
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 28, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Application supporting re-decentralization of the Web: Photo manager

 Student: Bc. Karel Dvořák

 Supervisor: RNDr. Jakub Klímek, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

A lot of data on the current Web is stored in a centralized way, e.g. at Facebook or Google.
However, the Web was originally meant to be decentralized.
The current trend in Web research is therefore re-decentralization of the Web using state of the art Web
technologies.

- Acquaint yourself with the Linked Data principles [1], the RDF data model [2], the recent W3C Social Web
recommendations and the Solid framework [4].
- Based on the survey, evaluate technologies and protocols supporting the re-decentralization of the Web.
- Design, implement, test and evaluate a Solid based application supporting uploading and viewing images,
which will include user authentication using WebID-TLS [5] and WebID-OIDC [6].
- Publish the project as open-source, hosted on a public repository.

References

[1] Linked Data, W3C, https://www.w3.org/standards/semanticweb/data
[2] RDF, W3C, https://www.w3.org/TR/rdf11-concepts/
[3] Social Web Working Group, W3C, https://www.w3.org/wiki/Socialwg
[4] The Solid Project, MIT, https://solid.mit.edu/
[5] WebID-TLS, W3C, https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/tls-respec.html
[6] WebID-OIDC, https://github.com/solid/webid-oidc-spec

Master’s thesis

Application supporting re-decentralization
of the Web: Photo manager

Bc. Karel Dvořák

Department of Software Engineering
Supervisor: RNDr. Jakub Klímek, Ph.D.

May 6, 2019

Acknowledgements

I would like to thank my supervisor RNDr. Jakub Klímek, Ph.D. for his
willingness, valuable advice, and mentoring provided throughout writing this
thesis. I would also like to thank my family and friends for their support and
help.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 6, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Karel Dvořák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Dvořák, Karel. Application supporting re-decentralization of the Web: Photo
manager. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2019.

Abstrakt

Tato práce pojednává o návrhu a implementaci aplikace podporující re-decen-
tralizaci Webu, která spolupracuje s technologií Solid. Na základě požadavků
a výsledků analýzy je navržena aplikace zaměřena na správu fotografií. V práci
je uvedena analýza, návrh, realizace, testování, a nasazení aplikace, společně se
zpětnou vazbou komunity. Výstupem implementační části je webová aplikace
umožňující správu fotografií na frameworku Solid.

Klíčová slova Solid, propojená data, decentralizace, manažer fotografií

Abstract

This thesis deals with analysis and implementation of an application support-
ing re-decentralization of the Web, which utilizes the Solid technology. The
application focused on photo management is designed based on the require-
ments and analysis. The thesis contains analysis, design, realization, testing,
and deployment of the application, along with the feedback from the commu-
nity. The output of the implementation part is the Web application supporting
management of pictures on the Solid framework.

Keywords Solid, linked data, decentralization, photo manager

vii

Contents

Introduction 1

1 State-of-the-art 5
1.1 Available Decentralization Solutions 5
1.2 Solid Framework . 11
1.3 Linked Data . 16
1.4 RDF . 21
1.5 WebID . 31
1.6 Current Photo Managing Applications Built on Solid 35

2 Analysis 37
2.1 Product Statement . 37
2.2 Business Requirements . 37
2.3 Requirements Definition . 38
2.4 Use Cases Definition . 40
2.5 Scenarios Definition . 41
2.6 Domain Model . 46

3 Design 49
3.1 User Interface Design . 49
3.2 Solid Framework Libraries Description 64
3.3 Access Lists . 68
3.4 Class Diagram . 70

4 Realization 73
4.1 Used Technologies . 73
4.2 Application’s Structure . 74
4.3 Implementation Focuses . 74
4.4 Final Version of the Pixolid Application 91

ix

5 Testing 101
5.1 Testing Scenarios . 101
5.2 Automated Testing . 106

6 Release and Feedback 107
6.1 Release . 107
6.2 Deployment . 107
6.3 Feedback . 108

Conclusion 111

Bibliography 113

A Acronyms 117

B Developer Guide 121
B.1 Installation . 121
B.2 Running the Development Mode 122
B.3 Running Tests . 122

C Administrator Guide 123
C.1 Installation . 123
C.2 Building the Application . 124
C.3 Deploying the Application . 124

D User Guide 127
D.1 Functionality . 127
D.2 Start Using Pixolid . 127
D.3 Individual Screens’ Description 128

E Contents of enclosed CD 135

x

List of Figures

1.1 Network types . 6
1.2 Solid POD server . 15
1.3 The LOD Cloud . 17
1.4 The RDF Triple . 22
1.5 Example: Spider-man vs. Green Goblin 24
1.6 Timeline . 36

2.1 Use Case Diagram . 42
2.2 Domain Model . 47

3.1 Task Graph . 52
3.2 WF1 Login Provider . 54
3.3 WF2 Login WebID . 54
3.4 WF3 Login Provider Redirect . 55
3.5 WF4 Application Folder Selection 55
3.6 WF5 Friends Images Screen . 56
3.7 WF6 Tab Bar Logout . 56
3.8 WF7 Upload Image Screen . 57
3.9 WF8 Image Selection for Upload 57
3.10 WF9 Image Selected for Upload 58
3.11 WF10 Private Sharing Toggled . 58
3.12 WF11 Private Sharing Friends Selection 59
3.13 WF12 Private Sharing Friends Selected 59
3.14 WF13 Users’ Images . 60
3.15 WF14 Image Detail . 60
3.16 WF15 Comment Typing . 61
3.17 WF16 Comment Adding . 61
3.18 WF17 Giving a Like . 62
3.19 WF18 User Profile . 62
3.20 WF19 Application Folder Change 63

xi

3.21 WF20 Application Folder Input . 63
3.22 Pixolid Logo . 65
3.23 Pixolid Black and White Logo . 65
3.24 Pixolid Favicon . 65
3.25 Class Diagram . 71

4.1 Pixolid’s directory structure . 75
4.2 Login Provider . 91
4.3 Login WebID . 92
4.4 Login Provider Redirect . 92
4.5 Application Folder Selection . 93
4.6 Friends Images Screen . 93
4.7 Tab Bar Logout . 94
4.8 Upload Image Screen . 94
4.9 Image Selection for Upload . 95
4.10 Image Selected for Upload . 95
4.11 Private Sharing Toggled . 96
4.12 Private Sharing Friends Selection 96
4.13 Private Sharing Friends Selected 97
4.14 Users’ Images . 97
4.15 Image Detail . 98
4.16 Comment Typing . 98
4.17 Comment Adding . 99
4.18 Giving a Like . 99
4.19 User Profile . 100
4.20 Application Folder Change . 100

C.1 Deployment Diagram . 125

D.1 Login Screen . 128
D.2 Application Folder Selection . 129
D.3 Upload Image . 130
D.4 Friend’s Images . 131
D.5 User’s Images . 131
D.6 Image Detail . 132
D.7 User Profile . 133
D.8 Application Folder Change . 133

xii

List of Tables

1.1 Scores of the decentralization solutions 11

2.1 Use cases coverage for the requirements 41

3.1 Wireframe coverage for use cases 53

xiii

Introduction

In the present modern world, almost everyone uses a certain kind of technology.
Technology is embedded in nearly every aspect of people’s lives. Most would
not dare to imagine a life without any. Many industries changed rapidly in the
last century, mainly in pursuit of achieving more advanced goals and tasks.
Over the last few decades, there has been a massive revolution in the way that
people communicate, work, interact, and get entertained. Technology has now
truly become a stable part of our daily lives.

The word technology represents a vast variety of many different tools,
instruments, knowledge, and protocols. If anyone asked people what their
most used technology is, many of them would probably answer: "The Inter-
net." According to the usage and population statistics [1], it is estimated that
55.1 percent of the world’s population is using the Internet. Moreover, in Eu-
rope and North America, 85.2 percent and 95.0 percent of the residents use the
Internet. People use some parts of the Internet through their mobile phones,
other parts via personal computers and notebooks, or even when watching the
latest television shows on demand. Everything is accessible via the Internet.
From the recent past, the Internet has become the key to connecting all sorts
of services, users, devices, and data, all together.

With the Internet mentioned above, it is crucial to specify which particular
technologies make up the famous worldwide connected network. There are
plenty of them. Some of which have a purpose for connecting the physical
devices together, managing the network communication, translating domain
names to IP addresses, running and maintaining servers, etc.

One of those many important technologies is the World Wide Web. The
Web might as well be one of the most important ones. While it was primarily
created to enable exchanging documents over the Internet, the Web has now
become a unified and standardized way to consume and produce all sorts of
data. With that in mind, the more people exchange data, each year even more
than the year before, the more cluttered the world of data becomes. Moreover,
other problems arise as time progresses in the way that many different services

1

Introduction

divide the space of the Web further and further. Companies have vendor
locked-in their users. The key to success in today’s world of technology is to
bait the user into the corporation’s courtyard which is divided by a brick wall
and keep him there for as long as possible.

That being said, the Web was intended to be used in quite the opposite
manner. It was a solution to the never-ending creations of new data formats,
to the inaccessibility of various data all over the world, to the disconnected pile
of individual documents. Yet, over 30 years later, here we stand with problems
such as the inability to share or access data across different social platforms,
the inability to maintain a platform independent way to communicate with
each other, the inability to possess what truly is ours, that being, the data.

Large companies are competing over data more than anything else. Al-
though many people may not realize it at first, data equals money, especially
if the content is being offered free of charge. Even in paid services, data have
become a significant part of many companies’ knowledge base and income.
Those companies, quite understandably, try as much as possible to keep users
just for themselves. The presence of separating users and their data is evident
more than ever before. Many people have most of their private data central-
ized on Facebook, others have their business information stored on LinkedIn,
while YouTube has become a hub for video consumption. If one decided to
take his data somewhere else, he would most likely come to a realization of
not having much ability to do so.

There are many efforts to keep the Web decentralized though. The inventor
of the World Wide Web himself — Sir Tim Berners-Lee — has led the initiative
to keep the Web re-decentralized again. His latest project is the Social Linked
Data (Solid) framework which enables users to have their data saved on their
chosen storage, independently of the application or service that is using the
data. This method is massively different from the vendor locked-in approach.
Principles for storing the data on Solid storages are based on the Resource
Description Framework (RDF) model.

That being said, Solid framework is mainly a technological specification
with a proof of concept implementation, rather than a complete commercial
solution. Therefore, in the field of mainstream services, it cannot withstand
a direct comparison with the current proprietary social networks quite yet.
Users are used to specific standards of functionality which is arguably valued
by masses much more than any users’ privacy concerns. In addition to that,
people tend to be lazy to switch or change. Therefore, it is essential to have
a feature-rich and complete solution which is at least somewhat comparable
with other commercial products. We are going to contribute to those efforts by
implementing a photo manager because it is a common and frequent activity.

In this thesis, we are going to analyze and evaluate current technologies
supporting re-decentralization of the Web. That being the Solid framework
and its competitors, linked data, the RDF data model, and underlying pro-
tocols for communication and data retrieval – Hypertext Tranfer Protocol

2

(HTTP) and Representation State Transfer (REST). Also, the possibilities of
user authentication on the Web will be discussed, which namely includes Web-
ID – Transport Layer Security (WebID-TLS) and WebID – Open ID Connect
(WebID-OIDC).

The gained knowledge and researched technologies are going to be applied
to build a standalone application for managing photographs, with the goal of
keeping the data decentralized. Therefore, an analysis of the said domain will
be presented. Based on the analysis, we will assess all the information and
design the application itself. After that, the whole process of implementing
the application will be described in detail. The whole solution is going to be
tested and the testing methodology is going to be mentioned as well. Next, we
will discuss the deployment of the application and the feedback from the Solid
community. Finally, at the end of the thesis, we will conclude and evaluate
our efforts of making the Web a little bit more accessible and decentralized
place than it is now.

3

Chapter 1
State-of-the-art

This chapter introduces the core technologies used in the goal of achieving
decentralized applications. Several different approaches to the issue of decen-
tralization are discussed in the first section.

The Solid framework plays a central part in this effort. Its section tries to
introduce further what Solid provides as a whole, what exactly can applica-
tions based on this framework achieve, and gives an overlook on the underlying
principles, protocols, and routines.

Then, Linked Data and their principles are described, following with a
section focused on the RDF, which Solid itself uses as a way to store data.
The main RDF concepts are discussed as well as various data representations
and syntaxes.

Web Identity and Discovery (WebID) is further explained as it plays a
vital role in the authentication on the Web. Getting a WebID is also the first
thing a user interested in Solid has to do to get started.

Last but not least follows a summary of the current photo managing ap-
plications built on the Solid platform.

1.1 Available Decentralization Solutions

There are various projects which are trying to achieve the goal of making
the Web a more decentralized place. Many of them have been spurred by
the breakthrough of Bitcoin and its Blockchain technology. However, some of
them are using a Torrent based way of exchanging data between the nodes.
Because of that, let us at first begin with briefly familiarizing ourselves with
the BitTorrent and Bitcoin technologies.

At first, we describe said common decentralization technologies. Then, we
define a set of comparison measures for concrete decentralization solutions.
Then follows a comparison of the concrete decentralization solutions.

5

1. State-of-the-art

(a) A centralized (single server based) net-
work [2]

(b) A decentralized (peer-to-peer based)
network [3]

Figure 1.1: Network types

1.1.1 Common Decentralization Technologies

In this section, we are going to cover two decentralization technologies (BitTor-
rent and Bitcoin) and one anonymity providing technology (Tor), all of which
have met a great success in their respective fields. A basic overview of them
will be covered for further understanding of the thesis, as these technologies
are also used in some of the re-decentralizations solutions.

1.1.1.1 BitTorrent

BitTorrent1 is a file-sharing protocol. It was designed and built as a peer-to-
peer system. A peer is called an individual node that is sharing a file (so a
concrete computer or server). Peer-to-peer means that every node which is
sharing files is actively participating in the file redistribution. This redistribu-
tion is performed directly among the peers, without a need for a centralized
server. The classic centralized server network is illustrated in Figure 1.1a. We
can see that all of the traffic goes through the server. In Figure 1.1b, we can
see that the peers communicate directly with each other, eliminating the need
for the centralized server node.

Every set of shared data is defined in its Torrent file (ending with a .torrent
suffix). This file is containing information about the files, size, names, and
Uniform Resource Locator (URL) of a tracker [4]. Trackers help all of the
sharing participants to discover each other. The actual file sharing is then
achieved by dividing individual files (which are tied to the Torrent) into small

1https://www.bittorrent.com/

6

https://www.bittorrent.com/

1.1. Available Decentralization Solutions

chunks or bits (hence BitTorrent). Those bits are then a subject of exchange
among all of the peers. Every peer can download its missing bits from others
while uploading already downloaded bits to others in exchange. Peers who
have completely downloaded the Torrent content are called seeders.

Individual Torrent files can be discovered on various forums such as the
famous Pirate Bay2. The BitTorrent network is strong in its decentralized file
sharing system. Being decentralized means spreading the bandwidth (down-
load and upload) across multiple peers, without a need for a centralized server
(which is often a bottleneck of the throughput). Also, it is quite problematic
to control by governments as there is no centralized entity which could be
addressed. Although, it is still possible to press the Torrent sharing forums
and shut them down (although some disappear and others can reappear).

The decentralized design of the protocol is the reason why it is a subject
of many current re-decentralization platforms.

1.1.1.2 Bitcoin

Bitcoin3 is a purely digital currency intended for making transactions over
the Internet. It is designed in a way that every transaction in the system
is possible without a need for third-party authority. That means that every
two users can transfer payments with each other directly in a decentralized
manner [5].

Information about transactions is stored in blocks which are chained to-
gether. Every new transaction is tied to the previous transaction history.
Each block creates a hash from the previous transaction and the new owner’s
public key. The transaction itself is signed by the previous owner. The hash
creation itself can be a demanding job to do for the hardware. The creation
difficulty is variable according to the frequency of making new blocks. This
behavior ensures that the transaction environment can outrun any possible
malicious attempts of forging transactions [5].

Bitcoins (more precisely the information about transactions) are stored on
physical hard drives. There are multiple software solutions which store and
exchange Bitcoin. This software is called a Bitcoin wallet. A user then installs
the given application and begins to trade Bitcoin funds.

1.1.1.3 Tor

Tor4 is a system of hiding the identity of the initiator of the network traffic.
The identity is the Internet Protocol (IP)5 address of the originating party.

2https://thepiratebay.org/
3https://bitcoin.org/
4https://www.torproject.org/
5https://tools.ietf.org/html/rfc791

7

https://thepiratebay.org/
https://bitcoin.org/
https://www.torproject.org/
https://tools.ietf.org/html/rfc791

1. State-of-the-art

When a Transmission Control Protocol (TCP)6 request is made, Tor client ini-
tiates routing of this request through the randomly selected set of Tor routers
(in a path of the length of 3). The traffic is all encrypted. Only the first router
(which is called an entrance router) can observe the originator of the request.
Also, only the last router (which is called an exit router) can know the final
destination of the request [6]. The Tor network is very tough to trace and is
often used as an anonymity providing service.

1.1.2 Comparison Measures for Decentralization Solutions

Let us introduce a set of measures for evaluating individual decentralization
solutions. Each solution then will be awarded a score in the respective mea-
sure. This score will be on a scale of 1 (lowest rating) to 5 (highest rating).
The ratings for solutions in respective categories are defined as follows:

• 1 - a category needs significant improvements,

• 2 - a category is dissatisfied, but could be worked on,

• 3 - a category is satisfied on a basic level,

• 4 - a category is satisfied with minor exceptions,

• 5 - a category is satisfied fully; no further improvements are needed.

Further follows a list of measures (categories), which are based on the main
goals of true decentralization technologies:

• ease of use (as less additional software needed as possible),

• freedom (resistance towards censorship and content blocking),

• security (content encryption, theft proofing)

• privacy (third party avoidance, non-traceability),

• control (ability to access content, and give access rights to others),

• ownership (data should be in the hands of users, users should be able to
control where the data physically is),

• major players backing (projects should have backing from the major
people in the world of Web technologies as well as in the private sector).

6https://tools.ietf.org/html/rfc793

8

https://tools.ietf.org/html/rfc793

1.1. Available Decentralization Solutions

1.1.3 Decentralization Solutions Comparison

Some of the leading decentralization solutions are described in this section.
The ZeroNet, MaidSafe, Dat/HyperCore/Beaker, FreeNet, BlockStack, Dias-
pora, and Solid are discussed.

1.1.3.1 ZeroNet

ZeroNet7 is a project which is focused on decentralizing websites. Its goal is to
fight against censorship. A Bitcoin wallet is used as an identity for publishing
and verifying site content. BitTorrent trackers are used for exchanging the
data of the websites themselves.

Each site is essentially a single Torrent which is transferred between the
peers. Moreover, Tor is supported by ZeroNet, so it is possible to hide the
IP address. It is necessary to have a local web-based ZeroNet application
installed, in order to access ZeroNet sites. Browsing of the websites is then
done by using normal Web browsers such as Mozilla Firefox8, Google Chrome9,
Microsoft Edge10, and others. Each site has its Javascript Object Notation
(JSON)11 manifest with all the resources of which the site consists. The
resources are then downloaded and further seeded to others like normal Tor-
rents [7].

1.1.3.2 MaidSafe

MaidSafe12 is heavily focused on the privacy, security, and control of personal
data. It is based on the SAFE Network13, in which users pay for uploading the
content while browsing it for free. SAFE Network is a completely distributed
data sharing network. It has its market based on SafeCoin cryptocurrency.
The user data are divided into small parts, which are individually encrypted
(using hashes from other parts), and then distributed across various peers in
the network. Everyone is then essentially hosting some parts of everyone’s
data.

Single nodes in the network are called Vaults. The Vaults are rewarded
via SafeCoin for hosting the data. In order to access the SAFE Network, a
specific browser called SAFE Browser is needed. The browser is used as a
gateway to the network, as well as a manager for storing passwords, data, and
apps [7].

