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Instructions

A crucial challenge for self-flying tripulated aircraft is handling the necessary maneuvers for landing. In this
work we explore the feasibility of teaching an airplane to land. The method is trained and tested using
professional flight simulation software.

1) Provide a general context of the landing problem and survey of the existing methods for automatic
landing.
2) Explore in particular the approaches around model-free methods (reinforcement learning).
3) Consider possible optimizations and improvements.
4) Implement the improved method and analyze the performance of the achieved results.
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Abstrakt

Táto práca sa zaoberá problematikou umelej inteligencie zameranej na pristávanie
dopravného lietadla Boeing 737-800. Ako simulačné prostredie využ́ıva X-
Plane 11 a na základe dát extrahovaných z tohoto simulátora natrénujeme
rôzne modely zachytávajúce dynamiku letu počas pristávania. Jednotlivé
modely optimalizujeme a porovnávame, ako presne dokážu spomı́nanú dy-
namiku reprezentovať. Tieto modely využ́ıvame na efekt́ıvne natrénovanie
agentov pomocou učenia so spätnou väzbou pomocou metódy kŕıžnej entropie
využit́ım troch rôznych odmeňovaćıch funkcíı. Ciělom tohoto trénovania je
naučǐt agentov s lietadlom pristáť. Agentov optimalizujeme vzȟladom na
odmeňovacie funkcie a na záver vyberieme troch elitných agentov, ktorých
otestujeme naspäť v prostred́ı X-Plane. Výstupom je zhodnotenie ako úspešńı
elitńı agenti sú vzȟladom na podmienky bezpečného a stabilizovaného pristátia
a vyvodenie záveru, či by umelá inteligencia mohla nahradǐt pilota.

Kĺıčová slova Autonómne lietadlo, dynamický model, letectvo, metóda
kŕıžovej entropie, stabilizované pribĺıženie, učenie so spätnou väzbou, umelá
inteligencia, X-Plane
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Abstract

This work is concerned with the issue of autonomous landing of airliner Boeing
737-800. As the simulation environment, X-Plane 11 is used, and based on
the data obtained from this simulator, we develop various models capturing
flight dynamics during landing. We optimize each model and compare how
accurately they represent the dynamics. These models are utilized for training
policy effectively using reinforcement learning algorithm with cross entropy
method and three different reward functions. The aim of this training is
to teach the aircraft to land. The agents are optimized according to reward
functions and in the end we select three elite agents that we test back in the X-
Plane environment. The outcome of this evaluation is how successful the elite
agents are with regard to the conditions of safe and stabilized approach and
conclusion, whether the pilot could be replaced by the artificial intelligence.

Keywords Artificial intelligence, autonomous aircraft, aviation, cross-entropy
method, dynamics model, reinforcement learning, stabilized approach, X-
Plane
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Introduction

Motivation

Money. Nowadays, everything revolves around money. Aviation industry is
no exception - quite the opposite. Aviation industry is dependent on money
circulation a lot more than other industries, because every single part of the
aircraft undergoes strict inspections and has to fit various regulations, which
prolongs and overcharges the process of constructing an airplane and its in-
troduction into real use.

How much though?

Let us get the idea of how much money is in the aviation industry. Airlines
need to own or lease airplanes in the first place. How many airplanes do
airlines own? As the table 0.1 shows, the differences are great even between
the largest airlines. [1]

Rank Airline Country Fleet
1 American Airlines United States 952
2 Delta Air Lines United States 850
3 United Airlines United States 745
4 Southwest Airlines United States 697
5 China Southern Airlines China 545
6 China Eastern Airlines China 486
7 Ryanair Ireland 413
8 Air China China 392
9 FedEx Express United States 371
10 Turkish Airlines Turkey 329

Table 0.1: Major airlines by fleet size
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Introduction

Aircraft In service Orders Price (mil. USD)
Boeing 737-800 304 — 102.2
Airbus A321-200 219 — 118.3
Airbus A319-100 126 7 92.3
Boeing 737 MAX 8 16 84 117.1
Airbus A321neo — 100 129.5

Table 0.2: American airlines fleet

However, this still does not say how much it costs. Let us have a look
at the fleet of the American Airlines. As they have many different types of
aircrafts, we only pick the most common (or to be common) aircrafts out of
the fleet.

Getting deeper into analyzing the expenses of an airline, we see how many
airplanes does the American airlines own and will own in following years in
the table 0.2 [2]. As we can see, also the prices of the airplanes are included
and they are sky-high [3, 4]. Furthermore, the expenses do not end with
purchasing the fleet - quite the opposite. Now that we have the fleet, we need
to have the aircrafts insured, maintained and also populated by the crew.

To get the idea of how to measure the operating cost of an aircraft, we
need to understand two terms first:

1. Block Hour means the period of time (in minutes) beginning when an
Aircraft first moves from the ramp blocks in connection with a Scheduled
Flight, a Non-Scheduled Flight or a Charter Flight and ending when the
Aircraft next comes to a stop at the ramp at any station or other point of
termination as recorded by ACARS or another mutually agreed system,
divided by sixty (60). [5]

2. Cost per available seat mile (CASM) is a commonly used measure of
unit cost in the airline industry. CASM is expressed in cents to operate
each seat mile offered, and is determined by dividing operating costs
by ASMs. This number is frequently used to allow a cost comparison
between different airlines or for the same airline across different time
periods (say for one year vs the preceding year). A lower CASM means
that it is easier for the airline to make a profit, as they have to charge
less to break even. A low CASM, however, is by no means a guarantee
of profitability. Further, CASM should only be compared across airlines
with care. For instance, all other things being equal, an airline with
a longer average stage length will have a lower CASM, because fixed
costs will account for a lower portion of its total costs. For this reason,
to be meaningful, CASM comparisons across different airlines generally
require, at a minimum, that CASMs for all airlines be adjusted to a
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Motivation

common stage length, or that the CASMs be graphed versus the stage
length of all the airlines being compared. [6]

Understanding these two terms, we can measure how much does a flight
cost. Let us take a 1000 mile flight with a Boeing 737-800. Having 172
seats [7], we generate 172 000 ASMs. According to [8], cost per available seat
mile (CASM) for year 2017 for the American airlines was $0.138 and so this
example flight would cost $23736. Considering that this flight would take
approximately 3 hours, we get cost per block hour of $7912. As [9] says, total
cockpit cost per block hour of the American airlines for year 2017 was $1236
which consists of paying two pilots. We see that the cost of pilots is 15.62%
out of the total cost per block hour.

Getting rid of the aircrew

Knowing how much of operating cost of an airplane do pilots consume, we
can see the logic in downsizing the aircrew. In past (before 1980), there were
three people in the cockpit. As the navigation systems were not advanced
enough for the pilots to rely on them, apart from the captain and the first
officer, there was also a navigator [10]. However, this downsizing was quite a
long time ago.

Lately, there were statements from Boeing, that there are and will be
efforts to reduce the size of aircrew even more. The single pilot operated
jets are at hand [11] and autonomous jets are the vision of the future [12],
which means that the aircraft will have to handle even the most difficult tasks
performed by pilots.

Looking back at the money, this would save great amount of money as
the American airlines employs 14000 pilots [13] with average yearly salary of
$152,461 [14].

What does the airplane need to handle?

Considering that we want an aircraft to fly the whole flight by itself, we need
to know whether this task is feasible. To see how difficult each phase of the
flight is, we should look at the number off accidents that happen in each phase.

As we see from the graphs in the picture 0.1 [15], 49% of fatal accidents
and 44% of onboard fatalities happen after the final approach fix even though
this phase takes only 4% of the 1.5 hour flight (during longer flights this ratio
lowers, as mostly only the cuise is prolonged).

There are two phases after final approach fix and that are final approach
and landing. Let us consider this part of the flight as the part that requires
the most skill to perform and if the aircraft can perform it by itself, we can
assume that it will be able to handle the whole flight as well.

The question now stands - can the aircraft land?

3
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Figure 0.1: Fatal Accidents and Onboard Fatalities by Phase of Flight
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Chapter 1
Theoretical background

To answer the question whether the aircraft can land autonomously, we need
certain theoretical background.

1.1 Aviation

Demonstrating autonomous landing requires us to know what it even means
to land an aircraft. As we showed in previous section, the most demanding
part of flight is after final approach fix. Now we need to know what these
phases are and why are they so dangerous.

1.1.1 Glossary

In this section we describe the terminology of angles and speeds.

1.1.1.1 Angles

All the further described angles are shown in the picture 1.1 [16]. According
to [16], angle of attack (AOA) is the angle between the oncoming air or relative
wind and a reference line on the airplane or wing. Sometimes, the reference
line is a line connecting the leading edge and trailing edge at some average
point on the wing. Most commercial jet airplanes use the fuselage centerline
or longitudinal axis as the reference line. It makes no difference what the
reference line is, as long as it is used consistently.

AOA is sometimes confused with pitch angle or flight path angle. Pitch
angle (attitude) is the angle between the longitudinal axis (where the airplane
is pointed) and the horizon. This angle is displayed on the attitude indicator
or artificial horizon.

Flight path angle is defined in two different ways. To the aerodynamics,
it is the angle between the flight path vector (where the airplane is going)
and the local atmosphere. To the flight crew, it is normally known as the

5



1. Theoretical background

Figure 1.1: Angle terminology

angle between the flight path vector and the horizon, also known as the climb
(or descent) angle. Air-mass-referenced and inertial-referenced flight path
angles are the same only in still air (i.e., when there is no wind or vertical
air movement). For example, in a headwind or sinking air mass, the flight
path angle relative to the ground will be less than that referenced to the air.
On the newest commercial jet airplanes, this angle can be displayed on the
primary flight display and is calculated referenced to the ground (the inertial
flight path angle).

AOA is the difference between pitch angle and flight path angle when the
flight path angle is referenced to the atmosphere. Because of the relationship
of pitch angle, AOA, and flight path angle, an airplane can reach a very high
AOA even with the nose below the horizon, if the flight path angle is a steep
descent.

1.1.1.2 Speeds terminology

All the further described speeds are described in the picture 1.2 [17]. Indicated
airspeed (IAS or KIAS) means the speed of an aircraft as shown on its pitot
static airspeed indicator, calibrated to reflect standard atmosphere adiabatic
compressible flow at sea level, uncorrected for airspeed system errors.

Calibrated airspeed (CAS) is indicated airspeed corrected for instrument
errors, position errors (due to incorrect pressure at the static port) and instal-
lation errors. Indicated airspeed will be a few knots lower. This is because
the pitot tube is not picking up as many air molecules as it should, because of
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1.1. Aviation

Figure 1.2: Speeds terminology

its angle of attack. Your real speed did not change, but the airspeed indicator
thinks it did.

