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Abstrakt

Tato práce zabývá problémem analýzy sentimentu z audio soubor̊u, k čemuž
využ́ıvá LSTM śıt́ı, které porovnává se stávaj́ıćımi klasifikačńımi metodami.
Je navženo a implementováno několik postup̊u, jejich výsledky jsou v práci
shrnuty.

Kĺıčová slova Analýza sentimentu, audio, LSTM, EmoDB, SDT, klasi-
fikace

Abstract

This thesis deals with the problem of sentiment analysis from utterances by
using LSTM networks. These are compared with some more widespread clas-
sification methods. Several approaches are proposed, implemented and com-
pared to each other. The results are summarized.

Keywords Sentiment analysis, audio, LSTM, EmoDB, SDT, classification
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Introduction

The recognition of emotional states in speech is expected to play an increas-
ingly important role in applications such as media retrieval systems, car man-
agement systems, call center applications, personal assistants and the like.
In many languages, it is common that the meaning of spoken words changes
depending on speakers emotions, and consequently the emotional informa-
tion is important in order to understand the intended meaning. Emotional
Speech recognition is a complicated process. Its performance heavily relies on
the extraction and selection of features related to the emotional state of the
speaker in the audio signal of an utterance. For most of them, the methodol-
ogy has already been implemented, and they have been experimentally tested
and compared to Berlin database of emotional speech.

In the thesis, we use MPEG-7 low level audio descriptors [8] as features for
the recognition of emotional categories. To this end, we elaborate a method-
ology of combining MPEG-7 with several important kinds of classifiers. For
most of them, the methodology has already been implemented and tested with
the publicly available Berlin Database of Emotional Speech [9].

Due to the importance of recognizing emotional states in speech, research
into sentiment analysis from utterances has been emerging during recent years.
We are aware of 3 publications reporting research with the same database of
emotional utterances as we used – the Berlin Database of Emotional Speech,
used in our research. Let us recall each of them.

The research most similar to ours has been reported in [10], where the
authors also used MPEG-7 descriptors for sentiment analysis from utterance.
However, they used only scalar MPEG-7 descriptors or scalars derived with
time-series descriptors using the software tools Sound Description Toolbox [11]
and MPEG-7 Audio Reference Software Toolkit [12], whereas we are imple-
menting also a long-short-term memory network that will use the time series
directly. They also used only one classifier in their experiments, a combination
of a radial basis function network and a support vector machine.

In [13], emotions are recognized using pitch and prosody features, which are
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Introduction

mostly in time domain. Also in that paper, the experiments were performed,
and the authors used only one classifier, this time a support vector machine
(SVM).

The authors of [14] proposed a set of new 68 features, such as some based
on harmonic frequencies or the Zipf distribution, for better speech emotion
recognition. This set of features is used in a multi-stage classification. When
performing the sentiment analysis of the Berlin Database, the utterance clas-
sification to the considered emotional categories was preceded with a gender
classification of the speakers, and the gender of the speaker was subsequently
used as an additional feature for the classification of the utterances.

In the first chapter 1 important basic terms and definitions related to
datamining and machine learning are described. These are needed for under-
standing of the thesis.

The second chapter 2 deals with some suitable tools for audio descriptors
extraction and also introduces the proposal of several algorithms that can be
used for sentiment analysis from utterances.

The third chapter 3 covers the aspects of practical implementation of al-
gorithms that were introduced in the previous chapter.

In the last chapter 4 the implemented algorithms are tested on the real
dataset and the results are compared and visualized.

2



Chapter 1
Basic terms and definitions

1.1 Audio-visual content

Audio visual content equals high quality, useful information with the target to
present a story for the purpose of soliciting emotion or engagement. Audio-
visual content can be presented in many ways: textual, graphical, in the form
of video/audio etc.[15]

1.2 Bark scale

Bark scale is used to measure sound frequencies. Distances on this scale are
perceptually equal for the human ear. For this reason the scale values are
more and more linear below 500 Hz. Above the 500 Hz point the scale is
almost similar to a logaritmic frequency axis. [16]

1.3 Audio Descriptors

Audio descriptors represent certain characteristics of an audio recording, either
general, or deliberately chosen for a given purpose. They are obtained via
digital signal processing (peak ), or by classification (music genre). The levels
of audio descriptors refer to the length of the described audio segment, where
low–level descriptors consider an instantaneous feature, mid–level descriptors
describe a particular interval and high–level descriptors describe the whole
file. The characterization of audio descriptors is taken over from [17].

1.3.1 MPEG-7 Audio

MPEG-7 audio[18], [19] represents a standardized format to store audio de-
scription content. MPEG-7 defines a structured set of specific extensions to
XML schema, which can store both low-level and high-level descriptors. The
MPEG-7 serves as useful, implementation independent interface between the

3



1. Basic terms and definitions

Description

AV Content AV Content

AV Content

AV Descript AV Descript AV Descript

Figure 1.1: An MPEG-7 architecture requirement is that description must
be separated from the audiovisual content. On the other hand, there must
be a relation between the content and description. Thus the description is
multiplexed with the content itself.[1]

audio describing tools and the software that utilizes the audio descriptors,
including, of course, the methods of machine learning.

MPEG-7 additionally defines 17 low-level audio descriptors based on spec-
tral and temporal audio features. Lampropoulos and Tsihrintzis [20] classify
the descriptors in following groups:

1. Basic: Audio Power (AP), Audio Waveform(AWF).
Temporally sampled scalar values for general use, applicable to all
kinds of signals. The AP describes the temporally-smoothed in-
stantaneous power of samples in the frame, in other words it is a
temporal measurement of signal content as a function of time and
offers a quick summary of a signal in conjunction with other basic
spectral descriptors. The AWF describes audio waveform envelope
(minimum and maximum), typically for display purposes.
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1.3. Audio Descriptors

2. Basic Spectral: Audio Spectrum Envelop (ASE), Audio Spectrum
Centroid (ASC), Audio Spectrum Spread (ASS), Audio Spectrum
Flatness (ASF).
All share a common basis, all deriving from the short term audio sig-
nal spectrum (analysis of frequency over time). They are all based
on the ASE Descriptor, which is a logarithmic-frequency spectrum.
This descriptor provides a compact description of the signal spec-
tral content and represents the similar approximation of logarithmic
response of the human ear. The ASE descriptor is an indicator as
to whether the spectral content of a signal is dominated by high
or low frequencies. The ASC Descriptor could be considered as an
approximation of perceptual sharpness of the signal. The ASS de-
scriptor indicates whether the signal content, as it is represented by
the power spectrum, is concentrated around its centroid or spread
out over a wider range of the spectrum. This gives a measure which
allows the distinction of noise-like sounds from tonal sounds. The
ASF describes the flatness properties of the spectrum of an audio
signal for each of a number of frequency bands.

3. Basic Signal Parameters: Audio Fundamental Frequency (AFF) and
Audio Harmonicity (AH).
The signal parameters constitute a simple parametric description
of the audio signal. This group includes the computation of an
estimate for the fundamental frequency (F0) of the audio signal.
The AFF descriptor provides estimates of the fundamental frequency
in segments in which the audio signal is assumed to be periodic.
The AH represents the harmonicity of a signal, allowing distinction
between sounds with a harmonic spectrum (e.g., musical tones or
voiced speech e.g., vowels), sounds with an inharmonic spectrum
(e.g., bell-like sounds) and sounds with a non-harmonic spectrum
(e.g., noise, unvoiced speech).

4. Temporal Timbral: Log Attack Time (LAT), Temporal Centroid
(TC).
Timbre refers to features that allow one to distinguish two sounds
that are equal in pitch, loudness and subjective duration. These
descriptors are taking into account several perceptual dimensions
at the same time in a complex way. Temporal Timbral descriptors
describe the signal power function over time. The power function
is estimated as a local mean square value of the signal amplitude
value within a running window. The LAT descriptor characterizes
the ”attack” of a sound, the time it takes for the signal to rise from
silence to its maximum amplitude. This feature signifies the differ-
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1. Basic terms and definitions

ence between a sudden and a smooth sound. The TC descriptor
computes a timebased centroid as the time average over the energy
envelope of the signal.