7https://zeronet.io/
8https://www.mozilla.org/en-US/firefox/
9https://www.google.com/chrome/

10https://www.microsoft.com/en-us/windows/microsoft-edge
11https://tools.ietf.org/html/rfc7159
12https://maidsafe.net/
13https://safenetwork.org/

9

https://zeronet.io/
https://www.mozilla.org/en-US/firefox/
https://www.google.com/chrome/
https://www.microsoft.com/en-us/windows/microsoft-edge
https://tools.ietf.org/html/rfc7159
https://maidsafe.net/
https://safenetwork.org/

1. State-of-the-art

1.1.3.3 Dat/HyperCore/Beaker

Dat14 is a community-driven peer to peer hypermedia protocol. Data are
provided via public-key-addressed file archives (such as .zip), which can be
browsed. It also tracks the history of files. HyperCore15 consists of storage,
content, and underlying network protocols of the Dat. Beaker16 is a browser
which is supporting the Dat protocol. The browser supports seeding, forking,
editing, and publishing content [7].

1.1.3.4 FreeNet

FreeNet17 provides access to the websites within its network. It is a peer to
peer based platform which is focused on users in repressive regimes. On the
platform, everything is anonymous. Specific software is needed for accessing
the network. All of the communication is routed through peers, similarly to
how Tor network works. Data are in an encrypted format and are stored
across all peers. It cannot be discovered which data each node in the network
stores precisely. This fact brings up many concerns about accountability for
storing such unknown material. Although, the network supports limiting the
circle of storing to purely known contact peers [7].

1.1.3.5 BlockStack

BlockStack18 is promoting itself as the easiest way to start building decentral-
ized blockchain applications. Presumably, it is not that far from the truth. It
is a platform focused on data ownership, privacy, and security. BlockStack
provides open-source developers with tools to build decentralized applications.
The network is based on the Bitcoin blockchain technology. The data is ac-
cessed via a specific browser. BlockStack also provides a BlockStack ID as an
identity, decentralized personal data storing, and a development platform [7].

1.1.3.6 Diaspora

Diaspora19 is a service providing decentralized social media Web server. Its
social network supports various things such as posting and sharing images.
The users’ data can be stored on any of the available nodes (called pods), or
it is possible to run your own Diaspora pod. The network is built on Ruby
on Rails platform. Everyone can choose what to share with whom and where
the data is stored while keeping the ownership of the author [8].

14https://datproject.org/
15https://github.com/mafintosh/hypercore
16https://beakerbrowser.com/
17https://freenetproject.org/
18https://blockstack.org/
19https://diasporafoundation.org/

10

https://datproject.org/
https://github.com/mafintosh/hypercore
https://beakerbrowser.com/
https://freenetproject.org/
https://blockstack.org/
https://diasporafoundation.org/

1.2. Solid Framework

measure
————
technology

ease
of
use

free-
dom

secu-
rity

pri-
vacy

con-
trol

owner-
ship

back-
ing SUM

ZeroNet 3 4 4 3 4 3 3 24
MaidSafe 3 4 5 4 4 3 3 26
Hypercore 3 4 4 3 3 3 3 23
Freenet 2 5 4 4 3 3 3 24
BlockStack 3 4 4 4 4 4 4 27
Diaspora 4 3 4 4 4 5 4 28
Solid 5 3 3 3 5 5 5 29

Table 1.1: Scores of the decentralization solutions

1.1.3.7 Solid

Solid20 brings an ability to separate applications from its data. In fact, users
can choose where they want to host their data. Content is stored on one of
the many providers’ storages called Personal Online Datastore (POD). Appli-
cations then can be developed to access the PODs’ content. One can decide
what each user can access and which applications have which rights. Access
to the content is done just like in any other Web service via browsers or dedi-
cated applications, without a need for any additional software. Solid is led by
the inventor of the World Wide Web—Sir Berners-Lee.

1.1.4 Results of the Solutions’ Comparison

In Table 1.1 we can see the given scores to the individual solutions. While
many of the previously mentioned solutions either have the privacy, data dis-
tribution, or development tools very well perfected, the one thing that all
of them except the last two fall short in is the necessity of additional soft-
ware/browser for data access. To truly achieve the desired shift in the world
of the Web, it is highly needed to be as less of a hassle as possible for general
users. Solid has the potential to be the breakthrough project for masses, not
only because it is backed by the inventor of the World Wide Web himself. In
the next section, let us further introduce what the Solid framework stands for.

1.2 Solid Framework

This section contains information about the Solid framework. We will further
introduce Solid’s brief history, its main purpose, and basic terminology. Fol-
lowing with a basic user workflow, used technologies, and currently developed
applications built on Solid.

20https://solid.inrupt.com/

11

https://solid.inrupt.com/

1. State-of-the-art

1.2.1 Background

Social Linked Data (Solid) framework is a project led by Sir Tim Berners-Lee,
the inventor of the World Wide Web. The project has been developed by a
team of people based at Massachusetts Institute of Technology (MIT). The
development has been boosted in 2015, when Computer Science and Artifi-
cial Intelligence Lab (CSAIL) has received $1 million donation from Master-
Card [9]. The money has gone towards the research efforts of a Decentralized
Information Group (DIG), which Sir Tim Berners-Lee is co-leading together
with Lalana Kagal.

In September 2018, a company called Inrupt, Inc. was co-founded by Sir
Berners-Lee and John Bruce [10]. The company’s vision is to support Solid
based work even further and try to spread the commercial development of
Solid based applications. "Inrupt will be the infrastructure allowing Solid
to flourish. Its mission is to provide commercial energy and an ecosystem to
help protect the integrity and quality of the new web built on Solid," stated Sir
Berners-Lee in [10]. Commercial energy is genuinely what the project needed,
especially if Solid is aspiring to change the world of today’s data management.
As of writing this thesis, we are yet to see how exactly will Inrupt affect the
workflow and development of applications using Solid.

1.2.2 Purpose

Main goals of the Solid framework are to give genuine data ownership back
to the hands of users while improving user privacy as well. Solid as a whole
consists of proposed conventions and tools for developing decentralized ap-
plications. These proposed conventions are tightly knitted with Linked Data
principles which are applied to social networking applications. The base of the
framework highly relies on various World Wide Web Consortium (W3C) stan-
dards and protocols. Solid’s fundamental principles are as follows according
to [11]:

• true data ownership,

• modular design,

• reusing existing data.

Firstly, data ownership is a problematic aspect of today’s Web applications
and services. Solid addresses this issue by decoupling content (user data) from
the underlying applications presenting the data. Moreover, all data should be
stored where a user wishes them to reside. Solid introduces a way of choosing
various storage providers while supporting and encouraging users to choose
their very own custom storage based solution.

Secondly, modular design denotes the possibility of people being free to
switch different applications without losing their data. For example, users

12

1.2. Solid Framework

can stop using one video sharing application and start using another one
seamlessly. The same goes for switching the storage providers themselves.
This behavior eliminates the vendor lock-in mentioned in the second part of
Introduction. Companies then have to compete over offering the best possible
user experience and usability for the given domain, rather than forcing users
to stay imprisoned inside their restricted ecosystem.

Thirdly, reusability of existing data ensures that anyone is free to enhance
current applications or even decide to develop their own. A new application
then can reuse the same data, and present them in its very own way. This
principle opens the doors for developers to keep on trying to make the best
possible experience for users. In the end, everyone gains from this competitive
environment, with nothing to miss or give up on in exchange.

1.2.3 Terminology

As mentioned in 1.2.2, Solid, among other things, offers a storage functionality.
This functionality is provided via Solid servers. A Solid server is used to store
user-specific data. A user can either use community or other providers’ servers
running the Solid server software [12].

On those servers, user’s space or storage is called a Solid Personal Online
Datastore (POD). All user’s data are stored in the POD. Also, the user has
the ability to choose to move the POD from one provider to another [12].

Individual applications are given access rights to the Solid POD. The user
can also define what to share with the application precisely and what to allow
the application to change on his POD. All of the changes are kept in the
user’s POD. Data elements are kept throughout every application supporting
a given format that the user is using. There is no need for any synchronization
between them, unlike on today’s services [12].

It is literally up to the users how they decide to use their POD storage.
They can store any files such as pictures, text files, or contacts. It is similar to
Dropbox or Google Drive in a way, except with Solid, users decide where their
data are hosted. The main benefit being that this storage is manipulatable
through several different applications. Therefore, much more than just static
user content can be saved – social posts, comments on them, likes, or videos.
It is also possible to have more than one POD per user, which gives users the
flexibility to keep their personal and professional content apart [12].

The Solid POD provides an identity as well. Users then can log into their
favorite applications via PODs. In this way, users can have just one identity,
not tied to any specific vendor. Similarly to what Google is doing, but without
the vendor lock-in [12].

1.2.4 Technologies

As stated in [13], Solid is:

13

1. State-of-the-art

• A set of standards and data formats providing social application (Face-
book, etc.) capabilities, such as identity, authentication and login, au-
thorization and permission lists, contact management, messaging and
notifications, feed aggregation and subscription, comments and discus-
sions, and more.

• A Specification document describing REST Application Programming
Interface (API) extending existing standards and describes design notes
of individual components used.

• "A set of servers that implement this specification."

• "An ecosystem of social apps, identity providers and helper libraries
(such as solid-auth-client) that run on the glsSolid platform."

• "A community providing documentation, discussion (see the solid fo-
rum), tutorials and talks/presentations."

Solid uses and extends many other accustomed standards. The framework
highly depends on RDF, which is used as a data model for storage. RDF
supports various serialization formats, such as Turtle, A JSON Serialization
for Linked Data (JSON-LD), and Rich Structured Data Markup for Web
Documents (RDFa). All of them are supported by Solid, although Turtle
is the one preferred. Another standard is WebID. WebID provides universal
IDs to Solid applications. Also, it is used for referring to unique Agents
(people, organizations, devices). WebIDs themselves provide WebID Profile
documents. Those documents are using Friend of a Friend (FOAF) vocabulary,
which is also used in Access Control lists. Access lists themselves are using
Basic Access Control ontology. For authentication, WebID-TLS is used, while
it is also possible to use WebID-OIDC. Linked Data Platform (LDP) standard
is used as a way of reading and writing Linked Data resources [13].

1.2.5 Basic Workflow

As previously mentioned in 1.2.4, Solid offers authentication via WebID (will
be described in detail later). Therefore, a user has to obtain one. To achieve
this, a user has to register with an identity provider of his choosing. This
identity is usually provided together while registering with a POD provider.
The identity is stored as a profile document containing the necessary data for
authentication [14].

Once registered with a POD provider, the user is then able to use his
POD with other applications. Applications store their data into users’ PODs,
which run on Solid servers. For accessing data on the server, applications
communicate with the server via REST [14].

14

1.2. Solid Framework

REST	 Service	

Resource Storage

N
on

-R
D

F
R

D
F

Container Hierarchy
Container

LDP
Support

ACL
Support

Notification
Support

Patch
Update

SPARQL Support Link Following Support

RDF-Based
Resources

(JSON-LD, Turtle)

Binary/Text
Resources

(image, PDF)

R
equired

O
ptional

Figure 2: Overview of a pod server. A pod stores
RDF and non-RDF resources. The server support
LDP, patching resources, access control, live up-
dates, and optionally SPARQL.

related to building a decentralized social Web. A good choice
of protocols on the wire is essential to Crosscloud, and Solid
provides such protocols. In addition to designing proto-
cols, the Crosscloud project must address several research
questions. For example, what are the data models and de-
sign patterns that applications should use to store data?
How can we ensure that applications agree on a vocabu-
lary for the concepts that they use, and how to integrate
data from different applications when needed? What is the
best way to support notifications from application to appli-
cation? An interesting topic of investigation is the extent
to which Web traversal and complex data retrieval can be
offloaded from client to server. Supporting application de-
velopers is also important to build momentum around the
Crosscloud ecosystem. In addition, suitable models for secu-
rity and privacy are essential for the social Web, and decen-
tralization makes the questions around these models more
complicated [1, 9]. This demonstration of Solid provides a
framework for appreciating these questions.

The rest of this document is organized as follows. We
present a brief overview of the Solid platform in Section 2.
Section 3 then discusses application development in Solid
and presents some of the Solid applications that will be used
in the demonstration. In Section 4, we describe some possi-
ble demonstration scenarios. Section 5 concludes.

2. OVERVIEW OF SOLID
In the Solid platform, each user stores their data in a

Web-accessible personal on-line datastore (or pod). Appli-
cations run as client-side Web applications in a browser or
as mobile applications. These applications use an authen-
tication protocol to discover the user’s identity and profile
data, as well as relevant links that point to the user’s pod,
which contains application data. Solid supports decentral-
ized authentication and access control, and it also supports
standardized data access mechanisms. We describe these
two aspects next.

Decentralized authentication, a global ID space, and global
single sign-on are a critical part of the Solid ecosystem. Solid
uses WebID [8] to provide these features, although other so-
lutions exist and can potentially interoperate with Solid. In
Solid, a user has to register with an identity provider, and
this identity provider stores the user’s WebID profile doc-
ument associated with a cryptographic key. In most cases,
a pod provider would also operate as an identity provider,
offering WebID “accounts” to its users.

Table 1: Pod servers. databox.me, meccano.io, and
rww.io act as public pod servers as well as identity
providers, allowing users to create WebIDs.

Name Platform Running Service
gold golang https://databox.me/
meccano Java+Jena https://meccano.io/
ldphp PHP https://rww.io/
ldnode node.js not public

Application data in Solid is stored in users’ pods and pods
are stored on pod servers. Data is managed in a RESTful
way, as defined by the Linked Data Platform (LDP) recom-
mendation [6]. LDP enables applications to manage data
items within hierarchical containers (which can also be called
collections or directories). Each data item and container has
a URI, and LDP defines the protocol for manipulating the
data items and containers through HTTP requests on their
URIs; for example, POST/PUT to create, PUT/PATCH to
update, and GET to retrieve. Items can be found through
their URIs, or by following links from other items. Solid
distinguishes between structured data, which is represented
in Solid using RDF [5], and unstructured data that can be
of any type, e.g., videos, images, Web pages. This allows
structured data to be parsed and serialized in various for-
mats such as Turtle or JSON-LD.

Additional to LDP support, pod servers may offer optional
SPARQL support. Servers that support SPARQL allow ap-
plications to express complex data retrieval operations, in-
cluding operations that require server-to-server communica-
tion via link-following SPARQL. This simplifies Solid appli-
cation development, since it enables a developer to delegate
complex, multi-pod data retrieval operations to the server.

Pod servers in Solid are application-agnostic, so that new
applications can be developed without having to modify the
servers. For example, even though LDP 1.0 contains nothing
specific to “social”, many of the W3C Social Web Working
Group user stories5 can be implemented in Solid, using only
LDP and application logic, with no changes to the server.

The requirements of a pod server are illustrated in Fig-
ure 2. A pod server needs to store RDF and non-RDF re-
sources, and it needs to support basic LDP access to these
resources, patching resources, access control lists (ACLs),
live updates, and optionally SPARQL. There are several
ways in which the underlying storage for RDF data can be
implemented in a pod server, e.g., using the file system, a
key-value store, a relational database system, or a graph
database system (i.e., a triple/quad store).

We have implemented several prototype servers, listed in
Table 1. Our ldphp6, gold7, and ldnode8 servers store
all their data in the file system. In this case, both RDF
and non-RDF resources are stored as files, including the
RDF resources representing ACLs and the metadata doc-
uments corresponding to non-RDF resources (all of which
are defined by LDP). Our meccano server stores RDF data
in a graph database system (currently we use Jena9), and
it stores non-RDF data in the file system. Meccano im-
plements all Solid operations via SPARQL queries, and it
also implements complex data retrieval using link-following

5http://www.w3.org/wiki/Socialwg/Social API/User stories
6https://github.com/linkeddata/ldphp
7https://github.com/linkeddata/gold
8https://github.com/linkeddata/ldnode
9http://jena.apache.org

Figure 1.2: Solid POD server architecture overview [14]

Data on the server are organized in a hierarchical structure. Each node
in this structure is represented as a container (or collection, directory. . .), de-
scribed by LDP. Data can be structured or unstructured. Structured data are
defined using RDF. RDF data are capable of marshaling to and unmarshaling
from the Turtle format (or other formats) for storing or further processing
correspondently. How RDF data are saved exactly is up to the server imple-
mentation. It is possible that the server utilizes a file system, key-value store,
or a relational or graph database. Unstructured data are everything else, typ-
ically raw byte data such as images or videos. Each container and its data
elements are described with an Uniform Resource Identifier (URI). Therefore,
data are accessed and handled via HTTP protocol using its well-known meth-
ods such as GET, POST, PUT, PATCH, UPDATE. LDP also enables data to
be accessed through link following inside retrieved data items. Servers can also
support additional SPARQL Protocol and RDF Query Language (SPARQL)
to retrieve RDF data. SPARQL enables applications to offload heavy data
retrieval from various PODs using link following principles [14].

As the user is using various applications, access lists are needed to deter-
mine which parts of the data are available to whom and to which application.
Solid servers have to implement this functionality as well. Access lists will be
discussed later in detail. As applications communicate with each other, it is
also key to support notifications. Solid servers support notifications according
to the W3C specification stated in [15].

Figure 1.2 shows an overview of the Solid server’s supported functionality.

1.2.6 Solid Applications

At the time of writing this thesis, there are several applications built on the
Solid framework. For example applications for managing personal data such
as file browsers (Warp21, and Solside22) for managing files stored on the POD,

21https://linkeddata.github.io/warp/
22https://jeff-zucker.github.io/solid-ide/

15

https://linkeddata.github.io/warp/
https://jeff-zucker.github.io/solid-ide/

1. State-of-the-art

a contacts manager23 for organizing contacts, a profile editor24 for managing
users profile information, and others. As far as social media applications are
concerned, among already developed applications are Cimba25 (a micro blog-
ging application), dokieli26 (an article editor), timeline27 (a social network),
and others [16].

More applications are in development, most notably it is highly anticipated
which applications or platforms are the Inrupt going to release.

1.3 Linked Data

In this section, a term Linked Data is introduced and further explained. Its
main principles and ways of treating data are described as well. At first, basic
terminology and the purpose of Linked Data are covered. Then follows a
description of various identifiers which are used by Linked Data. Afterwards,
Linked Data principles are discussed. Last but not least a few examples of
datasets are shown.

1.3.1 Terminology

The World Wide Web provides an easy way to share and access various Web
documents. Those documents are primarily supposed to contain any human-
readable information. On the other hand, there has to be a way to share
and access any computer readable information as well. The so-called Web of
Data contains numerous technical attributes, physical quantities, analytical
properties, and countless other structured data [17].

The Web of Data needs a set of technologies that further describe a con-
crete way of storing, annotating, accessing, and sharing this massive stack of
data. The term Semantic Web is a set of technologies by W3C, which sup-
ports and precisely describes all the previously mentioned activities. This set
of technologies for example contains RDF, SPARQL, Web Ontology Language
(OWL), and Simple Knowledge Organization System (SKOS) [17].

Those available technologies, used for querying and operating upon various
data, are highly dependent on the standardized data format. Additionally, to
create a Web of Data, it is crucial to store relations among data. Data which
suffice all of those criteria are called the Linked Data.

23https://linkeddata.github.io/contacts/
24https://linkeddata.github.io/profile-editor/
25https://github.com/linkeddata/cimba
26https://dokie.li/
27https://solid-social.github.io/timeline/

16

https://linkeddata.github.io/contacts/
https://linkeddata.github.io/profile-editor/
https://github.com/linkeddata/cimba
https://dokie.li/
https://solid-social.github.io/timeline/

1.3. Linked Data

Legend

Cross Domain

Geography

Government

Life Sciences

Linguistics

Media

Publications

Social Networking

User Generated

CLLD-afbo

CLLD-G...

