
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 10, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Security Analysis of Applications Using Smart Contracts

 Student: Bc. Ondřej Lauer

 Supervisor: Mgr. Jakub Růžička

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Information Security

 Validity: Until the end of summer semester 2019/20

Instructions

Research the area of applications using smart contracts, including the introduction to the blockchain
technology, the Ethereum and Hyperledger platforms and the topic of decentralized applications (dApps).

Based on existing standards and other available resources, develop a general framework for security
analysis of components of these applications (such as web applications, mobile applications, infrastructure
etc.) according to attack vectors and their impact, with an emphasis on the specifics of analyzing
components using smart contracts.

Describe the architecture of the VETRI application, perform a security analysis of the application, discuss
potential findings, and evaluate the limitations of your chosen approach.

The deliverables of the thesis are a proposal of a framework for security analysis of applications using
smart contracts, listing of vulnerabilities of the VETRI application tested on the basis of the developed
framework and suggested remedies.

References

Will be provided by the supervisor.

Master’s thesis

Security Analysis of Applications Using
Smart Contracts

Bc. Ondřej Lauer

Department of Information Security
Supervisor: Mgr. Jakub Růžička

April 13, 2019

Acknowledgements

I would like to thank my supervisor, Mgr. Jakub Růžička, for his feedback
and guidance that helped me during the creation of this thesis. I would also
like to thank Ing. Petr Fojt̊u for his help with proofreading.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on April 13, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Ondřej Lauer. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Lauer, Ondřej. Security Analysis of Applications Using Smart Contracts. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2019.

Abstrakt

V této diplomové práci jsem řešil problém bezpečnosti aplikaćı založených na
tzv. smart contractech a vytvořil framework pro testováńı těchto aplikaćı.
Soustředil jsem se na hlavńı zranitelnosti pěti hlavńıch komponent typických
smart contract aplikaćı - blockchainu, smart kontrakt̊u, webových aplikaćı,
mobilńıch aplikaćı a souvisej́ıćı infrastruktury. Praktická část práce se zabývá
aplikováńım zmiňovaného frameworku na aplikaci VETRI, jej́ı bezpečnostńı
analýzou a návrhem opravných opatřeńı pro nalezené zranitelnosti.

Kĺıčová slova blockchain, Ethereum, Hyperledger, chytré kontrakty, ky-
berbezpečnost, bezpečnostńı analýza

Abstract

This Master’s thesis is concerned with security of applications utilizing smart
contracts and development of framework for security assessment of such ap-
plications. I have mainly focused on the most prominent vulnerabilities in five
main components of a typical smart contract application - blockchain, smart
contracts, web applications, mobile applications and infrastructure. The prac-
tical part is about applying the created framework to the VETRI application,
its security analysis and summary of remedies for found vulnerabilities.

vii

Keywords blockchain, Ethereum, Hyperledger, smart contracts, cyber se-
curity, security assessment

viii

Contents

Introduction 1
0.1 Aim of the thesis . 1
0.2 Structure of the thesis . 1

1 Analysis 3
1.1 Blockchain . 3
1.2 Smart Contracts . 8
1.3 Web application . 16
1.4 Mobile application . 30
1.5 Infrastructure . 35

2 Smart contract application testing framework 39
2.1 Framework . 39

3 Analysis of the VETRI application 47
3.1 VETRI application overview . 47
3.2 VETRI blockchain architecture 49
3.3 Blockchain use-cases . 51
3.4 Application analysis . 53
3.5 Vulnerabilities and mitigations overview 60
3.6 Application analysis limitations and follow-up 61

4 Conclusion 63

Bibliography 65

A VETRI mobile application screen designs 69

B Full Oyente scan outputs 77
B.1 Identity.sol . 77

ix

B.2 ERC20Token.sol . 77
B.3 DataExchangeRequest.sol . 79
B.4 Migrations.sol . 79

C Full SonarQube scan outputs 81

D Acronyms 87

E Contents of enclosed CD 89

x

List of Figures

1.1 Binary Merkle tree with depth 3 4
1.2 OWASP Top 10 2013 and 2017 . 16
1.3 Web Application technology stack 27

3.1 VETRI whitepaper architecture . 48
3.2 VETRI MVP/MUP system architecture 50
3.3 Full survey usecase . 52
3.4 SonarLint bug detection illustrative screenshot [1] 55
3.5 Illustrative SonarQube interface screenshot [2] 57
3.6 Bridge test result screenshot . 58
3.7 MobSF static analysis result overview 59

A.1 Welcome screen . 70
A.2 Adding data . 71
A.3 Token exchange . 72
A.4 Data requests . 73
A.5 Survey example . 74
A.6 Balance overview . 75
A.7 Token screen . 76

C.1 SonarQube screenshot 1 . 83
C.2 SonarQube screenshot 2 . 84
C.3 SonarQube screenshot 3 . 85

xi

List of Tables

2.1 Framework checklist table, part 1 44
2.2 Framework checklist table, part 2 45

xiii

Introduction

Blockchain is gaining momentum in application development. Almost every-
body has heard of the word, however only a few people can really explain what
a blockchain is and even less people do know about its security challenges.

The purpose of this masters thesis is to study and describe ways in which
a smart contract application could be attacked.

I have chosen this topic because I already work in the field of Cyber Secu-
rity and I’d like to have knowledge about any new security-related technology
trend.

This thesis aims to create a security framework which could be used to
assess security of a typical smart contract application. The thesis also contains
a security analysis of VETRI application (for description please see section 3.1)
and a list of mitigations.

0.1 Aim of the thesis

The aim of the research part is to collect and summarize all of the main
attack types that could be launched against a smart contract application and
to describe their root cause and potential impact.

The aim of the practical part is to use the designed framework to assess
the security of the VETRI smart contract application and list remedies for all
of the identified vulnerabilities.

0.2 Structure of the thesis

The research part is split into five main sections, one for each of the five main
components – blockchain, smart contracts, web application, mobile application
and infrastructure.

1

Introduction

The practical part is split into two chapters – first one contains the frame-
work and the second contains the analysis of the application itself and sug-
gested mitigations for found vulnerabilities.

2

Chapter 1
Analysis

This chapter discusses the analysis of the most common vulnerabilities in
applications based on smart contracts and their main components.

1.1 Blockchain

Blockchain is the new topic of the last few years, however first work on crypto-
graphically secured chain of blocks was written in 1991 by Stuart Haber and
W. Scott Stornetta [3] who wanted to create a system that would securely
timestamp documents. Blockchain became known to the general public in
2008 after release of a paper from Satoshi Nakamoto [4] who implemented it
as a public ledger in cryptocurrency Bitcoin.

1.1.1 Basic principle

Every blockchain network (Bitcoin, Ethereum etc.) requires a network of
peer-to-peer (P2P) hosts, meaning that every host has the same importance –
unlike client-server networks. Whenever a new transaction is requested it gets
broadcast to the whole miner network. The miners validates the transaction
and the user who requested it and when confirmed the transaction is combined
with other transactions to create new block for the ledger. The newest block
is added to the ledger and published to the other miners – it is permanent
and unalterable.

The biggest strength of the blockchain is also its biggest weakness – anonymity.
Bitcoin came into spotlight around the same time as the WannaCry ran-
somware, since criminals used it as anonymous bank accounts for the ransom
payments. This anonymity is provided by the public key infrastructure (PKI).
Public key is used when validating the transaction signed by the user’s private
key. Parts of the public key along with some other information are used as
a blockchain wallet address. Blockchain wallet is a computer program that is
used to monitor and use cryptocurrency.

3

1. Analysis

1.1.2 Important concepts

Blockchain (or its implementations) are based on a variety of important ideas
which are explained in this section.

1.1.2.1 Hash function

Hash function is a one way algorithm which can transform data of almost any
length into a string of constant length. Hash functions have to be one-way
functions – the resulting hash cannot be reversed to the original data. When
the same data are hashed with the same algorithm the resulting hash is always
the same – however, any change (even in one bit of the hashed data) will result
in a completely different hash. It has many uses, but the most common ones
are for indexing of large data, transfer verification, digital data signatures or
password storage.

1.1.2.2 Merkle trees

Merkle trees (sometimes called ”hash trees”) are data structures used to effi-
ciently and securely verify contents of large data structures. The leaf nodes
of Merkle trees contain hash of a data block and every non-leaf node contains
hash of its child nodes. We could also recursively define the Merkle tree as
a binary tree of hash lists where the parent node is a hash of its children, and
the leaf blocks are hashes of the original data blocks. The top of the tree is
called root hash or master hash. This way it is easier to verify any trans-
action in the tree thanks to the logarithmic complexity – e.g. a binary Merkle
tree with depth N = 3 (and 23 leaf nodes) could verify any transaction with
2 ∗ log2N transactions at most.

H(ABCDEFGH)

H(ABCD)

H(AB)

H(A) H(B)

H(BC)

H(B) H(C)

H(EFGH)

H(EF)

H(E) H(F)

H(GH)

H(E) H(G)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 1.1: Binary Merkle tree with depth 3

4

1.1. Blockchain

Let’s say we want to verify transaction F in our Merkle tree 1.1. We would
need to take hashes H(E), H(GH), H(ABCD) and compute hashes in this order
– H(F), H(EF), H(EFGH) and finally the root hash H(ABCDEFGH). If our
computed root hash is the same as the root hash we were provided earlier we
can say the transaction is valid.

1.1.2.3 Blockchain proofs

Blockchain proofs are the main way of creating new blocks and keeping the
blockchain moving forward. There are many types of blockchain proofs, how-
ever in this section only the most common proofs are discussed.

Proof of work Proof of work is a part of the mining process which is used
to determine who the successful miner will be. The miners run last block’s
unique metadata through hashing function while changing only the ”nonce”
value. If the miner’s output hash is lower than the current target he is awarded
cryptocurrency and broadcasts the new block across the network. Every other
miner can quickly verify the result by hashing it with the correct nonce value.
It takes approximately 12-15 seconds to mine a new block in Ethereum. If
the mining is too quick or too long the difficulty gets adjusted accordingly –
all of the nodes share one formula that takes into consideration how long the
last few blocks took to compute in order to adjust the difficulty. This is the
way more currency gets distributed to the ecosystem over time and it also
incentivises miners to keep mining.

Proof of authority Proof of authority is a possible replacement for the
proof of work. Instead of arbitrary difficult mathematical problems a group
of nodes (validators) is established and they are explicitly allowed to create
new blocks and are responsible for this matter. However, in order to become
a validator one must have their identity publicly identified with the option to
cross-reference the identities through a reliable database (e.g. public notary
database). The process of becoming a validator has to be very selective in
order to choose only the people who are of a clear incentive – both financially
and reputationally. A few platforms provide financial incentive to validators
in order to keep them from being dishonest – but in the end it still depends
on one’s will to destroy their reputation for a financial gain.

1.1.2.4 Decentralized application

Decentralized applications (also called dApps) are applications that run on
blockchain networks and thus don’t use the traditional master-slave distributed
application architecture. This type of architecture makes them resistant to
any kind of modification on the provider’s side – one could imagine for exam-
ple a variation of social network site Twitter where nobody could delete any

5

1. Analysis

tweets that were made – if information is once posted on blockchain it stays
there forever1.

The main difference between a standard client-server application model
and a decentralized application model is that a decentralized application
doesn’t use a single center (e.g. a company’s infrastructure, server room or
a specific server) to deliver the information to clients. Instead, computation
is done at each node and no node is instructing the other – as in standard
P2P model. The backend of the decentralized application is limited and it
could also be completely substituted by the blockchain. However when some
backend is used in a decentralized application a great care has to be taken
in order to properly divide functionalities between the blockchain, the back-
end and eventually devices of the users as well. For example a private key
for a blockchain address must definitely be stored locally and as secure as
possible. [5]

1.1.3 Most popular blockchain platforms

Blockchain has no particular use by itself – it is but an idea that has to be
implemented in order to be useful. These are the most popular blockchain
platforms according to the following sources:

• Dev.to - 10 most popular and promising blockchain platforms

• newgenapps.com - 10 Potential blockchain Platforms to Watch Out in
2018

Blockchain platforms:

1. Ethereum – open-source blockchain platform; runs smart contracts; al-
lows for design and issuance of cryptocurrencies; offers Turing-complete
languages; command line tools

2. BitCoin – perhaps the most known blockchain platform among the gen-
eral public; helped create the boom of cryptocurrencies during the Wan-
naCry ransomware attack; open-source; written in C++

3. Hyperledger Fabric – project by company Hyperledger; uses Docker for
smart contract implementation; serves as a basis for blockchain-based
solutions; very good for permissioned blockchains (only certain users
have data access)

4. Hyperledger Cello – blockchain-as-a-Service platform
1In ideal circumstances – provided the platform is not under any type of attack or doesn’t

have any kind of vulnerability that would allow block deletion/modification. The blockchain
would also have to be public – if a certain group of people or a company controls a blockchain
nobody could stop them from modifying it.

6

https://dev.to/dianamaltseva8/10-most-popular--promising-blockchain-platforms-djo
https://www.newgenapps.com/blog/10-blockchain-platforms-to-watch-out-in-2018
https://www.newgenapps.com/blog/10-blockchain-platforms-to-watch-out-in-2018

1.1. Blockchain

5. Hyperledger Sawtooth Lake – enterprise solution for both permissioned
and permissionless blockchain; provides smart contracts abstraction layer
(allowing to write contract logic in any programming language)

6. Hydrachain – Ethereum blockchain extension; allows for development
and deployment of permissioned distributed ledgers; compatible with
Ethereum blockchain; provides infrastructure to create smart contracts
in Python; offers high level of customization

7. Corda – open-source blockchain platform for building permissioned dis-
tributed ledger systems; created by consortium of banks

8. IBM blockchain – progressive ledger for transactions; permissioned net-
work; paid plans; supported languages Go and Java

9. Multichain – open-source distributed ledger system; based on Bitcoin;
created for multi-currency financial transactions

10. Openchain – open-source blockchain platform; designed for management
of digital assets; includes smart contract modules; every transaction is
digitally signed; free to use

11. Chain Core – enterprise-grade blockchain platform; used for digital as-
sets management on permissioned networks

7

1. Analysis

1.2 Smart Contracts

1.2.1 Basic description

Smart contracts are a blockchain equivalent of regular contracts. They are
programs written in specialized programming languages (e.g. Solidity for
Ethereum blockchain) that use if-then and other programming language state-
ments instead of legal terms. A benefit of smart contracts is that they not
only define the rules and penalties of the agreement, but also automatically
enforce those obligations – if created correctly and safely 2.

One could imagine smart contracts as a vending machine – one would
send cryptocurrency (along with some other information) to an address where
a smart contract is located and would receive goods into their account. And
because smart contracts are processed as a regular blockchain transaction they
also get recorded on the blockchain and thus are kept securely.

