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Abstrakt

Tato prace se zabyva tim, jak sloucit nasobeni fidké matice vektorem a na-
sobeni transponované matice vektorem do jediné operace, kterd se jmenuje
spojené nasobeni fidké matice vektorem (SpMMTV). Déle se zabyva paraleli-
zaci této sloucené operace. Paralelni SpMM™TV lze vyuzit ke zrychleni metody
bikonjugovanych gradientti, coz je iterativni algoritmus pro reseni rozsahlych
ridkych soustav linearnich rovnic. Prace zkouma stavajici formaty pro ukla-
dani fidkych matic a stavajici pfistupy paralelniho SpMMTV. Je vyvinuta a
podrobné popsana implementace SpMMTV pro vicejadrové procesory na sys-
témech se sdilenou paméti. U vyvinutych implementaci jsou diskutovany moz-
nosti optimalizace. Nékteré z diskutovanych optimalizaci jsou rovnéz imple-
mentovany. Jsou porovnany vykonnosti vyslednych implementaci SpMMTV a
srovnany s implementaci zalozenou na knihovné Intel Math Kernel Library.

Klicova slova metoda bikonjugovanych gradientti, nasobeni ridké matice
vektorem, OpenMP, paralelizace, ridka matice.
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Abstract

This thesis focuses on investigating approaches to combining sparse matrix-
vector multiplication and transposed sparse matrix-vector multiplication into
a single operation called joint direct and transposed sparse matrix-vector mul-
tiplication (SpMMTV). It also focuses on parallelising this joint operation. A
parallel SpMM™TV operation can be used to speed up the biconjugate gradient
method, which is an iterative algorithm for solving large sparse systems of lin-
ear equations. Existing sparse matrix storage formats and existing approaches
to parallel SpMM™V are examined in this thesis. Parallel SpMMTV imple-
mentations for CPUs on shared memory systems are developed and throughly
described. Optimisations of these implementations are discussed and some of
them are implemented. The resulting performance of developed SpMM™V im-
plementations is compared with an implementation based on the Intel Math
Kernel Library.

Keywords biconjugate gradient method, OpenMP, parallelisation, sparse
matrix, sparse matrix-vector multiplication.
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Introduction

Joint direct and transposed sparse matrix-vector multiplication (SpMMTV)
is a computational kernel that combines sparse matriz-vector multiplication
(SpMV) and transposed sparse matriz-vector multiplication (SpMTV) into a
single joint operation. An SpMMTV operation’s input consists of a sparse
matrix and two vectors; its output consists of two vectors. Both pairs of input
and output vectors correspond to input and output vectors of the underly-
ing SpMV and SpMTV operations. SpMMTV is an operation which can be
performed in parallel just like SpMV and SpMTV.

The biconjugate gradient method is an iterative algorithm that can be used
to solve large sparse systems of linear equations [, 2]. A significant portion of
the algorithm’s run-time is spent performing SpMV and SpMTV. Executing
the matrix-vector products as a single joint operation (i.e. as SpMM?TV) can
lead to significant speed gains.

This thesis intends to:

1. Review existing sparse matrix storage formats.

2. Review existing parallel SpMM™V approaches for CPUs and GPUs on
shared memory systems.

3. Implement the approach to parallel SpMM™V presented in [3] and dis-
cuss possible optimisations.

4. Implement some of the discussed optimisations and measure the result-
ing speedup.

5. Compare the implementation’s performance with existing libraries.






CHAPTER ].

Sparse Matrix Storage Formats

This chapter introduces sparse matrices (Section El]) and describes relevant
sparse matrix storage formats. The most common sparse matrix storage
formats, namely the Coordinate format, the Compressed Sparse Row format
and the Compressed Sparse Column format, are covered in Sections [1.2,
and respectively. Hierarchical storage formats for sparse matrices, a ma-
jor focus of this thesis, are described in Section [1.5. Other interesting sparse
matrix storage formats are briefly covered in Section [L.6.

1.1 Sparse Matrices

In mathematics, the term matriz can refer to a rectangular array of num-
bers [4]. It can be said that the matrix’s numbers are arranged in rows and
columns. The numbers of a matrix can be also referred to as the matrix’s
elements. The following text refers to the matrix’s topmost row and leftmost
column as to its first row and first column respectively. Analogously, the mat-
rix’s bottom-most row and rightmost column are respectively referred to as the
last row and last column.

A straightforward matrix storage scheme is to store all matrix elements
consecutively into a one or two-dimensional array. In order to facilitate easy
access to the stored matrix’s elements, it is desirable to order the elements in
the array in a predictable manner. One way to order elements in an array is
to start with the matrix’s first row and store all of the row’s elements from
the first to the last column. Those elements are similarly followed by elements
from the second row, third row and so forth. Such an ordering of elements in
an array is often referred to as row-major order. A complementary approach
called column-magjor order is to start with the first column, order its elements
from the first to last row, and analogously to continue with the second column,
third column, etc. Matrices stored in either of the described ways are further
called dense matrices.



1. SPARSE MATRIX STORAGE FORMATS

In some cases it may be advantageous not to store all elements of a mat-
rix. Such matrices are called sparse matrices [5]. The values of the omitted
elements are usually implicitly known. This thesis deals with sparse matrices
where the left out elements are assumed to be equal to zero — the sparse
matrices contain only nonzero elements. Said matrices arise in many fields,
for example structural engineering, computational fluid dynamics, computer
vision, optimisation, economic and financial modelling or chemical process
simulation []. The nonzero element count of sparse matrices from these fields
can be orders of magnitude lower than the total number of matrix elements.

When performing mathematical operations with matrices that predomin-
antly consist of zeros, a significant portion of computation time can be spent
on adding or multiplying zeros (e.g. in the case of matrix multiplication).
Taking advantage of sparse matrix representations in such cases can lead to
significant time, memory and/or storage savings.

In the rest of this chapter, M is used to refer to a sparse matrix M with
r rows and ¢ columns. The matrix consists of n,, nonzero elements and
n elements in total. All sparse matrix formats in this chapter only store the
matrix’s nonzero elements.

1.2 Coordinate Format

The so-called Coordinate format, commonly abbreviated as COO, is a very
simple sparse matrix storage format. The data structure usually consists
of three arrays of length n,,, namely vals, row_inds and col_inds. Array
vals contains the values of a matrix’s nonzero elements. Arrays row_inds and
col_inds contain the nonzero elements’ row and column indices respectively.
The elements in the arrays are arranged so that the i*" elements of all arrays
contain information about the same matrix element. [I]

The format doesn’t prescribe whether the order of nonzero elements in the
matrix should be reflected in the format’s arrays. The i*® element of the three
arrays doesn’t necessarily have to correspond to the i nonzero element of
matrix M. [1]

1.3 Compressed Sparse Row Format

The Compressed Sparse Row format (abbr. as CSR) [[] is sometimes referred
to as the Compressed Row Storage format (abbr. as CRS) [2]. The data struc-
ture usually consists of arrays vals, row_ptrs and col_inds. Arrays vals
and col_inds correspond to the identically named arrays of the COO format
described in Section . Arrays vals and col_inds contain n,, elements
whereas array row_ptrs contains r + 1 elements.

The CSR format specifies that a matrix’s nonzero elements should be
stored in arrays vals and col_inds in row-major order. The two arrays
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1.4. Compressed Sparse Columns Format

therefore first contain values or column indices of nonzero elements in the
matrix’s first row, those are followed by nonzero elements in the second row
and so forth. Array row_ptrs indicates (i.e. points to) the starting positions
of each row in arrays vals and col_inds. The i*" element of row_ptrs con-
tains the starting index of the i*" row in arrays vals and col_inds. The
i+ 1% element of row_ptrs contains the starting index of the subsequent row,
which corresponds to the one-after-the-last index of the previous row. Con-
sequentially, the first element of array row_ptrs is equal to zero and the last
(i.e. the r + 1%¢) element of the array is equal to n,,. A sparse matrix stored
in the aforementioned way may occupy significantly less space than if it had
been stored in COO. [L, 2]

1.4 Compressed Sparse Columns Format

The Compressed Sparse Columns format (abbr. as CSC) [1] is sometimes re-
ferred to as the Compressed Column Storage format (abbr. as CCS) [2]. This
format is very similar to the CSR format described in Section @ but com-
presses columns in place of rows. The data structure usually consists of arrays
vals, row_inds and col_ptrs. Array vals contains the values of a matrix’s
nonzero elements and array row_inds contains the nonzero elements’ column
indices. Both arrays consist of n,, elements in column-major order. Array
col_ptrs contains ¢ + 1 elements and indicates the starting positions of each
column in the previous two arrays.