DBpedia

Lexvo

Master...

CRISP ...

Logica...

MESH T...

Medica...
NCI Th...

Nation...

Nation...

Physic...

Read C...

RxNORM

SNOMED...

VANDF

Rådata...

Gemein...

VIAF: ...

C. ele...

Human ...

Edinbu...

BBC Pr...

BIRNLex

Amphib...

ABA Ad...

Cancer...

Advers...

Amphib...

BioAss...

Bone D...

Basic ...

Bleedi...

Gene R...

Biomed...

BioTop

BRENDA...

Cancer...

CAO

Cell C...

Chemic...

Chemic...

Cell L...

Cognit...

Cognit...

COSTART

Cerebr...

Ontolo...

Human ...

Electr...

Experi...

Human ...

Human ...

Plant ...

Cardia...

eagle-...

eVOC (...

ExO

Drosop...

Fly ta...

Family...

Influe...

Genera...

Gene O...

Gene O...

Gene R...

Hymeno...

Health...

Human ...

Host P...

Inform...

ICD10

ICD10CM

Intern...

Intern...

Intern...

ICPC-2...

Infect...

Brucel...

Malari...

Intera...

Mouse ...

Multip...

Minima...

Cell l...

Cell l...

MedDRA

Medlin...

Mental...

Medaka...

Emotio...

Protei...

Mosqui...

MGED O...

Mammal...

Mouse ...

Natura...

NCBI o...

Neural...

Neomar...

NIFSTD

NIF Cell

NIF Dy...

Neural...

NMR-in...

NanoPa...

Ontolo...

Ontolo...

OBOE SBC

Ontolo...

Ontolo...

Ontolo...

Ontolo...

Online...

Ontolo...

Ontolo...

Orphan...

Ontolo...

Phenot...

Pediat...

PHARE

PMA 2010

PRotei...

RadLex

RNA on...

Rat St...

Subcel...

Sleep ...

Sample...
Semant...

Sugges...

Softwa...

Teleos...

Taxono...

Time E...
Transl...

Teleos...

Uber a...

verteb...

VIVO

Vaccin...

C. ele...

WHO Ad...

Xenopu...

Zebraf...

Anatom...

Basic ...

Bilate...

Cell type

Dendri...

Cereal...

Plant ...

Plant ...

Spider...

Solana...

Tick g...

Mosqui...

Verteb...

status...

status...

status...

status...

status...

status...

status...

MaHCO ...

Parole...

lexinfo

ItalWo... WordNe...

OpenCo...

Enviro...

Fungal...

Breast...

Spatia...

FlyBas...

System...

TOK_On...

Experi...

LIBRIS

Librar...

Bio2RD...

Bio2RD...

Bio2RD...

Bio2RD...

Bio2RD...

Bio2RD...

Bio2RD...

Bio2RD...

Bio2RD... Bio2RD...

Bio2RD...

Bio2RD...

Proteo...

Mass s...

The Eu...

B3Kat ...

data.b...

Dewey ...

SORS

Person...

Archiv...

UK Pos...

Ascomy...

System...

Biolog...

Event ...

Molecu...

SysMO-...

Breast...

Ontolo...

Ontolo...

Physic...

SNP-On...

Sequen...

Units ...

Yeast ...

Univer...

OLiA

Ordnan...

statis...

AI/RHEUM

Amino ...

Compar...

Curren...

Common...

FDA Me...

HCPCS HEALTH...

Intern...

Lipid ...

Protei...

Ontolo...

PKO_Re

Studen...

Syndro...

Tradit...

Africa...

eagle-...

openda...

status...

status...

Univer...

Aperti...

BabelNet

ICD-10...

Next W...

DBLP R...

Freebase

GeoNam...

New Yo...

Linked...

Physic...

Univer...

ISOcat...

ISOcat

Linked...

U.S. S...

DIKB-E...

Genera...

Parasi...

Situat...

RISKS ...

Associ...

CiteSe...

DBLP C...

dotAC ...

ePrint...

IEEE P...

UK JIS...

Open A...

Resear...

School...

ReSIST...

Aperti...

Ordnan...

OpenCyc

UN/LOC...

EU Par...

EU Who...

xxxxx

Chines...

Bio2RD...

openda...
Divers...

Budape...

Instit...

France...

Korean...

Fundaç...

Univer...

Univer...

MusicB...

status...

status...

Aperti...

Romani...

SLI Ga...

lemonUby

Linked...

Glottolog

Aperti... status...

Wikidata

CrossR...

IdRef:... Facete...

Web ND...ChEMBL...

The Ge...

Art & ...

Gemeen...

Italia...

Pleiades STW Th...

Hungar...

UniProtKB

Open L...

datos....

Persée...

Projec...

Britis...

sandra...

theses.fr

Mathem...

IPTC N...

My Fam...

YAGO

Linked...

Schema...

Semant...

Univer... Univer...

Dictyo...

Aperti...

CORE -...

Europe...

Bio2RD...

MetaSh...

Univer...

openli...

datahub

W3C

zarago...

Datos ...

Open D...

Animal...

Clinic...

Comput...

Wheat ...

Diagno...

Epilepsy

Fissio...

GeoSpe...

ICPS N...

IMGT-O...

IxnO

Logger...

MIxS C...

Measur...

Metath...

Neomar...
Non Ra...

OBOE

Random...

Reprod...

Role O...

Smokin...

Termin...

Units ...

Verteb...

C. ele...

status...

status...

Sudoc ...

Atlant...

status...

status...

status...

status...

status...

openda...

refere...

Open B...

Galici...

Univer...

GNOSS....

Mi Guí...

Museos...

The Vi...

status...

status...

status...

status...

status...

status...

status...

status...

status...

status...

status...

status...
status...

status...

status...

status...

status...

Requir...

Czech ...

German...

TheSoz...

Edublogs

Didact...

Scotti...

Climb ...

GovTra...

Hellen...

DBpedi...

Diavgeia

Eurost...

Kallik...

Linked...

NUTS (...

UMBEL ...

Linked...

WordLi...

CareLex

Univer...

eagle-...

Biogra...

Open L...

Linked...

MARC C...

Univer...

ISPRA ...

Linked...

Produc...

gemet-...

GEnera...

Reuter...
Spring...

Muninn...

World ...

Biblio...

Commun...

Resili...

ReSIST...

Deep B...

epsrc

IBM Re...

Univer...

LAAS-C...

Univer...

Nation...

Univer...

ReSIST...

ECS So...

southa...

ProductDB

tharaw...

UK Leg...

openda...

openda...

Zhishi.me

Data a...

URIBurner

BBC Music

Chroni...

status...

semanlink

apache

BBC Wi...

DBpedi...

Europe...

EEA Re...

Europe...

prefix.cc

Prince...

semant...

typepad

wordpress

taxonc...

TaxonC...

Founda...

eagle-...

Eventseer

sloWNe...

Job ap...

Regist...

data.g...

lingvo...

Norweg...

openda...

proven...

patent...

resear...

Aperti...

ciard-...

EU: fi... Salzbu...

status...

VIVO I...

IWN

SIMPLE

WordNe...

DataGo...

data.dcs

DBLP B...

Bio2RD...

Struct...

WordNe...

wiktio...

GeoSpe...

status...

EnAKTi...

eagle-...

Univer...

Thai W...

UMTHES

Addgene

status...

status...

openda...

webconf

Amster...

Cornet...

Linked...

Revyu....

SwetoDblp

tags2c...

TCMGen...

status...

status...

Accomm...

Univer...

eagle-...

DBLP i...

Univer...

Proyec...

Bio2RD...

Univer...

status...

eagle-...

Averag...

CE4R K...

Thesau...

Food a...

RAMEAU...

Japane...

ESD St...

Aperti...

HeBIS ...

Semant...

Bio2RD...

Code l...

Cadast...

CLLD-WALS

status...

status...

status...

WOLF W...

Univer...

vivo2doi

VIVO S...
VIVO U...

VIVO W...

VIVO W...

Bio2RD...

The Lo...

Organi...

Bundes...

Europe...

Transp...

World ...

Univer...

Open D...

Phonet...

Genera...

BulTre...

Albane...

Univer...

crowds...

Linked...

Taiwan...

Open D...

flickr...

Univer...

MLSA -...

Diseasome

DailyMed

DrugBank

SIDER:...

LinkedCT

zhishi...

DBpedi...

Semant...

FAO ge...

Metoff...

FinnWo...

DEPLOY...

PanLex

Aperti...

Univer...

VIVO

status...

status...

status... status...
status...

status...

status...

status...

status...

status...

status...

Univer...

Near

EPA-FRS

EPA-RCRA

eagle-...

EuroSe...

openda...

Aperti...

Plant ...

SoyOnt...

status...

Period...

Englis...

Univer...

Bio2RD...

yso-fi...

yso-fi...

Alpine...

Kidney...

Univer...

Univer...

eagle-...

Debian...

2000 U...

Uberbl...

Aperti...

data.o...

OntoBe...

NASA S...
Open D...

openda...

openda...

datos-...

Europe...

lobid-...

lobid-...

DBTune...

Garnic...

MeGO

CTIC P...

News-1...

Linked...

EnAKTi...

status...

WordNe...

openda...

Open M...

educat...

MExiCo

AragoD...

ECCO-T...

UNESCO...

Federa...

Intern...

The Eu...

Bio2RD...

Univer...

LOD2 P...

Social...

School...

Aperti...

BioPAX

openda...

eagle-...

TCGA R...

DBTune...

DBTune...

TDS

Linked...

RDF Bo...

Catala...

myExpe...

Influe...

Surge ...

Austra...

Bank f...

World ...

Pathwa...

Plant ...

Allie ...

Last.F...

DBTune...

Univer...

Vytaut... PDEV-L...

EnAKTi...

Japane...

DBpedi...

Linked...

Biblio...

status...

Arabic...

Univer...

Chemic...

Integr...

DBTune...

openda...

VIVO C...

DM2E

Judaic...

Univer...

Public...

Semant...

Drug D...

Schola...

Manual...

Deutsc...

twc-op...

Airpor...

Linked...

OpenCa...

Telegr...

Inspec...

Instit...

NHS Ja...

SALDO-RDF

ASN:US

status...

Openly...

Univer...

Chines...

status...

KORE 5...

Aperti...

status...

status...

Univer...

Fishes...

UniProt

IATI a...

openda...

openda...

R&D Pr...

State ...

MORElab

eagle-...

EventM...

Nomenc...

GeoLin...

Atheli...

WarSampo

Ruben ...

NPM

Ruben ...

fun

Univer...

Automa...

eagle-...

eagle-...

Source... CLLD-WOLD

R&D Pr...

Organi...

Tender...

Open W...

DBpedi...

DBpedi...

Commun...

Italia...

Bricklink

Multex...

DBpedi...

Eurost...

Bio2RD...

Bio2RD...

Bio2RD...

Europe...

openda...

openda...

webnma...

El Via...

Univer...

status...

status...

status...

Shoah ...

Reposi...

status...

ALPINO...

Aperti...

Polyth...

openda...

CIPFA

RDFLic...

USPTO ...
Public...

The Li...

TWC: L...

oreilly

status...

status...

status...

status...

status...

status...

IEEE V...

AEMET ...

openda...

EPA-TRI

Reacto...

openda...

Tradit...

Nation...

ICANE

Lista ...

transp...

EARTh

ThIST

Thesau...

Univer...

openda...

Univer...

DBkWik

EMN

IATE RDF

Linkin...

Aperti...

Univer...

Salzbu...

Europe...

EIONET...

eagle-...

Aperti...

STITCH...

Framester

20th C...

Instit...

Hedatuz

openda...

Univer...

Green ...

WebIsALOD

openda...

Projec...

Univer...

Lingui...

Aperti...

DBTune... Geospa...

EUR-Le...

EPA-CDR

EPA-SRS

Finnis...

Data I...

Discog...

status...

status...

SmartL...

iServe...

eagle-...

gdlc

openda...

openda...

openda...

Images...

Job ap...

OLAC M...

LinkLi...

ePrint...

oceand...

Standa...

Summar...

aliada...

Bio2RD...

Norsk ...

Univer...

DanNet...

Multil...

Nation...

Regist...

Univer...

DBTune...

RSS-50...

Renewa...

EURAXE...

OpenEI...

Swedis...

RISM A...

Projet...

SweFN-RDF

DATATU...

John G...

Basisr...

Linked...

OpenMo...

Englis...

Open D...

Compre...

BibBase

busine...

Mosele...

Pokede...

dbpedi...

DBTropes

EnAKTi...

EnAKTi...

enviro...

Linked...

Lotico

Nation...

Englis...

Rechts...

Techni...

ERA - ...

Agenda...

Deaths...

Croati...

data-s...

EEA Vo...

HUGO

thesaurus

Bio2RD...

Orthol...

Univer...

openda...

Eniped...

Open D...

Bio2RD...

Serend...

Linked...

geodom...

status...

status...

openda...

Basque...

openda...

Linked...

CLLD-E...

BibSon...

IceWor...

Prince...

Deusto...

notube

openda...

Sancti...

Inspec...

openda...

Univer...

Social...

Salzbu...

openda...

NERC V...

FOODpe...

AGROVOC

Instit...

Bio2RD...

Hellen...
myopen...

RDFohloh

Univer...

Medici...

ATC gr...

Regist...

Accomm...

Betwee...

Web Sc...

openda...

mEduca...

Aperti...

Temple...Calames

Univer...

Global...

ESD-To...

Entrez...

Chat G...

FiESTA

openda...

Courts...

Chem2B...

bio2rd...

eagle-...

N-Lex ...

unipro...

Nobel ...

Verrij...

Linked...

GeoEcu...

ISTAT ...

Ocean ...

UNODC ...

ietflang
Interc...

openda...

Univer...

PreLex

Audite...

plWord...

Univer...

EU Age...

Linked...

openda...

openda...

Thesau...

openda...Univer...

MediCare

Univer...

MultiW...

eagle-...

Aperti...

dbnary

Lexvo.org

Brazil...

Gene E...

openda...

Produc...

Drosop...

2011 U...

Nation...

Weathe...

DisGeNET

Univer...

eagle-...

Univer...

Aperti...

openda...

The Co...

Publis...

Number...

taxonc...

Freeyork

bio2rd...

ISIL->...

GovWIL...

EUMIDA...

Mis Mu...

Evalua...

Result...

DBTune...
CLLD-A...

interv...
Yahoo ...

semant...

Open E...

status...

openda...

ChEMBL...

Enviro...

AGRIS
associ...

QBOAir...

TEKORD

eagle-...

Inever...

Inever...

Univer...

eagle-...

Google...

Ocean ...

Univer...

Lichfi...

openda...

Bio2RD...

Entorn...

YSO - ...

YSA - ...

berlios

DBpedi...

openda... greek-...

MASC-B...

Hebrew...

Bio2RD...

Active...

GeoWor...

Poképé...

AEGP, ...

Klapps...

Aperti...

de-gaa...

Arthro...

Deutsc...

Linked...

Planet...

status...

Univer...

Univer...

BPR ? ...

Slovak...

eagle-...

Geogra...

Linked...

Farmac...

Univer...

Instan...

LODAC ...

bio2rd...

Brown ...

WordLi...
Italia...

Univer...

LemonW...

List o...

openda...

TIP

Univer...

DBpedi...

Prospe...

Copyri...

Traffi...

Univer...

ichoose

Data a...

Regist...

Persia...

Biblio...

Whisky...

SALDOM...

Greek ...

"Raini...

openda...

RDFizi...

xLiD-L...

Select...

FrameB...

Univer...

sears.com

Norweg...

status...

Aperti...

Univer...
EventKG

Unempl...

Street...

Twarql

Univer...

Educat...

BioSam...

vulner...

Ontos ...

Linked...

Univer...

OLiA D...

CLLD-P...

LCSubj...

OSM Se...

DWS-Group

openda...

Ocean ...

status...

Univer...

Wordne...

Greek ...

eagle-...

Univer...

Taxons

Geolog...

Yovist...

Sentim...

JRC-Na...

Univer...

Univer...

Aperti...

medline

OpenWN...

Swedis...

CLLD-S...

openda...

ZBW Labs

data-h...

Univer...

openda...

status...

Focus ...

List o...

openda...

JITA C...

Deusto...

World ...

eagle-...

photos

Englis...

openda...

Merite...

EnAKTi...

Polyma...

World ...

cablegate

Lexico...

Univer...

Wikili...

Intera...

Confis...

TAXREF...

Transc...

Linked...

eagle-...

The Or...

status...

dev8d

Datos....

openda...

AgriNe...

Europe...

openda...

PreMOn

SPARQL...

Bans o...

Bio2RD...

eagle-...

Aperti...

Univer...

BioMod...

Red Un...

Learni...

Organi...

School...

status...

NTNU s...

Linked...

Univer...

linked...

The Linked Open Data Cloud from lod-cloud.net

Figure 1.3: The LOD Cloud [19]

1.3.2 Purpose

Linked Data are an essential part of the Web of Data. They allow people and
machines to browse and explore the Web of Data. As the name suggests, this
behavior is made possible via links. Those links provide a bridge to finding
other related data [18]. This technique is quite well known in the world of
hypertext documents. Analogically, in the world of Linked Data, one can
follow from a single resource to another while gaining more knowledge about
the particular topic or dataset.

The real power of knowledge is hidden in the vast interconnected Web of
Data. Figure 1.3 shows a simplified yet overwhelming view on the intercon-
nected Linked Open Data (LOD) Cloud.

Each connected party contributes to this Web by making its data accessible

17

1. State-of-the-art

to others, while being well described. Providing data in a correct form and
structure is not an easy task to do. It is crucial to strictly follow some of the
well known and established rules to make the data appropriately linked.

1.3.3 IRI, URI, URN, URL

These terms are often mixed up with each other, so let us clear up their
meaning all at once.

1.3.3.1 URI

A Uniform Resource Identifier (URI) is a string of characters used as a uni-
versal identifier which can be assigned to any resource. It follows certain
syntax rules which are tied to a proper grammar [20]. The resource identifier
is limited to an American Standard Code for Information Interchange (ASCII)
character set [21].

For the purpose of this thesis, we are going to further introduce a URI
with an example. According to [20], a URI can be any of the following:

• ftp://ftp.is.co.za/rfc/rfc1808.txt,

• http://www.ietf.org/rfc/rfc2396.txt,

• ldap://[2001:db8::7]/c=GB?objectClass?one,

• mailto:John.Doe@example.com,

• news:comp.infosystems.www.servers.unix,

• tel:+1-816-555-1212,

• telnet://192.0.2.16:80/,

• urn:oasis:names:specification:docbook:dtd:xml:4.1.2.

Basically, URI describes a resource name, a resource locator, or both [21].
A resource name is an identifier given to the resource, while resource locator
also gives information about how to access said resource.

1.3.3.2 IRI

Internationalized Resource Identifier (IRI) is a generalized form of URI, which
was previously mentioned in 1.3.3.1. IRIs permit use of extended Unicode
characters in comparison to limited ASCII [22]. The two examples of IRIs
with Czech diacritics follow next:

https://www.hackycarky.cz/čepice.pdf
https://www.háčkyčárky.cz/cepice.pdf

18

1.3. Linked Data

The first IRI has non-ASCII characters in part after the domain. It can
be transformed into URI using percent encoding. Each extended character is
then rewritten according to its percent prefixed value. The following URI is
equivalent to the first-mentioned IRI:

https://www.hackycarky.cz/%C4%8Depice.pdf

The second IRI has non-ASCII characters in the domain part, so Punycode
encoding is used. This encoding keeps information about which extended
characters are used, as well as their positions in the text. Equivalent URI for
the second IRI encoded in Punycode:

https://www.xn--hkyrky-ptac70bc.cz/cepice.pdf

Both approaches are used together if the IRI has non-ASCII characters
both in the domain and the part after the domain.

