

7.5 Implementation of axioms

The axioms are implemented in the alib2algo library, in the class
rte::simplify::RTEOptimize. While the work was being performed, a com-
mit to the master branch of the ALT created the class and implementation of
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axioms for formal RTEs. This change was then merged with the work being
performed, so in the end the result is that only the unbounded part was added.

The optimization through axioms may be performed either on an
UnboundedRTE, UnboundedRTEStructure, or UnboundedRTEElement. If per-
formed on a RTE or its structure, it returns a clone of the respective structure,
with the inner RTE optimized. If performed on a RTE element, it changes its
structure. In the implementation of the conversion method, optimization of
UnboundedRTE is used.

The structure of the optimization is very simple and is shown in the code
snippet below.

Code 7.9. Optimization through axioms.

template < class SymbolType , class RankType >
ext :: smart_ptr < rte :: UnboundedRTEElement < SymbolType ,

↪→ RankType > > RTEOptimize :: optimizeInner ( const rte
↪→ :: UnboundedRTEElement < SymbolType , RankType > &
↪→ node ) {

UnboundedRTEElement < SymbolType , RankType > * element
↪→ = node.clone ();

while ( X0 ( element ) || A1 ( element ) || A2 ( element )
↪→ || A3 ( element ) || A4 ( element ) || A5 ( element )
↪→ || A8 ( element ) || A9 ( element ) || B2 ( element )
↪→ || B3 ( element ) || B4 ( element ) || B7 ( element )
↪→ || N1 ( element ) || N2 ( element ) || N3 ( element )
↪→ || N4 ( element ) || N5 ( element ) || N6 ( element )
↪→ || N7 ( element ) || N8 ( element ) || N9 ( element )
↪→ || N10 ( element ) || N12( element ) || N11 ( element
↪→ ) || S ( element ) );

return ext :: smart_ptr < UnboundedRTEElement <
↪→ SymbolType , RankType > > ( element );

}

Each axiom has its own associated method, where it accepts a pointer to
the element as an argument and either modifies the element it points to, or
creates a new element and changes the pointer. Axioms (A1) through (A9),
(B2) through (B7), and (N1) through (N11) are named accordingly. Note
that even though the axioms are implemented for unbounded RTEs, they
are not named with the U modifier at the end. Method (X0) implements
an optimization where an alternation of one element is transformed into the
element, and method (S) implements optimization of inner elements of the
RTE - that is, if the RTE itself cannot be optimized anymore, its children are
optimized recursively. The order in which the optimizations are performed is
important – some axioms rely on the children of an element being sorted, for
example x = x+ x. A signature of an axiom method is shown below.
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Code 7.10. Signature of an axiom method.
template < class SymbolType , class RankType >
static bool axiom_name ( rte :: FormalRTEElement <

↪→ SymbolType , RankType > * & node );
}

Some of the axioms were very easy to implement, some were more difficult
and also complex. For example, the axiom (N2U) needed to compare all
occurrences of a ranked symbol to each other.

Originally, axiom (B6) was implemented. As was later found out, however,
that it needed to be modified, it showed that with such modifications its
implementation would be very demanding and requires more time to study
thoroughly. Therefore, axioms (B6-1) and (B6-2) were not implemented.
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Testing

The algorithms library toolkit already contains many integration tests in the
alib2integrationtest library. Therefore, the tests for implementation of
this work were made accordingly to be consistent.

The tests utilize the following pre-existing algorithms:

– automaton::generate::RandomTreeAutomatonFactory

– automaton::determinize::Determinize

– Trim, Minimize, Normalize from automaton::simplify

– rte::convert::ToFTAGlushkov

– compare::AutomatonCompare

Additionally, the implemented method,
automaton::convert::ToRegTreeExp, is of course used. The simplifications
using axioms are a part of this algorithm.

Unfortunately, there is no random RTE generator in the ALT. However,
with both random tests and tests from files, it was determined that the cov-
erage was sufficient.

All tests may be run using the make test command.

8.1 FTA files tests

The first part are integration tests for files describing FTAs in the examples2
folder. There are multiple deterministic and non-deterministic FTAs which
describe automata with various properties. The tests follow the pattern de-
scribed in the algorithm below.

Algorithm 8.1. FTA files tests.

1. From all files (N|D)FTA*.xml, read the automaton and determinize it.
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2. Convert the automaton to RTE using the newly implemented method
and convert it back to an automaton using ToFTAGlushkov.

3. Trim, minimize, and normalize the automaton from file and the automa-
ton obtained through conversions.

4. The automata should be equivalent.

8.2 RTE files tests

The second part are integration tests for files describing RTEs in the examples2
folder. The tests follow the pattern described in the algorithm below.

