
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague May 31, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Programming of AT32UC3C family of microcontrollers and IGLOO nano FPGAs through

Bluetooth
 Student: Bc. Ján Sučan

 Supervisor: Ing. Radek Dobiáš, Ph.D., MBA

 Study Programme: Informatics

 Study Branch: Computer Systems and Networks

 Department: Department of Computer Systems

 Validity: Until the end of winter semester 2019/20

Instructions

An industrial partner needs to find a solution for wireless programming of ETCS balises that have AT32UC3C
MCUs and IGLOO nano FPGAs planted. The wireless connection is realized by serial connection over
Bluetooth. The control system communicates with the MCU through the Bluetooth.

Study the documentation for AT32UC3C MCUs and IGLOO nano FPGAs, existing means for a Bluetooth
communication used by AŽD Praha s.r.o., and the DirectC reference implementation of FPGA ISP from the
Microsemi company.

Design methods for erasing, writing and verification
- of the program FLASH memory of the MCU and for executing the program using its USART interface,
- of a bitstream in FPGA array and FlashROM of IGLOO nano by the MCU.

Implement all the designed methods in a firmware for AT32UC3C. Execution of the operations with the
MCU and FPGA will be based on commands from the control system.

Test the target functionality of the resulting implementation.

References

Will be provided by the supervisor.

Master’s thesis

Programming of AT32UC3C family of
microcontrollers and IGLOO nano FPGAs
through Bluetooth

Bc. Ján Sučan

Department of Computer Systems
Supervisor: Ing. Radek Dobiáš, Ph.D., MBA

May 3, 2019

Acknowledgements

Thanks to:

∗ My supervisor for his advice, remarks and guidance.
∗ Maegan Rubino for improving my English and for the language correc-

tion of my master’s thesis.
∗ Meili Hollingsworth for having improved my English and for helping me

find an English language editor.
∗ Radek Dobiáš and Jan Konarski from AŽD Praha s.r.o for their patience,

understanding, and help.
∗ My grandmother for having supported me during my studies and for her

countless blessings.
∗ Jozef Masár, my long-time fellow player, for his undying friendship and

for the best secondary school years.
∗ My friends Katka and Peter.

To my dear parents, thanks for their infinite support, for not being angry
with me even when the could have been and for encouraging me to walk my
own way in life. Everybody would want to have such heroes on their side. I
love you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

I further grant a nonexclusive authorization (license) to utilize this thesis,
including any and all computer programs incorporated therein or attached
thereto and all corresponding documentation (hereinafter collectively referred
to as the “Work”), to AŽD Praha s.r.o. company. AŽD Praha s.r.o. is
entitled to use the Work in any way (including for-profit purposes) that does
not detract from its value. This authorization is not limited in terms of time,
location and quantity.

In Prague on May 3, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Ján Sučan. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Sučan, Ján. Programming of AT32UC3C family of microcontrollers and IGLOO
nano FPGAs through Bluetooth. Master’s thesis. Czech Technical University
in Prague, Faculty of Information Technology, 2019.

Abstrakt

Cieľom tejto diplomovej práce je vytvorenie nástrojov umožňujúcich bezdrô-
tový zápis, čítanie a verifikáciu programovej pamäte mikrokontrolérov rodiny
AT32UC3C, poľa a FlashROM FPGA IGLOO nano, a ich otestovanie. Na
základe analýzy existujúcich prostriedkov pre Bluetooth komunikáciu použí-
vaných v AŽD Praha s.r.o., literatúry k mikrokontrolérom rodiny AT32UC3C
a dokumentácie k referenčnej implementácii DirectC pre ISP FPGA od firmy
Microsemi sú navrhnuté a implementované nástroje pre bezdrôtové progra-
movanie. Výsledkom práce sú nástroje pre zápis, čítanie a verifikáciu pro-
gramovej pamäte mikrokontrolérov rodiny AT32UC3C, poľa a FlashROM
FPGA IGLOO nano cez Bluetooth.

Programovacie nástroje sú používané vo firme AŽD Praha s.r.o. ako súčasť
programového vybavenia ETCS balíz. Sú prospešné vývojovým pracovníkom,
ktorí sa zaoberajú bezdrôtovým programovaním systémov osadených týmito
programovateľnými súčiastkami.

V prílohe práce je možné nájsť zdrojové kódy implementácie bezdrôtového
programovania.

Kľúčové slová návrh a implementácia bezdrôtového programovania, mi-
krokontroléry, AT32UC3C, FPGA, IGLOO nano, Bluetooth, komunikačný
protokol, C, DirectC, AŽD Praha s.r.o.

vii

Abstract

The aim of this masters’s thesis is to develop tools that allows writing, reading
and verification of a program memory of microcontrollers of AT32UC3C fam-
ily, array and FlashROM of IGLOO nano FPGAs, and its testing. Based on
analysis of existing means for a Bluetooth communication used by the AŽD
Praha s.r.o., literature for AT32UC3C family of microcontrollers, and docu-
mentation for the DirectC reference implementation of FPGA ISP from the
Microsemi company tools for wireless programming are implemented. The
result of the thesis are tools for writing, reading and verification of a program
memory of microcontrollers of AT32UC3C family, array and FlashROM of
IGLOO nano FPGAs through Bluetooth.

The programming tools are used by AŽD Praha s.r.o. company as a part
of software equipment of ETCS balises. They are beneficial to developers who
deal with wireless programming of systems that have these programmable
devices planted.

Source codes of the programming tool can be found in attachment of this
thesis.

Keywords design and implementation of wireless programming, microcon-
trollers, AT32UC3C, FPGA, IGLOO nano, Bluetooth, communication proto-
col, C, DirectC, AŽD Praha s.r.o.

viii

Contents

Introduction 1
Motivation . 1
Objectives . 1
Structure of the thesis . 2

1 State-of-the-art 3
1.1 A Eurobalise . 3
1.2 Programming of balises by AŽD 3
1.3 Diagnostic module . 5
1.4 YUP communication protocol 5
1.5 Existing firmware for the diagnostic module 5
1.6 Development hardware . 9

2 Analysis 13
2.1 Programming of AT32UC3C . 13
2.2 Programming of IGLOO nano FPGA 16

3 Design 19
3.1 Development software . 19
3.2 Communication with the control system 19
3.3 DMBootloader . 21
3.4 DMAppFpgaProg . 24

4 Realization 31
4.1 DMBootloader . 31
4.2 DMAppFpgaProg . 35

5 Testing 45
5.1 The software environment . 45
5.2 Communicating with DM from Windows 7 47

ix

5.3 YUP communication utility . 47
5.4 Types of test files . 49
5.5 Common shell functions . 50
5.6 Static code analysis . 51
5.7 DMBootloader . 52
5.8 DMAppFpgaProg . 54

Conclusion 59

Bibliography 61

A Acronyms 63

B Contents of enclosed CD 65

C Format of DMBootloader commands 67

D Activity diagrams of DMBootloader 71

E Format of DMAppFpgaProg commands 73

F Activity diagrams of DMAppFpgaProg 79

x

List of Figures

1.1 A prototype of AŽD balise mounted in a track 4
1.2 Deployment diagram of the balise wired programming 4
1.3 IGLOO nano Starter Kit . 9
1.4 Diagnostic module used for the firmware development 10
1.5 FlashPro4 programmer . 10
1.6 Atmel JTAGICE3 programmer . 11
1.7 Simplified schematic of interconnection of the Bluetooth module,

the MCU, and the FPGA . 11

3.1 Deployment diagram of the balise wireless programming 20
3.2 Communication layers . 20
3.3 Division of the Flash memory address space 22
3.4 The main activity diagram for DMBootloader 23
3.5 Transitions between the application states 25
3.6 Providing data to DirectC operation 27
3.7 Cancelling DirectC operation . 28
3.8 Processing commands that concern use of setjmp()/longjmp() . . . 29

5.1 Deployment diagram for the testing of the wireless programming
support . 46

D.1 Activity diagram for Erase command of DMBootloader 71
D.2 Activity diagram for Read command of DMBootloader 71
D.3 Activity diagram for Write command of DMBootloader 72

F.1 Processing of GetText, GetState, VjtagVpump, and GetId commands 80

xi

List of Tables

5.1 DMBootloader test results . 54
5.2 DMAppFpgaProg test results . 57

C.1 Write command . 68
C.2 Erase command . 68
C.3 Read command . 69
C.4 Exec command . 69
C.5 GetId command . 70

E.1 Exec command . 74
E.2 GetText command . 75
E.3 GetState command . 75
E.4 Cancel command . 76
E.5 ProvideData command . 76
E.6 VjtagVpump command . 77
E.7 GetId command . 77

xiii

Introduction

Programmable electronic devices have been used in data processing and con-
trolling over the last few decades and this trend continues. The programmable
devices are functioning in many different environments. In many of them, the
devices can be accessed for programming through a physical connection of
programming tools. But there are some environments where the devices are
hard to access or they can not be accessed physically for programming tools
at all. This can be, for example, for ease of use for a customer or for safety or
security reasons. In such cases, the standard means of programming are hard
to use or they can’t be used at all.

Motivation

Because in many applications of programmable electronic devices they can
not be physically accessed by programming tools I decided to develop tools
for wireless programming of such devices.

The resulting tools will be beneficial to developers who deal with wireless
programming of the systems that have these programmable devices planted.

The industrial partner, AŽD Praha s.r.o. (hereafter referred to as “AŽD”),
will use the tools for wireless programming and configuration of ETCS balises.

Objectives

Objective of the theoretical part of this thesis is to study existing means for a
Bluetooth communication used by AŽD, literature for AT32UC3C family of
microcontrollers, and documentation for the DirectC reference implementation
of FPGA ISP from the Microsemi company.

After an agreement with the industrial partner, the requirements for the
resulting programming tool will be particularized. The practical part of the
thesis deals with design and implementation of firmware for writing, reading,

1

Introduction

and verification of a program memory of microcontrollers of the AT32UC3C
family, array and FlashROM of IGLOO nano FPGAs through Bluetooth, and
also for executing a program from the program memory of the MCU. The
resulting implementation is tested for meeting the required functionality.

Structure of the thesis
This thesis is divided into five main chapters. Each chapter except the chap-
ter 1 State-of-the-art contains two specific sections. The first section concerns
AT32UC3C MCUs and the second section concerns IGLOO nano FPGAs.

The first chapter describes basic function of ETCS balise, the AŽD in-
frastructure for remote controlling and monitoring of its balises in the field,
existing library functions and communication protocol developed by the com-
pany, and hardware I used for the development of the programming tools.

In the second chapter I specify the assignment by agreement with the
industrial partner and analyse aspects of the MCU and FPGA programming
needed to develop the wireless programming tools.

The third chapter deals with design of two programs for AT32UC3C: one
for programming of its own Flash memory and the other for programming
connected FPGA.

The fourth chapter is dedicated to the implementation of the wireless pro-
gramming tools.

In the fifth chapter the resulting tools are tested for meeting the required
functionality.

2

Chapter 1
State-of-the-art

1.1 A Eurobalise
‘Balise is an electronic beacon or transponder placed between the rails of a
railway as part of an automatic train protection (ATP) system. Transmission
device (passive transponder) that can send telegrams to an on-Board subsys-
tem passing over it. A balise which complies with the European Train Control
System specification is called a Eurobalise.’ [1]

‘The system function of balise information transmission system is accom-
plished by two signal transmission processes, i.e., the tele-powering transmis-
sion process where the on-board balise transmission module radiates energy
waves to activate the balise to start to work and the up-link signal transmis-
sion process where the balise transmits important control information to the
train subsequently.’ [1]

The telegram transmitted by the balise contains information about the
next section of the railway. The information can be the speed limit, the
railway track gradient, works on the track, location of the train, etc. [2]

1.2 Programming of balises by AŽD
The life of every balise made by AŽD (hereafter referred to as “balise”) is
tracked by a central server called PServer. Every balise has its unique identi-
fication. The information tracked is e.g. an initial hardware configuration, a
version of current firmwares for programmable devices of the balise electron-
ics and a history of the firmware versions that have been programmed before.
PServer uses a special communication protocol which can be implemented by
a system that wants to save/get the information into/from it. This system
can be, for example, a computer at a factory where the balises are made and
configured, a handheld computer device or mobile phone used by technicians
in the field. The PServer also tracks firmware updates and notifies the sys-
tems that the updates are available and where to get the updated firmware

3

1. State-of-the-art

Figure 1.1: A prototype of AŽD balise mounted in a track (Archive of AŽD)

Figure 1.2: Deployment diagram of the balise wired programming

files. The system can then download the updates, load them into a balise
and save the information about the updating into the PServer. Currently the
firmware is programmed through a wired interface and the aim of this work
is to support loading of the firmware wirelessly.

4

1.3. Diagnostic module

1.3 Diagnostic module

The diagnostic module (DM) is a part of the balise and it is intended for
remote controlling and monitoring of the balise. The module is realized as a
separate piece of PCB which is inserted onto the main PCB of the balise. It is
also used during development of the balise to provide insight to its functioning.
It measures logical levels and analog signals of the main electronic circuits of
the balise and sends them to the control system which further processes them.

The DM is based on AT32UC3C2512C MCU. The MCU communicates
with the control system through the on-board RN-42 Bluetooth module.