Equivalent airspeed (EAS) is the airspeed at sea level in the International
Standard Atmosphere at which the dynamic pressure is the same as the dy-
namic pressure at the true airspeed (TAS) and altitude at which the aircraft
is flying.

True airspeed (TAS or KTAS) is the speed of the aircraft relative to the at-
mosphere. The true airspeed and heading of an aircraft constitute its velocity
relative to the atmosphere.

Ground speed (GS) is the speed of the aircraft relative to the ground. This
speed is the combination of the true airspeed vector of the aircraft and the
speed vector of wind at aircraft altitude.

1.1.2 Instrument approach procedure

According to [18] an Instrument approach procedure (IAP) is a series of pre-
determined manoeuvres by reference to flight instruments with specified pro-
tection from obstacles from the initial approach fix, or where applicable, from
the beginning of a defined arrival route to a point from which a landing can
be completed and thereafter, if a landing is not completed, to a position at
which holding or en-route obstacle clearance criteria apply.
These procedures are divided into three categories:

1. Non-precision approach (NPA) procedures

2. Approach procedures with vertical guidance (APV) - Performance-based
navigation

3. Precision approach (PA) procedures - Procedures based on navigation
systems

7



1. Theoretical background

Each of the procedures may have up to 5 separate segments:

1. Arrival segment

2. Initial approach segment

3. Intermediate approach segment

4. Final approach segment

5. Missed approach segment

1.1.2.1 Arrival segment

An arrival segment permits transition from the en-route phase to the approach
phase. The arrival segment starts at the latest en-route point and ends at the
initial approach fix.

It can be either a defined standard instrument arrival (STAR) route pub-
lished on charts or omnidirectional or sector arrival to an initial approach fix
(IAF).

1.1.2.2 Initial approach

The initial approach segment is the segment of an instrument approach proce-
dure between the initial approach fix (IAF) and the intermediate fix (IF). The
initial approach segment begins at the initial approach fix (IAF) and ends at
the intermediate fix (IF).

In the initial approach segment, the aircraft has left the en-route structure
and it is entering the Instrument approach procedure.

1.1.2.3 Intermediate approach

That segment of an instrument approach procedure between the intermediate
fix and the final approach fix. This is the segment during which the aircraft
speed and configuration should be adjusted to prepare the aircraft for final
approach. For this reason the descent gradient is kept as shallow as possible.

1.1.2.4 Final approach

Final approach is the last leg in an aircraft’s approach to landing, when the
aircraft is lined up with the runway and descending for landing. In aviation
radio terminology, it is often shortened to ”final”. [19]

This is the segment in which alignment and descent for landing are made.
Normally, final approach may be made to a runway for a straight-in landing,
or to an aerodrome for a visual manoeuvre (circling). Considering our case
where we look onto the American airlines and their fleet, we focus only on large

8



1.1. Aviation

airports (not aerodromes) and so the final approach will be straight (without
circling or steering).

There are various types of final approach (based on procedure category):

• Non precision approach (NPA) - this type of final approach is performed
by pilot either by utilizing autopilot or simply flying by hand

• Approach with vertical guidance (APV) - here we rely on either ground
based navigation aid or computer-generated navigation data

• Precision approach (PA) - these approaches u

Instrumental landing system According to [20] an instrument landing
system operates as a ground-based instrument approach system that provides
precision lateral and vertical guidance to an aircraft approaching and land-
ing on a runway, using a combination of radio signals and, in many cases,
high-intensity lighting arrays to enable a safe landing during instrument me-
teorological conditions (IMC), such as low ceilings or reduced visibility due to
fog, rain, or blowing snow.

An instrument approach procedure chart (or ’approach plate’) is published
for each ILS approach to provide the information needed to fly an ILS ap-
proach during instrument flight rules (IFR) operations. A chart includes the
radio frequencies used by the ILS components or navaids and the prescribed
minimum visibility requirements.

Radio-navigation aids must provide a certain accuracy (set by interna-
tional standards of CAST/ICAO); to ensure this is the case, flight inspection
organizations periodically check critical parameters with properly equipped
aircraft to calibrate and certify ILS precision.

An aircraft approaching a runway is guided by the ILS receivers in the air-
craft by performing modulation depth comparisons. Many aircraft can route
signals into the autopilot to fly the approach automatically. An ILS consists
of two independent sub-systems. The localizer provides lateral guidance; the
glide slope provides vertical guidance.

During this phase the pilot should get the aircraft to a state with landing
configuration of control surfaces. For a safe approach and landing he has to
monitor the state of the aircraft constantly - keep the approach stabilized.

ILS aids with landing to a great extent, but not every runway is equipped
with such a system.

Stabilized approach Focusing on establishing and maintaining a stabilized
approach and landing is a great way to avoid experiencing a loss of control.
A stabilized approach is one in which the pilot establishes and maintains
a constant angle glide-path towards a predetermined point on the landing
runway. It is based on the pilot’s judgment of certain visual clues, and depends
on the maintenance of a constant final descent airspeed and configuration. [21]
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1. Theoretical background

All flights must be stabilized by 1000 feet above airport elevation in In-
strument Meteorological Conditions (IMC - foggy or cloudy conditions, the
pilot has to focus solely on the gauges and devices inside the cockpit) and 500
feet above airport elevation in Visual Meteorological Conditions (VMC - the
pilot is able to clearly see the runway).
Factors of a Stabilized Approach [21]

• The aircraft is on the correct flight path

• Only small changes in heading/pitch are necessary to maintain the cor-
rect flight path

• The airspeed is not more than VREF + 20kts indicated speed and not
less than VREF (Landing reference speed or threshold crossing speed.)

• The aircraft is in the correct landing configuration

• Sink rate is no greater than 1000 feet/minute. If an approach requires
a sink rate greater than 1000 feet/minute a special briefing should be
conducted

• Power setting is appropriate for the aircraft configuration and is not
below the minimum power for the approach as defined by the operating
manual

• All briefings and checklists have been conducted

• Specific types of approach are stabilized if they also fulfil the following:

– Instrument Landing System (ILS) approaches must be flown within
one dot of the glide-slope and localizer

– during a circling approach wings should be level on final when the
aircraft reaches 300 feet above airport elevation

• Unique approach conditions or abnormal conditions requiring a devia-
tion from the above elements of a stabilized approach require a special
briefing.

An approach that becomes unstabilized below 1000 feet above airport ele-
vation in IMC or 500 feet above airport elevation in VMC requires an imme-
diate go-around.

A go-around is an aborted landing of an aircraft that is on final approach.
The cause of a go-around could be many things, such as a plane on the runway
or a gust of wind which blows the plane off course. If the go-around necessity is
ignored, various accidents may occur. Unstabilized approaches are responsible
for 14% of all accidents in approach and landing phases. [22]
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1.2. Survey of approaches

1.1.2.5 Missed approach

A missed approach segment must be followed if the approach cannot be con-
tinued. In this segment, the pilot is faced with the demanding task of changing
the aircraft configuration, attitude and altitude.

1.1.2.6 Landing

Landing - Landing is the process of getting an aircraft from short final to a
full stop on the runway. From the beginning of the landing flare until aircraft
exits the landing runway, comes to a stop on the runway, or when power is
applied for takeoff in the case of a touch-and-go landing. [23]

To land, the airspeed and the rate of descent are reduced such that the
object descends at a low enough rate to allow for a gentle touch down. Landing
is accomplished by slowing down and descending to the runway.

Autoland Autoland systems were designed to make landing possible in vis-
ibility too poor to permit any form of visual landing, although they can be
used at any level of visibility. They may also include automatic braking to a
full stop once the aircraft is on the ground, in conjunction with the autobrake
system, and sometimes auto deployment of spoilers and thrust reversers.

Autoland may be used for any suitably approved instrument landing sys-
tem (ILS) or microwave landing system (MLS) approach, and is sometimes
used to maintain currency of the aircraft and crew, as well as for its main
purpose of assisting an aircraft landing in low visibility and/or bad weather.

As mentioned in section 1.1.2.4, not every runway is equipped with such
system. Also, there have been reported cases where utilization of autoland
resulted in touchdown outside of runway, mainly caused by poor signal of
ILS. [24]

Another point against using autoland is that pilots claim it does not pro-
vide safer nor better (smoother and more precise) landing than any pilot. [25]

1.2 Survey of approaches

There already are works that focus on autonomous control of various vehicles.
Focusing only on aircrafts, there are two main branches of how to look at

this problem. First one is vision-based, which requires more computational
power and the second one is dynamics-based approach.

There are many papers that describe autonomous control of helicopters.
First approach is vision-based. Here notable mentions are [26] where they use
GPS and vision to locate the landing target.

From the dynamics-based approaches there is for example [27] introducing
training of a model that captures helicopter dynamics and then using rein-
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1. Theoretical background

forcement learning algorithm to train a policy that flies inverted helicopter
flight.

Similarly, other papers, such as [28], [29] first train dynamics model and
then apply reinforcement learning to it.

Another approach to this, introduced in [30], is utilization of inverse re-
inforcement learning, where we learn the trajectory first and then learn the
reward function.

As to the fixed-wing aircrafts, many of the approaches from helicopters
are applicable here as well. In [31], the author focuses on landing a small
aircraft (Cessna 172 Skyhawk). He introduces a dynamics model for landing
the aircraft and uses apprenticeship learning where there is human (or expert)
input, which then is imitated by reinforcement learning policy. The same
approach is used in [32].

Lastly to mention, [33] looks onto autonomous landing of reusable rock-
ets (connected to Space-X). The author explores various approaches to the
problem using control algorithms such as optimal control, linear quadratic
regulator and model predictive control.

None of mentioned papers performed the learning on actual hardware (he-
licopters or other aircrafts), but using various simulation environments.

1.3 Machine learning

1.3.1 Reinforcement learning

According to [34] reinforcement learning (RL) is an area of machine learn-
ing concerned with how software agents ought to take actions in an environ-
ment so as to maximize some notion of cumulative reward. The problem,
due to its generality, is studied in many other disciplines, such as game the-
ory, control theory, operations research, information theory, simulation-based
optimization, multi-agent systems, swarm intelligence, statistics and genetic
algorithms. In the operations research and control literature, reinforcement
learning is called approximate dynamic programming, or neuro-dynamic pro-
gramming. The problems of interest in reinforcement learning have also been
studied in the theory of optimal control, which is concerned mostly with the
existence and characterization of optimal solutions, and algorithms for their
exact computation, and less with learning or approximation, particularly in
the absence of a mathematical model of the environment. In economics and
game theory, reinforcement learning may be used to explain how equilibrium
may arise under bounded rationality. In machine learning, the environment
is typically formulated as a Markov Decision Process (MDP), as many rein-
forcement learning algorithms for this context utilize dynamic programming
techniques. The main difference between the classical dynamic programming
methods and reinforcement learning algorithms is that the latter do not as-
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sume knowledge of an exact mathematical model of the MDP and they target
large MDPs where exact methods become infeasible.

