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Instructions

Discrete logarithm problem (DLP) is a fundamental problem arising in modern cryptography. While there
exist subexponential algorithms that solve DLP in multiplicative groups of finite fields, no such algorithms
are known for groups of points of elliptic curves (ECDLP). Attempts to develop index calculus methods for
elliptic curves include so called summation polynomials that give algebraic relations whose solution may
give a solution of ECDLP.

The goal of the thesis is to get acquainted with cryptography of elliptic curves, give thorough description of
the state of the art of the summation polynomial algorithm, implement it in suitable language and test its
performance. Student will focus on available methods of effective generation and solution (Groebner basis
and other methods) of algebraic relations appearing in the algorithm.
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Abstrakt

Problém diskrétńıho logaritmu na eliptické křivce (ECDLP) je jedńım z v̊ubec
nejd̊uležitěǰśıch problémů v asymetrické kryptografii. Několik autor̊u se v po-
sledńıch letech zabývalo použit́ım sumačńıch polynomů pro efektivńı řešeńı
ECDLP. V této práci shrneme nejnověǰśı algoritmy, postavené na sumačńıch
polynomech, řeš́ıćı ECDLP nad prvotělesy. Dále je v práci provedena detailńı
analýza složitosti představených algoritmů, která je poté i experimentálně
ověřena. Ve srovnáńı s obecným Pollardovým ρ-algoritmem si tyto nové algo-
ritmy vedou h̊uře a bez daľśıho výzkumu nejsou v praxi použitelné.

Kĺıčová slova kryptografie nad eliptickými křivkami, sumačńı polynomy,
ECDLP, prvotěleso, index calculus, Gröbnerova báze

Abstract

The elliptic curve discrete logarithm problem (ECDLP) is one of the most im-
portant problems in asymmetric cryptography. In recent years, several papers
were concerned with the use of summation polynomials for solving the ECDLP
efficiently. In this thesis, we summarize the state-of-the-art algorithms based
on summation polynomials, and use these algorithms to solve the ECDLP

vii



over prime fields. A detailed complexity analysis of said algorithms is pre-
sented and verified by extensive tests. After a comparison of the presented
algorithms with the well-known Pollard’s ρ-algorithm we have come to a con-
clusion; the algorithms presented in this thesis are not yet practical and more
research needs to be done.

Keywords elliptic-curve cryptography, summation polynomials, ECDLP,
prime field, index calculus, Gröbner basis

viii



Contents

Introduction 1

1 General Algebra 3
1.1 Basic Algebraic Structures . . . . . . . . . . . . . . . . . . . . . 3
1.2 Multivariate Polynomials . . . . . . . . . . . . . . . . . . . . . 7
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Introduction

On a regular basis, there are news stories about computer information and per-
sonal data being stolen and compromised. Criminals try to steal our personal
financial information and use it to make purchases in our name or to even di-
rectly access our financial accounts. It is our natural instinct to try to protect
ourselves and cryptography may help us achieve that. Nowadays, cryptogra-
phy is an indispensable tool for our everyday activities on the internet.

There are two main branches of cryptography; the secret-key cryptography
(also called symmetric encryption) which employs a single key for both encryp-
tion and decryption; and the public-key cryptography (also called asymmetric
encryption) which depends upon the existence of mathematical functions that
are easy to compute and whose inverse function is really difficult to compute.
Using the public-key cryptography, two parties can engage in a secure commu-
nication over a non-secure communication channel without the need to share
a secret key beforehand.

One of the first public-key cryptosystems is RSA (Rivest-Shamir-Adleman).
It is based on the fact that factorisation of large composite integers is diffi-
cult. One of the main problems of RSA is the key size which is directly tied
to the performance of RSA. An alternative method to the well-known RSA
is a powerful approach based on elliptic curve groups over finite fields which
is called elliptic curve cryptography (ECC). The most important difference
between ECC and other conventional cryptosystems is that for a well-chosen
elliptic curve, the best method currently known for solving the elliptic curve
discrete logarithm problem (ECDLP) is fully exponential, while subexponen-
tial algorithms exist for other conventional cryptosystems. This difference
largely contributes to the fact that ECC keys have much fewer bits than RSA
keys. It is worthy to note that a 160-bit ECC key has about the same level
of security as a 1024-bit RSA key [1].
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Introduction

It is an area of active research to come up with a subexponential algorithm
solving the ECDLP. In this thesis, we present the state-of-the-art idea of sum-
mation polynomials as a way of transforming the complicated point addition
operation on the elliptic curve to a possibly less complicated multivariate poly-
nomial equation. Algorithms based on this idea are presented in the thesis,
implemented, and their performance tested on problems of different sizes.

The thesis is divided into four chapters. The first chapter focuses on the revi-
sion of terms common in general algebra, multivariate polynomials and intro-
duces the reader to the topic of Gröbner bases as a way of solving a multivari-
ate polynomial system. The aim of the second chapter is mainly to remind
the reader of elliptic curves, discrete logarithm problem and generic algo-
rithms solving the DLP. Moreover, an idea of index calculus algorithm for
solving the ECDLP is presented. The third chapter is concerned with the
detailed description of three specialised algorithms that exploit the structure
of the elliptic curve group, solving the ECDLP. In the last chapter, the imple-
mentation details and experimental results of the implemented algorithms are
presented. The thesis is only concerned with the discrete logarithm problem
for prime field elliptic curves.
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Chapter 1
General Algebra

The aim of this chapter is mainly to define the terms that are to be used
throughout the rest of the thesis. The first section of this chapter consists of
the revision of basic algebraic structures such as groups, rings and fields. The
second part focuses on polynomials, and the last part introduces the reader to
the topic of Gröbner bases. The chapter is based predominantly on the book
Ideals, Varieties, and Algorithms by David A. Cox et al. [2], MI-MKY lecture
notes [3] and my bachelor thesis [4]. Other sources are cited individually at
specific locations.

1.1 Basic Algebraic Structures

General algebra, also known as universal algebra in the past, is the theory of
algebraic structures. An algebraic structure is a set of objects with a collec-
tion of mathematical operations on this set. It is defined by a set of axioms,
requirements on the set and operations on it, and other properties of said alge-
braic structure are logically deduced based on the axioms. When we encounter
a particular problem, we may identify its underlying algebraic structure (this
based on the verification of its axioms) and we may thus use all of its deduced
properties, without the need to reprove them, to solve this particular problem.
This section is to be started with the definition of a basic algebraic structure
called group.

Definition 1.1.1. A group G is an ordered pair (M, ◦), where M is a non-
empty set and a binary operation ◦ : M ×M → M (sometimes called the
group law of G) that satisfies three requirements known as group axioms:

• ∀x, y, z ∈M : x ◦ (y ◦ z) = (x ◦ y) ◦ z, (associativity)

• ∃e ∈M, ∀x ∈M : e ◦ x = x ◦ e = x, (identity element)

• ∀x ∈M, ∃x−1 ∈M : x ◦ x−1 = x−1 ◦ x = e. (inverse element)
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1. General Algebra

Notational Remark. When we talk about an element g of a group G (g ∈ G),
we mean that g is an element of the underlying set M (g ∈M).
Groups that satisfy commutativity law:

• ∀x, y ∈M : x ◦ y = y ◦ x

are called Abelian groups (in honour of a famous Norwegian mathematician
Niels Henrik Abel). For Abelian groups ◦ is denoted by + in the additive
notation and by · in the multiplicative notation.

Definition 1.1.2. If the set M has a finite number of elements, G = (M, ◦)
is called a finite group. The order of the finite group G is the number of
elements of the underlying set M and we denote it by #G. If the set M is
infinite, then the order of G is infinite as well.

A simple example of an infinite Abelian group is (Z,+), the set of all integers
equipped with standard addition. An example of a finite Abelian group is
Z+
n = ({0, 1, . . . , n− 1},+n), n ∈ N, where +n is addition modulo n and N is

the set of all natural numbers (positive integers). The order of this group is
n.
Remark. In every group, there exists just one unique identity element. Fur-
thermore, for every element q ∈ G there exists just one inverse element, de-
noted by q−1 in the multiplicative notation and −q in the additive notation.
The inverse of a product of two group elements is a product of the respective
inverses in the reverse order (order does matter in non-commutative groups,
although in this thesis we are exclusively concerned with Abelian groups).
An identity element in the additive notation is called a zero and denoted by
0, in the multiplicative notation a unit and denoted by 1.

In an additive group G, we define multiplication by an integer (repeated
application of the group law) as follows:

∀p ∈ G, ∀k ∈ Z : kp :=



p+ p+ · · ·+ p︸ ︷︷ ︸
k-times

k > 0,

0 (identity element) k = 0,
(−p) + (−p) + · · ·+ (−p)︸ ︷︷ ︸

k-times

k < 0.

In a multiplicative group G, we define exponentiation (repeated application
of the group law) in a similar manner:

∀p ∈ G, ∀k ∈ Z : pk :=



p · p · · · p︸ ︷︷ ︸
k-times

k > 0,

1 (identity element) k = 0,
p−1 · p−1 · · · p−1︸ ︷︷ ︸

k-times

k < 0.

4



1.1. Basic Algebraic Structures

Definition 1.1.3. The order of an element a ∈ G is the smallest positive
integer k ∈ N such that: ak = 1 (similarly ka = 0 in the additive notation).
We denote the order of an element a by #a = k, and if there is not such k, we
say the order of a is infinite (this case may only happen if G itself is of infinite
order). Elements of finite order are sometimes called torsion elements.

Remark. The order of an identity element in any group G is always 1. Due to
the uniqueness of the identity element it is also the only element in G of this
order.

Definition 1.1.4. A group (H, ◦) is a subgroup of a group (G, ◦) if and only
if H ⊆ G. The group law ◦ is the same, therefore an identity element e ∈ G
has to be an identity in any subgroup H of G as well. H is called a trivial
subgroup of G if H = {e} or H = G.

Theorem 1.1.1. (Lagrange’s Theorem). Let G be a finite group and H
a subgroup of G, then the order of the subgroup H divides the order of the
group G: ∃n ∈ N : #G = #H · n.

Definition 1.1.5. Group G is called a cyclic group if and only if there exists
an element g ∈ G such that:

• G = 〈g〉 := {gn | n ∈ Z}, (in the multiplicative notation)

or

• G = 〈g〉 := {ng | n ∈ Z}. (in the additive notation)

Element g is then called a generator of the group G.

Remark. Ordered pair (〈a〉, ◦) form a subgroup of (G, ◦) for any a ∈ G. The
order of the group generated by the element a is the same as the order of the
element a.

∀a ∈ G : #〈a〉 = #a.

Definition 1.1.6. A ring R = (M,+, ·) is a set equipped with two binary
operations + : M × M → M and · : M × M → M satisfying following
requirements:

• (M,+) is an Abelian group,

• ∀x, y, z ∈M : x · (y · z) = (x · y) · z, (associativity)

• ∃e ∈M, ∀x ∈M : e · x = x · e = x, (identity element w.r.t. oper. ·)

• ∀x, y, z ∈M : x · (y + z) = x · y + x · z, (left distributive law)

• ∀x, y, z ∈M : (y + z) · x = y · x+ z · x. (right distributive law)

5



1. General Algebra

Notational Remark. When we talk about an element r of a ring R (r ∈ R),
we mean that r is an element of the underlying set M (r ∈M).

Definition 1.1.7. Let F = (M,+, ·) be a ring and (M \ {0}, ·) be an Abelian
group, then F is a field. Abelian group (M,+) is called the additive group of
the field F and denoted by F+. The identity element of this group is denoted
by 0. Abelian group (M \ {0}, ·) is called the multiplicative group of the field
F and denoted by F×. The identity element of this group is denoted by 1.

Definition 1.1.8. Let F be a field, 0 be the identity element of F+ and 1 be
the identity element of F×, if there exists such n ∈ N :

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n-times

= 0,

we define the smallest n ∈ N fulfilling this condition to be the characteristic
of the field F. If there is not such n, we define the characteristic of the field F
to be 0. We denote the characteristic of the field F by char(F).

The characteristic of a field is either 0 or a prime number. An example of a
field of characteristic 0 are real numbers with standard addition and multipli-
cation (R,+, ·).

An example of a field of prime characteristic p is a set of non-negative integers
less than p equipped with addition modulo p and multiplication modulo p
({0, 1, . . . , p−1},+p, ·p). We call this field the Galois Field of order p (order
of a field is defined as the order of its additive group) and denote it by GF (p).

Remark. All finite fields (fields with finite number of elements) are of prime
characteristic.

Definition 1.1.9. Let F, T be fields (equipped with the same binary opera-
tions), if F ⊆ T we call T a field extension of the field F. The field extension
T of F can be viewed as F-vector space. We treat elements of F as scalars and
elements of T as vectors. If it is a finite-dimensional vector space, we call the
dimension of this vector space the degree of the extension and denote it
by [T : F]. From now on, we will denote the n-dimensional vector space over
a field F by Fn, n ∈ N. All field extensions of a finite field of characteristic p
are of order pn for some n ∈ N.

Remark. The finiteness of a vector space over a field is related only to the
dimension of said vector space, it is not anyhow linked with the finiteness of
the base field. For example, we can view complex numbers C (an infinite field)
as a 2-dimensional vector space over the real numbers R with a basis (1, i),
where i is the imaginary unit satisfying the equation: i2 = −1.
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1.2. Multivariate Polynomials

Definition 1.1.10. Matrix M ∈ Fn×m, where F is a field and n,m are positive
integers, is said to be in a row echelon form, if the first non-zero element,
called the leading entry, in each row is 1. Moreover, each leading entry is in
a column to the right of the leading entry in the previous row and zero rows
are below the rows having a non-zero element. Each matrix can be modified,
using only elementary row operations to a row echelon form. A simple method
of doing so is called Gaussian elimination.

For example, let matrix M ∈ R3×6 be:

M =

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

 .
One of row echelon forms of this matrix is M ′ (a row echelon form of a matrix
is not unique):

M ′ =

1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4

 .
The leading entries of the matrix M ′ are highlighted in bold.

1.2 Multivariate Polynomials

In this section, we are to examine the monomials and polynomials in multiple
variables. In the first part, the revision of certain standard notation regarding
polynomials can be found. In the second part, we introduce the reader to
the concept of a monomial ordering which is an essential building block for
Gröbner bases that are the main topic of the next section. This section is
based on [2].

Definition 1.2.1. A monomial m in x1, x2, . . . , xn is a product of the form:

m(x1, x2, . . . , xn) :=
n∏
k=1

xαk
k , ∀k ∈ {1, . . . , n} : αk ∈ Z≥0,

where x1, x2, . . . , xn are formal variables and α1, α2, . . . , αn are exponents.

Notational Remark. We can simplify the notation. Let α = (α1, α2, . . . , αn)
be an n-tuple of non-negative integers and X = (x1, x2, . . . , xn) an n-tuple of
formal variables, then we set:

Xα :=
n∏
k=1

xαk
k , αk ∈ Z≥0, k ∈ {1, . . . , n}.

7



1. General Algebra

Definition 1.2.2. The total degree of a monomial Xα = xα1
1 · · ·xαn

n is the
sum of all its exponents and is denoted by |α|.

|α| :=
n∑
k=1

αk.

Definition 1.2.3. A polynomial f over a field F in variablesX = (x1, x2, . . . ,
xn) is a finite linear combination (with coefficients in F) of monomials.

f(X) :=
∑
α

aαX
α, aα ∈ F,

where the sum is over a finite number of n-tuples α = (α1, . . . , αn), aα is the
coefficient of a monomial Xα. If aα 6= 0 , then we call aαXα a term of the
polynomial f . The total degree of the polynomial f 6= 0 is the maximum of
|α| over the terms of f . The total degree of a zero polynomial is undefined.
We denote the total degree of a polynomial f by deg(f).
Remark. The set of all polynomials in X over a field F is denoted by F[X]. It
has the ring structure (with standard polynomial addition and multiplication)
and we call it a polynomial ring over a field F.
Notational Remark. When dealing with polynomials in a small number of
formal variables we will use variables x, y, z.
For example:

f(x, y, z) = 2x2y5 − 17x5z4,

f is a polynomial in Z[x, y, z] of total degree deg(f) = 9.
Remark. Every polynomial f ∈ F[x1, . . . , xn] can be viewed as a function
f(x1, . . . , xn) : Fn → F.