1.5 Hierarchical Storage Formats

The so-called hierarchical storage formats (HSFs) for sparse matrices are a
major focus of this thesis. They were introduced in [7] and have been in-
vestigated further in [8, 9, 8], among others. HSFs focus on decreasing the
amount of storage occupied by a matrix’s element indices. This is achieved
by hierarchically partitioning matrices into contiguous blocks and subblocks
combined with sharing certain portions of bits of individual indices among
blocks.

Row and column indices of all elements of a matrix can be represented
with a certain amount of bits. If we partition the matrix into blocks, it can
be observed that the bit representation of row and column element indices
within a block can be divided into two parts: (1) the most significant bits,
which are shared among all elements in a block and (2) the least significant
bits, which are unique for each block’s element. Storing the shared bits only
once per block and using a smaller data type to store every element’s unique
least significant bits can substantially lower the matrix’s size [[7]. Several levels
of blocks can be created by repeating the described process [9].



1. SPARSE MATRIX STORAGE FORMATS

HSFs differ by their level counts and by the matrix format used in each
level [9]. Blocks of a specific level can use the COO format (Section @), the
CSR format (Section E) or the CSC format (Section @) [8]. A level can
also store elements as a dense matrix (i.e. store all elements to an array in a
particular order) or a bitmap (i.e. combine an array of element values with
a bitmap to indicate their positions). The efficiency of a specific HSF highly
depends on the chosen level count and the format used in each level.

Basic HSFs include the COOCOO format, the COOCSR format, the CSR-
COO format and the CSRCSR format. These are two-level formats that use
either the COO format or the CSR format in each of their levels. The amount
of bits which the mentioned HSFs use to store element indices on each level is
given by a parameter. [[7]

The COOCOO format has been generalised to more than two levels —
(COOy,)! denotes an I-level HSF that uses the COO format with k-bit element
indices in each level. The (COOg)* format is an example of such a format. [9]

Instead of assigning a single matrix format to every level of an HSF be-
forehand, each block of every level can use a different format depending on
the properties of the block’s elements. The Adaptive-Blocking Hierarchical
Storage Format (ABHSF) is a two-level format, which uses the COO format
in its first level and selects between using a dense matrix, a bitmap, the COO
format or the CSR format in its second level. [§]

1.6 Other Storage Formats

The Block Compressed Row Storage format (abbr. as BCRS) focuses on ef-
ficiently storing sparse matrices that contain dense blocks of nonzero ele-
ments [2]. The format can be viewed as a two-level hierarchical storage format
(Section ]@) which uses the CSR format in its first level and a dense matrix
(i.e. an array with all matrix elements in a particular order) in its second
level [8].

Other storage formats target matrices whose elements are concentrated
in a narrow band around the diagonal. Examples of such formats are the
Compressed Diagonal Storage format (abbr. as CDS) [2], the Skyline Storage
format (abbr. as SKS) or the Ellpack-Itpack format [1].

The text-based Matriz Market format (abbr. as MM) was designed to be
simple and extensible. It is aimed to serve as an exchange format, not as a
processing format. The format supports both dense and sparse matrices. [[L0]

Most, if not all, matrix storage formats can decrease the memory require-
ments of symmetric matrices by only storing half of their elements. Many
other sparse matrix formats have been proposed but listing all of them is bey-
ond the scope of this thesis. A survey of modern sparse matrix formats is
available in [11].



CHAPTER 2

Direct and Transposed Sparse
Matrix-Vector Multiplication

This chapter introduces and explains an operation called joint direct and trans-
posed sparse matriz-vector multiplication (SpMMTV). Section El] explains the
rationale behind such an operation. Existing approaches to SpMMTV are re-
viewed in Section R.2.

2.1 Background

A system of linear equations can be written as Az = b, where A is the coeffi-
cient matrix, x is the vector of unknowns and b is the right-hand side vector.
A is an n X n matrix; z and b are both column vectors with n entries. [[]

Large sparse systems of linear equations are commonly solved using iterat-
ive methods [l 2]. One such method is the biconjugate gradient method (abbr.
as BiCG). When calculating a solution using BiCG, a significant portion of
time is spent performing sparse matrix-vector multiplication — first with the
original matrix and then with its transpose, that is p; = Aq; and py = AT gp.

Sparse matriz-vector multiplication (SpMV) is a widely used computa-
tional kernel [12]. The performance of SpMV is limited by memory band-
width on modern multi-core and many-core architectures [L1]. Transposed
sparse matriz-vector multiplication (SpMTV) is a very similar computational
kernel and shares the same properties.

There are several straightforward approaches to computing the SpMV and
SpMTV operations in BiCG. One option is to create a transposed copy of the
coefficient matrix and perform two SpMV operations in succession. A draw-
back of this approach is that storing the coefficient matrix of a large sparse sys-
tem of linear equations twice in memory may entail prohibitively high memory
requirements. Another option is to store the matrix in memory only once and
compute SpMV followed by SpMTV. This approach keeps another disadvant-
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2. DIRECT AND TRANSPOSED SPARSE MATRIX-VECTOR MULTIPLICATION

age — the coeflicient matrix is loaded from memory twice, which is especially
inefficient considering SpMV and SpMTV are memory bound operations. [3]

An efficient approach to computing SpMV and SpMTV in BiCG is to
perform both operations as a single joint (or fused) operation, thus loading
the coeflicient matrix from memory only once. Such an approach is called joint
direct and transposed sparse matriz-vector multiplication (SpMMTV) and is a
major focus of this thesis. [3]

2.2 Existing Approaches

This section reviews existing approaches to parallel joint direct and transposed
sparse matrix-vector multiplication (SpMMTV) for CPUs and GPUs on shared
memory systems. Performing SpMMTV, i.e. performing SpMV and SpMTV
as a single fused operation as described in [3], seems to be largely unexplored.
Current research usually covers performing operations SpMV or SpMTV by
themselves or performing both of them in succession.

Slightly different operations called SpMM and SpMM T are investigated
in [13]. SpMM is the product of a matrix and multiple vectors, whereas
SpMM__T is the product of a transposed matrix and multiple vectors. A par-
allel implementation for multi-core processors of both operations is presented.
The article explores performing both operations in succession, not as a single
fused operation. The article makes use of the Compressed Sparse Blocks sparse
matrix storage format (abbr. as CSB). CSB could be viewed as a hierarchical
storage format (Section ) that uses the COO format in its second level.

The approach presented in [[13] is adapted for graphics processing units,
specifically for Nvidia GPUs, in [14]. The CSB format is redesigned as the
extended CSB format (abbr. as eCSB). Like the CSB format, eCSB can be
viewed as a hierarchical storage format (Section @) A heuristic is used to
choose between several formats for the second level of eCSB, namely the COO
format, the Ellpack-Itpack format and a hybrid format which combines the
COO and Ellpack-Itpack formats. The article takes advantage of the eCSB
format to achieve similar performance for SpMV and SpMTV. The possibility
of performing a single fused operation is not examined.

A parallel implementation for many-core processors, specifically Intel Xeon
Phi processors, is presented in [15]. The article focuses on a slightly different
pair of operations, namely on z = ATz and y = Az. The authors of [15]
acknowledge that certain algorithms, e.g. the biconjugate gradient method,
perform matrix-vector multiplication in a way that can be fused. But such
a fused version, which corresponds to SpMMTV as described in B], is not
investigated in detail.

Article [3] also mentions the approach presented in [16], which uses the
Recursive Sparse Blocks format (abbr. as RSB). RSB is a recursive tree-based
sparse matrix storage format that uses either the COO or CSR format in its

8



2.2. Existing Approaches

leaf nodes. Article [16] focuses on efficient parallel execution of SpMV and
SpMTV: the fused operation was not examined.






CHAPTER 3

Selected Approach

This chapter describes the parallel approach to joint direct and transposed
sparse matriz-vector multiplication (SpMM?TV) as presented in [3]. The used
sparse matrix storage format is explained in Section and three ways of per-
forming parallel SpMM™V are listed in Section B.2. Section outlines some
possible optimisations of the introduced SpMMTV operation. The implement-
ation presented in Chapter p of this thesis is based on the ideas described in
this section.

