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Instructions
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structured sources such as Wikipedia infoboxes. However, vast amount of information is still hidden in the
Wikipedia article texts. The ultimate goal of the thesis is to increase the knowledge in DBpedia with lexical
information extracted from Wikipedia.
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- Get familiar with the DBpedia NIF dataset, which provides Wikipedia article texts.
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from Wikipedia.
- Apply the method on several Wikipedia languages and provide language-specific lexical datasets using
Ontolex model.
- Evaluate the quality of the created lexical datasets.
- Implement a simple user interface for browsing/querying the dataset.
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Abstrakt

DBpedia je komunitńı úsiĺı, jehož ćılem je źıskáváńı informaćı z Wikipedie a
poskytováńı těchto informaćı ve strojově čitelném formátu. V současné době
jsou informace obsažené v DBpedii primárně odvozeny pro polostrukturované
zdroje, jako jsou infoboxy Wikipedia. V textech článku Wikipedie je však
stále skryto obrovské množstv́ı informaćı.

V této práci prezentuji př́ıstupy k extrahováńı lingvistických informaćı z
DBpedie, které jsou založeny na kombinováńı a analýze zdroj̊u DBpedie -
dataset̊u a výsledky magisterského projektu jsou datové sady jazykových in-
formaćı: synonyma, homonyma, sémantické vztahy a synonyma mezi jazyky
. Můj projekt také věnuje zvláštńı pozornost čǐstěńı, filtrováńı vytvořených
datových soubor̊u a jeho vyhodnoceńı bylo provedeno taky vytvořeńım jedno-
duché webové aplikace pro dotazováńı výsledk̊u.

Kĺıčová slova DBpedia, NLP, lingvistika, synonyma, homonyma

Abstract

DBpedia is a crowd-sourced community effort which aims at the extraction
of information from Wikipedia and providing this information in a machine-
readable format. Currently, the information contained in DBpedia is primarily
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derived for semi-structured sources such as Wikipedia infoboxes. However,
vast amount of information is still hidden in the Wikipedia article texts.

In this Thesis, I present approaches for extracting linguistic information
from DBpedia, which are based on combining and parsing DBpedia sources
- datasets and the results of the Master Project are datasets of linguistic in-
formation: synonyms, homonyms, semantic relationships, and inter-language
synonyms. My project also pays special attention to cleaning, filtering of pro-
duced datasets, and its evaluation was carried out also by developing a Simple
Web-Application for querying results.

Keywords DBpedia, NLP, lingustics, synonyms, homonyms
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Introduction

Motivation

The amount of data produced every day is rapidly growing up. Just over the
years 2016 - 2018 90% of the world data was created [4]. In Computer Science
two concepts exist: data and information, data is unstructured information,
which has its own disadvantages. Data is senseless and it can’t be used by
people, but it takes storage place. One of the challenges facing the scientists
is how to make this data organized, structured and useful. This will solve
many problems - structured data could be used in computing processing to
get answers to scientific and social tasks. Extracted information will make
data work for people.

One of the modern fields in Computer Science where data can be used is
NLP (Natural Language Processing). NLP is a relatively new field which in-
cludes areas such as text summarization, named entity disambiguation, Ques-
tion Answering, text categorization, coreference resolution, sentiment analysis,
and plagiarism detection. Wide-coverage structured lexical knowledge is ex-
pected to be beneficial for areas other than text processing, e.g., grounded
applications such as Geographic Information Systems and situated robots.

One of the fields of NLP is the extraction of linguistic data. Linguistic
data include words definitions, synonyms, homonyms, translations, semantic-
ally close words. This data can be used by scientists to create richer vocabu-
laries, people who are interested in linguistics or just by users who need some
linguistic information. This data can be organized into datasets. Datasets
can be represented in different formats (see 1.1.2 RDF).

There already exist projects which focus on extraction and structuring of
linguistic data. These projects are the following WordNet (see 1.2.1 WordNet),
Dbnary (see 1.2.3 Dbnary) or BabelNet (see 1.2.2 BabelNet). These projects
have their own advantages and disadvantages (see Chapter State-of-the-art).
The motivation of the Master Project is to provide additional linguistic data-
sets to DBpedia (see 1.1.4 DBpedia) and both to analyze and to create own
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Objectives

extraction methods.

Objectives

The main concern of the thesis is to extend the existing results solutions in
NLP linguistic data extraction field by creating of new linguistic datasets. Res-
ults should have relatively good quality and should be extracted in optimum
amount of time.

Master Thesis objective is to make analysis and solve practical tasks for
extraction of linguistic information from Wikipedia. It should extend the
results of DBpedia. Wikipedia was chosen as one of the biggest resources
of the open data, as the basis of the research already structured datasets of
DBpedia such as links, page-structures and inter-language links will be used
(see 2.1 Input data). The result of the research should be generated datasets of
synonyms, homonyms, semantically close words, and inter-language synonyms
(see 1.1.1 Synonyms, homonyms, semantic relationships).

The next problem is to efficiently structure and store results. Data struc-
turing means the organizing data into datasets. The efficiency of data organ-
izing can be compared by the quality of data sets and using efficient formats
of storing data like RDF (see 1.1.2 RDF). Quality of data set depends on the
clearness of data, how sufficient data is for the given dataset.

A solution of these issues could be found in proper algorithms, parallel
computing and efficient analyzing and filtering of output results (see Experi-
mental Evaluation Chapter).

One of the objectives is to provide for the convenience of users website with
GUI (see 2.9 Simple Web-Application) which enables querying and browsing
of the results of Master Thesis.

• Get familiar with the DBpedia NIF dataset, which provides the under-
lying Wikipedia article content.

• Analyze existing approaches for extraction of lexical information from
texts.

• Design and implement a method for extraction of lexical information
(e.g. synonyms, homonyms, etc.) from Wikipedia article texts.

• Apply the method on several Wikipedia languages and provide language-
specific lexical datasets

• Implement a simple user interface for browsing/querying the dataset.

• Evaluate the quality of the developed lexical datasets.
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Chapter 1

State-of-the-art

1.1 Background

It’s necessary to give definitions of common concepts used in Master Thesis.

1.1.1 Synonyms, homonyms, semantic relationships

In Objectives, it has been described that Master Thesis is mostly focused
on the extraction of such linguistic information as synonyms, homonyms, se-
mantically close words, and inter-language synonyms.

Synonyms. A word or phrase that means exactly or nearly the same as
another word or phrase in the same language, for example, shut is a synonym
of close [5].

Homonyms. Each of two or more words having the same spelling or pro-
nunciation but different meanings and origins, for example, rock - a genre of
music / a stone [6].

Semantic is used to describe things that deal with the meanings of words
and sentences. Semantically close words are words which are often used to-
gether and relate to the same field [7].

Inter-language synonyms are synonyms of word or phrase in different lan-
guages.

Also one of the objectives is to efficiently present the results and data.
Here one of the common approaches is Linked Data.

1.1.2 RDF

The Resource Description Framework (RDF) is a family of World Wide Web
Consortium (W3C) specifications originally designed as a metadata data model
[8]. It has come to be used as a general method for conceptual description or
modeling of information that is implemented in web resources, using a variety
of syntax notations and data serialization formats. It is also used in know-
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1.1. Background

ledge management applications. RDF files could differ in formats like TTL
(turtle) or HDT - they differ in compression levels. HDT uses more efficient
compression mechanisms. In the project both formats - HDT and TTL were
used.

1.1.3 Linked Data

In the Computer Science field, linked data is a method of publishing struc-
tured data so that it can be interlinked and become more useful through
semantic queries. Linked Open Data-Cloud currently contains 1,239 data-
sets with 16,147 links (as of March 2019) [1]. One of the biggest datasets is
DBpedia which contains about 4.6 million concepts described by more than
1 billion triples, including abstracts in 11 different languages. DBpedia has
been chosen as a base of the Master Project. In the following picture, it’s
possible to see the place of DBpedia in Linked Open Data Cloud.

Figure 11: Linked-Open Data Cloud [1]

1.1.4 DBpedia

DBpedia was noted by Tim Berners-Lee ( inventor of the World Wide Web)
as one of the most famous examples of the implementation of the concept of
related data [9].
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1.1. Background

The project was initiated by a group of volunteers from the Free Univer-
sity of Berlin and the University of Leipzig, in collaboration with OpenLink
Software, the first dataset being published in 2007. Since 2012, the University
of Mannheim has been an active participant in the project.

As of the date of September 2014, DBpedia describes more than 4.58
million entities, of which 4.22 million are classified according to ontology,
including 1.445 million personalities, 735 thousand geographical objects, 123
thousand music albums, 87 thousand films, 19 thousand video games, 241
thousand organizations, 251 thousand taxa, and 6 thousand diseases. DBpedia
contains 38 million tags and annotations in 125 languages; 25.2 million links
to images and 29.8 million links to external web pages; 50 million external
links to other RDF-format (see 1.1.5 RDF) databases, 80.9 million Wikipedia
categories.

The project uses the Resource Description Framework (RDF) to present
the extracted information. As of the date of September 2014, the bases consist
of more than 3 billion RDF triples, of which 580 million were taken from the
English section of Wikipedia and 2.46 billion extracted from sections in other
languages.

One of the problems in extracting information from Wikipedia is that the
same concepts can be expressed in templates in different ways, for example,
the concept of “place of birth” can be formulated in English as “birthplace”
and as “place of birth”. Because of this ambiguity, the query passes through
both variants to obtain a more reliable result. To facilitate the search while
reducing the number of synonyms, a special language was developed - DBpedia
Mapping Language and DBpedia users have the opportunity to improve the
quality of data extraction using the Mapping service.

The goal of DBpedia community is to extract structured information from
the data created in various Wikimedia projects. This structured information
resembles an open knowledge graph (OKG) which is available for everyone
on the Web. A knowledge graph is a special kind of database which stores
knowledge in a machine-readable form and provides a means for information
to be collected, organized, shared, searched and utilized. Google uses a similar
approach to create those knowledge cards during search [10]. Further given
above knowledge graph will be mentioned as a dataset. DBpedia NIF datasets
are stored in NIF content format [11].

1.1.5 NIF

The NLP Interchange Format (NIF) is an RDF/OWL-based format that aims
to achieve interoperability between Natural Language Processing (NLP) tools,
language resources, and annotations. NIF consists of specifications, ontologies,
and software. NLP basically inter-operates RDF files of different formats [12].

The core of NIF consists of the vocabulary, which can represent Strings as
RDF resources. A special URI Design is used to pinpoint annotations to a part
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1.1. Background

of a document. These URIs can then be used to attach arbitrary annotations
to the respective character sequence. Based on these URIs, annotations can
be interchanged between different NLP tools [13].

An example of NIF:

1 <http :// dbpedia . org / r e sou r c e /Anderida> <http :// dbpedia .
org / onto logy / wik iPageRedirects> <http :// dbpedia . org /
r e sou r c e /Anderitum> .