Definition 1.2.4. Let f ∈ F[x1, . . . , xn] be a polynomial. We say f has a
root r = (r1, . . . , rn), r1, . . . , rn ∈ F if f(r) = 0. We may also view r as
a vector in Fn. We say that field F is algebraically closed if every non-
constant polynomial in F[x1, . . . , xn] has a root in Fn. For example, C is an
algebraically closed field. On the other hand, R is not an algebraically closed
field because there exist polynomials with coefficients in R that have only
complex roots, e.g. f(x) = x2 + 16.

Definition 1.2.5. A polynomial f ∈ F[X] is called symmetric if and only
if:

f(xi1 , . . . , xin) = f(x1, . . . , xn)

for every possible permutation xi1 , . . . , xin of the variables x1, . . . , xn.

For example, polynomials x2 + y2 + z2 and xyz in variables x, y, z are clearly
symmetric.
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1.2. Multivariate Polynomials

Definition 1.2.6. A polynomial f ∈ F[X] is homogeneous of total degree
m ∈ Z≥0 provided that every term of f has total degree m.

Definition 1.2.7. Let F be a field and let f1, . . . , fs, s ∈ N, be polynomials
in F[x1, . . . , xn]. Then the set of their common zeroes:

V(f1, . . . , fs) := {a ∈ Fn | ∀k ∈ {1, . . . , s} : fk(a) = 0},

is called the affine variety in Fn defined by polynomials f1, . . . , fs.

Thus, an affine variety V(f1, . . . , fs) ⊆ Fn is the set of all solutions of the sys-
tem of multivariate polynomial equations f1(x1, . . . , xn) = f2(x1, . . . , xn) =
· · · = fs(x1, . . . , xn) = 0 restricted to Fn. In the case Fn is not an alge-
braically closed field, there might be some solutions that lie in an extension
Fn, but not in Fn itself.

For example, consider the affine variety V(xz, yz) in R, we can easily ver-
ify that the set of all solutions of the polynomial system:

xz = 0,
yz = 0,

is the union of the (x, y)-plane and the z-axis. For graphical illustration see
figure 1.1.

Definition 1.2.8. Let R be a commutative ring, then any non-empty subset
I ⊆ R is called a (two-sided) ideal of R if it satisfies following requirements:

• I 6= ∅, (I is a non-empty set)

• ∀f, g ∈ I : (f + g) ∈ I, (I is closed under addition)

• ∀f ∈ I, ∀h ∈ R : hf ∈ I. (I is closed under multiplication by R)

This thesis is predominantly concerned with the ideals generated by a finite
number of polynomials over a finite field.

Definition 1.2.9. Let X = (x1, . . . , xn) be an ordered n-tuple of formal
variables and let f1, . . . , fs ∈ F[X] be an s-tuple of polynomials. Then the set

〈f1, . . . , fx〉 :=
{ n∑
i=1

hifi | h1, . . . , hs ∈ F[X]
}

is called the ideal generated by polynomials f1, . . . , fs.
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1. General Algebra

Figure 1.1: Affine variety defined by (xz, yz). Image source: ([2], page 9).

Remark. Every ideal I of F[X] is finitely generated, which means:

∃s ∈ N, ∃f1, . . . , fs ∈ F[X] : I = 〈f1, . . . , fs〉,

and we say that the polynomials f1, . . . , fs form a basis of I. Note that a
given ideal I may have many different bases. If we have two different bases
B1 = (f1, . . . , fs), s ∈ N, and B2 = (g1, . . . , gt), t ∈ N, of the same ideal I in
F[X], such that I = 〈B1〉 = 〈B2〉, then the affine varieties in Fn, defined by
the bases B1 and B2, are the same.

V(B1) = V(B2).

Theorem 1.2.1. Let V ⊆ Fn be an affine variety and let X = (x1, . . . , xn) be
an ordered n-tuple of formal variables. Then the set

I(V) := {f ∈ F[X] | ∀a ∈ V : f(a) = 0}.

is an ideal of F[X].

Definition 1.2.10. The ideal I(V) is called the ideal of affine variety V.

Remark. The natural question to ask is whether I(V(f1, . . . , fs)) = 〈f1, . . . , fs〉.
The answer, unfortunately, is not always yes, but the following inclusion holds:

〈f1, . . . , fs〉 ⊆ I(V(f1, . . . , fs)).

10



1.2. Multivariate Polynomials

Theorem 1.2.2. Let f, g ∈ F[x] be two non-constant polynomials of degrees
l,m ∈ Z>0, deg(f) = l, deg(g) = m. Then f, g have a common factor in F[x]
if and only if there are polynomials A,B ∈ F[x], such that:

1. A 6= 0, B 6= 0,

2. deg(A) ≤ m− 1, deg(B) ≤ l − 1,

3. Af +Bg = 0.

To decide whether polynomials f, g have a common factor, we can rewrite
Af +Bg = 0 as a system of linear equations and find a non-zero solution.

A = u0x
m−1 + · · ·+ um−1,

B = v0x
l−1 + · · ·+ vl−1,

f = c0x
l + · · ·+ cl, c0 6= 0,

g = d0x
m + · · ·+ dm, d0 6= 0.

If we compare the coefficients of powers of x, we get a system of linear equa-
tions with variables ui, i ∈ {0, 1, . . . ,m − 1} and vj , j ∈ {0, 1, . . . , l − 1}
and coefficients ci, dj ∈ F. The coefficient matrix of this system is called
the Sylvester matrix of f and g with respect to x, denoted by Sylx(f, g).
Sylx(f, g) is the following (l +m)× (l +m) matrix:

Sylx(f, g) :=



c0 d0
c1 c0 d1 d0

c2 c1
. . . d2 d1

. . .
... . . . c0

... . . . d0
... c1

... d1
cl dm

cl
... dm

...
. . . . . .

︸ ︷︷ ︸
m columns

cl ︸ ︷︷ ︸
l columns

dm



,

where the empty spaces are filled by zeros.

Definition 1.2.11. The determinant of the Sylvester matrix is called the re-
sultant of polynomials f and g with respect to x, and is denoted by Resx(f, g).

Furthermore, f, g have a common factor in F[x] if and only if Resx(f, g) = 0,
which is equivalent to the above-presented system of linear equations having a

11



1. General Algebra

non-zero solution. An example of the resultant of two quadratic polynomials
is shown on page 41.

If f, g have a common factor h ∈ F[x], deg(h) ≥ 1, then there exist f1, g1 ∈ F[x],
such that:

f = hf1, g = hg1.

Theorem 1.2.3. Let F be an algebraically closed field, let polynomials f, g
have a common factor h ∈ F[X], deg(h) ≥ 1. Since F is an algebraically closed
field, a (non-constant) common factor h has a root r ∈ F: h(r) = 0. Therefore,
r is a common root of polynomials f, g:

(hf1)(r) = h(r)f1(r) = 0f1(r) = 0 =⇒ f(r) = 0,
(hg1)(r) = h(r)g1(r) = 0g1(r) = 0 =⇒ g(r) = 0.

1.2.1 Monomial Ordering

The notion of ordering of terms in a polynomial is a key ingredient in many
algorithms, e.g. the long division of polynomials. When dealing with poly-
nomials in only one variable, we usually write the terms of the polynomial in
the decreasing order by their monomial degree.

We would like to establish an ordering on the terms in polynomials in F[X],
where X = (x1, . . . , xn). First, we note that we can reconstruct the monomial
Xα = xα1

1 · · ·xαn
n from the n-tuple of exponents α = (α1, . . . , αn) ∈ Zn≥0.

Based on this observation, we define an ordering > on the space Zn≥0 which
also gives us an ordering on the monomials ∈ F[X]. If for some α, β ∈ Zn≥0 and
some ordering > holds: α > β we also say that Xα > Xβ. In this thesis, we
only consider total orderings, which means that for every pair of monomials
Xα and Xβ exactly one of the three statements holds:

• Xα > Xβ, (when α > β)

• Xα = Xβ, (when α = β)

• Xα < Xβ, (when α < β)

and > is transitive:

∀α, β, γ ∈ Zn≥0 : (Xα > Xβ ∧Xβ > Xγ) =⇒ Xα > Xγ .

We also require that multiplication of two polynomials does not change the
relative ordering of terms. Therefore, the following property for > must hold:

∀α, β, γ ∈ Zn≥0 : Xα > Xβ =⇒ XαXγ > XβXγ .

12



1.2. Multivariate Polynomials

Which in terms of the exponent vectors means:

∀α, β, γ ∈ Zn≥0 : α > β =⇒ α+ γ > β + γ.

To summarize all the requirements, we make the following definition.

Definition 1.2.12. A monomial ordering> on F[X], whereX = (x1, . . . , xn),
is a relation > on Zn≥0 satisfying:

• > is a total ordering on Zn≥0,

• ∀α, β, γ ∈ Zn≥0 : α > β =⇒ α+ γ > β + γ,

• ∀A ⊆ Zn≥0, A 6= ∅ : ∃α ∈ A, ∀β ∈ A \ {α} : β > α.

The last requirement demonstrates, that in every non-empty subset of Zn≥0
there exists a minimum element under the relation >.

Definition 1.2.13. Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn≥0. Lexico-
graphic Order (lex), denoted by >lex, is a generalisation of the way words
are ordered in a dictionary. We say α >lex β if the leftmost non-zero entry
of the vector difference α − β ∈ Zn is positive. We write: Xα >lex X

β if
α >lex β.

For example:

• (10, 4, 3) >lex (10, 3, 4), since α− β = (0, 1,−1).

• (7, 5, 3, 1) >lex (7, 5, 2, 4), since α− β = (0, 0, 1,−3).

• The variables x1, . . . , xn are ordered in the usual way by the lexico-
graphic order:

(1, 0, . . . , 0) >lex (0, 1, 0, . . . , 0) >lex · · · >lex (0, . . . , 0, 1),

so x1 >lex x2 >lex · · · >lex xn.

In the rest of this thesis, we assume x >lex y >lex z, unless stated
otherwise.

Definition 1.2.14. Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn≥0. Graded
Lexicographic Order (grlex), denoted by >grlex, at first orders the terms
by the total degree, then it breaks ties using the standard lexicographic order
defined above.

α >grlex β : (|α| > |β|) ∨ (|α| = |β| ∧ α >lex β),

where |α| =
∑n
i=1 αi and |β| =

∑n
i=1 βi.

13



1. General Algebra

• (10, 2, 6) >grlex (10, 3, 4), since |α| = 18 > |β| = 17.

• (7, 5, 3, 1) >grlex (7, 5, 2, 4), since |α| = 16 = |β| and α >lex β.

• The variables x1, . . . , xn are ordered in the same way as by >lex order:

(1, 0, . . . , 0) >grlex (0, 1, 0, . . . , 0) >grlex · · · >grlex (0, . . . , 0, 1),

Definition 1.2.15. Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn≥0. Graded
Reverse Lexicographic Order (grevlex), denoted by >grevlex. We say
α >grevlex β if |α| > |β| or if |α| = |β| and the rightmost non-zero entry of
vector difference α− β ∈ Zn is negative.

Remark. Grevlex is somehow a less intuitive order, however, it is usually the
most efficient for computations.

• (4, 7, 1) >grevlex (4, 2, 5), since |α| = 12 > |β| = 11.

• (7, 5, 1, 3) >grevlex (1, 5, 3, 7), since |α| = 16 = |β|,
and α− β = (6, 0,−2,−4), −4 < 0.

• The variables x1, . . . , xn are ordered in the same way as by >lex order:

(1, 0, . . . , 0) >grevlex (0, 1, 0, . . . , 0) >grevlex · · · >grevlex (0, . . . , 0, 1),

Here we illustrate how the polynomial f(x, y, z) = 4xy2z+4z2−5x3 +7x2z2 ∈
Z[x, y, z] would be written, if we reorder its terms by a monomial ordering in
decreasing order:

• With respect to the lex order:

f(x, y, z) = −5x3 + 7x2z2 + 4xy2z + 4z2.

• With respect to the grlex order:

f(x, y, z) = 7x2z2 + 4xy2z − 5x3 + 4z2.

• With respect to the grevlex order:

f(x, y, z) = 4xy2z + 7x2z2 − 5x3 + 4z2.

The first two terms have the same total degree of 4 and xy2z >grevlex
x2z2 because (1, 2, 1)− (2, 0, 2) = (−1, 2,−1) and −1 < 0.

Definition 1.2.16. Let f =
∑
α aαX

α be a non-zero polynomial in F[X], and
let > be a monomial order.
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1.2. Multivariate Polynomials

• The multidegree of f is:

multideg(f) := max(α ∈ Zn≥0 | aα 6= 0),

the maximum is taken with respect to >.

• The leading coefficient of f is:

LC(f) := amultideg(f) ∈ F.

• The leading monomial of f is:

LM(f) := Xmultideg(f) ∈ F[X],

with coefficient 1.

• The leading term of f is:

LT(f) := (LC(f) · LM(f)) ∈ F[X].

To illustrate these notions, let f(x, y, z) = 4xy2z+4z2−5x3+7x2z2 ∈ Z[x, y, z]
as before and let us use >grevlex order.

f(x, y, z) = 4xy2z + 7x2z2 − 5x3 + 4z2, (in grevlex order)
multideg(f) = (1, 2, 1),

LC(f) = 4,
LM(f) = xy2z,

LT(f) = 4xy2z.

Now we can formulate the idea of a general division algorithm in F[X].

Definition 1.2.17. Let p, q ∈ F[X] be two monomials, we say the monomial p
is divisible by the monomial q if and only if there exists a monomial h ∈ F[X],
such that: p = qh. We denote it by q | p and read it as q divides p.

Theorem 1.2.4. Let > be a monomial order on Zn≥0, let F = (f1, . . . , fs)
be an ordered s-tuple of polynomials in F[X], where X = (x1, . . . , xn). Then
every f ∈ F[X] can be written as:

f = q1f1 + · · ·+ qsfs + r,

where qi, r ∈ F[X], and either r = 0 (is a zero polynomial) or r is a linear
combination, with coefficients in F, of monomials ∈ F[X] such that none of
those monomials is divisible by any of LT(f1), . . . ,LT(fs).
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Definition 1.2.18. We call the polynomial r from the previous theorem a
remainder of f on division by F . Furthermore, if qifi 6= 0, then

multideg(f) ≥ multideg(qifi).

We do not describe the division algorithm itself in the thesis, please refer to [2]
on pages 61–68 where the algorithm is discussed in detail.

Unfortunately, the remainder is not unique and depends on the order of the
divisors in the set F and also on the monomial order itself.

Moreover, we would like to use this idea to answer the ideal membership
problem. Let f, f1, . . . , fs ∈ F[X] and let I = 〈f1, . . . , fs〉 be an ideal. We
would like to determine whether f ∈ I. We can clearly state that if the re-
mainder r obtained after division of f by F = (f1, . . . , fs) is 0, then f has to
be an element of the ideal I. So r = 0 is a sufficient condition for the ideal
membership. However, it is not a necessary condition for f being in the ideal.
To remedy this situation, we try to describe a ‘good’ basis of the ideal I, such
that the remainder r on division by the polynomials of this basis is uniquely
determined and that the condition r = 0 is also a necessary condition for
f ∈ I. Exactly those are the properties of Gröbner bases, which we describe
in the following section.

1.3 Gröbner Bases

Gröbner bases may be used to solve a number of problems concerning polyno-
mial ideals in an algorithmic or computational fashion. It is one of the most
commonly used methods for solving systems of multivariate polynomial equa-
tions, i.e. calculating the affine variety defined by those polynomial equations.
This section is based on [2].