One of the smart contracts disadvantages is its ”immaturity” – as the smart
contracts are a known tool in a relatively small group of people. There is
currently no way to enforce smart contracts in the world outside of blockchain
platforms.

1.2.2 Sources

These papers and books were used as a source for smart contracts vulnerabil-
ities.

• A survey of attacks on ethereum smart contracts by Nicola Atzei, Mas-
simo Bartoletti and Tiziana Cimoli [6]

• Making smart contracts smarter by Loi Luu, Duc-Hiep Chu, Hrishi
Olickel, Prateek Saxena and Aquinas Hobor [7]

• Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts by Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen
and Charalampos Papamanthou [8]

1.2.3 Execution fees

Users can call the functions by sending ether to the corresponding address.
Ether is a necessary element of the Ethereum networks. It is used both as
a currency that users can send to each other and also as f̈uel̈sent as a payment
to the miners by the users for the execution. The fee itself is both an incentive
for the miners to supply the computing power and a way to stop DoS (denial-
of-service) attacks – which would be costly.

2In case of an exploitable smart contract the attacker might not have to pass the usage
requirements of the smart contract – e.g. cryptocurrency deposit – and thus be able to abuse
the smart contract for his personal gain.

8

1.2. Smart Contracts

The fees are defined by gas and the gas price for each transaction. The
gas (also called gas limit) is the maximal cost the user is willing to pay for
the transaction – for example if there was no concept of the gas limit and
an error would occur the transaction could be cycling endlessly and the user
would lose all his currency. The gas price is the amount the user will pay for
a unit of gas. This price is set by the users and the miners can decide which
transactions to mine into a block – based on the price. The bigger the gas
price is, the sooner the transaction will be completed – since most of the nodes
favor the more profitable transactions.

If the contract ends successfully the remaining gas would return to the
caller. If the gas limit is too low the transaction will end with an ”out-of-gas”
exception. If the transaction ends with another exception all of the remaining
gas will be lost.

1.2.4 Example smart contract

This example [6] is a simple smart contract which implements a personal
wallet. The wallet can receive ether from other users and also pay with the
function pay.

1 contract AWallet {
2 address owner;
3 mapping (address => uint) public outflow ;
4
5 function AWallet (){ owner = msg. sender ; }
6
7 function pay(uint amount , address target) returns (bool){
8 if (msg. sender != owner || msg. value != 0) throw ;
9 if (amount > this. balance) return false;

10 outflow [target] += amount ;
11 if (! target .send(amount)) throw;
12 return true;
13 }
14 }

The function AWallet() is a constructor which will run only when the smart
contract is first created. In the pay function we can see the basic checks – the
first check is that the user calling the function has to be the wallet’s owner
and the amount that is being paid is not zero. The second check is to see
whether the owner has got sufficient funds .

We can also see throw function that can raise an exception in case the
checks fail. The exceptions are not handled in any way – if an exception is
caught the contract stops, the miner’s fee is lost and all the ether transfers
are reverted.

9

1. Analysis

1.2.5 Vulnerabilities

Security of smart contacts is essential, since they are a digital equivalent of
real-life transactions. This section describes vulnerabilities from four main
groups:

• Solidity vulnerabilities

• EVM bytecode vulnerabilities

• Blockchain vulnerabilities

• Implementation vulnerabilities

1.2.5.1 A call to the unknown

The design of the Solidity language may invoke fallback functions of the callee
(recipient).

• If a function of a contract is invoked by call function, the ether is trans-
ferred to the callee and the function does not exist at the called contract
the fallback function of the called contract is executed

• After an amount of ether has been sent by send function it also executes
the recipient’s fallback function

• A function delegatecall is similar to the call function, however with del-
egatecall the invocation of the called function is run in the caller envi-
ronment – so if a this variable is used in function called by delegatecall
it would point to the caller’s address and not to the callee’s address

This means that if a programmer was to mistype a function the fallback
function of the recipient (potentially malicious) would be executed and used
as an exploit.

1.2.5.2 Exception disorder

Solidity raises exceptions in following situations:

1. If execution runs out of gas (detailed in 1.2.3)

2. If call stack reaches its limit

3. If command throw is executed (detailed in 1.2.4)

The exception handling is however not always the same – it depends on
how the contracts call each other. For example if we have these two contracts
[6]:

10

1.2. Smart Contracts

1 contract Alice {
2 function ping(uint) returns (uint)
3 }
4 contract Bob {
5 uint x=0;
6 function pong(Alice c){
7 x=1; c.ping (42); x=2;
8 }
9 }

If someone were to invoke Bob’s pong and Alice’s ping was to throw an
exception the execution would stop and the side effects of the whole trans-
action would be reverted. That means the field x would contain 0 after the
transaction. If Bob was to invoke ping with a call command and it was to
throw exception again the invocation effects would revert and the execution
would continue and the field x would contain 2 after the transaction.

1.2.5.3 Gasless send

When using the command send to transfer ether to a contract it is possible
to receive out-of-gas exception. It may be unexpected but when compiled by
a compiler of version higher than 0.4.0 the implicit number of gas units is
2300. So if a contract has an expensive call function (reason mentioned in
1.2.5.1) the invokation will probably end with the aforementioned exception.
So sending ether succeeds either when the recipient contract has got an inex-
pensive fallback function or when the recipient is a user (as opposed to a smart
contract).

1.2.5.4 Re-entrancy

Smart contract programmers may believe that when invoking a non-recursive
function it cannot re-enter before its termination. This however might not be
always true – because of the fallback mechanism. Let’s take an example of
a legitimate contracts Bob and a malicious contract Mallory [6]:

1 contract Bob {
2 bool sent = false;
3 function ping(address c) {
4 if (! sent) {
5 c.call. value (2) ();
6 sent = true;
7 }
8 }
9 }

10
11
12 contract Mallory {
13 function () {
14 Bob(msg. sender).ping(this);
15 }

11

1. Analysis

16 }

The ping function in contract Bob sends 2 wei (1ether = 1018wei) to an
address c with call function with no gas limit. If the ping function was to be
invoked with Mallory’s address it would invoke Mallory’s fallback function –
which is the ping function again. This would create a loop which would end
when the execution goes out of gas or when stack limit is reached or when
Bob has no ether left. An exception would be thrown, however call function
would not propagate it so all of the previous transactions would stay valid.

1.2.5.5 Keeping secrets

As in object-oriented programming, variables in smart contracts can be either
set to private or public. However to publish a transaction it must be sent
to miners who would post it on the blockchain. Thus, everybody can see
and verify the transaction. This is sometimes undesired – e.g. in games
where the next move of the oponent has to be kept secret. In order to ensure
appropriate secrecy adequate cryptographic techniques have to be employed
(timed commitments [9] etc.).

1.2.5.6 Immutable bugs

All of the contracts once published on the blockchain are permanent – there
is no way of altering them after publishing. This fact has both positive and
negative effects – if a contract is well written users can expect it to work
consistently all the time. However if the contract includes bugs there are no
direct ways of changing the contract. Programmers have to implement a way
to either change or completely stop a contract.

1.2.5.7 Ether lost in transfer

Ethereum smart contract addresses are a sequence of 160 bits (this equals
to theoretically up to 2160 possible addresses). When sending any amount of
it a recipient address has to be specified. The address has to be thoroughly
verified, since it is entirely possible that an address doesn’t belong to any user
or contract – so called orphan address – and there is no way of finding out
whether an address is orphaned or not.

1.2.5.8 Transaction ordering dependence

In Ethereum a new block is appended to the blockchain approximately each
12-14 seconds – this is set by design. If a smart contract is state-dependent
(dependent on other smart contracts) it could have either malicious or un-
intentional unexpected consequences. In such scenario, only the miners can
decide which transaction goes first and so they are ultimately responsible for
the final state of contracts.

12

1.2. Smart Contracts

If a marketplace is realized by smart contracts and it updates its prices
frequently some users might either not be able to buy their requested items
or could pay much higher price for the items – this would be unintentional
consequence.

Another example – because of the delay between transaction publication
and its inclusion in the blockchain a malicious owner of any type of blockchain
puzzle game that has to be paid ether for could listen for transactions with
a solution. He would immediately publish a transaction lowering the reward
amount – if the owner’s transaction would get executed before the one with
a solution the owner would gain the fee but would not have to pay out the
reward.

1.2.5.9 Timestamp dependency

Some smart contracts can depend on a timestamp of a previous block – for ex-
ample as a seed for a PRNG (pseudo-random number generator) when choos-
ing a lottery winner. However the miners can manipulate the timestamp.
A timestamp can vary by approximately 15 minutes and it would still get ac-
cepted by other miners – however it also has to be greater than the timestamp
of a block before it. This means that a malicious miner could manipulate the
timestamp in order to win a reward from a smart contract that depends on it.

1.2.5.10 Mishandled Exceptions

There are multiple ways of calling other contracts in Ethereum, such as send
instruction or the function directly. Should the called contract raise an ex-
ception (stack limit exceeded, not enough gas, etc.) it terminates, reverts its
state and returns false return value. When using the send function the caller
contract should always check the return value to make sure the call was suc-
cessful. From the first 1,459,999 Ethereum blocks 27.9% of the contracts do
not check the return values after calling another contract via send function
[7].

1.2.5.11 Multiplayer betting vulnerability

Let’s take an example – a two-player game in which both of the players deposit
given amount of ether and bet a number. If the sum is even the first player
wins, if it is odd then the second player wins. An attacker could wait for
a bet from the first player, learn his bet number by examining the blockchain
transaction, bet an appropriate number and win the bet.

13

1. Analysis

1.2.6 Past real-world smart contract attacks

1.2.6.1 The DAO attack

The DAO was an implementation of a crowd-funding platform (e.g. Kick-
starter) for smart contracts. It had raised approx. $150M before it was at-
tacked on 18th June 2016. The attacker was able to steal approx. $60M – but
most of the Ethereum community agreed on reverting the state of Ethereum
blockchain before the attack. This subsequently led to Ethereum being forked
into Ethereum classic and Ethereum. The example [6] shows a simplified
version of the DAO contract and a malicious contract Mallory.

1 contract SimpleDAO {
2 mapping (address => uint) public credit ;
3 function donate (address to){ credit [to] += msg. value ;}
4 function queryCredit (address to) returns (uint){
5 return credit [to];
6 }
7 function withdraw (uint amount) {
8 if (credit [msg. sender]>= amount) {
9 msg. sender .call. value(amount)();

10 credit [msg. sender]-= amount ;
11 }
12 }
13 }
14
15 contract Mallory {
16 SimpleDAO public dao = SimpleDAO (0 x354 ...);
17 address owner;
18 function Mallory (){owner = msg. sender ; }
19 function () { dao. withdraw (dao. queryCredit (this)); }
20 function getJackpot (){ owner.send(this. balance); }
21 }

The attacker first publishes the malicious contract. He then donates some
ether to Mallory and this invokes Mallory’s fallback function. The fallback
function will invoke the withdraw function – transferring the ether back to
Mallory. The call function in withdraw invokes Mallory’s fallback function
once again – which invokes withdraw again. The key to the attack is that the
withdraw function has been stopped before line 10 where it would update the
credit field. This sends the amount again to Mallory, invoking the fallback
function yet again – resulting in an endless loop of transactions to Mallory
that would end with an exception (stack or gas exhaustion) or when the DAO
contract runs out of ether. Also the call function in withdraw function does
not specify the gas limit – so an attacker could supply more gas in order to gain
more ether from the attack before the out-of-gas exception. The vulnerabilities
behind this attack are explained in sections 1.2.5.1 and 1.2.5.4.

14

1.2. Smart Contracts

1.2.6.2 Ethereum Classic 51% attack

On January 5th, 2019 attackers were able to attack Ethereum Classic blockchain
– specifically coin exchanges Coinbase, Bitrue and Gate.io. The attackers were
able to double-spend Ethereum Classic cryptocurrency (ETC) by having more
computational power than the rest of the miners. This means that they were
able to carry out two transactions but only pay for one – thus being able to
multiply the amount of the cryptocurrency owned by them. Bitrue’s systems
were able to halt the transactions, however the other two exchanges couldn’t
stop them.

1.2.7 Smart contract testing

Smart contracts can be tested either by static code review or by using auto-
mated tools (e.g. Oyente [7] and OpenZeppelin [10]). There are also compila-
tions of Ethereum best practices for smart contract security, such as the one
by ConsenSys [11].

Increasing amounts of resources are being stored in smart contracts, thus
putting increased pressure on developers to create safe and secure contracts.
This also means that either the developers are trained in security principles or
the teams have dedicated security professionals who check all of the contracts.

1.2.8 Summary

Smart contracts are a blockchain equivalent of regular contracts. They are
a viable way of creating complex decentralized systems – by being able to the-
oretically emulate real contracts one could create almost anything with their
help. However, they are currently not enforceable outside of the blockchain
”ecosystem”.

Their vulnerabilities can be split into four groups : blockchain vulnerabili-
ties, EVM bytecode vulnerabilities, Solidity vulnerabilities and poorly written
contracts. We have shown a few examples of those vulnerabilities and two no-
table carried out attacks.

15

1. Analysis

1.3 Web application

Web applications are the new face of the Internet. Before, with earlier client
and server models there had to be a special application installed on every client
computer and a bigger change in server code meant the client application had
to be updated as well – which was ineffective.

This expansion of web applications brings a lot of security challenges with
itself. Users transmit highly important data (e.g. bank account credentials) or
their personal data, which could also be used or sold by a potential attacker.

OWASP Top 10 2017 [12] will be used in this thesis as a source material
for the most common web application security vulnerabilities. The current
Top 10 2017 and the changes from the previous list from year 2013 can be
seen in figure 1.2.

Figure 1.2: OWASP Top 10 2013 and 2017 [12]

1.3.1 Injection

1.3.1.1 SQL injection

SQL injection is an attack on the database layer of a web application. It
uses an unsanitized data entry point to insert a specially modified input that
contains either SQL commands or special data to modify, view or delete data
or gain access to a database. There is also a special type of SQL injection
called blind injection – with the difference being that during a blind SQL
injection the attacker performs true or false actions on the target database
and determines the output based on the application response.

SQL injection principle example:

16

1.3. Web application

1 SELECT * FROM users WHERE username = ’" + inputName + "’ AND
password = ’" + inputPass + "’

This could potentially be a SQL statement in an application login page.
An attacker could enter

1 ’or 1=1 --

which would result in a following SQL command :
1 SELECT * FROM users WHERE username = ’’ OR 1=1 -- ’
2 AND password = ’foo ’

And since the double dash comments out the rest of the query and the
1 ’’ OR 1=1 --

statement will always be true the target application would log the attacker in
without a valid password.

The main way of protecting an application against a SQL injection attack
is to check and validate the input thoroughly [13].

Injection is a type of attack that could be used on a variety of technologies
(e.g. SQL injection, command injection, Lightweight Directory Access Proto-
col (LDAP) injection, Extensible Markup Language (XML) injection, SMTP
header injection). Its main focus is to confuse the target system and either
control it, gather information or make it unavailable for legitimate traffic.