5. Timbral Spectral descriptors: Harmonic Spectral Centroid (HSC),
Harmonic Spectral Deviation (HSD), Harmonic Spectral Spread
(HSS), Harmonic Spectral Variation (HSV) and Spectral Centroid.
These are spectral features extracted in a linear-frequency space.
The HSC descriptor is defined as the average, over the signal dura-
tion, of the amplitude-weighted mean of the frequency of the bins
(the harmonic peaks of the spectrum) in the linear power spectrum.
It is has a high correlation with the perceptual feature of ”sharpness”
of a sound. The HSD descriptor measures the spectral deviation of
the harmonic peaks from the global envelope. The HSS descriptor
measures the amplitude-weighted standard deviation (Root Mean
Square) of the harmonic peaks of the spectrum, normalized by the
HSC. The HSV descriptor is the normalized correlation between the
amplitude of the harmonic peaks between two subsequent time-slices
of the signal.

6. Spectral Basis, which consists of Audio Spectrum Basis (ASB) and
Audio Spectrum Projection (ASP).

1.3.2 Music Features

Music features are combination of MPEG-7 descriptors: 1.3.1 and other fea-
tures. These features are extracted to represent five perceptual dimensions
of music listening: energy, rhythm, temporal, spectrum and melody. The
following are groups of features(without MPEG-7) [21]:

1. Energy features: Specific loudness sensation coefficients (SONE), Total
loudness (TL).
The resulting power spectrum, which reflects human loudness sensation
better than AP, is called sonogram. SONE are the coefficients computed
from sonogram, which consists of up 24 Bark (1.2) critical bands (the
actual number of critical bands depends on the sampling frequency of
the audio signal). TL is computed as an aggregation of SONE based on
Steven’s method[22] which takes the sum of the largest SONE coefficient
and 0.15 ratio of the sum of the remainder coefficients.

2. Temporal features: Zero crossing rate (ZCR).
ZCR a measure of the signal noisiness, is computed by taking the mean

6



1.4. Classifiers and Classes

and standard deviation of the number signal values that cross the zero
axis in each time window(i.e., sign changes).

3. Spectrum features: Mel-frequency cepstral (MFCC) coefficients, Spec-
tral Contrast.
MFCC are commonly used timbre feature, the coefficients of the dis-
crete cosine transform of each short-term log power spectrum expressed
on a nonlinear perception-related Mel-frequency scale. It represents the
formant peaks of the spectrum.
Octave-based spectral contrast to capture the relative energy distribu-
tion of the harmonic components in the spectrum . The feature considers
the spectral peak, spectral valley, and their dynamics in each subband
and roughly reflects the relative distribution of the harmonic and non-
harmonic components in the spectrum

4. Harmony feature: Chroma
Chroma features are an interesting and powerful representation for music
audio in which the entire spectrum is projected onto 12 bins representing
the 12 distinct semitones (or chroma) of the musical octave

1.4 Classifiers and Classes

The machine learning techniques in this thesis solve a problem formally known
as classification. In [23], it is described as follows:

Formally, a classifier is a mapping of some feature space X to some
collection of classes c1, . . . , cm,

φ : X → C = {c1, . . . , cm}. (1.1)

The collection C is sometimes called classification of X , though more
frequently, the term classification denotes the process of constructing a
classifier φ and subsequently using it to predict the class of unseen inputs
x ∈X . Several important aspects of that process will be discussed in the
remaining sections of this chapter. Here, on the other hand, we will have
a closer look at the domain and value set of the mapping (1.1).

1. The feature space X is the space from which the combinations
x = ([x]1, . . . , [x]n) of values of input features are taken. Hence,
it is the Cartesian product V1 × · · · × Vn of sets V1, . . . , Vn of feasi-
ble values of the individual features. However, it is important that
not every combination ([x]1, . . . , [x]n) from the Cartesian product

7



1. Basic terms and definitions

of sets of feasible values is a feasible combination: imagine a rec-
ommender system and the combination of Client Age = 10 and
Client Marital Status = divorced. Hence, the domain of the
classifier φ is in general not the whole V1 × · · · × Vn, but only some
subset of it,

Domφ = X ⊂ V1 × · · · × Vn. (1.2)

The features [x]1, . . . , [x]n are alternatively called also attributes or
variables, and their number can be quite high: several thousands are
not an exception. From the point of view of data types, they can be
very diverse, e.g.:

• Continuous data, such as real numbers, sound energy of speech
or music, intensity of light.
• Ordinal data, such as various preferences, lexicographically or-

dered parts of text.
• Categorical data, aka nominal data, such as sex, place of res-

idence, or colour, with a finite set V of feasible values. The
elements of V are called categories.
• Binary data, such as sex, are categorical data for which the

cardinality |V | of the set V fulfils |V | = 2. They are, of
course, a specific kind of categorical data, but at the same
time, any categorical data can be always represented by a vec-
tor of binary data, usually of the binary data with the value
set {0, 1}. Indeed, if the |V | elements of V are enumerated as
v1, . . . , v|V |, then the element vj can be represented by a vector
bj ∈ {0, 1}|V | such that

[bj ]j = 1, [bj ]k = 0 for k 6= j. (1.3)

2. The collection of classes C = {c1, . . . , cm} is always finite. Most
common is the case m = 2, called binary classification, e.g., spam
and ham, products to be recommended and those not to be rec-
ommended, malware and harmless software, network intrusion and
normal traffic. For binary classification, a different notation is fre-
quently employed, e.g., C = {c+, c−}, C = {1, 0}, C = {1,−1}, the
first of the involved cases being called positive, the second negative.
The case m = 3 is sometimes obtained from binary classification
through introducing an additional class for those cases causing dif-
ficulties to the classifier. The interpretation of such a class then
means” to some degree positive, to some certain degree negative”.

8



1.5. Measures of Classifier Performance

1.5 Measures of Classifier Performance

M. Holeňa in [23] additionally introduces the metrics used to evaluate and
compare the performance of classifiers:

When solving a particular classification task, we typically have a large
number of classifiers available. What helps to choose the most suitable
one is on the one hand understanding their principles and underlying as-
sumptions, on the other hand comparing different of them on the relevant
data. Each such comparison has two ingredients:
(i) A set, or more generally a sequence x1, . . . , xq of independent in-

puts from the feature space such that for each xk, k = 1, . . . , q,
we know the correct class ck. For the comparison based on the
pairs (x1, c1), . . . , (xq, cq) not to be biased, they must be selected
independently of those used as the classifier was constructed. If
(x1, c1), . . . , (xq, cq) have been selected in this way, then they are
usually called test data.

(ii) A function evaluating the performance of the classifier on
(x1, c1), . . . , (xq, cq). The value of that function has usually the
meaning of some error that the classifier φ makes when classify-
ing x1, . . . , xq. Therefore, a generic function of that kind will be in
the following denoted as ERφ.

The function ERφ depends both on the test data (x1, c1), . . . , (xq, cq)
and on the classes φ(x1), . . . , φ(xq) predicted for x1, . . . , xq by φ. Thus if
we restrict attention to crisp classifiers (1.1), then in general,

ERφ : X × C × C → R. (1.4)

Frequently, ERφ depends on x1, . . . , xq only through the predictions φ(x1),
. . . , φ(xq), hence

ERφ : C × C → R. (1.5)

In such a case, ERφ is completely determined by the counts of data with
the correct class ci and classified to the class cj ,

qi = |{k|1 ≤ k ≤ q, ck = ci, φ(xk) = cj}|, i, j = 1, . . . ,m (1.6)

Together with the overall count of test data with the correct class ci, and
the overall count of test data classified to cj ,

qi· =
m∑
j=1

qi,j , respectively q·j =
m∑
i=1

qi,j , i, j = 1, . . . ,m (1.7)

9



1. Basic terms and definitions

they form the following matrix, called confusion matrix of the classifier φ:

q q·1 . . . q·m
q1· q1,1 . . . q1,m
. . . . . . . . .
qm· qm,1 . . . qm,m

(1.8)

The most commonly encountered function of the kind1.5 is classification
error – the proportion of test data for which φ(xk) 6= ck:

ERφ = ERCE = 1
m

∑
i 6=j

qi,j . (1.9)

The complementary proportion of test data for which φ(xk) = ck is called
accuracy, or frequently predictive accuracy, to emphasize that it means
the prediction of correct class for the unseen test data,

AC = 1
m

m∑
i=1

qi,i = 1− ERCE . (1.10)