2 <http :// dbpedia . org / r e sou r c e / Adrian I> <http :// dbpedia .
org / onto logy / wik iPageRedirects> <http :// dbpedia . org /
r e sou r c e / Pope Adrian I> .

1.1.6 DBpedia datasets

DBpedia gives the list of datasets in different formats for different proposes
for users. Also, datasets are presented in dozens of languages including the
most rare ones like Saha and of course the most popular one - English. In this
research paper just two languages will be used : English and German, but
the methods described will be working for all languages. English and German
have been chosen as the most commonly used ones and having the biggest
number of articles in Wikipedia.

Figure 12: Wikipedia Languages

As shown in the picture above the second and the third most commonly
used languages in Wikipedia are Swedish and Cebuano, but these Wikipedias
almost 100 percent were created by an automatic bot - Lsjbot. There exist
a lot of criticism of usage of this Bot, because articles become poor and such
project as Extraction of linguistic information from Wikipedia requires not
just number of articles, but the volume of content is also important. The
volume of content is much more important than a number of articles because in
Master Thesis methods based on the extraction information from the context
are used.

It’s possible to find lots of datasets in turtle notations like ttl (Terse RDF
Triple Language) on the DBpedia download web page. Turtle (ttl): provides
data in n-triple format (subject, predicate, object) as a subset of turtle serializ-
ation (Turtle) and tql: quad-turtle (tql): the quad turtle serialization (subject,
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1.1. Background

predicate, object, graph/context.) adds context information to every triple,
containing the graph name and provenance information.

Size of datasets is huge. Just dataset of text links in archived format .bz2
is about 6GB, but after extraction, it could be even more than 80GB. Such
big files require lots of memory and computational power. So, there has been
made a decision to search for less resource-consuming datasets.

One of the solutions was HDT documents RDF HDT stands for Header-
Dictionary-Triples. This is a format based on binary encoding and it is used in
storing large RDF files, their publishing and exchange. The idea of RDF HDT
is to store RDF graph in a compact manner, by splitting RDF graphs into
several chunks. Design of RDF HDT also allows archiving high compression
rates. There exists an approach on how to do it, by decomposing RDF graph
into two main components as Triple structures and Dictionary. The Diction-
ary in this case works as an index for high-speed searching and allows high
compression ratios. The second triples component allow storing pure graph
data in a compressed way. Also, there exists an additional Header, which is
recommended to store metadata about RDF graph and it’s organization.

Figure 13: RDF to HDT Comparison [2]
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1.1. Background

Figure 14: HDT Example [2]

Comparing to usual RDF N-triples notations HDT has higher compres-
sion levels and higher speed of queries with less delayed times. HDT is also
compatible with SPARQL queries as all RDF based formats. In the pictures
above the example and structure of RDF HDT files with illustrating linking
in DBpedia are shown.

Figure 15: Comparison of HDT against with traditional techniques regarding
the time to download and start querying a dataset [3]

.

Comparing to TTL files the same dataset in HDT will take more than 3
times less storage space. For example, downloaded unarchived TTL file for
text links was taking almost 90 GB, but in HDT format it’s just 26 GB. HDT
also was provided lots of API. As the main programming language for the
whole project Python has been chosen, which allows quick data structures
operations. Also, there exist lots of tools available for Python as for program-
ming language. In an open access HDT files are available just in English, TTL
files were used for inter-language links.

Overview of the most frequently used datasets in DBpedia.
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1.1. Background

The context dataset is used to describe full texts of articles. It doesn’t
cover links, just text of part of article (entity). Each entity is described with
6 triples: type of triple (context), entity text, link to it, language and begin
and end index of the given part of the article.

Figure 16: NIF Context

Page structure dataset describes such entities as Section, Paragraph, and
Title. It also has properties like begin index and end index, Section triples also
describe each paragraph that it contains separately by begin and end index.

Figure 17: NIF Page structure

Text Links Dataset describes links Words and Phrases by their references,
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1.2. Related work

anchors, representing in which article and paragraph this link is situated. This
dataset is the most usable one in the given project.

Figure 18: NIF Text Links

1.1.7 OntoLex-Lemon

Ontology-lexicon interface (ontolex). The aim of the lexicon model for onto-
logies (lemon) is to provide rich linguistic grounding for ontologies. Rich lin-
guistic grounding includes the representation of morphological and syntactic
properties of lexical entries as well as the syntax-semantics interface, i.e. the
meaning of these lexical entries with respect to an ontology or vocabulary [14].
Ontolex helps to create well-defined RDF structures.

1.2 Related work

Lexical information is possible to be represented in a large amount of distinct
forms, ranging from unstructured terminologies such as a list of terms to gloss-
aries such as Web-derived domain glossaries, machine-readable dictionaries
like LDOCE, thesauri like Roget’s Thesaurus and full-fledged computational
lexicons and ontologies as WordNet and Cyc. However it’s almost impossible
to build such datasets manually - it could take dozens of years, additionally,
it’s not scalable, this will require the extra work to do the same in different
languages. In addition, there must be completed a job to connect all the en-
tities across languages. Besides, for lots of works there exists a problem for
covering rare languages. There is a huge distance in covering and research of
the resource-rich languages like English and others. There are many resources
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1.2. Related work

already done such as BalkaNet [15], MultiWordNet [16], EuroWordNet [17]
which focus on some particular languages.

Recently, the number of online open-source projects is increasing. It in-
cludes lots of researching by communities of Artificial Intelligence and Open
Linked Data and such universities as Princeton University (WordNet) and
Leipzig University and University of Mannheim (DBpedia). Furthermore,
a huge amount of enthusiasts and open-source communities help to develop
projects like these. A sort of resources contain semi-structured information,
mainly in textual, possibly hyperlinked, form. In this case and from the view
of multilingual resources Wikipedia is the largest and the most popular mul-
tilingual and collaborative work of lexical information. There have already
been done a lot of work based on Wikipedia like DBpedia and BabelNet. A
lot of work on the extraction and structuring information, such as extract-
ing lexical and semantic relations between concepts, factual information, and
transforming the Web encyclopedia into a full-fledged semantic network has
already been conducted. One major feature of Wikipedia is its richness of
explicit and implicit semantic knowledge, mostly about named entities (e.g.,
Apple as a company).

In the following sections the most popular works will be more precisely over
viewed. The most famous related projects in field are WordNet, BabelNet,
Dictionary.com.

1.2.1 WordNet

WordNet is one of the biggest linguistic linked databases which has its own
implementations by Princeton University.
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1.2. Related work

Figure 19: WordNet Query Screenshot

On the image above is shown a result of search query on WordNet search
web-page [18].

This database links English nouns, verbs, adjectives, and adverbs to sets
of synonyms that are in turn linked through semantic relations that determine
word definitions.

WordNet is one of the biggest English databases of lexical information. It
consists of lots of speech parts like adverbs, adjectives, and verbs which are
grouped into synsets. Synset is a set of cognitive synonyms. Every synset
means a definite construct. These sets are mutually linked with support of
conceptual-semantic lexical relations. As a result, WordNet is a network of
close words by meanings and concepts which can be navigated in web-browser.
It’s a structured network which helps it to be used as an instrument for natural
language processing and in computations for linguistics.

The base of WordNet is a thesaurus which was resembled into words
groups. These groups are made upon definitions of these words. One of
the features of Wordnet is that it connects words, based not just on letters or
words similarity, but also based on senses of the words. As a result, Word-
Net connects words which have not a lot in common at first sight. If there
are no any words meaning linking, WordNet will label these words and follow
standard rules of linking words itself.

Structure

12



1.2. Related work

The highest dependencies among words in WordNet are synonyms, such
words as task and assignment Synonyms are words which represent the same
meaning and could be used instead of each other in many cases. In WordNet,
they are matched in unordered sets (synsets). There are 117 000 linked synsets,
which are connected by definitions of a small number of “conceptual relations.”
Extra words contain a short description (“gloss”) and also a few examples
illustrating applications of usages. Each word form can have several different
meanings and each one is stored in a separate synset. So each pair in WordNet
is unique.

Relations

Figure 110: Hyponyms

WordNet also represents super-subordinate relation - hyperonymy, hyponymy.
These relations connect more general synsets like Red and Color. In such a
way WorldNet describes that the general field color includes Red, which in
turn includes Blue. Conversely, meanings like Red and blue create a cat-
egory Color. There exist roots and hierarchy which goes up like in a node.
Hyponyms relation is transitive: if Violet is a kind of purple and purple is
a color, then violet is a color too. In WordNet there are also Types and In-
stances. Types describe common nouns like Violet is kind of purple. Instances
are terminal nodes in the hierarchies. In the case of colors, it’s difficult to give
a good example of ”terminal color”, because colors could mix infinitely. In-
stances could be some specific things like countries, persons and geographic
entities.
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Figure 111: Meronyms

Meronyms, are words describing parts of a synset. For example, the chair
has legs. There exist strong inheritance and as was shown in hyperonyms
meronyms also follow the hierarchy and a node system. But in comparison to
hyperonyms - there isn’t ”upward” inheritance, because lower characteristics
describe just some specific kind of thing, rather than a class as a whole. All
kinds of chairs have legs, but not all types of furniture have legs.

WordNet collects also verbs, which are also organized in trees (troponyms)
as nouns. A verb is describing events and in the same way, has links between
each other. For instance, communicate - talk - whisper. The way how words
are connected depends on their semantic meaning. It could be a manner of
doing something as described in the example above, so it could have direction
and level of action or it could be just undirectional synset like buy - pay

WordNet also stores such part of speech as antonyms. They are stored as
pairs - pairs of words which have opposite meanings. For example dry and
wet. This pair has a strong relationship. But to expand results WordNet
connected in turn number of “semantically similar” words. For instance: dry
is a synonym of arid, bare, barren, dehydrated, dusty, parched, stale. In such
a way given words are “indirect antonyms” of synonyms of wet: dank, foggy,
humid, misty, muggy, rainy, slippery.

WordNet also consists of adverbs, but this amount is not high. It happens
because the majority of English adverbs are straightforwardly derived from
adjectives via morphological affixation (surprisingly, strangely, etc.)

Basically, WordNet connects just words of the same part of speech (POS).
These connections were build depending on similarity of words in writing.
observe (verb), observant (adjective) observation, observatory (nouns) [19].
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1.2.2 BabelNet

Figure 112: BabelNet

BabelNet is another open-source project which is trying to implement differ-
ent methods and implementations. BabelNet is trying to extend and combine
the results of WordNet and DBpedia. It’s presenting wide-coverage multilin-
gual knowledge resource. BabelNet presents also enrichment and integration
methodology which creates a large multilingual semantic network.

BabelNet is created by linking the largest multilingual Web encyclopedia
- Wikipedia - to the most popular computational lexicon - WordNet [20]. The
integration is performed via automatic mapping and by filling in lexical gaps
in resource-poor languages by means of Machine Translation.

As a result, BabelNet is an extended ”encyclopedic dictionary” which con-
tains concepts and named entities connected with a large number of semantic
relations and in many languages.

The BabelNet methodology of linking data could be described in three
statements.