Definition 1.3.1. An ideal I ⊆ F[X] is called a monomial ideal if there
exists a (possibly infinite) subset A ⊆ Zn≥0, such that I consists of all poly-
nomials which are finite sums:

∑
α∈A hαX

α, where hα ∈ F[X]. We can then
write I in the form: I = 〈Xα | α ∈ A〉. Monomial Xβ, β ∈ Zn≥0, lies in the
ideal I if and only if there exist α ∈ A, such that Xα | Xβ (Xβ is divisible by
some Xα).

(Dickson’s Lemma). Any monomial ideal I = 〈Xα | α ∈ A〉 ⊆ F[X] can be
written in the form I = 〈Xα(1), . . . , Xα(s)〉, s ∈ N, where α(1), . . . , α(s) ∈ A.
In particular, I has a finite basis (Xα(1), . . . , Xα(s)).

Theorem 1.3.1. A monomial ideal I ⊆ F[X] has a finite basis (Xα(1), . . . ,
Xα(s)) with the property that Xα(i) does not divide Xα(j) for any i 6= j.
Moreover, this basis is unique.
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Definition 1.3.2. The unique basis of I from the previous theorem is called
the minimal basis of I.

Definition 1.3.3. Let I ⊆ F[X], I 6= 0, be an ideal and fix a monomial order
on F[X]. Then:

• We denote by LT(I) the set of leading terms of non-zero elements
of I.

LT(I) = {cXα | ∃f ∈ I \ {0} : LT(f) = cXα}.

• We denote by 〈LT(I)〉 the ideal of leading terms of I. 〈LT(I)〉 is a
monomial ideal, therefore, there exists a finite set g1, . . . , gt ∈ I, t ∈ N,
such that:

〈LT(I)〉 = 〈LT(g1), . . . ,LT(gt)〉.

Fix a monomial order on F[X]. Then every polynomial f ∈ F[X] has a unique
leading term.

Definition 1.3.4. A finite subset G = {g1, . . . , gt} of an ideal I ⊆ F[X], I 6=
{0} is said to be a Gröbner basis (or standard basis) if:

〈LT(g1), . . . ,LT(gt)〉 = 〈LT(I)〉.

Additionally, we define the Gröbner basis of the zero ideal {0} to be the empty
set ∅ using the convention that 〈∅〉 = {0}.

Remark. Every ideal I ⊆ F[X] has a Gröbner basis. Furthermore, any Gröbner
basis for an ideal I is a basis of I. Gröbner bases for ideals in polynomial rings
were introduced by B. Buchberger in his PhD thesis [5], published in 1965, and
named by him in honour of his thesis’s advisor W. Gröbner. Buchberger also
developed fundamental algorithms to find and work with Gröbner bases. In
many computer algebra systems, there is usually used an alternative spelling
‘Groebner bases’.

Now we will mention few important properties of Gröbner bases.

Remark. Let I ⊆ F[X] be an ideal and let G = {g1, . . . , gt} be a Gröbner basis
of I. Then for any f ∈ F[X], there is a unique polynomial r with those two
properties:

• No term of r is divisible by any of LT(g1), . . . ,LT(gt).

• ∃g ∈ I : f = g+r. In particular, when using the division algorithm, r is
the remainder on division of f by set G no matter how are the elements
of G listed.
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Polynomial r is called the normal form of f.

Polynomial f ∈ I if and only if the remainder r on division f by G is zero,
r = 0.

Notational Remark. Let f ∈ F[X] be a polynomial and let F = (f1, . . . , fs) ⊆
F[X] be an ordered s-tuple of polynomials. We denote the remainder on the
division of f by F by fF . If F is a Gröbner basis of 〈f1, . . . , fs〉, then we can
regard F as a set without any particular order because the remainder on the
division by a Gröbner basis is unique.

Definition 1.3.5. Let f, g ∈ F[x1, . . . , xn] be non-zero polynomials. Let α =
multideg(f), β = multideg(g) and γ = (γ1, . . . , γn), where γi = max(αi, βi) for
each i ∈ {1, . . . , n}. We call Xγ the least common multiple of LM(f) and
LM(g) and denote it by Xγ = lcm(LM(f), (LM(g)).

The S-polynomial of f and g is the combination:

S(f, g) := Xγ

LT(f) · f −
Xγ

LT(g) · g.

For example, let f = x3y2 − x2y3 + x and g = 3x4y + y2 in R[x, y] with grlex
order. Then γ = (4, 2) and

S(f, g) = x4y2

x3y2 · f −
x4y2

3x4y
· g

= x · f − 1
3y

3 · g

= −x3y3 + x2 − 1
3y

3.

An S-polynomial is ‘designed’ to produce cancellation of the leading terms.

Definition 1.3.6. (Buchberger’s Criterion): Let I be a polynomial ideal.
Then a basis G = {g1, . . . , gt} of I is a Gröbner basis of I if and only if for all
pairs i 6= j, the remainder on division by S(gi, gj) by G (listed in some order)
is zero.

Let G be a set of generators, Buchberger’s algorithm transforms this set to
a Gröbner basis of the polynomial ideal generated by G. In essence, the S-
polynomials of pairs of generators are repeatedly computed and then divided
by the set of generators. If the remainder of this division is non-zero, then
we add this remainder to the set of generators. We repeat this process until
no new elements are added to the set of generators, i.e. the Buchberger’s
Criterion is fulfilled. Detailed description of this algorithm is on page 91
in [2].
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Definition 1.3.7. A reduced Gröbner basis for a polynomial ideal I is a
Gröbner basis G for I such that:

• ∀p ∈ G : LC(p) = 1.

• ∀p ∈ G: no monomial p lies in 〈LT(G \ {p})〉.

Any polynomial ideal I 6= {∅} for a given monomial order has a unique re-
duced Gröbner basis.

Now we describe, how to use Gröbner bases for finding all the solutions of
a system of multivariate polynomial equations.

Definition 1.3.8. Given ideal I = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xn], the l-th elim-
ination ideal Il is the ideal of F[xl+1, . . . , xn] defined by:

Il := I ∩ F[xl+1, . . . , xn].

Note that different orderings of the variables lead to different elimination
ideals.

Theorem 1.3.2. (The Elimination Theorem). Let I ⊆ F[x1, . . . , xn] be
an ideal and let G be a Gröbner basis of I with respect to lex order where
x1 > x2 > · · · > xn. Then, for every 0 ≤ l ≤ n, the set:

Gl := G ∩ F[xl+1, . . . , xn]

is a Gröbner basis of the l-th elimination ideal Il.

Given an ideal I = 〈f1, . . . , fs〉, we wish to find all the points that lie in the
affine variety V(I). We build up the solutions one coordinate at a time. At
first, we find the affine variety V(In−1), which is equivalent to finding the
roots of a univariate polynomial in F[xn]. We call any solution (an) ∈ V(In−1)
a partial solution of the original system of equations. The next step is
to extend a partial solution (an) to a partial solution (an−1, an) ∈ V(In−2).
To do that, we substitute (an) into all the polynomial equations in In−2.
Thereafter, we obtain a univariate polynomial equation in F[xn−1], which
we can conveniently solve. Note that not every partial solution in V(In−1)
extends to a partial solution in V(In−2). We repeat this process until we
find V(I0) = V(I), a set of all complete solutions of the original system of
equations.

Definition 1.3.9. Let I ⊂ F[X] be a polynomial ideal over a finite field F.
We say I is a zero-dimensional ideal if and only if the affine variety V(I) is a
finite set over every field T such that F ⊆ T.
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Definition 1.3.10. Let G = {g1, . . . , gs} be the reduced Gröbner basis for
a zero-dimensional ideal I ⊂ F[x1, . . . , xn] with respect to the lexicographic
order of monomials with X1 >lex · · · >lex Xn. Additionaly, let G be ordered
so that every LT(gj) >lexLT(gj+1). Then for each i ∈ {1, . . . , n} there exists
j = j(i) for which LT(gj) = xdi

i for some di > 0. This is called the triangular
form and is especially convenient for finding all the points that lie in the
affine variety defined by the polynomials g1, . . . , gn. The last polynomial in
G is univariate: gs = gs(Xn). We can find its roots (a partial solution) and
substitute them into all the other polynomials in G. After such substitution,
at least one of the earlier polynomials gi, i ∈ {1, . . . , s − 1} is univariate in
Xn−1. We can repeat this process until we find the affine variety V(G), the
set of all complete solutions. This method is called backsolving or back-
substitution, for more information see [6].
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Chapter 2
Elliptic Curves and the Discrete

Logarithm Problem

In this chapter, we revise the theory of elliptic curves and state the elliptic
curve discrete logarithm problem (ECDLP). In the last section, we also in-
troduce the reader to the concept of summation polynomials, which are the
primary building blocks in many specialised algorithms (exploiting the par-
ticular group structure) solving the ECDLP. Examples of such algorithms are
discussed in detail in chapter 3.

2.1 Elliptic Curves

This section focuses on elliptic curves over finite fields and groups of their
points. At first, we define what is a general elliptic curve. Afterwards, we
show how to define an Abelian group on the set of points of an elliptic curve.
This section is based mostly on [3].

Definition 2.1.1. An elliptic curve over a (prime order) finite field GF (p),
p > 3, p prime, defined by the short Weierstrass equation, is a set:

E(GF (p)) := {(x, y) | x, y ∈ F, y2 = x3 +Ax+B} ∪ {O},

where A,B ∈ GF (p) are coefficients of the elliptic curve. Coefficients
A,B have to satisfy the following condition: 4A3+27B2 6= 0, which guarantees
the right-hand side polynomial f(x) = x3 + Ax + B has 3 distinct roots.
Elliptic curves are non-singular curves, i.e. they do not have any cusps nor
self-intersections. Point O is called the point at infinity (in the projective
plane).

Definition 2.1.2. Let E(GF (p)) be an elliptic curve, and let P,Q ∈ E(GF (p)),
P = (x1, y1), Q = (x2, y2) be two points on the elliptic curve E. We define the
binary operation ⊕ : E(GF (p)) × E(GF (p)) → E(GF (p)), called addition
on the elliptic curve E(GF (p)), as follows:

21
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• If P = O, P ⊕Q = Q, or if Q = O, P ⊕Q = P. Therefore, the point at
infinity O is an identity element of the operation ⊕.

• Else if x1 = x2 and P 6= Q, P⊕Q = O. Point at infinity O is the identity
element of operation ⊕. Therefore, point Q is the additive inverse of
point P , denoted by 	P . We now state the explicit formula for point
	P , we know its x-coordinate is x1. We use the elliptic curve equation
and substitute X with x1:

Y 2 = (x3
1 +Ax1 +B),

which is a quadratic equation in the variable Y . Since we already know
one of its roots y1, the other root has to be −y1. Hence

	P = (x1,−y1).

• a) Else if x1 6= x2, let λ be the slope of the line defined by the points
P,Q.

λ = y2 − y1
x2 − x1

,

b) Else if P = Q (point doubling), let λ be the slope of the tangent
line to the elliptic curve equation at the point P.

λ =

∂E
∂X

∣∣∣(x1,y1)
∂E
∂Y

∣∣∣(x1,y1)
= 3x2

1 +A

2y1
,

where ∂E/∂X and ∂E/∂Y are the partial derivatives of the elliptic curve
equation with respect to X,Y in particular.

The result of the operation ⊕ is:

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1,

P ⊕Q = (x3, y3).

Theorem 2.1.1. A set of points on the elliptic curve defined by the short
Weierstrass equation and the binary operation ⊕ form an Abelian group
(E(GF (p)),⊕). We denote it by E(p). If we want to explicitly mention
the coefficients A,B, then we use EA,B(p).

Notational Remark. Let P ∈ E(p) be a point on an elliptic curve E over
GF (p). To shorten the notation of the repeated application of the group
law, we use the notation introduced in chapter 1. To remind our readers;
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2.1. Elliptic Curves

multiplication of a point on the elliptic curve E by an integer t has the
following meaning:

∀P ∈ E(p), ∀t ∈ Z : tP :=



P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
t-times

t > 0,

O (identity element) t = 0,
(	P )⊕ (	P )⊕ · · · ⊕ (	P )︸ ︷︷ ︸

t-times

t < 0.

Theorem 2.1.2. (Hasse’s Theorem.) Let E be an elliptic curve over a
finite field GF (p), p prime. Then the following inequalities hold:

p+ 1− 2√p ≤ #E(p) ≤ p+ 1 + 2√p.

In other words, the number of points of the elliptic curve group E(p) is close
to the prime p. To calculate the exact number of points in E(p), the Schoof-
Elkies-Atkin’s (SEA) algorithm is commonly used. The time complexity of
the SEA algorithm amounts to O(log2µ+2(p)) bit operations, where µ is a
constant such that two T -bit integers can be multiplied in time Tµ, and the
space complexity is O(log2(p)). The detailed description of the SEA algorithm
can be found in chapter 17 of [7].

2.1.1 Complexity of Arithmetic Operations on an Elliptic
Curve

The complexity of arithmetic operations on E is based on the complexity of
operations in the underlying finite field GF (p). The exact number of arith-
metic operations depends on the used algorithm, its implementation and on
the architecture of the CPU where the particular code is executed. Table 2.1
provides a brief summary of the relationship between the operations on ellip-
tic curve E and the number of arithmetic operations in the underlying finite
field GF (p). Addition in GF (p) is denoted by +p, multiplication in GF (p) is
denoted by ·p, and the last column of table 2.1 is the number of multiplicative
inverses in GF (p)×.

# +p # ·p # mult. inverses
	P 1 0 0

P ⊕Q,P 6= Q 6 3 1
P ⊕Q,P = Q 5 5 1

tP, t ∈ Z≥0, k = d log2(t)e1 (5k + 3k) (5k + 1.5k) (k + 0.5k)

Table 2.1: Complexity of arithmetic operations on the elliptic curve E over a
finite field GF (p).

1Using signed binary expansion of t for the double-and-add algorithm, see [3] page 105.
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2. Elliptic Curves and the Discrete Logarithm Problem

We denote the number of bits of p by n = d log2(p)e. Addition in GF (p)+ is
asymptoticallyO(n), multiplication inGF (p)×, using Montgomery method [7],
isO(n2) and the calculation of a multiplicative inverse inGF (p)×, using a care-
ful implementation of the extended Euclidean algorithm (EEA) [7], is O(n2).
An alternative to the EEA for calculating a multiplicative inverse in GF (p)×
is based on Lagrange’s theorem (1.1.1).

∀a ∈ GF (p)×, ∃n ∈ N : #a · n = #GF (p)× = p− 1,
∀a ∈ GF (p)×, ∀n ∈ N : a#a·n = 1 =⇒ a#a·n−1 = a−1,

∀a ∈ GF (p)× : a−1 = ap−2.

To calculate ap−2, we can use the standard algorithm called square-and-
multiply which has the same complexity O(n2) as the EEA, for more details
see [3].

2.2 The Discrete Logarithm Problem

Suppose that y = bx, given y, b ∈ R>0, we are asked to find the exponent
x ∈ R. We can express this problem in the logarithmic form, i.e. x = logb(y).
b is called the base of the logarithm. To find the unknown x, we can
use numerical methods that are based on the fact that exponential function
is strictly increasing. Therefore, we can guess a random initial solution x0,
evaluate bx0 and compare it with y. Based on the result of this compari-
son, we immediately know whether the true solution x is greater, equal, or
less than x0. Thus, we can solve this problem over the real numbers efficiently.

If we were asked to solve the same problem in a finite group instead, the
situation would be significantly more complicated.

Definition 2.2.1. Let G = (M, ·) be an Abelian group and let h = gx,
given h ∈ 〈g〉 and the base g ∈ M , we are asked to find the exponent
x ∈ {0, 1, . . . ,#g−1}. We call x the discrete logarithm of h with respect to
the base g, and denote it by x = logg(h). The problem of finding the solution
x is called the discrete logarithm problem (DLP). We require h to lie in
a subgroup generated by g in order to guarantee the existence of the solution
to the DLP.