1.4 YUP communication protocol

The YUP protocol was designed by AŽD for communication among the DM
and control system with intention of using it for future applications and prod-
ucts. It is a point-to-point protocol over a byte-oriented link layer and consists
of three layers: data layer, frame layer, and COBS layer. The function of the
data layer is to transfer messages from transmitting side to receiving side. If
the message is too big it is divided into two or smaller chunks so that each
chunk can fit into one frame of the frame layer. The frame layer ensures a
reliable transfer of frames between the communicating sides and can handle
loss and corruption of frames. Each frame consists of a header section and a
data section. Both of these sections are secured against corruption by CRC.
The COBS layer with ’$’ as a delimiter character employs byte stuffing for
synchronization of frames and by that it prevents two or more successive ’$’
characters from occurring on the link layer. This is needed because three suc-
cessive ’$’ sent through the Bluetooth module causes the module to enter its
configuration mode and thus intercepts data sent through it which treats them
as configuration commands. [3] Although it is possible to disable the configu-
ration mode, it is needed to control GPIO pins of the Bluetooth module. One
of the GPIO pins is used for HW reset of the MCU.

1.5 Existing firmware for the diagnostic module

There is an existing library of functions and macros for the DM in AŽD
called DiagnosticModule. It was developed by me for AŽD in the scope of
development of a program for the DM for measuring voltages and logical
levels in the balise. The library makes the creation of programs for the DM
faster and easier. It contains an implementation of the YUP protocol and
other functionalities that can be shared between programs for the DM.

The DiagnosticModule library has been developed using Atmel Studio
IDE. The distribution of Atmel Studio comes with the GNU Compiler Collec-
tion and Atmel’s Advanced Software Framework. ‘The ASF provides drivers

5

1. State-of-the-art

and modules developed by Atmel to reduce a development effort of programs
for its MCUs. It simplifies the usage of microcontrollers by providing an ab-
straction to the hardware through drivers and high-value middlewares. ASF
is a free and open-source code library designed to be used for evaluation, pro-
totyping, design and production phases.’ [4] GCC is sufficient because DM is
not a safety-critical part of the balise. If it were, a certified C compiler would
have to be used.

The library is divided into six parts: clock, comm, diagnostic_module,
flash, protocol, and utils. Each part has its own directory in the source tree
of the library and each directory contains C source codes and header files.
The names of the directories are equal to the names of the library parts. The
source of information for the following subsections, which describe those parts,
is [5].

1.5.1 diagnostic_module

This directory contains the main header file diagnostic_module.h that in-
cludes header files from the other parts of the library. Thus only this one
header file needs to be included in a program that uses this library instead of
including the many header files. File diagnostic_module.c contains function
diagnostic_module_init(). It takes no arguments and returns no value. It
initializes clock source of the MCU, tables for fast CRC-32Q computation and
USART interface for communication with the Bluetooth module.

In file debug.c there is function debug_usart_printf(). It has the same
arguments as the standard C printf() function but it sends the output char-
acters to the Bluetooth module through USART not using YUP protocol.
This function is intended only for debugging purposes and so the debug.h is
not included in the main header file.

File firmware_identification.c contains function
firmware_identification_string(). It constructs an identification string of a
DM application by concatenating a string with the name and the version of
the application and placing the resulting string into a provided output buffer.

Header file parameters.h is intended to hold values specific for DM for
parametrization of the library functionality. It defines a delimiter character
used for COBS in YUP protocol.

1.5.2 clock

This directory contains support for initializing the clock source of the MCU
and unctions for blocking and non-blocking waiting. Function
pll_use_as_main_clock() from pll.c switches to PLL as the main clock source.
It configures the crystal oscillator for use with PLL and then PLL itself. It
also handles unlocking the clock registers when writing to them. The function
sets the main clock to be 64,512 MHz.

6

1.5. Existing firmware for the diagnostic module

File wait.h contains functions and macros for waiting. The code uses a
special system register SYSCNT as a clock value. The register is 32-bit wide and
it is incremented on every tick of a system clock. With the main clock fre-
quency 64,512 MHz, it overflows approximately every 66 seconds. Because of
this, it is not possible to wait longer than that. Function wait_get_deadline()
takes the number of milliseconds as an argument and returns the information
about when the time will be up. The information is saved in special data type
deadline_t. It is a structure containing the value of the SYSCNT register at the
time when wait_get_deadline() was called and the number of milliseconds
to wait. Function wait_has_deadline_expired() takes a pointer to this data
type and determines if the time is up. These two functions implement non-
blocking waiting. Function wait_ms() implements blocking waiting and uses
the previous two functions. Macro WAIT_ACTIVE_LOOP() is used in special cases
for blocking waiting when calling a function would add an unnecessary time
overhead. It is a simple for loop with its body being a single nop Assembler
statement. The number of iterations of the for cycle is specified as the macro
argument.

1.5.3 comm

This directory contains support for the first two layers of communication be-
tween DM and the control system. The lowest layer is USART. The next
layer above it implements COBS framing of the data that is sent and received
through the Bluetooth. The COBS framing was used to eliminate the sending
and receiving of a ’$’ ASCII character. When the Bluetooth module detects a
continuous sequence of three ’$’ characters, it switches itself to configuration
mode. This captures all other communication except the sequence for exit-
ing the configuration mode. The configuration mode can be disabled but it
was decided to leave it enabled in case the control system wants configure the
module. Instead, the COBS framing was chosen as a solution.

File usart.c contains function usart_init() for initializing the USART
interface of the MCU for communication with the Bluetooth module and two
functions for sending and receiving a byte through USART. usart_send_byte()
sends one byte. usart_receive_byte() receives one byte within an provided
time deadline. It indicates the result by its return value.

File bt.c contains implementation of the COBS layer. Its interface is
similar to usart.c. It contains an initialization function bt_init() and a
two pairs of functions for sending and receiving data. bt_receive_data() is
used for receiving multiple bytes through Bluetooth within a provided time
deadline but without using a COBS. It is used only for debugging purposes.
bt_receive_cobs_data() is doing the same but it does use a COBS. The next
two functions bt_send_data() and bt_send_cobs_data() send multiple bytes
without or with a COBS.

7

1. State-of-the-art

1.5.4 protocol

Implementation of the YUP protocol is located in the protocol directory. This
implementation uses functions for sending and receiving data from the bt.c
from the comm part of the library.

Header file return_codes.h contains definitions of the return codes used by
the implementation. Some codes are used internally and the others are used
in communication with the control system.

The lowest level of YUP protocol, sending and receiving data frames, is
implemented in frame.c and frame.h. These functions and data structures
are not intended to be used by a code outside the library. Data type frame_t
represents the YUP data frame. Getting and setting data fields of the frame is
done by using getter and setter functions. Their names start with frame_get_,
frame_is_ and frame_set_ prefixes. The functions can get, test and set proto-
col versions, flags, data length, relation ID, sequence number, header check-
sum, data checksum, and data. fram_init() function is used to initialize the
layer. frame_send() sends a frame and frame_receive() tries to receive a
frame within a provided time deadline.

Functions for sending and receiving data through YUP protocol are in
data.c. data_receive() receives data and places them to a provided output
buffer of a given size. The size is the maximum number of bytes to receive.
The function has one output parameter into which it saves the number of
bytes actually received. data_send() function sends data saved in provided
buffer.

1.5.5 utils

Helper functions and macros are placed in this directory.
SYSREG_SET() and SYSREG_GET() macros wrap __builtin_mtsr() and

__builtin_mfsr() functions from system_registers.h are used to set and get
a value of the MCU’s system registers. Macros SYSREG_COUNT_GET(),
SYSREG_COUNT_SET(), SYSREG_CPUCR_GET(), and SYSREG_CPUCR_SET() manipu-
lates with the COUNT and CPUSR system registers.

byte_buffer.h contains macros for saving/loading multi-byte integer val-
ues to/from byte arrays as little-endian. These macros are
SET_UINTn_FROM_BYTES() and GET_UINTn_FROM_BYTES() where n denotes size of
multi-byte value in bits. It can be 8, 16 or 32.

crc32q.c implements computing of CRC32-Q checksum. crc32q_init()
function initializes table for quick computation of CRC. crc32q() functions
computes checksum of data in provided buffer. It is based on the CRC function
from [6] licensed under The FreeBSD Project license.

8

1.6. Development hardware

Figure 1.3: IGLOO nano Starter Kit

1.6 Development hardware

For the development of the wireless FPGA programming support, the com-
pany has bought an FPGA IGLOO nano Starter Kit. Two modifications have
been made to it so that it can be connected to the development piece of the
DM. The white connector in the bottom right corner of the figure 1.3 has
been added and its signals have been connected to the FPGA by soldering
five zero-ohm resistors onto the bottom side of the PCB. [7] The Starter kit
can be operated more easily by firmware developers than a prototype of the
balise. Also, the impacts of potential damage during a development process
would not be so serious. The Starter Kit is based on AGLN250V2 FPGA as
opposed to AGLN125 in the balise but this doesn’t make any difference in
their programming method because both of the FPGA models are members
of the same FPGA family.

A piece of the DM used for the firmware development is shown in figure
1.4. It has been modified by AŽD to ease the firmware development process.
The white connector, in the top centre of the figure, was added for connecting
the DM with the IGLOO nano Starter Kit. The red USB connector with the
voltage regulator in the white case makes it possible to power the DM from a
USB port of a PC.

An Atmel JTAGICE3 programmer (1.6) is used for programming the MCU
and debugging the firmware. Support for this programmer is included directly
in the distribution of Atmel Studio IDE. Programming and debugging opera-
tions with the MCU’s Flash program memory can be executed directly from
the GUI of the Atmel Studio.

Figure 1.7 shows a simplified schematic connection of the main parts of
the wireless programming solution: the Bluetooth module, the DM’s MCU,
and FPGA. Only components and signals important for firmware developers

9

1. State-of-the-art

are shown. PD27 and PD28 pins of the MCU have TxD and RxD signals
of USART0 as their peripheral functions, respectively. PD30 controls both
VJTAG and VPUMP voltages for FPGA programming. The transistors are
P-Channel MOSFET so the active logical level of PD30 to switch on the
voltages is logical 0.

FlashPro4 hardware programmer together with FlashPro v11.8 software,
which is available for download from [8], is used for programming of the FPGA.

Figure 1.4: Diagnostic module used for the firmware development

Figure 1.5: FlashPro4 programmer

10

1.6. Development hardware

Figure 1.6: Atmel JTAGICE3 programmer

Figure 1.7: Simplified schematic of interconnection of the Bluetooth module,
the MCU, and the FPGA

11

Chapter 2
Analysis

2.1 Programming of AT32UC3C

The source of information for subsections concerning the Flash memory of the
MCU is [9]. This information is needed to design a firmware for AT32UC3C
for erasing, writing and verifying its Flash program memory and for executing
programs from the memory.

2.1.1 Specification of the assignment by agreement with the
industrial partner

By agreement with the industrial partner, the requirements for an AT32UC3C
MCU programming tool were specified more precisely. The requirements are
divided into functional and non-functional. Particularization of functional
requirements:

• The tool will support erasing, writing and verification of the MCU’s
program Flash memory.
• It will support operation to execute a program code from the memory.
• The tool will use the YUP communication protocol developed by AŽD.

Particularization of non-functional requirements:

• Granularity of the operations with the Flash memory will be blocks of
multiple bytes.
• The verification will be realized by the control system by reading back
content of the memory.
• The tool will not be able to FALSH memory pages where is it saved.
• The model of communication will be Master-Slave. Master will be the
control system and Slave will be DM. Slave will respond only when
requested by Master.

13

2. Analysis

2.1.2 Flash memory mapping

AT32UC3C has a 32-bit physical address space. The Flash memory is mapped
at address 0x80000000. The size of Flash memory differs between MCUs of
the AT32UC3C family and ranges from 64 KB to 512 KB.

2.1.3 Erasing, reading, and writing the Flash memory

Erasing, reading and writing of the Flash memory is managed by an on-chip
Flash controller. The read operation does not need any direct interaction with
the Flash controller. Data from Flash memory can be read by reading words
from the corresponding area of the MCU’s address space. Erasing and writing
can be accomplished only by instructing the Flash controller by writing to its
command register FCMD. The smallest unit for erasing and writing the Flash
memory is a page. The length of the page is 512 B.

The command register has the following fields:

• KEY (Write Protection Key, bits 31 to 24) should be written with the
value 0xA5 to enable execution of the command defined by the CMD
field.
• PAGEN (Page Number, bits 23 to 8) holds number of the page that the
command will operate with.
• CMD (Command, bits 5 to 0) defines command to execute. Value for
the Erase Page command is 2, for Write Page it is 1 and for Clear Page
buffer is 3.

Errors are signalized by bits in the Flash Status register. Bit PROGE (Pro-
gramming Error Status, bit 3) signalizes invalid values in the Flash Command
register. Bit LOCKE (Lock Error Status, bit 2) signalizes programming of a
locked region of the memory. A value of 1 means that an error has occurred.
These bits are clear when the register is read. Readiness of the Flash Con-
troller to accept another command is signalized by bit FRDY (Flash Ready
Status, bit 0). If it is 0, the controller is ready to accept another command.
The Flash Command register should not be written without checking the
FRDY bit first.

Write operation is done through a page buffer. The page buffer is word-
addressable and can only be written not read. The program can write to the
buffer by writing to the part of address space where Flash memory is mapped.
The size of the Page Buffer is equal to size of the memory page. Writing to
address A relative to page P > 0 is the same as writing to the address A in
page 0. Bits of page buffer can only be set from 1 to 0. All bits of of the
buffer can be set to 1 by issuing the Clear Page Buffer command. Content
of the Page Buffer is written to the Flash memory by issuing the Write Page
command.