1. BabelNet has a lightweight methodology to map encyclopedic entries
to a computational lexicon. The given methodology has different approaches
to estimate mapping probabilities such as graph representations bag-of-words
methods. BabelNet provides methods to map tens of thousands of Wikipedia
pages and corresponding Wordnet synsets. The quality of results is about 78%
F1 measure (see 3.1 Evaluation Metric).

2. BabelNet also provides translations in different languages. At the be-
ginning six languages were chosen. The translation is made by combining two
methods. Human-edited translations, inter-language links and state of the art
statistical Machine Translations for filling gaps are used. Machine Transla-
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tions help to translate millions of sense-tagged sentences from Wikipedia and
SemCor [21]. As a result, it’s possible to cover the biggest part of the existing
WordNet senses and to provide many novel lexicalizations.

The SemCor corpus is an English language dictionary with annotated texts
in an annotated way. SemCor has 352 texts from Brown corpus. SemCor
also has provided semantic analysis done manually with WordNet 1.6 senses
(SemCor version 1.6). Later it was automatically mapped to WordNet 3.0
(SemCor version 3.0).

The Brown corpus (full name Brown University Standard Corpus of Present-
Day American English) was the first text corpus of American English. The
original corpus was published in 1963-1964 by W. Nelson Francis and Henry
Kučera at Department of Linguistics, Brown University Providence, Rhode
Island, USA.

The corpus consists of 1 million words (500 samples of 2000+ words each)
of running text of edited English prose printed in the United States during
the year 1961 and it was revised and amplified in 1979.

3. BabelNet is using knowledge encoding to perform graph-based and
knowledge rich Word Sense Disambiguation in both a multilingual and mono-
lingual setting. The given results indicate that associative ones from Wikipe-
dia can complement each other and enable to receive state of the art perform-
ance when they are combined with a wide-coverage semantic network [22].

1.2.3 Dbnary

Dbnary is one more project in Linked Open Data. Dbnary uses Wiktionary,
which is part of Wikipedia project. Wiktionary is a multilingual, web-based
project to create a free content dictionary of terms (including words, phrases,
proverbs, etc.) in all natural languages and a number of artificial languages.
These entries may contain definitions, pronunciation guides, inflections, usage
examples, related terms, images for illustration, among other features.

The goal of Dbnary is not to extensively reflect wiktionary data, but to
create a lexical resource that is structured as a set of monolingual dictionaries
+ bilingual translation information. Such data are already useful for several
application, but it is merely a starting point for a future multilingual lexical
database.

The monolingual data are always extracted from its own wiktionary lex-
ical edition. For instance, the French lexical data is extracted from French
language edition (the data available on http://fr.wiktionary.org). Hence, we
completely disregard the French data that may be found in other language
editions. Dbnary also filtered out some parts of speech in order to produce a
result that is closer to the existing monolingual dictionaries. For instance, in
French, were disregarded abstract entries that are prefixes, suffixes or flexions.

Lexical Entries: an instance of lemon:LexicalEntry corresponds more or
less to a ”part of speech” section in a wiktionary page. This means that it
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is defined by unique canonical written form, a part of speech and a number
(in case of homonymy). When wiktionary data allows for it, Dbnary try to
distinguish between lemon:Word and lemon:Phrase that are defined as specific
lexical entries.

Lexical Forms: lexical entries are connected, through the lemon:canonicalForm
property to a lexical form that gathers a written form and a pronunciation
(when available). They may also be connected to alternative spelling through
lemon:lexicalVariant property.

Lexical Senses: an instance of lemon:LexicalSense corresponds to one defin-
ition in the wiktionary page. It is the target of the lemon:sense property of
its containing Lexical Entry. Each lexical sense is associated with a dbpe-
dia:senseNumber property (that contains the rank at which the definition
appeared in the wiktionary page) and a lemon:definition property.

Part Of Speech part of speech properties are available in the wiktionary
data in 2 distinct properties that are attached to lexical entries:

• dbnary:partOfSpeech is a data property whose value is a string that
contains the part of speech as it was defined in wiktionary

• lexinfo:partOfSpeech is a standard property that is bound to isocat data
categories and which value is a correct isocat data category.

This property is only available when the mapping between wiktionary part
of speech and isocat part of speech is known.

Vocable: the main unit of data in wiktionary is a wiktionary page that
may contain several lexical entries. Many lexical data is represented as links
to a page. Most of the time, there is not enough data to know to which lexical
entry (or lexical sense) these links point to. Hence if we want to keep these
underspecified relations, we need to define units that represent wiktionary
pages. This is the role of the dbnary:Vocable class. Instances of this class are
related to their lexical entries through the dbnary:refersTo property.

Nyms: most wiktionary language editions do provide ”nym” relations
(mainly synonym, antonym, hypernym, hyponym, meronym and holonym).
This legacy data is not representable using LEMON model, unless Dbnary
know for sure the source and target lexical sense of the relation. In order to
cope with this legacy data, 6 new ”nym” properties (in dbnary name space).
Additionaly, Dbnary defined a class called dbnary:LexicalEntity that is defined
as the union of LEMON lexical entries and lexical senses. The ”nym” prop-
erties domain and range are lexical entities. Most of these properties do link
a lexical entry to a vocable, as there is not enough information in wiktionary
to promote this relation to a full class sense to sense relation. Some of these
properties are however promoted to a Lexical Sense to Vocable relation when
the lexical entry is unambiguous (contains only one sense).

Translations: As there is no way to represent bilingual translation rela-
tion in LEMON, Dbnary introduced the dbnary:Equivalent class that collects
translation information contained in wiktionary [23]..
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Figure 113: Dbnary

1.2.4 Dictionary.com

Dictionary.com is the world’s leading digital dictionary. It provides millions
of English definitions, spellings, audio pronunciations, example sentences, and
word origins. Dictionary.com’s main, proprietary source is the Random House
Unabridged Dictionary, which is continually updated by Dictionary.com team
of experienced lexicographers and supplemented with trusted, established
sources including American Heritage and Harper Collins to support a range
of language needs. Dictionary.com also offers a translation service, a Word of
the Day, a crossword solver, and a wealth of editorial content that benefit the
advanced word lover and the English language student alike [24].
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Figure 114: Dictionary.com

Dictionary.com is not an open-source project, so it’s not possible to es-
timate mechanisms used in its work. But judging by the information from
the Dictionary.com web-site, it’s possible to predict that it uses just manual
extension of database and no advanced algorithms of data linking.

Dictionary.com also has its own mobile application.

1.2.5 Non-Wikipedia based methods

In the book S̈peech and Language Processingb̈y Daniel Jurafsky Stanford
University and James H. Martin University of Colorado at Boulder [25] were
described other automated methods of extraction lexical information from
texts. They are based on generating the so-called semantic vectors.

Let’s see an example illustrating this distributionalist approach. Suppose
it’s unknown what the Cantonese word ongchoi means, but it is possible to
see it in the following sentences or contexts:

(6.1) Ongchoi is delicious sauteed with garlic.
(6.2) Ongchoi is superb over rice.
(6.3) ...ongchoi leaves with salty sauces...
And furthermore there are many of these context words occurring in con-

texts like:
(6.4) ...spinach sauteed with garlic over rice...
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(6.5) ...chard stems and leaves are delicious...
(6.6) ...collard greens and other salty leafy greens
The fact that ongchoi occurs with words like rice and garlic and delicious

and salty, as do words like spinach, chard, and collard greens might suggest
to the reader that ongchoi is a leafy green similar to these other leafy greens.

It’s possible to do the same thing computationally by just counting words
in the context of ongchoi; we’ll tend to see words like sauteed and eaten and
garlic. The fact that these words and other similar context words also occur
around the word spinach or collard greens can help us discover the similarity
between these words and ongchoi.

Vector semantics thus combines two intuitions: the distributionalist intu-
ition (defining a word by counting what other words occur in its environment),
and the vector intuition of Osgood et al. (1957): defining the meaning of a
word w as a vector, a list of numbers, a point in Ndimensional space. There
are various versions of vector semantics, each defining the numbers in the vec-
tor somewhat differently, but in each case the numbers are based in some way
on counts of neighboring words.

The idea of vector semantics is thus to represent a word as a point in some
multidimensional semantic space. Vectors for representing words are generally
called embeddings, because the word is embedded in a particular vector space.

Notice that positive and negative words seem to be located in distinct
portions of the space - antonyms. This suggests one of the great advantages
of vector semantics: it offers a fine-grained model of meaning that lets us also
implement word similarity.

For example:

Figure 115: Vector Table

This table represents occurrences of words together in the same context.
It’s possible to build a graph based on this table .

20



1.3. Summary

Figure 116: 2D Vector

The vectors for the comedies As You Like It [1,114,36,20] and Twelfth
Night [0,80,58,15] look a lot more like each other (more fools and wit than
battles) than they do like Julius Caesar [7,62,1,2] or Henry V [13,89,4,3] [25].

1.3 Summary

Aspects of qualifying different projects are:

• Automated
All extraction must be done automatically using scripts

• UI
Project has UI for easy querying / navigation results

• Multilingual
Results of linguistic data extraction should be presented in multiple
languages

• Open Data
Datasets should be open and downloadable

• API
API for querying results should be presented

• Synonyms
synonyms dataset should be presented

• Homonyms
homonyms dataset should be presented
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• Semantic relationships
semantic relationships dataset should be presented

• Inter-language synonyms
inter-language synonyms dataset should be presented

Figure 117: Comparison

As it is possible to see in a picture, all projects have their own pros and
cons.

For example, DBpedia is a good source of free datasets to use. But it’s
not complete and can be extended by new datasets like synonyms, homonyms,
related semantic meaning, and inter-language words. Basically, it’s just Wiki-
pedia in a structured form with lots of different datasets which is good to
use.

BabelNet is a big project which allows using some API functions, but it
doesn’t allow to get full datasets. API of BabelNet is also limited to use. This
project is developing by a team of university researchers (Sapienza University
of Rome) and basically, it’s not open-source.

WordNet is not an open-source project either. It’s being developed by
Princeton University and it covers just English words. WordNet doesn’t
provide much information about mechanisms of computing data and algorithms
of receiving results either.

Dbnarry is similar to BabelNet as it uses data based on Wikipedia, but
the number of covered languages is significantly less: 20 in Dbnary and more
than 250 in BabelNet.

Dictionary.com is just a presentation of white-papers dictionaries without
using any algorithms or advanced computing. Also, it’s a commercial project
which doesn’t allow any community changes.

All the rest of the projects are quite similar to Dictionary.com - they are not
using any algorithms and just copying data from dictionaries. This approach
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is not efficient and can’t give any new results for scientists, researchers, and
the community.