Less formally, we can identify four main sub-elements of a reinforcement
learning system: a policy, a reward signal, a value function, and, optionally,
a model of the environment.

A policy defines the learning agent’s way of behaving at a given time.
Roughly speaking, a policy is a mapping from perceived states of the envi-
ronment to actions to be taken when in those states. It corresponds to what
in psychology would be called a set of stimulus–response rules or associations
(provided that stimuli include those that can come from within the animal).
In some cases the policy may be a simple function or lookup table, whereas
in others it may involve extensive computation such as a search process. The
policy is the core of a reinforcement learning agent in the sense that it alone
is sufficient to determine behavior. In general, policies may be stochastic.

A reward signal defines the goal in a reinforcement learning problem. On
each time step, the environment sends to the reinforcement learning agent a
single number, a reward. The agent’s sole objective is to maximize the total
reward it receives over the long run. The reward signal thus defines what
are the good and bad events for the agent. In a biological system, we might
think of rewards as analogous to the experiences of pleasure or pain. They are
the immediate and defining features of the problem faced by the agent. The
reward sent to the agent at any time depends on the agent’s current action
and the current state of the agent’s environment. The agent cannot alter the
process that does this. The only way the agent can influence the reward signal
is through its actions, which can have a direct effect on reward, or an indirect
effect through changing the environment’s state. In our example above of
Phil eating breakfast, the reinforcement learning agent directing his behavior
might receive different reward signals when he eats his breakfast depending
on how hungry he is, what mood he is in, and other features of his of his body,
which is part of his internal reinforcement learning agent’s environment. The
reward signal is the primary basis for altering the policy. If an action selected
by the policy is followed by low reward, then the policy may be changed to
select some other action in that situation in the future. In general, reward
signals may be stochastic functions of the state of the environment and the
actions taken. [34]

Whereas the reward signal indicates what is good in an immediate sense,
a value function specifies what is good in the long run. Roughly speaking, the
value of a state is the total amount of reward an agent can expect to accu-
mulate over the future, starting from that state. Whereas rewards determine
the immediate, intrinsic desirability of environmental states, values indicate
the long-term desirability of states after taking into account the states that
are likely to follow, and the rewards available in those states. For example, a
state might always yield a low immediate reward but still have a high value
because it is regularly followed by other states that yield high rewards. Or
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the reverse could be true. To make a human analogy, rewards are somewhat
like pleasure (if high) and pain (if low), whereas values correspond to a more
refined and farsighted judgment of how pleased or displeased we are that our
environment is in a particular state. Expressed this way, we hope it is clear
that value functions formalize a basic and familiar idea.

Rewards are in a sense primary, whereas values, as predictions of rewards,
are secondary. Without rewards there could be no values, and the only purpose
of estimating values is to achieve more reward. Nevertheless, it is values with
which we are most concerned when making and evaluating decisions. Action
choices are made based on value judgments. We seek actions that bring about
states of highest value, not highest reward, because these actions obtain the
greatest amount of reward for us over the long run. In decision-making and
planning, the derived quantity called value is the one with which we are most
concerned. Unfortunately, it is much harder to determine values than it is to
determine rewards. Rewards are basically given directly by the environment,
but values must be estimated and re-estimated from the sequences of obser-
vations an agent makes over its entire lifetime. In fact, the most important
component of almost all reinforcement learning algorithms we consider is a
method for efficiently estimating values. The central role of value estimation
is arguably the most important thing we have learned about reinforcement
learning over the last few decades. [35]

The fourth and final element of some reinforcement learning systems is
a model of the environment. This is something that mimics the behavior of
the environment, or more generally, that allows inferences to be made about
how the environment will behave. For example, given a state and action,
the model might predict the resultant next state and next reward. Models
are used for planning, by which we mean any way of deciding on a course of
action by considering possible future situations before they are actually expe-
rienced. Methods for solving reinforcement learning problems that use models
and planning are called model-based methods, as opposed to simpler model-
free methods that are explicitly trial-and-error learners—viewed as almost the
opposite of planning. [36]

1.3.1.1 Markov Decision Processes

A stochastic process has the Markov property if the conditional probability dis-
tribution of future states of the process (conditional on both past and present
states) depends only upon the present state, not on the sequence of events that
preceded it. A reinforcement learning task that satisfies the Markov property
is called a Markov decision process, or MDP. [34]

The Agent–Environment Interface The reinforcement learning problem
is meant to be a straightforward framing of the problem of learning from
interaction to achieve a goal. The learner and decision-maker is called the
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agent. The thing it interacts with, comprising everything outside the agent, is
called the environment. These interact continually, the agent selecting actions
and the environment responding to those actions and presenting new situations
to the agent. The environment also gives rise to rewards, special numerical
values that the agent tries to maximize over time. A complete specification
of an environment defines a task, one instance of the reinforcement learning
problem. More specifically, the agent and environment interact at each of a
sequence of discrete time steps, t = 0, 1, 2, 3, ... At each time step t, the agent
receives some representation of the environment’s state, st belongs to S, where
S is the set of possible states, and on that basis selects an action, at belongs
to A(st), where A(st) is the set of actions available in state st . One time step
later, in part as a consequence of its action, the agent receives a numerical
reward, rt+1 ∈ R, and finds itself in a new state, st+1. At each time step,
the agent implements a mapping from states to probabilities of selecting each
possible action. This mapping is called the agent’s policy and is denoted πt ,
where πt(a|s) is the probability that at = a if st = s. Reinforcement learning
methods specify how the agent changes its policy as a result of its experience.
The agent’s goal, roughly speaking, is to maximize the total amount of reward
it receives over the long run. [35]

Goals and Rewards In reinforcement learning, the purpose or goal of the
agent is formalized in terms of a special reward signal passing from the envi-
ronment to the agent. At each time step, the reward is a simple number, Rt
belongs to R. Informally, the agent’s goal is to maximize the total amount of
reward it receives. This means maximizing not immediate reward, but cumu-
lative reward in the long run. We can clearly state this informal idea as the
reward hypothesis:

That all of what we mean by goals and purposes can be well
thought of as the maximization of the expected value of the cu-
mulative sum of a received scalar signal (called reward).

The use of a reward signal to formalize the idea of a goal is one of the
most distinctive features of reinforcement learning.

Exploration Reinforcement learning requires clever exploration mechanisms.
Randomly selecting actions, without reference to an estimated probability dis-
tribution, shows poor performance. The case of (small) finite Markov decision
processes is relatively well understood. However, due to the lack of algorithms
that provably scale well with the number of states (or scale to problems with
infinite state spaces), simple exploration methods are the most practical.

One such method is ε-greedy, when the agent chooses the action that
it believes has the best long-term effect with probability 1 − ε. If no action
which satisfies this condition is found, the agent chooses an action uniformly at

15



1. Theoretical background

random. Here, 0 < ε < 1 is a tuning parameter, which is sometimes changed,
either according to a fixed schedule (making the agent explore progressively
less), or adaptively based on heuristics. [36]

Cross entropy method The cross-entropy (CE) method is a Monte Carlo
method for importance sampling and optimization. It is applicable to both
combinatorial and continuous problems, with either a static or noisy objec-
tive. [37]

The method approximates the optimal importance sampling estimator by
repeating two phases:

1. Draw a sample from a probability distribution.

2. Minimize the cross-entropy between this distribution and a target dis-
tribution to produce a better sample in the next iteration.

Reuven Rubinstein developed the method in the context of rare event sim-
ulation, where tiny probabilities must be estimated, for example in network
reliability analysis, queueing models, or performance analysis of telecommuni-
cation systems. The method has also been applied to the traveling salesman,
quadratic assignment, DNA sequence alignment, max-cut and buffer alloca-
tion problems.

Apprenticeship learning As the title says, this type of reinforcement
learning uses an expert to train (or speed up the training) of a policy. For
example, we may have a human pilot give us an initial demonstration of heli-
copter flight. Given this initial training data with which to learn the dynamics,
we show that it suffices to only execute exploitation policies (ones that try to
do as well as possible, given the current model of the MDP). More specifically,
we propose the following algorithm:

1. Have a teacher demonstrate the task to be learned, and record the state-
action trajectories of the teacher’s demonstration.

2. Use all state-action trajectories seen so far to learn a dynamics model
for the system. For this model, find a (near) optimal policy using any
reinforcement learning (RL) algorithm.

3. Test that policy by running it on the real system. If the performance is
as good as the teacher’s performance, stop. Otherwise, add the state-
action trajectories from the (unsuccessful) test to the training set, and
go back to step 2.

From this example, we see the utilization of greedy policy, as we never
perform an exploration step. [38]
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Chapter 2
Environment

To prove the concept of autonomous landing, we needed to set up our envi-
ronment for experiments.

2.1 Machine learning

Choosing a machine learning approach to autonomous landing, we need to
choose a machine learning framework. As I have the most experience with
scikit-learn, I chose this framework the thesis.

Scikit-learn is a free software machine learning library for the Python pro-
gramming language. It features various classification, regression and cluster-
ing algorithms including support vector machines, random forests, gradient
boosting, k-means and DBSCAN, and is designed to interoperate with the
Python numerical and scientific libraries NumPy and SciPy. (scikit-learn.org)

This also sets our programming language to Python.

2.2 Flight simulator

As mentioned in 1.2, none of the papers used real hardware for training au-
tonomous control. Similarly, we needed a flight simulator that will have a
suitable API for gathering data from the environment and also sending com-
mands to control the aircraft.

After a brief survey we chose X-Plane 11 to be the flight simulator used
for this thesis. X-Plane is used by multiple organizations and industries such
as NASA, Boeing, Cirrus, Cessna, Piper, Precession Flight Controls Incorpo-
rated, Japan Airlines, and the American Federal Aviation Administration. [32]
X-Plane can communicate with external applications by sending and receiv-
ing flight status and control commands data over a network through User
Datagram Protocol (UDP) packets.
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Reading the data of X-Plane can be done in various ways:

• Output selected data to a file - with certain frequency appending a line
and when the flight is reset, rewrite the file

• Send selected data via UDP

• Read datarefs (pointer-like variables) externally

On the other hand, sending data to X-Plane can be done via:

• Write datarefs externally

• Send pilot like commands externally (for example set flaps handle one
down)

The datarefs can be of various types, such as integer, float or arrays and
some of them are not writable. Complete list of datarefs can be found at [39].
Commands are just signals that are called, they correspond to certain pilot
actions and do not take any parameters. Complete list of commands can be
found at [40].

2.2.1 X-Plane interface

As mentioned, we are using Python. There are several plugins for X-Plane that
utilize the UDP communication in order to gather data and send commands.