14

2.1. Programming of AT32UC3C

2.1.4 Protection of the Flash memory pages for a bootloader

The MCU provides two ways of protecting the memory pages from being acci-
dentally modified by the firmware. The first is Region lock bits and the second
is BOOTPROT bits. All of these bits are located in Flash General Purpose
Fuse register Lo (FGPFRLO). They can be programmed by commands to the
Flash controller.

For use of the Region lock bits, the memory is divided into 16 areas.
Size of each area is the size of Flash memory divided by 16 (32 KiB for
AT32UC3C2512C). Each area has its own Region lock bit.

BOOTPROT bits are intended to protect the continuous area of Flash
memory that starts at Flash address 0. BOOTPROT bits form a 3-bit value
that sets size of the protected area. They provide a higher level of granularity
for the size of the protected area (0, 1, 2, 4, 8, 16, 32 and 64 KiB) than the
Region lock bits. The protection of the bootloader area by BOOTPROT bits
can be further improved by setting the Security bit that is located also in
FGPFRLO. ‘If the security bit is set, only an external JTAG Chip Erase can
clear BOOTPROT, and thereby allow the pages protected by BOOTPROT to
be programmed. No internal commands can alter BOOTPROT or the pages
protected by BOOTPROT if the security bit is set.’

The General-purpose fuses can be also manipulated externally through
JTAG. atprogram.exe command line utility which is shipped with Atmel Stu-
dio and supports programming of the fuses through Atmel JTAGICE3 pro-
grammer.

2.1.5 Relocation of object code

To build programs that can be correctly executed when placed from a base
address other than the MCU’s reset vector address, their object code must be
relocated to the base address. This is done by the linker. The linker executes
a script that defines which code sections will be placed at which addresses in
the MCU’s address space.

I examined the linker script which Atmel Studio uses for building stan-
dard programs for AT32UC3C2512C relocated to the MCUs reset vector ad-
dress. For standard installation of Atmel Studio the linker script is located at
C:\Program Files (x86)\Atmel\Studio\7.0\toolchain\avr32\
avr32-gnu-toolchain\avr32\lib\ldscripts\avr32elf_uc3c2512c.x.

There are two important lines in the script that control size and base
address of the Flash memory. These lines are shown in the short listing 2.1.
The line that starts with the FLASH keyword defines offset and size of the
Flash memory. The line that starts with the PROVIDE keyword defines code
entry point address.

The GNU ld linker has option -T. Argument to this option is a path to a
linker script that is to be used when linking object files.

15

2. Analysis

Source code 2.1: Default linker script for AT32UC3C2512C
...
MEMORY
{

FLASH (rxai!w) : ORIGIN = 0x80000000 , LENGTH = 512K
...

}
SECTIONS
{

/* Read -only sections , merged into text segment : */
PROVIDE (__executable_start = 0 x80000000); . =

↪→ 0 x80000000 ;
...

2.2 Programming of IGLOO nano FPGA

2.2.1 Specification of the assignment by agreement with the
industrial partner

By agreement with the industrial partner, the requirements for an IGLOO
nano FPGA programming tool were specified more precisely. The require-
ments are divided into functional and non-functional. Particularization of
functional requirements:

• The tool will support erasing, writing and verification of the FPGA’s
array and FlashROM.
• The tool will use YUP communication protocol developed by AŽD.

Particularization of non-functional requirements:

• The verification will be realized by the firmware.
• The tool will not support encryption of array or FlashROM.
• Model of communication will be Master-Slave. Master will be the control
system and Slave will be DM. Slave will respond only when requested
by Master.
• The VJTAG and VPUMP voltages for FPGA programming will be con-
trolled by a command from the control system.

2.2.2 IGLOO nano FPGA and the FlashROM

IGLOO nano FPGAs are flash-based FPGAs. ‘In flash-based FPGAs, non-
volatile memory cells hold the configuration pattern right on the chip, and
even if power is removed the contents of the flash cells stay intact. Thus
when the system restarts, the FPGAs power up in microseconds, saving time
and allowing the system to recover quickly from a power failure or a restart.’
[10] To program the FPGA array means to write configuration pattern of the
logical blocks and their interconnection to the flash-based memory cells.

16

2.2. Programming of IGLOO nano FPGA

The FlashROM is a non-volatile memory integrated in IGLOO nano FPGA.
Its capacity is 1 kbit and it can be used to store user defined application-
specific information. The balise will use it to store the data of the telegram.
‘The FlashROM can be programmed via the JTAG programming interface,
and its contents can be read back either through the JTAG programming in-
terface or via direct FPGA core addressing. Note that the FlashROM can
only be programmed from the JTAG interface and cannot be programmed
from the internal logic array.’ [11]

2.2.3 Microsemi DirectC

DirectC is a reference implementation of FPGA ISP from the Microsemi com-
pany. It supports ‘AGL, AFS, A3PL, A3PEL, A3P/E, A2F, M2S, M2GL,
RTG4, and MPF families.’ [12] The documentation [12] is available in the
archive that can be downloaded after a registration. It contains a brief de-
scription of the source codes, information about modifications needed to port
it to a new microprocessor, and the .DAT file format for programming data.

17

Chapter 3
Design

I decided to implement the wireless programming support in two separate
programs for the MCU. This division will ease maintenance of these software
projects and will make it possible to update the FPGA programming sup-
port wirelessly and independently of the MCU’s Flash memory programming
support.

I named the program for the wireless programming of MCU’s Flash mem-
ory DMBootloader, and the program for the wireless programming of FPGA
DMAppFpgaProg. The prefix DM stands for Diagnostic Module and the string
App denotes an application for DM. The application means a relocated pro-
gram that is intended to be run from a base address other than reset vector
of the MCU or in other words, a program intended to be loaded by DMBoot-
loader. DMBootloader itself will be placed by the MCU’s reset vector and will
be the only part of firmware that needs to be written to the Flash memory by
a wired programmer. Every other firmware will be able to be written to the
memory by DMBootloader.

3.1 Development software

DMBootloader and DMAppFpgaProg will be based on the DiagnosticModule
library that was developed using Atmel Studio. In order to stay consistent with
the development tools already in use, DMBootloader and DMAppFpgaProg
will be developed using the same IDE. Also, a selection of development tools
used for adding the Flash writing support to the library is bound by the tools
the library was developed with.

3.2 Communication with the control system

The wireless communication between a program for DM and the control sys-
tem will be described only at the application layer of a protocol stack shown in

19

3. Design

Figure 3.1: Deployment diagram of the balise wireless programming

Figure 3.2: Communication layers

the figure 3.2. Communication at lower layers are handled by the YUP pro-
tocol that is implemented in the DiagnosticModule library. Both programs
must support the same command for getting their identification string. This
command will be used by the control system to find out which program is
currently running in DM and how it can communicate with it.

20

3.3. DMBootloader

3.3 DMBootloader

DMBootloader will be a program for erasing, writing, and reading pages of
Flash memory of the MCU of the DM and for executing an application pro-
gram from a page of the memory. After the execution, DMBootloader will lose
control over the MCU. It will gain control again after the execution passes at
the reset vector address of the MCU. This can be done by the control system
which can enter the configuration mode of the Bluetooth module and control
its GPIO pin connected to the reset circuits of the MCU. The execution can
also be passed to the reset vector address by jumping there in software but
doing this doesn’t initialize registers. Because of that, it is expected that
DMBootloader will gain control only after a hardware reset of the MCU.

Instead of a private support for DMBootloader, I decided to implement
support for the operations with the Flash memory and with an execution of
an application program in the DiagnosticModule library. The functionality
can be used by application programs to continuously store information in the
FLASH memory pages.

3.3.1 Division of the Flash memory address space

DMBootloader will occupy a continuous set of pages in the Flash memory.
In order to prevent DMBootloader from overwriting its own pages, I decided
to divide address space into two continuous sets of pages. The first set is
called physical page space and the second set is called virtual page space. The
physical page space contains all pages of the Flash memory. The virtual page
space only contains the pages that are not used by DMBootloader and it is
a subset of the physical page space. The virtual page space is located at the
end of the physical page space. The size of the physical page is equal to the
size of the virtual page. Page numbering is relative to a selected page space.
For example, if DMBootloader occupies physical pages from 0 to (N - 1), the
physical page N is the virtual page 0, the physical page (N + 1) is the virtual
page 1, and so on. The division is shown in the figure 3.3. The exact number of
pages for DMBootloader will be determined during the implementation phase
from the size of its program binary.

3.3.2 Application layer communication protocol

The application layer protocol consists of five commands:

• read page (Read),
• write page (Write),
• erase page (Erase),
• execute firmware (Exec),
• get identification string of the application (GetId).

21

3. Design

Figure 3.3: Division of the Flash memory address space

As an argument, these commands take the page number of a page within the
virtual page space. The format of these commands and replies is shown in
attachment C.

3.3.3 Design of DMBootloader

DMBootloader will be based on a loop for receiving and executing commands
from the control system. Before entering the loop, the DM will be initialized
by a function from DiagnosticModule library. When a command datum is
received, it is checked for validity. In case it is not valid, a reply containing the
error code is sent to the control system. After the validation, a corresponding
function for the Flash memory is called and its result is coded together with
possible data from a page (when reading a page) and is sent to the control
system. At a level of the source code, the command loop is infinite. It can
be exited by receiving a valid command to execute the program from a page.
A reply to this valid command always indicates success and must be sent to
the control system before the program in the given page is being executed
and DMBootloader loses control over the MCU. The main activity diagram of
DMBootloader is shown in figure 3.4. The diagrams of the Erase, Write, and
Read commands can be found in attachment D.

3.3.4 Flash memory erasing, writing, and reading support
for DiagnosticModule library

The interface of the implementation will only work with pages from the virtual
page space. This is a partial security measure for protection of the pages
occupied by DMBootloader. The interface functions will be:

• flash_write_virtual_page(page_number, data, data_length),
• flash_read_virtual_page(page_number, data),

22

3.3. DMBootloader

Figure 3.4: The main activity diagram for DMBootloader

• flash_erase_virtual_page(page_number).

The page_number is the number of virtual pages to operate with, the data is
a pointer to a buffer for bytes to be written or read to or from the page, and
the data_length is the number of bytes in the buffer. The number of bytes
written to the page does not have to be equal to the size of the page. In this
case, the remaining bytes of the page will be set to 0xFF.

Reading of the Flash memory is the most simple operation because it can
be done without direct interaction with the Flash memory controller. In a
program, the bytes can be read through a pointer to array of bytes.

To erase a page, the program must first wait until the controller is ready
to be given a command. The command key and the page number is then
written to the FCMD register because it is again needed for the controller to
finish the command. Finally, the result of the operation is determined from

23

3. Design

the error flags in FSR register.
Writing a page is similar to the erase operation with the difference that

before writing a command to FCR register, the page buffer must be filled
with data to write. Before writing to the page buffer, it must be cleared by a
command of the controller.

3.3.5 Support for executing program from a virtual page for
DiagnosticModule library

The functionality for executing a program from a given page is related to the
Flash memory erasing, writing, and reading support so I also decided to add it
to the library. Similarly, to interface the Flash memory support, its interface
will allow an execution of the program from a page in the virtual page space.
The interface function will be
exec_application_firmware_at_virtual_page(page_num).

3.3.6 Design of an application program

By default, Atmel Studio creates programs that are intended to be placed
from the reset vector address. Because DMBootloader is placed from the
reset vector address in the Flash memory, the application programs must be
placed from other addresses. This can be done by relocating the object code
of the program at the link time and by providing a customized linker script
to the linker. Relocated programs that use interruptions must adjust reset
vectors addresses accordingly.

3.4 DMAppFpgaProg

This application will be a wrapper for the DirectC code and it will serve as
an interface between the control system and the FPGA programming sup-
port implemented in DirectC. Changes made to the DirectC code from the
Microsemi company should be minimal in order to make upgrading easier in
the future. Both code that calls DirectC and code that is called by DirectC
are considered to be part of the wrapper.

DMAppFpgaProg will be intended to be loaded by DMBootloader. Thus,
the application code will need to be relocated. The exact base address will
be determined during the implementation phase after the number of pages for
DMBootloader becomes known.

3.4.1 Application layer communication protocol

The application layer protocol consists of seven commands:

• execute DirectC operation (Exec),

24

3.4. DMAppFpgaProg

Figure 3.5: Transitions between the application states

• get text output of last executed DirectC operation (GetText),
• get DMAppFpgaProg state (GetState),
• cancel ongoing DirectC operation (Cancel),
• provide data from .DAT file to current DirectC operation (ProvideData),
• switch on/off FPGA JTAG power supply (VjtagVpump),
• get identification string of the application (GetId).

The format of the commands and replies is shown in attachment E. The term
ongoing means that the operation has been started but not yet finished. It
has been paused by passing control to the wrapping code of the application.
This will happen when the operation finishes or requests a page from a .DAT
file. DMAppFpgaProg will be able to communicate with the control system
only when the DirectC code is not being executed.

The commands will be processed by an infinite loop. In the loop, a com-
mand datum will be received, a zeroth byte containing command code will be
extracted, and a function for processing the command will be called. In case
an invalid command code is received, a reply with an error code will be sent
to the control system and waiting for the next command will start.