To illustrate the difficulty of solving the DLP, let us consider the multiplicative
group G of the finite field GF (19). G = ({1, 2, . . . , 18}, ·19) and let us use one
of its generators g = 3 as a base. Group structure is shown in figure 2.1.
We might be asked to find such k that 3k ≡ 4 (mod 19). Unfortunately, the
function gk (mod 19), k ∈ N, is not monotonic. Therefore, we can not use the
idea of trying a randomly selected k0 and comparing 3k0 (mod 19) with 4, but
we can use the fact the group G is finite and its order is #G = 18. We can

24



2.2. The Discrete Logarithm Problem

Figure 2.1: Powers of the generator g = 3 in GF (19)×.

try all possible values of k ∈ {0, 1, . . . , 17} and find the solution. This method
is called the brute-force attack.

30 ≡ 1 (mod 19) 6≡ 4 (mod 19),
31 ≡ 3 (mod 19) 6≡ 4 (mod 19),
32 ≡ 9 (mod 19) 6≡ 4 (mod 19),
33 ≡ 8 (mod 19) 6≡ 4 (mod 19),

...
...

313 ≡ 14 (mod 19) 6≡ 4 (mod 19),
314 ≡ 4 (mod 19).

Therefore, the solution to this DLP is k = 14. We can observe that the brute-
force approach is quite lengthy even for a DLP in a group of small order.
The complexity of the brute-force attack in a group G is O(#G) of group
operations.
Remark. Well-known properties of logarithms (over the real numbers) hold
for discrete logarithms as well. Let G be a finite Abelian group and let g ∈ G.

• ∀p, q ∈ 〈g〉 : logg(pq) ≡ logg(p) + logg(q) (mod #g),
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2. Elliptic Curves and the Discrete Logarithm Problem

• ∀p, q ∈ 〈g〉 : logg(p(q)−1) ≡ logg(p)− logg(q) (mod #g),

• ∀k ∈ Z, p ∈ 〈g〉 : logg(pk) ≡ k · logg(p) (mod #g),

• ∀h ∈ 〈g〉, #h = #g, ∀p ∈ 〈g〉 : logg(p) ≡ logh(p) · logg(h) (mod #g).

The last property is the change-of-base formula. It tells us that if we can
effectively solve the DLP with respect to some base. We can also use it to
effectively solve the DLP with respect to any other base.
The discrete logarithm problem can be stated in any group. The difficulty of
solving it greatly depends on the group structure and the group operation. To
solve the DLP, we can develop a generic algorithm that works in any group
and does not exploit the group structure. Alternatively, we can develop a
specialised algorithm to tackle the DLP in a specific type of groups.

For example, in an additive group ({0, 1, . . . , p − 1},+p), p prime, we can
solve the DLP in O(log2(p)) group operations using the EEA. In 1997, Victor
Shoup proved that a generic algorithm to solve the DLP in a generic group of
prime order p has to do O(√p) group operations [8]. One of the best generic
algorithms to match this lower bound is Pollard’s ρ (rho)-algorithm, described
in subsection 2.3.2.

The main focus of this thesis is to solve the DLP stated on a prime field
elliptic curve using a specialised algorithm.

Definition 2.2.2. Let E(p) be an elliptic curve over a prime field GF (p), let
P ∈ E(p) and let Q ∈ 〈P 〉 be another point on E. Elliptic curve discrete
logarithm problem (ECDLP) is to find an integer k ∈ {0, 1, . . . ,#P − 1}
such that Q = kP .

2.3 Generic Algorithms for Solving the ECDLP

In this section, we present the three best known generic algorithms for solving
the ECDLP. We use elliptic curve notation. The first algorithm is based
on collision finding. Its time complexity matches the Shoup’s lower bound;
however, the memory requirements are immense. Description of all three
algorithms in this section is based on [3].

2.3.1 Baby-Step Giant-Step Algorithm

Definition 2.3.1. (Baby-step Giant-step (BSGS)): Let E(p) be an el-
liptic curve group over GF (p), equipped with operation ⊕, let P ∈ E and
kP = Q ∈ E(p), k ∈ {0, 1, . . . ,#P − 1}. We denote the order of P by
N = #P . Following algorithm solves the ECDLP in O(

√
N) of group opera-

tions ⊕.
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2.3. Generic Algorithms for Solving the ECDLP

• Let n = d√Ne, we pre-compute a list of length n of multiples of P .
0P = O, P, 2P, . . . , (n− 1)P. (baby-step phase)

• Afterwards, we generate multiples of Q until the first collision with the
list generated in the baby-step phase occurs. Let us denote (−nP ) = P ′.
Q⊕ (0P ′) = Q, Q⊕ (1P ′), . . . , Q⊕ ((n− 1)P ′).
This stage is called the giant-step phase.

• When the collision occurs for some i, j it means that iP and Q⊕ (j ·P ′)
are equal. We can find the solution k to the ECDLP:

iP = Q⊕ (j · P ′) =⇒ i ≡ k + (−jn) (mod N),
k ≡ i+ jn (mod N).

The algorithm is deterministic and is guaranteed to find the solution as it
goes over all the possible values of k. Every integer in {0, 1, . . . , N − 1} can
be expressed as i + jn, n = d√Ne, i, j ∈ {0, 1, . . . , n − 1}. For the efficient
implementation, it is crucial to be able to find collision in the pre-computed list
effectively. Therefore, it is advisable to use a hash table to store the elements
generated in the baby-step phase to achieve the constant time lookup. If
that is satisfied, then the algorithm has a time complexity O(

√
N) of group

operations. The space complexity of BSGS algorithm is O(
√
N).

For example, let E = E1,1(29) be an elliptic curve group over GF (29) defined
by the elliptic curve equation y2 = x3 + x + 1. Let P = (24, 25) ∈ E and let
Q ∈ 〈P 〉 be another point. We want to find an integer k such that Q = kP. The
order of P is 36, so we set n = 6. The list of points pre-calculated in the baby-
step phase is shown in table 2.2. This step depends only on the elliptic curve

i 0 1 2 3 4 5
iP O (24, 25) (6, 7) (0, 28) (10, 24) (28,12)

Table 2.2: List of points pre-calculated in the baby-step phase.

group E and point P . Therefore, we can pre-calculate it only once and reuse
it for the calculation of discrete logarithms of different points with respect to
the same base point P . Let us solve the ECDLP for Q = (18, 15). We iterate
over the multiples of Q and look for a collision with the pre-calculated list
shown in table 2.2. We have found a collision for j = 4 and i = 5, found

j 0 1 2 3 4 5
Q⊕ (6j 	 P ) (18, 15) (11, 3) (12, 1) (8, 17) (28,12) (24, 4)

Table 2.3: List of points tried in the giant-step phase.
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2. Elliptic Curves and the Discrete Logarithm Problem

collision is highlighted in bold in both tables. Thus:

5P = Q⊕ (24	 P ) =⇒ 4 ≡ k − 24 (mod 36) =⇒ k ≡ 29 (mod 36).

We can easily verify that 29P = (18, 15) = Q.

2.3.2 Pollard’s ρ-Algorithm

The main drawback of the BSGS algorithm is its space complexity, it needs
to store

√
#P elliptic curve points. To remedy this problem, in 1978, John

Pollard published a different algorithm, which was named after him the Pol-
lard’s ρ-algorithm. It has the same time complexity as BSGS, yet the memory
requirements are minimal. We first describe Pollard’s idea in general, then
show how it can be applied to solve the ECDLP.

Theorem 2.3.1. (Pollard’s ρ-algorithm): Let S be a finite set of N ele-
ments, let f : S → S be a function. Choose x0 ∈ S a starting point of the
sequence defined by: xi = (f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

i-times

)(x0), then there exists L ∈ N such

that:
x2i = xi, 1 ≤ i < L.

Set S is finite, therefore, for some k ∈ N<N , the sequence x0, x1, . . . , xk has to
contain a point that repeats twice in this sequence. We denote the first such
point by xT . It is clear that after point xT ; the sequence is in a cycle of length
M where T +M is the index of the second occurrence of the point xT in the
sequence. To prove the existence of an integer i, such that x2i = xi, we start
with the fact that ∀k ∈ {0, 1, . . . ,M − 1} : xT+k = xT+k+M , which implies:

∃i ∈ N, T ≤ i < T +M : 2i ≡ i (mod M) =⇒ i | M.

The argument is simple, in every sequence of M consecutive integers there is
precisely one integer divisible by M . Therefore, we can see that L from the
definition 2.3.1 is in fact L = T +M ≤ N . On average (with different random
choices of x0 and function f) it takes O(

√
N) steps to obtain a collision, for a

thorough analysis see [9].

For a graphical illustration see figure 2.2, the first point in the sequence that
repeats itself twice is x3. Therefore, we set T = 3. The length of the cycle is
M = 6 because xT = x3 = x3+6. The only integer in the set {3, 4, 5, 6, 7, 8}
that is divisible by M = 6 is 6, therefore i = 6 and we can easily verify that
x6 = x2∗6 = x12. Figure 2.2 has a strong resemblance to the Greek letter ρ,
hence the name of the algorithm.

Theorem 2.3.2. The Pollard’s ρ-algorithm might be used to solve the ECDLP.
Let E(p) be an elliptic curve group over a finite field GF (p). Let P ∈ E(p)
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Figure 2.2: Graphical illustration of the idea behind the Pollard’s ρ-algorithm.
T = 3, the length of the cycle is M = 6. Image source: ([3], page 70).

and let Q ∈ 〈P 〉 be another point. We want to find the integer t = logP (Q).
Let us denote the order of P by N = #P . We divide 〈P 〉 into three disjoint
sets S1, S2, S3 of approximately the same size. Additionally, we require that
O 6∈ S2. For i ∈ Z≥0 we define a function f : 〈P 〉 → 〈P 〉 as follows:

Ti+1 = f(Ti) :=


P ⊕ Ti, Ti ∈ S1,

2Ti, Ti ∈ S2,

Q⊕ Ti, Ti ∈ S3.

We can start with any point in E(p) as long as we know how to express it as
a linear combination of points P,Q. The usual choice is T0 = O = 0P + 0Q.
After k steps we get:

Tk = (f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k-times

)(T0) = αkP ⊕ βkQ.

We need to keep track of coefficients αk, βk. We start with integers α0, β0,
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2. Elliptic Curves and the Discrete Logarithm Problem

such that α0P + β0Q = T0 and define the update process recursively:

∀k ∈ Z≥0 : αk+1 :=


αk + 1 (mod N), Tk ∈ S1,

2αk (mod N), Tk ∈ S2,

αk, Tk ∈ S3.

∀k ∈ Z≥0 : βk+1 :=


βk, Tk ∈ S1,

2βk (mod N), Tk ∈ S2,

βk + 1 (mod N), Tk ∈ S3.

We also create a second sequence of points on the elliptic curve E:

∀k ∈ Z≥0 : Rk := T2k = γkP ⊕ δkQ.

After a certain number of steps, which we denote by i, we encounter a collision:
Ri = Ti. We then have the following relation:

γiP ⊕ δiQ = αiP ⊕ βiQ.

Let d = gcd(βi − δi, N), if d = 1, then we can easily find the solution t to the
ECDLP:

t ≡ (γi − αi) · (βi − δi)−1 (mod N).
If d 6= 1, but is small, it might be favourable to find a particular solution y
mod(N/d) in the same fashion:

y ≡ (γi − αi) · (βi − δi)−1
(

mod N

d

)
.

Afterwards, we can recover the complete solution t from the set:{
y + k · N

d

∣∣∣∣ k ∈ {0, 1, . . . , d− 1}
}
.

For N prime d will be small. If d is not small, then we can restart the algorithm
with a different partitioning S1, S2, S3 or a different starting point T0. Another
option is to use the Pohlig-Hellman algorithm and solve multiple ECDLPs in
prime order subgroups. Afterwards, we can find the complete solution t using
the Chinese remainder theorem (CRT). This idea is refined in subsection 2.3.3.

For example, let E = E11,18(29) be an elliptic curve group over GF (29),
defined by the elliptic curve equation is y2 = x3 +11x+18. Let P = (1, 1) ∈ E
and let Q ∈ 〈P 〉 be a second point. We want to find an integer t such that:
Q = tP. The order of P is 29 (prime). We divide points of 〈P 〉 into sets
S1, S2, S3 based on their x-coordinates and assign O to S1:

∀R ∈ 〈P 〉 \ {O} = (Rx, Ry) :


R ∈ S1, if 0 ≤ Rx <

⌊p
3
⌋
,

R ∈ S2, if
⌊p

3
⌋
≤ Rx < 2

⌊p
3
⌋
,

R ∈ S3, if 2
⌊p

3
⌋
≤ Rx,
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where p = 29. Cardinalities of the sets are |S1| = 9, |S2| = 12, |S3| = 8.

Remark: There are many different ways how to divide the points into the
sets S1, S2, S3. The important thing is that the three sets should be approx-
imately of the same size and that for every point R we can efficiently decide
to which of the three sets it belongs.

Let us solve the ECDLP with Q = (13, 26). In table 2.4 are shown the
intermediate results of the Pollard’s ρ-algorithm.

i αi βi Ti γi δi Ri

0 0 0 O 0 0 O
1 1 0 (1, 1) 2 0 (18, 25)
2 2 0 (18, 25) 3 1 (3, 22
3 2 1 (5, 13) 8 2 (11, 7)
4 3 1 (3, 22) 3 8 (8, 3)
5 4 1 (12, 14) 4 9 (13, 3)
6 8 2 (11, 7) 8 19 (13, 3)
7 16 4 (14, 4) 16 10 (13, 3)
8 3 8 (8, 3) 3 21 (13, 3)
9 4 8 (26, 25) 6 14 (13, 3)
10 4 9 (13,3) 12 0 (13,3)

Table 2.4: Intermediate values of the Pollard’s ρ-algorithm.

A collision was found after 10 iterations:

4P + 9Q = 12P =⇒ t ≡ 8 · 9−1 (mod 29) ≡ 17 (mod 29).

We can easily verify that 17P = (13, 26) = Q.

2.3.3 Pohlig-Hellman Algorithm

As we have mentioned in the previous subsection, Pollard’s ρ-algorithm works
best in a prime order group. In the case, when the order of the group G is
a composite number N with small factors, we can solve multiple ECDLPs
in subgroups of prime order. Afterwards, we can use the CRT to find the
complete solution. In 1978, Stephen Pohlig and Martin Hellman presented
this algorithm in their article [10].

Theorem 2.3.3. (Chinese Remainder Theorem (CRT)): Letmi ∈ N, i ∈
{1, . . . , k}, be mutually prime integers, and N =

∏k
i=1mi, xi ∈ Z, i ∈
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{1, . . . , k}. The following system of linear congruences:

x ≡ x1 (mod m1),
x ≡ x2 (mod m2),

...
...

x ≡ xk (mod mk),

has a solution c:

c =
k∑
i=1

xiNiMi (mod N),

where Ni = N/mi and Mi ≡ (Ni)−1 (mod mi). Moreover, any other solution
c′ is congruent to c modulo N .

Theorem 2.3.4. (Pohlig-Hellman algorithm): Let E(p) be an elliptic
curve and let P ∈ E(p) be a point of composite order N . Assume N has k
distinct prime factors, then the factorisation of N is:

N =
k∏
i=1

pei
i , ∀i, j ∈ {1, 2, . . . , k} : ei ∈ Z≥0,

where pi are distinct primes. Let Q ∈ 〈P 〉, we want to find an integer x such
that xP = Q. We can split this ECDLP into multiple ECDLPs in the prime
power subgroups as follows:

• For each i ∈ {1, 2, . . . , k} let:

Pi := N

pei
i

P, Qi := N

pei
i

Q.

Each Pi is a generator of a prime power subgroup of E(p). The order of
Pi is #Pi = pei

i . We solve an ECDLP in every subgroup 〈Pi〉, i.e. find
an integer xi such that: xiPi = Qi.