Notice that according to (1.9) and (1.10), all erroneous classifications
φ(xk) 6= ck contribute to ERCE equally. This corresponds to an assump-
tion that all kinds of erroneous classifications are equally undesirable.
Therefore, a weighted error (or cost-weighted error) is used as a more
realistic counterpart of (1.9)

ERφ = ERW = 1
m

m∑
i=1

∑
j 6=i

wi,jqi,j , (1.11)

where wi,j , i, j = 1, . . . ,m,denotes the weight or cost of the misclassifica-
tion φ(xk) = cj if the correct class is ci. Formally, also a cost of correct
classification can be introduced, wi,i, i = 1, . . . ,m, normally set to wi,i = 0,
which simplifies (1.11) to

ERφ = ERW = 1
m

m∑
i,j=1

wi,jqi,j . (1.12)

The traditional classification error then corresponds to the classification
cost

wi,j =
{

1 if i 6= j

0 if i = j.
(1.13)

Frequently, the costs wi,j are scaled so that
∑m
i,j=1wi,j = 1. This is always

possible through dividing them by the original
∑m
i,j=1wi,j . It turns the

10



1.5. Measures of Classifier Performance

costs to a probability distribution on the pairs (i, j)mi,j=1 and the cost-
weighted error (1.12) to the mean value of classification error with respect
to that distribution. For the traditional classification error (1.9), these
scaled costs are wi,j = 1

m(m−1) , i 6= j.

1.5.1 Performance Measures in Binary Classification

In the case of a binary classifier φ : X → {c+, c−},there are only 4
possible values qi,j ,which have got their specific names, introduced below
in Table 1.1. Frequently, they are used as rates with respect to the overall
number q+· assigned to the class c+ and the overall number q−· assigned
to the class c−, as is also explained in Table 1.1. By means of the values
in this table, classification error (1.9) can be rewritten as

ERCE = 1
q

(FP + FN), (1.14)

accuracy (1.10) as

AC = 1
q

(TP + TN), (1.15)

and cost-weighted error(1.12), using a notation analogous to wi, j for a
classification into the classes c+,c−, as

ERW = 1
q

(w++TP + w+−FN + w−+FP + w−−TN). (1.16)

Apart from (1.14)–(1.16), also the true positive rate TPr, false positive
rate FPr, true negative rate TNr and the additional measures precision and
F -measure are often used as performance measures in binary classification.
Precision PR is defined

PR = TP
q·+

, (1.17)

the definition of the F -measure FM is

FM = 2 PR·TPr
PR+TPr . (1.18)

Due to the ubiquity of binary classification, several of its performance
measures are known also under alternative names. The most important
among such synonyms are as follows:

11
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Table 1.1: Confusion matrix in binary classification
q = q·+ + q·− Classified as Rate (r)
= q+· + q−· c+ : q·+ c− : q·−

Correct c+ : q+· true positive (TP) false negative (FN) TPr= TP
q+·

FNr= FN
q+·

class c− : q−· false positive (FP) true negative (TN) FPr= FP
q−·

TNr= TN
q−·

• predictive value is a synonym for precision,

• sensitivity and recall are synonyms for true positive rate,

• specificity is a synonym for true negative rate.

In binary classification, classifier performance is very often character-
ized not by a single performance measure, but by two such measures simul-
taneously. Most common are the pairs of measures (FPr,TPr), (AC,PR) a
(PR,TPr). Notice that an ideal classifier, i.e., one for which true positive
rate is 1 and false positive rate is 0, has the following values of those three
pairs of measures:

(FPr,TPr) = (0, 1), (AC,PR) = (1, 1), (PR,TPr) = (1, 1). (1.19)

A pair of performance measures is particularly useful in the following
situations:
(i) The performance of a classifier has been measured with different

test data, typically with different subsequences of the sequence
(x1, c1), . . . , (xq, cq).

(ii) The performance has been measured not for a single classifier, but
for a set of classifiers, typically classifiers of the same kind, differing
through the values of one or several parameters.

In both situations, the resulting pairs form a set in the 2-dimensional
space, which can be connected with a curve according to increasing values
of one of the two involved measures. For the pair of measures (FPr,TPr),
such curves are called receiver operating characteristics (ROC) because
they were first proposed for classification tasks in radar detection. If
the ROC curve is constructed in the situation (i), then it provides an
additional performance measure of the considered classifier. The area
under the ROC curve, i.e. the area delimited from above by the curve,
from below by the value TPr=0 and from the left and right by the values

12
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FPr=0 and FPr=1,has the size AUC=
∫ 1

0 TPr dFPR. Because the highest
possible value of TPr is 1, AUC is delimited by

AUC =
∫ 1

0
TPr dFPR ≤

∫ 1

0
1dFPr = 1 (1.20)

This performance measure summarizes the pairs of measures obtained for
several sequences of test data (those used to construct the ROC curve)
into one value.

1.6 Employed Classification Methods

We have elaborated our approach to sentiment analysis from utterances for six
classification methods: k nearest neighbors, support vector machines, multi-
layer perceptrons, classification trees, random forests [24] and long short-term
memory (LSTM) networks [25, 26, 27].

1.6.1 k Nearest Neighbours (kNN)

A very traditional way of classifying a new feature vector x ∈ X if a sequence of
training data (x1, c1), . . . , (xp, cp) is available is the nearest neighbour method:
take the xj that is the closest to x among x1, . . . , xp, and assign to x the class
assigned to xj , i.e., cj .

A straightforward generalization of the nearest neighbour method is to
take among x1, . . . , xp not one, but k feature vectors xjj , . . . , xjk closest to x.
Then x is assigned the class c ∈ C fulfilling

|{i, 1 ≤ i ≤ k|cji = c}| = maxc′∈C |{i, 1 ≤ i ≤ k|cji = c′}|. (1.21)

This method is called, expectedly, k nearest neighbours, or k-NN for short.

13
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1.6.2 Support Vector Machines (SVM)

Figure 1.2: In figure A, the target labels can be separated with a line. This
is called linear separability and can be done not only by SVM, but by any
classifier whose output is a linear combination of input features. The figure B
shows data which cannot be linearly separated, at least not in 2D space. As a
linear classifier, SVM achieves the non-linear classification by adding another
dimension to the data and separating them in the higher dimension. In the
figure B, the data would be moved to 3D space and linearly separated by a
plane.[2]

Support vector machines are classifiers into two classes. This method at-
tempts to derive from the training data (x1, c1), . . . , (xp, cp) the best possible
generalization to unseen feature vectors.

If both classes, more precisely their intersections with the set {x1, . . . , xp}
of training inputs, are in the space of feature vectors linearly separable, the
method constructs two parallel hyperplanes H+ = {x ∈ Rn|x>w + b+ =
0}, H− = {x ∈ Rn|x>w + b− = 0} such that the training data fulfil

ck =
{

1 if x>w + b+ ≥ 0,
-1 if x>w + b− ≤ 0,

k = 1, . . . , p, (1.22)

H+ ∩ {x1, . . . , xp} 6= ∅, H− ∩ {x1, . . . , xp} 6= ∅. (1.23)

The hyperplanes H+ and H− alle called support hyperplanes. Their com-
mon normal vector w and intercepts b+, b− are obtained through solving the
following constrained optimization task:

Maximize with respect to w, b+, b− the distance

d(H+, H−) = b+ − b−
‖w‖

(1.24)

on condition that the p inequalities (1.22) hold.
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The distance (1.24) is commonly called margin. The solution to this optimiza-
tion task coincides with the (w∗, b∗+, b∗−, α∗1, . . . , α∗p) of the Lagrange function

L(w, b+, b−, α1, . . . , αp) = ‖w‖2 +
p∑

k=1
αk(

, b+ − b−
2 − ckx>k w) (1.25)

where α1, . . . , αp ≥ 0 are Lagrange coefficients of the optimization task. Once
the saddle point (w∗, b∗+, b∗−, α∗1, . . . , α∗p) is found, the classifier is defined by

φ(x) =
{

1 if
∑
xk∈S α

∗
kckx

>xk + b∗ ≥ 0,
−1 if

∑
xk∈S α

∗
kckx

>xk + b∗ < 0,
(1.26)

where b∗ = 1
2(b∗+ + b∗−) and

S = {xk|α∗k > 0}. (1.27)

Due to the Karush-Kuhn-Tucker (KKT) conditions,

α∗k(
b∗+ − b∗−

2 − ckx>k w∗) = 0, k = 1, . . . , p, (1.28)

all feature vectors from the set S lie on some of the suport hyperplanes (1.23).
Therefore, they are called support vectors. This name together with the obser-
vation that they completely determine the classifier defined in (1.26) explains
why such a classifier is called support vector machine.