The idea of the project is to develop a fully open-source tool for further
researching, this will also create a new datasets for DBpedia which can be
used in the future such as synonyms, homonyms, semantic relations and inter-
language synonyms. Another point is to research clearness of data and results,
because even such big and old projects as BabelNet and WordNet not always
show a perfect result.
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Chapter 2

Extraction of linguistic
information from Wikipedia

This chapter discusses methods and approaches used in work for Extraction
linguistic information from Wikipedia, such as choice of initial datasets for
project (section Datasets analyzing), describing process of generating fur-
ther datasets (sections surface, synonyms, homonyms, close semantic, inter-
language synonyms generating), methods of their filtering and cleaning (sec-
tion Limitation datasets). In some tasks a combination of different datasets
and setting up thresholds for limitation results and storage final datasets in
most suitable formats was used. Creating of user interface website (section
Web-application) with user-friendly design and designing of properly formed
database queries was also part of the research.

At the end (Experimental Evaluation Chapter) statistics and evaluation
to similar projects have been done.

All these steps were done to fulfill Master Project objectives. Practical
part steps could be described as follows:
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Figure 21: Steps

Generally, the picture above can be described by 5 steps.
Step 1. Preparation.
Preparation step consists of downloading proper datasets and creating

surface dataset Link - Anchor - Count. The surface dataset was created using
text links NIF dataset.

Step 2. Datasets generating. CSV.
The next step is generating datasets of synonyms, homonyms, semantic

relationships and inter-language synonyms in the CSV format. For synonyms
and homonyms previously generated surface dataset was used. Semantic re-
lationships dataset was created using text links and page structure dataset.
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For inter-language synonyms inter-language links dataset was also used.
Step 3. Cleaning and Filtering
The next steps are focused on cleaning and filtering produced datasets of

synonyms and homonyms. Methods are based on Levenshtein distance and
frequency of generated synonyms and homonyms.

Step 4. RDF - Representation
To efficiently store and navigate in datasets RDF graphs in triple format

are used.
Step 5. Simple Web-Application.
The last step is based on creating simple web-application for easy and

user-friendly navigating through the dataset.

2.1 Input data

After analysis of the previous projects and research and making a comparison
it was made a decision to make DBpedia datasets as a basis of the Master
Project. They are free to use and are one of the most complete for open
linked data.

Links, page-structure and inter-language links datasets were used as an
input data.

2.2 Surface forms dataset generation

One of the main datasets used in the Master Project is the so-called called
”Surface” dataset. This dataset is built from links dataset. The idea of
creating a Surface dataset is like to create a base dataset from which all other
datasets will be generated. This dataset is a basis for generating synonyms,
homonyms and semantic meaning datasets.

Structure of this dataset will look like:
Anchor - Link - Count
Anchor, in this case, is a text of the link or reference. That means that

Anchor should have the same meaning or sense as page, article or entity it
refers to. It could be a word, a phrase, a list, a number, a date, etc.

Link is a reference to some other page, article or entity. A link has the fol-
lowing form: (’http://dbpedia.org/resource/Apple) dbpedia.org/resource pre-
fix could be easily replaced with wikipedia.org/wiki and it’s easily possible to
see a real page at wikipedia.org and not just DBpedia entity.

DBpedia entity is the same as the Wikipedia article page, but it also
consists of parts of structured data.
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Figure 22: DBpedia Article

It could have lots of forms depending on the type and topic of the article.
For an example of Diego Maradona - it consists of information as about per-
son height, birthplace, birth date, etc. If it’s someplace then this will have
parameters like coordinates etc..

Count. The count is a column which represents a number of occurrences of
the same Anchor - Link pairs. The count is some representation of the weight
of pairs, which is also important for our investigations and is widely used in
the project. It also gives user relevant information.

In the beginning, all results are stored in .csv files. It’s necessary to convert
them after to RDF based files.

To create such dataset Python script was developed.
In the beginning, it’s necessary to import special packets and libraries like

CSV and DateTime.
After that, it’s required to read HDT file. HDT file requires also special

index file, for fast searching. In the following code example, we are searching
for all triples.

1

2 document = HDTDocument( ” n i f t e x t l i n k s e n . hdt” )
3 wr i t e r = csv . wr i t e r (open( ” sur face non group . csv ” , ”w” ) )
4 ( t r i p l e s , c a r d i n a l i t y ) = document . s e a r c h t r i p l e s ( ”” , ”” , ”” )

Each link in the NIF file is described with seven triples. For the purpose
of surface creation, we need just the first and the last, triples which describe
anchor and link accordingly. The following example shows the first and the
seventh triple of the first link in NIF text links dataset. Each triple has the
same triplet as it describes the same link.

Anchor:

1 http :// dbpedia . org / r e sou r c e / ! ! ! ? dbpv=2016−10&n i f=phrase&char
=1258 ,1284

2
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3 http :// p e r s i s t e n c e . uni− l e i p z i g . org / n lp2 rd f / on t o l o g i e s / n i f−core#
anchorOf

4

5 Gold Standard Labora to r i e s

Link:

1 http :// dbpedia . org / r e sou r c e / ! ! ! ? dbpv=2016−10&n i f=phrase&char
=1258 ,1284

2

3 http ://www.w3 . org /2005/11/ i t s / rd f#taIden tRe f
4

5 http :// dbpedia . org / r e sou r c e /Gold Standard Laborator i e s

It’s necessary to catch anchor and link, the following example shows the
code of writing link and anchor to the CSV file.

1

2 db p r e f i x=”http :// dbpedia . org / r e sou r c e /”
3 i=0
4 j=0
5 anchor=””
6 r e f=””
7 print ( str ( datet ime . datet ime . now( ) )+” Star t ” )
8 for s , p , o in t r i p l e s :
9 i f ”#anchorOf” in p or ( db p r e f i x in o and ”#taIdentRef ” in p) :

10 i f i ==0:
11 anchor=o
12 i=1
13 e l i f i>0 and db p r e f i x in o :
14 r e f=o . r ep l a c e ( db pre f i x , ”” )
15 i=0
16 wr i t e r . writerow ( ( anchor , r e f , ”1” ) )
17 j=j+1
18 i f j %100000==0:
19 print ( str ( datet ime . datet ime . now( ) )+” ”+str ( j ) )
20 else :
21 i=2
22 anchor=o

It has been shown in line 8 that searching of triples with anchorOf or
taIdentRef part in the predicate has been made. Internal Wikipedia links are
concerned in the research, so it’s also required to check that link consists of
prefix http://dbpedia.org/resource/.

After these operations the surface dataset is created. But as the previous
code example shows it’s not complete. All Count columns are filled just with
ones. The next step is to group rows by the first two columns - anchor and
link. This task was done using pandas Python library and package.

1 import datet ime
2 import pandas as pd
3 print ( str ( datet ime . datet ime . now( ) )+” Star t ” )
4 df = pd . r ead c sv ( ’ semantic non group . csv ’ , names=[ ’ c o l 1 ’ , ’ c o l 2 ’ ,

’ c o l 3 ’ ] )
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2.3. Synonyms dataset generation

5 ( df . groupby ( [ ’ c o l 1 ’ , ’ c o l 2 ’ ] ) [ ’ c o l 3 ’ ] . sum( ) ) . t o c sv ( ’ su r f a c e g roup
. csv ’ )

6 print ( str ( datet ime . datet ime . now( ) )+” Fin i sh ” )

The operation above groups surface rows by the first two columns and sum
values of the third column (line 4).

The result of the given code is the new Surface dataset with grouped rows.

1 ””” ’Aglow Koto ’ ””” , Nepenthes ’ Aglow Koto ’ ,1
2 ””” ’Agnes Hopkins ’ ””” , H ib i s cu s ’ Agnes Hopkins ’ ,1
3 ””” ’ Aichi ’ ””” , Nepenthes ’ Aich i ’ ,2
4 ””” ’ Ajax ’ ””” , Alcantarea Ajax , 1
5 ””” ’Akaba ’ ””” , Nepenthes ’Akaba ’ ,1
6 ””” ’Al Jo l son ’ ””” , Neo r ege l i a A l Jo l s on , 1
7 ””” ’ Alaka ’ i ’ ””” , B i l l b e r g i a A l aka ’ i , 1
8 ””” ’ Alaya ’ ””” ,Aechmea Alaya , 1
9 ””” ’Alba ’ ””” , Budd l e j a dav id i i v a r . nanhoens i s , 3

10 ””” ’Alba ’ ””” , L u d i s i a d i s c o l o r ’ Alba ’ ,1
11 ””” ’Alba ’ ””” , Nepenthes ’ Alba ’ ,4
12 ””” ’Alba ’ ””” ,Ulmus ’ Alba ’ ,1
13 ””” ’ A l b e r t i i ’ ””” , B i l l b e r g i a A l b e r t i i , 1
14 ””” ’ A l b e r t i i ’ ””” , V r i e s e a A lb e r t i i , 1

The task for creating surface is done. The next one is to extract informa-
tion about synonyms and homonyms.

2.3 Synonyms dataset generation

Synonyms are words which have the same meaning but have different writing.
From the view of Wikipedia links and created surface dataset, synonyms - are
anchors which refers to the same link.

Form of synonyms dataset should be as follows:
Link - Anchor1 - Count1 - Anchor2 - Count2 - .... - AnchorN - CountN
This task has quite a big complexity on the unordered list. It means that

each link should be compared with each one following and in the worst case.
And it means that the worst complexity would be N*sqrt(N). For such dataset
as a surface with almost 20 million element, this task is too time and resource
consuming.

The preliminary task is to sort surface dataset by references.
Again this task was done quite fast by high-performance Pandas library.

On the top there is importing of Pandas and DateTime libraries, then new
data frame is assigned and Pandas perform sorting with writing the result to
surface group order reference file.

1 import datet ime
2 import pandas as pd
3

4 print ( str ( datet ime . datet ime . now( ) )+” Star t ” )
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5 df = pd . r ead c sv ( ’ . . / csv / su r f a c e g roup . csv ’ , names=[ ’ co l 1 ’ , ’ c o l 2 ’
, ’ c o l 3 ’ ] )

6 ( df . s o r t v a l u e s ( ” co l 1 ” ) ) . t o c sv ( ’ . . / s u r f a c e g r o up o r d e r r e f . csv ’ )
7 print ( str ( datet ime . datet ime . now( ) )+” Fin i sh ” )

After that surface dataset will look like:

1 124816 , ””” ’ t Haantje ””” , ” ’ t Haantje , O v e r i j s s e l ” ,1
2 124817 , ””” ’ t Haantje ””” , ” ’ t Haantje , R i j sw i j k ” ,1
3 124818 , ””” ’ t Haantje ””” , ’ t Haant j e ( Coevorden ) ,1
4 17145224 ,””” t ’ Haantje ””” , ’ t Haan t j e ( North Brabant ) ,1
5 124819 , ””” ’ t Haantje ””” , ’ t Haant j e ( d isambiguat ion ) ,1
6 124821 , ””” ’ t Harde””” , ’ t Harde ,17
7 124822 ,””” ’ t Harde””” , ’ t Ha rd e r a i lway s t a t i on ,2
8 124823 , ””” ’ t Heem””” , ’ t Heem ,1
9 124825 , ””” ’ t Hof””” , ’ t Hof , 1

With sorted Surface dataset task of generating synonyms datasets will take
not many resources - this will N time complexity task.