Sandy Barbour’s XPlugin SDK is a project that allows python scripts
to be run from Xplane - more exactly the Python interface plugin. The plugin
has a control panel that allows scripts to be reloaded and also data can be
sent to the two list boxes. It also has an option for enabling and disabling any
script and another screen for script info. [41]

Python interface plugin is written in Python 2.7 and runs all the scripts
with this version of python with no option to modify the source codes of the
plugin. This is because it is already precompiled in a way that X-Plane is able
to run the plugin.

The plugin is able to read and write X-Plane datarefs as well as send
commands just the way pilot pushes buttons and moves handles in the cockpit.

X-Plane Connect The X-Plane Communications Toolbox (XPC) is an
open source research tool used to interact with the commercial flight sim-
ulator software X-Plane. XPC allows users to control aircraft and receive
state information from aircraft simulated in X-Plane using functions written
in C, C++, Java, Python or MATLAB in real time over the network. This
research tool has been used to visualize flight paths, test control algorithms,
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simulate an active airspace, or generate out-the-window visuals for in-house
flight simulation software. [42]

This connector is a stand-alone script that is not launched through X-
Plane. This gives us the option to modify the source codes and to launch it
with the version of python we need. The version of

However, the XPC does not support sending commands in a way the pi-
lot does it (pushing buttons and moving handles), but provides reading and
writing datarefs.
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Chapter 3
Methodology

Using the environment defined in previous chapter, we describe the method-
ology of learning and evaluation of the experiments.

3.1 X-Plane

In this section, we describe the process of approach and landing in the X-Plane
flight simulator.

Taking into consideration the example case of the American airlines de-
scribed in the motivation section, we decided to perform our experiments on
the most common aircraft in the fleet, Boeing 737-800. This aircraft is one
of the basic aircrafts available in X-Plane. Performing landing is also more
difficult on large jets, as they react to modification in control configuration
with certain delay (their weight, size and kinetic energy forbid them to make
a right angle turn in place).

3.1.1 Initial state

Having the Boeing 737-800, we now need to plan the destination airport and
the landing itself. As the destination airport we chose Phoenix Sky Harbor
International Airport (KPHX ICAO code) in Phoenix, Arizona - specifically
the runway 07L, which has 78◦ magnetic and 90◦ true heading. This runway
has length of 3139 meters and is equipped with ILS, which allows the autopilot
to utilize it when descending and landing. ILS will be further used as the
expert control of the aircraft (lateral and vertical guidance).

As we want to simulate the most difficult parts after final approach fix, we
need to start before it. That is why we we placed the aircraft into a position
that is before final approach fix, in the intermediate approach (a level flight
segment before final approach), 10 nautical miles from the beginning of the
runway 07L, parallel with the heading of the runway (as the final approach is
straight-in at airports).
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Figure 3.1: Vertical path of the aircraft

The aircraft is placed 3500ft above the sea level (which is about 2390ft
above the runway) and its indicated air speed is 235kts. The position and the
vertical path can be seen on the picture 3.1. The lateral path is a straight
line, so no picture is necessary here.

The aircraft in the initial state does not have the landing gear out, is
heading straight with no air brakes applied, nor flaps extended.

3.1.2 Approach and landing

From the initial state described, we want the aircraft to descend and land
onto the runway 07L. As we want to land in the most convenient way, we
also take into consideration the conditions of stabilized approach described in
1.1.2.4. As we utilize instrumental landing system during the approach for
more precise control of the aircraft, the lateral and vertical guidance is solved.
What we have to focus on while performing the landing as the expert (flying
in the simulator), is the correct timing of extension of flaps, correct timing of
pulling out the gear and maintaining the correct speed.

As the meteorological conditions set in X-Plane correspond to Visual Me-
teorological Conditions, we need to be stabilized 500ft above the runway. Ac-
cording to [43] the landing configuration is:

• Landing gear down

• Flaps set to 30 or 40 (full flaps)

• VREF is 140kts for our case

As the stabilized condition says, the airspeed is not more than VREF + 20kts
indicated speed and not less than VREF . Thus, we have to keep the indicated
airspeed between 140 and 160kts when below 500ft. [44, 45]
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While stabilized, we land on the runway and immediately after touchdown,
we apply air brakes, speed brakes and full reverse throttle to bring the aircraft
to a full stop as fast as possible.

3.2 Setting the pipeline

Now that we know what our scenario is, we can incorporate it into a pipeline.
As teaching the policy in real time from X-Plane would take too much time
and my hardware configuration is limited, we decided to train a dynamics
model that would represent the dynamics of the environment in X-Plane.

3.2.1 Dynamics model

To capture the dynamics during the approach and landing, the scenario was
flown 10 times. Each of these scenarios was recorded using Python Interface
plugin in X-Plane (described in 2.2.1) with certain frequency of recording. As
we can see the data flow in the picture 3.2, aircraft state and corresponding
action to the state are stored into a database. We do not have a single action
for controlling the whole aircraft, but rather a set of sub-actions (each sub-
action belongs to one handle or other aircraft control) that form a complete
action.

Figure 3.2: Collecting data from X-Plane

After all the flights were stored into the database, we focused on discretiz-
ing actions as training a policy with continuous actions is not as straight-
forward. With discrete actions we train a dynamics model that takes tuple
[statet, actiont] as input and statet+1 as output. The model is trained with
whole database of flights. This process is depicted in the picture 3.3.
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Figure 3.3: Training the dynamics model

3.2.2 Train policy

Now that we have the dynamics model trained, we need to use it to train a
policy. We create an environment for reinforcement learning, similar to [46]
environments, where we incorporate the dynamics model for generating a new
state according to previous state and selected action when performing a step.
Our custom environment includes a reward function for being in the current
state.

The policy is initialized as a set of agents - for each sub-action there is one
agent that evaluates what sub-action should be taken as part of the action for
the current state.

The training itself is done via a script utilizing a cross entropy method,
where we first execute number of sessions. Each session starts at the state
defined in 3.1.1 and utilizing the trained dynamics model we generate a flight
that terminates when the aircraft lands (touches the ground). In every of
the states of mentioned sessions we take an action according to current policy
and after we reach certain number of sessions (a batch), we select a certain
percentile of best performing flights (the rewards were the highest) and use
these flights to train the policy. Described process is shown in algorithm 1.

Data: X-Plane environment
Result: trained policy
initialize policy evenly;
while criteria not met do

generate sessions;
select best performing;
feed the best performing to policy;

end
Algorithm 1: Training policy algorithm

The schema of training the policy can be seen in the picture 3.4.

24



3.2. Setting the pipeline

Figure 3.4: Training the policy

3.2.3 Evaluate policy

In previous section we described training the policy and now we need to know
how can we assess whether the policy is successful. As we are using the
dynamics model trained with X-Plane data and not X-Plane itself, even when
the average (and also maximal) reward per session grows, it does not mean
that the aircraft will fly better in X-Plane. This is why we need a backward
connector, that will send actions to X-Plane according to extracted current
state. Schema of this process can be seen in the picture 3.5.

Figure 3.5: Evaluating the policy

As we see, we now utilize the X-Plane Connector. Python interface plugin
was not suitable for this task as it explicitly calls python version 2 (and scikit-
learn used for reinforcement learning described in previous section requires
python version 3) and also serialization and deserialization lead to unexpected
crashes of X-Plane. This is why I modified the code of X-Plane Connector,
so that we could run it with python 3 and used it as a communication tool
between the control script and X-Plane.

The algorithm 2 of evaluation of the policy is straightforward:
Data: X-Plane, policy
load trained policy;
connect to X-Plane;
set aircraft to initial state;
while aircraft not landed do

get state;
select action for the state;

end
Algorithm 2: Evaluating policy algorithm

After the algorithm is finished, we have the aircraft on the ground. The
assessment has to be done by an expert once again.We focus on the smoothness
of landing, respecting conditions of stabilized approach and accuracy of the
touchdown (we do not want to land far from runway).
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Chapter 4
Implementation

Describing the process does not necessarily describe the way we implement
the steps. This chapter focuses on implementation details.

4.1 Gathering data

For data collection we use the Python interface plugin, which is developed by
Sandy Barbour. This plugin offers registering various callback functions to
certain events. One of registrable functions is flight loop callback, which is
periodically called while the script in plugin is running. Utilizing this function
we can collect data with a set frequency.

As we fly our scenarios with a large jet (Boeing 737-800), the speed of
changes in the state of the aircraft is not rapid. That is why we chose the
frequency of data collection to once per second. Knowing the frequency, we
also need to know what to collect. We chose a subset of datarefs to represent
the state of the aircraft (including handle and control positions) shown in the
table 4.1.

We see (in the table 4.1) that there is a lot of attributes and so the re-
inforcement learning algorithm would be time demanding. Because of this,
we chose to select only a subset of these attributes. The subset was chosen
according to two facts:

1. Even though the datarefs are different, some of them have duplicate
values.

2. The variance of certain datarefs is in some cases 0 or close to 0.

After taking this into consideration, we were able to limit and divide the
selection into two categories shown in tables 4.2 and 4.3.

The table 4.2 contains datarefs that represent the aircraft state - the posi-
tion and heading, speeds (lateral and angle as well), control surfaces position
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flightmodel/position/latitude flightmodel/controls/lail1def
flightmodel/position/longitude flightmodel/controls/ldruddef
flightmodel/position/elevation joystick/FC hdng
flightmodel/position/indicated airspeed joystick/FC ptch
flightmodel/position/alpha joystick/FC roll
flightmodel/position/beta flightmodel2/controls/pitch ratio
flightmodel/position/vpath flightmodel2/controls/roll ratio
flightmodel/position/hpath flightmodel2/controls/heading ratio
flightmodel/position/P flightmodel/controls/ail trim
flightmodel/position/Q flightmodel/controls/rud trim
flightmodel/position/R flightmodel/controls/elv trim
flightmodel/position/P dot cockpit2/controls/rudder trim
flightmodel/position/Q dot cockpit2/controls/yoke pitch ratio
flightmodel/position/R dot cockpit2/controls/yoke roll ratio
flightmodel/position/theta cockpit2/controls/yoke heading ratio
flightmodel/position/true theta cockpit2/engine/actuators/throttle beta rev ratio all
flightmodel/position/phi cockpit2/controls/flap ratio
flightmodel/position/true phi cockpit2/controls/speedbrake ratio
flightmodel/position/psi flightmodel/failures/onground any
flightmodel/position/true psi cockpit2/controls/gear handle down
flightmodel/position/mag psi flightmodel2/gear/deploy ratio
flightmodel/controls/sbrkrat flightmodel2/engines/throttle used ratio
flightmodel/controls/flaprat cockpit2/engine/indicators/N1 percent

Table 4.1: Datarefs extracted

flightmodel/position/latitude flightmodel/position/Q
flightmodel/position/longitude flightmodel/position/R
flightmodel/position/elevation flightmodel/position/theta
flightmodel/position/indicated airspeed flightmodel/position/phi
flightmodel/position/alpha flightmodel/position/mag psi
flightmodel/position/beta flightmodel/controls/sbrkrat
flightmodel/position/vpath flightmodel/controls/flaprat
flightmodel/position/hpath flightmodel2/engines/throttle used ratio
flightmodel/position/P flightmodel/failures/onground any

Table 4.2: State datarefs

flightmodel/controls/elv trim cockpit2/controls/flap ratio
joystick/FC ptch cockpit2/controls/speedbrake ratio
cockpit2/engine/actuators/throttle beta rev ratio all cockpit2/controls/gear handle down

Table 4.3: Action datarefs
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and throttle used. The table 4.3 represents the positions of handles that in-
fluence the state datarefs. Not all state datarefs are writable, but all of the
action datarefs are.