3.1 Sparse Matrix Storage Format

The implementation in [3] supports sparse matrices with single-precision float-
ing-point numbers. A 32-bit unsigned integer data type is used to store row
and column indices of a matrix’s nonzero elements. This limits the maximum
dimensions of a matrix to 232 x 232. At the time of writing, no matrices from
the SuiteSparse Matriz Collection [G], which serves as a source of test matrices
for this thesis, exceed this limit. While lowering the maximum dimensions of
input matrices doesn’t seem significantly limiting, using a smaller data type
for row and column indices substantially reduces the size of stored matrices.
As was mentioned in Section @, SpMMTV is a memory bound operation
which significantly benefits from decreasing the amount of transferred data.
Sparse matrices are stored in memory using a two-level hierarchical storage
format (Section @) The format makes use of the COO format (Section @)
and the CSR format (Section @) The hierarchical format uses COO in its
first level. Its second level uses either COO or CSR. A loaded matrix is split
into regions where each region contains at most 2'% rows and 2'6 columns.
Row and column indices of created regions are renumbered so that the top-
most, leftmost region element has indices equal to (0,0). Because of this
renumbering, row and column indices within a region can be stored using a
16-bit unsigned integer data type, which further decreases the stored matrix’s

11
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size. The renumbered elements are stored in the second level of the hierarch-
ical storage format. A region of renumbered elements is stored using the CSR
format if the region’s nonzero element count is greater than or equal to the re-
gion’s row count. Otherwise it is stored in the COO format. The hierarchical
format’s first level contains row and column indices of every region’s topmost,
leftmost element. These row and column indices correspond to indices from
the original matrix. When performing SpMM'V with a region, original row
and column element indices are computed from indices stored in both levels
of the hierarchical format.

The nonzero element counts of regions created in the aforementioned man-
ner can differ significantly. Regions with more nonzero elements than a
given threshold are replaced with a certain amount of smaller regions. The
threshold @ is equal to an,,. /7, where a € (0,1] is a command-line parameter,
Ny 1S the matrix’s nonzero element count and 7 is the thread count used for
parallel Sp)MMTV. After this process, which [3] calls region normalisation,
each region contains less than 6 nonzero elements.

The used hierarchical storage format contains regions in a specific order.
This order is used to traverse regions when performing SpMMTV. One option
is to sort the regions in row-major order, which corresponds to the order used
in the input, CSR formatted matrix. This ordering is referred to as lezxico-
graphical order in the implementation from [3]. Sorting the regions according
to the so-called Morton order or Z-order is also suggested. This ordering
should improve memory access locality and maximise cache utilisation.

Every CSR region may have empty leading or trailing rows, which are
traversed redundantly when performing SpMMTV. A preprocessing step is
implemented to detect and remove such rows.

3.2 Parallelisation

The parallel SpMM™'V operation implemented in [3] expects a square sparse
matrix in the hierarchical format described in Section . It also expects
a single vector stored as a dense array. This vector needs to have appropri-
ate dimensions so it can be multiplied with the matrix. The outputs of the
SpMMTV operation are two vectors stored as dense arrays. One vector is the
result of performing SpMV, the other is the result of performing SpMTV.

Fach region contains elements from a given subsequence of row and column
indices of the input matrix. These indices determine which elements of the
output vectors are updated when performing SpMMTV with a region. Parallel
execution of Sp)MMTV operations introduces the need to ensure that the same
subregions of output vectors are not written to simultaneously.

Three synchronisation approaches are proposed in [3]. The first method is
called SpMMT V without planning. In this approach an idle thread first tries to
acquire the output locks of an unfinished region. If the thread fails to acquire

12
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the locks, it continues to the next unfinished region and repeats the attempt.
If the thread acquires the locks, it marks the region as finished, performs
an SpMMTV operation with the region, releases the locks and attempts to
acquire the locks of the next unfinished region.

The second method is called statically planned SpMMT V. The aim of this
approach is to eliminate the overhead of searching for an unfinished region.
The execution time of SpMMTV with each region is modelled and an execution
plan is built using a greedy algorithm. The finished execution plan contains a
list of regions for every thread. When performing SpMM™TV according to the
execution plan, a thread acquires a region’s output locks, performs SpMM™TV
with the region, releases the locks and continues with the next region in the
list. Each thread performs SpMM?'V with regions in the order given by the
execution plan.

The third method is called dynamically planned SpMM?T V. This approach
combines the advantages of SpMMTV without planning and of statically
planned SpMMTV. SpMMTV without planning is run once and every thread’s
finished regions are recorded. An execution plan is created from the recorded
region ordering.

3.3 Optimisations

This section outlines several possible optimisations of the SpMM ™V approach
described in Sections @ and B.2. Section describes an alternative way of
keeping track of finished regions. Two parallel SpMMTV execution methods,
which reduce the amount of inter-thread communication, are suggested in
Section . Section describes how symmetric matrices can be taken
advantage of.

3.3.1 Keeping Track of Finished Regions

A parallel execution method called SpMMTV without planning is presented
in 3] and outlined in Section B.2. In this approach each thread continuously
loops over all regions, whether finished or not, and tries to acquire a region’s
output locks. Threads use a shared counter, which keeps track of how many
regions have been completed, to determine when to stop looking for new re-
gions. A disadvantage of such a method is that all threads keep iterating over
already finished regions.

An alternative approach is proposed — each thread can use a linked list-
like data structure to keep track of finished regions. Once a thread finishes
a region or discovers that a region has already been completed, the thread
can remove that region from its linked list in constant time. All elements of
this linked list should be stored in a single array to improve memory access
locality.
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3.3.2 Reducing Inter-Thread Communication

When performing SpMMTV without planning, threads need a shared data
structure to keep track of which regions have or have not been completed. It
can be assumed that access to such a data structure will require synchronisa-
tion. Several aspects may influence the overhead related to this data structure,
e.g. the way the data structure is accessed, the data structure’s implement-
ation or the amount of used threads. An alternative approach would be to
assign disjoint sets of regions to each thread before commencing SpMMTV.
As a result threads would no longer need to communicate which regions have
been completed. A drawback of such an approach is that it depends on each
thread completing its set of regions in approximately the same time.

A parallel execution method named dynamically planned SpMMTV is
presented in [3] and outlined in Section B.2. The optimisation introduced
in this section, i.e. removing the need of inter-thread communication, can also
benefit from dynamic planning. This would mean that SpMMTV without
inter-thread communication is performed once, the order of every thread’s
completed regions is recorded and an execution plan is constructed.

3.3.3 Symmetry Related Optimisations

The input sparse matrix of the SpMMTV operation may be symmetric. The
used sparse matrix hierarchical storage format can be adapted to take ad-
vantage of symmetry and store only half of the elements. When performing
SpMMTV with a symmetric matrix, only half of the multiplications need to
be performed. This is because the result of each multiplication can be ad-
ded to two symmetrical locations of each output vector. Because SpMMTV
is a memory bound operation, it substantially benefits from decreasing the
amount of transferred data (Section @)

For a matrix in the CSR format, performing SpMV and SpMTV exhib-
its different memory access patterns [16]. When performing SpMV with a
matrix’s row, multiple memory locations of the input vector are read and a
single memory location of the output vector is overwritten. When perform-
ing SpMTV with the same matrix row, a single memory location of the input
vector is read and multiple memory locations of the output vector are over-
written. Because writes are more expensive than reads, performing SpMTV
with a matrix in the CSR format results in a worse memory access pattern
than when performing SpMV with the same matrix [16]. But SpMTV can be
performed in the same manner as SpMV when the input matrix is symmetric.
Such an optimisation can be applied to an SpMMTV kernel for CSR matrices
as well.

Another optimisation opportunity arises when an SpMMTV operation is
performed with a symmetric matrix and two identical input vectors. In this
case both resulting output vectors will be identical too. Thus the SpMMTV
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operation is equivalent to performing an SpMV operation and copying the
output vector.
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CHAPTER 4

Hardware and Software Aspects

This chapter covers miscellaneous hardware and software aspects of the imple-
mentation. Section [l] introduces OpenMP — an API used in parallel parts of
the implementation. SIMD instructions, which are used to optimise certain
parts of the implementation, are introduced in Section §.2. Finally Section
introduces the Math Kernel Library.

4.1 OpenMP

The term OpenMP is commonly used to refer to the OpenMP Application
Programming Interface. The implementation presented in Chapter f uses
version 4.5 of the OpenMP API. The OpenMP API version 4.5 specification
is available in [17].