On the following code the process of generating synonyms dataset based
on grouped and ordered surface is shown:

1 import csv
2 import datet ime
3

4 wr i t e r = csv . wr i t e r (open( ” . . / csv /synonyms . csv ” , ”w” ) )
5 reader = csv . reader (open( ” . . / csv / s u r f a c e g r o up o r d e r r e f . csv ” ) )
6 wr i t eS t r i ng = [ ]
7 currentWord=””
8 print ( str ( datet ime . datet ime . now( ) )+” Star t ” )
9 for row in reader :

10 i f currentWord !=row [ 2 ] :
11 i f len ( w r i t eS t r i ng ) !=0:
12 wr i t e r . writerow ( wr i t eS t r i ng )
13 wr i t eS t r i ng . c l e a r ( )
14 currentWord=row [ 2 ]
15 wr i t eS t r i ng . append ( currentWord )
16 wr i t eS t r i ng . append ( row [ 1 ] )
17 wr i t eS t r i ng . append ( row [ 3 ] )
18 print ( str ( datet ime . datet ime . now( ) )+” Fin i sh ” )

The process is going in reading the third column and writing it first in a
row for new synonyms dataset. The first is always a link, than references with
their counts are appending to a new row. When new link appeared string is
written to file and the process begins from the start.

1 $20K House , ”””$20K House””” ,5
2 $20k House , ”””$20k House””” ,1
3 $21 a Day (Once a Month ) , ”””$21 a Day (Once a Month) ””” ,2
4 $24 in 24 , ”””$24 in 24””” ,5
5 ”$25 ,000 Pyramid” , ”””$25 ,000 Pyramid””” ,4
6 $25 Mi l l i on Do l la r Hoax , ”””$25 Mi l l i on Do l l a r Hoax””” ,3
7 $2 P i s t o l s , ”””$2 P i s t o l s ””” ,1
8 $2 Wonderfood , ”””$2 Wonderfood””” ,1
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9 $2 b i l l i o n a rms d e a l , ”””$2 b i l l i o n arms dea l ””” ,2

As it is possible to see from the example above, results are not clear. Some
Anchors differ just by one letter or even quotation marks.

Cleaning
The next step of dealing with extract synonyms task is to analyze produced

dataset and develop proper filtering and cleaning methods. For this purpose
more than one hundred surface rows were taken randomly.

The first thing that was seen is that words could have not relevant syn-
onyms. This could happen when people edited links wrongly.

The second thing is that Wikipedia comprises separate articles for Lists
which should also be removed.

The third is that some anchors and links are just dates, numbers without
any sense.

Furthermore, it’s necessary to strike a golden mean - not to clean dataset
too much, but also to remove all unrelated data.

For this purpose Python script was written.
It consists of 3 steps.
1. Clean

1 def c l ean ( experiment ) :
2 wr i t e r = csv . wr i t e r (open( ” . . / csv / exper iments / exper iment ”+

experiment+”/ c l ean . csv ” , ”w” ) )
3 reader = csv . reader (open( ” . . / csv /synonyms . csv ” ) )
4 wr i t eS t r i ng = [ ]
5 for row in reader :
6 wr i t eS t r i ng . c l e a r ( )
7 i f len ( row ) > 3 and i s v a l i d ( row [ 0 ] ) :
8 wr i t eS t r i ng . append ( row [ 0 ] )
9 for index in range (1 , len ( row ) ) :

10 i f index % 2 == 1 :
11 non quotes = row [ index ] . s t r i p (< l i s t o f quote

marks>)
12 non quotes = non quotes . s t r i p ( )
13 i f i s v a l i d ( non quotes ) :
14 wr i t eS t r i ng . append ( non quotes )
15 wr i t eS t r i ng . append ( row [ index + 1 ] )
16 i f len ( w r i t eS t r i ng ) > 1 :
17 wr i t e r . writerow ( wr i t eS t r i ng )

At this step, the script removes all rows which have less than three elements
(line 6 of code above). This means that there is just one link and one anchor
in a row.

1 def i s d a t e ( s t r i n g ) :
2 try :
3 parse ( s t r i n g )
4 return True
5 except ValueError :
6 return False
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7

8 def i s v a l i d ( s t r i n g ) :
9 i f s t r i n g . s t a r t sw i t h ( ” L i s t ” ) :

10 return False
11 i f s t r i n g . i s d i g i t ( ) :
12 return False
13 i f i s d a t e ( s t r i n g ) :
14 return False
15 return True

The given script removes all the quote marks, Lists, check if a given anchor
is a date or digit and remove it if it is.

2. Group
After cleaning it’s necessary to group by produced new rows because after

quote marks removing it could happen that two rows are similar.

1 def group ( experiment ) :
2 wr i t e r = csv . wr i t e r (open( ” . . / csv / exper iments / exper iment ”+

experiment+”/group . csv ” , ”w” ) )
3 reader = csv . reader (open( ” . . / csv / exper iments / exper iment ”+

experiment+”/ c l ean . csv ” ) )
4 wr i t eS t r i ng = [ ]
5 for row in reader :
6 wr i t eS t r i ng . c l e a r ( )
7 wr i t eS t r i ng . append ( row [ 0 ] )
8 for x in range (1 , len ( row ) ) :
9 i f x % 2 == 1 and not row [ x ] in wr i t eS t r i ng :

10 wr i t eS t r i ng . append ( row [ x ] )
11 wr i t eS t r i ng . append ( row [ x + 1 ] )
12 for y in range ( x + 2 , len ( row ) ) :
13 i f row [ x ] == row [ y ] :
14 index = wr i t eS t r i ng . index ( row [ x ] )
15 wr i t eS t r i ng [ index + 1 ] = int ( w r i t eS t r i ng [

index + 1 ] ) + int ( row [ y + 1 ] )
16 wr i t e r . writerow ( wr i t eS t r i ng )

After that similar rows are grouped and here comes the most interesting
part - Limitation of non-relevant synonyms.

3. Threshold
In threshold task, two approaches were used: Valid/Invalid cases and

Levenshtein Distance.
Valid/Invalid cases assume 4 situations. In the case of the threshold, it’s

very similar to the F1 score problem. Limitation is based on two parameters,
so there exist 4 cases.

These parameters are a similarity of words to the link, which can be calcu-
lated by Levenshtein Distance and Frequency of occurrences of given synonym
for given link. Experiments are described in 2.7 Cleaning and Filtering

The basic algorithm of limitations (synonyms):

1 Valid
2 i f c u r r e n t S im i l a r i t y >= s im i l a r i t y and currentFreq >= f r eq :
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3 wr i t eS t r i ngVa l i d . append ( row [ x ] )
4 wr i t eS t r i ngVa l i d . append ( row [ x + 1 ] )
5 Valid
6 e l i f c u r r e n t S im i l a r i t y >= s im i l a r i t y and currentFreq < f r e q :
7 wr i t eS t r i ngVa l i d . append ( row [ x ] )
8 wr i t eS t r i ngVa l i d . append ( row [ x + 1 ] )
9 Valid

10 e l i f c u r r e n t S im i l a r i t y < s im i l a r i t y and currentFreq >= f r eq :
11 wr i t eS t r i ngVa l i d . append ( row [ x ] )
12 wr i t eS t r i ngVa l i d . append ( row [ x + 1 ] )
13 I nva l i d
14 e l i f c u r r e n t S im i l a r i t y < s im i l a r i t y and currentFreq < f r e q :
15 writeStr ingNonVal id . append ( row [ x ] )
16 writeStr ingNonVal id . append ( row [ x + 1 ] )

After that relatively clean synonyms are generated.

2.4 Homonyms dataset generation

Process of generating homonyms is similar to the process of generating syn-
onyms. It’s necessary to create a dataset according to the following scheme:

Homonyms are words which have similar pronunciation, but different mean-
ing. From the view of Wikipedia anchor represents similar pronunciation and
references - different meanings.

Anchor - Link1 - Count1 - Link2 - Count2 - ... - LinkN - CountN
Steps for generating homonyms dataset.
1. Sort Surface by anchors 2. Generate Homonyms dataset 3. Cleaning 4.

Grouping 5. Limitations
There are just minor changes in the algorithm due to a different order of

references and anchors, except :
1) Grouping part. For homonyms, grouping should be done twice. At first

in a vertical axis by columns and then in a horizontal axis in a row. It happens
because after quotations mark removing it could happen that some Anchors
are similar, after grouping them - it’s necessary group also their links values,
which also could be the same after the first grouping.

2) Algorithm of attaching words to valid and non-valid groups is different
from synonyms.

1 Valid
2 i f c u r r e n t S im i l a r i t y >= s im i l a r i t y and currentFreq >= f r eq :
3 I nva l i d
4 e l i f c u r r e n t S im i l a r i t y >= s im i l a r i t y and currentFreq < f r e q :
5 Valid
6 e l i f c u r r e n t S im i l a r i t y < s im i l a r i t y and currentFreq >= f r eq :
7 Valid
8 e l i f c u r r e n t S im i l a r i t y < s im i l a r i t y and currentFreq < f r e q :
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2.5 Semantic relationships dataset generation

One more task was to create a dataset of words close in semantic meaning.
Two approaches have been used to find it.
Approach #1
Document - Link Connection
The idea is to create a dataset in the following form:
Source Article URL - Destination Article URL - Count
To implement this approach HDT file text links was used again. The

following sample of code shows the extraction process.

1 document = HDTDocument( ” n i f t e x t l i n k s e n . hdt” )
2 ( t r i p l e s , c a r d i n a l i t y ) = document . s e a r c h t r i p l e s ( ”” , ”” , ”” )
3 db p r e f i x=”http :// dbpedia . org / r e sou r c e /”
4 j=0
5 source=””
6 de s t i n a t i on=””
7 print ( str ( datet ime . datet ime . now( ) )+” Star t ” )
8 for s , p , o in t r i p l e s :
9 i f ”#taIdentRef ” in p and db p r e f i x in o :

10 source=s . s p l i t ( ”?dbpv=” ) [ 0 ]
11 de s t i n a t i on=o
12 wr i t e r . writerow ( ( source , d e s t i na t i on , ”1” ) )
13 j=j+1
14 i f j %100000==0:
15 print ( str ( datet ime . datet ime . now( ) )+” ”+str ( j ) )

After computing dataset with the following values was obtained:

1 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e /Khamis Mushait , 1

2 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e /Dhahran Aljanoub , 1

3 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e / Sarat Ubaida Governorate , 1

4 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e /Ri ja l Alma Asir , 1

5 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e / Ri j a l A l−Hajr , 1

6 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e /Khamis Mushayt , 1

7 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e /Oil boom ,1

After that the similar similar approach was used as in Synonyms and Hom-
onyms Generation. It’s necessary to group values by the first two columns.
As in Synonyms and Homonyms, datasets Pandas library was used. Grouping
showed the following results:

1 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e /Bariq , 1

2 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e /Barley , 1
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3 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e /Basket , 1

4 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e /Bisha , 1

5 http :// dbpedia . org / r e sou r c e / ’ Asir Region , http :// dbpedia . org /
r e sou r c e /Coffee , 1

It’s possible to see minor changes. The number of occurrences counted
more than once was seen as extremely low. To check and to be sure in this
assumption is was created a script for statistics analyzing.