If the intersections of both classes with the training inputs are not linearly
separable, a SVM is constructed similarly, but instead of the set of possible
fature vectors, now the set of functions

κ(·, x) for all possible feature vectors x (1.29)

is considered, where κ is a kernel, i.e., a mapping on pairs of feature vectors
that is symmetric and such that for any k ∈ N and any sequence of different
feature vectors x1, . . . , xk, the matrix

Gκ(x1, . . . , xk) =

κ(x1, x1) . . . κ(x1, xk)
. . . . . . . . . . . . . . . . . . . . . . . .
κ(xk, x1) . . . κ(xk, xk)

 , (1.30)

which is called the Gramm matrix of x1, . . . , xk, is positive semidefinite, i.e.,

(∀y ∈ Rk) y>Gκ(x1, . . . , xk)y ≥ 0. (1.31)

The most commonly used kinds of kernels are the Gaussian kernel with a
parameter ς > 0,

(∀x, x′ ∈ Rn
′) κ(x, x′) = exp

(
−1
ς
‖x− x′‖2

)
, (1.32)
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and polynomial kernel with parameters d ∈ N and c ≥ 0,

(∀x, x′ ∈ Rn
′) κ(x, x′) = (x>x′ + c)d. (1.33)

It is known [28] that, due to the properties of kernels, if the joint distri-
bution of a sequence of different feature vectors x1, . . . , xk is continuous, then
almost surely any proper subset of the set of functions {κ(·, x1), . . . , κ(·, xk)}
is in the space of all functions (1.29) linearly separable from its complement.

However, the featre vectors x and xk can’t be simply replaced by the
corresponding functions κ(·, x) and κ(·, xk) in the definition (1.26) of a SVM
classifier because a transpose x> exists for a finite-dimensional vector, but
not a for an infinite-dimensional function. Fortunately, the transpose occurs
in (1.26) only as a part of the scalar product x>xk. And a scalar product can
be defined also on the space of all functions (1.29). Namely, the properties of
a scalar product has the function that to the pair of functions (κ(·, x), κ(·, x′)
assigns the value κ(x, x′). Using this scalar product in (1.26), we obtain the
following definition of a SVM classifier for linearly non-separable classes:

φ(x) =
{

1 if
∑
xk∈S α

∗
kckκ(x, xk) + b ≥ 0,

−1 if
∑
xk∈S α

∗
kckκ(x, xk) + b ≥ 0.

(1.34)

1.6.3 Multilayer Perceptrons (MLP)

A multilayer percptron is a mapping φ of feature vectors to classes with which
a directed graph Gφ = (V, E) is associated. Due to the inspiration from
biological neural networks, the vertices of Gφ are called neurons and its edges
are called connections. In addition, Gφ is required to have a layered structure,
which means that the set V of neurons can be decomposed into L+1 mutually
disjoint layers, V = V0 ∪ V1 ∪ · · · ∪ VL, L ≥ 2, such that

(∀(u, v) ∈ E) u ∈ Vi, i = 0, . . . , L− 1 & v 6∈ Vi ⇒ v ∈ Vi+1. (1.35)

The layer I = V0 is called input layer of the MLP, the layer O = VL its output
layer and the layers H1 = V1, . . . ,HL−1 = VL−1 its hidden layers.

The purpose of the graph Gφ associated with the mapping φ is to define
a decomposition of φ into simple mappings assigned to hidden and output
neurons and to connections between neurons (input neurons normally only
accept the components of the input, and no mappings are assigned to them).
Inspired by biological terminology, mappings assigned to neurons are called
somatic, those assigned to connections are called synaptic.

To each connection (u, v) ∈ E , the multiplication by a weight w(u,v) is
assigne as a synaptic mapping:

(∀ξ ∈ R) f(u,v)(ξ) = w(u,v)ξ. (1.36)
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To each hidden neuron v ∈ Hi, the following somatic mapping is assigned:

(∀ξ ∈ R| in(v)|) fv(ξ) = ϕ(
∑

u∈in(v)
[ξ]u + bv), (1.37)

where [ξ]u for u ∈ in(v) denotes the component of ξ that is the output of
the synaptic mapping fu,v assigned to the connection (u, v), in(v) = {u ∈
V|(u, v) ∈ E} is the input set of v, and ϕ : R→ R is called activation function.
Though the activation functions, in applications typically sigmoidal functions
are used to this end, i.e., functions that are non-decreasing, piecewise contin-
uous, and such that

−∞ < lim
t→−∞

ϕ(t) < lim
t→∞

ϕ(t) <∞. (1.38)

The activation functions most frequently encountered in MLPs are:

• the logistic function,

(∀t ∈ R) ϕ(t) = 1
1 + e−t ; (1.39)

• the hyperbolic tangent,

ϕ(t) = tanh t = et − e−t

et + e−t . (1.40)

To an output neuron v ∈ O, also a somatic mapping of the kind (1.37) with
the activation functions (1.39) or (1.40) can be assigned. If it is the case, then
the class c predicted for a feature vector x is obtained as c = arg maxi(φ(x))i,
where (φ(x))i denotes the i-the component of φ(x). Alternatively the acti-
vation function assigned to an output neuron can be the step function, aka
Heaviside function

ϕ(t) =
{

0 if t < 0,
1 if t ≥ 0.

(1.41)

In that case, the value (φ(x))c already directly indicates whether x belongs to
the class c.

1.6.4 Classification Trees (CT)

A classifier φ : X → C = {c1, . . . , cm} is called binary classification tree, if
there is a binary tree Tφ = (Vφ, Eφ) with vertices Vφ and edges Eφ such that:
(i) Vφ = {v1, . . . , vL, . . . , v2L−1}, where L ≥ 2, v0 is the root of Tφ, v1, . . . , vL−1

are its forks and vL, . . . , v2L−1 are its leaves.
(ii) If the children of a fork v ∈ {v1, . . . , vL−1} are vL ∈ Vφ (left child) and

vR ∈ Vφ (right child) and if v = vi, v
L = vj , v

R = vk, then i < j < k.
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(iii) To each fork v ∈ {v1, . . . , vL−1}, a predicate ϕv of some formal logic is
assigned, evaluated on features of the input vectors x ∈ X .

(iv) To each leaf v ∈ {vL, . . . , v2L−1}, a class cv ∈ C is assigned.
(v) For each input x ∈ X , the predicate ϕv1 assigned to the root is evaluated.
(vi) If for a fork v ∈ {v1, . . . , vL−1}, the predicate ϕv evaluates true, then

φ(x) = cvL in case vL is already a leaf, and the predicate ϕvL is evaluated
in case vL is still a fork.

(vii) If for a fork v ∈ {v1, . . . , vL−1}, the predicate ϕv evaluates false, then
φ(x) = cvR in case vR is already a leaf, and the predicate ϕvR is evaluated
in case vR is still a fork.

1.6.5 Random Forests (RF)

Random Forests are ensembles of classifiers in which the individual members
are classification trees. They are constructed by bagging, i.e., bootstrap ag-
gregation of individual trees, which consists in training each member of the
ensemble with another set of training data, sampled randomly with replace-
ment from the original training pairs (x1, c1), . . . , (xp, cp). Typical sizes of
random forests encountered in applications are dozens to thousands trees.
Subsequently, when new subjects are input to the forest, each tree classifies
them separately, according to the leaves at which they end, and the final clas-
sification by the forest is obtained by means of an aggregation function. The
usual aggregation function of random forests is majority voting, or some of its
fuzzy generalizations.