Every single of the 10 approaches performed was different as we tried to
capture as many possibilities of landing styles as possible. This resulted in
having flights with different timespans, having 2321 samples (one sample every
second) altogether. One sample is a pair of state datarefs tuple and action
datarefs tuple.

4.1.1 Discretization of actions

Having continuous actions, we need to transform them into discrete. Desired
output of this discretization is to have actions that contain only three values:
1, 0 and -1, that correspond to move the handle up, keep the handle as it is
and move the handle down.

To achieve this, we first binned the actions to certain number of bins.
The number of bins was set empirically. First we tried 10 bins, which was
not sufficient for some of the datarefs as the change between the samples was
more delicate and vast majority of samples had value of 0 (keep the handle as
it is).

We then settled for 100 bins and tried various binning techniques:

1. Bins with equal width. Each bin has width of 1/100 of the range of
the dataref. KBinsDiscretizer class from scikit-learn was used for this
transformation.

2. Binning comparing two consecutive samples. If the absolute value of
change between them is greater than 1/100 of the range of corresponding
dataref, we consider them to belong to different bins.

To transform the bins into the three values described, we traverse each
flight and set the first action to a tuple of zeros. If the next action belongs to
another bin, we set the action to 1 if it is a higher bin, to -1 if it is a lower
bin, else 0.

According to the results of dynamics model and reinforcement learning
algorithms, the second option was used.

4.2 Dynamics model

The dynamics model should represent how a certain action changes the state
we are in. The input of the model should be a tuple of [statet, actiont] and
output statet+1.
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4.2.1 The model

There were various model which we tested as a dynamics model of X-Plane:

• Linear regression

• K-Nearest neighbors regression

• Decision tree regression / Random forest regression

• Neural network regression

As we see, we focus on regression because the predicted variables are not
discrete and thus classifiers are useless.

Linear regression The first model utilized as a dynamics model was lin-
ear regression. This simple model was used as the baseline to asses whether
other models perform reasonably. The parameters of the scikit-learn class
LinearRegression, were set as follows:

• fit intercept to True, which means that we do not assume that data we
feed to the model are centered.

• normalize to False, as we do not want to normalize the data before
feeding them to the model. That way we may lose valuable information.

K-Nearest neighbors regression This model and its implementation in
scikit-learn (KNeighborsRegressor) provides an opportunity to fine-tune the
parameters. Here we focus on tuning two parameters:

• n neighbors which represents the number of neighbors (k) which we
take into consideration while predicting a new y based on input x. We
chose to demonstrate how well dynamics model performs when scaling
n neighbors from 1 until 50.

• weights, which defines how the neighbors influence the prediction. The
two basic options are ‘uniform’ which does not consider the distance
of the neighbors and each of them influences the result equally, and
‘distance’ which weights the points by the inverse of their distance. In
this case, closer neighbors of a query point will have a greater influence
than neighbors which are further away.

Decision tree regression The third model used as a dynamics model
was decision tree regression and corresponding class DecisionTreeRegressor
in scikit-learn. As well as K-Nearest neighbors, it offers various parameters
for tuning:
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• criterion is the function to measure the quality of a split. Supported
criteria are ‘mse’ for the mean squared error, which is equal to variance
reduction as feature selection criterion and minimizes the L2 loss us-
ing the mean of each terminal node, ‘friedman mse’, which uses mean
squared error with Friedman’s improvement score for potential splits,
and ‘mae’ for the mean absolute error, which minimizes the L1 loss
using the median of each terminal node.

• max depth The maximum depth of the tree. We tune this parameter
from 5 until 50 while comparing the criterions between them.

Other parameters remain fixed at their default values.

Random forest regression Another model, closely connected to the deci-
sion tree model is random forest regression and its scikit class RandomFore-
stRegressor. As all tree related parameters were tuned in the decision tree
regression experiments, here we focus on one parameter:

• n estimators - is the number of trees in the forest. We begin testing
from 2 (as we will already have the results of one tree from decision tree
regression) until 100 trees.

Other parameters will remain fixed at their defaults.

Neural network regression The last model tested for a dynamics model
were neural networks, specifically a multilayer perceptron regressor (MLPRe-
gressor class in scikit-learn). The parameters we tune here are following:

• hidden layer sizes - this parameters sets the number and size of hidden
layers of multilayer perceptron. In our case, we fixed the number of
layers to two and scaled the number of neurons in each of them from 10
to 50.

• activation represents the activation function of each neuron in hidden
layer. There are four activation functions scikit-learn offers:

1. ‘identity’, no-op activation, useful to implement linear bottleneck,
returns f(x) = x.

2. ‘logistic’, the logistic sigmoid function, returns f(x) = 1/(1 +
exp(−x)).

3. ‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x).
4. ‘relu’, the rectified linear unit function, returns f(x) = max(0, x)

In this thesis, we compare all the mentioned activation functions and
see how they perform further.
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• maxiter Maximum number of iterations. The solver iterates until con-
vergence or this number of iterations. As some of the model configura-
tions were not able to converge during the 200 default maximum number
of iterations while performing our experiments, we grew this number to
20000.

• ‘shuffle’ - whether to shuffle samples in each iteration. Only used when
solver =’sgd’ or ‘adam’. We set this parameter to False as we did not
want to shuffle the samples.

Other parameters of MLPRegressor were left at their defaults. This also
includes setting the solver to ‘adam’, which refers to a stochastic gradient-
based optimizer proposed by Kingma, Diederik, and Jimmy Ba.

4.2.2 Training

The training itself is done in two steps:

1. Go through the first 8 flights sample by sample

• Set x to be the pair of state with corresponding discrete action
• Set y to be the following state

2. Feed the set of x-es and corresponding y-s to the model

This way we got a model that should represent the dynamics that are
captured in the approaches we flew. We only used the first 8 approaches
because we wanted the other two approaches for model evaluation.

4.2.3 Evaluation

There are two ways we need to evaluate the trained model.

1. The first is to check whether the model performs well if we try to predict
only the next state. We went through all the samples of the remaining
two approaches and tried to predict the next state based on the ex-
pert flown pair [statet, actiont] and then compared it to statet+1. The
distance metric here is average squared error per attribute.

2. The second way we needed to test our model, was to simulate whole flight
starting at the initial state and see whether it corresponds to the actual
flight. During each step, we take an action we actually took while flying
and compare the state extracted from X-Plane to the one our dynamics
model predicted. Each of the results contains one line which represents
the average of the two test approach errors. The distance metric used
is squared difference between each of the attributes of a state added up
together.
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Figure 4.1: Linear regression dynamics model evaluation

Linear regression There were no parameter tunings performed for linear
regression model.
As to the two methods of evaluation:

1. The average squared error per attribute was 0.0118.

2. As we see from the picture 4.1, the quality of linear regression model is
acceptable for the first 100 steps, where it reaches a maximum error of
1173.59. However, after this period the model becomes unreliable. As
our expert flown descents contain approximately 200 steps, this model
being unreliable after 100 does not prove to be useable any further. The
error after 200 steps grew up to 140000.

K-Nearest neighbors regression As for the L-Nearest neighbors regres-
sion model, we tunedK and the method of taking neighbors into consideration.
The results of this experiment can be seen in the picture 4.2.

As we see from the picture 4.2, the average squared error per attribute
rises as the parameter K rises. This was expected and thus we set our K to 7
not wanting to have model that is over-fitted nor under-fitted (the minimum
of the graph). As for the weights of neighbors, ‘distance’ (weighting closer
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Figure 4.2: Tuning k for K-NN Regressor

neighbors more) performs better than ‘uniform’ and so we choose this weight
method.

According to described experiment and utilizing described configuration
of the model, we perform the two methods of evaluation:

1. The average squared error per attribute was 0.1141. This result is worse
than linear regression.

2. As we see from the picture 4.3, the quality of K-NN regression model
is visibly better than linear regression model and until the step 75 it
appears as nearly ideal dynamics model, as the error is always below 30.
The final error is 5366.5.

As seen from the errors described, K-NN Regressor may have worse average
error per attribute, but in general it depicts the dynamics of X-Plane better
than linear regression.

Decision tree regression Third model used as the dynamics model was
Decision tree regression. Here we focused on tuning two parameters and ac-
cording to this the experiment was developed. As we see from the picture 4.4,

34



4.2. Dynamics model

Figure 4.3: K-NN regression dynamics model evaluation

the criterion for splitting the node influences the average squared error per at-
tribute greatly. We see that in some cases, the worst criterion result has more
than three times the error of the best criterion (MSE). The criterion MAE
shows results similar to MSE, but the training time of MAE criterion regressor
was more than 20 times slower than training MSE criterion regressor.

We also see, that the parameter of maximum depth of tree does not influ-
ence the error significantly if it is greater than 10. According to this experi-
ment we set the criterion to MSE and maximum depth to 15.

Considering our two defined metrics:

1. The average squared error per attribute was 1.0785. This was the worst
result amongst the tested dynamic models.

2. As we see from the picture 4.5, it behaves similarly to K-NN regressor.
However, here we see that the model is highly reliable until 100 steps
where it reached an error of 519.2 and then the error rapidly rises. It
reaches a maximum error of 21380.9.

We see, that even though the decision tree regressor has the worst average
squared error per attribute, it performs exceptionally well until a threshold
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Figure 4.4: Tuning maximum depth for decision tree regression

of 100 steps which does not satisfy our needs, because our flights last around
200 steps.

Random forest regression Taking into consideration that one tree per-
forms well, we decided to experiment with an ensemble method incorporating
more trees - random forest regression. As we already know what are the
optimal parameters of a decision tree, we just have to tune the number of
estimators.

As we see from the picture 4.6, the average squared error decreases rapidly
until 10 trees and after 20 trees it stays constant at value of approximately
0.25. We set the parameter to 20, not wanting to overfit the model.

1. The average squared error per attribute was 0.2622, which was a signif-
icant improvement compared to decision tree itself. This error was not
the lowest out of all regressors, but it does not disqualify random forest
regression as the dynamics model.