• In every prime power subgroup 〈Pi〉, we may split the ECDLP to ei
ECDLPs in prime subgroups of order pi. We may rewrite the unknown
integer xi := yi,0+yi,1pi+yi,2p2

i +· · ·+yi,e−1p
ei−1
i . We can now repeatedly

solve an ECDLP in a prime subgroup to obtain one unknown digit of xi
at a time, by shifting the rest of them out. To find the first digit yi,0 we
multiply both sides of the equation by pei−1

i :

pei−1
i Qi = pei−1

i · xiPi
= pei−1

i · (yi,0 + yi,1pi + yi,2p
2
i + · · ·+ yi,e−1p

ei−1
i )Pi

= pei−1
i yi,0Pi ⊕ pei

i · (yi,1 + yi,2pi + · · ·+ yi,e−1p
ei−2
i )Pi︸ ︷︷ ︸

∈〈Pi〉

= yi,0p
ei−1
i Pi, (because ∀T ∈ 〈Pi〉 : pei

i T = O)
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We may now solve the ECDLP in a prime subgroup of order pi generated
by pei−1

i Pi, and obtain the first digit yi,0. Afterwards, we move to the
next digit yi,1 and find it in a similar fashion.

pei−2
i Qi = pei−2

i · xiPi
= pei−2

i · (yi,0 + yi,1pi + yi,2p
2
i + · · ·+ yi,e−1p

ei−1
i )Pi

= (pei−2
i yi,0 + pei−1

i yi,1)Pi ⊕ pei
i · yi,2 + · · ·+ yi,e−1p

ei−3
i )Pi︸ ︷︷ ︸

∈〈Pi〉

= yi,0p
ei−2
i Pi ⊕ yi,1pei−1

i Pi =⇒
pei−2
i (Qi 	 yi,0Pi) = yi,1p

ei−1
i Pi.

To find the digit yi,1, we need to solve the ECDLP in a prime subgroup
of order pi. We continue in the same fashion until all digits of xi are
recovered.

• Finally we solve the following system of linear congruences:

x ≡ x1 (mod pe1
1 ),

x ≡ x2 (mod pe2
2 ),

...
...

x ≡ xk (mod pek
k ),

using the CRT to obtain the complete solution x.

In the individual phase, when solving the ECDLP in a prime order subgroup
we can use any algorithm. Usually, BSGS algorithm or Pollard’s ρ-algorithm
is used. The time complexity of Pohlig-Hellman algorithm is therefore (for
more information see [3]):

O

( k∑
i=1

[
ei
(
S(pi) + log(pi)

)])
,

where S(pi) is the time complexity of the algorithm used to solve the ECDLP
in the prime subgroup of order pi. For elliptic curve groups of composite order
with small factors, it is usually more efficient to first run Pohlig-Hellman to
split the ECDLP into prime order subgroups, then solve these smaller prob-
lems with BSGS or Pollard’s ρ-algorithm, than to run BSGS or Pollard’s
ρ-algorithm on the original problem.

For example, let E = E1,2(75941) be an elliptic curve over the finite field
GF (75941), defined by the elliptic curve equation y2 = x3 + x + 2. Let
P = (64579, 62139) ∈ E and let Q ∈ 〈P 〉 be another point on the elliptic
curve E. We want to find an integer x such that Q = xP. The order of P is
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76428 = 22 · 32 · 11 · 193. Let us solve the ECDLP for Q = (1447, 50835).

We show how the Pohlig-Hellman algorithm solves this ECDLP.

i pi ei Pi Qi xi

1 2 2 19107P = (1, 75939) 19107Q = (1, 2) 3
2 3 2 8492P = (55693, 45178) 8492Q = (17273, 40444) 2
3 11 1 6948P = (39499, 25804) 6948Q = (29264, 5197) 9
4 193 1 396P = (58124, 73147) 396Q = (34502, 8697) 189

Table 2.5: Intermediate values of the Pohlig-Hellman algorithm.

For i = 1, 2 we need to solve an ECDLP in a subgroup of prime power order.
In the subgroup of order 22, generated by P1 = (1, 75939). We rewrite the
unknown partial solution x1 as x1 = y1,0 +2y1,1 and use the following equation
to find the first digit y1,0:

2Q1 = y1,0 · 2P1

(75940, 0) = y1,0(75940, 0) =⇒ y1,0 = 1.

To recover the second digit y1,1, we proceed in the similar fashion.

Q1 	 y1,0 · P1 = y1,1 · 2P1

(1, 2)⊕ (1, 2) = y1,1(75940, 0)
(75940, 0) = y1,1(75940, 0) =⇒ y1,1 = 1.

Therefore, x1 = y1,0 + y1,0 · 2 = 1 + 2 = 3. In reality, we could have just tried
all four possible values of x1.

We repeat the whole process in the subgroup of order 32 generated by P2 =
(55693, 45178). We rewrite the unknown partial solution x2 as x2 = y2,0+3y2,1
and use the following equation to find the first digit y2,0:

3Q2 = y2,0 · 3P2

(35655, 11621) = y2,0(35655, 64320) =⇒ y2,0 = 2.

To find the second digit y2,1, we proceed in the similar fashion.

Q2 	 y2,0 · P2 = y2,1 · 3P2

Q2 	 2P2 = y2,1 · (35655, 64320)
O = y2,1 · (35655, 64320) =⇒ y2,1 = 0.

Therefore, x2 = 2 + 0 · 3 = 2. In this case, there are nine possible values of
x2, which could all have been tried out in the blink of an eye.
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2.4. Index Calculus for the ECDLP

Now we assemble the system of linear congruences and solve it to find the
complete solution x.

x ≡ 3 (mod 4),
x ≡ 2 (mod 9),
x ≡ 9 (mod 11),
x ≡ 189 (mod 193),

Using the CRT, we compute x (the intermediate values are in table 2.6).

i xi mi Ni Mi

1 3 4 19107 3
2 2 9 8492 2
3 9 11 6948 8
4 189 193 396 58

Table 2.6: Intermediate values of the CRT phase of the Pohlig-Hellman algo-
rithm.

x ≡ 3 · 19107 · 3 + 2 · 8492 · 2 + 9 · 6948 · 8 + 189 · 396 · 58 (mod 76428)
≡ 2891 (mod 76428).

We can easily verify that 2891P = (1447, 50835) = Q.

2.4 Index Calculus for the ECDLP

The Index Calculus is a known subexponential algorithm for solving the
DLP in a multiplicative group of a finite field.

Definition 2.4.1. Let 0 ≤ a ≤ 1, a ∈ R and c ∈ R>0. The subexponential
function for the parameters a and c is:

LN (a, c) := exp(c log(N)a log(log(N))1−a).

Let N be a k-bit integer, note that taking a = 0 gives LN (0, c) = log(N)c = kc

(polynomial), while taking a = 1 gives LN (1, c) = N c = exp(ck) (exponential).
Thus, LN (a, c) interpolates exponential and polynomial growth. An algorithm
is called subexponential when its complexity is O(LN (a, c)) for some a,
0 < a < 1. For more information see chapter 15 in [11].

However, it is common to use the name index calculus algorithm to refer to
any algorithm that operates in the same fashion as the original Index Calculus
algorithm. In other words, an algorithm that solves the DLP by first collecting
relations between the group elements, and then using linear algebra to find
the complete solution [12].

35



2. Elliptic Curves and the Discrete Logarithm Problem

Definition 2.4.2. Index Calculus for ECDLP: Let E(p) be an elliptic
curve group over a prime order field GF (p) and let P ∈ E(p). For sim-
plicity, we assume #P is prime; if that’s not the case, then we can use the
Pohlig-Hellman idea to split the ECDLP into multiple ECDLPs in prime or-
der subgroups. Let Q ∈ 〈P 〉 be another point in the subgroup generated by
P . We want to find an integer x such that xP = Q. The simplest version of
the index calculus algorithm consists of two main stages, the relation collec-
tion step and the linear algebra step. A general index calculus algorithm for
solving the ECDLP is described below. First, we need to collect relations.

1. Specify a factor base F ⊂ 〈P 〉, such that we can effortlessly test the
membership of an element to this factor base.

2. Generate a random linear combination R of points P,Q.

R := uP + vQ, u, v are random integers in {0, 1, . . . ,#P − 1}.

3. If possible, express R as a linear combination of the elements of the
factor base F :

∀k ∈ {1, 2, . . . , |F|} : Pk ∈ F , ak ∈ {0, 1, . . . ,#P − 1} :

R = uP + vQ =
|F|∑
k=1

akPk,

O = −uP − vQ+
|F|∑
k=1

akPk.

4. If R cannot be expressed in terms of the factor base F , continue with
step 2. Otherwise, store the coefficients of R with respect to F and
integers u, v as a row in the relation matrix M . The row is stored in
this form:

(a1, a2, . . . , a|F|,−u,−v).

5. We repeat this procedure (steps 2 to 4) until the end condition is met.
Some authors (see [12] on page 2) suggest to set the end condition to the
number of decomposed points R to be at least |F|. However, we need to
state that this condition does not guarantee that the obtained relations
are enough to solve the ECDLP. Another option, which guarantees we
can solve the ECDLP in the next step, is to collect relations until the
rank of the matrix M is |F|+1. Which is also the maximum rank matrix
M can have (assuming Q 6= O). In section 3.1 a weaker end condition
is stated.

6. After collecting enough relations, the linear algebra step solves the ECDLP.
We reduce matrix M to a row echelon form (definition 1.1.10). Then,

36



2.4. Index Calculus for the ECDLP

the last non-zero row of the reduced matrix looks like (0, 0, . . . , 0, 1,−v′),
which transforms into the following relation:

O = 1P ⊕ (−v′Q)
P = v′Q =⇒ x ≡ (v′)−1 (mod #P ).

We can always recover the solution x because the order of #P is prime
and P,Q 6= O =⇒ v′ 6≡ 0 (mod #P ).

The main bottleneck of this algorithm lies in the decomposition of a point R
into the factor basis F , called the point decomposition problem (PDP).
Therefore, in order for this algorithm to be efficient we need to be able to
efficiently solve the PDP (including the case when R cannot be decomposed
into the elements of F). Additionally, we require a high success rate of the
decomposition of R into the factor base F . Both of these requirements are
deeply affected by the choice of the factor base F and its size [12].

2.4.1 Summation Polynomials

In 2004, Igor Semaev published an article introducing summation polynomials
in order to transform the PDP to a problem of finding a solution of a multi-
variate polynomial equation based on the group law of a specific elliptic curve.
This section is based on the original article by Semaev [13].

Definition 2.4.3. Let EA,B(p) be an elliptic curve given by the short Weier-
strass equation over a prime field F = GF (p), p > 3. For any natural number
n ≥ 2, let Sn = Sn(X1, X2, . . . , Xn) be a polynomial in n variables. We
call this polynomial the n-th summation polynomial and define it by the
following property. Let x1, x2, . . . , xn be any elements in F, the algebraic
closure of the field F, then Sn(x1, x2, . . . , xn) = 0 if and only if there exist
y1, y2, . . . , yn ∈ F, such that the points (xi, yi),∀i ∈ {1, 2, . . . , n} are in E(F),
and sum to the identity element of EA,B(F).

n∑
i=1

(xi, yi) = O, O ∈ EA,B(F).

For n = 2, the summation polynomial is defined as follows.

S2(X1, X2) := X1 −X2,

it comes from the fact that

∀P,Q ∈ EA,B(F) : P ⊕Q = O =⇒ Q = 	P.

Based on the definition of the additive inverse in EA,B(F), we know the points
P = (x1, y1) and 	P = (x1,−y1) have the same x-coordinate. Which is equiv-
alent to S2(x1, x2) = 0 =⇒ x1 = x2.
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To determine S3(X1, X2, X3), let (x1, y1) and (x2, y2) be two affine ( 6= O)
points on EA,B(F) such that x1 6= x2. We denote their sum and difference by:

(x3, y3) := (x1, y1)⊕ (x2, y2),
(x4, y4) := (x1, y1)	 (x2, y2).

We use the group law ⊕ to express x3 and x4 in terms of x1, x2, y1, y2.

x3 = λ2
3 − (x1 + x2), where λ3 = y2 − y1

x2 − x1
,

x4 = λ2
4 − (x1 + x2), where λ4 = y2 + y1

x2 − x1
, since 	 (x2, y2) = (x2,−y2).

To find a polynomial, such that x3 and x4 are its roots, recall Vieta’s for-
mulas. Let z1, z2 be two roots of a polynomial p(z) = az2 + bz+ c. Then the
following formulas must be satisfied:

z1 + z2 = − b
a
, z1z2 = c

a
.

Therefore, we want to express x3 + x4 and x3x4 in terms of x1, x2, A,B.

x3 + x4 = λ2
3 + λ2

4 − 2(x1 + x2)

= (y2 − y1)2 + (y2 + y1)2 − 2(x1 + x2)(x2 − x1)2

(x2 − x1)2

= 2y2
2 + 2y2

1 − 2(x1 + x2)(x2 − x1)2

(x2 − x1)2 .

Substitute for y2
1, y

2
2 using the elliptic curve equation Y 2 = X3 +AX +B.

x3 + x4 = 2(x3
1 +Ax1 +B + x3

2 +Ax2 +B)− 2(x3
1 + x3

2 − x2
1x2 − x1x

2
2)

(x2 − x1)2 ,

= 2(Ax1 +Ax2 + 2B) + x2
1x2 + x1x

2
2

(x2 − x1)2 ,

= 2x1(x1x2 +A) + x2(x1x2 +A) + 2B
(x2 − x1)2 ,

= 2(x1 + x2)(x1x2 +A) + 2B
(x2 − x1)2 .
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x3x4 =
(

(y2−y1)2−(x3
1+x3

2−x
2
1x2−x1x2

2)
)(

(y2+y1)2−(x3
1+x3

2−x
2
1x2−x1x2

2)
)

(x2−x1)4 ,

=
(
y2

1+y2
2−2y1y2−x3

1−x
3
2+x2

1x2+x1x2
2

)(
y2

1+y2
2+2y1y2−x3

1−x
3
2+x2

1x2+x1x2
2

)
(x2−x1)4 ,

=
(
x2

1x2+x1x2
2+Ax1+Ax2−2y1y2+2B

)(
x2

1x2+x1x2
2+Ax1+Ax2+2y1y2+2B

)
(x2−x1)4 ,

= −4y2
1y

2
2+x2

1x
4
2+2x3

1x2A+4x2
1x

2
2A+2x1x3

2A+x2
1A

2+2x1x2A2+x2
2A

2

(x2−x1)4

+ 4x2
1x2B+4x1x2

2B+4x1AB+4x2AB+4B2+x4
1x

2
2+2x3

1x
3
2

(x2−x1)4 .

Substitute for y2
1, y

2
2 using the elliptic curve equation Y 2 = X3 +AX +B.

x3x4 =

(
(x1 − x2)2

)(
x2

1x
2
2 − 2x1x2A+A2 − 4x1B − 4x2B

)
(x2 − x1)4 ,

= (x1x2 −A)2 − 4B(x1 + x2)
(x2 − x1)2 .

Therefore, the x3 and x4 are roots of the polynomial f(X).

f(X) :=(x2 − x1)2X2 − 2
(

(x1 + x2)(x1x2 +A) + 2B
)
X

+
(

(x1x2 −A)2 − 4B(x1 + x2)
)
.

In the case x1 = x2, one of the points (x3, y3), (x4, y4) is 2(x1, y1) and the other
one has to be O. Without loss of generality, let us consider (x3, y3) = 2(x1, y1).
We show that x3 is the root of the polynomial f(X).

x1 = x2 : f(X) = −2
(

2x1(x2
1 +A) + 2B

)
X +

(
(x2

1 −A)2 − 8Bx1

)
,

X = (x2
1 −A)2 − 8Bx1

4(x3
1 +Ax1 +B)

,

X = x4
1 − 2Ax2

1 − 8Bx1 +A2

4(x3
1 +Ax1 +B)

.