According to which kind of randomness is involved in the costruction of
the ensemble, two broad groups of random forests can be differentiated:

1. Random forests grown in the full input space. Each tree is trained using
all considered input features. Consequently, any feature has to be taken
into account when looking for the split condition assigned to an inner
node of the tree. However, features actually occurring in the split con-
ditions can be different from tree to tree, as a consequence of the fact
that each tree is trained with another set of training data. For the same
reason, even if a particular feature occurs in split conditions of two dif-
ferent trees, those conditions can be assigned to nodes at different levels
of the tree.
A great advantage of this kind of random forests is that each tree is
trained using all the information available in its set of training data. Its
main disadvantage is high computational complexity. In addition, if sev-
eral or even only one variable are very noisy, that noise gets nonetheless
incorporated into all trees in the forest. Because of those disadvantages,
random forests are grown in the complete input space primarily if its
dimension is not high and no input feature is substantially noisier than
the remaining ones.
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2. Random forests grown in subspaces of the input space. Each tree is
trained using only a randomly chosen fraction of features, typically a
small one. This means that a tree t is actually trained with projec-
tions of the training data into a low-dimensional space spanned by some
randomly selected dimensions it,1 ≤ · · · ≤ it,dt ∈ {1, . . . , d}, where d is
the dimension of the input space, and dt is typically much smaller than
d. Using only a subset of features not only makes forest training much
faster, but also allows to eliminate noise originating from only several
features. The price paid for both these advantages is that training makes
use of only a part of the information available in the training data.

1.6.6 Long Short-Term Memory (LSTM)

Figure 1.3: The difference in the information flow between a RNN and a
Feed-Forward Neural Network. [3]

An LSTM network is used for classification of sequences of feature vectors, or
equivalently, multidimensional time series with discrete time. Alternatively,
it can be also employed to obtain sequences of such classifications, i.e., in
situations when the neural network input is a sequence of feature vectors and
its output is a a sequence of classes. Differently to most of other commonly
encountered kinds of artificial neural networks, an LSTM layer connects not
simple neurons, but units with their own inner structure. Several variants
of an LSTM have been proposed (e.g., [25, 26]), all of them include at least
the following four kinds of units described below. Each of them has certain
properties of usual ANN neurons, in particular, the values assigned to them
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depend, apart from a bias, on values assigned to the unit input at the same
time step and on values assigned to the unit output at the previous time step.
Hence, an LSTM network layers is a recurrent network.

(i) Memory cells can store values, aka cell states, for an arbitray time. They
have no activation function, thus their output is actually a biased linear
combination of unit inputs and of the values from the previous time step
coming through recurrent connections.

(ii) Input gate controls the extent to which values from the previous unit or
from the preceding layer influence the value stored in the memory cell.
It has a sigmoidal activation function, which is applied to a biased linear
combination of unit inputs and of values from the previous time step,
though the bias and synaptic weights of the input and recurrent con-
nections are specific and in general different from the bias and synaptic
weights of the memory cell.

(iii) Forget gate controls the extent to which the memory cell state is su-
pressed. It again has a sigmoidal activation function, which is applied
to a specific biased linear combination of unit inputs and of values from
the previous time step.

(iv) Output gate controls the extent to which the memory cell state influences
the unit output. Also this gate has a sigmoidal activation function, which
is applied to a specific biased linear combination of unit inputs and of
values from the previous time step, and subsequently composed either
directly with the cell state or with its sigmoidal transformation, using
another sigmoid than is used by the gates.
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1.7 Verification methods

1.7.1 Cross validation

Figure 1.4: Diagram of k-fold cross-validation with k = 4. [4]

Cross-validation is a systematic use of available data that allows to measure
the performance of a statistical method. Its core idea is to iteratively split all
data into two disjunct sets, the training set and the validation set. For each
iteration, model parameters are optimized to fit the training set. This model
is then used to evaluate the data from validation set, where the difference
between predicted and actual values represent a measure of fit for the iteration.
The combination of measures of fit over all iterations provide the estimated
performance of the statistical method on unknown data.

In k-fold cross-validation, the data is shuffled and partitioned into k sets
of equal size. The cross-validation then runs in k iterations, where each of the
k sets is used exactly once as a validation set, while the remaining k − 1 sets
serve as training data. Each iteration produces one measure of fit. These are
then combined to produce a single performance estimation. The bias of k-fold
cross-validation depends on a careful choice of k.

Stratified k-fold cross-validation is a modified version typically used for
classification problems. In this version, the partitioning of data is done so
that the distribution of all classes is roughly the same in each of the k sets.

In repeated random cross-validation, also called Monte Carlo cross-validation,
both the size of validation set and its content are chosen randomly. [29]
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1.7.2 Friedman test

Friedman test compares the performance of k classifiers on N datasets and
determines, whether there are statistically significant differences in the per-
formance of the classifiers. Demsar [5] defines:

The Friedman test [30] is a non-parametric equivalent of the repeated-
measures ANOVA. It ranks the algorithms for each data set separately,
the best performing algorithm getting the rank of 1, the second best rank
2, etc. In case of ties, average ranks are assigned.

Let rji be the rank of the j-th of k algorithms on the i-th of N data
sets. The Friedman test compares the average ranks of algorithms, Rj =
1
N

∑N
i=1 r

j
i . Under the null-hypothesis, which states that all the algorithms

are equivalent and so their ranksRj should be equal, the Friedman statistic

χ2
F = 12N

k(k + 1)

 k∑
j=1

R2
j −

k(k + 1)2

4

 (1.42)

is distributed according to χ2
F with k− 1 degrees of freedom, when N and

k are big enough (as a rule of a thumb, N > 10 and k > 5).

1.7.3 Holm correction

The Bonferroni-Holm correction [7] is used when multiple hypotheses are
tested. Bonferroni correction re-calculates the rejection criteria of all hy-
potheses according to desired FWER (which is a level of significance α shared
by all hypotheses). Holm correction uses a different re-calculation method,
which additionally reduces the Type II error.

The method is defined according to [31]:

• Let H1, . . . ,Hm be a family of m null hypotheses and P1, . . . , Pm the
corresponding p-values.

• Start by ordering the p-values (from lowest to highest) P(1) . . . P(m)
and let the associated hypotheses be H(1) . . . H(m)

• For a given significance level α, let k be the minimal index such that
P(k) >

α
m+1−k

• Reject the null hypotheses H(1) . . . H(k−1) and do not reject
H(k) . . . H(m)
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• If k = 1 then do not reject any of the null hypotheses and if no such
k exist then reject all of the null hypotheses.
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Chapter 2
Approach

2.1 Available tools

2.1.1 Tools for Working with MPEG-7 Descriptors

We utilized the Sound Description Toolbox [11] and MPEG-7 Audio Analyzer
- Low Level Descriptors Extractor [32] for our experiments. Both of them
extract a number of MPEG-7 standard descriptors, both scalar ones and a time
series. In addition, the SDT also calculates perceptual features such as Mel
Frequency Cepstral Coefficients, Specific Loudness and Sensation Coefficients.
From these descriptors SDT calculates means, covariances, means of first-
order differences and covariances of first order differences. The Total number
of features provided by this toolbox is 187.

2.1.2 Tools for Working with music features

LibROSA[33] is a python package for music and audio analysis. It provides
the building blocks necessary to create music information retrieval systems.
Outputs are time series.

2.1.3 np2mat

np2mat[34] is function for convert python (Numpy) ndarray to Matlab matrix.
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2.2 Workflow

SDT and cross-validation (Fig: 2.1)

Figure 2.1: An overview of the sentiment analysis process.

Algorithm 1 SDT and cross validation algorithm for evaluating models on
emotions

1: procedure SDTAndCrossValidation
2: extract scalar values from audio files from EmoDB with SDT.
3: load scalar values items and their classification to Matlab.
4: for each model (kNN, SVM, MLP, DT, RF) Mi do
5: for each cross-validation fold Fi do
6: train Mi on training data not included in Fi
7: calculate accuracy from Mi on testing data Fi
8: calculate AUC for each emotion on testing data from Fi

9: calculate average accuracy and AUC for Mi.
10: return accuracy and AUC results.
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2.2. Workflow

SDT and Friedman test (Fig:2.2)

Figure 2.2: An overview of the Friedman test process.

Algorithm 2 STD and Cross validation algorithm for evaluating Friedman
test on models

1: procedure SDTAndFriedmanTest
2: extract scalar values for audio files from EmoDB with SDT.
3: load scalar values items and their classification to Matlab.
4: separate them by speaker and create 10 subsets
5: for speaker do Si
6: train model on other speakers data
7: calculate accuracy from model on Si data
8: calculate AUC for each emotion on Si data
9: save accuracy and AUC results

10: calculate Friedman test with Holm correction
11: return results
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MPEG-7 Audio Analyzer and cross-validation (Fig:2.3)

Figure 2.3: An overview of the sentiment analysis by LSTM network process.