1.3.1.2 Command injection

Command injection attacks are possible when application passes user data
that have not been properly sanitized to a system shell. The commands sup-
plied by the attacker are usually executed with the privileges of the vulnerable
application. These attacks are possible due to insufficient user input check and
validation.

Example 1:
1 <?php
2 print (" Please specify the name of the file to delete ");
3 print ("<p>");
4 $file=$_GET[’filename ’];
5 system ("rm $file");
6 ?>

This is an example of a short PHP program used for file deletion. If the
malicious user was to call the program like this:

1 http:// 127.0.0.1/ delete .php? filename =bob.txt;id

The response would be:
1 Please specify the name of the file to delete
2
3 uid =33(www -data) gid =33(www -data) groups =33(www -data)

17

1. Analysis

Allowing the malicious user to carry out reconnaissance, establish back-
door, cause denial-of-service attack or anything the user www-group is entitled
to.

Example 2:
1 int main(int argc , char ** argv) {
2 char cmd[CMD_MAX] = "/usr/bin/cat ";
3 strcat (cmd , argv [1]);
4 system (cmd);
5 }

This short program written in C programming language could be used as
a tool to display system files. Let’s say this program is being used by new
administrators to view system files and not change or damage them. The code
would be run with root privileges and thus the system() call will also run
with root privileges. A normal use case would be to insert a filename that is
to be read. However an attacker could modify the input and insert

1 /etc/ shadow ; rm -rf /

which uses the fact that a semicolon is also used to split two commands on
one line. And because the input is not sanitized the whole command

1 /usr/bin/cat /etc/ shadow ; rm -rf /

would be run with root privileges and the whole root partition would be
deleted recursively.

This attack could be potentially used to download malware to the server,
gain or maintain access or disrupt the target system.

The are multiple ways of protection against this type of attack – thorough
input sanitization, not calling operating system commands directly or using
a web application firewall as an additional layer of protection [14].

1.3.1.3 LDAP injection

LDAP stands for Lightweight Directory Access Protocol and is used for storing
and accessing data on a remote directory server [15]. LDAP injection is an
attack that uses modified input in order to force the application to either
reveal or modify sensitive information stored in LDAP data stores.

Example:
1 searchlogin = "(&(uid="+user+")(userPassword ={ MD5}"\
2 + base64 (pack("H*",md5(pass)))+"))";

In this example we can see a filter searching for user/password pair where
the password is sent in Base64 encoding as a MD5 hash. The attacker would
then input following data:

1 user =*)(uid =*))(|(uid =*
2 pass= password

This would result in the filter being

18

1.3. Web application

1 searchlogin ="(&(uid =*)(uid =*))(|(uid =*)(userPassword =\
2 {MD5} X03MO1qnZdYdgyfeuILPmQ ==))";

and being correct and true. The attacker would then be logged in without
a password.

The main way of preventing a LDAP injection is either variable escaping,
usage of frameworks that would automatically protect from LDAP injection
or least privilege principle [16].

1.3.2 Broken Authentication

Authentication is the process of verifying whether the client trying to log in
(a person, a device or a software process) is really who he claims to be. The
most common way of authenticating today is a password. However, solely
using a password is not enough today. Multi-factor authentication is on the
rise – the user has to provide additional information in order to access the
system. There are three main components of multi-factor authentication –
something the user knows (password or personal information), something the
user has (an application on a smartphone or a hardware token) and something
the user is (a fingerprint or an iris). These types of additional security layers
are the only thing the user can do himself to minimize the risk of his account
getting stolen – as opposed to a database with e.g. weak hashing algorithm
which can only be fixed by the application developers.

Web application developers play the biggest role in the application security
because an attacker would only need them to make one mistake to breach the
security.

1.3.2.1 User authentication credentials are not protected when
stored

Password is one of the most valuable credentials – it should be protected very
carefully. The standard way of storing a password is to use a strong hashing
algorithm with a salt in order to prevent both collision attacks (creating two
different inputs that produce the same hash value) and rainbow tables attacks
(having a precomputed hash tables – this type of attack gets harder with
proper salt usage).

1.3.2.2 Session IDs are exposed in the URL

Session IDs are a valuable information – with a session identifier an attacker
could impersonate a victim even without their credentials. When a session ID
is displayed in a URL the user can either send it to someone else (e.g. to show
what he bought) – but anyone with the link would be able to see the credit
card details as well. The leak of session ID can also happen when it is stored
in inappropriate places for a long amount of time or sent without encryption.

19

1. Analysis

1.3.2.3 Session does not invalidate after a logout

Session should always be invalidated as soon as possible. An attacker could
acquire a session ID after a moment – if the session is not invalidated server-
side they would use it to impersonate the legitimate user and get access to
their account.

1.3.2.4 Predictable login credentials

Passwords should be forced to be sufficiently long and complex, however there
is a trade off between the password length and complexity and the user’s ability
to remember passwords. The main idea is that if a password is a relatively
complex but short (e.g. &3t!1m) it is quite hard for a person to remember –
but it is quite easy to be bruteforced.

In a passphrase there could be a problem with a combination of very
common words that could be easily guessed. This would be avoided by either
using more words and some numbers as well or by using uncommon, slightly
changed or unpredictable words. One could also mitigate the risk by using
multi-factor authentication.

1.3.2.5 Passwords, other credentials or session IDs are sent over
unencrypted connections

All of the traffic between a user and a web server should be encrypted by
Transport Layer Security protocol (TLS) or its equivalent – especially the login
sequence. More primitive transformations (e.g. hashes) are not enough since
after capturing them the attacker could easily resend them for authentication
without any knowledge of the plaintext.

1.3.2.6 Login mechanism does not have a lockout policy

The login mechanism should have a lockout policy implemented. This vulner-
ability would allow the attacker to carry out bruteforce attacks on the target
application. In a combination with a weak password policy this vulnerability
could be very dangerous.

1.3.3 Sensitive Data ENTITYxposure

Almost every modern web application is handling some type of sensitive data.
Whether it is password, credit card number, sensitive personal information,
health information or company information it needs to be properly protected
in all stages (during a transfer, client-side or in storage server-side).

20

1.3. Web application

1.3.3.1 Cleartext data transmission

All the web applications should use and enforce TLS for all their pages. In case
the attacker monitors the victim’s network traffic and is able to downgrade the
Hypertext Transfer Protocol Secure (HTTPS) traffic to Hypertext Transfer
Protocol (HTTP) he could intercept the session token and then replay the
token to the application and hijack the user’s authenticated session. He could
also alter the transported data, for example changing the recipient of a money
transfer.

1.3.3.2 Safe data at rest

All of the sensitive data should be encrypted even when not used. An attacker
does not have to be an outsider – quite a lot of attacks are carried out by either
current or past employees.

1.3.3.3 Cryptographic algorithms

Cryptographic algorithms generally don’t stay safe forever. And thus the
developers should watch and eventually replace old cryptographic algorithms
in case they get deprecated.

1.3.3.4 Cryptographic keys

Even the safest cryptographic algorithms can be bypassed when weak or de-
fault cryptographic keys are used. The keys themselves should also be securely
stored – either in a HSM (hardware security module) or somewhere where only
an administrator can have access.

1.3.3.5 Encryption enforcement

It is very important that encrypted communication is strictly enforced for all
web applications. HTTP Strict Transport Security (HSTS) is a mechanism
that helps achieve just that. The web server notifies the browser that it is
to use only HTTPS instead of HTTP for a period of time. It does so with
a header Strict-Transport-Security which also contains a time period for
which the communication should be HTTPS only. HSTS makes some forms
of the man-in-the-middle attack harder to successfully execute.

1.3.3.6 Certificate verification

The user agent should verify the server certificate it receives. Browsers do
show the certificate, its information and even a warning when certificate is in
disorder, however users have to either check for themselves or employ plugins
that can check whether the certificate is really from the target application
and it has not been altered. Non-web applications should have a way of

21

1. Analysis

confirming the certificate validity – the certificate has to change in some time
so the application should also be prepared for that occasion.

1.3.4 XML External Entities

This vulnerability can be found in servers that parse Extensible Markup Lan-
guage (XML) input with a poorly configured parser. An attacker would refer
an external entity on the system (e.g. /etc/passwd or /etc/shadow files) and
the misconfigured XML parser would print the content of the files.

Example 1 [17]:
1 <?xml version ="1.0" encoding ="ISO -8859 -1"?>
2 <! DOCTYPE foo [
3 <! ELEMENT foo ANY >
4 <! ENTITY xxe SYSTEM "file :/// etc/ passwd " >]>
5 <foo >& xxe ;</foo >

In this code the attacker is trying to access the /etc/passwd file on the
remote server. The attacker does not need to explicitly receive a whole answer
since he could theoretically exfiltrate the information through any other covert
channel - e.g. by DNS subdomains to a DNS server the attacker controls [18].

Example 2 [19]:
1 <?xml version ="1.0"?>
2 <! DOCTYPE lolz [
3 <! ENTITY lol "lol">
4 <! ELEMENT lolz (# PCDATA)>
5 <! ENTITY lol1 "&lol ;& lol& lol ;& lol ;& lol;">
6 <! ENTITY lol2 "&lol1 ;& lol1 ;.......& lol1 ;& lol1 ;& lol1;">
7 <! ENTITY lol3 "&lol2 ;& lol2 ;.......& lol2 ;& lol2 ;& lol2;">
8 <! ENTITY lol4 "&lol3 ;& lol3 ;.......& lol3 ;& lol3 ;& lol3;">
9 <! ENTITY lol5 "&lol4 ;& lol4 ;.......& lol4 ;& lol4 ;& lol4;">

10 <! ENTITY lol6 "&lol5 ;& lol5 ;.......& lol5 ;& lol5 ;& lol5;">
11 <! ENTITY lol7 "&lol6 ;& lol6 ;.......& lol6 ;& lol6 ;& lol6;">
12 <! ENTITY lol8 "&lol7 ;& lol7 ;.......& lol7 ;& lol7 ;& lol7;">
13 <! ENTITY lol9 "&lol8 ;& lol8 ;.......& lol8 ;& lol8 ;& lol8;">
14]>
15 <lolz >& lol9 ;</lolz >

This attack is called Billion Laughs Attack. Its task is to do a denial
of service attack. It works by declaring a root element ”lolz” that contains
the text ”&lol9”. But ”&lol9” entity contains ten ”&lol8” entities and each of
them contain 10 of ”&lol7” entities and so on. This small code would produce
109 ”lol” entities (thus billion laughs attack) that would take up almost 3
gigabytes of memory.

1.3.4.1 Remediation

All XML processors and libraries should be patched or upgraded regularly,
input should be thoroughly sanitized and escaped, less complex formats that

22

1.3. Web application

avoid serialization of sensitive data could be used (such as JSON) a server-side
whitelist-based input validation should be implemented.

1.3.5 Broken Access Control

Access control – sometimes called authorization – is a way to grant appro-
priate rights to legitimate users. Attackers typically want to obtain access
to accounts with the highest possible rights in order to have greater control
over the system. This type of vulnerability is often found in applications that
have grown in size over time. Used authorization methods were appropriate
only for the small scale of the application in the beginning and were either
not changed properly or just added over time.

Example 1:
http://example.com/app/accountInfo?acct=admin In this example the

account currently logged in is transfered via a HTML parameter. An attacker
could log into any account and change his authorization to an administrator
account afterwards.

Example 2:
http://example.com/app/orderInfo?order=123456789 In this example

the application would not have restricted access to orders for the customers.
An attacker could browse the individual ID’s and look for an order that has
already been paid for and simply collect the order himself.

1.3.5.1 Remediation

The main way of preventing broken access control is to define the access
control rules – with an access control matrix for example. The matrix should
document the types of users that would access the system and the functions
and content they should be able to access. Also whitelist approach should
be preferred – everything should be denied and the access should only be
given to appropriate users, not the other way. The developers can also tie the
authorization with every request – potential attack would have to bypass the
check with every request and not only once.

1.3.6 Security Misconfiguration

The appropriate configuration of both the application and the server it is run-
ning on is essential for data safety. Any of the below listed misconfigurations
would allow an attacker to either retrieve sensitive data or gain control over
the target system. These misconfigurations could happen at any level of the
technological stack so an automated tool for constant checking would simplify
the task greatly. The most common misconfigurations are:

• Unpatched systems and packages

23

http://example.com/app/accountInfo?acct=admin
http://example.com/app/orderInfo?order=123456789

1. Analysis

• Using default login credentials (usernames and passwords)

• Unprotected files and directories

• Enabled directory listing

• Unused web pages

• Misconfigured network devices

• Poor error handling

• Cloud storage with faulty permissions

1.3.6.1 Remediation

The task to configure the system and application properly is extremely specific
for each application and technology, so there are also many ways of avoiding
the misconfiguration. One could consult CIS Benchmark [20] for platform
and application hardening. The available CIS Benchmarks include Apple Sa-
fari Browser, Google Chrome, iOS, Android, Checkpoint Firewall, Cisco Fire-
wall Devices, Cisco Routers/Switches, Amazon Linux, CentOS, Debian Linux
Server, Microsoft IIS Server, Apache HTTP Server, MySQL Database Server,
Docker, Kubernetes, VMware Server and many others. Some of the general
tips to prevent misconfiguration are:

• Developing a repeatable patching process

• Keeping software up to date

• Disabling default accounts

• Encrypting data

• Enforcing strong access controls

• Providing administrators with a repeatable process to avoid overlooking
items

• Setting security settings in development frameworks to a secure value

• Running security scanners and performing regular system audits

• Disabling administration interfaces

• Disabling debugging

• Configuring server to prevent unauthorized access, directory listing, etc

24

1.3. Web application

1.3.7 Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) is a way to disrupt web pages by leveraging vul-
nerabilities in scripts – unsanitized inputs mostly. An attacker could insert
their own malicious (mostly JavaScript) code. They could then use the code
to disrupt design of the web page, make it malfunctional, gain sensitive infor-
mation or bypass security measures. It is also used during phishing attacks
to show the user different content on a trustworthy website.

There are three basic XSS types.

1.3.7.1 Reflected XSS

Can also be called non-persistent. It can be used on a page with generated
content. If an attacker adds his code that is not stripped than the page will
use it as if it was on the page before.

Example:
If a web application is written in PHP and the title is fetched like this:

1 <?php echo $_GET[’title ’]; ?>

An attacker could input http://URL/webpage.php?title=hello<script>
alert(’1’);</script> which would create an alert with a message ”1”.

1.3.7.2 Stored XSS

Also called persistent because an attacker would typically leave the malicious
code somewhere on the target web application in order for it to get stored in
a database. This modified code and would get executed when requested by
other users. This can be done for example in an unsanitized comment section
under an article – where malicious used would post a XSS code and it would
get executed by the browsers of other users.