Algorithm 8.2. RTE files tests.

1. From all files rte[0-9].xml, read the RTE, convert it to an automaton
using ToFTAGlushkov and determinize it.

2. Convert the automaton to RTE using the newly implemented method
and convert it back to an automaton using ToFTAGlushkov.

3. Trim, minimize, and normalize the automaton from ToFTAGlushkov and
the automaton obtained through conversions.

4. The automata should be equivalent.

8.3 Random FTA tests

The last part are integration tests for randomly generated FTAs. The tests
follow the pattern described in the algorithm below.

Algorithm 8.3. Random FTA tests.

1. Generate a random tree automaton and determinize, trim, minimize,
and normalize it.

2. Convert the automaton to RTE using the newly implemented method
and convert it back to an automaton using ToFTAGlushkov.

3. Trim, minimize, and normalize the automaton obtained through conver-
sions.

4. The automata should be equivalent.
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Conclusion

The goal of this work consisted of two parts.
The first part was to study regular tree expressions and a method of conver-

sion from finite tree automata to regular tree expressions, and then implement
and test this method. This goal was met and the method was implemented
in the Algorithms Library Toolkit.

The second part was to study axioms for regular tree expressions, discuss
them, propose new ones, and implement them. This goal was also met –
fifteen (plus two unbounded) new axioms were proposed, three axioms were
extended for unbounded regular tree expressions, and one axiom was found
not to always hold and two new axioms were proposed in its stead. The
implementation was also completed in the Algorithms Library Toolkit.

For future work, one thing that stands out is to try and propose an axiom
similar to (B6), which will hold. Determining whether axiom (N7) can be
modified for unbounded RTEs is also worth considering.

Other ideas for future work include extending unboundedness to the con-
catenation operator and research in other methods for conversion from FTA
to RTE.

For the ALT, the newly proposed axioms may be implemented for formal
RTEs. Other methods for conversion may also be implemented after their
proposals. Extending the current method to work on non-deterministic FTAs
is also a possibility. For now, such FTA needs to be determinized first.
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Appendix A
Acronyms

ALT Algorithms Library Toolkit

CLI Command line interface

FTA Finite tree automaton

GUI Graphical user interface

HTML Hypertext markup language

RTE Regular tree expression

XML Extensible markup language
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Appendix B
Automata library toolkit manual

B.1 Requirements

As of the date of this thesis, the ALT can be only compiled and run on
Unix operating systems. Running a Unix operating system virtually should
be sufficient with enough RAM, which all modern computers should have
enough of.

The project is written in pure C++ and is built by cmake. The requirements
are:

• cmake ≥ 3.7

• make ≥ 3.9

• g++ ≥ 6.3 or clang ≥ 5.0

• tclap

• libxml2

• readline

For GUI, the following are also required:

• Qt5-qtbase ≥ 5.7

• jsoncpp

• graphviz

B.2 Installation

Extract the .zip file and in the folder with the project, run all-cmake-release.sh.

B.3 Running the toolkit

The binary for CLI is aql2. The binary for GUI is agui2.
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B. Automata library toolkit manual

B.4 Examples

The examples below are provided for the CLI.

execute < sandbox/rte.xml

Displays the RTE represented by the XML file.

execute < sandbox/rte.xml > $rte

Saves the RTE represented by the XML file to a variable rte.

execute < $rte

Displays the RTE saved in the variable rte.

execute automaton::generate::RandomTreeAutomatonFactory
(size t)5 (size t)3 (size t)3 (bool)true (double)0.5 > $nfta

Generates a random non-deterministic tree automaton with the
given parameters.

execute $nfta | automaton::determinize::Determinize - |
automaton::simplify::Trim - | automaton::simplify::Minimize
- | automaton::simplify::Normalize - > $dfta

determinizes, trims, minimizes, and normalizes the automaton saved
in $nfta and saves it to a variable dfta.

execute $dfta | automaton::convert::ToRegTreeExp - > $genrte

Converts the automaton from dfta and converts it to RTE using
the method studied in this thesis. The result is saved in variable
genrte.

execute < sandbox/rte.xml | rte::simplify::RTEOptimize -

Displays the RTE represented by the XML file after optimizations.

quit

Quits the CLI.

Example data structures, such as automata, RTEs, regular expressions,
and others, can be found in the examples2 folder.
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Appendix C
Contents of enclosed SD card

readme.txt...................the file with SD card contents description
alt.zip.............................archive with source codes for ALT
text..........................................the thesis text directory

DP Doupal Jakub 2019.pdf............the thesis text in PDF format
src ...................................... source codes of this thesis
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