Algorithm 3 MAA and Cross validation algorithm for evaluating LSTM
network on emotions

1: procedure MAAAndLSTM
2: for audio file f do
3: load time series Tf
4: for i ∈ Tf do
5: SLen(i)+ = i

6: for i ∈ S do
7: for j ∈ i do
8: while Width(j) < MaxWidth(i) do
9: newJ+=j

10: j = newJ [0,MaxWidth(i)]

11: for i ∈ S do
12: for cross-validation fold Fi do
13: train MLSTM on training data not included in Fi
14: calculate accuracy from MLSTM on testing data from Fi
15: calculate AUC for each emotion on testing data from Fi

16: calculate average accuracy and AUC for MLSTM

17: save accuracy and AUC results
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LibROSA and cross-validation

Figure 2.4: An overview of the sentiment analysis by LSTM network process.

Algorithm 4 Librosa and Cross validation algorithm for evaluating LSTM
on emotions

1: procedure LibrosaAndLSTM
2: for audio file f do
3: load time series Tf
4: for i ∈ Tf do
5: S+ = i

6: for j ∈ S do
7: while Width(j) < MaxWidth(S) do
8: newJ+=j
9: j = newJ [0,MaxWidth(S)]

10: for cross-validation fold Fi do
11: train MLSTM on training data not included in Fi
12: calculate accuracy from MLSTM on testing data from Fi
13: calculate AUC for each emotion on testing data from Fi

14: calculate average accuracy and AUC for MLSTM

15: save accuracy and AUC results
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Chapter 3
Implementation

3.1 Prerequisites

• For SDT: Matlab 2012b and older is needed. (function wavread)

• For LSTM: Matlab 2017b and newer.

• For Librosa: Python package Librosa and Numpy.

• For MAA: working internet connection.

3.2 Python

3.2.1 lstm features generator-EmoDB

This file contains the following functions:

• path to audiofiles - This function takes path to directory as input param-
eter and returns python list containing all file names in that directory.

• extract audio features - This function takes list of file names and ex-
tracts Librosa descriptors (MFCC, Spectral Centroid, Chroma, Spectral
Contrast) for each file.

This script saves Librosa descriptors as ndarray (Numpy).

3.2.2 downloader(mechanize).py

This script takes an input and an output folder. For each file in input folder it
connects to MAA[32] and performs the remote analysis of MPEG-7 descrip-
tors. The results are downloaded in the form of XML file.
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Python
lstm features generator-EmoDB..................................
downloader(mechanize).py.......................................

Matlab
EmoDB

dt.m...........................................................
dt1speaker.m..................................................
emotion.m.....................................................
generateDataByPython.m ......................................
generateMfcc..................................................
generateMpeg7.m ..............................................
generateSubset.m.............................................
knn.m..........................................................
knn1speaker.m.................................................
lstm.m.........................................................
meanROC.m.....................................................
mlp.m..........................................................
mlp1speaker.m.................................................
repeatonmax.m.................................................
rf.m...........................................................
rf1speaker.m..................................................
ROCbyEmotion.m ...............................................
svm.m..........................................................

3.3 Matlab

3.3.1 Basics and definition

• A cell array is a data type with indexed data containers called cells,
where each cell can contain any type of data.[35]

• An ndarray is a (usually fixed-size) multidimensional container of items
of the same type and size.[36]

3.3.2 dt.m

”dt.m” loads SDT cell array. Then it trains Decision tree using cross validation
for evaluation of accuracy and AUC for each emotion.

3.3.3 dt1speaker.m

”dt1speaker.m” loads SDT cell array sorted by speakers. The current speaker
is then taken out from the dataset. The script trains Decision tree on other
speakers and evaluates accuracy and AUC for each emotion of current speaker
afterwards.
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3.3.4 emotion.m

”emotion.m” contains function that translates emotion acronyms from german
to english.

3.3.5 generateDataByPython.m

”generateDataByPython.m” converts ndarray (Librosa descriptors) to Matlab
cells using function np2mat and saves it.

3.3.6 generateMfcc.m

”generateMfcc.m” reads audio files, then calculates MFCC (via Matlab func-
tion) and converts them into one cell array.

3.3.7 generateMpeg7.m

”generateMpeg7.m” transforms XML files (MPEG-7 descriptors) to 7 subsets
(identify by length) of cell arrays.

3.3.8 generateSubset.m

”generateSubset.m” loads SDT feature matrices (for each audio file) and con-
verts them into cell array. From SDT cell arrays it creates subset for each
speaker that is then used for Friedman test.

3.3.9 knn.m

”knn.m” loads SDT cell array. In the next step trains kNN classifier using
cross validation for evaluation of accuracy and AUC for each emotion.

3.3.10 knn1speaker.m

”knn1speaker.m” reads SDT cell array sorted by speakers. The current speaker
is taken out from the dataset. The script trains kNN classifier on other speak-
ers and evaluates accuracy and AUC for each emotion of the current speaker
afterwards.

3.3.11 lstm.m

”lstm.m” loads time series of MPEG-7 and Librosa. Then trains LSTM net-
work using cross validation for evaluation of accuracy and AUC for each emo-
tion.
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3.3.12 meanROC.m

”meanROC.m” creates figure for model. This figure contains ROC curve of 7
emotions and is calculated using mean value from cross-validation.

3.3.13 mlp.m

”mlp.m” reads SDT cell array. In the next step trains Multilayer perceptron
using cross validation for evaluation of accuracy and AUC for each emotion.

3.3.14 mlp1speaker.m

”mlp1speaker.m” loads SDT cell array sorted by speakers. The current speaker
is then taken out from the dataset. The script in the next step trains Multi-
layer perceptron on other speakers and evaluates accuracy and AUC for each
emotion of current speaker.

3.3.15 repeatonmax.m

”repeatonmax.m” takes each matrix in the cell array and its time sequence is
repeated until it matches or exceeds length of the longest matrix in the cell
array. Eventual overlap is cut and modified cell array are returned.

3.3.16 rf.m

”rf.m” loads SDT cell array. Then trains Random forest using cross validation
for evaluation of accuracy and AUC for each emotion.

3.3.17 rf1speaker.m

”rf1speaker.m” reads SDT cell array, sorted by speakers. The current speaker
is taken out from the dataset afterwards. The script then trains Random
forest classifier on other speakers and evaluates accuracy and AUC for each
emotion of current speaker.

3.3.18 ROCbyEmotion.m

”ROCbyEmotion.m” creates figure for each emotion. This figure contains
ROC curve of SDT based classifiers.

3.3.19 svm.m

”svm.m” loads SDT cell array. In the next step trains 7 Support vector ma-
chines (one for each emotion) using cross validation for evaluation of accuracy
and AUC for each emotion.
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3.3. Matlab

3.3.20 svm1speaker.m

”svm1speaker.m” reads SDT cell array, sorted by speakers. The current
speaker is then taken out from the dataset. The script trains 7 Support vector
machines on other speakers and evaluate accuracy and AUC for each emotion
of current speaker afterwards.
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Chapter 4
Testing

4.1 Berlin Database of Emotional Speech

For the evaluation of classifiers, we use the publicly available dataset ”EmoDB”,
aka Berlin database of emotional speech. It consists of 535 emotional utter-
ances in 7 emotional categories namely anger, boredom, disgust, fear, happi-
ness, sadness and neutral. These utterances are sentences read by 10 profes-
sional actors, 5 males and 5 females [9], which were recorded in an anechoic
chamber under supervision by linguists and psychologists. The actors were ad-
vised to read these predefined sentences in the targeted emotional categories,
but the sentences do not contain any emotional bias. A human perception
test was conducted with 20 persons, different from the speakers, in order to
evaluate the quality of the recorded data with respect to recognisability and
naturalness of presented emotion. This evaluation yielded a mean accuracy
86% over all emotional categories.

4.2 Experimental Testing

4.2.1 Experimental Settings for SDT based classifiers

As input features, the outputs from the Sound Description Toolbox were used.
Consequently, the input dimension was 187. The classifiers were compared by
means of a 10-fold cross-validation, using the following settings for each of
them:

• For the k nearest neighbors classification, the value k = 9 was chosen by
a grid method from 〈1, 80〉. This classifer was applied to data normalized
to zero mean and unit variance.