Example:
1 Dear user <script >alert(’1’) </script > welcome !

This comment would display alert to every user who visits the malicious
website.

1.3.7.3 DOM based XSS

Is also called local. It can also be used on static web pages by inserting
a variable as a parameter into unsanitized input.

Example:
1 <SCRIPT >
2 var pos= document .URL. indexOf ("name=")+6;
3 document .write("Hello "+ document .URL. substring (pos , document .URL.

length));
4 </SCRIPT >

25

http://URL/webpage.php?title=hello<script>alert('1');</script>
http://URL/webpage.php?title=hello<script>alert('1');</script>

1. Analysis

If a legitimate user was to visit the website through link http://URL/
webpage.html?name=User the page would write ”Hello User”. However an at-
tacker could use a modified URL http://URL/webpage.html?name=<script>
alert(’1’);</script> which would create an alert with a message ”1”.

1.3.7.4 Remediation

The main ways of remediation are HTML context-aware encoding (based on
location in the HTML output), a framework which automatically escapes XSS
(e.g. Ruby on Rails or React JS) or thorough input sanitization.

1.3.8 Insecure Deserialization

Serialization is the process of storing input into a data format that can be
used for storage. Deserialization is the exact opposite – restoring stored data
formats into an usable object. The most popular format for data serialization
used to be XML and JSON is the most used format today. Deserialization
itself is a needed process, however a problem occurs when deserialization is
done on unsafe, unsanitized and malicious data.

Two main types of attacks could occur from insecure data serialization –
either object or data structure modification and resulting arbitrary remote
code execution or data tampering attacks.

Example:
User registration is done by a ”super” cookie that is created by PHP object

serialization.
1 a:4:{i:0;i:132;i:1;s:7:" Mallory ";i:2;s:4:"user";
2 i:3;s:32:" b6a8b3bea87fe0e05022f8f3c88bc960 ";}

An attacker could locally modify the cookie and change his username and
privilege level as well.

1 a:4:{i:0;i:1;i:1;s:5:"Alice";i:2;s:5:"admin";
2 i:3;s:32:" b6a8b3bea87fe0e05022f8f3c88bc960 ";}

1.3.8.1 Remediation

The best remediation is to either not accept serialized objects from untrusted
sources or accept only sources that use primitive data types. If this is not
possible then following would be recommended to implement [21]:

• Integrity checks

• Strict data type enforcement before object creation

• Isolating the deserialization code

• Logging of code exceptions and failures

26

http://URL/webpage.html?name=User
http://URL/webpage.html?name=User
http://URL/webpage.html?name=<script>alert('1');</script>
http://URL/webpage.html?name=<script>alert('1');</script>

1.3. Web application

• Network monitoring to and from deserialization servers or containers

• Monitoring of the deserialization itself

1.3.9 Using Component With Known Vulnerabilities

Every web application is dependent on its underlying technologies. Whether
an application is hosted on a physical server (as in figure 1.3) or in a datacenter
with the help of virtualization technologies every component on both server
and client sides has to be updated to their stable versions.

Operating system
(Linux, Windows)

Web server
(Apache, IIS)

Web application

Database server
(MySQL, Oracle,

PostgreSQL)

System packages
or applications

Figure 1.3: Web Application technology stack

NVD (National Vulnerability Database) publishes known vulnerabilities in
both open-source and proprietary components – it is not meant for attackers,
however from the moment of publication even they can find the individual
vulnerabilities and exploit them. Open-source software is widespread – even
proprietary applications use a big amount of open-source code [22].

Outdated software components should not be taken lightly, for example the
Equifax breach was caused by an Apache Struts vulnerability [23] for which
the patch has been issued the very same day it was discovered – on March 7th,
2017. The vulnerability has not been patched and the attackers were able to

27

1. Analysis

exploit the vulnerability and gather sensitive personal data [24]. Exploiting
the vulnerability has been relatively easy, since it scores 10.0 CRITICAL on
CVSS (Common Vulnerability Scoring System) v3.0 metric. The main reason
for this value is that the vulnerability does not require any privileges, the
attack itself is not complex and results in high confidentiality, integrity and
availability impact [25].

1.3.9.1 Remediation

The main idea is to keep only the required applications and have them always
patched to a newest version. More specifically:

• Remove unneeded dependencies

• Keep a list of both client and server-side technologies and their versions

• Monitor NVD or similar sources for new vulnerabilities

• Only receive updates from verified sources

• Patch regularly (perhaps wait a few days in case the new patch is faulty)

1.3.10 Insufficient Logging and Monitoring

It might not be a priority while designing an infrastructure, however the differ-
ence between a successful and a blocked attack are adequately set up logging
and monitoring systems. A monitoring system would either stop or at least
notify responsible people about an incoming attack. Both application and
security logs should be collected and analyzed, as both of them could serve as
a baseline when creating alerts for unusual situations.

1.3.10.1 Remediation

• Logging should be implemented wherever possible

• High-value transactions should be logged with great detail to leave a suf-
ficient audit trail

• Logs should be generated so they could be processed by a centralized
log management system

• Logging servers should be kept secure and separated – both physically
and logically

• Incident response and recovery plans and processes should be adopted

• Monitoring and alerting should be implemented so it would detect, notify
and respond to a possible threat as soon as possible

28

1.3. Web application

• All security-sensitive logs should include enough context in order to iden-
tify malicious activities

1.3.11 Summary

Web application testing is often done according to the OWASP Testing Suite.
The 10 of the most notorious, severe and potentially dangerous vulnerabili-
ties have been described in this chapter. The mentioned vulnerabilities pose
various levels of threat – the consequences could range from a DoS (denial of
service) to a sensitive information disclosure (such as passwords or credit card
numbers).

Developers are not as well versed in security principles as penetration
testers and thus every web application should be thoroughly tested and also
designed with security in mind in order to fix and avoid as many vulnerabilities
as possible.

29

1. Analysis

1.4 Mobile application

Mobile applications – often referred to as apps – are the main way of using
phones today. Everything has its own application – whether it is a chat ser-
vice, online banking, car controls, smart homes or security systems. This wide
spread of applications brings a lot of security challenges as mobile applications
tend to be more closed for their users. For example, when logging into a bank
web application one could see the HTTPS mark in their browser and theo-
retically could verify the connection details and the certificate as well. Such
things are impossible to look into while using a mobile application for a reg-
ular user (without network sniffing, decompiling the application and so on).
This introduces a new array of possible security vulnerabilities that require
attention.

OWASP Mobile top 10 2016 [26] and Top 10 Vulnerabilities in Mobile
Applications [27] article by Don Green from WhiteHat Security will be used
as the main sources for this chapter.

1.4.1 Improper Platform Usage

Each mobile platform (Android, Windows Phone, iOS) provides its own set
of features or capabilities. The mobile developers either use the feature in-
correctly or don’t use the feature at all in a lot of cases. These features or
capabilities are well known and well documented and developers should use
them the way they were meant to be used. This vulnerability is also the only
one that is caused purely by developers.

There are several ways this vulnerability can occur:

• Guideline violation – if an app doesn’t follow the best practices for each
of the specific platforms it will be exposed to this risk (e.g. improper
iOS Keychain usage)

• Common practice violation – mobile app development has got its own
common practices and the developers should respect them

• Unintentional misuse – despite the best intentions some of the apps
can be implemented badly and would not do what they were originally
designed to do – this can happen as a result of a bug or a wrong API
call flag

Example:
iOS Keychain is secure storage for both system and application data. Ap-

plication developers should use it to store sensitive information. If the Key-
chain is not used the data are stored in app local storage and could be found
in unencrypted iTunes backups. If a mobile banking application would misuse
the Keychain functionality the password would be accessible on the victim’s
computer.

30

1.4. Mobile application

1.4.2 Insecure Data Storage

Each application that deals with any kind of sensitive information (personal
information, passwords, cookies, tokens, encryption keys etc.) should have
proper security measures in place to keep the information secure from unau-
thorized users at all times. App developers assume that the user or malware
will not have access to the filesystem – however that does not necessarily have
to be true. A new vulnerability can be found (in the operating system, frame-
work, compilers, hardware or the device will be rooted/jailbroken) and the
filesystem would suddenly be accessible.

1.4.3 Insecure Communication

Most of the current applications use some type of communication – whether
it is a server-client or peer-to-peer – the communication has to be protected
from the beginning until the very end. The best way of mitigating such vul-
nerabilities is to assume that the used channel is not secure and thus adequate
encryption should be used at all times – especially when transmitting any type
of sensitive data. The encryption should use currently recommended cipher
suites with adequate key lengths. The certificates should also be signed by
a trusted certificate authority and the server-client connection should be es-
tablished only after the target servers are verified with trusted certificates.
Also the sensitive data should have a separate encryption layer in order to
prevent future TLS implementation vulnerabilities.

1.4.4 Insecure Authentication

Authentication in a mobile application can be tricky since its requirements
differ from authentication in web applications (see section 1.3.2 for additional
information on web application authentication vulnerabilities). Unlike in web
applications the users of mobile applications are not expected to stay con-
nected to the Internet at all times during their session – which calls for addi-
tional measures, such as offline authentication.

Mobile application will suffer from insecure authentication if it allows for
anonymous API execution, stores passwords/secret/private keys locally and
outside of secure dedicated storages or when it only supports basic authen-
tication schemes (e.g. only passwords). Attackers could leverage these vul-
nerabilities during an attack – for example by stealing the phone and reverse-
engineering passwords to e-mail addresses, bank accounts or any other online
accounts.

There are several ways the developers can enhance the security of their
applications, such as :

• When creating a mobile application equivalent of a web application, the
mobile version should have the same authentication requirements. This

31

1. Analysis

should be done so the mobile application is not a weaker link and thus
is not an easier target for attackers.

• When implementing local authentication the attacker could bypass it
with a rooted Android device or jailbroken iOS device. If such need
is substantiated then a special care has to be taken to prevent binary
attacks against the application.

• The authentication requests should be performed server-side. This en-
sures that application data will be loaded onto the device only after
successful authentication.

1.4.5 Insufficient Cryptography

It is essential that cryptographic algorithms and functions used for encryp-
tion are chosen according to reputable sources (e.g. National Institute for
Standards in Technology - NIST), are used in a correct manner and with
adequately long keys.

Some of the deprecated ciphers and hash algorithms are Message-Digest
algorithm (MD5), Secure Hash Algorithm (SHA1) and Data Encryption Stan-
dard (DES) and Rivest Cipher 4 (RC4) [28]. An example of a ciphersuite that
is considered strong enough in the time of writing is TLS ECDHE RSA WITH AES 256 GCM SHA384
[29]. Its components are:

• TLS – Transport layer security protocol

• ECDHE – Elliptic-curve Diffie-Hellman key exchange protocol

• RSA – asymmetric cipher used for authentication

• AES-256 – symmetric cipher for the communication itself

• GCM – Galois/Counter mode of the symmetric block cipher

• SHA384 – a hashing algorithm used for message authentication

1.4.6 Insecure Authorization

The authorization mechanisms face similar challenges as authentication mech-
anisms do. Authorization takes place right after authentication and when by-
passed or modified could have dire consequences, since an attacker could set
higher privileges for himself and either create himself another administrator
account and gain and/or delete confidential information.

In order to prevent this vulnerability all of the role and permission veri-
fication should be done on the backend systems. The reason for this is that
the information originating from the mobile device may have been tampered
with.

32

1.4. Mobile application

1.4.7 Client Code Quality

A lot of vulnerabilities happen just because of faulty or unrefined code. The
imperfections in code can lead to buffer overflows, memory leakages or code
execution. But these vulnerabilities are not always found in the application,
they can also occur in the operating system’s code.

A few ways to remedy these vulnerabilities is to maintain constant coding
patterns, write code that is easy to read and well documented and last but
not least static analysis and code review should also be conducted regularly.

1.4.8 Code Tampering

Attackers may conduct attack on the application via direct binary changes to
the application’s core binary or any other resources within the application.
The application has to be able to detect and react to such changes at runtime
in order to prevent said attacks.

Some of the ways to detect a rooted Android device are to check for known
rooted APK’s (Android Packages) such as eu.chainfire.supersu, check for SU
binaries (/system/sbin/su, /sbin/su or /system/su) or to run an su command
directly and check UID (user ID) afterwards – if the return value is 0, the
command has been successful – thus the application should either exit or
disable any potentially dangerous functionality.

1.4.9 Reverse Engineering

An attacker is able to perform analysis (reverse engineering) of the final appli-
cation binary to determine its source code, algorithms, libraries and resources
of which the application consists. There are many tools that can be used for
such purposes like IDA Pro, Hopper, strings and many others.

The only way of preventing such intrusions is to use an obfuscation tool.
The better ones will be able to adapt the obfuscation to balance performance
impact, be able to resist known reverse engineering tools and allow string table
obfuscation as well. In order to check the effectiveness of used obfuscation tools
one could try the reverse engineering themself and adjust additional measures
accordingly.

1.4.10 Extraneous functionality

An attacker will examine the mobile application within their own environment
– either on their device or in a simulator/emulator. All of the found files (log
files,configuration files) will be examined. In case they contain any hidden
switches or functionality (e.g. login bypass in order to test the application
more efficiently) the attackers could use them to conduct an attack on the
application.

33

1. Analysis

The best way of preventing such vulnerabilities is to thoroughly remove
all test code, remove all unnecessary log information, conduct manual code
review and cooperate with mobile application security experts.

1.4.11 Summary

Mobile applications are growing in their popularity each day. There is an
application for car control, house security control, banking, social media and
almost everything else there is to be done online. This puts tremendous pres-
sure on mobile application developers to write organized, documented and
secure code in particular.

There is no one standardized list of what mobile application testing should
be, however the main points of interest for both application developers and
security testers have been mentioned in this section. And for this reason
should mobile application developers be versed in cyber security principles,
design the applications with security in mind and have a threat model. In
case the developers are not able create or utilize the aforementioned measures
they can employ an external security expert to either help with the design
and threat model – or to consult their previous work.

34

1.5. Infrastructure

1.5 Infrastructure

Every service on the Internet has to be hosted on some type of infrastructure.
In former times the companies used to have all their infrastructure in-house
or in their own data center. But the growth of virtualization technologies and
exponentially larger network throughput allowed cloud computing to develop.

A survey carried out by LogicMonitor in year 2018 [30] showed that 37%
of surveyed companies still have their infrastructure on-premises, 31% in pri-
vate clouds and the remaining 37% in private and hybrid clouds. However
the survey expects that by the year 2020, 41% of companies will have their
infrastructure in public clouds, 27% still on-premises and 42% in hybrid and
private clouds. The same survey also found that 66% of the surveyed compa-
nies think that security is the biggest challenge for organizations using public
cloud today.