As described in [17], the OpenMP specification consists of compiler direct-
ives, library routines and environment variables for developing parallel pro-
grams. The specification extends the C, C4++ and Fortran programming
languages with single program multiple data constructs, tasking constructs,
synchronisation constructs, SIMD constructs, etc. A program that makes use
of the OpenMP API is portable among all compilers which implement the
OpenMP API specification.

One way to use the OpenMP API is through the provided compiler dir-
ectives [17]. Compiler directives can be added to the program’s source code
to mark sections that should be executed in parallel. A compiler, which sup-
ports the OpenMP API specification, will replace the directives with code that
executes the marked section in parallel.

4.2 SIMD

Modern Intel 64 processor families support single-instruction multiple-data
operations [18], which are commonly referred to as SIMD instructions. Ex-
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amples of SIMD instruction extensions are Streaming SIMD Extensions (SSE)
or Advanced Vector Extensions (AVX). A SIMD instruction performs the
same operation on multiple data elements simultaneously. The implementa-
tion presented in Chapter B makes use of SIMD instructions by using compiler
directives from the OpenMP API specification (Section {.1)).

Instructions introduced in SSE, SSE2, SSE3, SSSE3 and SSE4 operate
on 128-bit (i.e. 16-byte) XMM registers. An XMM register can hold either
(a) two double-precision floating-point numbers, (b) four single-precision float-
ing-point numbers, (c) two 64-bit integers, etc. While data can be loaded into
an XMM register from any memory location, loading data from 16-byte aligned
addresses is the most efficient. Data is 16-byte aligned when it is located at
an address that is a multiple of 16 bytes. The same alignment restrictions
apply to storing data from XMM registers to memory. [1§]

Instructions introduced in AVX and AVX2 are analogous to SSE instruc-
tions but operate on 256-bit (i.e. 32-byte) registers. The most efficient AVX
load and store instructions require 32-byte aligned data. [18]

4.3 Math Kernel Library

The Intel Math Kernel Library (MKL) as a collection of functions for software
applications that solve large computational problems [19]. MKL provides
BLAS and LAPACK linear algebra functions, functions for deep neural net-
works, vectorised math functions and so forth. Functions in MKL are highly
optimised, take advantage of multi-core CPUs and utilise SIMD instructions.
The library provides a C interface and a Fortran interface.

An SpMMTV implementation was developed that uses the Math Kernel
Library. The implementation uses the Inspector-Executor Sparse BLAS func-
tions [19]. This implementation is used to help assess the performance of
SpMMTV implementations presented in Chapter .
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CHAPTER 5

Implementation

The implementation has been primarily developed using the C4++ program-
ming language [20]. OpenMP, which introduced in Section , is used to
implement multithreading and to implement the use of SIMD instructions.
Many parts of the implementation use libraries from Boost [21].

The most time consuming part of this thesis was developing an implement-
ation based on the ideas presented in Chapter E This chapter is divided into
sections covering various parts of the implementation.

Section El! names the implemented sparse matrix storage formats and
outlines their implementations. All parallel SpMMTV implementations need
to have their input matrix first converted to a two-level hierarchical storage
format. The process of converting a matrix in the CSR format to a mat-
rix in the implemented two-level hierarchical storage format is explained in
Section @ Computational kernels used by all parallel SpMM™TV implement-
ations are listed in Section . Section describes all implemented par-
allel SpMM™V methods. Section discusses how the implementation was
adapted for usage in iterative algorithms. Extra optimisation opportunities
arose during the implementation’s development process and are covered in
Section p.g. Several additional utilities were developed apart from the main
program, the most important ones are presented in Section .

5.1 Sparse Matrix Storage Formats

Of all the sparse matrix storage formats introduced in Chapter E], the im-
plementation makes use of the coordinate format, the compressed sparse row
format and a two-level hierarchical format. The aim of Sections p.1.1| and
is to outline key aspects of the formats’ implementations, not to describe every
single implementation detail. Because of this, only the most important data
members are depicted. The implementation’s full source code is available on
the attached disc (Section B)
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5. IMPLEMENTATION

5.1.1 Coordinate and Compressed Sparse Row Formats

The Coordinate format was implemented as described in Section E A mat-
rix’s element values are stored as an array of single-precision floating-point
numbers. Row indices and column indices are stored as two arrays of 32-bit
unsigned integers. This limits the maximum dimensions of the stored mat-
rix to 232 x 232, but as was pointed out in Section @, the benefits of this
limitation should outweight the drawbacks.

The Compressed Sparse Row format was implemented as detailed in Sec-
tion [I.3. A matrix’s element values are stored as an array of single-precision
floating-point numbers. Row pointers and column indices are stored as two
arrays of 32-bit unsigned integers. Storing row pointers as 32-bit unsigned in-
tegers further constraints the stored matrix — it limits the maximum nonzero
element count to 232. This limitation was deemed acceptable, because only
one matrix from the SuiteSparse Matriz Collection [6] exceeds this limit at
the time of writing.

5.1.2 Two-Level Hierarchical Storage Format

A two-level hierarchical storage format for sparse matrices (Section @) was
implemented as specified in Section B.1l. The format’s first level uses the COO
format and its second level uses the COO or CSR format. The first level stores
32-bit indices and the second level stores 16-bit indices.

All of a matrix’s element values are stored as an array of single-precision
floating-point numbers. Column indices are stored as an array of 16-bit un-
signed integers. This array contains column indices within individual regions,
not column indices in the original matrix. Finally the data structure contains
an array of matrix regions.

A region contains a pointer to its element values and column indices stored
in the aforementioned arrays. If it is a COO format region, it stores row indices
as an array of 16-bit unsigned integers. Otherwise it is a CSR format region
and stores row pointers as 32-bit unsigned integers. Row pointers use 32-bits
because regions have up to 2'% rows and 2'® columns and may contain up to
232 elements (Section @) A region also contains a row index and a column
index of its topmost, leftmost element in the original matrix. This element
has row and column indices equal to (0,0) within the region. All stored row
and column indices of all elements of a region are relative to this element.

Row and column indices of the above mentioned topmost, leftmost element
are stored a 32-bit unsigned integers. It might seem that the indices could
be stored as 16-bit unsigned integers because the maximum dimensions of a
matrix are 232 x 232 and regions start at multiples of 2!6 rows and columns.
A larger data type needs to be used because regions with too many elements
are split into smaller regions.
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5.2 Matrix Construction Process

Before SpMMTV can be performed with a matrix in the two-level hierarchical
storage format (Section @), it needs to be converted from its input format.
Here the implementation expects the input matrix to be stored in the CSR
format (Section )

The hierarchical matrix’s construction process is based on the implement-
ation presented in [3]. Like the implementation in [3], this implementation
only supports square input matrices. Because the conversion process is fairly
complicated, only a high-level overview of it is presented.

The conversion begins with an input matrix in the CSR format. Individual
conversion steps are as follows:

1. Allocate the hierarchical matrix’s column index and element number
arrays according to the dimensions of the input matrix.

2. Determine the row and column indices of borders that partition the
matrix into regions of size 26 x 216,

3. Determine the nonzero element count of each of these regions.

4. Create regions of the appropriate types. A CSR format region is created
if the region’s nonzero element count is greater than its row count. A
COQO region is created otherwise. Empty regions, i.e. regions without
any nonzero elements, are omitted.

5. Copy elements and their indices from the input matrix to the hierarchical
matrix’s regions. Element values are simply copied to their appropriate
positions. Row and column element indices are additionally renumbered
relative to the region’s topmost, leftmost nonzero element. Both COO
and CSR formatted region’s elements are stored in row-major order.

6. Compute the region count threshold 6 as an,./7, where o € [0,1] is a
command-line parameter, n,, is the count of nonzero elements and 7 is
the thread count used for parallel SpMM™TV.

7. Iterate over all regions. If a region’s element count exceeds threshold 6,
split it into subregions. The new subregions replace the original regions
and their elements.

8. Remove empty leading and trailing rows from CSR format regions.

Step H of the conversion process involves splitting a region into smaller
subregions according to a threshold #. This process comprises the following
steps:

1. Determine the number of elements in every row and column of a region.
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2. Split the region’s rows into bands so that each of them consists of ap-
proximately 6 elements. Perform the same with columns.

3. The borders of the created row and column bands can be viewed as
a partitioning of the region into rectangular subregions. All resulting
subregions will have approximately /n,,. /6 elements, where n,,, is equal
to the nonzero element count of the region being split [3].

4. If the region begin split was not a CSR format region, determining the
number of row elements in step m created a CSR format row pointer
array. This means the region being split can be accessed as if it were a
matrix in the CSR format. Steps é to E of the conversion process from
the beginning of this section can therefore be reused to create the new
subregions.