From the communication point of view, the application can be in one of
two states:

1. the application is waiting for a command and there is no DirectC oper-
ation ongoing,

2. there is some unfinished DirectC operation and the application is waiting
for a command.

Transitions between these two states based on a received command is show in
figure 3.5.

25

3. Design

3.4.2 Interfacing DirectC

The single entry point to the DirectC code is the dp_top() function. When
called, the wrapping code loses control and execution of the DirectC code
begins. Following this, it can call the functions that a user needs to implement,
e.g. functions for setting and getting states of JTAG signals or a function for
getting the next data page from the .DAT file.

The function for getting the data page needs to send a message to the
control system and needs to wait until the page is provided so execution of
the DirectC code can continue. The message from the Slave is treated as a
reply in the Master-Slave model, which was agreed to in subsection 2.2.1. The
Master can only send requests and the Slave can only send a message to the
Master when requested. If the message from the Slave for requesting the page
is lost before it is received by the Master, the Slave is not allowed to resend
the message because it has not been requested by the Master to do so and it
violates the Master-Slave model.

A solution to this problem is to enable the Slave to receive requests from
the Master after the DirectC function before the next .DAT page is called.
This can be done by calling a function that receives requests from the Master
(a protocol loop function) again after sending the message to the Master.
After doing so, there will be two stack frames for the protocol loop function
on the MCU’s stack. The first stack frame is for the function called right after
the initialization of the application and the second is for the function called
by DirectC code for obtaining the next .DAT page.

If the expected message from the client is lost, the Master can contact the
Slave to find out what happened. It can inquire about the state of the client
and obtain information about the data that the client is waiting for from the
Master. This process complies with the Master-Slave model.

The last issue to solve is how to return to the DirectC function in order
to continue FPGA programming. A potential solution is simply to return the
protocol loop function to its caller, which is the DirectC function, but I didn’t
choose this option for a clear reason: it would be a non-standard handling of
a command in the protocol loop. The loop is supposed to run infinitely and a
received command must not cause its termination. Returning from the loop
would mislead a reader of the source code and indicate that the loop is being
terminated. Instead, I decided to use the setjmp()/longjmp().

The setjmp()/longjmp() mechanism consists of two functions: setjmp()
and longjmp(). The parameter of both of these functions is a variable of type
jmp_buf. It’s a buffer into which setjmp() saves the current environment of
the program execution that can later be restored by longjmp(). After calling
longjmp() the program, the execution environment is restored from the buffer
and the program begins execution in the restored environment. When called
directly, the setjmp() returns to 0. When ‘call’ through longjmp(), it returns
a non-zero value. The value can be specified as an argument to the longjmp()

26

3.4. DMAppFpgaProg

Figure 3.6: Providing data to DirectC operation

call. If a zero value is passed by mistake, the setjmp() returns 1 instead.
setjmp() can be viewed as the C label for a goto statement and longjmp() can
be viewed as a goto statement. The main difference is that setjmp() saves the
execution environment and longjmp() restores it.

The negative aspect of using setjmp()/longjmp(), compared to just simply
returning from the protocol loop, is that it consumes more RAM for the buffer
into which the execution environment is saved.

The first positive aspect is that by using the setjmp()/longjmp(), the
location of where the execution of the program will continue will be clearer.
The hint is the name of the setjmp()/longjmp() buffer (e.g. provide_data).
The second positive aspect is that it will be possible to easily cancel ongoing
DirectC operations without modifying the source code of DirectC. Without
setjmp()/longjmp(), it will be needed to modify DirectC in order to handle
the case when the function for getting the next .DAT page returns. This is
because the operation cancel was requested and no .DAT page was provided.
With setjmp()/longjmp(), the DirectC code can be removed from the stack
as it has never been called.

The program execution flow for the case of providing data to an ongo-
ing DirectC operation is shown in figure 3.6. Figure 3.7 shows the flow of
cancelling the ongoing DirectC operation.

The main activity diagram of DMAppFpgaProg is split into two diagrams.
The first, which is in figure 3.8, shows the protocol loop and the processing
of commands that concern the use of setjmp()/longjmp(). The second dia-
gram shows the processing of the remaining commands and can be found in
attachment F.

27

3. Design

Figure 3.7: Cancelling DirectC operation

28

3.4. DMAppFpgaProg

Figure 3.8: Processing commands that concern use of setjmp()/longjmp()

29

Chapter 4
Realization

4.1 DMBootloader

4.1.1 Adding Flash writing and reading support to
DiagnosticModule library

Source files for the Flash memory manipulation support were placed in a
separate directory flash in the source tree of the library.

The header file flash.h defines macro FLASH_IS_VALID_VIRT_PAGE_NUMBER()
for checking validity of a number of the virtual page number and provides
access to the interface functions implemented in flash.c

• flash_write_virtual_page(),
• flash_read_virtual_page(),
• flash_erase_virtual_page().

for writing, reading and erasing of a virtual page with given number. These
functions check if the number of the virtual page provided to them is valid
and if it is, they call a corresponding function from set

• flash_write_page(),
• flash_read_page(),
• flash_erase_page().

These functions work with a page from a physical page space. As an ar-
gument, they take a physical page number. The caller function uses macro
FLASH_REAL_PAGE_NUMBER_FROM_VIRT() to convert a virtual page number to a
physical page number. Boundary page numbers for defining the range of the
physical and virtual page spaces were added to the DM parametrization header
file parameters.h.

In flash.c, some helper functions are defined for interfacing the Flash
memory controller of the MCU:

31

4. Realization

• flash_is_error() checks error flags of the Flash controller if an opera-
tion with a locked page was requested or an invalid command was written
into the Flash Command Register,
• flash_wait_until_ready() blocks until the Flash controller is able to
receive the next command,
• flash_execute_command() waits until the controller is able to receive the
next command. Then it writes the command code and the page number
to the Flash Command Register and waits for the operation to complete
by calling flash_wait_until_ready(). Eventually, it evaluates the result
of the operation by calling flash_is_error(),
• flash_clear_page_buffer() erases the Flash page buffer and thus pre-
pares it for holding a new datum for a memory page,
• flash_write_page_buffer() writes content of the page buffer to page
with the given number.

The writing to a page in function flash_write_page() is done by the fol-
lowing steps

1. the page is erased,
2. the page buffer is cleared,
3. the page buffer is filled with data to write to the page,
4. and flash_write_page_buffer() is called.

For reading a page, no contact with the Flash controller is needed. Data can
simply be read through a C pointer from addresses in the address space of the
MCU where Flash memory is mapped.

4.1.2 Adding support for executing program from a virtual
page for DiagnosticModule library

Source files where support for the execution is implemented are exec.c and
exec.h. They are located in the flash in the source tree of the library.

exec_application_firmware_at_virtual_page() passes control at the ze-
roth byte of the virtual page and the number of which is given in its argu-
ment. After calling the function, it is expected that it will never return to
the caller. The function converts the virtual page number to the address in
the Flash memory, where the program control will be passed, and provides
it to the exec_application_firmware_at_address() function, which jumps to
that address. The jump is implemented by type casting the uint32_t value
of the address to a pointer and then to a function that has no parameters.
It then returns void by calling that function. The implementation is shown
in listing 4.1. If there is an application program placed at that address, the
C runtime initialization code, included in GCC distribution, clears the stack
by initializing the stack pointer. Thus, the application program has the same
stack space as if it is run as the non-relocated single application.

32

4.1. DMBootloader

Source code 4.1: Function for executing program from a given address
void
exec_application_firmware_at_address (uint32_t address)
{

void (* application_firmware)(void) = (void (*)(void))
↪→ (address);

application_firmware ();
}

4.1.3 Implementation of the application

DMBootloader is implemented in three source files:

• main.c contains the main function. It initializes the DM and calls the
protocol loop to handle communication with the control system,
• protocol.c and protocol.h implements the application protocol and pro-

cessing commands from the control system.

The application uses functions from the DiagnosticModule library. In order
to build the application, I had to include a path for the compiler and the library
search path as well as the name of the static library archive for the linker. In
Atmel Studio, these settings are accessible from the main menu

• Project→ DMBootloader properties. . .→ Toolchain→ AVR32/GNU C
Compiler → Directories
• Project→ DMBootloader properties. . .→ Toolchain→ AVR32/GNU C
Linker → Libraries

For the protocol.h header file to be found, I also had to add its directory and
include a path for the compiler.

The program starts in function main() in main.c. diagnostic_module_init()
from the library is called to initialize the DM and then protocol_loop(), from
which the program will never return, is called. The only software way to exit
the function is by a reception of a valid command for executing the application
firmware.

Data of a command are received at the beginning of protocol_loop().
The reception through the YUP protocol is provided by the data_receive()
function from the DiagnosticModule library. The function is internally im-
plemented by actively waiting on the flag which indicate the reception of a
byte through USART from the Bluetooth module and the wait time can be
limited by caller-defined timeout. It is called repeatedly until data is success-
fully received but won’t receive more bytes than the biggest valid command
can have. From the received data, the zeroth byte containing command code
is extracted. If the code is invalid, a reply with an error code is sent by call-
ing protocol_send_reply() that further calls the library function data_send()

33

4. Realization

to send data to the control system through the YUP protocol. After that,
waiting for the next command data begins.

If code of the GetId command is received, the library function
firmware_identification_string() is called to get a string with identification
of the program. The string is sent to the control system by data_send() and
waiting for the next command data begins.

In case of other valid commands, the program checks whether

1. the number of a virtual page is contained in the received data,
2. the number of a virtual page is valid,
3. the command has at least a minimum number of bytes,
4. the command doesn’t have more bytes than the allowed maximum.

If a check fails, an error code is sent and waiting for the next command
begins. Otherwise, a virtual page number is extracted from the data and
processing continues according the given command. In case of

• Write and Erase commands, the corresponding library function (flash.h)
is called and code indicating the success or failure of the operation is
sent to the control system,
• Read command, the resulting code is sent together with the 512 B of
data of the page.
• Exec command, the reply must be sent first because after the execution,
DMBootloader will lose control over the MCU. The reply always contains
a code of success. Then the program jumps to the zeroth byte of the
page requested. It does so by calling
exec_application_firmware_at_virtual_page() from which it will never
return.

4.1.4 Deployment of DMBootloader

DMBootloader is deployed in three steps:

1. Use of the wired programmer to write DMBootloader and the Flash
memory of the MCU.

2. Write BOOTPROT fuse bits according to the size of the memory area
occupied by DMBootloader.

3. Write the Security bit of the MCU.

After these steps, the only way the bootloader can be modified is to issue
the JTAG Chip Erase command. The use of the atprogram.exe command
line utility is to perform these steps shown in listing 4.2. For the source of
information on using the utility, I used its built-in help message. This can be
showed by executing it with the --help option. The resulting binary image of
DMBootloader has 8868 bytes so I chose the size of the protected bootloader
area to be 16 KiB (BOOTPROT value 2).

34

4.2. DMAppFpgaProg

Source code 4.2: Using atprogram.exe to deploy DMBootloader
> atprogram .exe -t jtagice3 -i jtag -d at32uc3c2512c

↪→ program --chiperase --verify --format hex --file src
↪→ \impl\ DMBootloader \ DMBootloader \ Release \ DMBootloader
↪→ .hex

Firmware check OK
Programming and verification completed successfully .

> atprogram .exe -t jtagice3 -i jtag -d at32uc3c2512c write
↪→ -fs --values FFF5FFFF

Firmware check OK
Write completed successfully .

> atprogram .exe -t jtagice3 -i jtag -d at32uc3c2512c
↪→ secure

Firmware check OK
Secure bit has been set.

4.2 DMAppFpgaProg

4.2.1 Porting DirectC to AT32UC3C MCU

When porting DirectC to the MCU, I was following instructions in [12], but
there were still some issues that needed to be solved. The following errors
were detected by the compiler:

• There was one excess unpaired #endif directive in dpuser.h that was
causing compilation to fail. This directive was commented out.
• The source file JTAG/gpio_hw_interface.c was not used and it was caus-
ing compilation errors because it used functions not available in the
distribution of Atmel Studio.
• The type of DPCHAR in dpuser.h was redefined from signed char to char.
The signed type was causing compilation errors that pointer targets
in the passing argument of dp_display_text() differed in signedness.
C language standard says that signedness of char is implementation
defined. It also says that string literals are of type char[]. In the
compiler implementation used, building DMAppFpgaProg char was an
unsigned type and it was causing the error.
• Function int_to_dec_int() in dputil.c contained unused parameter and
was causing a compilation error. This was solved by removing the pa-
rameter from the function definition and declaration.

The file dpuser.c contains functions to be defined by the user of DirectC.
I didn’t want to implement the functions directly in that DirectC source file.
Instead, the required functionality was implemented in the wrapper source
file directc_wrapper.c. The functions from dpuser.c call their correspond-

35

4. Realization

Source code 4.3: Redirection of the DirectC functions to the wrapper code
DPUCHAR jtag_inp (void) {

return dcw_jtag_inp ();
}

void jtag_outp (DPUCHAR outdata) {
dcw_jtag_outp (outdata);

}

void dp_delay (DPULONG microseconds) {
dcw_delay (microseconds);

}

void dp_report_progress (DPUCHAR value) {
dcw_dp_report_progress (value);

}

void dp_display_text (DPCHAR *text) {
dcw_dp_display_text (text);

}

void dp_display_value (DPULONG value , DPUINT descriptive) {
dcw_dp_display_value (value , descriptive);

}

void dp_display_array (DPUCHAR *outbuf , DPUINT bytes ,
DPUINT descriptive) {

dcw_dp_display_array (outbuf , bytes , descriptive);
}

ing functions from directc_wrapper.c and return their return values. This
redirection is shown in the source code listing 4.3.