1.3.3.3 URN

Uniform Resource Name (URN) is a URI providing a resource name identi-
fier. URN’s location is arbitrary or non-existing. URN has a scheme prefix
"urn" [21]. Example of a URN:

urn:oasis:names:specification:docbook:dtd:xml:4.1.2

1.3.3.4 URL

URL is a URI or IRI, which also provides a location of the resource along with
means of how to access the resource [21]. Example of a URL:

http://www.ietf.org/rfc/rfc2396.txt

After accessing said URL via HTTP, we should be able to retrieve the
given resource, in this case, a text file.

1.3.4 Linked Data Principles

Sir Tim Berners-Lee stated the four rules of Linked Data in [18]. The rules
are shortly described as follows:

1. "Use URIs as names for things."

2. "Use HTTP URIs so that people can look up those names."

3. "When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL)."

19

http://www.ietf.org/rfc/rfc2396.txt

1. State-of-the-art

4. "Include links to other URIs. so that they can discover more things."

The first rule requires using URIs as names for objects. This rule is usually
quite simply satisfied by the fact that the described data are placed in the
world of Semantic Web.

The second rule goes along with the first one. A HTTP URI is just a
specific URI which uses HTTP as its scheme, or in other words "prefix" (the
"http" part). This URI is then used as a name for a resource accessible via
HTTP.

The third rule is usually covered by using already defined sets of vocabu-
laries/ontologies. These vocabularies define specific naming conventions, at-
tribute specifications, and relationships between many different objects or en-
tities. There are various ontologies available to use when describing Linked
Data. For the purpose of this thesis, it is important to know that when those
URIs are dereferenced, vocabularies offer human-readable information about
them. The same should go with URIs that are being described via those
vocabularies.

The fourth rule is arguably the most important of them all. To achieve a
fully interconnected Web of Data, it is crucial to have links (in form of a URL)
pointing from one dataset to another. So when new information is released,
it should be a standard for the publisher of the information to make initial
connections to the related, already existing, data.

1.3.5 Examples of Datasets

After we established what Linked Data are and what are their rules, it is
crucial to introduce some examples of datasets which are contributing to the
Web of Data.

1.3.5.1 DBpedia

One of the most well-known datasets is the DBpedia28. DBpedia is extracting
structured data from several Wikimedia projects—e.g., Wikipedia. It has a
vast number of entries. The English version describes 4.58 million things.
Localized versions of DBpedia describe 38.3 million things altogether. Given
the nature of Linked Data and its massive span of information, DBpedia is a
great starting source for making a whole lot of various data queries [23].

1.3.5.2 GeoNames

Another well known dataset is called GeoNames29. GeoNames contains var-
ious geographical data. There are cataloged many countries, mountains, is-
lands, cities, including various points of interest such as football stadiums,

28https://wiki.dbpedia.org/
29https://www.geonames.org/

20

https://wiki.dbpedia.org/
https://www.geonames.org/

1.4. RDF

theatres, hotels, public transport stops, etc. It has over 25 million geograph-
ical names. Information about population, elevation, etc. is connected with
those places. For example information about the Czech Republic is available
at:

https://www.geonames.org/countries/CZ/czechia.html

On the given link we can gain knowledge about its capital city, population,
area, currency, or alternative names for the country in other languages.

1.3.5.3 Others

There are plenty of more Linked Data sets examples. For the purpose of
this thesis, we are going to list a few more examples shortly. FOAF search
engine is a decentralized social network30. Many states’ institutions provide
so-called open data. For example, many Czech institutional datasets are avail-
able through its Open Data portal31. It contains data about cities, public
transport, local regions, etc.

1.4 RDF
RDF stands for a Resource Description Framework. In the context of Linked
Data, RDF is a framework used for describing such data. This section focuses
on covering the said framework and its data model. Firstly, its purpose is
explained. Secondly, the main RDF concepts along with abstract and concrete
data representations are discussed. Lastly, a Turtle syntax is introduced in
detail.

1.4.1 Purpose

RDF is used to represent various data which can be accessed through the Web.
It is capable of describing relationships between various entities and resources.
Individual relationships between entities can form a vast graph. RDF can be
viewed as a kind of a graph database [22], to form a better understanding
of what it is. For the scope of the entire RDF section, let us consider the
following statement:

"Alice knows Bob."

This simple statement represents the fact that a person called Alice knows
another person called Bob. With that in mind, let us further elaborate on this
example.

30https://www.foaf-search.net/
31https://data.gov.cz/

21

https://www.geonames.org/countries/CZ/czechia.html
https://www.foaf-search.net/
https://data.gov.cz/

1. State-of-the-art

Subject ObjectPredicate

Figure 1.4: The RDF Triple [22]

1.4.2 Abstract Data Representation

The RDF data model is a graph consisting of multiple different relationships,
such as "Alice knows Bob." These relationships consist of subject-predicate-
object triples. A subject is the left hand side entity of the relationship ("Alice").
Similarly, the right hand side entity of the relationship is called an object
("Bob"). The entire statement "Alice knows Bob." is also implicitly expressing
the third part of the relationship, a predicate. The predicate is the named
relation itself ("knows"), which is connecting the subject ("Alice") with the
object ("Bob"). A set of such triples is called an RDF graph.

It is also possible to have a fourth statement along with a triple, which
provides additional information about the graph containing the said triple.
This extended triple is then called a quad.

1.4.2.1 Triple

For better visualization of the triple structure, Figure 1.4 shows an RDF graph,
which can be viewed as any other graph with oriented arcs [22]. An individual
node in a graph can be:

• an IRI,

• a literal,

• a blank node.

In an RDF triple, the subject is an IRI or a blank node, the predicate is
an IRI, and the object is an IRI, a literal, or a blank node [22].

1.4.2.2 IRIs

IRI is a generalized form of URI, which was previously mentioned in 1.3.3.
IRIs permit use of extended Unicode characters [22]. In our example, we
could have IRIs for Alice and Bob as follows:

http://example.org/#Alice
http://example.org/#Bob

Also, the relationship itself could be described as:

http://xmlns.com/foaf/0.1/knows

22

1.4. RDF

1.4.2.3 Literals

Literals are plain values like strings or numbers. A literal is represented by
its lexical form which is a Unicode string. For example "a cat", or "1". It is
also needed to provide a datatype IRI, which is an IRI identifying a datatype
tied to a literal value. Although some syntaxes may support omitting the
datatype [22].

1.4.2.4 Blank Nodes

RDF does not precisely specify blank nodes. Their structure is up to concrete
implementations of RDF. Blank nodes are used for identifying a resource,
which is neither identified by an IRI nor represented as a literal.

The critical information here is a knowledge of the existence of some entity
tied to the adequately identified subject or object. A blank node can, for
example, be representing a "dog", which a particular person has. However,
we do not know any more information about it, its name, breed, let alone an
IRI [22].

1.4.2.5 Datasets

A collection of RDF graphs is called an RDF dataset. This dataset contains
exactly one default graph, which may be empty and is not named. The dataset
also contains zero or more named graphs, which consist of an IRI or a blank
node and the graphs themselves. Concrete examples of datasets can be one of
the examples previously mentioned in 1.3.5 [22].

1.4.3 Concrete Data Representations

The abstract RDF data representation, as described in 1.4.2, has many differ-
ent serialization variants. All of the following concrete data representations
reflect the abstract principles and offer unique serialization types. Primary
individual syntaxes are named as follows:

• RDF/XML,

• N-Triples,

• Turtle,

• TriG,

• N3,

• JSON-LD,

• RDFa.

23

1. State-of-the-art

http://example.org/#spiderman

http://example.org/#green-goblin

enemyOf

Figure 1.5: Example: Relationship between Spider-man and Green Goblin

For the purpose of this section, let us introduce the following statement:

"Spider-man is an enemy of Green Goblin."

For better visualization of this statement, it is illustrated in Figure 1.5.
We can see that the "Spider-man" is a subject. The "Green Goblin" is an
object. The relation between the two ("enemyOf") is a predicate.

We are now going to discover how this statement is serialized in every
syntax mentioned above. Some of the syntaxes share the same base syntax.
Mainly they are based on Extensible Markup Language (XML)32, Notation3
(N3)33, and JSON.

1.4.3.1 RDF/XML

RDF/XML is the first and still said to be a one of the most common RDF
serializations [24]. It incorporates the RDF principles straight into the XML
format. The main disadvantage may be the fact, that it is not very human
readable, and lengthy. The example sentence can be formulated as such [25]:

1 <?xml version="1.0" encoding="utf-8" ?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rel="http://www.perceive.net/schemas/relationship/">↪→

3 <rdf:Description rdf:about="http://example.org/#spiderman">
4 <rel:enemyOf rdf:resource="http://example.org/#green-goblin"/>
5 </rdf:Description>
6 </rdf:RDF>

32https://tools.ietf.org/html/rfc4825
33https://www.w3.org/TeamSubmission/n3/

24

https://tools.ietf.org/html/rfc4825
https://www.w3.org/TeamSubmission/n3/

1.4. RDF

1.4.3.2 N-Triples

N-Triples is probably the most straightforward form of describing triples. It
only supports sets of fully stated RDF triples. It is effortless to use, it is also
fast to interpret, but the individual statements can quickly get very long. The
example sentence can be formulated as such [25]:

1 <http://example.org/#spiderman>
<http://www.perceive.net/schemas/relationship/enemyOf>
<http://example.org/#green-goblin> .

↪→

↪→

1.4.3.3 Turtle

Terse RDF Triple Language (Turtle) is a popular RDF serialization. It is very
human readable. Turtle is a superset of N-Triples. In addition to N-Triples,
it introduces various shortcuts and syntactic sugars which can rapidly shorten
the number of typed statements. The example sentence can be formulated as
such [25]:

1 @prefix rel: <http://www.perceive.net/schemas/relationship/> .
2

3 <http://example.org/#spiderman> rel:enemyOf
<http://example.org/#green-goblin> .↪→

1.4.3.4 TriG

Historically, TriG is an extension of Turtle. It brings support for multiple
named graphs within the document. Although, RDF 1.1 makes every Turtle
document also a TriG document [25]. Our example would be same as in Turtle
(see 1.4.3.3).

1.4.3.5 N3

Notation3 (N3) is a superset of Turtle. Its power lies in further widening the
syntax capabilities. For example it offers shortcuts for implications ("=>"),
statement lists ("{...}"), and other enhancements [25]. N3 can also express
non-RDF statements. For our example though, the statement is the same as
in Turtle (see 1.4.3.3).

1.4.3.6 JSON-LD

A JSON Serialization for Linked Data (JSON-LD) is a serialization based
on the JSON format. Its use is pretty straightforward. There are various

25

1. State-of-the-art

keywords for linking RDF vocabularies and IRIs within the JSON content.
That being said, the number of brackets can get huge quickly. The example
sentence can be formulated as such [25]:

1 {
2 "@context": {
3 "enemyOf": "http://www.perceive.net/schemas/relationship/enemyOf"
4 },
5 "@graph": [
6 {
7 "@id": "http://example.org/#green-goblin"
8 },
9 {

10 "@id": "http://example.org/#spiderman",
11 "enemyOf": "http://example.org/#green-goblin"
12 }
13]
14 }

1.4.3.7 RDFa

Rich Structured Data Markup for Web Documents (RDFa) is an RDF seri-
alization which supports embedding RDF statements straight into Hypertext
Markup Language (HTML) elements. This behavior enables making classic
websites more computer readable. Every HTML element can be assigned with
special attributes. Those attributes further specify the purpose of a given el-
ement (for example a name of the author of the article) [25]. The example
sentence can be formulated as such:

1 <div prefix="foaf: http://xmlns.com/foaf/0.1/ rel:
http://www.perceive.net/schemas/relationship/">↪→

2
3 <li typeof="foaf:Person">
4 <a property="foaf:homepage"

href="http://example.org/#green-goblin">Green Goblin

↪→

↪→

5
6 <li typeof="foaf:Person">
7 <span

property="foaf:name">Spider-man↪→

8 <a property="rel:enemyOf"
href="http://example.org/#green-goblin">Enemy↪→

9

26

1.4. RDF

10
11 </div>

1.4.3.8 Syntax Conclusion

As we discovered, there are plenty of RDF serializations. All of them have
their advantages, and everyone can pick one of their choosing to use. For the
purpose of this thesis, because of its ease of readability, we are going to cover
the Turtle syntax further to illustrate the capabilities of RDF.

1.4.4 Turtle, a Concrete Data Representation

As mentioned above, Terse RDF Triple Language (Turtle) is a concrete lan-
guage representing RDF graphs. It describes a textual syntax for such graphs.
Let us further explore its syntax.

1.4.4.1 Main Structure

The simplest form of a Turtle statement is the following one [26].

1 <http://example.org/#spiderman>
2 <http://www.perceive.net/schemas/relationship/enemyOf>
3 <http://example.org/#green-goblin> .

In the example above we can see that IRIs are enclosed by a pair of pointed
brackets ("<>"). A subject is declared on the first line. On the second line,
a predicate is shown. An object is on the third line. Any triple like this one
can be separated by whitespace in between and is terminated by a closing dot
("."). In summary, the above example says that "Spider-man" is an enemy of
"Green Goblin" [26].

1.4.4.2 @base and @prefix

The basic structure mentioned in 1.4.4.1 can be further shortened as follows.

1 @base <http://example.org/> .
2 @prefix rel: <http://www.perceive.net/schemas/relationship/> .
3

4 <#spiderman> rel:enemyOf <#green-goblin> .

With @base we can specify a base IRI which is used for resolving relative
IRIs. The relative IRI "<#spiderman>" is then resolved to:

27

1. State-of-the-art

http://example.org/#spiderman

With @prefix we can create a shortcut for a frequent IRI. Prefix decla-
rations consist of a prefix label and an IRI which is described by the given
label. A prefixed name ("rel:enemyOf") consists of a prefix label ("rel") and
a local part ("enemyOf"), separated by a ":". A complete IRI is constructed
by concatenating the IRI defined by the prefix and the local part. That being
said, the above example is equivalent to the one mentioned in 1.4.4.1 [26].

1.4.4.3 Predicate Lists

For examples in this subsection, let us consider the following setting.

1 @base <http://example.org/> .
2 @prefix rel: <http://www.perceive.net/schemas/relationship/> .
3 @prefix foaf: <http://xmlns.com/foaf/0.1/>

If we want to express multiple properties of a subject, we can list them
repeatedly as in the following example [26].

1 <#spiderman> rel:enemyOf <#green-goblin> .
2 <#spiderman> foaf:name "Spiderman" .

It is apparent that by doing this, we repeat ourselves by stating the subject
twice (or more depending on the number of triple statements for each prop-
erty). However, Turtle brings an option to mitigate this problem by using
predicate lists [26].

1 <#spiderman> rel:enemyOf <#green-goblin> ;
2 foaf:name "Spiderman" .

After the initial triple statement, instead of terminating it by a dot ("."),
we can use a semicolon (";"). By doing this, we can then continue listing more
predicates and objects tied to the first subject. It is also possible to repeat
using the semicolon after every predicate and object, effectively making the
predicate list longer. The semicolon effectively repeats the subject of a series
of triples with different predicates and objects [26].

1.4.4.4 Object Lists

For the examples in this subsection, let us consider the following setting.

28

1.4. RDF

1 @base <http://example.org/> .
2 @prefix foaf: <http://xmlns.com/foaf/0.1/>

Similarly, if we want to state multiple objects, we can do so by stating the
triple multiple times [26].

1 <#spiderman> foaf:name "Spiderman" .
2 <#spiderman> foaf:name "Pavoučí muž"@cs .

Object lists enable us to use a comma (",") behind each object in order to
input multiple values. By doing this, the above statement can be rewritten as
follows [26].

1 <#spiderman> foaf:name "Spiderman", "Pavoučí muž"@cs .

The comma effectively repeats the subject and predicate of multiple triples
with different objects [26].

1.4.4.5 Literals

RDF literals are simple value objects without an IRI identifier. In Turtle,
literals can be specified as follows [26].

1 @base <http://example.org/> .
2 @prefix foaf: <http://xmlns.com/foaf/0.1/>
3

4 <#spiderman> foaf:name "Spiderman", "Pavoučí muž"@cs .
5 <#green-goblin> foaf:name "Green Goblin" .

In the case above, the literals are the "Spiderman", "Pavoučí muž" (with
the cs tag) and the "Green Goblin". The said literals are used to specify a
foaf:name object to their respective subjects [26].

Quoted literals are represented by its lexical form, followed by a language
tag, datatype, or neither. A lexical form is a string between a pair of quotes
(" "). In the above example, it is the string specifying the name of the given
subject. A language tag is a part behind an at sign ("@"). It is used to specify
a language in which the literal is written. The tag can be "@en", "@cs", "@fr",
etc. A datatype value is used to determine the literal datatype. It is preceded
by double caret signs ("ˆˆ"). The datatype value itself is an IRI referring to
the given datatype. Its IRI may be absolute, relative, or in the form of a
prefixed name. If the datatype is omitted, the following URI is used:

29

1. State-of-the-art

http://www.w3.org/2001/XMLSchema#string

The three following statements (each on lines 5, 6, 7) are equivalent [26].

1 @base <http://example.org/> .
2 @prefix foaf: <http://xmlns.com/foaf/0.1/>
3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
4

5 <#spiderman> foaf:name
"Spiderman"^^<http://www.w3.org/2001/XMLSchema#string> .↪→

6 <#spiderman> foaf:name "Spiderman"^^xsd:string .
7 <#spiderman> foaf:name "Spiderman" .

Numbers are represented as any other literals with a specified datatype,
e.g., "-5.0"ˆˆxsd:decimal. Turtle also offers a shortcut syntax for integers,
decimals, and doubles. So we can only state the value as -5 without the
datatype specified explicitly [26].

Also booleans can be written as plain true or false values, their datatype
is then deduced as "xsd:boolean" [26].

1 @base <http://example.org/> .
2 @prefix ex: <http://example.org/>
3

4 <#spiderman> ex:height 185 ;
5 ex:weight 90 ;
6 ex:isSpider true .

1.4.4.6 Blank Nodes

Blank nodes in Turtle are represented with a preceding underscore and a colon
("_:") followed by a blank node label [26].

1 @prefix rel: <http://www.perceive.net/schemas/relationship/> .
2

3 _:spiderman rel:enemyOf _:goblin .
4 _:goblin rel:enemyOf _:spiderman .

1.4.4.7 Collections

Turtle also supports the use of collections. A collection is enclosed by a set of
round brackets "()". In those brackets, a list of RDF terms (even an empty
one) is expected. A collection can either be a subject or an object [26].

30

1.5. WebID

1 @base <http://example.org/> .
2 @prefix ex: <http://example.org/>
3

4 <#superheroes> ex:hasMember (<#spiderman> <#superman> <#deadpool>) .

1.5 WebID

Web Identity and Discovery (WebID) is a technology used for identifying vari-
ous entities by using a URI. In this section, we are going to discover what does
WebID further mean and learn its connections to Solid. At first, its purpose
is discussed. Then follows a description of WebID-TLS and WebID-OIDC.

1.5.1 Purpose

WebID defines a process of verifying entities (persons, organizations, etc.)
on the Web. These entities are called agents. WebID uses a classic URI
as an identifier. This URI has to dereference to a WebID profile document
containing further information about the referring entity. A profile is an RDF
document containing user’s information (e.g., name, picture, friends, etc.)
which can look like this [27]:

1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
2

3 <> a foaf:PersonalProfileDocument ;
4 foaf:maker <#me> ;
5 foaf:primaryTopic <#me> .
6

7 <#me> a foaf:Person ;
8 foaf:name "Bob" ;
9 foaf:knows <https://example.edu/p/Alice#MSc> ;

10 foaf:img <https://bob.example.org/picture.jpg> .

WebID is also used as a way of Web authentication. There are two major
ways of WebID based authentications:

• WebID-TLS,

• WebID-OIDC.

Let us further introduce them in the next two sections.