1 i f maxCount < len ( row )−2:
2 maxCount = len ( row )−2
3 print (maxCount )
4 s t a t L i s t = [ 0 ] ∗ ( maxCount+1)
5 for row in reader :
6 tota lCount = totalCount + 1
7 s t a t L i s t [ len ( row )−1]= s t a t L i s t [ len ( row )−1] + 1
8 elemIndex=0
9 for elem in s t a t L i s t :

10 wr i t e r . writerow ( ( str ( elemIndex ) , str ( elem ) ) )
11 elemIndex = elemIndex + 1
12 print ( tota lCount )

After receiving results from the statistics it becomes clear that 90,97769872%
of pairs have been counted just once. And basically, it corresponds to Wiki-
pedia organizational rules to link words or phrases just once in one article.

After receiving statistical results it was made a decision to search for other
methods of finding semantically close words. But still produced results can
be used in the future.

Approach #2
The second approach is based on the paragraph method. DBpedia allows

finding a paragraph inside the article where the link is situated. To archive
that it is required to use another DBpedia NIF dataset - a page-structure.
This dataset allows finding an index of the symbol where each paragraph
starts and ends.

In this task a combination of two datasets text links dataset and page
structure dataset was used.

In the beginning, it’s created a list of paragraphs for each article. Para-
graph is represented as two indexes: start index and end index. After that all
links from the article link with the corresponding paragraph. This connection
is based on the start and end indexes of paragraph and reference.

1 for paragraph in en t i t yPa rL i s t :
2 k=k+1
3 i f s tar t Index>paragraph [ 0 ] and endIndex<paragraph [ 1 ] :
4 en t i t yPa rL i s t [ k ] . append ( o1 )

After that, it produces a list of paragraphs, where each paragraph is rep-
resented already as list of links. Now it’s required to make combinations of the
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given references inside one paragraph. Combinations are made as grouping
links each other into pairs.

The formula for calculating a number of such combinations is combinations
without repetitions.

N =
n!

r! · (n− r)!
For example, there exist 4 references inside one paragraph. Then there

will be 24/4 = 6 combinations.
Combinations are found using combinations package from the itertools

library.
At the end such results are produced:

1 Yoko Ono , Teknolust , 1
2 Cindy Sherman , Barbara Kruger , 1
3 Cindy Sherman ,B. Ruby Rich , 1
4 Cindy Sherman , Ing r id S i s chy , 1
5 Cindy Sherman , Carolee Schneemann , 1
6 Cindy Sherman , Miriam Schapiro , 1
7 Cindy Sherman , Marcia Tucker , 1
8 Cindy Sherman , Lynn Hershman Leeson , 1
9 Cindy Sherman , Strange Culture , 1

10 Cindy Sherman , S l ea t e r−Kinney , 1
11 Cindy Sherman , Teknolust , 1
12 Barbara Kruger ,B. Ruby Rich , 1

2.6 Inter-language synonyms dataset generation

As it has already been described in the previous chapters, German as the
most complete language in Wikipedia by humans after English was chosen
as a second language for generating Inter-language Synonyms . It covers
most articles after English. But still, it has almost three times fewer entities
comparing to English Wikipedia.

Unfortunately, there doesn’t exist HDT file for German Wikipedia and it’s
essential to use .ttl files. There exist online tools for converting TTL to HDT,
but they are not appropriate for huge files. TTL have the same structure but
have a much bigger size and it’s needed to use different APIs to parse these
files. One of the solutions for parsing .ttl files is rdflib. But the problem in
the usage of it is that at first, it’s building full RDF graph and just after that
it is doing operations on it.

1 r e s u l t = g . parse ( l o c a t i o n=” . . / da ta s e t s / n i f t e x t l i n k s d e . t t l ” ,
format=’ nt ’ )

This operation is highly resource consuming and it’s difficult to predict how
much time it can take to build a full graph. In addition, this operation takes
lots of RAM memory. After analyzing these factors it was taken a decision to
create own methods of parsing .ttl files.
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The solution is based on combinations of different methods - simple ready-
ing .ttl files using python and rdflib methods of splitting triples in a dataset.

1 print ( fp . r e ad l i n e ( ) )
2 for l i n e in fp :
3 rdfxml = l i n e . s t r i p ( )
4 i f rdfxml :
5 g = r d f l i b . Graph ( )
6 g . parse ( data=rdfxml , format=’ nt ’ )

Using these methods .ttl file is readying line by line without requiring
the consumption of a big amount of resources. And it’s easy to estimate
completion time of producing new dataset.

The next operations are similar to creation of surface and synonyms for the
English version. There are just small changes in the code, related to specific
character of German links in Wikipedia.

Cleaning, grouping, and Limitations operations are similar to operations
in English.

After all these operations a new, similar dataset, but for the German
language is created.

1 Adam Hunt ( Da r t s p i e l e r ) ,Adam Hunt ( Da r t s p i e l e r ) , 1 . 0 ,Adam Hunt , 2 . 0
2 Adam Hunt ( Schach sp i e l e r ) ,Adam Hunt ( Schach sp i e l e r ) , 1 . 0 ,Adam Hunt

, 2 . 0

The next step is to create a links dataset for English and German. For
this purpose inter-language links dataset for German references was taken. It
consists of triples - German link - sameAs - English link (or other languages
links). Links for other languages except German and English were removed,
also dataset was cleaned from external links.

1 <http :// de . dbpedia . org / r e sou r c e /Migingo> <http ://www.w3 . org
/2002/07/ owl#sameAs> <h t t p :// dbpedia . org / resource /
Mig ingo Is land> .

2 <http :// de . dbpedia . org / r e sou r c e /Francis Dana> <http ://www.w3 . org
/2002/07/ owl#sameAs> <h t t p :// dbpedia . org / resource /Francis Dana
> .

3 <http :// de . dbpedia . org / r e sou r c e / L i t t l e Mar ton Mi l l> <http ://www.w3
. org /2002/07/ owl#sameAs> <h t t p :// dbpedia . org / resource /
L i t t l e Mar t on Mi l l> .

2.7 Cleaning and filtering

The task is to find a proper value for such parameters as similarity and fre-
quency.

The similarity is calculated by Levenshtein Distance. The code could be
found in Appendix B. It can take values from 0 - absolutely different, to 1 -
absolutely similar.
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Frequency is a ratio of occurrences of the word in synonyms dataset to the
total number of synonyms in a given dataset. The dataset in a given case is a
row with anchors in synonyms file. Frequency also can take values more than
0 - rare occurrences and 1 - absolutely just only one in a dataset.

Synonyms and homonyms have different nature, so finding limitations for
these two datasets is different.

Examples of Experimental evaluation:

2.7.1 Post-processing synonyms

Table 21: Threshold Synonyms Table

Valid
currentSimilarity ≥ similarity

currentFreq ≥ freq

Valid
currentSimilarity ≥ similarity

currentFreq < freq

Valid
currentSimilarity ≥ similarity

currentFreq < freq

Invalid
currentSimilarity < similarity

currentFreq < freq

The table above describes valid and invalid categories for finding proper syn-
onyms values.

Absolutely valid synonyms are those which have high symbols similarity
and high frequency. Absolutely invalid ones are absolutely different, this group
has low similarity and low frequency.

Concerning the other two groups - they also correspond as valid synonyms,
because if any values appear quite often and have a low similarity - they can
also be synonyms.

In synonyms values in one dataset - one row should be as much close as it
is possible.

All experiments are made on a small dataset with 109 rows. All input and
output files could be found on a CD.

Experiment Name,001. Let’s start with low limitations.
Similarity,0.1
Frequency,0.1
True Positive,230
False Positive,176
False Negative,11
True Negative,20
Observations: Neckar, Neckar River Valley,1, Neckar river,4. Neckar is a

river, so Neckar River Valley is not a synonym for it.
The next experiments were based on step by step increasing limitations.

Just on parameters of similarity 0.5 and frequency 0.5, Neckar River Valley
disappeared from the valid results.
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Experiment Name,002
Similarity,0.5
Frequency,0.5
True Positive,81
False Positive,146
False Negative,19
True Negative,191
Observations: Visitors (V TV series),Visitor,1,The Visitors,4,Visitors,4. The

given values were marked as non-valid. Let’s decrease a bit frequency and sim-
ilarity limitations.

Experiment Name,003
Similarity,0.47
Frequency,0.4
True Positive,90
False Positive,142
False Negative,21
True Negative,184
The given parameters satisfy all previous observations.

2.7.2 Post-processing homonyms

Homonyms are words which sound alike and are written alike but have a
different meaning. So in contrast to synonyms values in one dataset - one row
should be as much different as possible.

Experiment Name,001
Similarity,0.2
Frequency,0.5
True Positive,104
False Positive,251
False Negative,11
True Negative,88
Observations: Economy of North Dakota,

Economy of North Dakota,1,North Dakota#Economy,1 - given values marked
as valid as basically, they mean the same.

In a given case, it’s required to increase the frequency parameter just a
little bit to illuminate given values.

Experiment Name,002
Similarity,0.2
Frequency,0.51
True Positive,70
False Positive,285
False Negative,5
True Negative,94
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Observations: Economy of North Dakota,North Dakota#Economy,1 is still
marked as valid. Let’s decrease the similarity parameter.

Experiment Name,003
Similarity,0.13
Frequency,0.51
True Positive,73
False Positive,320
False Negative,2
True Negative,59
Observations: The given parameters fully satisfy previous observations.

2.8 Converting to RDF graph

For better search methods with good performance, it’s good to store datasets
into graphs. RDF graphs allow faster search algorithms using SPARQL queries
or using other libraries search.

In the project it was used rdflib to convert CSV to TTL files. TTL files
were chosen as the most suitable for the given project, as they store files in
triples and produced on previous steps CSV files can be easily converted to
graphs with triples.

Structure of RDF TTL files is similar to Ontolex Lemon, but it also in-
cludes counted weights for synonyms and homonyms to give results in more
precise forms.