• Support vector machines are constructed for each of the 7 considered
emotions, to classify between that emotion and all the remaining ones.
They employ auto-scaled Gaussian kernels and do not use slack variables.
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Table 4.1: Accuracy and area under curve (AUC) of the implemented classi-
fiers on the whole Berlin database of emotional speech. AUC is measured for
binary classification of each of the considered 7 emotions against the rest

Classifier Accuracy AUC emotion against the rest
Anger Boredom Disgust

kNN 0.73 0.956 0.933 0.901
SVM 0.93 0.979 0.973 0.966
MLP 0.78 0.977 0.969 0.964
DT 0.59 0.871 0.836 0.772
RF 0.71 0.962 0.949 0.920

Classifier AUC emotion against the rest
Fear Happiness Neutral Sadness

kNN 0.902 0.856 0.962 0.995
SVM 0.983 0.904 0.974 0.997
MLP 0.969 0.933 0.983 0.996
DT 0.782 0.683 0.855 0.865
RF 0.921 0.882 0.972 0.992

• The MLP has 1 hidden layer with 70 neurons. Hence, taking into account
the input dimension and the number of classes, the overall architecture
of the MLP is 187-70-7.

• Classification trees are restricted to have at most 23 leaves. This upper
limit was chosen by a grid method from 〈1, 50〉, taking into account the
way how classification trees are grown in their Matlab implementation.

• Random forests consist of 50 classification trees, each of them taking
over the above restriction. The number of trees was selected by a grid
method from 10, 20,. . . ,100.

4.2.2 Comparison of Classifiers for data from SDT

First, we compared the already implemented classifiers on the whole Berlin
database of emotional speech, with respect to the accuracy and the area un-
der the ROC curve (area under curve, AUC). Since the ROC curve makes
sense only for a binary classifier, we computed areas under 7 separate curves
corresponding to classifiers classifying always 1 emotion against the rest. The
results are presented in Table 4.1 and in Figure 4.1 4.2. They clearly show
SVM as the most promising classifier. It has the highest accuracy, and also
the AUC for binary classifiers corresponding to 5 of the 7 classifiers

Then we compared the classifiers separately on the utterances of each of the
10 speakers who created the database. The results are summarized in Table 4.2
for accuracy and Table 4.3 for AUC averaged over all 7 emotions. They
indicate a great difference between most of the compared classifiers. This is
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4.2. Experimental Testing

Table 4.2: Comparison between pairs of implemented classifiers with respect
to accuracy, based on 10 independent parts of the Berlin database of emotional
speech corresponding to 10 different speakers. The result in a cell of the table
indicates on how many parts the accuracy of the row classifier was higher :
on how many parts the accuracy of the column classifier was higher. A result
in bold indicates that after the Friedman test rejected the hypothesis of equal
accuracy of all classifiers (significance level 5%), the post-hoc test according to
[5, 6] rejects the hypothesis of equal accuracy of the particular row and column
classifiers. All simultaneously tested hypotheses were corrected in accordance
with Holm [7]

classifier kNN SVM MLP DT RF
kNN 0:10 3.5:6.5 9:1 5:5
SVM 10:0 10:0 10:0 10:0
MLP 6.5:3.5 0:10 10:0 7:3
DT 1:9 0:10 0:10 0:10
RF 5:5 0:10 3:7 10:0

confirmed by the Friedman test of the hypotheses that all classifiers have equal
accuracy and equal average AUC. The Friedman test rejected both hypotheses
with a high significance: With the Holm correction for simultaneously tested
hypotheses [7], the achieved significance level (aka p-value) was 4 · 10−6. For
both hypotheses, posthoc tests according to [5, 6] were performed, testing
equal accuracy and equal average AUC between individual pairs of classifiers.
For the family-wise significance level 5%, they reveal the following Holm-
corrected significant differences between individual pairs of classifiers: both for
accuracy and averaged AUC: (SVM,DT), (MLP,DT), and in addition between
(kNN,SVM), (SVM,RF) for accuracy.

4.2.3 Experimental Settings for LSTM

The output from MPEG-7 Audio Analyzer is set of seventeen descriptors, from
these descriptors the subset of following seven descriptor groups that have the
same length for each audio file are selected:

• Audio Spectrum Envelope, Audio Spectrum Centroid, Audio Spectrum
Spread, Audio Spectrum Projection

• Audio Spectrum Basis

• Audio Spectrum Flatness

• Audio Waveform, Audio Power

• Audio Harmonicity, Audio Fundamental Frequency
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Table 4.3: Comparison between pairs of implemented classifiers with respect to
the AUC averaged over all 7 emotions, based on 10 independent parts of the
Berlin database of emotional speech corresponding to 10 different speakers.
The result in a cell of the table indicates on how many parts the AUC of
the row classifier was higher : on how many parts the AUC of the column
classifier was higher. A result in bold indicates that after the Friedman test
rejected the hypothesis of equal AUC of all classifiers (significance level 5%),
the post-hoc test according to [5, 6] rejects the hypothesis of equal AUC of the
particular row and column classifiers. All simultaneously tested hypotheses
were corrected in accordance with Holm [7]

classifier kNN SVM MLP DT RF
kNN 2:8 0:10 10:0 4:6
SVM 8:2 5:5 10:0 9:1
MLP 10:0 5:5 10:0 9:1
DT 0:10 0:10 0:10 0:10
RF 6:4 1:9 1:9 10:0

• Harmonic Spectral Centroid, Harmonic Spectral Deviation, Harmonic
Spectral Spread

• Harmonic Spectral Variation

The following descriptor groups are used as input for LSTM network:
MFCC, Spectral Center, Chroma, Spectral Contrast from LibROSA (with
settings hop length=512 and n mfcc=13), using the following settings:

• The first LSTM network has 1 hidden layer (”last”). Number of neurons
was selected from 200, 250,. . . ,400, with 200 epoch.

• The second LSTM network has 2 hidden layers (”sequence”,”last”).
Number of neurons was selected from 100,. . . ,250, with 350 epoch.

The number of input neurons depends on MPEG7 group (59,29,19,3,3,3,1)
and in case LibROSA is 33. All LSTM networks had fullyConnectedLayer with
7 neurons (the number of classes), softmaxLayer, classificationLayer, were used
with training options Adam, mini batch size 350 and were compared with 10-
fold cross-validation.
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4.2.4 Validation of LSTM Feasibility

Data set is created by a numerical solution of Navier-Stokes[37] differential
equation intended for neural networks for CFD (computational fluid dynam-
ics) modeling. It consists of 500 items with 2 input and 6 output sequences.
Every sequence has a length of 100. It is a sequence-to-sequence regression.

4.2.4.1 Preprocessing of LSTM netowk

In order to optimize the size of LSTM and computational time the data must
be preprocessed by the following algoritm.

% input contains Navier-Stokes system of equations
% output contains solution of these equations
% countTimeSeries is number of sacrificed coefficients

numResponses=size(output,3);
for i=1:size(input,1)

inputx{i}=squeeze(input(i,:,:));
inputx{i}=inputx{i}(countTimeSeries+1:size(input,2),:);
outputx{i}=squeeze(output(i,:,:));

for j=1:numResponses
for k=1:countTimeSeries

inputx{i}=[inputx{i} outputx{i}(countTimeSeries+1-k:size(output,2)-k,j)];
end

end
inputx{i}=inputx{i}’;
outputx{i}=outputx{i}(countTimeSeries+1:size(output,2),:)’;

end
input=inputx;
output=outputx;

4.2.4.2 Experimental Settings

• All sequences are normalized by z-score.[38]

• Number of sacrificed time series is 4.

• The LSTM network has 1 hidden layer (”sequence”). Number of neurons
was 200.

• Learning time is 1000 epoch.

LSTM network had fullyConnectedLayer with 6 neurons (the number of out-
put sequences), regressionLayer, were used with training options Adam and a
mini batch size 450. They were compared with 10-fold cross-validation.
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4.2.4.3 Experimental Result

The LSTM network had an average RMSE 0.0424.

4.2.5 LSTM Classification

4.2.5.1 MPEG-7 Descriptors

Figure 4.3: Compare accuracy MPEG-7 groups.