31

1. State-of-the-art

1.5.2 WebID-TLS

WebID – Transport Layer Security (WebID-TLS) is a protocol providing user
authentication on the Web. The authentication itself uses WebID and its
associated profiles along with X.50934 certificates. A certificate is a document
containing information about the identity of the claimant of the cryptographic
public key. The protocol avoids a need for third-party certificate authority.
Therefore, any Website can generate such certificates. At first, it is needed to
obtain a certificate, which is linked to a corresponding WebID. A user then
publishes a public key given by the certificate. The following example shows
(lines 10 to 13) published public key information [28]:

1 @prefix cert: <http://www.w3.org/ns/auth/cert#> .
2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
4

5 <> a foaf:PersonalProfileDocument ;
6 foaf:maker <#me> ;
7 foaf:primaryTopic <#me> .
8

9 <#me> a foaf:Person;
10 cert:key [a cert:RSAPublicKey;
11 cert:modulus "00cb24ed85d64d794b..."^^xsd:hexBinary;
12 cert:exponent 65537
13] .

Once the certificate is publicly referenced in the user’s WebID profile doc-
ument, the user then saves the certificate into his Web browser.

The verification is then done by a server which prompts the user for a
certificate. The user chooses the certificate from his browser and provides it
to the server. The authentication flow then consists of dereferencing a WebID
profile. Afterwards, a private key from the certificate is compared towards
the public key from the WebID profile document [28]. If the information
from the certificate checks with the public key, the user is then authenticated.
All of the communication between the user and the server is done under a
Transport Layer Security (TLS)35 connection, which provides a secure and
encrypted data transfer.

34https://www.ietf.org/rfc/rfc5280.txt
35https://tools.ietf.org/html/rfc5246

32

https://www.ietf.org/rfc/rfc5280.txt
https://tools.ietf.org/html/rfc5246

1.5. WebID

1.5.3 WebID-OIDC

WebID – Open ID Connect (WebID-OIDC) is another authentication pro-
tocol using WebIDs. It is based on the OpenID Connect36 authentication
protocol. OpenID Connect is an extension of Open Authentication (OAuth)
2.037 authorization protocol. The WebID-OIDC authentication flow is the
following [29]:

1. A user initiates a request to access a resource from a server. If it is
mandatory to be logged in, the user is shown a provider selection screen
and prompted to choose a provider with which he wishes to log in.

2. The user picks a WebID provider by choosing from the list of providers,
or by typing the provider’s URI, or by typing his full WebID URI.

3. The user is redirected to the provider’s login screen. The preferred
method of signing in can either be typing in a username and password
or choosing a WebID-TLS certificate, etc.

4. After successful authentication at the provider, the user is redirected
back to the initial resource which started the authentication process.
The server containing the resource is given a Identity Token (ID Token)
which contains the profile information about the authenticated user.

5. The ID Token gets validated by the server containing the resource. The
WebID of the user trying to access the resource is then extracted from
the ID Token itself.

6. The WebID from the token is then additionally verified (to make sure
that the WebID truly belongs to the user).

The additional steps are required to make WebID-OIDC possible. At
first, let us cover the extraction of the WebID from the ID Token. Then, the
verification of the authentication provider follows.

1.5.3.1 Extraction of the WebID from the ID Token

The WebID can be extracted directly from the ID Token by checking for a
property called "webid". If the property is not available, it is possible to
check the "sub" property of the token. If the property is set and contains
a valid HTTP URI, it is then considered and used as a WebID. If neither
of the mentioned methods return a valid WebID, it is possible retrieve the
WebID from a OpenID Connect UserInfo Request. The UserInfo response
then contains a "website" property, which is then used as a WebID [29].

36https://openid.net/specs/openid-connect-core-1_0.html
37https://tools.ietf.org/html/rfc6749

33

https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc6749

1. State-of-the-art

1.5.3.2 Verification of the Authentication Provider

Because various malicious identity providers may falsely claim that the user
successfully authenticated and is the valid owner of the WebID, it is needed
to be able to verify the correct provider for a given identity. The WebID
is considered as verified and no further actions are needed, if and only the
WebID URI suffices either of the following conditions [29]:

• WebID has a same base URI as the identity provider.

• WebID is a subdomain of the identity provider’s URI.

URIs which suffice those conditions can, for example, be specified as the
following [29]:

Identity provider: https://example.com
WebID subdomain: https://alice.example.com/profile#me
WebID shared base: https://example.com/profile#me

If none of the above cases are met, while trying to verify an identity
provider, it is needed to take additional steps. The approved identity provider
for a given WebID has to be discovered. This can be done by obtaining the
information from either [29]:

• the Link request headers,

• the WebID profile document.

The first method requires making a HTTP OPTION request towards
the WebID URI. Afterwards, the "Link:" header is parsed and the follow-
ing property is checked: "http://openid.net/specs/connect/1.0/issuer".
The said URI with the said relation is then considered as an authorized iden-
tity provider.

The second method requires dereferencing the WebID URI (obtaining a
WebID profile document). Afterwards, the profile document is queried for a
statement containing "http://www.w3.org/ns/solid/terms#oidcIssuer" as
a predicate [29]. The following example states the identity provider on line 9.

1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
2 @prefix solid: <http://www.w3.org/ns/solid/terms#> .
3

4 <> a foaf:PersonalProfileDocument ;
5 foaf:maker <#me> ;
6 foaf:primaryTopic <#me> .
7

34

1.6. Current Photo Managing Applications Built on Solid

8 <#me> a foaf:Person;
9 solid:oidcIssuer <https://provider.com> .

1.5.4 WebID Summary

We covered the two authentication protocols which are used on the Web.
They are both used by the Solid framework. At first, Solid supported the
WebID-TLS protocol. Later on, the WebID-OIDC support was added.

As of writing this thesis, WebID-TLS is slightly being put in the back-
ground, as major Web browsers (e.g., Chrome, Firefox, etc.) dropped sup-
port38 for a "keygen" Hypertext Markup Language 5 (HTML5) element. This
element was used for creating certificates by the Websites. This deprecation
means that users are less able to create certificates conveniently. They have
to use local programs to create a correct certificate, rather than leaving the
process to an easy-to-use Web service.

As the WebID-OIDC delegates the authentication process to the identity
provider, it enables bigger flexibility on the part of possible authentication
methods. So it is still possible to sign in via WebID-TLS or various other
future methods (possibly a biometric technology, etc.).

1.6 Current Photo Managing Applications Built
on Solid

In this section, the current available photo managing applications based on
Solid are discussed. Then, a summary of the current situation is presented.

1.6.1 Photo Managing Applications Description

There is only one application based on Solid which meets the description of
a "photo managing" application based on Solid. It is called Timeline. Let us
further introduce it.

Timeline39 is a social media Web application focused on the type of content
similar to Facebook. In Figure 1.6, we can see the application itself. Users
can share posts containing text or photos. It supports writing comments to
the posts, liking, etc. A logged in user can see posts from other people, if the
user does have any friends linked in his Solid POD, and the users use Timeline
as well.

Timeline was developed by Melvin Carvalho from November 2015 to Jan-
uary 2016. The application currently supports logging in only via WebID-TLS.

38https://github.com/solid/solid/issues/134
39https://github.com/solid-social/timeline

35

https://github.com/solid/solid/issues/134
https://github.com/solid-social/timeline

1. State-of-the-art

Figure 1.6: Timeline

It is required to have a "timeline" statement with appropriate container cre-
ated in the user’s POD, but this functionality seems to be non-functioning at
the moment.

1.6.2 Photo Managing Applications Summary

As previously shown in 1.2.6, there are not many applications for Solid as
a whole. Some are in the first stages of development, and for some social
domains, there are no alternatives. There is a need for developers to continue
and build new applications to take Solid to a broader spectrum of users. As we
can see, the current situation of the photo managing application shows, that
there is a void which can be filled with a new photo managing application.
Moreover, that is one of the main goals of this thesis.

36

Chapter 2
Analysis

This chapter describes an analysis relating to a domain of the photo managing
application.

Firstly, we define a product statement of said application, containing a
base specification of what the application should stand for. Along with that
goes the definition of the business requirements, which are partly inherited
from the assignment of the thesis.

Secondly, precise definitions of the requirements for the application are
mentioned. Functional and non-functional requirements are identified and
further specified.

Thirdly, we extend such requirements and continue with the definitions of
individual use cases.

Then, concrete scenarios for the said use cases are described in detail,
along with definitions of individual actors.

Lastly, we identify and examine significant entities of the application, and
further capture connections among them in a domain model.

2.1 Product Statement

An application which enables essential photo management will be built. This
application will be named Pixolid (a wordplay on Pictures on Solid). It is ex-
pected to support core functionality such as uploading photos to a Solid POD,
viewing uploaded photos, viewing other people’s photos, basic commenting,
and liking. This application will be focused on the Web desktop environment.

2.2 Business Requirements

This application will be built to support the Solid framework. The application
needs to provide a way of authentication and interoperability with Solid PODs.

37

2. Analysis

By doing this, we will contribute to the cause of re-decentralization of the Web,
and support the development of Solid and related technologies.

2.3 Requirements Definition
In this section, functional and non-functional requirements are defined for the
photo managing application.

2.3.1 Functional Requirements

At first, let us define key functional requirements as follows:

• FR1 Uploading New Images

– The application is expected to enable uploading new photos to a
user’s POD storage.

– Priority: high.

• FR2 Adding an Image Description

– The application should support adding a textual description to the
image which is being uploaded.

– Priority: medium.

• FR3 Setting Access Rights

– The application should support setting access rights (public, pri-
vate, selected users) to the newly uploaded images.

– Priority: high.

• FR4 Viewing User’s Images

– The application needs to support viewing user’s images from the
POD storage.

– Priority: high.

• FR5 Viewing Friends’ Images

– The application will support viewing images posted by the user’s
friends.

– Priority: high.

• FR6 Viewing an Image Detail

– The application enables viewing an image in a full sized detail.
– Priority: medium.

38

2.3. Requirements Definition

• FR7 Viewing Image Information

– The application will show the additional information about an im-
age such as description, date of posting, author.

– Priority: medium.

• FR8 Posting Comments

– The application should support basic commenting on images.
– Priority: high.

• FR9 Liking Images

– The application may support liking user’s photos.
– Priority: medium.

• FR10 Viewing Comments

– The application has to support viewing comments linked to the
specific image.

– Priority: high.

• FR11 Viewing a Count of Likes

– The application may support showing the count of likes which a
given image received from other users.

– Priority: medium.

• FR12 Choosing an Application Folder

– The application has to enable the user to choose where he wants
to store the application data on his POD (in which folder).

– Priority: high.

• FR13 Viewing User’s Information

– The application shows basic information about the user.
– Priority: medium

2.3.2 Non-functional Requirements

Secondly, let us specify the main non-functional requirements below:

• NFR1 Usage of the Solid Framework

– The application needs to support and utilize the Solid framework
as a server storage service.

39

2. Analysis

– Priority: high.

• NFR2 Authentication of the Account

– The application must authenticate the user’s Solid POD account
via WebID-TLS and WebID-OIDC.

– Priority: high.

2.4 Use Cases Definition
In this section, we further specify use cases which shall cover the requirements,
which were previously mentioned in 2.3. A user of the application initiates
such use cases. A list of individual use cases follows next:

• UC1 Upload a New Image

– Enables the user to select and upload a new image to his Solid POD
storage.

• UC2 Set Access Rights

– Enables the user to select public or private access rights to a given
image.

• UC3 View User’s Images

– Enables the user to show his images stored on the Solid POD stor-
age.

• UC4 View Friends’ Images

– Enables the user to show his friends’ posted images.

• UC5 View Image Detail

– Enables the user to view a detail of a single image containing further
information.

• UC6 Post a Comment

– Enables the user to post a comment to a chosen image.

• UC7 Like an Image

– Enables the user to like a chosen image.

• UC8 Choose an Application Folder

– Enables the user to set an application folder location which is used
to store data on the POD.

40

2.5. Scenarios Definition

requirement
—————
use case FR

1

FR
2

FR
3

FR
4

FR
5

FR
6

FR
7

FR
8

FR
9

FR
10

FR
11

FR
12

FR
13

N
FR

2

UC1 X X
UC2 X
UC3 X
UC4 X
UC5 X X X X
UC6 X
UC7 X
UC8 X
UC9 X
UC10 X
UC11 X

Table 2.1: Use cases coverage for the requirements

• UC9 View User’s Information

– Enables the user to view his brief information (name, image, etc.)
and settings (application folder location).

• UC10 Login

– Enables the user to authenticate with his Solid POD.

• UC11 Logout

– Enables the user to log out of the application.

In Table 2.1, we can see the use cases covering the individual requirements
which were defined in 2.3. In Figure 2.1, we can see a use case diagram showing
relations among the individual use cases.

2.5 Scenarios Definition
In this section, we will precisely define how the use cases mentioned in 2.4 will
be executed. This will be done in a form of use case scenarios defining each
step of the use case.

2.5.1 Scenarios’ Actors Definition

At first, let us introduce the use case scenarios’ actors:

• User

41

2. Analysis

System Boundary

UC1 Upload a New
Image

UC3 View User's
Images

UC4 View Friends'
Images

UC10 Login

UC6 Post a
Comment

UC7 Like an Image

UC9 View User's
Information

UC11 Logout

Authenticated
User

Not
Authenticated

User

«extend»

UC5 View Image
Detail

«extend»
«extend»

«extend»

«include»
«include»

UC2 Set Access
Rights

UC8 Choose an
Application Folder

«extend»

«include»

«extend»

Figure 2.1: Use Case Diagram: Relations among the use cases.

42

2.5. Scenarios Definition

– An actor which uses and controls the system (application) in the
role of a user.

• System

– An actor which substitutes the client-side application, which is ex-
ecuting user’s tasks and commands. The system is directly com-
municating and exchanging data with the server.

• Server

– An actor which is emulating the Solid POD storage server. The
server handles requests made by the system, which are originally
initiated by the user.

2.5.2 Scenarios Description

A description of the individual use cases’ scenarios continues further below:

• Scenario UC1 Upload a New Image
Input state: The user is logged in accordingly to UC10.

1. The user clicks on an upload image tab button.
2. The system shows an upload image page.
3. The user clicks on a select image button.
4. The system shows an image selection dialog.
5. The user chooses an image he wishes to upload.
6. The user types an image description text into an image description

text area.
7. The user may or may not wish to set specific access rights for the

image accordingly to UC2 from this extension point.
8. The user confirms the upload by clicking on an upload image but-

ton.
9. The system uploads the image to the server.

Output state: The system uploaded the user’s selected image with
its metadata to the server.

• Scenario UC2 Set Access Rights
Input state: The user used an extension point from UC1.

1. The user toggles an access rights toggle (checkbox).
2. According to the access rights toggle value, the system shows ap-

propriate access rights setting, either a case a) or b) apply.

43

2. Analysis

a) If the access rights toggle is set to public, the system shows no
further interaction.

b) If the access rights toggle is set to private, the system shows a
user selection input control.
i. The user chooses with whom he wishes to share the image

by selecting multiple users (or none) from the user selection
input control.

3. The system sets the chosen access rights for the image.

Output state: The system set the access rights for the image from
UC1.

• Scenario UC3 View User’s Images
Input state: The user is logged in accordingly to UC10.

1. The user clicks on a my images tab button.
2. The system fetches user’s images from the server.
3. The system lists previews of the images on the my images page.

Output state: The user is shown an overview of his uploaded
images.

• Scenario UC4 View Friends’ Images
Input state: The user is logged in accordingly to UC10.

1. The user clicks on a friends’ images tab button.
2. The system fetches images uploaded by his friends from multiple

servers.
3. The system lists previews of the images on the friends’ images page.

Output state: The user is shown an overview of his friends’ up-
loaded images.

• Scenario UC5 View Image Detail
Input state: The user is shown an overview of his or his friend’s

uploaded images accordingly to UC3 or UC4.

1. The user clicks on any image preview element.
2. The system shows a full image in a new window with additional

information.

Output state: The user is shown a detail page for the selected
image.

44

2.5. Scenarios Definition

• Scenario UC6 Post a Comment
Input state: The user is shown an image accordingly to UC5.

1. The user types a comment into a comment text area.
2. The user clicks on an add comment button.
3. The system saves the comment to the server.

Output state: The system shows the new comment under the
related image.

• Scenario UC7 Like an Image
Input state: The user is shown an image accordingly to UC5.

1. The user clicks on a like button.
2. The system saves the like to the server.

Output state: The system shows a thumb and increases the like
counter under the related image.

• Scenario UC8 Choose an Application Folder
Input state: The user is logged in accordingly to UC10.

1. Folder selection initiation, either a) or b) apply.
a) The user initiates the folder change from a profile page by

clicking on a change folder button.
b) The system checks whether the application folder is set cor-

rectly.
i. If the application folder is set and valid, the use case ends

here.
2. The system shows a set application folder dialog.
3. The user types a desired folder into the application folder text area

and confirms it by clicking on a Save button.
4. The system creates the application folder on the server.
5. The system sets the application folder to the user’s profile docu-

ment on the server.

Output state: The system created and set the application folder
on the user’s server.

• Scenario UC9 View User’s Information
Input state: The user is logged in accordingly to UC10.

1. The user clicks on a profile tab button.

45

2. Analysis

2. The system fetches the user’s information from the server.
3. The system shows the user’s information.

Output state: The user is shown the settings page for his account.

• Scenario UC10 Login
Input state: The system is on a main page for non-authenticated

users.

1. The system shows a login screen.
2. Provider selection, either the case a) or b) applies.

a) The user clicks on a provider from a provider menu.
b) The user types a WebID URI into a WebID text area.

3. The user clicks on a login button.
4. The system redirects the user to his provider’s login page.
5. The user logs in at the provider (may type in a username and a

password, or via certificate, etc.).
6. The user is redirected back to the system to a friend’s images page.

Output state: The user is authenticated.

• Scenario UC11 Logout
Input state: The user is logged in accordingly to UC10.

1. The user clicks on a logout button.
2. The system logs the user out of the application.
3. The system is redirected to the main page for non-authenticated

users.

Output state: The user is logged out of the application.

2.6 Domain Model
In this section, we will describe key entities concerning the photo managing
application’s domain. Based on the requirements, the related use cases and
the use cases’ scenarios we identify following entities:

• a person,

• an image,

• a comment,

• a like.

In Figure 2.2, we can see relations among the said entities. Let us further
describe them in detail.

46

2.6. Domain Model

Person

- name

- profile image

- homepage

1

0..*

< hasFriend

- date of birth

0..*

1
refersTo \/

1

0..*

refersTo /\

Image

- content

- description

- date posted

1

0..*

published >

Comment

- content

- date posted

1

0..*

published >

Like

- date posted

1 0..*

published >

Figure 2.2: Domain Model: Relations among the entities.

47

2. Analysis

2.6.1 Person

A person entity represents any user of the application. The person is the owner
of his uploaded images, comments, or likes. The person is distinguished by a
WebID, which can provide additional details such as name, profile image, age,
homepage, etc. Persons can have other persons listed as friends.

2.6.2 Image

An image entity represents a single photo uploaded by a user to the ap-
plication. The image entity contains the photo itself, as well as additional
information such as date posted, description, etc. The image is tied to the
concrete person which uploaded it.

2.6.3 Comment

A comment is a short text referred to the image. Comments are posted by per-
sons. Each comment contains information about its content, date of posting,
etc.

2.6.4 Like

A like entity is a form of acknowledgment of enjoyment. The like is linked to
an image. Likes are posted by persons.

48

Chapter 3
Design

In this chapter, the user interface design is discussed, along with the task list
and graph, wireframes, and branding. Then follows a description of several
Solid framework libraries. Afterwards, for controlling access to individual
resources, access lists are introduced and discussed. Finally, the individual
application’s classes are defined and commented, as well as visualized in a
class diagram.

3.1 User Interface Design

In this section, the User Interface (UI) of the Pixolid application is discussed
and described. At first, a task list along with task groups and graph are
defined. Then, individual wireframes are shown and commented. Lastly, the
proposed branding of the Pixolid application is introduced.