1 reader = csv . reader (open( ” . . / csv / exper iments /synonyms/
exper iment 003 / va l i d . csv ” ) )

2 namespace manager = NamespaceManager (Graph ( ) )
3 namespace manager . bind ( ’ ns1 ’ , n i f , o v e r r i d e=True )
4 g=Graph ( )
5 for row in reader :
6 for x in range (1 , len ( row ) ) :
7 i f x%2==1:
8 g . add ( [ r d f l i b . term . URIRef ( ” http :// dbpedia . org / r e sou r c e

/”+row [0 ]+ ”?dbpv=2016−10&n i f=synonyms” ) ,
9 r d f l i b . term . URIRef ( ” http :// dbpedia . org /

r e sou r c e /?dbpv=2016−10&n i f=anchors ” ) ,
10 r d f l i b . term . L i t e r a l ( row [ x ] ) ] )
11 g . add ( [ r d f l i b . term . URIRef ( ” http :// dbpedia . org / r e sou r c e

/”+row [0 ]+ ”?dbpv=2016−10&n i f=synonyms” ) ,
12 r d f l i b . term . URIRef ( ” http :// dbpedia . org / r e sou r c e

/?dbpv=2016−10&n i f=counts ” ) ,
13 r d f l i b . term . L i t e r a l ( row [ x+1]) ] )
14 g . bind ( ” n i f ” , n i f )
15 g . s e r i a l i z e ( format=” t u r t l e ” )
16 g . s e r i a l i z e ( d e s t i n a t i on=”synonyms . t t l ” , format=” t u r t l e ” )

On the sample above it is shown a code example for generating a .ttl file
for synonyms. For homonyms procedure is similar.
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As namespaces used DBpedia ontology.
On the following sample the result of the given code described:

1 <http :// dbpedia . org / r e sou r c e /Mario Kempes?dbpv=2016−10&n i f=
synonyms>

2 ns1 : anchors
3 ”Kempes” ,
4 ”Mario Kempes” ;
5 ns1 : counts
6 ”2” ,
7 ”60” .
8

9 <http :// dbpedia . org / r e sou r c e /Mikea Forest ?dbpv=2016−10&n i f=
synonyms>

10 ns1 : anchors
11 ”Mikea” ,
12 ”Mikea Forest ” ;
13 ns1 : counts
14 ”6” ,
15 ”8” .

2.9 Simple Web-Application

Another part of the research was to create a website with a user friendly
interface. As the whole project was made in Python, so it was taken a decision
to make website back-end using also Python to have better compatibility of
products.

As a basis for the back-end part Flask Framework was chosen. This frame-
work was chosen because it’s a light-weight micro-framework. Comparing to
another Python Framework Django, it’s easy to install, learn and start work-
ing.

It’s easily installed, just using one command:
pip install Flask
Front-end part was done using HTML, CSS. As base CSS bootstrap styles

were taken.
For asynchronous communication and data updates JQuery was taken, to

update user output after changing input info. JQuery is a powerful tool based
on JavaScript. Using it - there is no need to refresh web-page each time when
it’s necessary to receive results.

2.9.1 Front-End

Front-end part is simple and it consists of HTML, CSS and JavaScript code.
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Figure 23: Front-end

Each time user clicks on the Search button, JQuery sends a request to
Back-End function to update results from the datasets without refreshing the
web-page.

1 $ ( ’#search ’ ) . bind ( ’ c l i c k ’ , f unc t i on ( ) {
2 $ . getJSON($SCRIPT ROOT + ’ / s ea r ch ’ , {
3 name : $ ( ’ input [ name=”name” ] ’ ) . va l ( ) ,
4 } , f unc t i on ( data ) {
5 $ ( ”#synonyms” ) . t ex t ( data [ 0 ] ) ;
6 $ ( ”#homonyms” ) . t ex t ( data [ 1 ] ) ;
7 }) ;
8 return f a l s e ;
9 }) ;

10 }) ;

It receives results in the data array and updates the text attribute of each
field. Div fields of results are described by id.

2.9.2 Back-End

Back-end part was developed in Python. It allows search in both formats
(CSV and RDF).

RDF method requires loading RDF file to an RDF data structure when
the application deploying on the server.

1 def index ( ) :
2 synG . parse ( ” . . / t t l /synonyms . t t l ” , format=” t u r t l e ” )
3 homG. parse ( ” . . / t t l /homonyms . t t l ” , format=” t u r t l e ” )
4 return r ender template ( ’ index . html ’ )

After that the search mechanism looks like that:

1 for s , p , o in synG :
2 i f l e v e n s h t e i n d i s t a n c e ( search , o )> <value from 0 to

1>:
3 r e s u l t . append ( synG)
4 break
5 else :
6 reader = csv . reader (open( ” . . / csv / synonyms f in . csv ” ) )
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7 for row in reader :
8 for x in range (1 , len ( row ) ) :
9 i f x%2==1:

10 i f l e v e n s h t e i n d i s t a n c e ( search , row [ x ] )> <value
from 0 to 1>:

11 r e s u l t . append ( row )
12 break

On the following picture is shown an example of the result of the search:

Figure 24: Front-end Result

2.10 Used Technologies

Open-Linked Data is a modern field in computer science. Most of the tools
developed for Open-Linked Data are open-source and developed by communit-
ies. When conducting the project a lot of tools for working with big data have
been investigated, for making computations on big data. It was important to
choose tools which perfectly correspond to the tasks. They shouldn’t be too
large for a given task, but at the same time they should correspond to the
requirements facing them. Also, there should be a compromise and the golden
mean between consumption of RAM and processor load.

2.10.1 Programming Language

First of all, there was a task to choose the proper and the most suitable
language. Most of the tools operating with big data converse with Python,
Java or R.

R language. R language is a powerful data analyzing tool, which has a rich
history, lots of libraries and packages. But it also has its disadvantages like
hard integration with other tools, relatively high entry-level and Slow High
Learning curve Dependencies between library.
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2.10. Used Technologies

Java. Java presents quite huge and complex frameworks mostly from
Apache, such as Apache Spark, Apache Hadoop, Apache Mahout and Java
JFreechart. These frameworks allow to build highly scalable and distributed
computing. They are good for solving really huge problems for companies like
Google, Facebook and etc. For usage in a project of extraction of linguistic
information from Wikipedia it could be too much, all computations were done
on one laptop, so there are not so many opportunities to scale it to distributed
or parallel computing.

Python. Python basically has fewer libraries and packages to work with
data structures compared to R or it’s not so powerful as Java frameworks and
tools. But it has lots or light-weight libraries which can be used easily without
any huge installations, it’s easily integrated with other technologies and could
be used in lots of fields. As it has already been shown Python can be also
used in website development as back-end language, but it has also lots of data
manipulating libraries, such as pandas, numpy, etc. Besides, Python can be
integrated and used in the same tools as Java as Apache Spark and Hadoop.

After analyzing this programming languages Python has been selected
as the most suitable programming language for project needs. It’s easily
integrated and could be used in a variety of fields.

2.10.2 Working with HDT

As it has already been described HDT is a compressed form of RDF files.
There exists an open-source project which provides a simple tool for manipu-
lating with HDT triples - pyHDT. It has also simple installation through pip
command.

1 from hdt import HDTDocument
2 document = HDTDocument( ” t e s t . hdt” )
3

4 # Fetch a l l t r i p l e s t h a t matches { ? s ?p ?o }
5 # Use empty s t r i n g s (””) to i n d i c a t e s v a r i a b l e s
6 ( t r i p l e s , c a r d i n a l i t y ) = document . s e a r c h t r i p l e s ( ”” , ”” , ”” )
7

8 print ( ” c a r d i n a l i t y o f { ? s ?p ?o } : %i ” % c a r d i n a l i t y )
9 for t r i p l e in t r i p l e s :

10 print ( t r i p l e )

Basically, there’s all functionality which pyHDT provides. It just searches
for all triple in a file and prints them. In given example search triples() showed
that we are searching for all triples. A disadvantage of this API is that it’s
necessary to input the full name of a predicate, subject or object to quotation
marks to find it dataset. PyHDT can’t find triples by partial values of a
predicate, subject or object.

PyHDT read RDF HDT files line by line, so it doesn’t require a lot of
RAM and speed of computation depends just on processor speed. The given
computational power speed of reading HDT is about 12500 triples per second.
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It’s not possible to parallel or distribute computations with the current library,
all computation is done linearly.

This is the only found tool for working with HDT files for Python, tools
for Java and C++ were also found.

2.10.3 Working with TTL

TTL files have higher volume and require more resources in computing. TTL
files were used in computations for inter-language synonyms because HDT
files are available just for an English version of DBpedia.

One of the tools which can read and work with RDF TTL files is a rdfLib
library. This library at the begging stores all the values inside the graph and
just after that it’s possible to work with the data. As German language text-
links file size is more than 80GB, it’s very resource consuming process for such
task. So working with RDF TTL files was done using a combination of rdfLib
and simple python reading of files.

The speed of reading such TTL files line by line is 7800 triples per second.

2.10.4 Datasets generation

During Datasets Generating there was a need to find an easy, lightweight tool
with high performance.

When conducting the project a bunch of tools and methods was experi-
enced. One of the most resource consuming operations in the project was the
Grouping operation.

To perform these operations the following tools and methods were exper-
ienced.

1) Simple Script.
To write a simple script for grouping, it takes a lot of time to produce

simple surface dataset. With N = 128 million in the worst case it would take
years without any hashing mechanisms. And hashing also require time.

2) Database.
The second approach was to use databases to handle complicated opera-

tions. One of the databases under experience was Oracle MySQL database.
The advantage of this method is that it requires relatively not much time -
about 30 minutes for grouping 128 million elements. But it has disadvantages
as well: it has a very long installation process and requires a lot of space on
PC. One of the focus thing in the research was to develop tools using just one
programming language and inter-connected technologies.

3) Dask
Dask is a parallelization library for Python. The advantage is that it can

do tasks in parallel. The problem is that not everything can be parallelized
and pure number of methods to work with.

4) Other Methods
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Some other Python methods and tools were also used. For example, divid-
ing a file into small pieces and grouping them by parts. After that they were
combined and grouped again. But this method is too complicated, it doesn’t
give much performance win and the program has failed due to RAM lack.

5) Apache Spark
Apache Spark has also been used. The advantage of it is a big bunch of

tools and methods. The disadvantage is a big size of the package and lot
of computations, it has also failed on RAM luck. When making the project
Python version of Apache Spark - PySpark has been used.

6) Pandas
Pandas is a small open-source library which provides simple, but powerful

tools to work with datasets. During experiments with different tools and
methods, it has been found that it’s the best choice for such task as the
extraction of lexical information from Wikipedia.

2.10.5 Web-Site Tools

Back-end framework for website Python Flask framework has been used. It’s
easier and simpler than Django, also it’s Python framework which makes it
possible to use just one programming language while making the project.

For front-end have been used Bootstrap styles, HTML, CSS, and JQuery
- a library based on JS.

2.11 Statistics

Finally have been made 6 datasets: Synonyms English, Synonyms German,
Homonyms, Semantics on a Paragraph level, Semantics on an article level and
Inter-language links. Four of them have been made in both formats: RDF
and CSV.

Table 22: RDF Datasets

RDF Size, triples Size, Mb

Synonyms EN 5873468 285.2

Synonyms DE 3104034 151.1

Homonyms 2721239 149.9

Inter-language links 1139523 168.7

Semantic Relationships Dataset on Paragraph level in CSV format has also
been created.