The infrastructure penetration testing is usually done in these main phases
[31]:

1. Reconnaissance - information gathering

• Scanning (nmap, Nikto, SSLyze)

• Footprinting

2. Exploitation

• Automated vulnerability testing tools (Nessus)

• Manual vulnerability testing

• Wi-Fi war-driving

• Using exploits on found vulnerabilities (Metasploit)

3. Post-exploitation

• Creating users

• Maintaining access

4. Reporting

• Creating structured report

• Recommendations

Since there is no current list of most common infrastructure vulnerabilities
the author’s own infrastructure testing experience and parts from a list by
Check Point Software Technologies from year 2016 [32] is used as a source.

35

1. Analysis

1.5.1 Out-of-date Software version

It is crucial that all of the used software is updated regularly. Vulnerabil-
ities in software are found on a daily basis and updates are released quite
often – especially for widely-used software. An out-of-date software – Apache
Struts – was the main reason the Equifax breach (detailed in section 1.3.9)
has happened.

1.5.2 Default Configuration

Software usually requires configuration. Whether it is a Secure Shell (SSH)
daemon, web server or cluster computing utility, it has to be configured. Apart
from basic modes of functionality (such as password-only authentication or
login only for specific users for SSH) basic or easy to guess password are also
very important to change since they are well known.

1.5.3 Inappropriate Encryption

Whenever a component (web server, RDP etc.) communicates via an insecure
channel or an untrusted network (e.g. Internet) the communication should
be protected by encryption. The ciphers become obsolete with time and thus
a reputable source (e.g. NIST) should be checked, whether a used cipher
hasn’t become obsolete.

In the time of writing some of the deprecated ciphers are DES and RC4,
hashing algorithms MD5 and SHA1 and also protocols SSL, TLS v1.0 and
v1.1 [28].

1.5.4 Self-signed or expired certificates

Self-signed certificates are sometimes used instead of a certificate issued by
a certificate authority. Some of the reasons for this may be the price and also
the impracticality when setting up any kind of development environment –
that will be later dismantled.

However the most popular browsers do show a warning that a used cer-
tificate was not issued by a known certificate authority [33] [34] [35] – thus
potentially damaging the company’s reputation and the trust users have in the
application. This kind of warning is also showed when an expired certificate
is used, so the renewal in due time should also be done.

Furthermore the manageability of a certificate is hindered, since certificate
replacement, update and revocation are handled by the certificate authority.
When a self-signed certificate is used the inability to carry out the mentioned
actions could bring security risks.

36

1.5. Infrastructure

1.5.5 Unnecessary open services

Keeping unnecessary open services should be avoided. When a port is open
and not used (and not properly secured) it can leak information to a po-
tential attacker – software version, any type of banners or even confidential
information from the service itself – should it be improperly secured.

1.5.6 Lack of Network Segmentation

When an attacker is successful in infiltrating a network segment – either by
compromising a machine or simply connecting to a guest network – the seg-
mentation of the network is crucial. For example when creating a guest net-
work a great care should be taken to only allow communication to the Internet
and not the rest of the network (stop lateral movement) – e.g. by using VLANs
or firewall rules.

1.5.7 DoS/DDoS Vulnerabilities

Denial-of-service attacks can be distributed or not. The main difference is
that a distributed denial-of-service attack is led by large amount of differ-
ent machines from different networks and non-distributed is led by a single
machine.

Examples of such attacks:

• SYN flood – the Transmission Control Protocol (TCP) uses a technique
called three-way handshake while establishing a connection. Attackers
could send an enormous amount of SYN packets to a server, who would
send SYN,ACK packet back and wait for a finishing ACK from the
attacker. The attacker wouldn’t send the ACK back and send many
more SYN packets instead – resulting in resource depletion on the target
server.

• Address Resolution Protocol (ARP) spoofing – ARP spoofing is a man-
in-the-middle (MITM) attack where the attacker would send spoofed
ARP messages onto a local area network in order to associate their MAC
address with an IP address of a different host (usually default gateway)
on the local network in order to intercept the traffic and read or modify
it.

• Fork bomb – fork bomb is an attack where a process replicates itself in-
finitely in order do deplete all resources with the intent of either slowing
or crashing the target system.

• Dynamic Host Configuration Protocol (DHCP) starvation – DHCP star-
vation is an attack where the attacker changes their MAC address fre-
quently and requests a new address from the DHCP server with each

37

1. Analysis

change. If done correctly this attack could deplete all IP addresses al-
located for the network segment resulting in a DoS attack. This attack
can be paired with a fake DHCP server (controlled by the attacker) that
would distribute malicious DHCP information, potentially resulting in
a MITM attack where the fake DHCP server would appoint attacker’s
machine as a default gateway – making them able to either read or
change outgoing traffic.

• Billion Laughs (detailed in section 1.3.4)

• Memory/CPU bugs in applications

• Firmware bugs

• Exploits or vulnerabilities in applications

Those attacks could be prevented by either patching both hardware and
software components regularly and also by strengthening the supporting in-
frastructure (e.g. using cloud solutions with auto-scaling, DDoS prevention
boxes, load balancing techniques).

1.5.8 Summary

Infrastructure is slowly moving into cloud solutions, however its security will
be an ever-growing topic. Secure infrastructure should be well-designed, patched
and monitored in order for it to work correctly. However cloud infrastructures
do have a shared responsibility architecture – cloud providers are responsible
for securing the cloud itself and customers are responsible for security of the
content they put into the cloud infrastructure. This makes cloud infrastruc-
ture security a non-trivial problem.

38

Chapter 2
Smart contract application

testing framework

2.1 Framework

2.1.1 Current standards

None of the commonly used frameworks are taking security of a whole dis-
tributed application in account. There is a lot of standards regarding secu-
rity testing of a ”classical” on-premise infrastructure e.g. PTES (Penetration
Testing Execution Standard) [31] or OSSTMM (Open Source Security Testing
Methodology Manual) [36]. Infrastructure testing uses both automated and
manual penetration testing, information gathering, social engineering and red
team testing.

Web applications also have their testing standards – e.g. OWASP Web
Application Penetration Testing [37] (a part of OWASP Testing Guide v4
[38]). Companies can also have their own framework of testing – the author
has used EY web application testing checklist during his work in EY. Web
application testing mainly contains penetration testing and source code audit.

Smart contracts do not have exactly a framework or methodology, but they
do have thorough descriptions of possible attacks or misuses and how to avoid
them during the development phase. As far as testing is concerned one could
find security tools for visualization, static and dynamic analysis, test coverage
or linters [39]. Smart contract security testing is done mostly with source
code auditing – either manually or with the help of automated tools. Smart
contracts can also be tested on a test blockchain network in order to save
the cost of execution fees. This is also done in order to adequately test both
security and functionality, since updating already released smart contracts is
not straightforward and the damage may already have been done by the time
the creators have found a bug in their smart contract.

39

2. Smart contract application testing framework

2.1.2 Proposed framework

Smart contract application can consist from some (or all) of components men-
tioned in the theoretical section – mobile application, web application, cloud
or physical infrastructure, blockchain as a foundation and smart contracts
on top of it. In order to have a safe application as many as possible of the
following tests and procedures should be done:

• Blockchain

– Architecture review
∗ Is the designed architecture overcomplicated ?
∗ Does the architecture store only the necessary data on the

blockchain ?
– Network Penetration Testing

∗ Is the chosen network robust/popular enough ?
– Static and Dynamic Application Testing including testing wallets,

databases, GUI and application logic
– Integrity Testing

• Smart contracts

– Code review – manual and automatic – in order to check for vul-
nerabilities specific for smart contracts

∗ A call to the unknown (1.2.5.1)
∗ Exception disorder (1.2.5.2)
∗ Gasless send (1.2.5.3)
∗ Re-entrancy (1.2.5.4)
∗ Keeping secrets (1.2.5.5)
∗ Immutable bugs (1.2.5.6)
∗ Ether lost in transfer (1.2.5.7)
∗ Transaction ordering dependence (1.2.5.8)
∗ Timestamp dependancy (1.2.5.9)
∗ Mishandled exceptions (1.2.5.10)
∗ An inability to update smart contract code quickly or regularly

– implying exceptionally thorough testing is required
– Security check of all the connecting components

• Infrastructure

– Penetration tests 3

3Heavily depends on the tested infrastructure – whether the tests should be white,gray
or black box, whether the infrastructure is virtualized or on ”bare metal”, whether the
infrastructure is behind a load-balancer etc.

40

2.1. Framework

∗ Pre-engagement actions
∗ Reconnaissance
∗ Threat Modeling and vulnerability identification
∗ Exploitation
∗ Post-exploitation
∗ Reporting
∗ Applying changes and re-testing

– Red team testing
– Configuration review

• Web application

– Penetration testing
∗ Injection (1.3.1)
∗ Broken authentication (1.3.2)
∗ Sensitive data exposure (1.3.3)
∗ XML external entities (1.3.4)
∗ Broken access control (1.3.5)
∗ Security misconfiguration (1.3.6)
∗ Cross-site scripting (1.3.7)
∗ Insecure deserialization (1.3.8)
∗ Using components with known vulnerabilities (1.3.9)
∗ Insufficient logging and monitoring (1.3.10)

– Code review

• Mobile application

– Code review
∗ Improper platform usage (1.4.1)
∗ Client code quality (1.4.7)

– Penetration testing
∗ Insufficient cryptography (1.4.5)
∗ Code tampering (1.4.8)
∗ Reverse engineering (1.4.9)
∗ Extraneous functionality (1.4.10)
∗ Insecure authorization (1.4.6)
∗ Insecure authentication (1.4.4)
∗ Insecure data storage (1.4.2)

41

2. Smart contract application testing framework

Each of the components requires specific tools – here are the most popular
and trusted tools:

• Blockchain

– Kovan Etherscan – for Ethereum applications

– BlockCypher – for Bitcoin applications

• Smart contracts

– Truffle – tool allowing to write automatic tests

– Populus – tool allowing to write tests in Python

– Oyente – automatic static analysis tool

– Mithril – automatic static analysis tool

• Infrastructure

– Nmap – universal tool for port scanning

– Metasploit – exploiting tool

– Nikto – web server analysis tool

– Nessus – automated scanning tool (paid)

– OpenVAS – automated scanning tool

– Wireshark – network analyzer

• Web applications

– Zed Attack Proxy

– SQLMap – automatic SQL injection tool

– Burp Suite

• Mobile applications

– Quick Android Review Kit – source code analysis tools

– Drozer – security and attack framework

– MITM proxy

This many tests on the VETRI application would however take an immense
amount of time and thus the actual testing will be limited only to smart
contracts and their implementation in the mobile application.

42

2.1. Framework

2.1.3 Framework checklist table

This framework is mainly created for developers of applications using smart
contracts – specifically their web and mobile applications – who are not versed
enough in cyber security and need a checklist which can guide them through
main security issues that can be present in the developed application. This
checklist also summarizes which test have been carried out on the VETRI
application (column Tested).