3.1.1 Tasks

In this section, we identify key task groups and their tasks. Individual tasks
are then visualized in a task graph.

3.1.1.1 Task Groups

According to the use cases, which were previously defined in 2.4, we identify
the following groups for the tasks within the application:

• Landing Page,

• Friends’ Images,

• My Images,

• Upload Image,

49

3. Design

• Image Detail,

• User Information,

• Application Folder.

The Landing Page is responsible for the authentication process. The
Friends’ Images page shows images uploaded by the user’s friends and is shown
after the authentication. The My Images page is responsible for showing the
user’s images. The Upload Image page provides the functionality to upload
new images. The Image Detail shows an image in full size along with its de-
scription, comments, and likes. In User Information, it is possible to see the
user’s basic info. The Application Folder is responsible for setting the correct
application folder by a user.

3.1.1.2 Task List

For the task groups, the following tasks are defined:

• Landing Page,

– Register,
– Login,

• Friends’ Images,

– Show friends’ images,

• My Images,

– Show user’s images,

• Upload Image,

– Select an image,
– Add image description
– Set private/public sharing,

• Image Detail,

– Show an image in full size,
– Show image description,
– Show comments,
– Show a number of likes,
– Add a comment,

50

3.1. User Interface Design

– Give a like to the image,

• User Information,

– Show a user name,
– Show a user image,
– Show an application folder,
– Change the application folder,
– Show welcome information,
– Logout,

• Application Folder,

– Show an application folder selection,
– Select an application folder.

3.1.1.3 Task Graph

In Figure 3.1, we can see relations among the said tasks within the groups.

51

3. Design

Logout

Upload Image

Add Comment

User Information Show User
Infromation

Landing Page

Login

Register

Application Folder
Selection

 Select Application
Folder

Image Detail

Friends' Images

show detail

www

Give LikeShow Description

Show Image Show Comments Show Number of Likes

Select Image

Add Image Description

Set Sharing

My Images

Show Images

Figure 3.1: Task Graph: Relations among the tasks within groups.

52

3.1. User Interface Design

3.1.2 Wireframes

In this section, we can see individual wireframes which were created based on
the use cases (see 2.4) and the task list (see 3.1.1). In Table 3.1 we can see
coverage of the use cases by the individual wireframes.

use case
————
wireframe U

C
1

U
C
2

U
C
3

U
C
4

U
C
5

U
C
6

U
C
7

U
C
8

U
C
9

U
C
10

U
C
11

WF1 (fig. 3.2) X
WF2 (fig. 3.3) X
WF3 (fig. 3.4) X
WF4 (fig. 3.5) X
WF5 (fig. 3.6) X
WF6 (fig. 3.7) X
WF7 (fig. 3.8) X
WF8 (fig. 3.9) X
WF9 (fig. 3.10) X
WF10 (fig. 3.11) X
WF11 (fig. 3.12) X
WF12 (fig. 3.13) X
WF13 (fig. 3.14) X
WF14 (fig. 3.15) X
WF15 (fig. 3.16) X
WF16 (fig. 3.17) X
WF17 (fig. 3.18) X
WF18 (fig. 3.19) X X X
WF19 (fig. 3.20) X
WF20 (fig. 3.21) X

Table 3.1: Wireframe coverage for use cases

53

3. Design

https://www.pixolid.net/login

Pixolid

Register

Log in

Inrupt

Log In with WebId

Log In

Figure 3.2: Login screen with a provider.

https://www.pixolid.net/login

Pixolid

Register

Log in

Log In with Provider

Log In

WebID

Figure 3.3: Login screen with a WebID.

54

3.1. User Interface Design

https://www.provider.com/auth...

Provider

Provider login page....

Username:

Password:

Login

Figure 3.4: Login screen at the provider.

https://www.pixolid.net/friends/images

Pixolid

Friends' Images

Friends' Images My Images Upload Image Profile

No Images...

Application Folder

Folder name:

Application folder...

https://bob.example.org/

Choose an application folder

Save

Figure 3.5: The user is prompted to choose an application folder.

55

3. Design

https://www.pixolid.net/friends/images

Pixolid

Friends' Images My Images Upload Image Profile

Friends' Images

Figure 3.6: An overview of images posted by the user’s friends after login.

https://www.pixolid.net/friends/images

Pixolid

Logout

Friends' Images My Images Upload Image Profile

Friends' Images

Figure 3.7: Tab bar showing a logout option.

56

3.1. User Interface Design

https://www.pixolid.net/user/upload

Pixolid

Image description...

Image description:

Public:

Select Image

Upload Image

Friends' Images My Images Upload Image Profile

Figure 3.8: Upload image screen providing upload functionality.

https://www.pixolid.net/user/upload

Pixolid

Image description...

Image description:

Public:

Select Image

Upload Image

David Newman [x]

Select Image

Documents

Videos

Music

Images

image.jpg Select

Friends' Images My Images Upload Image Profile

Figure 3.9: Dialog shown during the image selection for upload.

57

3. Design

https://www.pixolid.net/user/upload

Pixolid

Image description...

Image description:

Public:

Select Image

Upload Image

Friends' Images My Images Upload Image Profile

Figure 3.10: An image preview is shown after the selection of the image.

https://www.pixolid.net/user/upload

Pixolid

Image description...

Image description:

Public:

Select Image

Upload Image

Select friends to share...

Friends' Images My Images Upload Image Profile

Figure 3.11: If the public sharing is off, the user can choose individual friends.

58

3.1. User Interface Design

https://www.pixolid.net/user/upload

Pixolid

Image description...

Image description:

Public:

Select Image

Upload Image

Select friends to share...

David Newman
Paul Friendly

Friends' Images My Images Upload Image Profile

Figure 3.12: The user picks multiple friends (or none) to share the image with.

https://www.pixolid.net/user/upload

Pixolid

Image description...

Image description:

Public:

Select Image

Upload Image

David Newman [x]

Friends' Images My Images Upload Image Profile

Figure 3.13: After the selection, the selected users are shown for sharing.

59

3. Design

https://www.pixolid.net/user/images

Pixolid

My Images

Friends' Images My Images Upload Image Profile

Figure 3.14: An overview of images posted by the user.

https://www.pixolid.net/friends/images

Pixolid

Friends' Images My Images Upload Image Profile

Image Detail

 Alex Novak 04/03/2019

My awesome picture!

Add
comment

Type in a comment...

Comments

5

Figure 3.15: After a click on any image, an image detail is shown.

60

3.1. User Interface Design

https://www.pixolid.net/friends/images

Pixolid

Friends' Images My Images Upload Image Profile

Image Detail

 Alex Novak 04/03/2019

My awesome picture!

Add
comment

What a nice photo!

Comments

5

Figure 3.16: The user can type in a comment related to the picture.

https://www.pixolid.net/friends/images

Pixolid

Friends' Images My Images Upload Image Profile

Image Detail

 Alex Novak 04/03/2019

My awesome picture!

Add
comment

Type in a comment...

Comments

 Fred Clark 09/03/2019

What a nice photo!

5

Figure 3.17: The comment is added by clicking on the Add comment button.

61

3. Design

https://www.pixolid.net/friends/images

Pixolid

Friends' Images My Images Upload Image Profile

Image Detail

 Alex Novak 04/03/2019

My awesome picture!

Add
comment

Type in a comment...

Comments

 Fred Clark 09/03/2019

What a nice photo!

6

Figure 3.18: The like has been added by clicking on the like button.

https://www.pixolid.net/user/profile

Pixolid

Welcome, John

Logout

Friends' Images My Images Upload Image Profile

Application Folder:

https://bob.example.org/pixolid/

Change Folder

Welcome to Pixolid

Figure 3.19: The profile shows info about the user, and the logout button.

62

3.1. User Interface Design

https://www.pixolid.net/user/profile

Pixolid

Welcome, John

Logout

Friends' Images My Images Upload Image Profile

Application Folder:

https://bob.example.org/pixolid/

Change Folder

Welcome to Pixolid

Application Folder

Folder name:

Application folder...

https://bob.example.org/

Choose an application folder

Save

Figure 3.20: Application folder change after the change folder button click.

https://www.pixolid.net/user/profile

Pixolid

Welcome, John

Logout

Friends' Images My Images Upload Image Profile

Application Folder:

https://bob.example.org/pixolid/

Change Folder

Welcome to Pixolid

Application Folder

Folder name:

pixolid

https://bob.example.org/

Choose an application folder

Save

Figure 3.21: The application folder can be typed into the text area and saved.

63

3. Design

3.1.3 Pixolid Branding

In this section, the proposed branding of the Pixolid application is introduced.
The first part showcases an application logo. In the second part, a favicon for
the website is unveiled. All of the proposed designs are created as a vector
graphic, ready to be used on the Web and in prints.

3.1.3.1 Pixolid Logo

Pixolid shall use a unified brand identity throughout the application. We
can see the logo design in Figure 3.22. Its color scheme is based on the
design recommendations mentioned in [30]. Specifically, the colors are listed
as follows:

• Royal Lavendar (#7C4DFF),

• Cerulean (#18A9E6),

• Deep Sky Blue (#01C9EA).

The idea behind the logo is to capture the connection between individual
pictures shared via Pixolid. The three circles are overlaying each other with
a minor opacity. The font which is used for the brand name is called "DejaVu
Sans". In Figure 3.22, we can also see the design of the logo in black and
white colors.

3.1.3.2 Pixolid Favicon

The favicon for the Web application is derived from the logo itself. It is using a
shortened PIX name with just one circle. That is due to filling the browser’s
favicon area, of which the dimensions typically are 32x32 pixels. The icon
design is shown in Figure 3.24 in various sizes.

3.2 Solid Framework Libraries Description

In this section, various Solid framework and linked data libraries are described.
The libraries mainly provide a way of accessing and modifying the RDF and
other data from HTTP resources. This includes the Solid POD storage. The
following libraries are further described:

• rdflib.js,

• LDflex,

• Solid File Client.

64

3.2. Solid Framework Libraries Description

Figure 3.22: The Pixolid logo in a colored design.

Figure 3.23: The Pixolid logo in a black and white design.

Figure 3.24: The Pixolid favicon design in various sizes.

65

3. Design

3.2.1 rdflib.js

Javascript RDF library for browsers and Node.js (rdflib.js)40 provides an easy
way to retrieve and modify RDF data in Javascript. The primary data access
point is a store. A store is an object representing the RDF graph. This graph
then can be queried via various data access functions such as [31]:

1 store.any(subject, predicate, object, graph);
2 store.match(subject, predicate, object, graph);

The any function takes an RDF Quad statement, and returns any single
node satisfying the given statement. The match function takes an RDF Quad
statement, and returns an array of statements matching the given statement.

Also, for the data retrieval from distant resources (which are available
through HTTP), there is a fetcher object. The fetcher is tied to the store, as
the store is passed to the constructor of the fetcher. The fetcher offers the
following main function [31]:

1 fetcher.load(resource);

This function takes as an argument a desired URL of the resource to be
fetched. The resource is then loaded into the store object.

To update local data with their online counterparts, there is a UpdateM-
anager (further referred as an updater). The updater is equipped with the
following main function [31]:

1 updater.update(deletions, insertions, callback);

The update function takes an array of deleting and inserting quad state-
ments, along with the callback function to be executed after the completion
of the update. The distant HTTP resource is then updated with the new
information [31].

3.2.2 LDflex

Linked Data flex (LDflex)41 provides an easy way to query RDF data. There
are various ways of accessing such data. The main entry point for data retrieval
is a data object. Through the data, it is possible to retrieve information about
a currently logged in user, for example [32]:

40https://github.com/linkeddata/rdflib.js/
41https://github.com/solid/query-ldflex

66

https://github.com/linkeddata/rdflib.js/
https://github.com/solid/query-ldflex

3.2. Solid Framework Libraries Description

1 data.user.name;
2 data.user.friends;

The first one gives us a user’s name, and the second one gives us an array
of the people listed as friends.

There is also a way to query any URL entry point:

1 data['https://example.org/tom#me'].name;

The above example shows how to get the name predicate of the document
on a specific URL.

If we wanted to get a specific predicate from the document, it could be
accomplished as follows [32]:

1 data.user['http://xmlns.com/foaf/0.1/name'];
2 data.user['foaf:name'];
3 data.user.foaf_name;
4 data.user.foaf$name;
5 data.user.name;

The above examples are mutually equivalent.

3.2.3 Solid File Client

The Solid File Client42 is a library which provides an easy way of manipulating
files and folders stored on a Solid POD. The library provides a high-level way
of file and folder management on a Solid POD, which makes it easy to use.
The main file manipulation functions are [33]:

1 createFile(url, content, contentType);
2 readFile(url);
3 updateFile(url, content, contentType);
4 deleteFile(url);
5 copyFile(oldUrl, newUrl);

The above functions are used for creating, reading, updating, deleting and
copying files on a Solid POD storage.

For folder operations there are following functions [33]:

42https://github.com/jeff-zucker/solid-file-client

67

https://github.com/jeff-zucker/solid-file-client

3. Design

1 createFolder(url);
2 readFolder(url);
3 deleteFolder(url);
4 copyFolder(oldUrl, newUrl);

The above functions enable creating, reading, deleting, and copying of
folders stored on a Solid POD.

3.3 Access Lists
In this section, an access management of resources stored in Solid is explained.
Firstly, a basic workflow of the access management in Solid is introduced.
Secondly, access list locations are specified. Thirdly, concrete examples of
access lists used by Solid are discussed.

3.3.1 Access Control Workflow

A principle of the resource access control in Solid is based on a specification
which is further described in [34]. Access to individual resources is dependant
on following crucial entities [35]:

• an agent,

• a mode.

Basically, an agent is an identifier of those who have access to a given
resource. The agent can be a user or an application identified by a WebID.

A mode is a type of access that a particular agent possesses over a resource.
Each mode represents an ability to read, write, append, or control a resource.

It is possible to describe as many authorizations (sets of agents and modes)
as desired. By doing this, it is possible to give multiple agents or groups
multiple permissions.

Such said entities are then recorded and preserved in access lists. An access
list is a file containing information about which agent owns which access rights
over a resource [35].

3.3.2 Access List Location

Each resource can obtain its specific access list. If the resource does not
have a specific access list, its access rights are then inherited from the parent
container. In this way, it is possible to mix specific access rights for individual
resources with default access rights for a particular directory [35].

Therefore, when a resource is accessed, a server first checks whether or not
the resource has a specific access list file. If it does, then the list is used to

68

3.3. Access Lists

determine the access rights. If it does not, the server recursively tries to find
an access list by looking up in the directory tree. Eventually, some node in
this structure has to have the access list [35] which is then used.

Let us say that we have a photo with the following URI.

http://bob.example.org/photos/dog.png

This resource could have its specific access rights described in the following
access list:

http://bob.example.org/photos/dog.png.acl

Alternatively, if the resource does not have a specific access list, an access
list from a parent container may be used. The parent container would have
its access list saved in the following file:

http://bob.example.org/photos/.acl

3.3.3 Access List Example

Access lists are specific RDF files in a Turtle or any other RDF serialization
format [35]. Let us say that a person called Bob owns the following resource:

http://bob.example.org/photos/dog.png

Moreover, the said resource would have its permissions set in a specific
access list located at:

http://bob.example.org/photos/dog.png.acl

The appropriate access list could look like this:

1 @prefix acl: <http://www.w3.org/ns/auth/acl#> .
2

3 <#owner> a acl:Authorization;
4 acl:agent <https://bob.example.org/profile/card#me>;
5 acl:accessTo <https://bob.example.org/photos/dog.png>;
6 acl:mode acl:Read, acl:Write, acl:Control.

In the example above, on the fourth line, the agent statement describes
Bob’s identity (his WebID). The fifth line states the resource to which the
access list specifies access. Line six contains individual modes for the given
agent. Specifically, it is permitted to read, write, and control the resource.

69

3. Design

3.4 Class Diagram

In this section, the main application classes are described, and captured in
the class diagram. The following classes resulted from the design details of
the Solid framework and the Pixolid application itself.

• SolidBackend,

• App,

• Person,

• Image,

• Comment,

• Like.

In Figure 3.25, we can see relations among the said classes. Let us further
describe them in detail.

3.4.1 SolidBackend

SolidBackend is a service class responsible for the data fetching and updating
from/to the Solid POD. The class will use the Javascript RDF library for
browsers and Node.js (rdflib.js) for the data exchange. Retrieved data are
going to be preserved in corresponding model classes.

3.4.2 App

App is a class representing the main application worker. The class uses the
SolidBackend class for data management. It is also a starting point of the UI
management.

3.4.3 Person

Person is a model class representing individual users of the application. The
class has to provide user’s WebID, name, and image.

3.4.4 Image

Image is a model class representing images uploaded via the application. The
class contains member variables such as a URL of the image itself, a URL of
the Turtle file describing the image, its description in a text form, an author
(Person), and a creation date timestamp.

70

3.4. Class Diagram

Person

- WebID: string

- name: string

- image: string

0..*
1 refersTo \/

1

0..*
refersTo /\

Image

- fileUrl: string

- imageUrl: string

- description: string

- createdAt: Date

1

0..*

published >

Comment

- content: string

- createdAt: Date

1

0..*

published >

Like

- createdAt: Date

1 0..*

published >

SolidBackend

- store: IndexedFormula

- fetcher: Fetcher

- updater: Updater

+ getValidAppFolder(string): string

+ createAppFolders(string, string): bool

+ getImages(string, string): Array<Image>

+ uploadImage(File, string, string, string): Image

+ getFriends(string): Array<Person>

+ getFriendsImages(string): Array<Images>

+ getComments(string): Array<Comment>

+ uploadComment(string, string, string, string): Comment

+ getLikes(string): Array<Like>

+ uploadLike(string, string, string): Comment

1
0..1

App

+ render(): void

0..1

0..*

1

0..*

< hasFriend

Figure 3.25: Class Diagram: Relations among the classes.

71

3. Design

3.4.5 Comment

Comment is a model class representing each comment given to a certain image.
The class contains member variables such as text content of the comment,
an author (Person), a URL of the commented image, and a creation date
timestamp.

3.4.6 Like

Like is a model class representing each like given to a specific image. The
class contains an author of the like (Person), a URL of the liked image, and
a creation date timestamp.

72

Chapter 4
Realization

In this chapter, the process of implementing the Pixolid application is de-
scribed. At first, we take a look at the technologies which were used and
applied in the making of the application. Secondly, the application’s basic
structure is discussed. Then follows a section with the description of the main
implementation focuses, which were inherited both from the analysis and the
design, along with the connections between the backend and the frontend.
Lastly, we take a look at the final version of the implemented Pixolid appli-
cation.

4.1 Used Technologies

In this section, the main technologies which were used in the process of creating
the application are described. The technologies namely are React and Solid
React SDK. Let us further outline their roles in the implementation.

4.1.1 React

React43 is a JavaScript library (or a framework), which can be used to de-
velop and build user interfaces. It is developed by Facebook and the React
community44.

React is used by a wide variety of developers who are creating modern Web
applications. Each application consists of React components, where every
component is responsible for a part of the application. Components control
their state, from which they are then rendered. Many community-created
reusable components exist, which make React a rich and powerful tool for
building applications.

43https://reactjs.org/
44https://github.com/facebook/react

73

https://reactjs.org/
https://github.com/facebook/react

4. Realization

4.1.2 Solid React SDK

Inrupt, the previously mentioned company behind the commercial efforts to
spread the Solid framework technologies, are developing a Software Develop-
ment Kit (SDK) aimed at creating applications based on the Solid framework.
As of writing this thesis, the work on the SDK is still in progress.

The SDK provides reusable React components to use in a Solid applica-
tion development [36]. The components are currently mainly focused on the
authorization of the user with his WebID to the Solid POD.