The hierarchical matrix resulting from the construction and region split-
ting processes above has regions sorted in row-major order. The implementa-
tion from [3] refers to this arrangement as lexicographical order. Sorting the
regions according to the so-called Morton order or Z-order, as suggested in [3],
was not implemented.

5.3 Computational Kernels

As described in Chapter E, the input of an SpMM™V operation is a matrix
and two vectors; the operation’s output are two vectors. For simplicity, the
implementation in this thesis restricts the input to square matrices and accepts
a single vector (the implementation from [3] restricts the input in the same
way). The two output vectors are preserved.

The input sparse matrix is first converted to a hierarchical storage format
(Section @) Results of the SpMMTV operation are obtained by calling an
appropriate computational kernel on every region of the hierarchical matrix.
All implemented parallel SpMMTV variants make use of the same pair of
computational kernels, both of which are described in the remainder of this
section.

The function in Listing El] performs SpMMTV with a COO formatted re-
gion. It is based on the implementation from [3]. Parameter row_indices is
the region’s COO format row index array, col_indices is the region’s COO
format column index array and values is the region’s COO format element
value array. Parameter element_count is the region’s nonzero element count.
Parameter vector is the input vector array. Parameters y1 and y2 are output
vector arrays. Parameters row_offset and col_offset specify the offsets of
the region’s indices in the original matrix. The kernel traverses all of the
region’s nonzero elements, computes their row and column indices in the ori-
ginal matrix, multiplies the elements’ values with the appropriate input vector
elements and adds the results to the correct output vector elements.

22



Ne R N S L

=
= o

5.4. Parallelisation Methods

spmmtv_coo(row_indices[], col_indices[], valuesl],
element_count, vector[], yi[l, y2[], row_offset,
col offset)

{
for (i = 0; i < element_count; ++i) {
row_index = row_offset + row_indices[i];
col_index = col_offset + col_indices[i];
y1[row_index] += values[i] * vector[col_index];
y2[col_index] += values[i] * vector[row_index];
}
}

Listing 5.1: Pseudocode of a computational kernel for SpMMTV with a COO
formatted region of a matrix stored in a hierarchical storage format

The function in Listing @ performs SpMM™V with a CSR formatted re-
gion. It is based on the implementation from [3]. Parameter row_pointers
is the region’s CSR format row pointer array, col_indices is the region’s
CSR format column index array and values is the region’s CSR format ele-
ment value array. Parameter row_count is the region’s row count. Parameter
vector is the input vector array. Parameters y1 and y2 are output vector
arrays. Parameters row_offset and col_offset specify the offsets of the
region’s indices in the original matrix. The kernel traverses the region’s ele-
ments in a row-wise manner. The elements’ row and column indices in the
original matrix are computed as necessary and their values are multiplied with
the correct input vector elements. While results are added to the appropriate
elements of array y2 immediately, the inner loop minimises writes to array y1
by summing results into a local variable.

5.4 Parallelisation Methods

Two of the three parallel SpMMTV execution methods introduced in Sec-
tion @ have been implemented, namely SpMMTV without planning and
dynamically planned SpMMTV . Statically planned SpMMTV has not been
implemented because it underperformed the other two approaches [3].

Section introduces (1) an SpMMTV execution method that assigns
disjoint sets of regions to individual threads and (2) a dynamically planned
variant of this method. Both of these methods have been implemented. The
methods are further referred to as parallel disjoint SpMM™V without planning
and parallel dynamically planned disjoint SpMM™V.

All implemented parallel SpMMTV variants keep track of finished and
unfinished regions using the approach presented in Section . Symmetry
related optimalisations mentioned in Section m have not been implemented.
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spmmtv_csr(row_pointers[], col_indices[], values[], row_count,
vector[], yi1[l, y2[], row_offset, col_offset)
{
for (region_row = 0; region_row < row_count; ++region_row) {
row_index = row_offset + region_row;
y1l_sum = float(0);

i_begin = row_pointers[region_row];
i_end = row_pointers[region_row + 1];

for (i = i_begin; i < i_end; ++i) {
col_index = col_offset + col_indices[i];
yl_sum += values[i] * vector[col_index];
y2[col_index] += values[i] * vector[row_index];

y1[row_index] += yl_sum;

Listing 5.2: Pseudocode of a computational kernel for SpMM™V with a CSR
formatted region of a matrix stored in a hierarchical storage format

5.4.1 Traversing Region Indices

All implemented parallel SpMMTV variants need a way to keep track of
available region indices. Variants SpMMTV without planning and disjoint
SpMMTV without planning additionally keep track of finished and unfinished
regions. The linked list-like data structure proposed in Section B.3.1| has been
implemented and is used by all implemented SpMM™V variants.

The data structure is implemented as a circular, singly linked list. All of
the list’s elements are stored in_an array to improve memory access locality
as recommended in Section B.3.1. FEach element of the linked list contains
a region index and a pointer to the list’s next element. The data structure
was designed to perform all operations used by SpMM™TV variants in constant
time, e.g. returning the current region index, iterating to the next region index
or removing the current region index from the list.

5.4.2 SpMMTV Without Planning

Parallel SpMM™V without planning as introduced in [3] is described in Sec-
tion B.2. The implementation additionally uses the circular linked list men-
tioned in Section to keep track of available region indices.

Each thread starts with a list of all region indices. A thread continuously
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iterates over all region indices in its list and attempts to lock the associated
region. Once the thread manages to lock a region, it queries a shared array
to verify that the region has not been completed yet. If the region has been
completed, the thread releases the region’s lock, removes the region’s index
from its list and continues to iterate over region indices. If the region has not
been completed, the thread attempts to acquire the region’s output locks. If
the thread fails to do so, it releases the region’s lock and resumes iteration.
After the thread successfully acquires the region’s output lock, it marks the
region as done, releases the region’s lock, performs SpMMTV with the region,
releases the region’s output locks, removes the current region index from its
list and proceeds to iterate over region indices. A thread terminates once its
list of region indices is empty.

Care has been taken to avoid the situation where all threads initially at-
tempt to lock the same region. Lists assigned to individual threads are created
so that the starting region indices of all threads are evenly spread out.

5.4.3 Disjoint SpMMTV Without Planning

Parallel disjoint SpMMTV without planning performs less synchronisation
than parallel SpMMTV without planning (Section m but relies more on
the “uniformity” of regions. As suggested in Section , every thread be-
gins with a disjoint list of region indices. Specifically, a sequence of all region
indices is created and contiguous, evenly sized subranges are assigned to each
thread.

This variant works similarly to parallel SpMM™'V without planning. Lock-
ing regions and verifying whether they have not been calculated by another
thread is unnecessary. The algorithm constitutes of continuously iterating
over region indices, attempting to acquire a region’s output locks, performing
SpMM™V with the region and removing the region’s index from the threads
list. Details of this approach are identical to the steps in Section .

5.4.4 Dynamic Planning

Section @ outlines dynamically planned SpMM?™ V, which was proposed in [3].
This variant begins with an initialisation step. SpMMTV without planning
is performed and the order in which regions are finished is recorded. Every
thread has an instance of a data structure for recording region indices, which is
designed to minimise the overhead of appending a region index. The region’s
index is recorded after successfully performing SpMMTV with the region and
releasing its output locks. All threads’ recorded region indices are converted
into linked lists described in Section .

After this initialisation step threads perform parallel SpMMTV with re-
gions in the order given by their lists of region indices. Specifically a thread
reads a region index, acquires the region’s output locks, performs SpMMTV,
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unlocks the output locks and switches to the next region index. Here locks
are acquired in a blocking manner and the list of region indices is traversed
only once.

As mentioned in Section dynamic planning can be extended to paral-
lel disjoint SpMM ™V (Section ) The combined approach is called parallel
dynamically planned disjoint SpMMT V. Initialisation is implemented analog-
ously: a single iteration of parallel disjoint SpMMTV without planning is
performed, region indices are recorded and threads’ lists of region indices are
created. Parallel SpMMTV according to the order given by the created lists
is performed exactly as described in the previous paragraph.

5.5 Iterability Considerations

The biconjugate gradient method (abbr. as BiCG) is mentioned in Section @
as an iterative algorithm that can benefit from performing SpMM™V. Every
BiCG iteration performs SpMM?™V with the same matrix [[l, 2]. This means if
any data structures need to be reinitialised after a single Sp)MMTV operation,
it is desirable to do so as quickly as possible.