2. As we can see from the picture 4.7, the random forest regression performs
extraordinarily. The error always stays below 400 until the step 190 and
then it rapidly rises. As we said, the flights take around 200 steps, which
shows the model is very likely to predict whole flight very precisely.
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Figure 4.5: Decision tree regression dynamics model evaluation

The random forest regression model takes the decision tree regression to a
whole new level as can be seen from our error metrics. This is why we chose
to replace the decision tree in further experiments with random forest.

Neural network regression The last model tested as a dynamics model
of X-Plane were neural networks. Here we tested how various activation func-
tions and the size of hidden layers affect the error.

The results of the experiment can be seen in the picture 4.8. We see that
activation function ‘relu’ and ‘identity’ perform much better than ‘logistic’ and
‘tanh’ activation functions. This is why we chose to show the performance of
the best two activation functions in detail.

As can be seen from the picture 4.9, the two activation functions perform
similarly when it comes to average squared error per attribute. This is why
we chose the size of hidden layer to 25 neurons and tried both of them in our
two step evaluation method of dynamics model:

1. The average squared error per attribute for ‘relu’ activation function
neural network regressor was 0.2589 and for ‘identity’ activation function
0.129. We see that the ‘identity’ activation function performs better
here, but from experience with previous regression models we know that
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Figure 4.6: Tuning number of trees in random forest

even if this error is higher, the second error measure can show that the
dynamics model is of high quality.

2. However, when we look at the results for whole flights shown in the
picture 4.10, we see that the ‘relu’ neural network performs better. The
error of ‘relu’ is higher at first (50 steps), but then the accuracy of
‘identity’ activation function regressor rises rapidly and at 175 steps the
‘relu’ neural network error is 602.87 and ‘identity’ error 2536.77. The
error then rises to 3805.72 for ‘relu’ and to 10559.5 for ‘identity’. During
training experiments we experienced, that ‘identity’ activation function
dynamics model performed much worse, resulting in errors as high as
1050. The ‘relu’ dynamics model on the other hand always had errors of
reasonable range.

In general, we see that the best performing dynamics model according to
our metrics is ambiguous. For the first 75 steps, the best performing model is
K-NN regressor alongside with Random forest regressor, but after that ‘relu’
activation function neural network performs better than the mentioned K-NN
regressor. The random tree regressor appears to be the best for our task, as
it has the smallest overall error.
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Figure 4.7: Random forest regression dynamics model evaluation

We will further test these models by training policies based on them, ex-
cluding linear regression model as it performed poorly and any policies trained
on this model resulting in acceptable behavior could be considered random.

4.3 Policy

This section will describe the process of learning and evaluation of policy based
on the dynamics models trained.

4.3.1 Environment

The environment is inspired by [46]. We provide a similar interface that openai
environments provide:

• Constructor sets up the environment - the initial state of the environ-
ment to the initial state defined in 3.1.1, the model according to which
we generate the next state to the models trained in previous section.
This means we have 4 different environments corresponding to:

1. K-NN regression model
2. Random forest model
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Figure 4.8: Tuning hidden layer size for neural network regression

3. Neural net regression model with ‘relu’ activation function
4. Neural net regression model with ‘identity’ activation function

• Reset resets the environment to the initial state and does not alter the
model in any way.

• Step is a method that provides new generated state based on the previous
state which the environment keeps and action taken. It also computes
reward for being in the new state and information whether the current
episode has ended or not. We consider the episode to be over when the
aircraft has landed.

Reward function All the improvement of the policy we want to train is
driven by the reward function. We tried two different state reward functions
in this thesis and compared them:

1. Reward function based on pilot good practices. It rewards the state if:

• The aircraft is slowing down or keeps constant speed compared to
the previous state.
• The aircraft is descending.
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Figure 4.9: Tuning hidden layer size for ‘relu’ and ‘identity’

• The flight path angle is greater than -4 degrees. As the optimal
angle for approach and landing is 3 degrees and anything less steep
satisfies the conditions of stabilized approach, we wanted to limit
the angle with certain margin.

• The landing is smooth and accurate. We reward it if the indicated
airspeed is below 160kts, the heading is parallel to the heading
of the runway, the position of touchdown is the beginning of the
runway and the angle of attack indicates that the nose is up (aircraft
should land on the rear wheels).

2. Reward function aiming to learn to fly the trajectory we flew during
example flights. The reward is based on the distance between the current
state and the closest state from the sample states from the database.
Every step we take, we compare the generated state against the states
representing last two flights (9 and 10, those which we did not use to
train the dynamics model) from the database using accumulated squared
error per attribute as distance metric. The negative value of this distance
is considered the reward (as we try to maximize the reward).
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Figure 4.10: Neural network regression dynamics model evaluation

4.3.2 Training

Using the environment described, we perform the training. The training itself
is done utilizing the cross entropy method of reinforcement learning.

First, we generate flight sessions. We generate 100 sessions, which results
in states batch, actions batch and total reward per session. To generate a
session, it means to reset the environment to the initial state and perform
actions according to the agent each step until the aircraft has landed (or until
we reach maximum of 250 steps which ). According to total rewards, we
select a certain percentile of sessions (we settled for a percentile of 80) and set
a threshold that will distinguish whether the session will be used for training
or not. Next, we go through all the sessions and according to the mentioned
threshold either feed the states batch and corresponding action batch to the
agent, or not. This is one episode of training.

Agent First, we have to define what our agent is. As we have 6 elements
to control (shown in table 4.3), we decided to introduce set of 6 sub-action
agents, where every agent is responsible for a single dataref. The input of an
agent is always a whole state (not a subset of it) and output is {−1, 0, 1} or
{0, 1}, as it does not make sense to move certain handles back (for example
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once gear is out, it does not make sense to retract it again).
Every single of these agents had to be a classifier as we have discrete

output variables. As our learning will be iterative and we expect our agent to
get better every run, we had to focus on models that are able to have a warm
start (they reuse the solution of the previous call to fit as initialization) to
ensure that we do not delete our progress each time we run the algorithm. As
we plan to utilize cross entropy method for reinforcement learning, we did a
research of suitable classifiers. Every of the implementations researched used
the same classifier - MLPClassifier with following configuration: They had two
hidden layers with various number of neurons per layer. The ’tanh’ activation
function was used (the hyperbolic tan function, returns f(x) = tanh(x)) and
solver ’adam’. As we perform batch training and we do not want to start
from the beginning each fitting, the parameter warm start was set to true,
which keeps the progress between the calls of method fit. Also, the max iter
parameter was set to 1. All the other parameters were left to default values.

We took the exact same approach, but tuned the size of the hidden layers
and watched how successful are these agents using trained dynamics models
as their environment.

4.3.3 Experiments

Tuning the size of the hidden layers, we took every of the dynamics models
previously trained and looked onto how the average reward of the policy be-
haves each training episode. The training is done as described in 4.3.2. As
some of the agents in this section did not perform well because of limited data
and increasing size of hidden layers, the results did not seem reliable and thus
we omitted the corresponding lines in following graphs.

Original best practices reward function First, we utilized the best prac-
tices reward function and trained three sets of agents on every dynamics model.
The sizes of hidden layer were (per layer): 5, 10, 20.

Our goal was to see whether we are able to see the policy performing better
every training episode until the 100th episode of training.

All the training mentioned below was time consuming and we tried to
make it more efficient using multi-threading implemented in Python.

As we see from the picture 4.11, we can see progress while training the
policy based on the K-NN Regression dynamics model. During these 100
episodes, the agent consisting of sub-agents with hidden layers of size 5 neu-
rons performed the most successfully, reaching average reward per episode of
approximately 510 points. However, we can see that the trend is more constant
than rising rapidly (although there is a relatively big jump in the beginning
of the training). The neural network with 10 neurons in each hidden layer
performed worse than the 5 one, but we see a clear rising trend in the reward
- the policy is able to learn. Lastly, the neural network with 20 neurons in
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Figure 4.11: K-NN dynamics model - Policy trained with the best practices
reward function

each hidden layer performed with a great variance and thus the conclusion af-
ter 100 training episodes is that we either have an incorrect reward function,
the dynamics model is not accurate and so it does not make sense to evaluate
the reward function as it requires the state to be represented as accurately as
possible.

Looking onto the picture 4.12, we see that all the policies have a similar
rising trend. As the random forest dynamics model was considered the most
reliable according to our metrics, even though the average reward is smaller
compared to the K-NN dynamics model trained policy, we can say that this
model is able to teach a policy.

Although there is a relatively big variance in the performance of the 10 and
20 neurons agent policy and the results seemed unreliable and thus omitted,
the 5 neurons agent policy rises clearly and rapidly, without big variance (seen
in the picture 4.13). We can train a policy using this combination of dynamics
model and reward function as well.

The last dynamics model tested was identity activation function neural
network. The result of this experiment can be seen in the picture 4.14. There
is clearly no rising trend in the first 100 training episodes and so we can say
that this combination of dynamics model and reward function does not lead
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Figure 4.12: Random forest dynamics model - Policy trained with the best
practices reward function

to any valid results (the 20 neurons agent policy appeared invalid because of
too great peaks).

Comparing all the trained policies, we see various results and that only
relu dynamics model trained policy achieved results above 700 points of re-
ward. This is caused by the fact that only this policy and dynamics model
combination was able to land during the 250 steps (expert flown flights were
approximately 200 steps long, so this should be an acceptable margin). The
spikes in average reward are caused by the variable ratio of landed and not
landed sessions.

Upgraded best practices reward function To increase the number of
landed cases, our first idea was to enhance the reward function. In the original
reward function, the aircraft could just simply maintain a very low descent
angle and slow down imperceptibly and it would still be rewarded even though
it has already passed the runway or it is not even going in the direction of
runway. The second case where this policy limps is not penalizing if the
aircraft speeds up or climbs.
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Figure 4.13: NN Relu dynamics model - Policy trained with the best practices
reward function

Figure 4.14: NN Identity dynamics model - Policy trained with the best prac-
tices reward function
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This is why we introduced following changes:

• For the slowing down we introduce a lower boundary of 140kts (according
to stabilized approach conditions).

• If we do not slow down or descend, we penalize the current state.

• If we are getting closer to runway (compared to the previous state), we
reward the state, else penalize it.

We performed the same experiment for new reward function, but also
introducing a greater variety of hidden layer sizes (now 5, 10, 20, 40, 60, 80,
100 neurons per hidden layer) to see whether the neural networks were not
just too small to capture the behavior.

From the pictures 4.15, we see a rising trend in almost all cases of network
sizes. Larger networks tend to have bigger spikes, which is most probably
caused by increased bias with increasing the network size. This could be solved
with more training episodes. Compared to the original best practices reward
function, we see a bigger rising trend using the enhanced reward function.