The call to dcw_get_page_data_from_external_storage() was added in
dp_get_page_data() in dpcom.c. dp_get_page_data() is called when a page
needed from the .DAT file is not in the DirectC page buffer and the part of
its functionality for getting the page must be defined by the user of DirectC.

The usage of the JTAG TRST signal was disabled in the original DirectC
source code in dpuser.h. Because JTAG connection between DM and FPGA in
the balise uses this signal, it was enabled by redefining a preprocessor symbol
TRST from a zero to a non-zero bit mask (to 0x10).

Declaration of C preprocessor symbols ENABLE_G4_SUPPORT and
ENABLE_G5_SUPPORT in dpuser.h was commented out to disable parts of the
code with support for unused models of FPGAs. The declaration of sym-
bols DISABLE_CORE_SPECIFIC_ACTIONS and DISABLE_FROM_SPECIFIC_ACTIONS in
G3Algo/dpG3alg.h was also commented out to allow for erasing, writing and
verification of FPGA array and FlashROM.

In function dp_init_com_vars() from dpcom.c, which is called before exe-
cution of every DirectC operation, initialization of global variables

36

4.2. DMAppFpgaProg

current_block_address, current_var_ID and image_size was added. The global
variables were initialized only in their definitions but this was causing a prob-
lem at runtime. Without the variables being initialized before every DirectC
operation, the DirectC could request .DAT page of an invalid size because of
the last values used by the previous DirectC operation (e.g. more bytes than
.DAT file for the current operation has).

4.2.2 Implementation of the application

The program starts in function main() in main.c. The main() calls
diagnostic_module_init() from DiagnosticModule library to initialize DM,
fpga_init() to initialize I/O for controlling VJTAG and VPUMP voltages
for FPGA, and eventually protocol_loop(), from which the program never
returns back to the main() function.

File fpga.c contains an initialization function fpga_init() and two func-
tions for switching VJTAG and VPUMP voltages on and off:
fpga_power_supply_on() and fpga_power_supply_off().

The two setjmp()/longjmp() buffers are defined in setjmp_buffers.c as
global variables and are declared as extern in the setjmp_buffers.h header
file in order to be accessible by the other parts of the application.
setjmp_buffer_cancel_operation is for returning to the beginning of
protocol_loop() after cancelling the ongoing DirectC operation.
setjmp_buffer_provide_data_to_operation is for returning to the ongoing Di-
rectC operation when a requested page from the .DAT file has been provided
by the control system.

protocol_loop() saves the program state to
setjmp_buffer_cancel_operation buffer, initializes DirectC wrapping code and
state of the application, and calls protocol_loop_wait_for_command() for pro-
cessing command from the control system.

The initialization function of the DirectC wrapping code dcw_init() from
directc_wrapper.c configures I/O for communication with an FPGA through
JTAG. In the source file, there are also other functions and data structures
for interfacing DirectC, which are described in the next paragraphs.

application_state.c contains a global structured variable
application_state which holds the state of the application. There are two
application states as described in 3.4.1. The variable also contains code of
ongoing DirectC operation, offset of a page from .DAT file, and size of the
page requested by the operation.

protocol_loop_wait_for_command() functions similarly as protocol_loop()
of DMBootloader. It receives data of a command and calls a corresponding
function to process it. After it has been processed, waiting for the data of the
next command begins. Checking if the size of the command is valid is done
in its processing function.

37

4. Realization

Source code 4.4: Use of setjmp() and longjmp() for canceling ongoing DirectC
operation
void
protocol_loop (void) {

setjmp (setjmp_buffer_cancel_operation);
dcw_init ();
application_state_init ();
protocol_loop_wait_for_command ();

}

void
protocol_cmd_cancel_current_operation (

size_t bytes_received) {
...
protocol_send_reply (PROTOCOL_OK);
longjmp (setjmp_buffer_cancel_operation , 1);

}

protocol_cmd_get_application_id() processes GetId command. It calls
the library function firmware_identification_string() to get a string with
an identification of the program.

protocol_cmd_get_application_status() sends information from the
application_state variable to the control system. When a DirectC request
for a page from the .DAT file is lost, the control system can issue the GetState
command to get information about the page requested so it can deliver the
needed data to the DirectC.

protocol_cmd_fpga_power_supply_ctrl() switches VJTAG and VPUMP
voltages for FPGA based on a value in the command.

protocol_cmd_cancel_current_operation() processes command for
cancelling the ongoing DirectC operation. It is simply done by calling setjmp()
with setjmp_buffer_cancel_operation buffer as an argument. It effectively
means entry to the protocol_loop() functions as if it was called for the first
time. The parts of the source code showing the setjmp() and longjmp() calls
are shown in listing 4.4.

protocol_cmd_execute_operation() executes the DirectC operation. It
saves the code of the DirectC operation to be executed to application_state
and calls dcw_execute_operation() with the operation code as an argument.
The function might not return in case of the operation is cancelled by calling
longjmp() to enter the protocol_loop(). If the function returns, it means
that the operation is finished. The application state changes to indicate
that there is no ongoing operation and a reply containing the DirectC re-
turn code of the operation is sent to the control system. After calling the
protocol_cmd_execute_operation(), a reply is always sent to the control sys-
tem. Either it is a message about that the operation that is finished or it is a
request for a page from the .DAT file sent from the

38

4.2. DMAppFpgaProg

Source code 4.5: The printf-like function that writes the output characters to
a buffer
void
dcw_print (const char * format , ...) {

const size_t free_chars =
DCW_DISPLAY_BUFFER_SIZE - dcw_display_buffer_index ;

if (free_chars > 0) {
va_list args;
va_start (args , format);
char * const buf =

dcw_display_buffer + dcw_display_buffer_index ;
const size_t chars_written = vsnprintf (buf ,

free_chars + 1,
format , args);

va_end (args);
if ((chars_written > 0) &&

(chars_written <= free_chars)) {
dcw_display_buffer_index += chars_written ;

}
}

}

dcw_get_page_data_from_external_storage() function.
The DirectC code prints out text strings with information about progress

of the ongoing operation. For unification of the text, output dcw_print()
function, which is shown in listing 4.5, was implemented. It has the same pa-
rameters as the standard C printf() function but it adds the output charac-
ters to dcw_display_buffer[]. The variable dcw_display_buffer_index holds
the number of characters written to the buffer, excluding the terminating
null byte. The dcw_display_buffer_clear() clears the buffer by setting the
dcw_display_buffer_index to 0. The DirectC code calls functions

• dcw_dp_display_text(),
• dcw_dp_display_value(),
• dcw_dp_display_array(),
• dcw_dp_report_progress().

to print out different types of information. All of these functions were
made to call dcw_print(). Listing 4.5 shows the unification of the text output
functionality.

The control system can issue a GetText command to get content from the
buffer. The command is processed in protocol_cmd_get_operation_log().

The function dcw_execute_operation() clears the buffer for a text output
of the DirectC code, sets the DirectC variable Action_code to the code of
operation to execute, and calls the DirectC entry function dp_top(). Its return
value is used as the return value of dcw_execute_operation().

39

4. Realization

Source code 4.6: Unification of the DirectC text output functionality
void
dcw_dp_display_text (const char *text) {

dcw_print (text);
}

void
dcw_dp_display_value (DPULONG value , DPUINT descriptive) {

switch (descriptive) {
case HEX:

dcw_print ("%X", value);
break ;

case CHR:
dcw_print ("%c", value);
break ;

default : // DEC , DPULONG
dcw_print ("%lu", value);
break ;

}
}

void
dcw_dp_display_array (DPUCHAR *value , DPUINT bytes ,

DPUINT descriptive) {
if (bytes >= 1) {

dcw_dp_display_value (value [0], descriptive);
}
for (DPUINT i = 1; i < bytes; ++i) {

dcw_print (", ");
dcw_dp_display_value (value[i], descriptive);

}
}

void
dcw_dp_report_progress (DPUCHAR value) {

dcw_print (" Progress : %d", value);
}

The DirectC also needs to have functions for platform dependant I/O for
JTAG signals and to measure time. dcw_jtag_inp() is used to get the value of
JTAG input signal TDO. For setting JTAG output signals TDI, TCK, TMS,
and TRST, dcw_jtag_outp() is used. It receives byte with its bits representing
logical levels of the signals and sets the MCU output pins accordingly. Listing
4.7 shows the implementations of these functions. dcw_delay() implements
blocking waiting. It is based on the COUNT system register of the MCU and
waits for a given number of microseconds. The function is shown in listing
4.8.

dcw_get_page_data_from_external_storage() is called by the DirectC code
to get a page of .DAT file. It formulates a request for the control system,
sends the request to it, and saves the information about the page to the
application_state variable so it can be retrieved by the control system in

40

4.2. DMAppFpgaProg

Source code 4.7: JTAG input and output functions
DPUCHAR
dcw_jtag_inp (void) {

const unsigned port = DCW_TDO / 32U;
const unsigned pin = DCW_TDO % 32U;
const uint32_t m = (1 << pin);

return ((DPUCHAR)
((AVR32_GPIO .port[port]. pvr & m) >> pin)) << 7;

}

void
dcw_jtag_outp (DPUCHAR outdata) {

const unsigned directc_output_masks [] =
{TDI , TCK , TMS , TRST };

const unsigned gpio_outputs [] =
{DCW_TDI , DCW_TCK , DCW_TMS , DCW_TRST };

const unsigned output_count =
sizeof (gpio_outputs) / sizeof (gpio_outputs [0]);

for (unsigned i = 0; i < output_count ; ++i) {
const unsigned port = gpio_outputs [i] / 32U;
const unsigned pin = gpio_outputs [i] % 32U;
const uint32_t m = (1 << pin);
const unsigned value =

outdata & directc_output_masks [i];

if (value == 0) {
AVR32_GPIO .port[port]. ovrc = m;

} else {
AVR32_GPIO .port[port]. ovrs = m;

}
}

}

Source code 4.8: The function for blocking waiting
void
dcw_delay (DPULONG microseconds) {

uint32_t a = 1;
uint32_t b = 0;

while (microseconds > 0) {
if (b < a) {

a = SYSREG_COUNT_GET ;
} else if ((b - a) >= DCW_COUNT_DIFF_FOR_1_US) {

--microseconds ;
a = SYSREG_COUNT_GET ;

}
b = SYSREG_COUNT_GET ;

}
}

41

4. Realization

case of the request is lost. At this place, the state of the program is saved
to the setjmp_buffer_provide_data_to_operation buffer. If this was a direct
call to setjmp(), the protocol_loop_wait_for_command() is called to receive
commands. If the setjmp() returned because of a call to the longjmp() in
protocol_cmd_deliver_data_to_operation(), the DirectC variables for infor-
mation about a page in the page buffer are set and the
dcw_get_page_data_from_external_storage() returns to its caller. The caller
is the DirectC function for getting data from the .DAT file, which now has
the needed data in the page buffer and can continue with the execution. The
longjmp() call takes the size of the page received from the control system as
an argument. This is how the information about the size of the page gets to
the dcw_get_page_data_from_external_storage() function and is then passed
to the DirectC code. The parts of the source code showing the use setjmp()
and longjmp() calls for providing data to the ongoing DirectC operation are
shown in listing 4.9.

4.2.3 Relocation of the application

For DMBootloader, a Flash memory area of 16 KiB (pages 0 to 31) was se-
lected. Thus, DMAppFpgaProg is relocated to the address 0x80004000, which
is the start address of page 32, with the remaining memory area of 496 KiB.
The linker script, modified according to the information in subsection 2.1.5,
is located in the root directory of the Atmel Studio project for DMAppFp-
gaProg and its filename is linker_script.x. In Atmel Studio, the linker op-
tion -T can be set in project properties accessible from the main menu Project
→ DMAppFpgaProg properties. . .→ Toolchain → AVR32/GNU C Linker →
Miscellaneous.

42

4.2. DMAppFpgaProg

Source code 4.9: Use of setjmp() and longjmp() for canceling ongoing DirectC
operation
// protocol .c
void
protocol_cmd_deliver_data_to_operation (

const uint8_t * const buf , size_t bytes_received) {
...
// OK , copy the received data to the DirectC page buffer
memcpy (page_global_buffer , buf + 1U,

bytes_received - 1U);
longjmp (setjmp_buffer_provide_data_to_operation ,

(int) (bytes_received - 1U));
}

// DirectC /dpcom.c
void
dcw_get_page_data_from_external_storage (

DPULONG image_requested_address ,
DPULONG * const return_bytes ,
DPULONG * const start_page_address ,
DPULONG * const end_page_address) {
// Send the request for the .DAT page to the Master
...
// Save the information about the needed page to
// the application state
...