For all experiments with outputs from MPEG-7 Audio Analyzer with repeat
on max length (for each item, its time sequence is repeated until it matches
or exceeds length of the longest item. Eventual overlap is cut) were results for
different configurations of LSTM similar: Table 4.4

4.2.5.2 Librosa features

LSTM network with 33 input neurons and 1 hidden layer: Table 4.5
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Table 4.4: Accuracy of the LSTM network on MPEG-7 groups

Group Accuracy
ASE, ASC, ASS, ASP 0.39

ASB 0.20
ASF 0.27

AWF, AP 0.25
AH, AFF 0.41

HSC, HSD, HSS 0.47
HSV 0.24

Table 4.5: Accuracy and area under curve (AUC) of the LSTM with 1 hidden
layer on the whole Berlin database of emotional speech. AUC is measured for
binary classification of each of the considered 7 emotions against the rest

HN Accuracy AUC emotion against the rest
Anger Boredom Disgust

200 0.6464 0.9604 0.8639 0.9224
250 0.6991 0.9639 0.8931 0.9316
300 0.6952 0.9579 0.8867 0.9256
350 0.6915 0.9494 0.8863 0.9316
400 0.6563 0.9517 0.9020 0.9543

HN AUC emotion against the rest
Fear Happiness Neutral Sadness

200 0.9405 0.8641 0.9158 0.9860
250 0.9535 0.8975 0.9414 0.9853
300 0.9410 0.8678 0.9291 0.9932
350 0.9468 0.8580 0.9179 0.9904
400 0.9208 0.8563 0.9067 0.9879

LSTM network with 33 input neurons and 2 hidden layers: Table 4.6
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Table 4.6: Accuracy and area under curve (AUC) of the LSTM with 2 hidden
layers on the whole Berlin database of emotional speech. AUC is measured
for binary classification of each of the considered 7 emotions against the rest

HN Accuracy AUC emotion against the rest
Anger Boredom Disgust

100,100 0.5418 0.9464 0.8494 0.8581
150,100 0.5531 0.9557 0.8422 0.8404
150,150 0.5848 0.9523 0.8513 0.8696
200,100 0.6075 0.9631 0.8595 0.8794
200,150 0.5963 0.9499 0.8294 0.9168
200,200 0.6147 0.9480 0.8516 0.8795
250,100 0.6377 0.9655 0.8708 0.8942
250,150 0.6261 0.9621 0.8684 0.8995
250,200 0.6246 0.9592 0.8662 0.9104
250,250 0.5939 0.9419 0.8648 0.8559

HN AUC emotion against the rest
Fear Happiness Neutral Sadness

100,100 0.8664 0.8359 0.8532 0.9660
150,100 0.9052 0.8413 0.8841 0.9609
150,150 0.9100 0.8291 0.8652 0.9622
200,100 0.9159 0.8569 0.8804 0.9742
200,150 0.8676 0.8609 0.8649 0.9753
200,200 0.9141 0.8533 0.8714 0.9678
250,100 0.9120 0.8874 0.8866 0.9917
250,150 0.9097 0.8509 0.9087 0.9802
250,200 0.8950 0.8546 0.8863 0.9837
250,250 0.9123 0.8173 0.8834 0.9787
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4.3 Evaluation of results

• SVM and MLP are very successfull. SVM has accuracy of over 92%
(Table 4.1).

• Statistical testing (Friedman test) confirms differences between SVM,
MLP on the one hand, and DT, RF on the other hand (Tables 4.2 4.3).

• MPEG-7 descriptors have different length of time series, therefore they
must be separated in subsets with the same length.

• In case of MPEG-7 descriptors, almost every group has the learning
function constant (even after 1000 epochs the LSTM network is not
able to learn) or the testing accuracy is under 25%.

• Raw MPEG descriptors seem to not be suitable for LSTM networks.

• Aligned time series from MPEG-7 descriptors obtained by repeating
shorter sequences have better results than without it (but time points
don’t match). Figure 4.3.

• For MFCC calculated from Matlab, LSTM network loss function has
NaN value. (Probably some internal overflow in the library)

• Aligned time series from Librosa obtained by repeating shorter sequences
have better results than without it (but time points didn’t match). It is
same case with MPEG-7 descriptors.

• Librosa features with aligned length of time series have significantly bet-
ter results than MPEG-7 descriptors. Accuracy is over 65% (Tables 4.5
4.6).

• LSTM networks work very well on sequence to sequence problems (Sub-
section 4.2.4).
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Figure 4.1: ROC curve for all emotions on the whole Berlin database
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Figure 4.2: ROC curve for all emotions on the whole Berlin database
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Figure 4.4: ROC curve for LSTM with 1 hidden layer with 250 neurons on
the whole Berlin database

Figure 4.5: ROC curve for LSTM with 2 hidden layer with 250-100 neurons
on the whole Berlin database
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Conclusion

The presented work investigates the possibilities to analyse emotions in ut-
terances based on MPEG-7 features. We implemented six classification meth-
ods, some of them use 187 scalar features and others use time series features.
K nearest neighbours classifier, support vector machines, multilayer percep-
trons, decision trees and random forests and long short term memory network
were implemented.

The obtained results indicate that especially support vector machines and
multilayer perceptrons are quite successfull for this task.

Statistical testing confirms significant differences between these two kinds
of classifiers on the one hand, and decision trees an random forests on the
other hand.

In the beginning of the work, we encountered a problem with LSTM net-
work unability to learn on MPEG-7 audio descriptors. This state was lasting
for some months, the extraction of Librosa descriptors was used in meantime
to overcome the problem. Librosa was able to achieve only sligthly better
results. Via continuous analysis we found out that for satisfactory results the
data of approximately the same length should be used. This was not our case
due to very variant audio lengths.

After imputation of these ”missing data” by repetition, the LSTM net-
work performance drastically increased. However, the results of classification
based on MPEG-7 descriptors (Subsection 4.2.5.1,) was still poor. On the con-
trary, the Librosa descriptors (Subsection 4.2.5.2) based classification achieved
around 70 percent of accuracy.

It can be stated that EmoDB is definitively not an ideal case of dataset
for classification by LSTM networks. SVM and MLP (Subsection 4.2.2) out-
performed the LSTM by achieving around 80-90% accuracy.

Feasibility of our LSTM network implementation was validated on another
dataset, regarding Subsection 4.2.4. This dataset describes regression prob-
lem and was considered ideal for LSTM. The network performed very well
achieving RMSE around 0.042.
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Conclusion

For the training of the classifier, the performance of personal computer was
enough. The training of LSTM network in particular was done using a stan-
dard GPU. There was no need to use computational power of Metacentrum
cloud.

Part of this thesis was presented on the workshop ITAT 18th.[39] .

Future work

For the experimentation with LSTM networks, another dataset also focused
on audio classification, GZTAN looks far more appropriate because it contains
audio recordings of the same length.

The article[40] suggests that only one LSTM network may not be ideal for
multiclass data. This observation indicates that multi model methods such
as boosting, bagging or stacking could be good candidates for extending this
thesis.
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Appendix A
Acronyms

AC Accuracy

AFF Audio Fundamental Frequency

AH Audio Harmonicity

ANN Artificial Neural Network

ANOVA Analysis of variance

AP Audio Power

ASB Audio Spectrum Basis

ASC Audio Spectrum Centroid

ASE Audio Spectrum Envelop

ASF Audio Spectrum Flatness

ASP Audio Spectrum Projection

ASS Audio Spectrum Spread

AUC Area Under Curve

AWF Audio Waveform

CFD Computational Fluid Dynamics

CT Classification Trees

EmoDB Berlin database of emotional speech

FM F-measure

FN False Negative
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A. Acronyms

FP False Positive

HSC Harmonic Spectral Centroid

HSD Harmonic Spectral Deviation

HSS Harmonic Spectral Spread

HSV Harmonic Spectral Variation

KKT Karush-Kuhn-Tucker

kNN k Nearest Neighbours

LAT Log Attack Time

LSTM Long short-term memory

MAA MPEG-7 Audio Analyzer

MLP Multilayer Perceptrons

MPEG Moving Picture Experts Group

PR Precision

RF Random Forests

RMSE Root Mean Square Error

RNN Recursive Neural Network

ROC Receiver Operating Characteristic

SDT Sound Description Toolbox

SVM Support vector machine

TC Temporal Centroid

TN True Negative

TP True Positive
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Appendix B
Contents of CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

EmoDB.............................. the directory of dataset EmoDB
Matlab..............................the directory of Matlabs scripts
Python ............................. the directory of Pythons scripts
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
DP Kozusznik Jiri 2018.pdf ......... the thesis text in PDF format
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