After_all threads complete parallel disjoint SpMMTV without planning
(Section ), it is necessary to set each thread’s list of region indices (Sec-
tion ) to its original state. A shallow copy of every thread’s list of region
indices is created for this purpose before the first SpMM™'V iteration. The
lists are therefore restored by copying the backed up data.

The same lists are restored in the same way after every iteration of par-
allel SpMM™TV without planning (Section ) This execution method ad-
ditionally needs to mark all of each thread’s regions as unfinished after every
SpMMTV iteration. Because regions’ completion status is indicated by the
elements of a boolean array, resetting the completion status is a matter of
overwriting the array with the appropriate value.

Both implemented dynamically planned methods from Section , ie.
parallel dynamically planned SpMM™V and parallel dynamically planned dis-
joint SpMM™V, do not require reinitialising any data after an SpMMTV iter-
ation. The planned methods’ initialisation steps contain reinitialisation code
because their implementations are based on methods without planning. But
the initialisation steps should be considered as parts of preprocessing instead
of iteration.

5.6 Implementation Specific Optimisations
Optimisations outlined in Section @ can be applied to SpMMTV implement-
ations that are based on the ideas presented in [3]. Symmetry related op-

timisations in Section should be applicable to any SpMMTV approach.
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This section describes optimisations which are specific to the implementation
presented in Chapter B

Section mentions that several SpMMTV methods need to reset each
thread’s list of region indices after every SpMM™'V iteration. The lists are
restored by copying their contents from a backup array. Because each thread
has its own list, all threads can restore their lists in parallel. This is implemen-
ted by having every thread restore its list after it finds out the list is empty but
before the thread terminates itself. Copying a list’s underlying element array
(Section p.4.1)) can be potentially sped up by making use of SIMD instructions
(Section {.9). While the usage of SIMD instructions was not implemented be-
cause of minor complications caused by the structure of list elements, it is a
viable optimisation nonetheless.

Section @ further mentions that every iteration of parallel SpMMTV
without planning (Section ) needs to mark all of each thread’s regions
as unfinished after every SpMMTV iteration. The relevant array can be over-
written only after all threads finish accessing it. In order to overwrite the
array in parallel, extra thread synchronisation needs to be introduced. Such
overhead may outweigh gains from parallelisation as the overwritten array is
not very large and consists of boolean values. Overwriting the array is instead
implemented as a single-threaded operation which uses SIMD instructions. As
was mentioned in Section .2, SIMD instructions can only be used to their full
potential on appropriately aligned data. The array, which is used to indicate
the completion status of regions, is therefore aligned to enable efficient usage
of up to 256-bit wide SIMD instructions. SIMD instructions are employed
using the OpenMP SIMD construct [17].

5.7 Additional Utilities

Several accompanying utilities have been created in the course of developing
the implementation presented in Chapter §. This section describes the most
important utilities. Most of the mentioned utilities have been implemented in
the Python programming language [22].

The main program loads the input matrix from a file. Older versions of the
implementation loaded the matrix from the text-based Matrix Market format
(abbr. as MM). The MM format is introduced in Section @ But loading
large sparse matrices from the MM format is very slow. This turned out to
be a significant hurdle when loading matrices many times in quick succession.
For this reason a Python utility called mmtobin has been developed. It loads
a matrix in the MM format and stores it as a binary file. The output binary
file either contains a matrix in the COO format or in the CSR format. The
files contain COO or CSR format arrays as described in Section @ or
respectively. Therefore the main program can load a binary matrix by simply
copying contiguous blocks of memory.
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Developing and improving various SpMMTV implementations resulted in
the need to verify their correctness. A Python utility called pyspmmtv has
been developed, it accepts paths to an input matrix and input vector, performs
SpMMTV using existing libraries and outputs the resulting pair of vectors to
files. The input vector for this utility was randomly generated using a separate
random-vector Python utility.

A test program has been developed in C++ to verify the integrity of loaded
matrices and verify the correctness of SpMM™'V implementations. SpMMTV
correctness is checked by loading a matrix and its generated vector, performing
spmmtv and comparing the results with the vectors created by pyspmmtv. The
loaded matrices were created by mmtobin and their matching vectors were
generated by random-vector. All SpMMTV implementations developed in
this thesis are tested in the aforementioned way. The test program makes
extensive use of the Boost.Test library [21].
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Performance Evaluation

This chapter evaluates the performance of SpMMTV implementations presen-
ted in Chapter H Section describes the test environment’s hardware and
software specifications. Section .2 explains the choice of input sparse matrices
and lists their properties. Section explains units used to present the results
in Section [.4. Section contains the results of performed measurements
and compares them with an existing library.

6.1 Test Environment

All performance benchmarks were performed on a node of the faculty’s com-
puter cluster called STAR. The used node consists of two six-core Intel Xeon
E5-2620 v2 processors [23], i.e. it has 12 physical CPU cores in total. The
node has approximately 32 GB of random-access memory.

The node runs a 64-bit GNU/Linux operating system. The implementa-
tion presented in this thesis (Chapter E) was compiled using the C++ compiler
from the GNU Compiler Collection version 8.2.1 [24]. Options passed to the
compiler that affect the performance of the resulting program were:

e -march=native,

e -mtune=native,

. -03,
« -DNDEBUG,
e —flto and

e —fno-fat-lto-objects.
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The implemented program uses the OpenMP API [17] and depends on
several Boost libraries [21]. All benchmarks were performed with OpenMP
version 4.5 and Boost version 1.67.0. OpenMP is introduced in Section #.1|.

The implementation was also compared with functions from the Intel
Math Kernel Library [19]. All benchmarks were performed with Math Kernel
Library version 2017.0.0 which is a part of Intel compilers and libraries ver-
sion 2017.0.098. The Math Kernel Library is introduced in Section @ The
library was configured to use 32-bit integers.

6.2 Input Sparse Matrices

The main input parameter of SpMMTV implementations is a sparse matrix.
An implementation can be tested with randomly generated sparse matrices or
with matrices from real-world applications. Both matrix types can be used
to verify the correctness of the implementation, i.e. whether the calculated
results are accurate. But measuring an implementation’s performance with
randomly generated matrices may not accurately reflect performance in real-
world scenarios with domain-specific sparse matrices [6]. This is why all bench-
marks have been performed with input matrices from the SuiteSparse Matriz
Collection [B].

The selection of input sparse matrices is based (1) on the matrices used
in [B] and (2) on the sample set of test matrices in [11]. Because all used
test matrices are provided on the attached disc (Section [B), the choice of
test matrices was also shaped by the disc’s capacity. Ten sparse matrices
have been picked from the SuiteSparse Matrix Collection, eight of which have
been used for assessing the implementations’ performance. Properties of these
eight matrices are listed in Table f.1. The SuiteSparse Matrix Collection also
includes the problem category or domain from which its matrices have arisen.
This information is provided in Table (.2. The two unlisted matrices, which
have very few nonzero elements, were not benchmarked and were merely used
for debugging purposes.

6.3 Measurement Approach

All performance results presented in Section @ are based on measuring the
run-time of a single iteration of SpMMTV. Any overhead in_the form of
preprocessing is omitted. All presented durations in Section have been
obtained as an arithmetic mean of five results.

The run-time of SpMM™V with matrices of various sizes and sparsity pat-
terns can significantly differ. A unit called operations per second (OPS) is
used in Section to make comparing the run-time of different matrices
casier. OPS is used as a metric of performance. If an iteration of SpMMTV
with a matrix that has n,, nonzero elements took d seconds, then performance

30



6.4. Results

Matrix Name n Nnz  Nnz/n 100 -0y, /n?

af shelll0 1,508,065 52,672,325 34.93  2.32-1073
atmosmodm 1,489,752 10,319,760 6.93  4.65-107*

cageld 1,505,785 27,130,349  18.02  1.20-1073
FullChip 2,087,012 26,621,990 891  2.98-107%
rajat31 4,690,002 20,316,253  4.33  9.24-107°
RMO7R 381,680 37,464,962 98.16  2.57- 102
thermal2 1,228,045 8,580,313  6.99  5.69-10~%
thread 29,736 4,470,048 150.32  5.06- 10~

Table 6.1: Properties of matrices from the SuiteSparse Matrix Collection [6]
that were used for benchmarking purposes; n is the matrix’s row count and
column count (i.e. all matrices are square), n,, is the matrix’s nonzero element
count, m,./n can be interpreted as the matrix’s average count of nonzero
elements per row and 100-7n,,. /n? as what percentage of the matrix’s elements
is nonzero

Matrix Name Matrix Category

af shelll0 structural problem
atmosmodm  computational fluid dynamics problem

cagel4 directed weighted graph

FullChip circuit simulation problem

rajat31 circuit simulation problem

RMOTR computational fluid dynamics problem
thermal2 thermal problem

thread structural problem

Table 6.2: Problem categories or domains from which the matrices used for
benchmarking have arisen as listed in the SuiteSparse Matrix Collection [6]

in OPS is equal to n,./d. This unit is used purely to facilitate the interpret-
ation of the measured results, not to reflect the actual number of performed
operations. OPS may be prefixed with M to indicate millions of operations
per second (MOPS).
Section @ also refers to a unit called parallel speedup. Parallel speedup is
calculated from sequential run-time d, and parallel run-time d,, as ds/dp.