// The return value of setjmp () is:
// - 0 when the setjmp () was called by this function
// - greater than 0 when the setjmp () was " called "
// by the longjmp ()
const int setjmp_ret =

setjmp (setjmp_buffer_provide_data_to_operation);

if (! setjmp_ret) {
protocol_loop_wait_for_command ();

} else {
// The longjmp () was called , i.e. the page was
// provided by the Master and the data are already
// saved in the DirectC page_global_buffer
* return_bytes = (DPULONG) setjmp_ret ;
* start_page_address = image_requested_address ;
* end_page_address = image_requested_address +

* return_bytes - 1;
}
// Continue execution of ongoing DirectC opearation
// with the data it requested

}

43

Chapter 5
Testing

Tests of DMBootloader and DMAppFpgaProg were designed as system gray
box tests. The system testing tests a system as a whole for meeting specified
requirements. Gray box testing tests functionality at a level of interfaces but
uses a partial knowledge of the inside of the system. For testing purposes, a
PC will act as the control system.

I decided to create a simple automated test based on Bash shell scripting
language. I chose it because I have more experience in scripting in Unix shell
environment than in the MS Windows native command shells.

The major problem that required solving was how to communicate with
the DM through the YUP and from the shell scripts. For this purpose, I
implemented command-line utility yup-comm.

The two main principles of the testing are:

• Send a command to the DM, receive a reply, check if the reply is equal
to the expected reply.

• Do an operation with a target device (MCU, FPGA) by the FW in the
DM, check the expected result by the original HW programmer (Atmel
JTAGICE3 for the MCU, Microsemi FlashPro4 for the FPGA).

The designed tests will be used for the testing of DMBootloader and
DMAppFpgaProg during their future development in AŽD. Even when the
tests are automated in Bash shell, it will not be possible to run them on a
Unix-like OS because FlashPro and atprogram.exe used for controlling the
HW programmers are available only for MS Windows. The test configuration
is shown in deployment diagram 5.1.

5.1 The software environment

The tests were conducted in the MS Windows 7 SP1 operating system. A
Unix environment with shell and C compiler was provided by MSYS2 version

45

5. Testing

Figure 5.1: Deployment diagram for the testing of the wireless programming
support

20161025. ‘MSYS2 is a software distro and building platform for Windows.
At its core, it’s an independent rewrite of MSYS, based on modern Cygwin
(POSIX compatibility layer) and MinGW-w64 with the aim of better interop-
erability with native Windows software. It provides a bash shell, Autotools,
revision control systems and the like for building native Windows applications
using MinGW-w64 toolchains. It features a package management system to
provide easy installation of packages, Pacman.’ [13] All examples of command
line in this chapter are executed in the bash shell of MSYS2.

46

5.2. Communicating with DM from Windows 7

5.2 Communicating with DM from Windows 7

For communication between the DM and the operating system, the Bluetooth
module of the DM and the PC must be paired. This is done by clicking Start
Menu → Devices and Printers → Add a device and following the instructions.
After the new device has been added and the OS has finished installation
of drivers, a new COM port appears. The COM port number can be found
by right-clicking the device in the Devices and Printers window, selecting
Properties and switching to the Services tab.

5.3 YUP communication utility

In order to be able to communicate with the DM through the YUP and from
the shell scripts, the YUP communication utility was implemented. In doing
this, I found out that opening a COM port takes a few seconds. At first I im-
plemented the communication utility in one executable which opened a COM
port, sent a command, and finally closed the COM port. Consequently, doing
so for every command of the DM testing took a long time. To speed up the
testing, the utility was divided into two executables that communicated with
each other: yup-comm-server and yup-comm-client. yup-comm-server opens a
COM port and receives commands from yup-comm-client. yup-comm-client
sends a single command to yup-comm-server, waits until the server receives the
reply from DM, and then exits. In this way, a COM port is opened just once
and every command for the DM uses this session. This lasts until testing is fin-
ished. I measured the speed-up by executing the 1_basic group of commands,
described in subsection 5.7, three times for both the opening and the closing
a COM port. There were no retries in opening the COM port, as described
in subsection 5.3.2. The average duration of the execution, with opening and
closing the COM port for every command, was approximately 24 seconds. The
average duration when the COM port was opened and closed only once was
approximately 9 seconds. The speed-up is approximately 24/9 = 2.67.

To implement the YUP protocol, I ported its implementation from the
DiagnosticModule library for the DM to Windows 7. To compile the source
codes and build the program executables, made by the GCC C compiler and
Unix and are already pre-installed in MSYS2, were used.

5.3.1 Porting YUP implementation to Windows 7

The source codes of the YUP implementation in the DiagnosticModule library
are in directories comm, protocol and utils. I copied the directories into the
YUP communication utility source tree and made the following changes to
them:

• Unused header file utils/system_registers.h was removed.

47

5. Testing

• #include directives for ASF header file <avr32/io.h> were removed.
• #define directive for defining the COBS delimiter was added to

comm/bt.c. In the DiagnosticModule library, the delimiter is defined in
diagnostic_module/parameters.h but the header file also contains infor-
mation about page spaces that are not needed for the YUP communi-
cation utility.
• comm/usart.c and comm/usart.h for interfacing USART interface were
replaced by comm/serial_port.c and comm/serial_port.h which contain
functions for interfacing COM port in Windows. For a source of infor-
mation on how to handle a COM port, I used [14].
• In comm/bt.c a global variable bt_serial_port was added. It holds a
handle of COM port to use for sending and receiving bytes, and it is
initialized in bt_init().
• Unused functions bt_module_to_usart_pins(), bt_send_data() a

bt_receive_data() were removed.
• Functionality for non-blocking waiting and timeouts was removed from
all functions that used it to ease the porting. #include directives for
header file <clock/wait.h> was also removed.
• bt_send_cobs_data_block() operating with the MCU’s USART was send-
ing bytes one by one but when the USART layer was replaced by COM
port layer. This turned out to be slow because calls to the Windows
API function WriteFile() are expensive. To solve this problem, a buffer
was defined in the bt_send_cobs_data_block() and instead of writing a
single bytes to the COM port, they are buffered and sent at once just
before the function returns. Thus, there is just one call to WriteFile().
• #include <> notation, used in the DiagnosticModule library was modi-
fied to #include "".

5.3.2 Server part of YUP communication utility

Server and client parts communicate bidirectionally through the mailslots
which is a one-way IPC mechanism in MS Windows OS and can transfer
messages up to 424 bytes. For duplex communication, two mailslot channels
are used. The source of information about programming with mailslots is [15].
File mailslot.h contains functions to create, connect to and close a mailslot,
and to write and read messages to and from a mailslot.

The server creates a mailslot for receiving commands from the client and
then tries to open a COM port whose name is passed to it as an command-line
argument. If the first try to open a COM port fails, the program waits a few
seconds and then tries again. In total, four attempts to open the COM port
are made. After that, the YUP COBS layer is initialized to use the COM port
to send and receive bytes and loops for receiving and processing commands
from the client. The server supports three commands:

48

5.4. Types of test files

• EXIT - exits the server. When the program exits, a message to a possible
client is sent to inform it that it should also exit.

• PING - is used by the client to test if the server is alive and ready to
receive commands.

• CMD,REPLY - reads data from file at path CMD, sends the data through
YUP to DM, reads a reply, and saves the reply data to the file at path
REPLY.

After a command is processed, a message is sent to the client so it knows that
command processing has finished.

5.3.3 Client part of YUP communication utility

The client part is implemented in yup-comm-client.c. It takes one argument
that is a command for the server part. After checking the argument, a mailslot
for receiving a message from the server part is created and connection to
the server’s mailslot is made. The argument is sent to the server as a null
terminated character string. Before exiting, the program waits for an arbitrary
message from the server as a confirmation, that either a reply to the command
was received or an error occurred on the server side. When passing relative
file paths to the server, it is important to realize that the paths are related to
the server’s current working directory and not to the working directory of the
client.

5.4 Types of test files
There are just a few basic types of files, determined by their filenames, that
contain data used to test DMBootloader and DMAppFpgaProg. The common
types for both of the programs are:

• N_cmd are binary files that contain bytes of a command for the program
in the DM. The
N is the unsigned integer number. When multiple command files are
placed in the same directory, the number determines their order when
sending them to the DM. The name can have an arbitrary suffix, e.g.
for better explanation of the command.
• N_reply are binary files that contain bytes of the expected reply to N_cmd.
• reply is a binary file that contains a common reply to all the N_cmd files

in a single directory.

The file type that is only used for testing DMBootloader is memory_image.
This is a binary file containing an image of the whole or just a part of the
Flash memory of the MCU. Its contents are expected data and it’s compared
to data read by the Atmel JTAGICE3 programmer.

File types that are only used for testing DMAppFpgaProg with suffix:

49

5. Testing

• .DAT contains data for FPGA programming. This format is needed for
Microsemi DirectC.
• .STP contains the same data as corresponding .DAT files but are used
with FlashPro.

Unix file paths passed from the MSYS2 environment to the Windows ex-
ecutables must be converted to file paths for Windows. For this purpose,
MSYS2 provides cygpath a utility that converts paths in both directions.

5.5 Common shell functions

Shell functions shared among main scripts for DMBootloader and DMAppF-
pgaProg are in utils.sh and yup_comm.sh. These files are not intended for
direct execution. They are included in the main scripts by the source opera-
tor (.) of the bash shell. yup_comm.sh contains wrapper functions for the YUP
communication utility executables:

• yup_comm_start_server() starts yup-comm-server and waits until it is
started. This is done by sending the ping command to the server by
yup-comm-client. The client exits either when the server is running and
responding or when it is not running. The result of starting the server,
which is the return value of the shell function, is indicated by the return
value of the client.
• yup_comm_stop_server() sends the exit command to the server.
• yup_comm_execute_dm_cmd() takes Unix paths to a command file and to

a file where data of the reply will be stored. It constructs an argument
for yup-comm-client and runs the client with the argument.

utils.sh contains helper functions:

• info(), msg(), error() are used for formatting text messages printed
to the console and for their redirection to appropriate output streams
(stdout or stderr). error() calls exit after printing the error message.
• get_cmd_num() takes the name of a command file and echoes its number
to a standard output.
• compare_files() compares the content of two files and indicates the
result in the return value of the function. It uses the diff command
that is not included in the MSYS2 installation by default and which I
had to install in the diffutils package.
• list_commands_an_replies() creates an input for the test() function.
It lists command reply files in a directory and outputs lines where each
line has two parts. The first part is a path to a command file and the
second is a path to the expected reply. The expected reply is either a
common reply or, if the directory contains a reply for each command,

50

5.6. Static code analysis

Source code 5.1: Running cppcheck.exe for static source code analysis
> cd DiagnosticModule / DiagnosticModule /flash/
> /c/ Program \ Files/ Cppcheck / cppcheck .exe --enable =all --

↪→ force -I ../../ DiagnosticModule *.c *.h
...
> cd ../../../ DMBootloader / DMBootloader
> /c/ Program \ Files/ Cppcheck / cppcheck .exe --enable =all --

↪→ force -I ../../ DiagnosticModule / DiagnosticModule *.c
↪→ *.h

...
> cd ../../../ DMAppFpgaProg / DMAppFpgaProg
> /c/ Program \ Files/ Cppcheck / cppcheck .exe --enable =all --

↪→ force -I ../../ DiagnosticModule / DiagnosticModule -I
↪→ DirectC *.c *.h

...

a reply special to the command. The lines are sorted by the command
numbers.
• init_tmp_dir() creates a directory if it doesn’t exist or deletes its content
if it does exist. It also tests whether the directory is writeable.
• check_retval() takes a numeric value as an argument and if it is non-
zero, it calls the error() function. Otherwise it has no effect.
• test() reads a line outputted by list_commands_an_replies(). For each

line, it calls the yup_comm_execute_dm_cmd() saving reply to a file in the
temporary directory and compares the reply to the expected one.

5.6 Static code analysis

To detect possible errors in the source codes for DMBootloader and DMAppF-
pgaProg which may not have been detected by the compiler, I used the static
source code analysis tool Cppcheck version 1.87. Usage of the Cppcheck is
shown in listing 5.1. The --enable=all option enables all checks supported
by the Cppcheck, the --force forces checking of all configurations in source
codes, and then the -I options specify paths to find the include files of the
DiagnosticModule library and the DirectC so that they can also be included
in the analysis.

The analysis was conducted on the source files of the Flash memory sup-
port in the DiagnosticModule library, DMBootloader, and DMAppFpgaProg.
I didn’t analyze the source codes of the DirectC to keep changes minimal.

In the analysis, no errors found. Cppcheck just informed me about some
missing include files. I re-ran the checks with --check-config options to see
what include files were not found. These were header files of the standard C
library and the ASF but because Cppcheck does not need the standard library
headers to get proper results, I didn’t include them in the analysis.

51

5. Testing

5.7 DMBootloader
Data files and scripts for testing of DMBootloader are placed in their own
directory. The tests are fully automated and can be run by executing main
test script test.sh. The data files are grouped into directories and have an
unsigned integer number as a prefix for their names. It determines the order in
which the groups must be processed during testing. The following list briefly
describes the test groups:

• 1_basic - basic test of the application protocol implementation.
• 2_cmd_write_all_pages - writing the whole virtual page space.
• 3_cmd_read_all_pages - reading the whole virtual page space.
• 4_erase_random_pages - erasing 16 random pages of the virtual page
space written by tests of the 2_cmd_write_all_pages group.
• 5_erase_even_pages - erasing even pages of the virtual page space writ-
ten by tests of the 2_cmd_write_all_pages group. The Flash memory of
the MCU is checked after each of the Erase commands.
• 6_erase_odd_pages - erasing odd pages of the virtual page space written
by tests of the 2_cmd_write_all_pages group.
• 7_write_DMAppFpgaProg - programming DMAppFpgaProg into the Flash
memory of the MCU.
• 8_exec_DMAppFpgaProg - execution of DMAppFpgaProg.
• 9_check_DMAppFpgaProg - checking if DMAppFpgaProg is running by is-
suing GetId command.