43

2. Smart contract application testing framework

C
om

po
ne

nt
Vu

ln
er

ab
ili

ty
D

et
ec

tio
n

m
et

ho
d

D
et

ec
tio

n
to

ol
Te

st
ed

B
lo

ck
ch

ai
n

B
lo

ck
ch

ai
n

ap
pl

ic
at

io
n

in
te

gr
at

io
n

A
rc

hi
te

ct
ur

e
re

vi
ew

7

N
et

w
or

k/
tr

an
sa

ct
io

ns
In

te
gr

ity
te

st
in

g
7

Sm
ar

t
co

nt
ra

ct
s

A
ca

ll
to

th
e

un
kn

ow
n

Pe
nt

es
t/

C
od

e
re

vi
ew

O
ye

nt
e/

M
ith

ril
3

Ex
ce

pt
io

n
di

so
rd

er
Pe

nt
es

t/
C

od
e

re
vi

ew
O

ye
nt

e/
M

ith
ril

3

G
as

le
ss

se
nd

Pe
nt

es
t/

C
od

e
re

vi
ew

O
ye

nt
e/

M
ith

ril
3

R
e-

en
tr

an
cy

Pe
nt

es
t/

C
od

e
re

vi
ew

O
ye

nt
e/

M
ith

ril
3

K
ee

pi
ng

se
cr

et
s

Pe
nt

es
t/

C
od

e
re

vi
ew

O
ye

nt
e/

M
ith

ril
3

Im
m

ut
ab

le
bu

gs
Pe

nt
es

t/
C

od
e

re
vi

ew
O

ye
nt

e/
M

ith
ril

3

Et
he

r
lo

st
in

tr
an

sf
er

Pe
nt

es
t/

C
od

e
re

vi
ew

O
ye

nt
e/

M
ith

ril
3

Tr
an

sa
ct

io
n

or
de

rin
g

de
pe

nd
en

ce
Pe

nt
es

t/
C

od
e

re
vi

ew
O

ye
nt

e/
M

ith
ril

3

T
im

es
ta

m
p

de
pe

nd
en

cy
Pe

nt
es

t/
C

od
e

re
vi

ew
O

ye
nt

e/
M

ith
ril

3

M
ish

an
dl

ed
ex

ce
pt

io
ns

Pe
nt

es
t/

C
od

e
re

vi
ew

O
ye

nt
e/

M
ith

ril
3

In
ab

ili
ty

to
up

da
te

Pe
nt

es
t/

C
od

e
re

vi
ew

O
ye

nt
e/

M
ith

ril
3

In
fr

as
tr

uc
tu

re
O

ut
-o

f-d
at

e
so

ftw
ar

e
ve

rs
io

n
Pe

nt
es

t/
A

ut
om

at
ic

sc
an

N
es

su
s/

O
pe

nV
A

S
3

D
ef

au
lt

co
nfi

gu
ra

tio
n

Pe
nt

es
t/

A
ut

om
at

ic
sc

an
N

es
su

s/
O

pe
nV

A
S

3

In
ap

pr
op

ria
te

en
cr

yp
tio

n
Pe

nt
es

t/
A

ut
om

at
ic

sc
an

N
es

su
s/

O
pe

nV
A

S
3

Se
lf-

sig
ne

d
or

ex
pi

re
d

ce
rt

ifi
ca

te
s

Pe
nt

es
t/

A
ut

om
at

ic
sc

an
N

es
su

s/
O

pe
nV

A
S

3

U
nn

ec
es

sa
ry

op
en

se
rv

ic
es

Pe
nt

es
t/

A
ut

om
at

ic
sc

an
N

es
su

s/
O

pe
nV

A
S

3

La
ck

of
ne

tw
or

k
se

gm
en

ta
tio

n
In

fr
as

tr
uc

tu
re

re
vi

ew
-

7

D
oS

/D
D

oS
vu

nl
er

ab
ili

tie
s

Vo
lu

m
et

ric
te

st
in

g
-

7

Table 2.1: Framework checklist table, part 1

44

2.1. Framework

C
om

po
ne

nt
Vu

ln
er

ab
ili

ty
D

et
ec

tio
n

m
et

ho
d

D
et

ec
tio

n
to

ol
Te

st
ed

W
eb

ap
pl

ic
at

io
ns

In
je

ct
io

n
Pe

nt
es

t/
C

od
e

re
vi

ew
B

ur
p

Su
ite

Pr
o

7

B
ro

ke
n

au
th

en
tic

at
io

n
Pe

nt
es

t/
C

od
e

re
vi

ew
B

ur
p

Su
ite

Pr
o

7

Se
ns

iti
ve

da
ta

ex
po

su
re

Pe
nt

es
t/

C
od

e
re

vi
ew

B
ur

p
Su

ite
Pr

o
7

X
M

L
ex

te
rn

al
en

tit
ie

s
Pe

nt
es

t/
C

od
e

re
vi

ew
B

ur
p

Su
ite

Pr
o

7

B
ro

ke
n

ac
ce

ss
co

nt
ro

l
Pe

nt
es

t/
C

od
e

re
vi

ew
B

ur
p

Su
ite

Pr
o

7

Se
cu

rit
y

m
isc

on
fig

ur
at

io
n

Pe
nt

es
t/

C
od

e
re

vi
ew

B
ur

p
Su

ite
Pr

o
7

C
ro

ss
-s

ite
sc

rip
tin

g
Pe

nt
es

t/
C

od
e

re
vi

ew
B

ur
p

Su
ite

Pr
o

7

In
se

cu
re

de
se

ria
liz

at
io

n
Pe

nt
es

t/
C

od
e

re
vi

ew
B

ur
p

Su
ite

Pr
o

7

U
sin

g
co

m
po

ne
nt

w
ith

vu
ln

er
ab

ili
tie

s
Pe

nt
es

t/
C

od
e

re
vi

ew
B

ur
p

Su
ite

Pr
o

7

In
su

ffi
ci

en
t

lo
gg

in
g

an
d

m
on

ito
rin

g
Pe

nt
es

t/
C

od
e

re
vi

ew
B

ur
p

Su
ite

Pr
o

7

M
ob

ile
ap

pl
ic

at
io

ns
Im

pr
op

er
pl

at
fo

rm
us

ag
e

Pe
nt

es
t/

C
od

e
re

vi
ew

ZA
P

pr
ox

y/
D

ro
ze

r
3

C
lie

nt
co

de
qu

al
ity

C
od

e
re

vi
ew

-
7

In
su

ffi
ci

en
t

cr
yp

to
gr

ap
hy

Pe
nt

es
t/

C
od

e
re

vi
ew

ZA
P

pr
ox

y/
D

ro
ze

r
3

C
od

e
ta

m
pe

rin
g

R
ev

er
se

en
gi

ne
er

in
g

M
A

R
A

fr
am

ew
or

k
7

R
ev

er
se

en
gi

ne
er

in
g

R
ev

er
se

en
gi

ne
er

in
g

M
A

R
A

fr
am

ew
or

k
7

Ex
tr

an
eo

us
fu

nc
tio

na
lit

y
Pe

nt
es

t/
C

od
e

re
vi

ew
ZA

P
pr

ox
y/

D
ro

ze
r

3

In
se

cu
re

au
th

en
tic

at
io

n
Pe

nt
es

t/
C

od
e

re
vi

ew
ZA

P
pr

ox
y/

D
ro

ze
r

3

In
se

cu
re

au
th

or
iz

at
io

n
Pe

nt
es

t/
C

od
e

re
vi

ew
ZA

P
pr

ox
y/

D
ro

ze
r

3

In
se

cu
re

da
ta

st
or

ag
e

Pe
nt

es
t/

C
od

e
re

vi
ew

ZA
P

pr
ox

y/
D

ro
ze

r
3

Table 2.2: Framework checklist table, part 2

45

Chapter 3
Analysis of the VETRI

application

3.1 VETRI application overview

VETRI is a digital identity platform from a company Procivis in partnership
with CreativeDock. It enables users to ”take privacy into their own hands” by
allowing them to store their personal data securely and allowing them to trade
data in a controlled fashion where they are rewarded for their data instead of
middlemen. The currency used in the VETRI ecosystem is called VLD token –
based on ERC20 Ethereum token standard [40]. The data consumers (compa-
nies or individuals seeking to buy data) can either buy the tokens directly from
VETRI Foundation or on cryptocurrency exchanges 4. Data owners (VETRI
users willing to share their data) can receive VLD tokens by participating
in surveys. Afterwards the data owners can exchange the accumulated VLD
tokens for rewards or gift cards – users well versed in cryptocurrencies could
sell the VLD tokens themselves on aforementioned exchanges.

The difference between most of the current online services – e.g. Facebook
or Google – and VETRI is that both of them are free for the users but the
first two make money by either selling user data or with ads. VETRI, on
the other hand, allows users to manage their own personal data and decide
who they want to sell them to – and the reward for doing so goes back to
them. Another important thing to mention is that the user’s personal data
are fully decentralized – the data are stored solely in their device until they
decide to sell them for a price they deem reasonable. The data user’s data are
not currently decentralized – they have to currently access VETRI via a web
application. This is however about to change in the future.

VETRI consists of a mobile wallet (VETRI wallet – screenshots shown in
appendix chapter A) and a web application (VETRI marketplace). The web

4VLD tokens are registered on Bitfinex and Ethfinex at the time of writing

47

3. Analysis of the VETRI application

application will be used by both users and data consumers. The architec-
ture from user and data consumer point of view is shown in figure 3.1. This
architecture, present in the VETRI whitepaper [41], has been later modified
for both technological design and testing. The main technologies that enable
VETRI application are JavaScript, TypeScript, React Native, React, Node.js,
GraphQL, Postgres, Kubernetes, Docker, Terraform, blockchain, Ethereum
smart contracts and web3.js.

2	 VETRI
2.1	 Overview
Procivis, for the next iteration of its digital identity platform, intends to expand the digital identity
sphere beyond personal attributes by encompassing the individual users entire personal data space.
Credit card transactions, geolocation logs, browsing history as well as user-generated content are
a few examples of personal data VETRI will help users control, safeguard and share when they so
choose.

The VETRI platform will consist of a mobile wallet (VETRI wallet) for users to manage their personal
data as well as a web application (VETRI marketplace) for data consumers to buy and access that data.
Users and data consumers, who together form the “stakeholders”, will be able to add data, request
data form third parties, get their data verified, manage their privacy settings, buy services and final-
ly share and monetize their data in a fully user-controlled fashion. This new ecosystem will also be
decentralized and supported by innovations discussed in section 2.6 below. By delinking all personal
information from other data-points a new level of privacy can be achieved.

Figure 4 VETRI overview

7

Figure 3.1: VETRI whitepaper architecture

The VETRI ecosystem is planned to have more usecases in the future,
but the first usecase that is being worked on is a survey enriched with media
data. Another important component is eID+ [42]. It is a product for identity
management also made by Procivis and it shares technological foundation and
best practice with VETRI – since it’s also an application for digital identity
and personal data management and both of them are blockchain-based. The
eID+ application is used by the Swiss Canton of Schaffhausen. It also has
open APIs, meaning that third-party companies can create applications using
eID+. Main usecases for the eID+ application are:

• e-Data – A marketplace for personal data

48

3.2. VETRI blockchain architecture

• e-Voting – A fully digital and blockchain-secured e-Voting application

• e-Document – Importing, exporting and managing documents with eID+

• e-Signature – Signing digital documents with eID+

• e-Authentication – eID+ is the universal authentication tool

• e-KYC – eID+ simplifies KYC5 processes (coming soon)

• e-License – eID+ allows users to store and receive licenses and permits
digitally (coming soon)

• e-Company – eID+ simplifies the founding process of companies (coming
soon)

• e-Health – Direct access to e-Health platforms (coming soon)

3.2 VETRI blockchain architecture

Information about the current VETRI blockchain architecture design has been
taken from the documentation received from the application developers and
simplified.

The blockchain architecture is split into three main parts: main-net/test-
net, bridge and side (private) chain.

3.2.1 Private chain

The main part of the VETRI application as far as blockchain is concerned is
the VETRI private chain. It is a private blockchain run by VETRI and it is
based on proof-of-authority (see section 1.1.2.3 for more information). Private
chain contains deployed data exchange requests, usable VLD tokens and also
deployed identity contracts – a list of verified wallet addresses maintained by
verifier service.

The main reasons why the chain is private are decreased fees and ability
to have the whole VETRI ecosystem in a secure environment. By the time of
writing the VETRIchain is tested on 4 nodes – AWS, Google Cloud, Azure
and a server owned by CreativeDock. The usage of the private chain can be
seen in figure 3.2.

5Know your customer

49

3. Analysis of the VETRI application

2

General product portfolio - Vetri ecosystem

Figure 3.2: VETRI MVP/MUP system architecture

3.2.2 Bridge

Bridge is the connecting point between main-net and private chain. It is
responsible for blocking VLD tokens on the Ethereum main-net and releasing
them into the private chain.

At the time of writing the chosen bridge technology is token-bridge [43] – an
interoperability solution between Ethereum networks for ERC-20-to-ERC20
token bridging.

3.2.3 Public chains

Both main-net and test-net (both on Ethereum networks) have been used
during the development phase of the VETRI application. This separation
allows the developers to create the smart contracts in a safe environment
without any substantial worries about stolen resources.

3.2.3.1 Test-net

Test-net was mainly being used during the minimum viable product phase,
since not all of the vulnerabilities that could occur in the smart contracts can

50

3.3. Blockchain use-cases

be found out with a static (source code) analysis.

3.2.3.2 Main-net

Main-net – Ethereum network – is used almost exclusively for token trading in
the finished product since the essential processes are happening on the private
chain maintained by authoritative nodes.

3.3 Blockchain use-cases

In this section the most prominent use cases in the VETRI ecosystem that
use blockchain will be described and explained.

3.3.1 Data consumer wants to allocate VLD tokens for
a data exchange request

The main way of receiving data from data owners is called DER (data exchange
request). Its content can be for example a survey to be filled by the data
owners or gathering of ”data points” via data plugins the user might decide
to import because he sees an interesting offer from a company. This use case
assumes that a data exchange request has been deployed and that the data
consumer has enough tokens in his VETRI side chain.

Data consumer has to first transfer tokens to a smart contract in data
consumer interface (this happens automatically if he uses the web application
/data consumer interface). He then starts the data exchange request.

The whole process of a data consumer creating a DER – specifically a sur-
vey – is detailed in figure 3.3. The technical process of survey creation starts
by generating a JSON definition on the backend, sending it to DER of a smart
contract and into the backend. The mobile application will fetch the survey
JSON definition and additional metadata directly from the smart contract
or, in a cached form, from the VETRI backend. After the user fills the sur-
vey a JSON file with responses and data points from data plugins that were
requested as part of the data exchange request will be sent to data pickup
service by the mobile application.

51

3. Analysis of the VETRI applicationApril Release - Minimum Usable Product
Conceptual Diagram

3

Figure 3.3: Full survey usecase

3.3.2 Identity verification

Since the true identity of individual users is paramount to the application
a great care has to be taken in order to verify whether the user is indeed the
person he is claiming to be. However, the data owner also needs to remain
anonymous. When the VETRI Foundation (or any other trusted identity
provider) verifies the user this information is stored on the blockchain and the
user can subsequently sign DER (data exchange request) smart contracts –
the smart contracts wouldn’t allow the user to sign them otherwise.

3.3.3 Token transfer

When an user uses the VETRI application he receives ’internal’ tokens by
participating in surveys and other data exchange requests. These tokens can
be either exchanged for VLD tokens on Ethereum main-net (this exchange is
done via the bridge – section 3.2.2) or they can be exchanged for various gift
cards (this exchange does not require any action on bridge or main-net). This
allows both technically adept and regular users to use the VETRI application
and redeem their rewards however they see fit.

3.3.4 Data consumer wants to top up the VETRI account

This use case assumes that the data consumer has an account in data consumer
interface and his VLD token wallet has been created.

When data consumers want to top up their VETRI accounts, they have to
buy VLD tokens on an exchange 6 or from the VETRI Foundation or any of

6VLD tokens are registered on Bitfinex and Ethfinex at the time of writing

52

3.4. Application analysis

the current VLD token holders. Data consumer then instructs data consumer
interface to transfer tokens to VETRI private chain. Data consumer interface
moves the VLD tokens from user’s wallet to VETRI bridge – this is done via
a bridge contract. The amount of tokens is decreased by bridged amount.

Once the data consumer has the tokens on VETRI private chain he can
top up the data exchange request via the data consumer interface.

3.3.5 Data owner gets a reward when he confirms (accepts)
the Data contract

This use case assumes that data consumer has deployed a data contract, allo-
cated tokens in said contract and enabled it.

Data owner has to accept a data exchange request currently via the wallet
application. The wallet submits a transaction accepting the data exchange
request – the transaction contains a footprint hash of the user’s data. When
the transaction has been accepted the wallet sends the data to the data pickup
service alongside with the wallet address of the data owner. After the data
pickup service checks whether the data exchange request has been accepted
it responds that everything is correct and tells the data exchange request to
release VLD token reward for the data owner.

3.4 Application analysis

3.4.1 Smart contract analysis using automated tools

The automated static smart contract code analysis had been done with the
help of tool Oyente [7]. In order to run the tool a Docker image oyente by
user luongnguyen [44] was downloaded and run with the following command:

1 docker pull luongnguyen / oyente && docker run -i -t luongnguyen /
oyente

However its version of components and used libraries wasn’t compatible
with the version of Solidity used by the smart contract developers. A docker
image with the same name but from an user tobykendall [45] was used suc-
cessfully. The second Docker image was downloaded with following command:

1 docker pull tobykendall / oyente && docker run -i -t tobykendall /
oyente

The automated tests were run for the following smart contract files from
the VETRI code repository blockchain-smart-contracts:

• Identity.sol

• ERC20Token.sol

• DataExchangeRequest.sol

53

3. Analysis of the VETRI application

• Migrations.sol

The Oyente tool was searching for the following vulnerabilities:

• Integer Underflow

• Integer Overflow

• Parity Multisig Bug 2

• Callstack Depth Attack Vulnerability

• Transaction-Ordering Dependence (section 1.2.5.8)

• Timestamp Dependency (section 1.2.5.9)

• Re-Entrancy Vulnerability (section 1.2.5.4)

The tool tested the aforementioned smart contract files and also the smart
contract files they were using – e.g. SafeMath.sol7 from OpenZeppelin library
in the ERC20Token.sol smart contract file.

The test outputs are in appendix chapter B.

3.4.1.1 Output analysis

The tool hasn’t found any major vulnerabilities, except an instance of integer
overflow in DataExchangeRequest.sol on line 188:

1 ...
2 function getFields () public view returns (string memory) {
3 return fields ; % <-- this line
4 }
5 ...

The integer overflow would occur if variable fields equals 1.

3.4.2 Code testing for libraries shared between the mobile
and web applications

The next step in testing were TypeScript files8. Those files are used in both
mobile and web applications for further interaction between the smart con-
tracts and the applications.