6.4 Results

Chapter a introduces the developed parallel SpMMTV implementations, i.e.
parallel SpMM™V without planning, parallel dynamically planned SpMM™V,
parallel disjoint SpMMTV without planning and parallel dynamically planned
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Figure 6.1: Performance of parallel disjoint SpMMTV without planning for
different values of « using 12 threads

disjoint SpMMTV. The input matrix has to be first converted into a two-
level hierarchical storage format (Section ) This process is affected by
the coefficient o € [0,1], which is passed to the implemented program as a
command line argument. It has been determined in [3] that the optimal value
for v is 0.1 to 0.15. Because the implementation in Chapter f differs from the
one in [3] and because the disjoint parallel SpMMTV execution methods are
not covered in [3], tests have been performed to determine the optimal value
of a.

Figure @ shows the performance of parallel disjoint SpMMTV without
planning for different values of «, when using 12 threads. There does not
seem to be an immediately obvious optimal value for . Some matrices cause
the performance of SpMM™TV to be sensitive to changes to . Other matrices
make the performance of SpMM'V insensitive to changes to a. Matrices
af _shell10 and cagel/ cause the performance of SpMMTV to be affected by
changes to « in opposite ways.

Performance of parallel SpMMTV without planning using 12 threads is
affected very little by changes to the value of «, as can it be seen in Figure 6.2.
Just like with disjoint SpMMTV, the optimal choice for o does not seem to
be immediately obvious.

Further benchmarks of parallel SpMM?TV execution methods had the value
of a set as follows:

1. Benchmarks of parallel disjoint SpMMTV without planning and parallel
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Figure 6.2: Performance of parallel SpMMTV without planning for different
values of « using 12 threads

dynamically planned disjoint SpMM™V had « set to 0.6.

2. Benchmarks of parallel SpMMTV without planning and parallel dynam-
ically planned SpMMTV had « set to 0.4.

Dynamically planned SpMMTV execution methods are largely based on their
unplanned variants (Section ) This is why dynamically planned execu-
tion methods reuse the values of a from unplanned methods.

Let m be equal to the arithmetic mean of parallel speedups of all matrices
in Table for a given execution method and a given thread count. The
value of m is equal to the average parallel speedup of the given execution
method and thread count. Figure ﬁshows the average parallel speedups of
implemented parallel SpMM ™V execution methods for various thread counts.
Parallel speedup is calculated with respect to a sequential SpMM™V execution
method which uses the same two-level hierarchical storage format as parallel
execution methods but performs all computations in a single thread. This
sequential SpMMTV execution method is further referred to as sequential
hierarchical SpMMTV.

Average parallel speedups of SpMMTV implementations without planning
were less than the average parallel speedups of their dynamically planned
variants for all thread counts (Figure @) Disjoint SpMM™TV implementations
did not turn out to be faster than their nondisjoint counterparts. It seems that
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Figure 6.3: Average parallel speedups of SpMMTV implementations for vari-
ous thread counts

the benefits from reducing thread synchronisation overhead were outweighed
by the disbalanced distribution of work among threads.

Parallel speedups of dynamically planned SpMM™V implementations for
various thread counts are shown in Figures @pand . Instead of average
parallel speedups, the figures show parallel speedups with all matrices indi-
vidually. Speedups with different matrices vary significantly. The nonzero
elements of matrices af shelll0 and atmosmodm consist of a single narrow
band along the matrix’s diagonal. SpMMTV with these matrices benefits the
most from parallelisation. Conversely, matrix FullChip has nonzero elements
spread out over its entire extent. Not only did increasing the thread count
improve the speedup of SpMMTV with this matrix very little, but the highest
thread counts even decreased speedup. It can be assumed that the two-level
hierarchical representation of FullChip contains many regions with overlap-
ping output ranges which limits the possibility of performing SpMMTV with
several regions in parallel.

An SpMMTV implementation was developed that uses the Intel Math
Kernel Library (Section {.3). This implementation is further referred to as
Math Kernel Library SpMMTV or MKL SpMMTV. This implementation’s
performance was compared with the implementations presented in Chapter E

Figure @ compares single-thread performance of MKL SpMM™V and of
sequential hierarchical SpMMTV which uses the two-level hierarchical storage
format from Section . MKL SpMM™V outperforms sequential hierarch-
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Figure 6.6: Sequential performance comparison of hierarchical SpMMTV and
Math Kernel Library SpMMTV with all matrices

ical SpMM™V with the four least sparse matrices. The performance of sequen-
tial hierarchical SpMM™V matches or outperforms MKL SpMMTV with the
remaining sparser matrices.

The average performance of both dynamically planned SpMM™V imple-
mentations and of MKL SpMM™TV is compared in Figure for various thread
counts. Average performance is calculated analogously to average parallel
speedups in Figure (.3, i.e. average performance is an arithmetic mean of per-
formance with all matrices. MKL SpMMTV outperforms dynamically planned
disjoint SpMM™V for all thread counts but 12. The performance of dynam-
ically planned SpMMTV is similar to performance of MKL SpMMTV. MKL
SpMMTV is faster for thread counts four and six whereas dynamically planned
SpMM™V is more performant for thread count equal to 12. These results sug-
gest that both dynamically planned SpMMTV implementations scale better
to higher thread counts than Math Kernel Library SpMM™V.

Table @ lists durations of sequential hierarchical SpMM™V, parallel Math
Kernel Library SpMMTV, parallel dynamically planned disjoint SpMMTV and
parallel dynamically planned SpMM™V. Durations of parallel SpMMTV im-
plementations are for 12 threads. Durations of parallel dynamically planned
SpMMTV mostly correspond to durations in [3]. This means that optimising
the traversal of region indices as described in Section p.4.1 did not result in a
significant speedup. Durations of parallel MKL SpMM™V surprisingly differ
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Figure 6.7: Average performance of parallel SpMMTV implementations for
various thread counts

quite significantly from the durations in [3]. This may be because the MKL
SpMMTV implementation in this thesis uses the Inspector-Executor Sparse
BLAS functions [19] which the implementation in [3] might not have used.
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Matrix Sequential Parallel MKL  Parallel Disjoint Parallel
af _shell10 126.70 21.62 17.47 17.60
atmosmodm 35.17 7.92 5.79 5.93
cagel4 81.82 16.23 19.86 17.22
FullChip 101.09 31.39 30.17 31.47
rajat31 64.46 18.00 13.25 15.78
RMO7TR 96.28 15.31 20.98 17.18
thermal2 42.38 8.52 7.71 6.62
thread 14.87 2.66 2.16 2.22

Table 6.3: Durations of sequential hierarchical Sp)MM™V (column Sequential),
parallel Math Kernel Library SpMMTV (column Parallel MKL), parallel dy-
namically planned disjoint SpMM™TV (column Parallel Disjoint) and parallel
dynamically planned SpMM™V (column Parallel) in milliseconds; durations
of parallel SpMM™V are for 12 threads
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CHAPTER i

Conclusion

This thesis investigates performing joint direct and transposed sparse matrix-
vector multiplication (SpMMTV) on shared memory systems. All relevant
sparse matrix storage formats have been reviewed. The reviewed sparse mat-
rix storage formats include (1) basic formats like the Coordinate format or
the Compressed Sparse Row format, (2) hierarchical storage formats, which
are key to implementing the Sp)MMTV approach in [3] and (3) other storage
formats, which are not as important for the implemented algorithm.

While performing SpMMTV on CPUs and GPUs on shared memory sys-
tems seems to be largely unexplored, the most closely related CPU and GPU
approaches have been described. A many-core implementation for Intel Xeon
Phi processors was examined too.