Most of the data files in 1_basic, 7_write_DMAppFpgaProg, and
8_exec_DMAppFpgaProg directories were prepared manually using HxD hex ed-
itor. Some reply files were created by issuing a command for the DM, reading
back the reply, and manually checking it for correctness. Files in the remain-
ing groups were generated automatically using the helper scripts described in
the next subsection. The total number of commands is 3135.

The 1_basic test was designed with knowledge of the protocol implemen-
tation (Greybox testing). For example, because missing a page number of a
command is checked only at one place in the program and it is common for
all commands, the missing page number check is done only for one command.
Similarly, the 4_erase_random_pages uses knowledge that the processing of the
Erase command can not result in erasure of more than one page since there
can only be one command written to the Flash Command register. Erasing
of odd and even pages is an additional test that checks if the Erase command
does not result in erasure of continuous areas of more than one page.

5.7.1 Helper scripts

atprogram.sh is a wrapper for the atprogram.exe utility which comes in dis-
tribution of Atmel Studio. It contains functions for:

52

5.7. DMBootloader

• reading a continuous area of the Flash memory of the MCU,
• writing DMBootloader into the memory,
• setting protection of the bootloader by BOOTPROT fuse bits,
• setting the security bit.

Scripts used to generate commands, replies, and memory images are:

• create_dmbootloader_cmd.sh generates the headers Write, Read, and
Erase commands and writes it to a file. This consists of the command
code and page number.

• generate_cmd_write_read_all_pages.sh generates commands to write
every page of the virtual page space with random data and constructs
memory_image containing expected content of whole virtual page space
that is compared with the content read by Atmel JTAGICE3 program-
mer.

• generate_cmd_erase_random_pages.sh generates commands for erasing
16 random pages of the virtual page space and constructs memory im-
ages with expected virtual page space content based on the memory_image
generated by generate_cmd_write_read_all_pages.sh. After each Erase
command, the virtual page space is read through the Atmel JTAGICE3
programmer and is compared to the memory_image corresponding com-
mand. The memory images are cumulative, i.e. the memory image for
the command to erase a page have pages of the previous Erase commands
that were erased.
• generate_cmd_erase_even_odd_pages.sh generates commands for eras-
ing the even and odd pages of the virtual page space and constructs
memory images with their expected virtual page space content based on
memory_image generated by generate_cmd_write_read_all_pages.sh.
• generate_cmd_write_DMAppFpgaProg.sh generates commands to program
DMAppFpgaProg into the MCU.

5.7.2 The main test script

The test of DMBootloader is run by executing the test.sh script. The steps
are:

1. program DMBootloader into the Flash memory
2. lock the bootloader area pages by BOOTPROT fuses
3. wait 4 seconds until DMBootloader has finished initializing the DM
4. start yup-comm-server
5. initialize the directory for temporary files
6. run the test groups
7. stop yup-comm-server
8. set the Security bit of the MCU

53

5. Testing

Results of 3_cmd_read_all_pages, 4_erase_even_pages, and
5_erase_odd_pages groups are checked also by Atmel JTAGICE3 programmer.

5.7.3 Results of the testing

Table 5.1 shows the final results of the testing of DMBootloader. One test
iteration, consisting of all the test groups, takes 40 minutes. The time was
measured by running the time ./test.sh command and is rounded to the near-
est minute. The total number of commands sent to DMBootloader during one
test iteration is 5119 because some commands are sent multiple times (writ-
ing memory with random data for 4_erase_random_pages, 5_erase_even_pages,
and 5_erase_even_pages groups).

Group Result Commands sent
1_basic Success 10
2_cmd_write_all_pages Success 992
3_cmd_read_all_pages Success 992
4_erase_random_pages Success 16
5_erase_even_pages Success 992 + 496 = 1488
6_erase_odd_pages Success 992 + 496 = 1488
7_write_DMAppFpgaProg Success 131
8_exec_DMAppFpgaProg Success 1
9_check_DMAppFpgaProg Success 1

Table 5.1: DMBootloader test results

5.8 DMAppFpgaProg

The layout of files and directories for testing DMAppFpgaProg is similar to
the one for DMBootloader. The test assumes that DMBootloader test has
already passed and either DMBootloader or DMAppFpgaProg is currently
running. The test groups are:

• 1_execute_DMAppFpgaProg - the main test script expects that both DM-
Bootloader and DMAppFpgaProg are written into the Flash memory
and either one of them is running. Before executing any test group, the
script sends a GetId command to the DM and checks the answer. If
DMBootloader is running, it sends the Exec command. If the command
is successful, the script assumes that DMAppFpgaProg has been exe-
cuted. In the command counts in this chapter, these two commands are
not included. They are useful during development of the tests when the
DM is often restarted and when DMBootloader is gaining control.
• 2_basic - basic test of the application protocol.

54

5.8. DMAppFpgaProg

• 3_write_verify_erase_array_from - tests of writing, verification and eras-
ing of FPGA array and FlashROM using .DAT and .STP files containing
data for array and FlashROM.

• 4_write_verify_erase_from - tests of writing, verification and erasing
of FPGA array using .DAT and .STP files containing data only for the
array.

• 5_write_verify_erase_array - tests of writing, verification and erasing
of FPGA FlashROM using .DAT and .STP files containing data only
for the FlashROM.

The .DAT and .STP files were provided by AŽD and are located in the
fpga_data directory. Data files in the 1_execute_DMAppFpgaProg and 2_basic
directories were prepared manually. Other files were created using the helper
scripts. The total number of commands is 5322.

5.8.1 Helper scripts

flashpro.sh is a wrapper for flashpro.exe. It contains only one function for
executing an operation with FPGA by the FlashPro4 HW programmer. This
function creates a new FlashPro project in a temporary directory. Following
this, a TCL script to execute is given action, runs flashpro.exe with the
script, and checks the result of the operation by examining a log created in
the temporary project directory.

When operating in paging mode, DirectC generates many .DAT page re-
quests. To automatize a creation of commands and replies for a DirectC
operation, the script generate_page_cmds.sh was created. It takes a path to
a directory and expects to find the 1_cmd command there which is the Exec
command for DMAppFpgaProg. It sends the command to the DM, reads a
reply, extracts a page offset and size from the reply, constructs 2_cmd contain-
ing the page data requested, and sends the newly created command to DM to
get the next reply for 3_cmd to be constructed. This loop continues until the
size of the reply is not 9 B which indicates that the operation has finished.
The last reply is checked manually if it is the one expected.

5.8.2 The main test script

Test of DMAppFpgaProg is run by executing test.sh script. The steps are:

1. start yup-comm-server
2. initialize directory for temporary files
3. run the test groups
4. stop yup-comm-server

Test group 3_write_verify_erase_array_from uses this algorithm for array
and FlashROM operations:

55

5. Testing

1. write FPGA by DMAppFpgaProg
2. verify by DMAppFpgaProg
3. verify by FlashPro and FlashPro4 HW programmer
4. erase FPGA by DMAppFpgaProg
5. verify by DMAppFpgaProg
6. verify by FlashPro and FlashPro4 HW programmer

The test group 4_write_verify_erase_from uses a similar algorithm but
it uses an array. FlashROM data is saved in independent files and treats the
FPGA array content as an invariant in order to be sure that operations with
FlashROM does not affect the array:

1. write array by DMAppFpgaProg
2. erase FlashROM by DMAppFpgaProg
3. verify array by FlashPro
4. verify FlashROM by FlashPro
5. write FlashROM by DMAppFpgaProg
6. verify array by DMAppFpgaProg
7. verify FlashROM by DMAppFpgaProg
8. verify array by FlashPro
9. verify FlashROM by FlashPro
10. erase FlashROM by DMAppFpgaProg
11. verify array by DMAppFpgaProg
12. verify FlashROM by DMAppFpgaProg
13. verify array by FlashPro
14. verify FlashROM by FlashPro

Test group 5_write_verify_erase_array is analogous to
4_write_verify_erase_from except the FlashROM content is the invariant.

Results of the programming operations with FPGA cannot be seen in the
same way as they are for the MCU because the programmed content of FPGA
cannot be read out. It can just be compared to expected data. FlashROM
content is an exception but I decided to treat it as restrictively as the array.
This feature of FPGA is especially significant when checking erasure of FPGA.
It has four steps:

1. write FPGA with known content
2. verify if the content is as expected
3. erase FPGA
4. verify if the content is not as expected, i.e. the FPGA is programmed

with a different design

Due to the fact that only one DM and FlashPro4 can be connected to the
Starter Kit at a time, manual intervention of test operator is needed during
testing. The other reason for the presence of the operator is that FlashPro4

56

5.8. DMAppFpgaProg

doesn’t supply VJTAG voltage but DM can. To test VJTAG and VPUMP
switching by the DM, 2_basic tests are conducted with the voltages switched
off in the Starter Kit. For the next tests, the voltages are switched on a DM
does not control them. Function operator_msg() is called to print instructions
for the test operator and to wait for key press to continue the testing.

5.8.3 Results of the tests

During testing of DMAppFpgaProg, an error in function
dp_get_data_block_element_address() from dpcom.c was found. The code in
the function tests whether the required data is in the page buffer or if the
data must be fetched from an external storage. In the set of conditions, for
the case when the needed data is in the buffer, there was a condition that
tested whether the buffer contained at least MIN_VALID_BYTES_IN_PAGE from
the requested address. For certain combinations of the .DAT file sizes and
usages of page buffering, DirectC code could have requested a page that was
valid but contained less than MIN_VALID_BYTES_IN_PAGE bytes. The DirectC
operation returned an error code indicating an invalid .DAT file. The error
was fixed and the tests were re-run.

Table 5.2 shows the final results of DMAppFpgaProg testing. One test
iteration takes approximately 82 minutes. The time was measured by running
the time ./test.sh command and rounded to the nearest minute. Because the
testing is not fully automated, as described in subsection 5.8.2, the time also
includes interventions of the test operator. The total number of commands
sent to DMAppFpgaProg during one test iteration is 5322. Each command is
sent only once. The commands in 1_execute_DMAppFpgaProg are not counted
as explained in the group description at the beginning of this section.

Group Result Commands sent
1_execute_DMAppFpgaProg Success not counted
2_basic Success 31
3_write_verify_erase_array_from Success 1686
4_write_verify_erase_from Success 1683
5_write_verify_erase_array Success 1922

Table 5.2: DMAppFpgaProg test results

57

Conclusion

This thesis dealt with analysis, design, realization, and testing of a firmware
for AT32UC3C family of MCUs that would make it possible to erase, write,
and verify the program Flash memory of the MCU and array and FlashROM
of IGLOO nano FPGAs. The firmware that has been created is divided into
two independent programs: DMBootloader and DMAppFpgaProg.

DMBootloader is the the only part of the wireless programming support
that needs to written into the MCU’s Flash memory by wired programmer.
It is the first program run after reset of the MCU and it then allows to erase,
write and read every Flash memory page except those occupied by itself. It can
execute programs stored from any of the pages. Execution of these operations
is based on commands from the control system. Verification is done by the
control system through the reading of pages. Program code of DMBootloader
in the Flash memory is protected against accidental modification through fuse
bits of the MCU so it can be modified only through a HW programmer.

DMAppFpgaProg can be written to the program memory of the MCU
and executed wirelessly through DMBootloader. It is a wrapper for the Di-
rectC FPGA ISP support from Microsemi company. It makes it possible to
interface the DirectC wirelessly and execute any operation with IGLOO nano
FPGA that is supported by DirectC. Thus a user can use advanced features
of DirectC, e.g. AES encryption of array and FlashROM. DMAppFpgaProg
operates based on commands from the control system. During the imple-
mentation phase, a few errors in DirectC source codes were found and were
fixed.

Both of the programs were tested for compliance with the requirements
given in the assignment. The testing discovered an error in DirectC paging and
it has been fixed. The solution of the wireless programming, implemented in
DMBootloader and DMAppFpgaProg, meets all of the assigned requirements.

In the future, the results of this thesis could be further improved by making
the testing process of DMAppFpgaProg to be fully automated, by implement-
ing protection of the Flash memory pages other than those for DMBootloader,

59

Conclusion

or by implementing confidentiality and integrity in the communication proto-
col between the control system and the MCU.

60

Bibliography

[1] RailSystem. [online]. Balise. [cit. 2018-11-28]. Available from: http://
www.railsystem.net/balise/

[2] MER MEC S.p.A. [online]. Eurobalise. 2018. [cit. 2018-11-28]. Available
from: http://www.mermecgroup.com/protect/lineside-equipment/
635/eurobalise.php

[3] AŽD Praha s.r.o. [private document]. Specifikace protokolu YUP. 2018.
[cit. 2019-01-31].

[4] Microchip Technology Inc. [online]. Advanced Software Framework
(ASF). [cit. 2019-01-23]. Available from: https://www.microchip.com/
mplab/avr-support/advanced-software-framework

[5] AŽD Praha s.r.o. [private document]. Popis FW pro diagnostický modul.
2018. [cit. 2019-01-31].