As we see from the pictures 4.16, policies trained on random forest dynam-
ics model using our enhanced reward function have larger peaks than policy
trained with the original and also the rising trend is not that obvious. Also, we
omitted the 80 neurons policy because of not showing reliable results. How-
ever, the average reward of the 10 neurons policy appears to be rising even
though there are certain spikes.

The results of neural network dynamics model with relu activation function
are shown in the pictures 4.17. There is no improvement when introducing
the new reward function in the first 100 training episodes. However, there
is no visible rising trend, which could also mean that the policy is not able
to learn using the combination of neural networks dynamics model with relu
activation function with our enhanced reward function. The bigger the neural
network was, the bigger spikes it achieved, thus making the result unreliable,
which caused all of the policies with agents of size above 10 neurons to appear
unreliable.

The last dynamics model was neural networks with identity activation
function. From the pictures 4.18, we see that enhancing the reward function
changed nothing as well - there is no rising trend (which could of course
change in the further training episodes). All the omitted lines (corresponding
to policies with agents of 40, 60 and 80 neurons per layer performed poorly).

Overall, adding more neurons in hidden layer proved useless as it only
prolonged the training and the results were worse than those when using
smaller networks. On the other hand, modifying the reward function seems
like it could lead to better policy trained. Experiments with best practices
reward functions using various dynamics models and agent sizes were highly
time demanding. Performing 100 training episodes for a single dynamics model
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(a) 5 - 40 neurons

(b) 60 - 100 neurons

Figure 4.15: K-NN dynamics model - Policy trained with the upgraded best
practices reward function
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(a) 5 - 40 neurons

(b) 60 - 100 neurons

Figure 4.16: Random forest dynamics model - Policy trained with the up-
graded best practices reward function
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(a) 5 - 40 neurons

Figure 4.17: NN Relu dynamics model - Policy trained with the upgraded
best practices reward function

with a single reward function using various sizes of agent took up to 24 hours
of training on our hardware setup.

Distance reward function The second type of reward function we pro-
posed previously was the distance reward function. The reward for the cur-
rent state is the negative value of distance from the closest state of the last
two flights (9 and 10, those not used for training of dynamics model) from the
database. The distance metric used is squared difference per attribute added
up. This reward function is far more complex than the best practices reward
functions and thus we expected more variance in results.

As we see from the pictures 4.19, the growth of average rewards for policies
trained using the K-NN dynamics model and distance reward function was not
comparable to the best practices reward functions. We clearly see there are
relatively big peaks in both directions, but te overall trend is constant and
thus this combination does not seem like leading to teaching a valid policy
(according to the first 100 training episodes).

From the pictures 4.20 we see that the rewards are overall higher than
the ones gained by policies trained on K-NN dynamics model. However, the
growth of the average reward per session is not visible here either. The average
reward of −8000 per session (which sometimes peaked to −5500) shows that
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(a) 5 - 40 neurons

(b) 60 - 100 neurons

Figure 4.18: NN Identity dynamics model - Policy trained with the upgraded
best practices reward function
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(a) 5 - 40 neurons

(b) 60 - 100 neurons

Figure 4.19: K-NN dynamics model - Policy trained with the distance reward
function
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(a) 5 - 40 neurons

(b) 60 - 100 neurons

Figure 4.20: Random forest dynamics model - Policy trained with the distance
reward function
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(a) 5 - 40 neurons

Figure 4.21: NN Relu dynamics model - Policy trained with the distance
reward function

average distance between the predicted state and reference states (flights 9
and 10) was approximately 40, which means that average squared error per
attribute here is roughly 2.2. This shows, that even though we do not see
a growing trend in the rewards, the policy may be utilized in X-Plane itself.
Some peaks using agents with more neurons in hidden layer reached average
reward peaks of -3800.

Third dynamics model were neural networks with relu activation function.
The results of distance reward function trained policy with mentioned dynam-
ics model (shown in the pictures 4.21) had similar trend as the one trained with
best practices reward function. The average reward is worse than the random
forest dynamics model and we can say that during the first 100 episodes of
training policies trained with combination of neural networks with relu activa-
tion function and distance reward function did not reach satisfactory results.
All networks with sizes above 20 neurons provided unreliable results and so
are omitted.

The last combination was neural networks with identity activation function
dynamics model with distance reward function. The results can be seen in the
pictures 4.22 and we see similar trend as using relu activation function, but
the results are three times worse. This shows that the combination did not
produce a valid policy in the first 100 training episodes. All networks with
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(a) 5 - 40 neurons

Figure 4.22: NN Identity dynamics model - Policy trained with the distance
reward function

sizes above 20 neurons provided unreliable results and so are omitted.
Note: Training distance reward policies was even more time demanding

than utilizing best practices reward function.

4.3.4 Experiments conclusion

As we saw, some of the combinations of dynamics models with various reward
functions showed either interesting results, or the trends seemed to be promis-
ing enough to look at them more closely. As we mentioned, we omitted the
most unreliable results. These unreliable results were mostly the policies with
bigger neural networks as agents (increased size of neural network increased
the bias as well).

Best practices reward function Although finding a hole in the original
best practices reward function, the results and also the trend of the neural
networks with relu activation function dynamics model showed exceptional
results (compared to other models) and the average reward per session was
high enough that at least some percent of the sessions were able to land
successfully. To be specific, we will focus solely on the agents with 5 neurons
in hidden layer as it showed the steepest growth.
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After upgrading the best practices reward function the average rewards fell
as we introduced penalizing. Also, it brought greater peaks in both directions,
which made the observation of growing trend more difficult. Here the best
performing dynamics model was the random forest regressor again with a
small neural network as a sub-agent (10 neurons in each hidden layer).

Distance reward function For the distance reward function, there were
various results. There was no obvious growth in any of the cases, but as we
use the distance reward function, we can assess how much does the aircraft
fly according to defined trajectory. We reached average reward peaks of -3800
with random forest regression dynamics model and agent with 80 neurons in
hidden layer, which seems like it copies the desired trajectory very well and as
we remember from the previous section, the random forest regression model
was considered the most reliable. This is why we selected this combination
for further evaluation.

4.3.5 Training the elite agents

As we described, we selected three agents which appeared to be perspective
and gave them 1000 training episodes to see whether they produce valid poli-
cies. These policies were further used for evaluation with X-Plane itself. The
reward results are shown below.

Figure 4.23: NN - Relu dynamics model - Original reward function policy
training
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As the picture 4.23 shows, the combination of neural network with relu
activation function dynamics model and original best practices reward func-
tion using agents with two hidden layers of 5 neurons did not rise rapidly
after the first 100 training episodes. Average reward per session was always
approximately 717 points and varied little, but the maximum reward per ses-
sion varied a lot more (up to 778.3). The maximum reward shows, that some
of the flights were indeed able to land.

Figure 4.24: Random forest dynamics model - Upgraded reward function pol-
icy training

Using the random forest dynamics model with upgraded reward function
and agents with 10 neurons in hidden layers, we see from the picture 4.24
that the graphs progress resemble the ones in 4.23. There are relatively big
peaks in the maximum reward achieved per session reaching values of 114
and the average reward per session varied very little and achieved values of
approximately 82.

The last elite combination tested was random forest dynamics model with
distance reward function and agents with 80 neurons in hidden layers. The re-
sult can be seen in the picture 4.25. Here, the trend is the opposite - relatively
big peaks in average reward (approximately -8500), but stable maximum re-
ward per session (around -1900 points). In this case we can also interpret
how good is the flight with maximum reward. Assuming we reached reward of
-2000 points and an average flight having 200 steps, the average squared error
per step is then -10 points. Having 18 attributes representing state gives us
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Figure 4.25: Random forest dynamics model - Distance reward function policy
training

the average squared error per attribute of 0.5, which appears to be satisfying.

4.3.6 Back to X-Plane

Using the elite policies described and trained in previous section, we wanted
to evaluate how well we are able to operate the aircraft in X-Plane. Using
the connector described in 3.2.3, we connected to X-Plane via UDP (using our
modified XPC)and set the state to our initial state. After this, we periodically
read the state of X-Plane and according to a policy we created a reaction to
this state. As we are producing discrete actions there is a need to transform
1, 0,−1 back to valid values which can be sent back to X-Plane as datarefs.

We start with the action taken from the database as an initial action (a
continuous action) and always construct the next continuous action by taking
our new predicted action produced by the policy (discrete), going through it
element by element and adding 1/100 of the range of the current continuous
attribute to the previous action element if the predicted action element is 1,
subtracting 1/100 of the range if the predicted action element is -1 and if the
predicted action element is 0 taking the previous value without change. This
is not applicable to the flaps handle which has 9 positions, gear handle and
air brakes handle which have two positions. Here we simply add 1/8 or 1 to
the previous value if the predicted discrete action is 1. After producing the
continuous action we set the corresponding datarefs to its values. This whole
cycle happens periodically once per second.
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Chapter 5
Evaluation and Discussion

In previous chapter we described the process of implementation of connection
to X-Plane, tuning and training. In this chapter we evaluate the outputs of
the implementation.

5.1 Results in X-Plane

The three selected elite policies trained in 4.3.5 produced different results
when connected to X-Plane. This evaluation was done by placing the aircraft
in the initial state and taking actions according to trained policy until the
aircraft touches the land. Videos of all three policies landing can be found on
enclosed media.

5.1.1 Original best practices reward function

The first elite policy we selected was trained using the original best practices
reward function and neural networks with relu activation function dynamics
model. For the first few steps it produced valid actions, where we extended
flaps, pulled out the gear and started applying air brakes, but the throttle
control was not valid at all. When we needed to accelerate a bit as the aircraft
pitch was too low, it tried to apply reverse throttle (which is used only for
slowing down after the touchdown). Because of this, the aircraft started to
descend too fast and hit the ground roughly, resulting in a crash.

We tried the same scenario several times, always with the same result
- crash. The touchdown happened at around 6.5 nautical miles from the
runway, which in the combination of insufficient smoothness of it disqualified
this policy. An example of a touchdown produced by this policy can be seen
in the picture 5.1.

To assess this approach formally, we look onto the stabilized approach
conditions (the ones not applicable to our case were left out):
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5. Evaluation and Discussion

Figure 5.1: Original best practices policy touchdown

• The aircraft is on the correct flight path - 7- As we failed to reach the
runway, this condition is not satisfied.

• Only small changes in heading/pitch are necessary to maintain the cor-
rect flight path 3- There were no rapid or drastic changes in head-
ing/pitch (although not flying the correct flight path)

• The airspeed is not more than VREF + 20kts indicated speed and not
less than VREF - 7- Descending too steeply caused the aircraft to fly
around 200kts

• The aircraft is in the correct landing configuration - 3- Our policy was
able to reach the landing configuration.

• Sink rate is no greater than 1000 feet/minute. 7- Too steep descend.