The approach introduced in [3] is outlined and three new optimisations are
proposed. Two of these optimisations are implemented. The implementation
developed as a part of this thesis is explained in detail and further implement-
ation specific optimisations are suggested.

The performance of four SpMMTV implementations developed as a part
of this thesis is evaluated. The performance of an SpMMTV implementation
based on the Intel Math Kernel Library is also evaluated. Performance differ-
ences between all versions are throughly examined and conclusions are made.

Future directions include: implementing remaining proposed optimisa-
tions, comparing the performance of SpMMTV implementations with more
existing libraries and investigating the possibility of a GPU implementation.
Furthermore, the algorithm which converts the input matrix into the internal
format before performing SpMM™V should be simplified and its performance
evaluated. This will facilitate assessing the tradeoff between time spent con-
verting the input matrix and time saved by the implemented SpMMTV oper-
ation.
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APPENDIX A

Building and Running

This chapter describes building and running the implementation presented in
Chapter B Build dependencies are listed in Section . How to build the
main and test executables is detailed in Section |A.2. Section explains
how to perform SpMMTV operations with the main executable. Section
explains how to run tests with the test executable. Section describes
additional utilities included on the attached disc.

Sections , and @ include shell commands which operate on the
data included on the attached disc (Chapter B) The recommended approach
is to copy directory thesis-data from the attached disc to a writable location
and change in the copied directory.

A.1 Build Dependencies

The following dependencies need to be satisfied to build the implementation
presented in Chapter B:

e CMake version 3.13 or newer.

o A version of the GNU Compiler Collection [24] with C++17 support.
GNU GCC supports C++17 since version 8. While any compiler with
C++417 support should work (as long as CMake detects it), the author
has only tested GNU GCC.

 Installing an appropriate version of OpenMP should not be necessary as

it should be provided by GNU GCC.

o A recent version of Boost C++ libraries [21]. The oldest version of Boost
the author has verified to work is 1.67.0. The newest verified version is
version 1.69.0. While other versions of Boost may work too, the author
has not verified it.
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e The Intel Math Kernel Library is an optional dependency. Building the
implementation without MKL is possible but MKL related functional-
ity will obviously be missing. The oldest version of MKL the author
has verified to work is version 2017.0.0 from Intel compilers and librar-
ies version 2017.0.098. The newest version the author has verified to
work is MKL version 2019.0.3 from Intel compilers and libraries ver-
sion 2019.3.199. Like with Boost, other versions are untested and may
or may not work.

The author has only tested the build process on GNU/Linux. It should
be possible to install all dependencies, possibly with the exception of MKL,
using a GNU/Linux distribution’s package manager. Furthermore a binary
distribution of the latest version of CMake for GNU /Linux can be downloaded
from the CMake websited. The provided archive contains a prebuilt binary
which can be used immediately.

A.2 Building Executables

This section explains the steps needed to build the implementation’s main and
test executables. The steps assume that all dependencies listed in Section
have been obtained, with the possible exception of Math Kernel Library.

1. Change to the directory that contains the implementation’s source code.
$ cd implementation

2. Create a directory for the output of the build process.
$ mkdir -p build/release

It may seem that the above command unnecessarily creates a nested
directory. This directory structure is required if it is desired to run the
implementation’s tests because they contain hardcoded relative paths.

3. If Boost was installed to a nonstandard location, CMake may fail to find
it. The path to Boost can be specified using an environment variable.

$ export BOOST_RO0T=/opt/share/boost

4. Building the program with Math Kernel Library (MKL) is optional. The
path to MKL needs to be specified as the library is often installed to
a nonstandard location. On systems with MKL installed, environment
variable MKLROOT may already contain the appropriate path. If unset,
the environment variable can be set manually.

"https://cmake.org/download/
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A.3. Running the Main Executable

$ export MKLROOT=/opt/intel/mkl

5. The build process may be configured to optimise the created executable
for the current CPU architecture if desired.

$ export CXXFLAGS="-march=native -mtune=native"
6. Change to the build directory and run CMake.

$ cd build/release
$ cmake -D CMAKE_BUILD_TYPE=Release ../..

7. Finally the executables can be built. The main executable is called
spmmtv. The test executable is called tests. Execute the appropriate
command depending on which executable is desired:

o Executing make or make spmmtv builds the main executable.
o Executing make tests builds the test executable.
o Executing make spmmtv tests builds both executables.
The resulting executable files are placed in the current build directory.

The built main executable is available as src/spmmtv. The test execut-
able is available as tests/tests.

A.3 Running the Main Executable

This section provides information about running the main executable of the
implementation presented in Chapter f. Instructions on how to build the
executable are in Section .

The executable is available in the build directory as described in Sec-
tion @

$ cd implementation/build/release
$ ./src/spmmtv -h

Executing the above commands prints the main executable’s usage informa-
tion.

The main executable expects a mode to be specified in option -m or —-mode.
Some of the available modes have not been introduced in this thesis yet.

e hier-parallel-exclusive specifies parallel disjoint SpMMTV without
planning,

e hier-parallel-exclusive-planned specifies par. dynamically planned
disjoint SpMMTV,

« hier-parallel-shared specifies SpMMTV without planning
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e hier-parallel-shared-planned specifies parallel dynamically planned
SpMMTV,

« hier-sequential specifies sequential hierarchical SpMMTV,

e coo-sequential specifies sequential SpMMTV with a matrix in the
COO format,

« csr-sequential specifies sequential SpMMTV with a matrix in the CSR
format and

o mkl-csr specifies Math Kernel Library SpMMTV.

All hier—-* modes expect the input matrix in the CSR format. Mode mkl-csr
expects a CSR matrix but MKL internally converts the matrix into a different
format. Mode mkl-csr is only available when the main executable was built
with Math Kernel Library.

The main executable further expects two arguments, namely a matrix path
and a vector path. The specified matrix and vector will be used as the input
of the performed SpMM™V operation. All calls to the main executable need
to specify parameters at least in the following way:

$ ./src/spmmtv -m $mode $matrix_path $vector_path
A list of input matrices can be obtained with

$ 1s ../../../matrices-binary

A list of input vectors can be obtained with

$ 1s ../../../vectors

Note that vectors which contain y1 or y2 in their file names are actually input
vectors for the test executable.

Running the main executable with a valid mode, matrix path and vector
path perfoms the specified SpMMTV operation and prints the elapsed time.
The desired thread count can be specified using option -t. What was referred
to as « throught this thesis can be specified using option -r.

A.4 Running the Test Executable

This section provides information about running the test executable of the
implementation presented in Chapter ﬁ Instructions on how to build the
executable are in Section .

The test executable is available in the build directory as described in Sec-
tion @
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$ cd implementation/build/release
$ ./tests/tests --help

Executing the above commands prints the test executable’s usage information.
The test executable was created using the Boost.Test library.
All tests are performed by executing the following command:

$ ./tests/tests

Please note that the test executable contains hardcoded relative paths to
matrix and vector directories. All previous steps in this chapter need to be
performed exactly as specified for the above command to succeed. The test
executable performs all implemented sequential and parallel SpMMTV modes
with all matrices and verifies the correctness of the results. Math Kernel Lib-
rary SpMMTV is the only mode that is not tested by this executable. The
test executable also contains tests which verify the correctness of loaded COO
and CSR format matrices.

A.5 Additional Utilities

Section @ mentions that several accompanying utilities have been created in
the course of developing the implementation presented in Chapter a Three
of the most important utilities are included on the attached disc in directory
thesis-data:

e mmtobin — a program to convert matrices from the Matrix Market format
to the binary format accepted by the main executable (Section @),

e random-vector — a program to generate random vectors to accompany
matrices created by mmtobin and

e pyspmmtv — a program to independently perform SpMMTV and generate
model output vectors for the test executable (Section |A.4).

The installation and usage of these utilities is not explained due to time con-
straints. Nonetheless the source code of the utilities is still provided for refer-
ence purposes. The utilities are fully fledged Python packages with depend-
ency information and have documented command line interfaces.
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APPENDIX B

Contents of Attached Disc

readme.tXt .....oiiiiiiiiiiiean.n. the description of the disc’s contents
| _thesis-data........covvveevnnnnn the implementation and data directory
implementation
matrices-binary
mmtobin
pyspmmtv
random-vector
vectors
| thesis-SrcC........c.coeennn. the IATEX source code directory of the thesis
| thesis.pdf..........coiiiiiiiiiiiil, the Master’s thesis in PDF
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