[6] Function for CRC32 computation. [online]. The FreeBSD Project. 2011.
[cit. 2019-03-01]. Available from: https://svnweb.freebsd.org/base/
stable/9/sys/libkern/crc32.c?revision=225736&view=co

[7] Microsemi Corporation. [online]. IGLOO nano Starter Kit
User’s Guide. 2018. [cit. 2018-08-25]. Available from: https:
//www.microsemi.com/document-portal/doc_download/130838-
igloo-nano-starter-kit-user-s-guide

[8] Microsemi Corporation. [online]. Downloads: Program Debug v11.8 (Win-
dows). 2019. [cit. 2019-02-16]. Available from: soc.microsemi.com/
download/reg/default.aspx?f=ProgramDebugv11_8_WIN

[9] Microchip Technology Inc. [online]. AT32UC3C Series - Com-
plete Datasheet. 2012. [cit. 2018-08-06]. Available from: http://
ww1.microchip.com/downloads/en/DeviceDoc/doc32117.pdf

61

http://www.railsystem.net/balise/
http://www.railsystem.net/balise/
http://www.mermecgroup.com/protect/lineside-equipment/635/eurobalise.php
http://www.mermecgroup.com/protect/lineside-equipment/635/eurobalise.php
https://www.microchip.com/mplab/avr-support/advanced-software-framework
https://www.microchip.com/mplab/avr-support/advanced-software-framework
https://svnweb.freebsd.org/base/stable/9/sys/libkern/crc32.c?revision=225736&view=co
https://svnweb.freebsd.org/base/stable/9/sys/libkern/crc32.c?revision=225736&view=co
https://www.microsemi.com/document-portal/doc_download/130838-igloo-nano-starter-kit-user-s-guide
https://www.microsemi.com/document-portal/doc_download/130838-igloo-nano-starter-kit-user-s-guide
https://www.microsemi.com/document-portal/doc_download/130838-igloo-nano-starter-kit-user-s-guide
soc.microsemi.com/download/reg/default.aspx?f=ProgramDebugv11_8_WIN
soc.microsemi.com/download/reg/default.aspx?f=ProgramDebugv11_8_WIN
http://ww1.microchip.com/downloads/en/DeviceDoc/doc32117.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc32117.pdf

Bibliography

[10] Flash FPGAs give designers more flexibility. [online]. Morin
T., Microsemi Corp. 2015. [cit. 2019-02-12]. Available from:
https://www.embedded.com/electronics-blogs/industry-comment/
4438457/Flash-FPGAs-give-designers-more-flexibility

[11] Microsemi Corporation. [online]. AT32UC3C Series - Com-
plete Datasheet. 2012. [cit. 2019-02-12]. Available from: http:
//ww1.microchip.com/downloads/en/DeviceDoc/doc32117.pdf

[12] Microsemi Corporation. [online]. DirectC v4.1 User Guide. 2018. [cit.
2018-08-06]. Available from: https://www.microsemi.com/product-
directory/programming/4980-embedded-programming#downloads

[13] MSYS2 homepage. [online]. The MSYS2 Developers. [cit. 2019-03-13].
Available from: https://www.msys2.org/

[14] Programovací nástroj pre mikrokontroléry rodiny ST10F. [online]. Sučan,
J. Bakalárska práca. Praha: České vysoké učení technické v Praze,
Fakulta informačních technologií. 2017. [cit. 2019-03-01]. Available from:
https://dspace.cvut.cz/handle/10467/69320

[15] A references, guides and tutorials on the mailslot programming
with the Winsock 2 and C code. [online]. winsocketdotnetworkpro-
gramming.com. 2019. [cit. 2019-03-10]. Available from: https:
//www.winsocketdotnetworkprogramming.com/winsock2programming/
winsock2advancedmailslot14.html

62

https://www.embedded.com/electronics-blogs/industry-comment/4438457/Flash-FPGAs-give-designers-more-flexibility
https://www.embedded.com/electronics-blogs/industry-comment/4438457/Flash-FPGAs-give-designers-more-flexibility
http://ww1.microchip.com/downloads/en/DeviceDoc/doc32117.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc32117.pdf
https://www.microsemi.com/product-directory/programming/4980-embedded-programming#downloads
https://www.microsemi.com/product-directory/programming/4980-embedded-programming#downloads
https://www.msys2.org/
https://dspace.cvut.cz/handle/10467/69320
https://www.winsocketdotnetworkprogramming.com/winsock2programming/winsock2advancedmailslot14.html
https://www.winsocketdotnetworkprogramming.com/winsock2programming/winsock2advancedmailslot14.html
https://www.winsocketdotnetworkprogramming.com/winsock2programming/winsock2advancedmailslot14.html

Appendix A
Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASF Advanced Software Framework

COBS Consistent Overhead Byte Stuffing

CRC Cyclic Redundancy Check

DM Diagnostic Module

ETCS European Train Control System

FPGA Field-programmable Gate Array

FW Firmware

GCC GNU Compiler Collection

GNU GNU’s Not Unix

GPIO General-purpose I/O

GUI Graphical User Interface

HW Hardware

I/O Input/Output

IDE Integrated Development Environment

IPC Inter-process Communication

ISP In-system Programming

63

A. Acronyms

JTAG Joint Test Action Group

MCU Microcontroller

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MS Microsoft

OS Operating System

PCB Printed Circuit Board

PLL Phase-locked Loop

POSIX Portable Operating System Interface

RAM Random Access Memory

SW Software

TCL Tool Command Language

USART Universal Synchronous / Asynchronous Receiver and Transmitter

USB Universal Serial Bus

64

Appendix B
Contents of enclosed CD

65

B. Contents of enclosed CD

readme.txtbrief description of content of this CD
src

implsource files of the firmware for wireless
programming support

DMBootloaderbootloader for wireless programming of
AT32UC3C MCUs

DMBootloader
Releasethe executable images in binary and In-

tel Hex formats
DMAppFpgaProgapplication for wireless programming of

IGLOO nano FPGAs
DMAppFpgaProg

Releasethe executable images in binary and In-
tel Hex formats

DiagnosticModule library containing functionality that can
be shared among programs for Diagnos-
tic Module

DiagnosticModule ... source codes and include files of the li-
brary

Release
libDiagnosticModule.athe static library archive

testingprograms, scripts, and data files for testing of
the wireless programming support

DMBootloader test files for DMBootloader
DMAppFpgaProg ...test files for DMAppFpgaProg
yup-commsource codes and executable files of the utility

for communication with the firmware for Di-
agnostic Module through YUP communication
protocol

thesis.....................source files of this thesis in LATEX format
text

DP_Sučan_Ján_2019.pdf............text of the thesis in PDF format

66

Appendix C
Format of DMBootloader

commands

These tables describe the format of DMBootloader’s application layer pro-
tocol. The format of multi-byte values is little-endian. The commands and
replies are sets of bytes sent or received through the YUP communication
protocol.

67

C. Format of DMBootloader commands

Write command (3 B to 515 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0x00.

0x01 uint 16 bit PAGE Number of the virtual page to be
written.

0x03 uint 8 bit DATA[n]

Array of bytes to be written into the
page from its 0th byte (including).
The size of the array can vary from
1 B to 512 B. Non-specified bytes of
the page will be set to 0xFF.

Reply (1 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE

Return code:
0x00 = Success
0x10 = Unknown CMD code
0x11 = Missing PAGE number
0x12 = Invalid PAGE number
0x13 = Invalid size of the command
0x30 = Error when writing the page

Table C.1: Write command

Erase command (3 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0x01.

0x01 uint 16 bit PAGE Number of the virtual page to be
erased.

Reply (1 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE

Return code:
0x00 = Success
0x10 = Unknown CMD code
0x11 = Missing PAGE number
0x12 = Invalid PAGE number
0x14 = Invalid size of the command
0x31 = Error while erasing the page

Table C.2: Erase command

68

Read command (3 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0x02.

0x01 uint 16 bit PAGE Number of the virtual page to be
read.

Reply (1 B or 513 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE

Return code:
0x00 = Success
0x10 = Unknown CMD code
0x11 = Missing PAGE number
0x12 = Invalid PAGE number
0x14 = Invalid size of the command
0x32 = Error while reading the page

0x01 uint 8 bit DATA[n]
512 B of data from the page. This
array is present only if RETCODE is
equal to 0x00.

Table C.3: Read command

Exec command (3 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0x03.

0x01 uint 16 bit PAGE Number of the virtual page where the
program starts.

Reply (1 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE

Return code:
0x00 = Success
0x10 = Unknown CMD code
0x11 = Missing PAGE number
0x12 = Invalid PAGE number
0x14 = Invalid size of the command

Table C.4: Exec command

69

C. Format of DMBootloader commands

GetId command (1 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0xFF.

Reply in case of an error (1 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE Return code:
0x10 = Unknown CMD code

Reply in case of success (2 B to 64 B)
Offset Format Name Description

0x00 uint 8 bit ID[n]
String of ASCII characters containing
identification of the program. The
string is not terminated by null byte.

Table C.5: GetId command

70

Appendix D
Activity diagrams of

DMBootloader

Figure D.1: Activity diagram for Erase command of DMBootloader

Figure D.2: Activity diagram for Read command of DMBootloader

71

D. Activity diagrams of DMBootloader

Figure D.3: Activity diagram for Write command of DMBootloader

72

Appendix E
Format of DMAppFpgaProg

commands

These tables describes the format of DMAppFpgaProg’s application layer pro-
tocol. The format of multi-byte values is little-endian. The commands and
replies are sets of bytes sent or received through the YUP communication
protocol.

73

E. Format of DMAppFpgaProg commands

Exec command (1 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0x00.

0x01 uint 8 bit OPCODE Code of the DirectC operation to ex-
ecute.

Reply in case of an error (1 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE
Return code:
0x10 = Unknown CMD code
0x11 = Invalid size of the command

Reply in case of the operation finish (2 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE Value 0x00 for differentiation of the
replies by their size.

0x01 uint 8 bit DIRC_RET Return value of the finished DirectC
operation.

Reply in case of the operation requests data (9 B)
Offset Format Name Description

0x00 uint 8 bit DIRC_OP Code of the requesting DirectC oper-
ation.

0x01 uint 32 bit OFFSET Offset of the page in the .DAT file.

0x02 uint 32 bit COUNT Number of bytes of the page.

Table E.1: Exec command

74

GetText command (1 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0x01.

Reply in case of an error (1 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE
Return code:
0x10 = Unknown CMD code
0x11 = Invalid size of the command

Reply in case of success (1 B to 8193 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE Value 0x00 for differentiation
of the replies by their size.

0x01 uint 8 bit LOG[n]

String of ASCII characters containing
text output of the most recent Di-
rectC operation. The string is not
terminated by null byte.

Table E.2: GetText command

GetState command (1 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0x02.

Reply in case of the application is waiting for Exec command (1 B)
Offset Format Name Description
0x00 uint 8 bit RETCODE Return code: 0x00.

Reply in case of an error (1 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE
Return code:
0x10 = Unknown CMD code
0x11 = Invalid size of the command

Reply in case of the ongoing operation is waiting for data (9 B)
Offset Format Name Description

0x00 uint 8 bit DIRC_OP Code of the waiting DirectC opera-
tion.

0x01 uint 32 bit OFFSET Offset of the page in the .DAT file.

0x02 uint 32 bit COUNT Number of bytes of the page.

Table E.3: GetState command

75

E. Format of DMAppFpgaProg commands

Cancel command (1 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0x03.

Reply (1 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE

Return code:
0x00 = Success
0x10 = Unknown CMD code
0x11 = Invalid size of the command
0x12 = There is no DirectC operation
ongoing

Table E.4: Cancel command

ProvideData command (2 B to 1025 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0x04.
0x01 uint 8 bit DATA[n] Data of the page (1 B to 1024 B)

Reply in case of an error (1 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE
Return code:
0x10 = Unknown CMD code
0x11 = Invalid size of the command

Reply in case of the operation finish (2 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE Value 0x00 for differentiation of the
replies by their size.

0x01 uint 8 bit DIRC_RET Return value of the finished DirectC
operation.

Reply in case of the ongoing operation requests more data (9 B)
Offset Format Name Description

0x00 uint 8 bit DIRC_OP Code of the requesting DirectC oper-
ation.

0x01 uint 8 bit OFFSET Offset of the page in the .DAT file.

0x02 uint 8 bit COUNT Number of bytes of the page.

Table E.5: ProvideData command

76

VjtagVpump command (2 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0x05.

0x01 uint 8 bit PWR
Whether to turn the voltages on or off.
0x00 = Turn off the voltages
0x01 to 0xFF = Turn on the voltages

Reply (1 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE

Return code:
0x00 = Success
0x10 = Unknown CMD code
0x11 = Invalid size of the command

Table E.6: VjtagVpump command

GetId command (1 B)
Offset Format Name Description
0x00 uint 8 bit CMD Command code 0xFF.

Reply in case of an error (1 B)
Offset Format Name Description

0x00 uint 8 bit RETCODE Return code:
0x10 = Unknown CMD code

Reply in case of success (2 B to 64 B)
Offset Format Name Description

0x00 uint 8 bit ID[n]
String of ASCII characters containing
identification of the program. The
string is not terminated by null byte.

Table E.7: GetId command

77

Appendix F
Activity diagrams of

DMAppFpgaProg

79

F. Activity diagrams of DMAppFpgaProg

Figure F.1: Processing of GetText, GetState, VjtagVpump, and GetId com-
mands

80