Let us express x3 in terms of x1, x2, A,B.

λ = 3x2
1 +A

2y1
,

x3 = λ2 − 2x1,

x3 = 9x4
1 + 6Ax2

1 +A2 − 8x1y
2
1

4y2
1

.
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Substitute for y2
1 using the elliptic curve equation Y 2 = X3 +AX +B.

x3 = 9x4
1 + 6Ax2

1 +A2 − 8x4
1 − 8x2

1A− 8Bx1
4(x3

1 +Ax1 +B)

x3 = x4
1 − 2Ax2

1 − 8Bx1 +A2

4(x3
1 +Ax1 +B)

.

The root of f(X) is indeed x3. Therefore, we define the third summation
polynomial as follows:

S3(X1, X2, X3) := (X2 −X1)2X2
3 − 2

(
(X1 +X2)(X1X2 +A) + 2B

)
X3

+ (X1X2 −A)2 − 4B(X1 +X2).

S3 is a symmetric polynomial of degree 2 in each variable X1, X2, X3. For
more information about summation polynomials see [13]. In the same article,
Semaev also defined a general n-th summation polynomial as follows:

∀k, n ∈ N, n ≥ 4, n− 3 ≥ k ≥ 1 :

Sn(X1, X2, . . . , Xn) := Resy
(
Sn−k(X1, . . . , Xn−k−1, y), Sk+2(Xn−k, . . . , Xn, y)

)
.

For example,

S4(X1, X2, X3, X4) = Resy
(
S3(X1, X2, y), S3(X3, X4, y)

)
,

S3(X1, X2, y) = c0y
2 + c1y + c2, where

c0 = (X2 −X1)2,

c1 = −2
(

(X1 +X2)(X1X2 +A) + 2B
)
,

c2 = (X1X2 −A)2 − 4B(X1 +X2),
S3(X3, X4, y) = d0y

2 + d1y + d2, where
d0 = (X4 −X3)2,

d1 = −2
(

(X3 +X4)(X3X4 +A) + 2B
)
,

d2 = (X3X4 −A)2 − 4B(X3 +X4),

S4(X1, X2, X3, X4) = det


c0 0 d0 0
c1 c0 d1 d0
c2 c1 d2 d1
0 c2 0 d2

 .
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2.4. Index Calculus for the ECDLP

Recall that the resultant of two polynomials with respect to some variable, is
zero if and only if both polynomials have a common root (over an algebraically
closed field).

We can immediately see the summation polynomials Sn−k(X1, . . . , Xn−k−1, y)
and Sk+2(Xn−k, . . . , Xn, y) are tied together by the variable y. Because if there
exist x1, . . . , xn, y0 ∈ F (where y0 is a common root of polynomials Sn−k(y)
and Sk+2(y)), satisfying following equations:

Sn−k(x1, . . . , xn−k−1, y0) = 0 ∧ Sk+2(xn−k, . . . , xn, y0) = 0.

Then it implies that there exist P1, . . . , Pn, (y0, y1) ∈ E(F) such that:

P1 ⊕ · · · ⊕ Pn−k−1 ⊕ (y0, y1) = O,
∃v ∈ {0, 1} : Pn−k ⊕ · · · ⊕ Pn ⊕ (−1)v(y0, y1) = O,

P1 ⊕ · · · ⊕ Pn−k−1 ⊕ (−1)v+1
(
Pn−k ⊕ · · · ⊕ Pn

)
= O.

Therefore,
Sn(x1, . . . , xn) = 0.

Summation polynomials for n ≥ 3, n ∈ N, are symmetric, absolutely irre-
ducible and of degree 2n−2 in each variable Xi, i ∈ {1, . . . , n}. However, the
higher degree summation polynomials are hardly practical (compared with
S3) because the growth of their degrees (in each variable) is exponential with
respect to n. In 2015, Semaev himself presented a ‘splitting trick’, a way
how to transform the n-th summation polynomial into a system of S3 sum-
mation polynomials. The splitting trick is based on the resultant properties
and the idea of tying multiple polynomial equations together by bounding
variables. The constructed polynomial system can be solved more efficiently
than a single summation polynomial Sn, n > 3, for more information see [14].

Theorem 2.4.1. (The splitting trick): The roots of the n-th summation
polynomial Sn(X1, . . . , Xn), n ∈ N, n > 3, in F[X1, . . . , Xn] are equivalent to
the solutions (in variables X1, . . . , Xn) to the following polynomial system:

S3(X1, X2, U1) = 0,
S3(Xk+2, Uk, Uk+1) = 0, 1 ≤ k ≤ n− 4, k ∈ N,
S3(Xn−1, Xn, Un−3) = 0.

We call variables Ui, i ∈ {1, . . . , n− 3}, bounding variables. Therefore, by
introducing n− 3 new variables, we obtain a polynomial system that consists
of n − 2 symmetric polynomials (each only in three variables) of degree two
in each of its variables. Instead of a single polynomial in n variables of degree
2n−2 in each of its n variables.
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2. Elliptic Curves and the Discrete Logarithm Problem

Summation polynomials reduce the PDP to the solution of a system of mul-
tivariate polynomial equations, which are usually solved by calculating the
reduced Gröbner basis of the ideal I generated by those polynomials. The
set of common zeroes of the polynomials ∈ I over F is finite. Therefore, the
Gröbner basis of I with respect to the lexicographic monomial order is in tri-
angular form, see definition 1.3.10. The reduced Gröbner basis of the ideal I
is directly calculated with respect to the lexicographic monomial order. Al-
ternatively, it is calculated with respect to another monomial order and then
converted using the FGLM algorithm to a Gröbner basis of the same ideal
with respect to the lexicographic monomial order, for detailed information
about the FGLM algorithm see [15].

In the next chapter, we describe three specialised algorithms for solving the
ECDLP.
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Chapter 3
Specialised Algorithms Solving

the ECDLP

In this chapter, we describe three specialised algorithms for solving ECDLP
that are based on the theoretical concepts presented in the previous chapters.
A detailed complexity analysis of each of the presented algorithms is also
given.

3.1 Algorithm 1 (Based on Semaev, 2015)

Algorithm 1 is based on the Semaev’s algorithm proposed in [14], few changes
had to be made to make the algorithm work for the ECDLP over prime fields
GF (p). Semaev’s original algorithm works best over prime field extensions
where the base field is of small characteristic.

Let P ∈ E(p) be a point of prime order #P = r, p, r primes. Let Q ∈ 〈P 〉 be
another point on E(p). We are asked to find an integer k such that kP = Q.
Since 〈P 〉 is a finite group of prime order r we are interested in the solution
k (mod r). Algorithm 1, which computes this integer k, works in multiple
steps as described below.

1. Define the decomposition constant m ≥ 2, m ∈ N, and a factor base
F ⊂ GF (p) of size

⌈
m
√
r
⌉
, where d·e is the ceiling function. The factor

base F might consist of x-coordinates of random points of the elliptic
curve group generated by P (non-deterministic):

F :=
{
x
∣∣∣ x ∈ GF (p), ∃y ∈ GF (p) : (x, y) ∈ 〈P 〉

}
,

or we can take the |F| smallest x-coordinates of points of the elliptic
curve group generated by P (deterministic).
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2. Construct a relation matrix M ∈ GF (r)|F|+1×|F|+2. Let us order el-
ements of F and denote the i-th element of the factor base F by Fi,
i ∈ {0, . . . , |F| − 1}.

F0 F1 . . . FF−1 u v

M :=


m1,1 m1,2 . . . m1,|F| u1 v1

...
... · · ·

...
...

...
m|F|+1,1 m|F|+1,2 . . . m|F|+1,|F| u|F|+1 v|F|+1

 ,
where all elements of the matrix M are in GF (r). Each row of this
matrix represents a relation in the group 〈P 〉:

∀j ∈ {1, . . . , |F|+ 1} : ujP ⊕ vjQ⊕
F∑
i=1

mj,i(Fi−1, yi−1) = O,

where yk, k ∈ {0, . . . , |F| − 1} is the smaller of the y-coordinates of the
points on E with x-coordinate equal to Fk. If there is a point (Fk, y) in
〈P 〉, then there is also its additive inverse (Fk,−y) = (Fk, p− y) in 〈P 〉.
We take the smaller of these two values as yk := min(y, p− y).

The matrix M is initialized as a zero matrix and we gradually fill it
with relations. The row index rowID tells us where to insert the next
found relation. We initialize it with rowID = 1.

3. For random integers u, v ∈ {0, . . . , r − 1} compute point R = uP ⊕ vQ.
If R = O and v 6= 0 we can immediately solve the ECDLP:

k ≡ (−u)(v)−1 (mod r).

Otherwise, R has affine coordinates (Rx, Ry). If Rx = Fk, for some
k ∈ {0, . . . , |F| − 1}, then we have a relation which we can add to the
relation matrix M .

MrowID, k =
{

1, Ry <
p
2 ,

r − 1, Ry >
p
2 .

MrowID, |F|+1 = urowID = u (mod r),
MrowID, |F|+2 = vrowID = v (mod r),

rowID = rowID + 1.

Otherwise, we try to decompose this point as a sum of factor base F
points by solving the following multivariate polynomial system, i.e. we
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compute x1, . . . , xm ∈ F and u1, . . . , um−2 ∈ GF (p) such that:

S3(x1, x2, u1) = 0,
S3(xk+2, uk, uk+1) = 0, 1 ≤ k ≤ m− 3, k ∈ N,
S3(xm, Rx, um−2) = 0,[ |F|−1∏
i=0

(
xj −Fi

)]
= 0, j ∈ {1, . . . ,m},

the last m products are used to restrict the found solutions x1, . . . , xm
to lie in the factor base F . Semaev also suggested adding the field
equations:

xpj − xj = 0, j ∈ {1, . . . ,m},

which is not computationally feasible for large p (approximately p ≥ 28).
Therefore, we do not use them in our implementation. Let us denote
the set of the polynomials described above as T . We can compute the
reduced Gröbner basis G of ideal I = 〈T 〉 with respect to lexicographic
order X1 >lex · · · >lex Xn and by the definition 1.3.10; G will be in a
triangular form. Hence we can easily find the affine variety V(G) = V(T ),
i.e. the set of the common zeroes of the polynomials ∈ T . For every
found solution, in variables X1, . . . , Xm (we do not care about the values
of u1, . . . , um−2), (s1, . . . , sm), s1, . . . , sm ∈ F ; we first determine the
signs oi, i ∈ {1, . . . ,m} such that:[ m∑

i=1
(−1)oi(si, yi)

]
= O,

where yi = min(yi, p − yi) is a y-coordinate of a point on E with x-
coordinate equal to si. After determining the signs oi, we update the
matrix M (we start with a row of zeroes):

∀i ∈ {1, . . . ,m} : MrowID, i = MrowID, i +
{

1, oi = 0,
r − 1, oi = 1.

MrowID, |F|+1 = urowID = u (mod r),
MrowID, |F|+2 = vrowID = v (mod r),

rowID = rowID + 1.

4. We repeat step 3, until the end condition is met. The end condition
could obviously just be that the matrix M has a full rank F + 1, but
in reality we usually need fewer relations. Thus, it is not efficient to al-
ways generate that many relations. To solve the ECDLP we just need to
transform one row of the matrix M to this form: (0, . . . , 0, u′, v′) using
only elementary row operations.
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Let us denote the matrix M without last two columns by M ′. We state
the end condition as follows. If rank(M) > rank(M ′), then we proceed
to step 5. This implies that if we reduce M to its row echelon form, then
there will be a leading entry in the (F + 1)-th column of the reduced
matrix M . We do not consider the degenerate case when Q = O in
which case a leading entry could be in the very last column as well.

5. We reduce M to its row echelon form, as described above and denote it
by MR. We can now solve the ECDLP using the last non-zero row of
MR which has to be in the following form:

(0, . . . , 0, 1, v′) =⇒ P ⊕ v′Q = O =⇒ k ≡ (−v′)−1 (mod r).

The multiplicative inverse of (−v′) always exists because r is a prime
number and P 6= O =⇒ v′ 6≡ 0 (mod r). If we denote the rank of the
matrix M by d, then the last non-zero row of the matrix MR is the d-th
row.
Integer k is the solution to the ECDLP.

3.1.1 Complexity Analysis of Algorithm 1

Let us denote the size of the factor base F by s =
⌈

m
√
r
⌉
. The complex-

ity of creating the factor base F in algorithm 1 is O(s · log3(p)) because
we need to generate s random elements of 〈P 〉 with pair-wise distinct x-
coordinates. To do that, we can generate a random integer t, 0 < t < r,
calculate point (= tx, ty) = tP and add tx to the factor base, we neglect the
probability tx is already in the factor base F . According to table 2.1, the com-
plexity of calculating tP is O(log(t)) of multiplications in GF (p), which can
be bounded by O(log3(p)) of elementary operations (bit complexity) because
r ≤ p+ 2√p+ 1 =⇒ O(log(t)) ≈ O(log(p)).

Bit complexity of calculating a random point R = (Rx, Ry) = aP ⊕ bQ
is O(2 log3(p)) = O(log3(p)). Probability that a random point R can be ex-
pressed as:

R =
m∑
i=1

(−1)oiPi, oi ∈ {0, 1}, Pi ∈ F ,

is

2m−1
((

s

m

))
1
r

= 2m−1

r

(s+m− 1)!
(s− 1)! ·m! = 2m−1

r

m∏
i=1

(s− 1 + i)
i

,

where
(( s
m

))
denotes the number of m-combinations with repetition of a set of

size s. Assuming m is small compared to s, we can bound this probability by:

2m−1

r ·m!

m∏
i=1

(s− 1 + i) ≤ 2m−1

r

sm

m! ≈
2m−1

m! .

46



3.1. Algorithm 1 (Based on Semaev, 2015)

On average, we need to try m!/2m−1 random points R before we obtain a
single relation. Growth of this number with respect to m is shown in the first
column of table 3.1.

m!/2m−1 mm/2m−1

m = 2 1 2
m = 3 1.5 6.75
m = 4 3 32
m = 5 7.5 195.31
m = 6 22.5 1458
m = 7 78.75 12868.86
m = 8 315 131072

Table 3.1: Relationship of the decomposition constant m to the average num-
ber of tries before obtaining a single relation.

To simplify our calculations we assume we need to obtain s relations in order
to solve the ECDLP. Therefore, we need to calculate (s ·m!)/(2m−1) Gröbner
bases.

There are at least two main families of Gröbner bases algorithms; the first
family is Buchberger’s original algorithm and its improvements, the second
family are algorithms that transform the problem of computing a Gröbner
basis into several instances of Gaussian elimination. Algorithms in the second
family are more recent and usually faster, but their computational complexity
was not thoroughly examined. Examples of the algorithms in the second fam-
ily are F4, F5, the XL algorithm, and MutantXL, for more information see [16].
The complexity of these algorithms is dominated by Gaussian elimination in
the Macaulay matrix corresponding to the largest degree encountered during
the computation, definition of the Macaulay matrix can be found in [17]. The
number of rows and columns of this matrix depends on the number of vari-
ables, the number of polynomials in the system and their degrees. We can
bound the complexity of a Gröbner basis computation by those invariants. Let
d be the maximum (total) degree reached during a Gröbner basis computation
using some algorithm in the second family. There are(

n+ d

n

)
= (n+ d)!

d! · n! =
n∏
i=1

d+ i

i

monomials, with the leading coefficient equal to 1, in n variables of degree at
most d. We know that the Gaussian elimination of a t × t matrix is O(tω),
where 2.376 ≤ ω ≤ 3 is a constant. Therefore, we can bound the complexity
of a single Gröbner basis computation by:

O

(( n∏
i=1

d+ i

i

)ω)
.
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The maximum degree d can be bounded by Macaulay bound, see the corol-
lary 3.26 in [16]:

d ≤
∑
f∈I

deg(f), where I is the input ideal.