The SDK also offers a Solid React Application Generator45, which is based
on the Create React App46 by Facebook. The generator creates a React
project, similarly to Facebook’s version. The main difference here is that
the SDK’s generator creates an app which is already equipped with the Solid
authorization components and applied styling according to the design guide-
lines mentioned in [30]. It encourages the developers to begin developing
applications on top of the functional Solid base application built on React.

The SDK also includes the best practices for the application development
regarding Solid.

4.2 Application’s Structure

In Figure 4.1 we can see the application’s main directory structure, along with
its basic description. Let us further inspect the inner directory structure of
the src folder, describing the contents of some of its key directories.

In components, we can find standalone components such as components
for uploading images, showing images, or showing the image detail. The Con-
tainers directory contains individual container pages which are bound to key
application’s routes, such as a page for showing friends’ images, uploading im-
ages, or showing profile information. In models, there are classes used for en-
capsulating the application’s model, such classes for images, comments, likes,
and persons. The services folder contains the service classes providing the
data such as the SolidBackend class, which retrieves and updates the data on
the Solid POD.

For detailed information about how to obtain and run the development
version of the application, please refer to Appendix B.

4.3 Implementation Focuses

In this section, the main implementation focuses are introduced and com-
mented. At first, let us describe the connection between the frontend and the
backend of the application. Secondly, we take a look at how the setting of

45https://github.com/inrupt-inc/generator-solid-react
46https://github.com/facebook/create-react-app

74

https://github.com/inrupt-inc/generator-solid-react
https://github.com/facebook/create-react-app

4.3. Implementation Focuses

pixolid
config...configuration
public static resources of the web app
scripts...........................scripts to start and build the app
src..source code of the app

components...........main components of which the app consists
containers..... containers making up individual pages of the app
contexts...............................RDF contexts definitions
hocs higher order components
layouts public and private layouts of the app
models..model classes
services...service classes
utils..util classes

test
__mockData__.................................testing mock data

package.jsondependencies and application infromation

Figure 4.1: Pixolid’s directory structure

the application’s folder was handled. Then we describe uploading new images
to a user’s POD. After that, let us discuss showing user’s images as well as
friends’ images. In addition to that, we comment on the implementation of
showing the image detail. After that, we take a look at adding likes and com-
ments to images. Second to last, a user logging in and out of the application
is described. Last but not least, the design and styling of the application are
described.

4.3.1 Backend and Frontend Connection

The SolidBackend service class is responsible for retrieving data from Solid
PODs, and uploading new data to Solid PODs. The class itself offers various
functions for getting images, persons, comments, likes from multiple Solid
POD sources. There are also functions for creating new application’s resources
(images, comments, likes, etc.) while handling the later discoverability of the
resources. SolidBackend also offers a way of specifying and giving access rights
to individual images. The interface as mentioned earlier is then called from
within the React frontend components.

The React components are managing their state, from which the data is
rendered into the User Interface (UI). The components also handle user input,
interaction, and trigger calling of the SolidBackend’s functions.

75

4. Realization

4.3.2 Choosing the Application Folder

When a user opens the Pixolid application for the first time, it prompts him
to choose a location on his Solid POD storage, where the application’s data
will be stored. This task can be divided into the following tasks:

• detecting the current location of the application folder,

• validating the structure of the application folder,

• prompting the user to enter a location of the application folder,

• creating the application folder,

• registering a record of the new location of the application folder,

• propagating the application folder.

This set of tasks is imminent across frontend and backend as well. For each
task, we will explain implementation details and a sequence of events which
occur during the said task. Let us further cover the above-specified tasks in
detail.

4.3.2.1 Locating the Application Folder

The discovery of the application folder is achieved by looking at the user’s pro-
file document, which is tied to his WebID. User’s profile document is retrieved
by dereferencing his WebID. The RDF profile document is then searched for
a triple stating the location of the user’s timeline. The triple consists of the
user’s WebID (subject), the folder’s location (object), and the following time-
line predicate:

http://www.w3.org/ns/solid/terms#timeline

Next follows the example of a profile document containing a specified appli-
cation folder (note: a full profile document would typically contain additional
triples):

1 @prefix : <#>.
2 @prefix solid: <http://www.w3.org/ns/solid/terms#>.
3 @prefix pix: </public/pixolid/>.
4

5 :me solid:timeline pix:.

If the profile document does not contain any information about the loca-
tion of the application folder, then it needs to be specified by the user and

76

4.3. Implementation Focuses

created by the application (will be explained later). Otherwise, the retrieved
application folder needs to get validated. The validation process is explained
next.

4.3.2.2 Validating the Application Folder

After the application folder is located, its content structure needs to get vali-
dated. The application folder gets dereferenced, which is achieved by getting
the container’s RDF document. This document contains information about
the container’s content. The document is then searched for child containers
which contain individual images, comments, and likes.

If the application folder contains said containers, it is considered to be
a valid application folder and the application is then able to continue to run
without further actions. Otherwise, the application folder needs to be specified
by the user, which is explained next.

4.3.2.3 Specifying the Application Folder

When the application folder is not specified or considered as valid, the user
needs to be prompted to type in a desired location of the folder. This prompt
is shown in the form of a modal window, which overlays the current content
of the parent page. The component responsible for this behavior is the Fol-
derModal component (pixolid/src/components/FolderModal/). As a base
component to show a window in a modal form, a reusable React component is
used, which is called react-responsive-modal47 by Léo Pradel. This component
allows us to build further specific UI responsible for the desired functionality
of choosing the application folder.

The modal shows the main storage root folder which is derived from the
user’s WebID. Then, there is a text area, where the user can type in any
further directory structure, which in concatenation with the main root folder
will be used as an application folder. The folder name then gets validated. A
folder name can only consist of alphanumeric characters of non-zero length,
which can be divided, prefixed, or suffixed by slashes. It is allowed to specify
subdirectories as well.

If the folder name is not valid, the user is made aware of this fact by
underlining the text area to red, and by an alert stating to choose a correct
folder structure.

Otherwise, if the folder structure is correct, then the user can confirm it,
and the folders are created in a way which is described next.

47https://www.npmjs.com/package/react-responsive-modal

77

https://www.npmjs.com/package/react-responsive-modal

4. Realization

4.3.2.4 Creating the Application Folder

The correctly specified folder is created, along with the desired subfolder struc-
ture. For the process of creating the folders, the createFolder function from
the solid-file-client is used, which was described in 3.2.3. If any of the folders
already existed, they would stay untouched.

With the creation of the application folder, it is needed to make sure that
other users can read the contents of the folder. We create an access list which
permits to read the contents of the application folder (while it is possible to
select which content can be read or not later in uploading). This access list is
created in the form of triple statements, which are then passed to the rdflib.js’
store for further handling. Let us consider the following RDF prefixes:

1 @prefix : <#>.
2 @prefix acl: <http://www.w3.org/ns/auth/acl#>.
3 @prefix pix: <./>.
4 @prefix card: </profile/card#>.
5 @prefix foaf: <http://xmlns.com/foaf/0.1/>.

The important one here is the following access list vocabulary (line 2):

http://www.w3.org/ns/auth/acl#

The access list then looks like this:

1 :owner
2 a acl:Authorization;
3 acl:accessTo pix:;
4 acl:agent card:me;
5 acl:defaultForNew pix:;
6 acl:mode acl:Control, acl:Read, acl:Write.
7 :public
8 a acl:Authorization;
9 acl:accessTo pix:;

10 acl:agentClass foaf:Agent;
11 acl:defaultForNew pix:;
12 acl:mode acl:Read.

In the above access list, we can see that the owner has full control over the
folder including reading and writing, while the public access is restricted to
read-only mode. The access list is then created using the updateFile function,
which was specified in 3.2.3.

78

4.3. Implementation Focuses

4.3.2.5 Registering the Application Folder

After the creation of the folder, it needs to get registered into the user’s
profile document. We simply dereference the document using the rdflib.js
(see 3.2.1). Then, we update the RDF document by deleting the previous
application folder triple and inserting the new one. After its updating, the
profile document (with additional profile information) could look like:

1 @prefix : <#>.
2 @prefix solid: <http://www.w3.org/ns/solid/terms#>.
3 @prefix fold: </my/new/folder/>.
4

5 :me solid:timeline fold:.

4.3.2.6 Propagating the Application Folder

When the process of detecting or setting the application folder is finished, the
parent React component then saves the location to its state. Other compo-
nents are then able to use it as a starting point to fetch and update additional
data.

4.3.3 Uploading Images

When a user wants to upload a new image, he can start the process on the up-
load image page. The page component is called Upload Image (pixolid/src/
containers/UploadImage/). This page contains the Image Uploader compo-
nent (pixolid/src/components/ImageUploader/), which is responsible for
the process of uploading new images. This component handles the responsi-
bility for:

• setting an image description,

• selecting an image,

• setting access rights,

• uploading the image.

Let us further describe each task in detail.

4.3.3.1 Setting an Image Description

The user can type in a description of the image into the image description
text area. The description text is not mandatory. The text is being preserved
in the parent’s component state, as the user types.

79

4. Realization

4.3.3.2 Selecting an Image

The user can select an image by clicking on the select image button. This
button opens up a native file dialog window, where the user selects the desired
image file.

To achieve showing the dialog window, a reusable React component is
used, which is called react-file-reader48 by Travis Mathis. This component
allows us to specify allowed file types (in our case images), and get selected
files in a HTML5 FileList49 and in Base64 50. The FileList is important for
later uploading of the image, while the Base64 representation can be used to
preview the image on the page directly.

The selected image is then preserved in the parent’s component state and
is rendered on the upload image page as a preview.

4.3.3.3 Setting Access Rights

If the user wants to specify image access rights, there is a toggle input with
its two states. The toggle is labeled as Public. By default, the toggle is in an
on state (set to true). The user can turn the toggle off and on by clicking on
it.

Being toggled on denotes that the currently uploaded image will have pub-
lic access rights set. That means the image will be discoverable and available
to see by anyone who can access it. In an off state, the currently uploaded
image will have private access rights set. By doing that, the image will be
discoverable and available only to the further specified group of users (which
are identifiable by an WebID).

When the access rights are set to private, a user selection select input
appears. As a base component for this input, a reusable React component is
used, which is called react-select51 by Jed Watson. This component allows us
to give the user the ability to choose from multiple given options. In our user
selection input, the user can select multiple users which will be allowed to see
the uploaded image. The users shown in the select input menu are the user’s
friends, which are fetched from the user’s profile document. This is done by
dereferencing the profile document via rdflib.js’ store, and searching for the
following statements:

http://xmlns.com/foaf/0.1/#knows

The user’s friends can be listed in an RDF profile document in the following
way:

48https://www.npmjs.com/package/react-file-reader
49https://developer.mozilla.org/en-US/docs/Web/API/FileList
50https://tools.ietf.org/html/rfc4648
51https://react-select.com/

80

https://www.npmjs.com/package/react-file-reader
https://developer.mozilla.org/en-US/docs/Web/API/FileList
https://tools.ietf.org/html/rfc4648
https://react-select.com/

4.3. Implementation Focuses

1 @prefix : <#>.
2 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
3 @prefix bob: <https://bob.example.org/profile/card#>.
4 @prefix tom: <https://tom.example.org/profile/card#>.
5

6 :me
7 foaf:knows bob:me;
8 foaf:knows tom:me.

The above statements say that the user, who is the owner of the pro-
file document mentioned above, knows two people (Bob and Tom), who are
identified by their WebIDs.

If the user wishes, it is possible not to select any users as well. The image
is then accessible only to the user who uploaded the image. Otherwise, the
selected users are then preserved into the parent’s component state.

After the user specified suitable access rights, it is needed to create appro-
priate access lists. When the image is public, the following access list is then
created through the rdflib.js statements:

1 @prefix : <#>.
2 @prefix acl: <http://www.w3.org/ns/auth/acl#>.
3 @prefix card: </profile/card#>.
4 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
5

6 :owner
7 a acl:Authorization;
8 acl:accessTo <1553894090984.8718.ttl>;
9 acl:agent card:me;

10 acl:mode acl:Control, acl:Read, acl:Write.
11 :public
12 a acl:Authorization;
13 acl:accessTo <1553894090984.8718.ttl>;
14 acl:agentClass foaf:Agent;
15 acl:mode acl:Append, acl:Read.

The above access list says that the owner of the image has full control
rights, whereas public access is in the mode of reading and appending. When
the image is set to be private, with a non-empty set of allowed users, the
following access list is then created:

1 @prefix : <#>.
2 @prefix acl: <http://www.w3.org/ns/auth/acl#>.

81

4. Realization

3 @prefix card: </profile/card#>.
4 @prefix bob: <https://bob.example.org/profile/card#>.
5 @prefix tom: <https://tom.example.org/profile/card#>.
6

7 :owner
8 a acl:Authorization;
9 acl:accessTo <1553894090984.8718.ttl>;

10 acl:agent card:me;
11 acl:mode acl:Control, acl:Read, acl:Write.
12 <>
13 a acl:Authorization;
14 acl:accessTo <1553894090984.8718.ttl>;
15 acl:agent bob:me;
16 acl:mode acl:Append, acl:Read.
17 <>
18 a acl:Authorization;
19 acl:accessTo <1553894090984.8718.ttl>;
20 acl:agent tom:me;
21 acl:mode acl:Append, acl:Read.

The above example of the access list shows how the owner once again has
the full access rights, while selected individual users (Bob and Tom), possess
read and append access rights. Note that no other user will be allowed access
to the objected image.

If the picture were meant to be entirely private, the authorization nodes
for Bob and Tom (lines 12-16 and 17-21) would be non-existing. The access
list would not change in any other way.

4.3.3.4 Uploading the Image

Once the image file is set, along with its description and access rights, it is
ready to get uploaded to the user’s POD by clicking on the upload image but-
ton. The actual image file (in an image file format such as Portable Network
Graphics (PNG) or Joint Photographic Experts Group (JPEG)) is uploaded
via the createFile function from the solid-file-client. In addition to that, an
appropriate access file is created as well, with read-only rights for the selected
group of users.

With the image file uploaded, it is needed to create an RDF image file,
which describes the said image. In this file, we store information about the
image location (URL), description, timestamp of creating, and the WebID of
the author. Turtle content of the file is created with the rdflib.js’ statements,
and then uploaded as a file via the createFile function from the solid-file-client.
This file utilizes the following structure in RDF Turtle:

82

4.3. Implementation Focuses

1 @prefix : <#>.
2 @prefix ns: <http://rdfs.org/sioc/ns#>.
3 @prefix terms: <http://purl.org/dc/terms/>.
4 @prefix XML: <http://www.w3.org/2001/XMLSchema#>.
5 @prefix card: </profile/card#>.
6 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
7

8 <>
9 a ns:Post;

10 terms:created "2019-01-15T21:14:51.493Z"^^XML:dateTime;
11 terms:creator card:me;
12 terms:description "Enjoying a wonderful day.";
13 foaf:depiction <1553894090984.8718.jpeg>.

The above example states that a particular user (line 11), created an image
(line 13), with a given description (line 12) at the said time (line 10). Along
with that, the access lists specified in the previous section are uploaded to the
POD. After the upload process is complete, the user can continue by uploading
another image.

4.3.4 Showing Images

When a user wants to show either his or his friends’ uploaded images, he
starts on the my images or friends’ images page. Those pages are container
components, which use a same child component called Images (pixolid/src/
components/Images/). This component is responsible for showing a given
set of images in a grid layout. The MyImages (pixolid/src/containers/
MyImages/) and FriendsImages (pixolid/src/containers/FriendsImages/)
components fetch appropriate image data into their states, and render them
via the Images child component.

The process of showing images consists of the following tasks:

• fetching images,

• showing image previews.

At first, let us specify the fetching process for the user’s images, followed
by the friends’ images. After that, we describe the process of showing the
image previews.

4.3.4.1 Fetching User’s Images

When we want to fetch the user’s images, we start with his WebID. The con-
tainer components also posses the application folder location. The images

83

4. Realization

subdirectory of the application folder gets searched for the images. This pro-
cess is done by first dereferencing the images container document via rdflib.js.
Image files then get individually dereferenced, and RDF triples parsed into
the Image model class. The images then get sorted by the creation timestamp
in the order from latest to oldest.

4.3.4.2 Fetching Friends’ Images

When we want to fetch the images posted by the user’s friends, we start with
the list of his friends’ WebIDs. The process of getting the user’s friends was
described in 4.3.3.3. Individual friends’ WebIDs are checked for the application
folder. If it exists, for each friend we further continue by searching for images
as in 4.3.4.1.

Let us assume that the owner of a particular image set private access rights
to specific users. If the currently signed in user is not one of them (meaning
that the image cannot be accessed by the current user), the image is therefore
not included in the retrieved images set. Only the accessible images for the
current user are included in the final set of fetched images. The images from
all of the friends are then sorted by the creation timestamp in the order from
latest to oldest.

4.3.4.3 Showing Image Previews

When individual images are fetched, it is needed to display them. The Images
component is responsible for this task. The images are passed from the parent
component and displayed in a grid layout. For the purpose of creating a
responsive grid, a reusable library is used, which is called flexboxgrid52 by
Kristofer Joseph. It enables usage of the well-known col-xx-* classes, where
xx stands for a screen size (xs, sm, md, lg), and * stands for how much of the
screen should the element take up (numbers range from 1 to 12, meaning the
1/12 of the screen, up to the 12/12 of the screen).

The individual grid items are image previews. Each image preview consists
of a label stating the creator’s name, and the image itself, which is a clickable
circle image. The image preview items then fill up the available screen.

4.3.5 Showing a Detail of the Image

When a user clicks on any of the image preview items on the user images or
friends’ images page, an image detail modal window of the image is shown.
As a base component for the purposes of showing a window in a modal form, a
reusable React component is used, which is called react-responsive-modal53 by

52http://flexboxgrid.com/
53https://www.npmjs.com/package/react-responsive-modal

84

http://flexboxgrid.com/
https://www.npmjs.com/package/react-responsive-modal

4.3. Implementation Focuses

Léo Pradel. A component responsible for showing the image detail is the Im-
ageDetailModal component (pixolid/src/components/ImageDetailModal/).
The image to be shown along with the creator gets passed to this component
from the parent container component. This component also triggers fetching
comments and likes related to the given image, which are then bound to the
component state.

The process of showing a detail of the image can be divided into the
following tasks:

• showing image information,

• fetching likes,

• showing likes,

• fetching comments,

• showing comments.

Let us further describe each task in detail.

4.3.5.1 Showing Image Information

All of the needed information about the image is already obtained from the
parent container component. The primary source of information is an instance
of the Image class. Also, the image creator is in an instance of the class Person.

In a detail modal window, the most important thing is to show the image
in full size. The image takes up space according to the available screen size.
It also takes into consideration to have enough space to show the description
and the comment section.

The description box is located beneath the image. On the left side, it
contains information about the creator, namely his name and profile image.
On the right side, there is a date when the image was created. Right below
the date, there is a like button, which will be described in the next section.
Below all of that, there is a text of the image description.

4.3.5.2 Fetching Likes

To be able to show a number of likes a given image received, we need to fetch
individual like statements first. Our starting point here is the URL of the
image RDF file, which is in the instance of the Image model class. The file
gets dereferenced by the rdflib.js’ store. After that, the file is searched for like
statements. An example of such like statement is the following:

85

4. Realization

1 @prefix : <#>.
2 @prefix as: <https://www.w3.org/ns/activitystreams#>.
3 @prefix bob: <https://bob.example.org/public/pixolid/likes/>.
4

5 bob:1553543249465.92.ttl as:type as:Like.

We could find multiple above-mentioned statements among others in the
current image RDF file. This statement (line 5) tells us, that under the given
URL we can find a like from another user (located in a different Solid POD
storage). Each individual like statements are then dereferenced once again.
The dereferenced like statement (in the other user’s POD) looks like this:

1 @prefix : <#>.
2 @prefix as: <https://www.w3.org/ns/activitystreams#>.
3 @prefix card: </profile/card#>.
4 @prefix XML: <http://www.w3.org/2001/XMLSchema#>.
5 @prefix tom: <https://tom.example.org/public/pixolid/images/>.
6

7 <>
8 as:actor card:me;
9 as:object tom:1553356280581.4055.ttl;

10 as:published "2019-01-25T19:47:29.465Z"^^XML:dateTime;
11 as:type as:Like.