The testing was done by SonarLint [46] and SonarQube [2] applications.
7Library with unsigned math operations containing safety checks and reverting on error
8Typescript is an open-source programming language developed by Microsoft and it is

a superset of JavaScript programming language

54

3.4. Application analysis

Figure 3.4: SonarLint bug detection illustrative screenshot [1]

3.4.2.1 SonarLint

SonarLint is a linter add-on that can be added to following IDEs : Eclipse,
IntelliJ IDEA, Visual Studio, VS Code and Atom. For these tests the linter
has been used with the Atom open-source IDE. Its features are [1] :

• Bug detection

• Instant feedback

• Fix recommendations

• Coding best practice documentation

• List of already existing issues

The linter was installed via the Atom IDE package manager and consulted
for each individual file.

3.4.2.2 SonarQube

SonarQube is a CI (Continuous Integrity) tool that can be downloaded for
all the main platforms or downloaded as a Docker image. The application

55

3. Analysis of the VETRI application

has multiple pricing options set up – the Community version was used in this
instance. For these tests the application has been used as a Docker image. Its
features are [2]:

• Continuous inspection

– Overall health
– Code quality enforcement
– Pull request analysis
– Project history visualization

• Issue detection

– Bug detection
– Difficultly maintainable code detection
– Security vulnerability detection
– Custom rule support
– Analysis of all execution parts

• Support for multiple programming languages

– C/C++
– Python
– Typescript/JavaScript
– PHP
– Swift
– Ruby
– And others

• DevOps integration

– Build systems – Maven, MSBuild, Makefile, etc.
– CI Engines – Bamboo, Jenkins, Azure DevOps, etc.
– Pass/fail notification
– Web API
– High availability

• Centralizations

SonarQube has been run from the file repository directory with the fol-
lowing command:

56

3.4. Application analysis

Figure 3.5: Illustrative SonarQube interface screenshot [2]

1 sonar - scanner \
2 -Dsonar . projectKey = Typescript \
3 -Dsonar . sources =. \
4 -Dsonar .host.url=http :// localhost :9000 \
5 -Dsonar .login= SECRET_KEY

3.4.2.3 Test results

Neither of the used tools have found any vulnerabilities in the tested source
code files. SonarQube output along with result screenshots can be found in
appendix chapter C.

3.4.3 Token bridge test

The next test subject is the bridge that connects the private VETRI chain and
the Ethereum chain. The used solution is called token-bridge [43]. SonarQube
was again used as a testing tool.

No vulnerabilities have been found, although the tools identified that
15,2% of the code was duplicate – 10 blocks, to be precise. This can be
seen in figure 3.6.

57

3. Analysis of the VETRI application

Figure 3.6: Bridge test result screenshot

3.4.4 Analysis of the Android mobile application using
automated tools

The mobile application (Android version, specifically 9) was the next compo-
nent to be tested. Mobile Security Framework (MobSF) [47] has been chosen
for this task, since it is both open-source and available as a Docker image. It
was downloaded and run with following commands:

1 docker pull opensecurity /mobile -security -framework -mobsf
2 docker run -it -p 8000:8000 opensecurity /mobile -security -

framework -mobsf: latest

The author has been given tester access to the VETRI application on
Google Play store and was subsequently able to retrive the VETRI Android
package file (APK). This was done with Android Debug Bridge (ADB) with
following commands 10:

1 adb shell pm list packages
2 adb shell pm path io.vetri. wallet .dev
3 adb pull /data/app/io.vetri. wallet .dev - ugs_saNK2a7N9HW8UWZUiQ ==/

base.apk

This file has been uploaded to the Mobile Security Framework application
running on the testing laptop. The MobSF application is a disassembler and
a static analysis tool and it provides information about the APK file, such as:

• Code nature
9Most of the code is shared between Android and iOS application and the iOS application

testing – dynamic analysis mainly – requires Apple-specific test environment that was not
available to the author

10With the testing phone connected via USB and with ADB allowed and appropriately
configured

58

3.4. Application analysis

Figure 3.7: MobSF static analysis result overview

• Signer certificate details

• Required permissions

• Android API details

• Components

• Security analysis

The result overview can be seen in figure 3.7.
The security analysis of the APK file revealed a few vulnerabilities, result-

ing in average Common Vulnerability Scoring System (CVSS) score of 6.2 11

and security score of 38/100. However it is important to mention that all of
the found vulnerabilities were found in external dependencies and libraries.
It is also important to mention that external libraries of mobile application
are not in the testing scope and thus no further testing regarding the found
vulnerabilities has been done – this implies that the received result should not
be taken as definitive and necessarily correct.

11CVSS scores range from 0.0 – informative – up to 10.0 – extremely critical

59

3. Analysis of the VETRI application

The found vulnerabilities were exclusively present in the used external files
or libraries (full list of the vulnerable files can be found in the attached CD).
These vulnerabilities can be fixed by either upgrading the used components
to their newest versions (either once or continuously) or using other similar
components with similar functionalities. The second solution might not be
very viable since most of the used components are linked via their function
names and changing these could result in many errors.

3.4.5 OpenVAS automated security scan of deployment
servers

The VETRI development team already performed an internal OpenVAS vul-
nerability scan which was provided to the author of the thesis. These are the
vulnerabilities that have been found – both of them were assigned medium
severity.

3.4.5.1 Vulnerable Cipher Suites for HTTPS

Insecure cipher suites have been found, specifically TLS ECDHE RSA WITH
3DES EDE CBC SHA and TLS RSA WITH 3DES EDE CBC SHA. Both of
those ciphers are vulnerable to SWEET32 attack (CVE-2016-2183).

The test also revealed that TLS versions 1.0 and 1.1 are supported – these
versions are not secure anymore and thus should not be used.

The remediation is to disable the vulnerable cipher suites and TLS ver-
sions.

3.4.5.2 Untrusted Certificate Authorities

A self-signed certificate has been found – the remediation is to replace said
certificate with one signed by valid certificate authority.

See 1.5.4 for further information.

3.5 Vulnerabilities and mitigations overview

3.5.1 Vulnerable dependencies in mobile application

The vulnerable dependencies (see 3.4.4 for details) could generally be solved by
either upgrading the used versions or choosing other dependencies. However
a risk analysis has to be done for either of these mitigations – since both
of them could theoretically break the developed application (e.g. different
function names, different return values, different data types) and hinder the
whole development.

60

3.6. Application analysis limitations and follow-up

3.5.2 OpenVAS security scan of deployment servers

An OpenVAS security scan has already been run by the VETRI development
team. These are the vulnerabilities that have been found – both of them were
assigned medium severity. Please see section 3.4.5 for details.

• Vulnerable Cipher Suites for HTTPS - Remove outdated cipher suites
and insecure TLS versions

• Untrusted Certificate Authorities - Sign the certificates with a trusted
certificate authority

3.6 Application analysis limitations and follow-up

3.6.1 Testing limitations

The limitations of testing were that almost no dynamic or manual analysis has
been done since they were out-of-scope and would require strong knowledge
of Solidity, TypeScript and other programming languages.

Furthermore, penetration testing is not the only method of security as-
sessment – security audit, architecture review, bug bounty or hiring test users
can also be done.

This thesis is also not concerned with security of blockchain networks as
such – e.g. 51% attack or any kind of ”conspiracy” of the authoritative nodes
on the sidechain.

And the last important thing to keep in mind when designing any kind
of decentralized application is that the all of the used components have to
be secure and tested. For example a vulnerable web application allowing
a malicious user to carry out illegal actions would nullify all the effort that
has been made in order to secure the other components. This is also true for
any application or system – especially one with broad userbase, since 90-95%
of all successful cyber attacks begin with a phishing e-mail [48] and thus with
the human component of the application.

3.6.2 Follow-up

In order to improve the usability of the proposed framework it is recommended
to include smart contract (Solidity) rules to popular vulnerability scanners –
such as Nessus or OpenVAS. The framework would also be more user-friendly
if it was scripted and the script would install the required dependencies and
run the tests automatically. Supporting more programming languages would
help as well.

61

Chapter 4
Conclusion

The aim of this thesis has been to describe the most common vulnerabilities
in all of decentralized application’s components, creating a framework that
should help developers of such applications that are not as versed in cyber
security and also to test specific sections of the VETRI distributed application.

The analysis of the five basic components (blockchain, smart contracts,
web application, mobile application and infrastructure) has been performed
while using the industry-standard sources (OWASP Top 10 for web and mo-
bile applications), newest research for smart contracts or author’s personal
experience in infrastructure testing.

The framework has been created in a checklist-style form in order to allow
developers to simply check each of the vulnerabilities during their quest for
a secure application.

The analysis of the VETRI application has been performed – automatic
code scans for smart contracts in Solidity language and libraries shared be-
tween the web and mobile applications in TypeScript language. Automatic
code scans have also been performed for the entire Android mobile application
– finding several vulnerabilities caused by outdated dependencies. The last
test was an automated OpenVAS scan of deployment servers that also revealed
several minor vulnerabilities – both of which were regarding cipher suites or
certificate signature.

63

Bibliography

[1] SonarSource. SonarLint Features. 2018. Available from: https://
www.sonarlint.org/features/

[2] SonarSource. SonarQube. 2018. Available from: https:
//www.sonarqube.org/

[3] Haber, S.; Stornetta, S. W. How to time-stamp a digital document. Jour-
nal of Cryptology, January 1991.

[4] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. 2008.

[5] Raval, S. Decentralized Applications: Harnessing Bitcoin’s Blockchain
Technology. ” O’Reilly Media, Inc.”, 2016.

[6] Atzei, N.; Bartoletti, M.; et al. A survey of attacks on ethereum smart
contracts (sok). In Principles of Security and Trust, Springer, 2017, pp.
164–186.

[7] Luu, L.; Chu, D.-H.; et al. Oyente - Making smart contracts smarter.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2016, pp. 254–269.

[8] Kosba, A.; Miller, A.; et al. Hawk: The blockchain model of cryptog-
raphy and privacy-preserving smart contracts. In 2016 IEEE symposium
on security and privacy (SP), IEEE, 2016, pp. 839–858.

[9] Boneh, D.; Naor, M. Timed commitments. In Annual International Cryp-
tology Conference, Springer, 2000, pp. 236–254.

[10] OpenZeppelin. OpenZeppelin. 2018. Available from: https:
//openzeppelin.org/

65

https://www.sonarlint.org/features/
https://www.sonarlint.org/features/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://openzeppelin.org/
https://openzeppelin.org/

Bibliography

[11] ConsenSys. Ethereum Smart Contract Security Best Practices.
2018. Available from: https://consensys.github.io/smart-contract-
best-practices/

[12] Wichers, D. Owasp top-10 2017. OWASP Foundation, February, 2017.

[13] Enumeration, C. C. W. CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (’SQL Injection’). 2018. Available
from: https://cwe.mitre.org/data/definitions/89.html

[14] Enumeration, C. C. W. CWE-77: Improper Neutralization of Special
Elements used in a Command (’Command Injection’). 2018. Available
from: https://cwe.mitre.org/data/definitions/77.html

[15] RFC 4511 - Lightweight Directory Access Protocol. 2006. Available from:
https://tools.ietf.org/html/rfc4511

[16] Foundation, O. Testing for LDAP Injection (OTG-INPVAL-006).
2018. Available from: https://www.owasp.org/index.php/Testing_
for_LDAP_Injection_(OTG-INPVAL-006)

[17] Foundation, O. Top 10-2017 A4-XML External Entities (XXE). 2018.
Available from: https://www.owasp.org/index.php/Top_10-2017_A4-
XML_External_Entities_(XXE)

[18] Bromberger, S. DNS as a covert channel within protected networks.
National Electronic Sector Cyber Security Organization (NESCO)(Jan.,
2011), 2011.

[19] Sullivan, B. XML Denial of Service Attacks and Defenses. 2009. Available
from: https://msdn.microsoft.com/en-us/magazine/ee335713.aspx

[20] for Internet Security, C. CIS Benchmark. 2018. Available from: https:
//www.cisecurity.org/cis-benchmarks/

[21] Foundation, O. Top 10-2017 A8-Insecure Deserialization. 2018. Available
from: https://www.owasp.org/index.php/Top_10-2017_A8-Insecure_
Deserialization

[22] Zorz, Z. The percentage of open source code in proprietary apps is rising.
2018. Available from: https://www.helpnetsecurity.com/2018/05/22/
open-source-code-security-risk/

[23] Equifax. Frequently Asked Questions. 2017. Available from:
https://www.equifaxsecurity2017.com/frequently-asked-
questions/#general-faqs

66

https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/77.html
https://tools.ietf.org/html/rfc4511
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OTG-INPVAL-006)
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OTG-INPVAL-006)
https://www.owasp.org/index.php/Top_10-2017_A4-XML_External_Entities_(XXE)
https://www.owasp.org/index.php/Top_10-2017_A4-XML_External_Entities_(XXE)
https://msdn.microsoft.com/en-us/magazine/ee335713.aspx
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.owasp.org/index.php/Top_10-2017_A8-Insecure_Deserialization
https://www.owasp.org/index.php/Top_10-2017_A8-Insecure_Deserialization
https://www.helpnetsecurity.com/2018/05/22/open-source-code-security-risk/
https://www.helpnetsecurity.com/2018/05/22/open-source-code-security-risk/
https://www.equifaxsecurity2017.com/frequently-asked-questions/#general-faqs
https://www.equifaxsecurity2017.com/frequently-asked-questions/#general-faqs

Bibliography

[24] Goldstein, A. The Equifax Breach: Who’s to Blame? 2017.
Available from: https://resources.whitesourcesoftware.com/blog-
whitesource/the-equifax-breach-who-s-to-blame

[25] NIST. CVE-2017-5638 Detail. 2017. Available from: https://
nvd.nist.gov/vuln/detail/CVE-2017-5638

[26] Foundation, O. OWASP Mobile top 10 - 2016. 2016. Available from:
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

[27] Green, D. Top 10 Vulnerabilities in Mobile Applications. 2017.
Available from: https://www.whitehatsec.com/blog/top-10-
vulnerabilities-in-mobile-applications/

[28] IBM. Deprecation: weaker cryptographic algorithms. 2018. Available
from: https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_
8.0.0/com.ibm.mq.pro.doc/q123425_.html

[29] Qualys. SSL report: google.com. 2019. Available from: https:
//www.ssllabs.com/ssltest/analyze.html?d=google.com&s=
216.58.194.206&latest

[30] LogicMonitor. Cloud Vision 2020: The Future of the Cloud Study. 2018.