This upper bound is quite loose for our case; unfortunately, we were not able
to come up with a better one. For the polynomial system in algorithm 1, the
number of variables is 2m−2 as there are m variables Xi and m−2 bounding
variables Uj . The Macaulay bound for this system is:

d ≤ 4(m− 1) +m · s,

because there are m−1 summation polynomials S3, which all have total degree
4, and m bounding polynomials which all have total degree equal to the size
of the factor base F , s = |F|. Thus, the complexity of computing a single
Gröbner basis of an ideal in algorithm 1 is bounded by:

O

(( 2m−2∏
i=1

(4m− 4 +m · s+ i)
i

)ω)
.

Assuming m is significantly smaller than s, which is usually the case, then we
can simplify this upper bound to:

O

((
s2m−2

)ω)
≈ O

(
p2(ω−ω/m)

)
.

We need to s-times generate a random element R, which is O(log3(p)). As
well as approximately s-times compute the Gröbner basis of an ideal arising
from the step 3. The final step is Gaussian elimination of the relation matrix
of size (s+ 1)× (s+ 2), which is O(sω). Thus, the complexity of algorithm 1
can be loosely bounded by:

O

(
s ·
(

log3(p) + p2(ω−ω/m))+ sω
)
≈ O

(
p2(ω−ω/m)+1/m

)
.

We conclude that algorithm 1 is exponential in the number of bits of p; how-
ever, the complexity of computing Gröbner bases of ideals arising from algo-
rithm 1 needs to be better examined.

3.2 Algorithm 2 (Based on Amadori et al., 2017)

Algorithm 2 is based on the algorithm by Amadori, Pintore and Sala pre-
sented in [12]. The main difference to algorithm 1 is that it uses a factor base
with a known decomposition of each of its elements as a linear combination
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of P,Q. Hence, we only require one relation to solve the ECDLP. Algorithm
2 is presented below.

Let E(p) be an elliptic curve group over GF (p) and let P ∈ E(p) be a point of
prime order #P = r. Let Q ∈ 〈P 〉 be another point in the subgroup generated
by P . The ECDLP is to find an integer k such that kP = Q. Since 〈P 〉 is
a finite group of prime order r, we are interested in the solution k (mod r).
Algorithm 2 that solves the ECDLP, works in multiple steps as described
below.

1. Define the decomposition constant m ≥ 3, m ∈ N, and a random fac-
tor base F ⊂ GF (p) of size

⌈
m
√
r
⌉
. Elements of the factor base F are

x-coordinates of points that are a linear combination of points P,Q. Co-
efficients of each linear combination are stored in the set coeffs. Elements
of the factor base F are generated as follows:

• Start with an empty factor base:

F := {∅}, coeffs := {∅}.

• Generate a random point on E(GF (p)) as a linear combination of
points P,Q.

Ri = (xi, yi) = aiP ⊕ biQ, ai, bi ∈ GF (r), r = #P.

• If xi 6∈ F , add it to the factor base F and store the coefficients
ai, bi of the linear combination in the set coeffs.

F = F ∪ {xi}, coeffs = coeffs ∪ {(ai, bi)}.

• Repeat the two previous steps until the desired size of the factor
base F is reached.

2. Try to find a relation among the factor base points. To find a relation,
solve one of the following multivariate polynomial systems:
For t ∈ {t0, . . . ,m}, t0 ≥ 3, the variables u1, . . . , ut−3 are bounding
variables.

S3(x1, x2, u1) = 0,
S3(xk+2, uk, uk+1) = 0, 1 ≤ k ≤ t− 4, k ∈ N,
S3(xt−1, xt, ut−3) = 0,

fj(Xj) =
∏
v∈Vj

(Xj − b) = 0, j ∈ {1, . . . , t},

where Vj are pair-wise disjoint sets of approximately the same size of
factor base elements, i.e. ∀j ∈ {1, . . . , t} : |Vj | ≈ |F|/t, Vj ⊂ F . The
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polynomials fk are used to restrict the solutions x1, . . . , xt to the factor
base F . Precisely, each xj has to lie in the set Vj . By splitting the factor
base F into multiple disjoint subsets, we reduce the degree of univariate
polynomials in the polynomial system we need to solve.

3. If any of the systems for t ∈ {t0, . . . ,m}, t0 ≥ 3, does not have any
solutions, we go back to step 1 and use a different factor basis F . If a
solution was found, we use it to solve the ECDLP. Assume for some t ∈
{t0, . . . ,m}, t0 ≥ 3 has a solution (x1, . . . , xt, u1, ut−3), which describes
this relation:

t∑
i=1

(−1)si(xi, yi) = O.

We recover the signs si, i ∈ {1, . . . , t} such that:

i ∈ {1, . . . , t} : (−1)si(xi, yi) = Ri = aiP ⊕ biQ =⇒
t∑
i=1

(aiP ⊕ biQ) = O,

where ai, bi are coefficients stored in the set coeffs. Therefore, the solution k
is:

k ≡
(
−

t∑
i=1

ai

)( t∑
i=1

bi

)−1
(mod r).

Solution k is recoverable from this equation, unless
∑t
i=1 bi ≡ 0 (mod r), which

is extremely rare. If that happens, then we need to try a different t or restart
the algorithm (from step 1) with a different factor basis.

3.2.1 Complexity Analysis of Algorithm 2

Complexity of a single random factor base F generation is O(s log3(p)), where
s = |F| =

⌈
m
√
r
⌉
. The reasoning is the same as in the complexity analysis

of algorithm 1. We need to generate s elements of a subgroup 〈P 〉 and the
complexity of generating one element is O(log3(p)). By splitting the factor
base into m disjoint sets, we reduce the probability of obtaining a relation.
On the other hand, we also reduce the degrees of polynomials in our system
which significantly reduces the complexity of computing a Gröbner basis of
this polynomial system. Probability of obtaining a relation is in this case:

1
r
· 2m−1

(
s

m

)m
≈ 2m−1

mm
.

Based on the fact that the disjoint sets of factor base elements are all about the
same size s/m. The average number of Gröbner basis computations, in order
to obtain a relation, with respect to m is shown in the last column of table 3.1.
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In algorithm 2, we only need to find a single relation. For the polynomial
system in algorithm 2, the number of variables is 2m− 3 because there are m
variables Xi and m−3 bounding variables Uj . Maximum degree d reached dur-
ing a Gröbner basis computation can be again bounded by Macaulay bound:

d ≤ 4(m− 2) + s,

because there are m−2 summation polynomials S3, which all have total degree
4, and m bounding polynomials which all have total degree approximately
s/m. Thus, the complexity of computing a single Gröbner basis of an ideal in
algorithm 2 is bounded by:

O

(( 2m−3∏
i=1

4m− 8 + s+ i

i

)ω)
.

Assuming m is significantly smaller than s, which is usually the case, we can
simplify this upper bound to:

O

((
s2m−3

)ω)
≈ O

(
p2ω−3ω/m)

)
,

where ω is 2.376 ≤ ω ≤ 3. Therefore, the complexity of algorithm 2 can be
bounded by:

O

(
mm

2m−1 · s · p
2ω−3ω/m · log3(p)

)
≈ O

(
mm

2m−1 · p
2ω+(1−3ω)/m · log3(p)

)

We are inclined to believe, although the presented upper bound on the com-
plexity of computing a single Gröbner basis is very loose, that neither of
algorithms 1 and 2 is subexponential in the number of bits of p.

In the original paper [12], it was incorrectly stated that only one compu-
tation of Gröbner basis is needed. In reality, we need to obtain one relation;
based on the last column of table 3.1 it is evident that only one computation
of Gröbner basis is not a realistic assumption.

3.3 Algorithm 3 (Proposed by McGuire et al.,
2017)

Algorithm 3 was proposed by Gary McGuire and Daniela Mueller in [18]. This
algorithm does not use summation polynomials at all, nor does it use Gröbner
bases. It tries to find a single relation as does algorithm 2, but algorithm 3
does that by means of exhaustive search. We briefly describe this algorithm
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3. Specialised Algorithms Solving the ECDLP

in a few steps.

Let E(p) be an elliptic curve defined over the prime order field GF (p) and let
P ∈ E(p) be a prime order element #P = r, r prime. Let Q ∈ 〈P 〉 be another
point in the subgroup generated by P. We want to find an integer k such that
kP = Q. Since 〈P 〉 is a finite group of prime order r we are interested in the
solution k (mod r). Algorithm 3 which finds the solution k works in multiple
steps as described below.

1. Define the decomposition constant m ≥ 3, m ∈ N, and a random factor
base F ⊂ 〈P 〉 of size

⌈
m
√
r
⌉
. Elements of the factor base F are linear

combinations of points P,Q and the coefficients of each linear combi-
nation are stored in the set coeffs. Elements of the factor base F are
generated as follows:

• Start with an empty factor base:

F := {∅}, coeffs := {∅}.

• Generate a random point of Ri ∈ 〈P 〉 as a linear combination of
points P,Q:

Ri = aiP ⊕ biQ, ai, bi ∈ GF (r), r = #P.

• If Ri 6∈ F , add it to the factor base F and store the coefficients
ai, bi of the linear combination in the set coeffs:

F = F ∪ {Ri}, coeffs = coeffs ∪ {(ai, bi)}.

• Repeat the two previous steps until the desired size of the factor
base F is reached.

2. Try to find a relation among the factor base points. Choose a multiset
of m−1 points from the factor base, and check whether the ‘signed’ sum
of those points lies in the factor base F . A multiset is a generalisation
of the concept of a set that may contain multiple instances of the same
element. We denote it by {{. . .}}. Choose a multiset {{P1, . . . , Pm−1}}
of size m−1, where each point Pi lies in the factor base F . Choose signs
∀i ∈ {1, . . . ,m− 1} : oi ∈ {0, 1}, and let:

Pc :=
m−1∑
i=1

(−1)oiPi.

If Pc 6∈ F for all possible choices of signs oi, repeat with another multiset.
Else if Pc ∈ F , go to step 3. If there is no solution for any of the multisets
of size m− 1 of factor base points, go back to step 1 and generate a new
factor base F .
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3. If Pc ∈ F , denote Pm = Pc, om = 1, then we have the following relation:

m∑
i=1

(
(−1)oiPi

)
= O.

We substitute each Pi with (aiP ⊕ biQ), using the coefficients stored in the
set coeffs:

m∑
i=1

(−1)oiai +
m∑
i=1

(−1)oibi ≡ 0 (mod r),

which implies:

k ≡
( m∑
i=1

(−1)oi+1ai

)( m∑
i=1

(−1)oibi

)−1
(mod r).

Solution k is almost always recoverable from this equation. In the unlikely
event that

∑m
i=1(−1)oibi ≡ 0 (mod r), go back to step 2 and try with a differ-

ent multiset.

3.3.1 Complexity Analysis of Algorithm 3

The complexity analysis of algorithm 3 is based on the original article [18].
Denote the size of the factor base F by s = |F|. The complexity of generating
a random factor base of size s is O(s log3(p)). There is((

s

m− 1

))
= (s+m− 2)!

(s− 2)! · (m− 1)! =
m−1∏
i=1

(s− 2 + i)
i

ways of choosing m − 1 points from the set F of size s allowing repetitions.
Therefore, there is

K := 2m−1
m−1∏
i=1

(s− 2 + i)
i

different ways of forming the sum Pc = ±P1 ± · · · ± Pm−1, Pi ∈ F , i ∈
{1, . . . ,m−1}. The complexity of each sum is O

(
(m−2) log2(p)

)
. Probability

Pc ∈ F is approximately s/p, assuming p ≈ #P and assuming the verification
whether Pc ∈ F is O(1) using a hash-table. Therefore, the complexity of
algorithm 3 is bounded by:

O

(
p

K · s

(
K ·

(
(m− 2) log2(p) +O(1)

)
+ s log3(p)

))
,

where p/K · s is the expected number of different factor bases F we need to
generate. Assuming m is significantly smaller than s, we can approximate K
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by K ≈ 2m−1sm−1/(m − 1)!. Based on this assumption we can simplify the
upper bound of algorithm 3 to:

O

(
p

s
(m− 2) log2(p) + p · (m− 1)!

2m−1sm−1 log3(p)
)
≈ O

(
p(m−1)/m log2(p)

)
,

assuming p · log3(p)/K is O(p(m−1)/m log2(p)).
However, for m = 2 the complexity of algorithm 3 is approximately:

O

(
1
2
√
p log3(p)

)
= O

(
√
p log3(p)

)

of bit operations.
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Chapter 4
Realisation and Experimental

Results

In this chapter, we first comment on the choice of a programming language,
then provide useful details of the actual implementation that may speed-up
the algorithms described in the previous chapter. In the last section, we
present the measurements of the performance of our implementation of the
algorithms.

4.1 Choice of Programming Language

Our task was to efficiently implement the three algorithms described in the
previous chapter. When choosing a suitable programming language to do so,
we had the following things in our minds. We did not want to reinvent the
wheel, i.e. implement elliptic curves and operations on them by ourselves.
Therefore, we only considered programming languages that have a suitable
library for working efficiently with finite fields, polynomial rings and elliptic
curve groups.

The biggest bottleneck in algorithms 1 and 2 is indisputably the calculation
of Gröbner bases. Efficient implementation of Gröbner basis algorithms is
an area of active research all over the world. Thus, we have decided to use
already existing efficient implementations of Gröbner basis algorithms. There
are a few commercial mathematical software packages fulfilling this require-
ment available, e.g. Wolfram Mathematica, Maple, MATLAB, Magma and
many more. We must point out Magma [19], which is a computational al-
gebra system developed by the scientific community and distributed by the
Computational Algebra Group at the University of Sydney, Australia. A lot
of other researchers working on the ECDLP use Magma to implement their
ideas. According to [20], Magma has one of the most efficient implementations
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of Gröbner basis algorithm F4. There are also some non-commercial alterna-
tives available, e.g. CoCoA, SINGULAR, Xcas/Giac, SageMath and many
more.

We have opted for SageMath, which is a free, open-source mathematics soft-
ware system, for more information see [21]. It builds on top of many existing
open-source packages, e.g. CoCoA, SINGULAR, Xcas/Giac and many more.
We can access their combined power through a common interface using a
Python-based language. Therefore, it is pretty easy to start with SageMath,
provided you already have some Python experience. Also, SageMath and
Python are available on a broad set of platforms including Microsoft Win-
dows, Linux and macOS.

4.2 Gröbner Basis Algorithms and Their
Implementations

The efficiency of both algorithms 1 and 2 is closely related to the efficiency of
the Gröbner basis computation. Therefore in this section, we compare differ-
ent Gröbner bases algorithms and their implementations that are accessible
in SageMath.

SageMath uses other mathematical packages to compute Gröbner bases of
polynomial ideals. We have compared two algorithms of Buchberger’s type
implemented in mathematical package called SINGULAR. The first variation
of Buchberger’s algorithm is described in [2] on pages 90–119 and we denote
it by ‘std’. The second variation is called ‘slimgb’, which was developed by
Michael Brickenstein and more information is available in [22]. We have also
tested two implementations of Fauger̀e’s F4 algorithm, more details about this
algorithm may be found in [2] on pages 567–576. We have tested Fauger̀e’s own
implementation called ‘FGb’, which is licensed for academic use only, more
information about ‘FGb’ can be found in [23]. Since ‘FGb’ is a C -library,
we had to use this wrapper https://github.com/mwageringel/fgb_sage to
call its functions directly from SageMath. The complexity of the computation
greatly depends on the monomial order, we compare >lex, >grlex and >grevlex
monomial orders using Giac’s implementation of F4 algorithm.

We have tested these implementations on problems of different sizes. All tests
were carried out on a laptop. The exact configuration of the test machine
is described in section 4.4. For a problem of each size, determined by the
parameter p, we have generated 50 polynomial ideals I ⊂ GF (p)[x1, x2, x3]
arising from algorithms 1 and 2. The results shown in table 4.1 are averages
of our measurements. We denote the number of bits of p by k = log2(p). If
the monomial order is not specified, the >grevlex order was used. Fauger̀e’s
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‘FGb’ supports only finite fields of characteristic p < 216. This fact is denoted
by ‘NS’ when applicable to table 4.1. The time limit (TL) was 300 seconds,
unfortunately, ‘slimgb’ was not able to produce results for p ≈ 219 in this
time limit. The best time in each row is highlighted in bold. All experimental
results in table 4.1 are in seconds.