Size of dataset is 45.03 GB and 1,145,099,724 relationships.
All computations were done on PC with given parameters.
OS: MacOS Mojave version 10.14.4
Processor Name: Intel Core i5
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2.11. Statistics

Processor Speed: 3,3 GHz
Number of Processors: 1
Total Number of Cores: 2
L2 Cache (per Core): 256 KB
L3 Cache: 4 MB
Memory: 16 GB
Computational time to build the build the biggest dataset - synonyms 3

hours, 24 minutes.
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Chapter 3

Experimental Evaluation

While conducting the project a series of experiments and evaluations have
been made.

3.1 Evaluation Metric

For analyzing produced results certain actions should be taken. For this pur-
pose there exists a F1 score.

To measure test accuracy F1 score, or also known as F-score or F-measure
is used in the statistical analysis of binary classification. It takes in advance
the number of correct positive results divided by the number of all positive
results returned by the classifier. and r is the number of correct positive
results divided by the number of all relevant samples. Relevant samples - are
the samples that should have been identified as positive. The F1 score is the
harmonic average of the precision and recall, where an F1 score reaches its
best value at 1 (perfect precision and recall) and the worst at 0 [26].

The F1 score is also known as the Sørensen–Dice coefficient or Dice simil-
arity coefficient (DSC) .

F1 =
2TP

2TP + FP + FN

3.2 Evaluation

To determine quality of results was done two series of experiments.
First series of experiments has goal to determine F1 Score. To determine

F1 Score it’s required to have some dataset to be sure that we determine
synonyms and homonyms correctly. For such purpose was chosen Oxford
Dictionary.

Second series of experiments has goal to determine quality of results com-
paring to similar project - BabelNet.
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3.2. Evaluation

For both series of experiments dataset of words was chosen randomly.
Dataset contains 20 words. Experiments were conducted manually by brows-
ing BabelNet and our dataset with the same queries.

3.2.1 F1 Score Evaluation

Evaluation Example:
Tree
Our Dataset:
Synonyms (tree as plant):trees, saddle
Homonyms: Tree (as plant), BOPM, Crataegus, MM tree, Porphyrian tree,

Quadtree, Saddle tree, Strappado, Tree Computing, Tree Data Structure, Tree
(descriptive set theory), Tree (graph theory), Tree and hypertree networks,
Peach.

Errors in Synonyms: trees. Trees is not synonym for tree. Saddle is a
synonym of tree (as Oxford Dictionary says)

Errors in Homonyms: Crataegus and Peach are trees, but it just more
specific meaning of tree as plant. Binomial options pricing model (BOPM) is
a model and also can’t be named as tree. Everything else can be counted as
homonyms.

F1 Score (synonyms) = 1/2 = 66.7 % F1 Score (Homonyms) = 11/14 =
78.6 %

Following table shows results of series of experiments and average value of
F1 Score.

1 - Word
2 - Synonyms F1 Score, %
3 - Homonyms F1 Score, %
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Table 31: F1 Score

1 2 3

Tree (as plant) 50 78.6

Table (as furniture) 100 88.9

Car 66.7 16.6

Window 100 87.5

Wall 66.7 57.1

Apple (Inc.) 84.2 100

Diego (as Ribas da Cunha) 100 100

Bottle 100 77.8

Water 50 48.3

Road 66.7 13.5

Screen 100 66.7

Socket 100 100

Coat (as clothing) 0 100

Bag 66.7 88.9

Stairs 87.5 100

Door 66.7 60

Tool 50 75

Handle 66.7 85.8

Stone 100 62.5

Universe 75 71.4

Average 77.1 90.7

Lots of words has synonyms F1 score 66.7 - it mean that it was found 3
synonyms where 2 of them were correct. Also for example car handle and
door handle are not homonyms, they describe sub-types of the same object.

Average F1 score for synonyms is 77.1 percent, which is relatively good.
BabelNet has 78 percent.

Average F1 score for homonyms is 90.7 percent, probably it happens be-
cause of very strict filtering.

3.2.2 Comparison to BabelNet

Below are presented examples of evaluation our datasets to BabelNet.
Synonyms
Comparing to BabelNet the number of synonyms is less than 8,855,224 vs

5,873,468
Apple (Inc.)
BabelNet gave the following synonyms - Apple Inc., Apple, Apple Com-

puter.
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Produced synonyms in Master Project for Apple (Inc.): Apple.com,1,Apple
Computer Inc,6,Apple Inc.’s,1,Apple Inc.s,4,Apple TV,1,Apple Inc.’s,3,Apple
Inc.,1656,Apple Inc. India,1,Apple,2463,Apple II,1,Apple Mac

Observations: It is possible to note that produced synonyms have higher
variety. Some of them should be invalid. For example: Apple II. Apple II is
a computer, but not company. If we take into account the low count value of
such invalid synonyms (Apple TV, Apple II) most of values are valid.

Diego Ribas da Cunha
BabelNet: 3 synonyms: Diego (footballer, born 1985), Diego Ribas, Diego

Ribas da Cunha
Our dataset: 3 synonyms. Diego,59,Diego Ribas da Cunha,3,Diego Ribas,1
Observations: Diego (footballer, born 1985) was not included into our

produced dataset
Homonyms
Comparing to BabelNet the number of homonyms is less than 22,922,522

vs 2,721,239
A disadvantage of our homonyms dataset is too strong cleaning, so during

experiments on homonyms also was counted links from synonyms, which also
refer as homonyms.

Apple
BabelNet gave 19 homonyms for Apple, such as Apple (Fruit), Apple

(Tree), Apple (Company), Apple (Store)... Some of them like Apple (Tree)
are repeated. Or Apple (Italia) is an empty entity.

Figure 31: BabelNet Apple(Italia)

Produced homonyms in Master Project for Apple:
Apple,IOS,2,Mac OS,1,Mac OS X,1,Macintosh,1,Malus,3,Apple Inc.,2461
Observations: in this case Malus is a Apple tree, so all homonyms are

valid.
Diego
BabelNet: 21 homonyms.
Our dataset: 15 homonyms
All Homonyms are valid
Following table shows results of series of experiments with BabelNet:
Syn = Synonyms Hom = Homonyms
1 - Word
2 - Synonyms Common
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3.2. Evaluation

3 - Extra Synonyms BabelNet
4 - Extra Synonyms our Dataset

Table 32: BabelNet Synonyms Comparison

1 2 3 4

Tree (as plant) 1 0 0

Table (as furniture) 1 4 1

Car 2 3 2

Window 1 2 1

Wall 1 0 1

Apple (Inc.) 3 0 13

Diego Ribas da Cunha 3 1 0

Bottle 1 0 1

Water 1 1 0

Road 2 1 0

Screen 2 1 1

Socket 1 0 0

Coat (as clothing) 0 1 0

Bag 2 0 0

Stairs 1 2 6

Door 2 1 0

Tool 1 1 1

Handle 2 1 0

Stone 2 0 0

Universe 2 0 0

Comparing to BabelNet results are relatively close. In some cases, Ba-
belNet was giving better results, in some of our datasets was better. For
improvements could be also made removing some plural words which has the
same meaning as singular.

1 - Word
2 - Homonyms Common
3 - Extra Homonyms BabelNet
4 - Extra Homonyms our Dataset
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Table 33: BabelNet Homonyms Comparison

1 2 3 4

Tree (as plant) 7 15 6

Table (as furniture) 5 5 3

Car 2 25 0

Window 3 7 4

Wall 3 8 1

Apple (Inc.) 6 12 1

Diego 15 21 0

Bottle 3 3 4

Water 13 36 1

Road 3 14 2

Screen 7 14 1

Socket 2 8 3

Coat 3 0 0

Bag 8 6 0

Stairs 1 4 0

Door 3 2 0

Tool 2 4 1

Handle 2 1 4

Stone 5 3 0

Universe 13 5 2

Comparing to BabelNet our dataset was giving in some cases much fewer
homonyms. It happens because of strict limitations, but the quality of results
is better. In some cases, BabelNet was just returning the same entities twice
or some empty entities.

3.2.3 Summary

After conducting a series of experiments it was found that the F1 score for
synonyms is 77.1 and homonyms 90.7 percents. In some cases, results of
produced datasets were better than BabelNet.

A disadvantage of produced datasets was too strong cleaning for hom-
onyms dataset, so during experiments on homonyms also was counted links
from synonyms, which also refer as homonyms.
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Conclusion and Future Work

Master Project was conducted to extract useful linguistic information from
Wikipedia.

By parsing and combining DBpedia datasets was created such datasets like
synonyms, homonyms, semantic relationships and inter-language synonyms.
Also was presented simple web-application for querying datasets results.

Results are 5 datasets, which can be navigated using web-application.
Results:

• DBpedia datasets were fully analyzed.

• Existing methods based on extraction linguistic information was ana-
lyzed, but unfortunately, not all projects provide detailed methods of
extracting information. Also were analyzed methods of extraction lin-
guistic information from non-Wikipedia sources.

• Methods for extraction linguistic information from Wikipedia was de-
veloped. As improvements could be used interlinking of produced data-
sets with similar projects and non-Wikipedia sources. Besides, could be
improved filtering methods.

• Developed methods could be used with all DBpedia languages. In Mas-
ter Project also was produced a dataset of German synonyms.

• Simple web-application for querying and navigating results was developed.
As improvements could be used better search mechanisms.

• Developed linguistic datasets has the close quality to similar projects,
such as DBpedia. In some cases, our datasets are better.

As for further works it is possible to implement more efficient search al-
gorithms using hash tables and to link produced results with other sources of
Open Linked Data, also can be implemented better filtering methods.
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Appendix A

Acronyms

GUI Graphical user interface

NLP Natural Language Processing

NIF The NLP Interchange Format

RDF Resource Description Framework

HDT Header, Dictionary, Triples

TTL Terse RDF Triple Language

TQL Terse RDF Quad-Turtle Language

W3C World Wide Web Consortium

API Application Programming Interface
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Appendix B

Code

B.1 Levenshtein distance

1 i f a == b :
2 return 1
3 i f len ( a ) < len (b) :
4 a , b = b , a
5 i f not a :
6 return len (b)
7 i f not b :
8 return len ( a )
9 prev ious row = range ( len (b) + 1)

10 for i , column1 in enumerate( a ) :
11 current row = [ i + 1 ]
12 for j , column2 in enumerate(b) :
13 i n s e r t i o n s = prev ious row [ j + 1 ] + 1
14 d e l e t i o n s = current row [ j ] + 1
15 s u b s t i t u t i o n s = prev ious row [ j ] + ( column1 != column2 )
16 current row . append (min( i n s e r t i o n s , d e l e t i on s ,

s u b s t i t u t i o n s ) )
17 prev ious row = current row
18 d i s = prev ious row [−1]
19 i f len ( a ) > len (b) :
20 return ( ( len ( a ) − d i s ) / len ( a ) )
21 else :
22 return ( ( len (b) − d i s ) / len (b) )
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Appendix C

Contents of enclosed CD

readme.txt ....................... the file with CD contents description
experiments.......the directory of experiments of cleaning and filtering
src.......................................the directory of source codes

scripts.................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis
wep-app............................the directory of web-app sources

text..........................................the thesis text directory
DP Nazim Andriy 2019.pdf............the thesis text in PDF format
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