[31] Standard, P. T. E. Main page. 2014. Available from: http://
www.pentest-standard.org/index.php/Main_Page

[32] Point, C. Critical infrastructure and SCADA/ICS cybersecurity vulnera-
bilities and threats. 2016. Available from: https://www.checkpoint.com/
downloads/products/top-10-cybersecurity-vulnerabilities-
threat-for-critical-infrastructure-scada-ics.pdf

[33] ConsenSys. Usage share of web browsers. 2019. Available from: https:
//en.wikipedia.org/wiki/Usage_share_of_web_browsers

[34] Google. Check if a site’s connection is secure. 2019. Available from:
https://support.google.com/chrome/answer/95617?hl=en

[35] Corporation, M. How to troubleshoot security error codes on secure web-
sites. 2018. Available from: https://support.mozilla.org/en-US/kb/
error-codes-secure-websites

[36] ISECOM. Open Source Security Testing Methodology Manual (OS-
STMM). 2017. Available from: http://www.isecom.org/research/

[37] OWASP. Web Application Penetration Testing. 2014. Available from:
https://www.owasp.org/index.php/Web_Application_Penetration_
Testing

67

https://resources.whitesourcesoftware.com/blog-whitesource/the-equifax-breach-who-s-to-blame
https://resources.whitesourcesoftware.com/blog-whitesource/the-equifax-breach-who-s-to-blame
https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.whitehatsec.com/blog/top-10-vulnerabilities-in-mobile-applications/
https://www.whitehatsec.com/blog/top-10-vulnerabilities-in-mobile-applications/
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.pro.doc/q123425_.html
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.pro.doc/q123425_.html
https://www.ssllabs.com/ssltest/analyze.html?d=google.com&s=216.58.194.206&latest
https://www.ssllabs.com/ssltest/analyze.html?d=google.com&s=216.58.194.206&latest
https://www.ssllabs.com/ssltest/analyze.html?d=google.com&s=216.58.194.206&latest
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
https://www.checkpoint.com/downloads/products/top-10-cybersecurity-vulnerabilities-threat-for-critical-infrastructure-scada-ics.pdf
https://www.checkpoint.com/downloads/products/top-10-cybersecurity-vulnerabilities-threat-for-critical-infrastructure-scada-ics.pdf
https://www.checkpoint.com/downloads/products/top-10-cybersecurity-vulnerabilities-threat-for-critical-infrastructure-scada-ics.pdf
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
https://support.google.com/chrome/answer/95617?hl=en
https://support.mozilla.org/en-US/kb/error-codes-secure-websites
https://support.mozilla.org/en-US/kb/error-codes-secure-websites
http://www.isecom.org/research/
https://www.owasp.org/index.php/Web_Application_Penetration_Testing
https://www.owasp.org/index.php/Web_Application_Penetration_Testing

Bibliography

[38] OWASP. OWASP Testing Guide v4 Table of Contents. 2016. Avail-
able from: https://www.owasp.org/index.php/OWASP_Testing_Guide_
v4_Table_of_Contents

[39] ConsenSys. Ethereum Smart Contract Security Best Practices - Secu-
rity Tools. 2018. Available from: https://consensys.github.io/smart-
contract-best-practices/security_tools/

[40] Wiki, T. E. ERC20 Token Standard. 2018. Available from: https://
theethereum.wiki/w/index.php/ERC20_Token_Standard

[41] AG, P. VETRI whitepaper. 2018. Available from: https://
vetri.global/static/WP-VETRI.pdf

[42] Procivis. eID+. 2019. Available from: https://procivis.ch/eid/

[43] poanetwork. GitHub - poanetwork/token-bridge. 2018. Available from:
https://github.com/poanetwork/token-bridge

[44] luongnguyen. Docker Hub - luongnguyen/oyente. 2018. Available from:
https://hub.docker.com/r/luongnguyen/oyente/

[45] tobykendall. Docker Hub - tobykendall/oyente. 2018. Available from:
https://hub.docker.com/r/tobykendall/oyente/

[46] SonarSource. SonarLint. 2018. Available from: https://
www.sonarlint.org/

[47] MobSF. GitHub - MobSF/Mobile-Security-Framework-MobSF. 2019.
Available from: https://github.com/MobSF/Mobile-Security-
Framework-MobSF

[48] Cision. New Email Security Report from IRONSCALES Identifies Email
Phishing Attack Detection, Mitigation and Remediation as Biggest Chal-
lenge for Security Teams. 2017. Available from: http://www.prweb.com/
releases/2017/09/prweb14742215.htm

68

https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://consensys.github.io/smart-contract-best-practices/security_tools/
https://consensys.github.io/smart-contract-best-practices/security_tools/
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://vetri.global/static/WP-VETRI.pdf
https://vetri.global/static/WP-VETRI.pdf
https://procivis.ch/eid/
https://github.com/poanetwork/token-bridge
https://hub.docker.com/r/luongnguyen/oyente/
https://hub.docker.com/r/tobykendall/oyente/
https://www.sonarlint.org/
https://www.sonarlint.org/
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
http://www.prweb.com/releases/2017/09/prweb14742215.htm
http://www.prweb.com/releases/2017/09/prweb14742215.htm

Appendix A
VETRI mobile application

screen designs

69

A. VETRI mobile application screen designs

Figure A.1: Welcome screen

70

Figure A.2: Adding data 71

A. VETRI mobile application screen designs

Figure A.3: Token exchange72

Figure A.4: Data requests 73

A. VETRI mobile application screen designs

Figure A.5: Survey example74

Figure A.6: Balance overview 75

A. VETRI mobile application screen designs

Figure A.7: Token screen76

Appendix B
Full Oyente scan outputs

B.1 Identity.sol

Identity.sol:Identity:
============ Results ===========

EVM Code Coverage: 44.9%
Integer Underflow: False
Integer Overflow: False
Parity Multisig Bug 2: False
Callstack Depth Attack Vulnerability: False
Transaction-Ordering Dependence (TOD): False
Timestamp Dependency: False
Re-Entrancy Vulnerability: False

====== Analysis Completed ======
openzeppelin-solidity/contracts/math/SafeMath.sol:SafeMath:
============ Results ===========

EVM Code Coverage: 100.0%
Integer Underflow: False
Integer Overflow: False
Parity Multisig Bug 2: False
Callstack Depth Attack Vulnerability: False
Transaction-Ordering Dependence (TOD): False
Timestamp Dependency: False
Re-Entrancy Vulnerability: False

====== Analysis Completed ======

B.2 ERC20Token.sol

ERC20Token.sol:ERC20Token:
============ Results ===========

EVM Code Coverage: 85.3%

77

B. Full Oyente scan outputs

Integer Underflow: False
Integer Overflow: False
Parity Multisig Bug 2: False
Callstack Depth Attack Vulnerability: False
Transaction-Ordering Dependence (TOD): False
Timestamp Dependency: False
Re-Entrancy Vulnerability: False

====== Analysis Completed ======
openzeppelin-solidity/contracts/access/Roles.sol:Roles:
============ Results ===========

EVM Code Coverage: 100.0%
Integer Underflow: False
Integer Overflow: False
Parity Multisig Bug 2: False
Callstack Depth Attack Vulnerability: False
Transaction-Ordering Dependence (TOD): False
Timestamp Dependency: False
Re-Entrancy Vulnerability: False

====== Analysis Completed ======
openzeppelin-solidity/contracts/math/SafeMath.sol:SafeMath:
============ Results ===========

EVM Code Coverage: 100.0%
Integer Underflow: False
Integer Overflow: False
Parity Multisig Bug 2: False
Callstack Depth Attack Vulnerability: False
Transaction-Ordering Dependence (TOD): False
Timestamp Dependency: False
Re-Entrancy Vulnerability: False

====== Analysis Completed ======
openzeppelin-solidity/contracts/token/ERC20/ERC20.sol:ERC20:
============ Results ===========

EVM Code Coverage: 99.9%
Integer Underflow: False
Integer Overflow: False
Parity Multisig Bug 2: False
Callstack Depth Attack Vulnerability: False
Transaction-Ordering Dependence (TOD): False
Timestamp Dependency: False
Re-Entrancy Vulnerability: False

====== Analysis Completed ======
openzeppelin-solidity/contracts/token/ERC20/ERC20Mintable.sol:ERC20Mintable:
============ Results ===========

EVM Code Coverage: 85.3%

78

B.3. DataExchangeRequest.sol

Integer Underflow: False
Integer Overflow: False
Parity Multisig Bug 2: False
Callstack Depth Attack Vulnerability: False
Transaction-Ordering Dependence (TOD): False
Timestamp Dependency: False
Re-Entrancy Vulnerability: False

====== Analysis Completed ======

B.3 DataExchangeRequest.sol

DataExchangeRequest.sol:DataExchangeRequest:
============ Results ===========

EVM Code Coverage: 56.3%
Integer Underflow: True
Integer Overflow: False
Parity Multisig Bug 2: False
Callstack Depth Attack Vulnerability: False
Transaction-Ordering Dependence (TOD): False
Timestamp Dependency: False
Re-Entrancy Vulnerability: False

DataExchangeRequest.sol:188:9: Warning: Integer Underflow.
return fields

Integer Underflow occurs if:
return fields = 1

====== Analysis Completed ======

B.4 Migrations.sol

Migrations.sol:Migrations:
============ Results ===========

EVM Code Coverage: 65.2%
Integer Underflow: False
Integer Overflow: False
Parity Multisig Bug 2: False
Callstack Depth Attack Vulnerability: False
Transaction-Ordering Dependence (TOD): False
Timestamp Dependency: False
Re-Entrancy Vulnerability: False

====== Analysis Completed ======

79

Appendix C
Full SonarQube scan outputs

INFO: Scanner configuration file: /home/archer/Downloads/
\sonar-scanner-3.3.0.1492-linux/conf/sonar-scanner.properties
INFO: Project root configuration file: NONE
INFO: SonarQube Scanner 3.3.0.1492
INFO: Java 1.8.0_121 Oracle Corporation (64-bit)
INFO: Linux 4.4.0-139-generic amd64
INFO: User cache: /home/archer/.sonar/cache
INFO: SonarQube server 7.6.0
INFO: Default locale: "en_US", source code encoding: "UTF-8"
\(analysis is platform dependent)
INFO: Load global settings
INFO: Load global settings (done) | time=173ms
INFO: Server id: BF41A1F2-AWlTvcjQyBG9mJt0bXbt
INFO: User cache: /home/archer/.sonar/cache
INFO: Load/download plugins
INFO: Load plugins index
INFO: Load plugins index (done) | time=127ms
INFO: Load/download plugins (done) | time=180ms
INFO: Process project properties
INFO: Execute project builders
INFO: Execute project builders (done) | time=15ms
INFO: Project key: Typescript
INFO: Base dir: /home/archer/VETRI/TSanalysis
INFO: Working dir: /home/archer/VETRI/TSanalysis/.scannerwork
INFO: Load project settings
INFO: Load project settings (done) | time=21ms
INFO: Load project repositories
INFO: Load project repositories (done) | time=134ms
INFO: Load quality profiles
INFO: Load quality profiles (done) | time=58ms

81

C. Full SonarQube scan outputs

INFO: Load active rules
INFO: Load active rules (done) | time=3008ms
INFO: Load metrics repository
INFO: Load metrics repository (done) | time=85ms
WARN: SCM provider autodetection failed. Please use "sonar.scm.provider"
\to define SCM of your project, or disable the SCM Sensor in the
\project settings.
INFO: Indexing files...
INFO: Project configuration:
INFO: 32 files indexed
INFO: Quality profile for ts: Sonar way
INFO: ------------- Run sensors on module Typescript
INFO: Sensor JaCoCo XML Report Importer [jacoco]
INFO: Sensor JaCoCo XML Report Importer [jacoco] (done) | time=9ms
INFO: Sensor JavaXmlSensor [java]
INFO: Sensor JavaXmlSensor [java] (done) | time=3ms
INFO: Sensor HTML [web]
INFO: Sensor HTML [web] (done) | time=41ms
INFO: Sensor SonarTS [typescript]
INFO: No tsconfig.json file found for 8 file(s) (Run in debug mode to
\see all of them). They will be analyzed with a default configuration.
INFO: Analyzing 8 typescript file(s) with the following configuration\
file
DEFAULT_TSCONFIG
INFO: 8 files analyzed out of 8
INFO: Sensor SonarTS [typescript] (done) | time=2669ms
INFO: Sensor Zero Coverage Sensor
INFO: Sensor Zero Coverage Sensor (done) | time=46ms
INFO: ------------- Run sensors on project
INFO: No SCM system was detected. You can use the ’sonar.scm.provider’\
property to explicitly specify it.
INFO: 3 files had no CPD blocks
INFO: Calculating CPD for 5 files
INFO: CPD calculation finished
INFO: Analysis report generated in 202ms, dir size=118 KB
INFO: Analysis report compressed in 41ms, zip size=33 KB
INFO: Analysis report uploaded in 79ms
INFO: ANALYSIS SUCCESSFUL, you can browse http://localhost:9000\
dashboard?\id=Typescript
INFO: Note that you will be able to access the updated dashboard
\once the server has processed the submitted analysis report
INFO: More about the report processing at http://localhost:9000\
/api/ce/task?id=AWlT5JixyBG9mJt0bZh3
INFO: Analysis total time: 10.701 s

82

INFO: ---
INFO: EXECUTION SUCCESS
INFO: ---
INFO: Total time: 13.166s
INFO: Final Memory: 15M/256M
INFO: ---

Figure C.1: SonarQube screenshot 1

83

C. Full SonarQube scan outputs

Figure C.2: SonarQube screenshot 2

84

Figure C.3: SonarQube screenshot 3

85

Appendix D
Acronyms

P2P Peer-to-peer

PKI Public key infrastructure

HTTP Hypertext transfer protocol

HTTPS Secure hypertext transfer protocol

WAF Web application firewall

OS Operating system

LDAP Lightweight directory access protocol

TLS Transport layer security

HSM Hardware security module

HSTS HTTP strict transport security

XML Extensible markup language

NVD National Vulnerability Database

CVSS Common Vulnerability Scoring System

DoS Denial of Service attack

APK Android Package

UID User ID

KYC Know Your Customer

DER Data Exchange Request

APK Android Package

87

Appendix E
Contents of enclosed CD

readme.txt the file with CD contents description
thesis.................the directory of LATEX source codes of the thesis

mybibliographyfile.bib BibTex source file
source.tex.............................source .tex file of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
MobSF.pdf....................complete report from MobSF analyzer

89

	Introduction
	Aim of the thesis
	Structure of the thesis

	Analysis
	Blockchain
	Smart Contracts
	Web application
	Mobile application
	Infrastructure

	Smart contract application testing framework
	Framework

	Analysis of the VETRI application
	VETRI application overview
	VETRI blockchain architecture
	Blockchain use-cases
	Application analysis
	Vulnerabilities and mitigations overview
	Application analysis limitations and follow-up

	Conclusion
	Bibliography
	VETRI mobile application screen designs
	Full Oyente scan outputs
	Identity.sol
	ERC20Token.sol
	DataExchangeRequest.sol
	Migrations.sol

	Full SonarQube scan outputs
	Acronyms
	Contents of enclosed CD