5.1.2 Upgraded best practices reward function

The second elite policy was trained using the upgraded best practices reward
function and random forest dynamics model. This policy performed far better
than the original one. It also pulled out the gear almost right after running
the policy, but applied the flaps more delicately, not extending them fully in
the first few steps. The descend was not as fast as with the original reward
function and the touchdown itself was not smooth, but it did not result in a
crash like the previous elite policy.
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5.1. Results in X-Plane

Figure 5.2: Upgraded best practices policy touchdown

Here, we also tried the same scenario multiple times to see how the policy
performs in general and although it did not land directly on the runway, we
clearly see improvement compared to the original reward function policy. The
touchdown happened at approximately 4.5 nautical miles from the runway,
without a crash and can be seen in the picture 5.2.

Taking into consideration stabilized approach conditions:

• The aircraft is on the correct flight path - 7- As we failed to reach the
runway, this condition is not satisfied.

• Only small changes in heading/pitch are necessary to maintain the cor-
rect flight path 3- There were no rapid or drastic changes in head-
ing/pitch (although not flying the correct flight path)

• The airspeed is not more than VREF + 20kts indicated speed and not
less than VREF - 7- Descending too steeply caused the aircraft to fly
around 180kts

• The aircraft is in the correct landing configuration - 3- Our policy was
able to reach the landing configuration.

• Sink rate is no greater than 1000 feet/minute. 7- Still too steep descend.
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5. Evaluation and Discussion

Figure 5.3: Distance policy touchdown

5.1.3 Distance reward function

The last elite policy was trained using the distance reward function and ran-
dom forest dynamics model. This policy seemed like it was going to crash
fast at first, as it applied flaps and airbrakes fast (just like the original best
practices policy), but even though it was descending fast, it was able to sta-
bilize the aircraft by altering the pitch and finally resulting in a very smooth
landing. The touchdown (seen in the picture 5.3) was still not on the runway,
but this policy got the closest to it - roughly 4 nautical miles from the runway.

Looking onto the stabilized approach conditions:

• The aircraft is on the correct flight path - 7- As we failed to reach the
runway, this condition is not satisfied.

• Only small changes in heading/pitch are necessary to maintain the cor-
rect flight path 3- There were no rapid or drastic changes in head-
ing/pitch (although not flying the correct flight path)

• The airspeed is not more than VREF +20kts indicated speed and not less
than VREF - 3- In this case, the aircraft was able to maintain a speed
fit to land (not in all cases but mostly this condition was satisfied).

• The aircraft is in the correct landing configuration - 3- Our policy was
able to reach the landing configuration.
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5.2. Future vision

• Sink rate is no greater than 1000 feet/minute. 7- The beginning of the
approach was too steep, which was later stabilized.

5.1.4 Summary

As we can see the performance of policies varied, but none of the policies
reached a pilot-like performance. However, we showed that our artificial intel-
ligence was able to land an aircraft in a smooth way even though the accuracy
of the touchdown was not sufficient. The goal of this thesis was a proof of
concept and we can say that this was accomplished.

5.2 Future vision

The results produced by this thesis are interesting from the machine learning
point of view. The policies themselves do not reach such a performance that
could replace a real pilot in an aircraft, but rather show that replacement of
the crew is possible. There are still many experiments that could have been
done, but are out of scope of this diploma thesis. Here are a few ideas that
could lead to better policies:

• Extract a different subset of state and action representing datarefs out
of X-Plane. Inaccurate representation of these could lead to invalid
dynamics model and inability to control the aircraft so that it lands
successfully.

• Experiment with different methods of action discretization. We dis-
cretize the actions in order to create a dynamics model and policies
produce discrete output as well. There are many other methods of dis-
cretization (maybe even work with continuous actions).

• Tune the dynamics models. In this work we focused on overview of more
dynamics models and each of these models can be further researched to
reach a better performance.

• Tune the policies. In this work we settled for a cross entropy method for
reinforcement learning with a percentile of selected elites of 80. There
is still space to tune this parameter or even use different method for
training.
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Conclusion

The goal of this thesis was to provide a proof of concept that the cockpit
crew can be replaced by an artificial intelligence that would fully operate
the aircraft. We first provided a research of how much airlines spend on the
pilots and thus how much this concept would save. After, we did a survey
of approaches to this problem (or similar ones) and came up with our own
solution inspired by the survey.

We chose X-Plane 11 as our simulation environment and flew 10 example
approaches to construct a dynamics model that would capture the dynamics
of an aircraft during a descend. This was done to speed up the learning pro-
cess of reinforcement learning as running the experiments in X-Plane would
take too much time. The extraction of data was done via a Python plugin
for launching scripts from inside X-Plane and is described in 4.1. We selected
a subset of datarefs (data pointers inside X-Plane) which was consulted with
a senior aviation system engineer and after extraction we reduced the num-
ber of attributes even more as some of them were constant. We further split
these datarefs into two categories: 18 state representing datarefs and 6 action
datarefs. In order to capture the dynamics of descent, we needed to have a
model that takes tuple [statet, actiont] as input and produces statet+1 as the
output. As the output is expected to be continuous, we selected 5 models:
linear regression, K-Nearest neighbors regression, decision tree regression, ran-
dom forest regression and neural network regression. To tune the parameters
in order to maximize the accuracy of our dynamics model we came up with
two metrics described in 4.2.3 and according to them we performed experi-
ments. We disqualified linear regression and decision tree regression because
of poor performance.

After selecting the best performing parameters for each of the regression
models, we set up the environment for training policies (described in the sec-
tion 4.3.1). We came up with three different reward functions (two based
on pilot best practices and one distance based reward function) and defined
the agent of the policy in 4.3.2. The agent consisted of 6 sub-agents, each of
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which was a neural network with two hidden layers and hyperbolic tangent
activation function. As we trained them iteration by iteration, we set the
parameter warm start to true. We selected cross entropy method for teaching
the agents and selected the percentile of the most successful sessions to feed
to the agent to 80. We also experimented with the size of number of neurons
in hidden layers (from 5 to 100) in combination with different dynamic models
and reward functions (described in section 4.3.3). This way we assessed the
most successful combinations by either looking onto the steepness of learning
(the average reward) or overall average score reached (our proposed reward
functions were easily reversible to know how well the aircraft really performed)
during the first 100 training episodes.

This way we chose three elite combinations for a 1000 episode training
(more detailed in 4.3.5):

1. Neural network with ‘relu’ activation function, two hidden layers with
25 neurons in each of them as the dynamics model, original pilot best
practices reward function with sub-agents with two hidden layers of 5
neurons.

2. Random forest regression with 20 trees and maximum depth of 15 per
tree and MSE criterion for splitting as the dynamics model, upgraded
pilot best practices reward function with sub-agents having 10 neurons
per hidden layer.

3. Random forest regression with 20 trees and maximum depth of 15 per
tree and MSE criterion for splitting as the dynamics model, distance
reward function with sub-agents containing 80 neurons per hidden layer.

These combinations resulted in three different policies (their training out-
puts can be seen in the section 4.3.5) which we then tried back in X-Plane
to see the real performance as until then we worked only with our trained
dynamics models. None of the policies reached the runway, but the results
were interesting nevertheless. We assessed the quality by looking onto the
stabilized approach conditions and checking whether the flight operated by
the policy satisfies them.

• The aircraft is on the correct flight path. None of the policies was able
to satisfy this condition as all landed before the runway. The first policy
landed at about 6.5 nautical miles before, the second 4.5 and the distance
policy landed around 4 nautical miles before the runway.

• Only small changes in heading/pitch are necessary to maintain the cor-
rect flight path. As none of the policies landed on the runway, we looked
onto this condition as smoothness in operation. Our policies did not per-
form any rapid or drastic maneuvers during the landing.
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• The airspeed is not more than VREF + 20kts indicated speed and not
less than VREF , where VREF is 140kts. The first two policies were not
able to maintain such a speed and the distance policy maintained this
speed for landing in most of the cases.

• The aircraft is in the correct landing configuration. All of the policies
managed to get the aircraft into the landing configuration (full flaps,
gear out).

• Sink rate is no greater than 1000 feet/minute. None of the policies were
able to satisfy this condition. However, the distance policy was able to
stabilize itself later to perform a smoother touchdown.

From the perspective of smoothness of landing, the first policy crashed the
aircraft into the ground which disqualifies this policy, but the other two did
not. Although the upgraded policy landed roughly and made a jump during
the touchdown, it did not result in a crash. The last policy (the distance one)
performed a rather smooth touchdown, which could be considered safe (more
discussed in 5).

Overall, as this diploma thesis proves, the idea of landing using artificial
intelligence is possible even though to achieve professional pilot performance
it requires further development which is over the scope of this work.
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Appendix A
Acronyms

ACARS Aircraft communications addressing and reporting system

AOA Angle of attack

API Application programming interface

APV Approach procedures with vertical guidance

ASM Available seat mile

CAS Calibrated airspeed

CASM Cost per available seat mile

CAST Commercial Aviation Safety Team

CE Cross entropy

DBSCAN Density-based spatial clustering of applications with noise

DNA Deoxyribonucleic acid

EAS Equivalent airspeed

GPS Global Positioning System

GS Ground speed

IAF Initial approach fix

IAP Instrument approach procedure

IAS Indicated airspeed

ICAO The International Civil Aviation Organization

IF Intermediate fix
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A. Acronyms

IFR Instrument flight rules

ILS Instrument landing system

IMC Instrument meteorological conditions

KIAS Knots-Indicated airspeed

KNN K-Nearest neighbor

KTAS Knots-True airspeed

MAE Mean absolute error

MDP Markov decision process

MLP Multi-layer perceptron

MLS Microwave landing system

MSE Mean squared error

NASA National Aeronautics and Space Administration

NG Next generation

NN Nearest neighbor

NPA Non-precision approach

PA Precision approach

RL Reinforcement learning

SDK Software development kit

STAR Standard instrument arrival

TAS True airspeed

UDP User datagram protocol

VMC Visual meteorological conditions

XPC X-Plane Communication Toolbox
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Appendix B
Contents of CD

readme.txt ....................... the file with CD contents description
database scripts .......... the scripts for manipulation with databases

create database.py............create database from extracted data
database work.py.....................database manipulation script
discretize actions.py...........................discretize actions
discretize actions binning.py.....discretize actions with binning
read from database.py..............................select features

databases..............................databases of states and actions
discrete actions.db.................database with discrete actions
features selected flights.db......database with feature selection
flights.db.......................................original database

environment............models of environments described in this thesis
model scripts...training, tuning and evaluating dynamics model scripts
original data..........csv files of original extracted data from X-Plane
policy ............ policy oriented scripts - training, controlling X-Plane
results ................. trained policies, dynamics models and rewards
thesis text.....................................the text of this thesis
videos .................................. videos of elite policies landing
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