We can see that ‘giac:grevlex’ outperformed the other implementations. There-
fore, we will use it in our code and we recommend to use it to everyone, who
does not have access to Magma or Maple, which may have even better imple-
mentations available.

k ‘FGb’ ‘giac:lex’ ‘giac:grlex’ ‘giac:grevlex’ ‘slimgb’ ‘std’
8 0.139 0.168 0.206 0.145 0.119 0.121
10 0.168 0.210 0.189 0.093 0.211 0.181
14 0.254 0.336 0.295 0.202 0.395 0.636
15 1.587 2.157 1.708 0.896 16.45 7.231
16 1.876 2.466 1.654 0.942 20.21 8.87
19 NS 73.484 36.055 16.881 TL 266.124

Table 4.1: Comparison of different Gröbner basis algorithms and their imple-
mentations.

4.3 Implementation Remarks

In this section, we shortly summarize some remarks about our implemen-
tation of the algorithms 1, 2 and 3. The source code of our implementa-
tion can be found on the attached CD in impl/sage/Solve_ECDLP_Matyas_
Hollmann.sage. It is a SageMath file, which contains the functions needed for
the algorithms to run. The source codes are also available on GitHub in the
repository: https://github.com/matyas-hollmann/ECDLP-thesis. To use
our implementation, you can simply import the whole file into your SageMath
notebook/script by:

import ( . . . / impl / sage /Solve ECDLP Matyas Hollmann . sage )

After importing the file into your SageMath notebook, you can directly call the
functions: algorithm1Semaev(Q, P, m), algorithm2Amadori(Q, P, m, t0) and
algorithm3McGuire(Q,P,m). These functions expect the elliptic curve group
〈P 〉 to be a prime order group and that the point Q lies in the subgroup gen-
erated by P , i.e. it expects that the discrete logarithm k = logP (Q) exists.
Result k and some statistics about the run are returned to the caller. For
more information see the documentation in the source code and the source
code itself.

Based on the tests in the previous section, the most efficient open-source
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library for computing Gröbner bases is Giac. Unfortunately, it is not included
in the standard installation of SageMath. Giac is a C++ library, which can be
used directly from SageMath via an interface called Giacpy. To install Giacpy
execute the following command in the terminal:

sage − i g i a cpy sage

Alternatively, you can download the source code from the GitLab reposi-
tory: https://gitlab.math.univ-paris-diderot.fr/han/giacpy and build
it yourself. For more information about Giac/Xcas see [24].

We agree on the optimal size of the factor base for algorithms 1 and 2 to
be approximately m

√
#P . We have tried increasing the size of the factor base

F to reduce the number of Gröbner bases that need to be computed to obtain
a relation. Unfortunately, this led to significantly worse running times.

In algorithm 1, it may be beneficial to check, after new relations are added,
whether the column associated to the coefficient u in the relation matrix,
would be a leading entry after transforming this matrix to its row echelon
form. In SageMath we may use the function M.pivots(), which returns a list
of columns of leading entries of the matrix M in its row echelon form. Our
tests showed this to be a useful thing to do. Giac’s Gröbner basis algorithm
can use multiple threads, on macOS it is by default disabled. You can en-
able the multi-threaded computation of Gröbner basis with the following code
snippet:

from sage . l i b s . g i a c import g r o e b n e r b a s i s as gb g iac
import mul t i p ro c e s s i ng

#on macOS r e t u r n s number o f threads , not CPU count
nthreads = mu l t i p ro c e s s i ng . cpu count ( )

tmp = I d e a l ( g ene ra to r s )
gb = gb g iac (tmp , threads=nthreads )

To get the point (x, y) on the elliptic curve E from its x-coordinate, we can
use the following function in SageMath:

po int = E. l i f t x ( x coord )

It is advised to implement the factor base F as a hash-table (dictionary in
Python) to have a swift look-up operation. Implementation using a hash-table
for the factor base in algorithm 3 was more than four times faster than the
same implementation using an array for the factor base.
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4.4 Experimental Results

In this section, we present the measurements of the performance of our im-
plementation of the algorithms and draw a comparison between the three
algorithms described in chapter 3. All results were obtained on a laptop with
the following specifications: CPU: Intel Core i5 1.3GHz (dual-core, up to 4
threads) with 3MB of shared L3 cache. Operation memory: 4GB 1600MHz
LPDDR3. Operation System: 64bit macOS Mojave version 10.14.4. Software:
SageMath version 8.7 with Giac version 1.5.0-3 were used.

All three algorithms were tested on problems of different sizes. For a param-
eter b a finite field GF (p) such that p ≈ 2b was generated. A random elliptic
curve E(p) such that ∃P ∈ E(p), #P ≈ p and another point Q ∈ 〈P 〉 were
also randomly generated. Afterwards, the tested algorithm were executed to
solve this ECDLP, i.e. to find an integer k such that kP = Q. This procedure
was repeated multiple times and the results were averaged, the number of
repetitions for each problem is stated in the last column of each table. All
measured times are in seconds.

At first, we have tried to find the optimal parameters for each algorithm
with respect to the problem size. The best setting for a problem of each size
is highlighted in bold in table 3.1. The average number of computed Gröbner
bases is in column ‘# GB comp.’.
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b m # GB comp. timeSol timetotal # repetitions
10 2 10.54 0.638 0.697 100
10 3 7.52 3.001 3.103 100
10 4 10.4 6.459 6.804 100
11 2 16.7 0.902 0.991 100
11 3 9.79 5.922 6.019 100
11 4 10.8 67.514 68.090 100
11 5 9.2 138.8 139.78 100
12 2 22.8 1.455 1.671 100
12 3 11.6 18.751 19.150 100
12 4 11 82.49 83.76 100
12 5 10.4 1335.121 1337.957 25
13 2 29.51 2.561 2.782 100
13 3 13.95 65.697 66.696 100
13 4 11.2 104.322 104.987 100
14 2 40.2 4.731 4.987 100
14 3 17.6 234.497 236.497 100
14 4 16.5 997.7 998.51 20
15 2 56.31 11.387 11.876 100
15 3 22.125 818.421 822.251 25
16 2 72.3 22.804 25.405 100
16 3 29 3185.725 3186.616 15
17 2 94.25 45.637 50.731 100
18 2 142.28 126.671 142.341 100
19 2 175.5 287.615 322.459 100

Table 4.2: Experimental results of algorithm 1.

The average time (in seconds) spent solving the polynomial systems is in col-
umn ‘timeSol’ and the average time (in seconds) of solving the whole ECDLP
is in column ‘timetotal’. As we can see in table 4.2, the optimal setting for
parameter m in algorithm 1 is m = 2 for small problems. Although the num-
ber of Gröbner bases that need to be computed decreases as m increases, the
complexity of a single Gröbner basis computation grows significantly faster.
Unfortunately, the degree of univariate polynomials, which bound the results
to the factor base, is approximately 2b/2 which is too big for larger values
of b. Therefore, we recommend using the decomposition constant m = 2 for
small problems. For larger problems, we recommend increasing m to limit the
degree of univariate bounding polynomials.
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b t0 m # GB comp. timeSol timetotal # repetitions
10 3 3 3.79 0.061 0.104 100
10 4 4 14.56 0.151 0.271 100
11 3 3 4.8 0.091 0.114 100
11 4 4 19.31 0.191 0.435 100
12 3 4 5.14 0.112 0.191 100
12 4 4 15.18 0.145 0.309 100
13 3 3 5.44 0.121 0.245 100
13 4 4 19.86 0.209 0.477 100
14 3 3 6.12 0.198 0.371 100
14 4 4 18.75 0.252 0.583 100
15 3 3 6.77 0.478 0.745 100
15 4 4 27.29 0.805 1.49 100
16 3 3 5.06 0.823 1.088 100
16 4 4 24.06 1.081 1.821 100
17 3 3 5.43 2.112 2.479 100
17 4 4 23.95 1.667 2.681 100
17 5 5 122.14 2.023 3.771 100
18 3 3 6.28 5.811 6.377 100
18 4 4 29.33 5.875 8.341 100
18 5 5 137.1 4.791 7.221 100
19 3 3 8.2 19.081 20.711 100
19 4 4 29.5 16.312 19.061 100
19 5 5 188.1 16.451 20.298 100
Table 4.3: Experimental results of algorithm 2 on small problems.

The results of algorithm 2 on small problems b ≤ 19 are shown in table 4.3.
It illustrates that the average number of computed Gröbner bases to obtain
a single relation is in agreement with the theoretical estimate presented in
the last column of table 3.1. As this number increases, more random factor
bases need to be generated. This trend is evident from the comparison of the
fourth and fifth columns for different values of m. For larger m algorithm 2
spends more time generating random factor bases than for smaller m. The
best setting for each problem size is highlighted in bold in table 4.3. We
recommend to use m = t0 = 3 for small problems.
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b t0 m # GB comp. timeSol timetotal # repetitions
20 3 3 4.5 29.26 30.1 100
20 3 4 31.9 38.12 40.10 100
20 4 4 33.1 45.73 48.91 100
20 3 5 124.6 36.94 40.36 100
20 5 5 140.1 34.87 38.33 100
21 3 3 5.2 110.76 115.11 100
21 3 4 20.6 93.23 94.87 100
21 4 4 26.3 104.1 106.21 100
21 3 5 133.1 144.43 148.94 100
21 5 5 144.13 133.12 137.51 100
22 3 3 5.0 367.83 370.87 100
22 3 4 27.8 340.71 344.21 100
22 4 4 26.9 295.22 298.33 100
22 3 5 116.4 238.27 242.71 100
22 5 5 171.63 322.57 329.12 100
22 3 6 863.2 152.01 172.15 100
23 3 3 5.9 1614.21 1617.01 15
23 3 4 40.1 1557.11 1563.32 15
23 4 4 24.2 1345.21 1349.2 15
23 3 5 131.4 1181.91 1209.19 15
23 5 5 123.1 1430.12 1446.34 100
23 3 6 802.1 731.12 756.22 25
Table 4.4: Experimental results of algorithm 2 on bigger problems.

In table 4.4, there are results of algorithm 2 on bigger problems: b ∈ {20, 21,
22, 23}. Although the results are not unequivocal, it seems beneficiary to in-
crease the decomposition constant m and keep t0 = 3.

In table 4.5, there are results of algorithm 3 on bigger problems b ≥ 21.
The average number of points Pc that were tried before the relation was ob-
tained is shown in column ‘# points tried’. The average number of factor base
F re-generations is shown in column ‘# restarts’. The other columns have
the same meaning as in tables before. ‘TL’ in the fifth column means that
the experiment for the particular parameter setting took too long and was
terminated.
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b m # points tried # restarts timetotal # repetitions
21 2 881 0.67 4.89 100
21 3 21886 1.25 4.28 100
21 4 294546 4.1 82.22 100
22 2 2852 1.0 9.68 100
22 3 39799 1.55 7.81 100
22 4 378785 3.26 108.11 100
23 2 2816 0.82 12.97 100
23 3 92129 1.82 17.87 100
23 4 716794 3.93 189.21 100
24 2 5467 0.94 23.64 100
24 3 201577 2.1 27.87 100
24 4 898762 3.1 211.89 100
25 2 10697 1.05 54.85 100
25 3 193970 1.58 36.71 100
25 4 987762 2.5 345.71 100
26 2 7734 0.66 69.54 100
26 3 369541 1.92 68.92 100
26 4 4876649 5.2 1166 15
27 2 18328 1.14 118.22 100
27 3 661987 2.0 116.14 100
27 4 - - TL -
28 2 24688 1 289.71 100
28 3 510054 1.4 157.45 100
28 4 - TL -
29 2 30784 0.7 437.81 100
29 3 1209313 1.6 316.14 100
29 4 - - TL -
30 2 39762 0.8 589.23 100
30 3 1440651 1.4 389.2 100
30 4 - - TL -
31 2 61516 1.13 1879.21 15
31 3 3170592 1.45 875.8 20
31 4 - - TL -
32 2 - - TL -
32 3 3981245 1.54 1023.44 15
32 4 - - TL -

Table 4.5: Experimental results of algorithm 3.

It is evident that for this algorithm the optimal parameter setting is m = 3
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4. Realisation and Experimental Results

for problems b ≥ 21. We won’t publish experimental results of algorithm 3
on smaller problems, but it is better to use parameter m = 2. These findings
are in agreement with the theoretical complexity analysis of algorithm 3 from
chapter 3.

To compare all three presented algorithms with the generic Pollard’s ρ-algo-
rithm, let us present graph 4.1. The horizontal axis represents the problem
size in bits b (#P ≈ 2b). The vertical axis is in logarithmic scale and shows us
the time that each algorithm needed to solve the ECDLP with respect to the
problem size b. Pollard’s ρ-algorithm was added to the comparison to illus-
trate the real efficiency of the algorithms described in the thesis. Graph 4.1
confirms that all four algorithms (including Pollard’s ρ-algorithm) are expo-
nential, which is in agreement with our complexity analysis from chapter 3.
We can also observe that Pollard’s ρ-algorithm significantly outperforms the
other three algorithms.

Figure 4.1: Comparison of different algorithms solving the ECDLP.
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Conclusion

One of the goals of this thesis was to get acquainted with the cryptogra-
phy of elliptic curves. This goal was fulfilled and is described in chapter 2.
The thorough description of summation polynomials and the state-of-the-
art algorithms based on them is given in subsection 2.4.1 and in chapter 3.
The complexity analysis of said algorithms is also given in chapter 3. The im-
plementation details and the results of extensive tests that were performed
to estimate the optimal parameter setting in all three presented algorithms
can be found in section 4.4. These experimental results are in agreement with
the presented complexity analysis of the algorithms.

The complexity of algorithms solving the ECDLP that are based on sum-
mation polynomials is often closely related to the complexity of algorithms
computing a Gröbner basis of multivariate polynomial ideals. The computa-
tional complexity of finding Gröbner basis of ideals arising in algorithms 1
and 2 needs to be better understood and bounded by tighter upper bounds.
In this thesis, we have extensively tested multiple open-source implementa-
tions of Gröbner basis algorithms on polynomial ideals arising from the pre-
sented algorithms 1 and 2. The results of these tests are available in table 4.1.
It turned out that the most efficient open-source Gröbner basis algorithm can
be found in Giac [24].

Based on the complexity analysis and experimental results of the presented
algorithms it is evident that the presented algorithms are of exponential time
complexity. Moreover, they are easily outperformed by generic algorithms,
such as Pollard’s ρ-algorithm, which is illustrated in graph 4.1. Neverthe-
less, it is essential to make advances and keep trying new approaches for
solving the ECDLP. Another result of this thesis is an efficient open-source
implementation of the said algorithms in SageMath. The source codes are
available on GitHub in repository: https://github.com/matyas-hollmann/
ECDLP-thesis to everyone concerned.
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České vysoké učeńı technické v Praze, Fakulta informačńıch
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Appendix A
Acronyms

RSA Rivest-Shamir-Adleman (cryptosystem)

ECC Elliptic curve cryptography

SEA Schoof-Elkies-Atkin’s (algorithm)

DLP Discrete logarithm problem

ECDLP Elliptic curve discrete logarithm problem

EEA Extended Euclidean algorithm

BSGS Baby-step giant-step (algorithm)

CRT Chinese remainder theorem

PDP Point decomposition problem

TL Time limit
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Appendix B
Contents of Enclosed CD

readme.txt ....................... the file with CD contents description
impl......................................the directory of source codes

sage........................................implementation sources
latex...............the directory of LATEX source codes of the thesis

thesis........................................the thesis text directory
DP Hollmann Matyas 2019.pdf ........ the thesis text in PDF format
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