The above statements tell us, that a given user (line 8), liked (line 11) an
image (line 9), at a given time (line 10). All of these statements get parsed
into an instance of the Like model class. All the likes then get returned for
further actions.

4.3.5.3 Showing Likes

Fetched likes then get saved into the state of the ImageDetailModal compo-
nent. The like button has a like counter tied to it. The number of fetched
likes gets passed to the counter, and then rendered.

Also, it is needed to detect whether or not the currently signed in user
has already liked the image. That is achieved by filtering the set of likes by
the creator’s WebID. If the user’s WebID is found among the likes, we know
that he liked the image already. Otherwise we conclude that he has not liked
it yet. Depending on the like status, the like button is rendered either in an
outlined (not liked yet), or in a solid (liked already) visual variant.

86

4.3. Implementation Focuses

4.3.5.4 Fetching Comments

To be able to show comments related to the image, it is needed to fetch them
first. Once again we start with the URL of the image RDF file, which is in
the instance of the Image class. The file gets dereferenced by the rdflib.js’
store. Afterwards, the file is searched for the individual comment statements.
A comment statement contained in the RDF image file looks like this:

1 @prefix : <#>.
2 @prefix as: <https://www.w3.org/ns/activitystreams#>.
3 @prefix bob: <https://bob.example.org/public/pixolid/comments/>.
4

5 bob:1553543310112.2375.ttl as:type as:Note.

Such statements can be found among others in the RDF image file. The
statement tells us that under the given URL we can locate a comment (which
can be in another Solid POD storage) related to the current image.

All of those comment statements get dereferenced again. A dereferenced
comment file then can look like this:

1 @prefix : <#>.
2 @prefix as: <https://www.w3.org/ns/activitystreams#>.
3 @prefix card: </profile/card#>.
4 @prefix XML: <http://www.w3.org/2001/XMLSchema#>.
5 @prefix tom: <https://tom.example.org/public/pixolid/images/>.
6

7 <>
8 as:actor card:me;
9 as:content "What a nice picture, man!";

10 as:inReplyTo tom:1553356280581.4055.ttl;
11 as:published "2019-01-26T19:47:29.465Z"^^XML:dateTime;
12 as:type as:Note.

The above statements say that a given user (line 8), commented (line
12) on the image (line 10), with a certain message (line 9), at a given time
(line 11). Those statements then get parsed into an instance of the Comment
model class. Retrieved comments are then sorted according to the creation
timestamp in the order from latest to oldest, and returned for further actions.

Furthermore, after the comments are fetched, it is needed to fetch creators
of the comments, in order to be able to show their names and profile images.
To achieve this, a set of comments gets mapped onto the unique creators’
WebIDs. Those WebIDs get dereferenced, essentially retrieving the users’
profile documents. In those documents, we are interested in the following
statements:

87

4. Realization

1 @prefix : <#>.
2 @prefix ns: <http://www.w3.org/2006/vcard/ns#>.
3 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
4

5 :me
6 ns:hasPhoto <profile.jpg>;
7 foaf:img <profile.jpg>;
8 foaf:name "Bob".

The above statements mean that the owner of the profile document has a
profile photo (line 6 or line 7) and is named Bob (line 8). Those statements get
parsed into an instance of the Person model class. The comments’ creators
then get returned for further use.

4.3.5.5 Showing Comments

Fetched comments along with their creators are saved in the ImageDetailModal
component’s state. For each comment, it is needed to create a comment box
containing the comment’s data.

A single comment contains the creator’s name and profile image. This
information can be retrieved from the appropriate Person instance for a given
comment. To be able to get such instance, all creators are stored in a key-
value map, which is accessible via keys made from creators’ WebIDs. From
the Image instance, it is possible to get the creator’s WebID, and then use it
to get the appropriate Person instance of the creator.

On the right side of the comment box, there is a comment creation times-
tamp, which is retrieved from the comment instance.

The comment text is then rendered below as last.

4.3.6 Adding Likes to Images

Let us assume that a user wants to give a like to an image. This process is
handled by the ImageDetailModal component, and can be divided into the
following tasks:

• initiation of the like,

• uploading the like.

Let us further describe the tasks in detail.

4.3.6.1 Initiation of the Like

A user can start the intention of liking an image by clicking on the like button
located in the image detail. If the user has not liked the image yet, the button

88

4.3. Implementation Focuses

is clickable, and the like is uploaded in a way described in the next section.
If the user already liked the image, the button is not clickable and cannot be
liked again.

4.3.6.2 Uploading the Like

A like consists of the creator, the like target (the URL of the liked image),
and the timestamp of making the action. The appropriate RDF statements
get created via the rdflib.js’ store. An example of such like statements was
mentioned in 4.3.5.2. The like is then uploaded to the creator’s Solid POD
via the solid-file-client’s createFile function. The like itself is created in a way
to be accessible publicly.

Along with the like statement itself, it is needed to somehow mention it in
the image file that is being liked. For this purpose, a statement mentioned in
4.3.5.2 is created and inserted into the image file via rdflib.js’ updater.

The like is then added into the ImageDetailModel component’s state, caus-
ing re-rendering of the like button as already liked.

4.3.7 Adding Comments to Images

Let us say that a user wants to comment on an image. This process is handled
by the ImageDetailModal component, and separated into the following tasks:

• setting the comment content,

• uploading the comment.

Let us further describe individual tasks in detail.

4.3.7.1 Setting the Comment Content

When a user wants to type a comment to a given image, an add comment
box is the starting point of this action. The box is located below all listed
comments. The user can start typing inside the text area, and the comment
text gets preserved in the ImageDetailModal component’s state.

4.3.7.2 Uploading the Comment

A comment entity consists of the creator, the comment content (text), the
target it replies to (the URL of the commented image), and the timestamp
of creation. For the comment entity, equivalent RDF statements need to be
created. This is done by using the rdflib.js’ store. How those statements
look like was mentioned in 4.3.5.4. After the statements are created, they
are uploaded to the creator’s Solid POD via the solid-file-client’s createFile
function. The comment itself is created in a way to be accessible publicly.

89

4. Realization

Just as with the likes, it is needed to register the comment in the image file
that is being commented on. For this purpose, a statement which says that a
particular comment is at a certain URL (see 4.3.5.4) is created and inserted
into the image file via rdflib.js’ updater.

After the creation of the comment is complete, it is added into the Im-
ageDetailModel component’s state. That causes the component to render the
new comment among others.

4.3.8 Login and Logout

The application is required to allow users to sign in via their WebIDs. The
process of logging users in is handled by the Login component (pixolid/src/
components/Login/). This component was contained in and created by the
Solid React Application Generator54. It contains ProviderLogin, which is a
reusable component from Solid React Components Library55

The user selects a login provider, gets redirected towards the provider’s
login page, and after a successful authentication is redirected back to the
application.

To access the currently signed in user’s WebID throughout the application,
Solid React Components Library provides a wrapping Higher Order Compo-
nent (HOC) called withWebId. This component is used to wrap individual
components, which get the currently signed in user’s WebID as their compo-
nent’s prop (component’s argument). The WebID is then accessed within the
component by calling:

1 this.props.webId;

For logging the user out of the application, in Solid React Components
Library, there is a component called LogoutButton. This component handles
the logging out of the application.

4.3.9 Application’s Design

In this section, we further describe the styling of the React components.
Throughout the application, the styling based on the design recommendations
mentioned in [30], is used.

The base from the Solid React SDK is using styled components56 to style
the application. Styled components enable creating components with custom
Cascading Style Sheets (CSS) styles, and use them directly within the React
application.

54https://github.com/inrupt-inc/generator-solid-react
55https://github.com/inrupt-inc/solid-react-components
56https://www.styled-components.com/

90

https://github.com/inrupt-inc/generator-solid-react
https://github.com/inrupt-inc/solid-react-components
https://www.styled-components.com/

4.4. Final Version of the Pixolid Application

Figure 4.2: Login screen with a provider.

Main application pages such as user images, as well as individual image
previews, comments, and others, were also styled with the custom styled com-
ponents.

4.4 Final Version of the Pixolid Application
In this section, it is showcased how the application looks in its final version of
the implementation.

91

4. Realization

Figure 4.3: Login screen with a WebID.

Figure 4.4: Login screen at the provider.

92

4.4. Final Version of the Pixolid Application

Figure 4.5: The user is prompted to choose an application folder.

Figure 4.6: An overview of the images posted by the user’s friends after login.

93

4. Realization

Figure 4.7: Tab bar showing a logout option.

Figure 4.8: Upload image screen providing upload.

94

4.4. Final Version of the Pixolid Application

Figure 4.9: Dialog shown during image selection for upload.

Figure 4.10: An image preview is shown after the selection of the image.

95

4. Realization

Figure 4.11: If the public sharing is off, the user can choose individual friends.

Figure 4.12: The user picks multiple friends (or none) to share the image with.

96

4.4. Final Version of the Pixolid Application

Figure 4.13: After the selection, selected users are shown for sharing.

Figure 4.14: An overview of the images posted by the user.

97

4. Realization

Figure 4.15: After the click on any image, the image detail is shown.

Figure 4.16: The user can type in a comment related to the picture.

98

4.4. Final Version of the Pixolid Application

Figure 4.17: The comment is added by clicking on the Add comment button.

Figure 4.18: The like has been added by clicking on the like button.

99

4. Realization

Figure 4.19: The profile shows info about the user, and the logout button.

Figure 4.20: Application folder change after change folder button click.

100

Chapter 5
Testing

This chapter describes the used methods of testing the application. Firstly,
testing scenarios for alpha testing are defined. Secondly, the process of creating
and executing automated tests is discussed.

5.1 Testing Scenarios
In this section, we introduce testing scenarios which are meant to be used
in alpha testing by testers. These scenarios were used to ensure the correct
expected functionality of the application.

5.1.1 Log In

The login testing scenario checks whether the user can successfully log into
the application.

5.1.1.1 Prerequisites

• A Web browser (Chrome, Firefox,. . .) launched.

5.1.1.2 Steps

1. Open a following website: http://localhost:3000.

2. Click on the Select Provider ID button, click on the Inrupt item.

3. Click on the Login button.

4. Ensure that the application gets redirected towards the following website
which starts with: https://inrupt.net/login?. . .

5. Double click the username text area and select the shown pre-entered
username.

101

5. Testing

6. Click on the Log In button.

5.1.1.3 Desired Outcome

• Redirect towards: http://localhost:3000/friends/images.

• The friends’ images page is displayed.

5.1.2 Choose an Application Folder

This testing scenario checks whether the user can successfully choose an ap-
plication folder.

5.1.2.1 Prerequisites

• Being logged in for the first time as in 5.1.1.

5.1.2.2 Steps

1. Ensure that the choose an application folder modal appears.

2. Click into the folder name text area, and type public/pixolid.

3. Click on the Save button.

5.1.2.3 Desired Outcome

• The modal disappears.

• The current page is: http://localhost:3000/friends/images.

5.1.3 Upload an Image

This testing scenario checks whether the user can successfully upload a new
image.

5.1.3.1 Prerequisites

• Set application folder as in 5.1.2.

5.1.3.2 Steps

1. Click on the Upload Image tab button.

2. Ensure that you get redirected towards a following website: http://
localhost:3000/user/upload.

3. Click into the image description text area, and type my dog.

102

5.1. Testing Scenarios

4. Click on the select image button.

5. Select a dog.png image, and click on the Open button.

6. Ensure that the selected image is shown on the page.

7. Click on the upload image button.

8. Ensure that the image uploaded notification occurs.

9. Click on the my images tab button.

10. Ensure that you get redirected towards a following website: http://
localhost:3000/user/images.

5.1.3.3 Desired Outcome

• The uploaded image is among the previews of uploaded images.

5.1.4 View User’s Images

This testing scenario checks whether the user can successfully view his up-
loaded images.

5.1.4.1 Prerequisites

• Set application folder as in 5.1.2.

5.1.4.2 Steps

1. Click on the my images tab button.

5.1.4.3 Desired Outcome

• Redirect towards: http://localhost:3000/user/images.

• Previews of the pre-posted user’s images are shown.

5.1.5 View Friends’ Images

This testing scenario checks whether the user can successfully view his friends’
uploaded images.

5.1.5.1 Prerequisites

• Set application folder as in 5.1.2.

103

5. Testing

5.1.5.2 Steps

1. Click on the friends’ images tab button.

5.1.5.3 Desired Outcome

• Redirect towards: http://localhost:3000/friends/images.

• Previews of the pre-posted friends’ images are shown.

5.1.6 View an Image Detail

This testing scenario checks whether the user can successfully view an image
detail.

5.1.6.1 Prerequisites

• The my images page shown as in 5.1.4.

5.1.6.2 Steps

1. Click on the first listed preview of the image.

2. Click on the X button.

5.1.6.3 Desired Outcome

• An image preview modal is shown.

• An image description is shown with the following text: my dog.

• A like count is shown with the count of 0.

• A comment section is shown with no comments.

• The image detail modal is closed.

5.1.7 Give a Like

This testing scenario checks whether the user can successfully give a like to
the desired image.

5.1.7.1 Prerequisites

• Image detail modal is shown as in 5.1.6.

5.1.7.2 Steps

1. Click on the Like button.

104

5.1. Testing Scenarios

5.1.7.3 Desired Outcome

• An image liked notification is shown.

• The like count has changed from 0 to 1.

5.1.8 Add a Comment

This testing scenario checks whether the user can successfully add a comment
to the desired image.

5.1.8.1 Prerequisites

• Image detail modal is shown as in 5.1.6.

5.1.8.2 Steps

1. Click into the type a comment text area, and type nice image.

2. Click on the add button.

5.1.8.3 Desired Outcome

• A comment added notification is shown.

• The comment is added into the comments with the text nice image.

5.1.9 Log Out

The log out testing scenario checks whether the user can successfully log out
of the application.

5.1.9.1 Prerequisites

• Set application folder as in 5.1.2.

5.1.9.2 Steps

1. Choose either a) or b) sub scenario:

a) Logout via profile.
i. Click on the profile tab button.
ii. Ensure that you get redirected towards a following website:

http://localhost:3000/user/profile.
iii. Click on the log out button.

b) Logout via tab bar.
i. Hover over the user profile image tab button.
ii. Click on the log out button.

105

5. Testing

5.1.9.3 Desired Outcome

• Redirect towards: http://localhost:3000/login.

• The login page is displayed.

5.2 Automated Testing
In this section, the applied testing of the application is described. The appli-
cation is equipped with an automated testing environment. For the purposes
of testing, a Jest57 testing framework is used. At first, we discuss frontend
testing, followed by backend testing.

5.2.1 Frontend Testing

The frontend React application tests are also using Enzyme58, which is a Java-
Script testing utility for React. This utility allows testing React components’
output. Individual components have their own tests where it is assured that
the components render correct output with desired styled components.

5.2.2 Backend Testing

The application is tested with the individual unit and integration tests. The
tested functionality varies from creating new RDF structures to uploading
new content to the Solid POD.

For the purposes of testing, testing data files (available in pixolid/test/
__mockData__) were created. The files contain example profiles, images, com-
ments, etc.

Some behavior of functions and dependencies is simulated with the use of
testing mock objects. That mainly applies to network bound functions and
operations. One of which includes the rdflib.js’ fetcher and updater, as well
as solid-file-client’s file and folder managing functions.

The testing data files are then returned by the mocked objects, according
to the expected testing scenarios.

For detailed information about how to run tests in the interactive testing
environment, please refer to Appendix B.

57https://jestjs.io/
58https://github.com/airbnb/enzyme

106

https://jestjs.io/
https://github.com/airbnb/enzyme

Chapter 6
Release and Feedback

In this chapter, we discuss the deployment process of the application along
with releasing it to the public. At first, we comment on the availability of
the source code, along with a description of deploying the application to a
server. Then, we discuss the feedback of the Solid community concerning the
application itself.

6.1 Release

The application’s source code was released on the GitHub hosting service in
a following public repository:

https://github.com/carloss8/pixolid/

The repository also mentions information about the process of installing,
testing, building, and deploying the application.

6.2 Deployment

For detailed information about how to build and deploy the application, please
refer to Appendix C.

The process of deploying the application had several complications in its
way. At first, the application was meant to be deployed to GitHub Pages59, a
service provided by GitHub to host Web pages which are released in a GitHub
repository. The deployment to GitHub Pages was attempted by following the
instructions mentioned in [37] and [38]. After doing so, the application was
deployed, but the application’s routing was non-functioning. That was due
to the use of client-side routing by the application’s BrowserRouter React

59https://pages.github.com/

107

https://github.com/carloss8/pixolid/
https://pages.github.com/

6. Release and Feedback

component, which is problematic while deploying to GitHub Pages. The pro-
posed solutions mentioned in [38] did not solve the problem. After further
research, there were other proposed solutions to set a base domain directly to
the BrowserRouter as a component prop, but none of these solutions worked
either.

Despite many efforts to fix this issue, in the end, the application was
deployed to Netlify60 hosting service. Netlify is hooked to the repository
mentioned in section 6.1. Every push to the master branch of the repository
causes the application to build and deploy to Netlify. The client-side routing
problem is handled here by setting the following redirect in a netlify.toml
configuration file:

1 [[redirects]]
2 from = "/*"
3 to = "/index.html"
4 status = 200

This behavior essentially redirects all routes to the index.html file, from
which then the application correctly handles the client-side routing itself.

As of writing this thesis, the application is deployed and available live at:

https://pixolid.netlify.com/

For further information about using the application, please refer to Ap-
pendix D.

6.3 Feedback
The application was introduced and brought up to the Solid community’s
attention by posting about it on the Solid forum61.

6.3.1 Thread and Repository Statistics

As of writing this thesis, the thread itself was viewed 582 times and liked 51
times. There were 36 replies in total, out of which 24 were from other people
than the creator of the thread.

Also, eight different people commented on the application and welcomed
the efforts it brings to the community. In addition to that, five people stated
that they tried the application either locally or remotely (deployed on the
server) with their Solid PODs, and tested uploading new images, comments,
likes, as well as viewing other people’s images, comments, and likes.

60https://www.netlify.com/
61https://forum.solidproject.org/

108

https://pixolid.netlify.com/
https://www.netlify.com/
https://forum.solidproject.org/

6.3. Feedback

There were also 70 registered clicks on the link to the live deployed version
of the application. The link to the GitHub repository containing the source
code of the application registered 31 clicks (15 before, and 16 after editing the
post). The repository itself was favorited by seven other developers and was
forked two times.

6.3.2 Comments and Suggestions

Several community members have warmly welcomed the idea and the software
itself. They started to try out and explore the application by using it with
their Solid PODs. They started to upload pictures, comments, and likes via
the application while providing their valuable feedback and opinions on the
application.

Most of the people who commented on the application had positive reac-
tions. They appreciated the idea and thought that it is a good work. For
example, among some of the replies was a comment from Justin Bingham:
"Looking good! Nice use of the solid-react-sdk." [39]. There was another one
from James Martin: "This is really cool! Fired it up locally and uploaded a
few pictures. I like how cleanly it is to follow the data in the pod. Time to
test “friends” photos! Thanks for sharing this." [40]. Then from Stain Vråle:
"Hi, just tested your app and it is really nice! Keep up the good work, we need
more apps like this." [41]. And also Jules wrote: "Great first app! and a great
learning resource to help others like me trying to learn more about Solid." [42].
Also, it was proposed by Margaret Warren, if it would be possible in some
way to utilize the metadata created with ImageSnippets62 within Pixolid [43].
The potential utilizing and connecting the said metadata within Pixolid could
be a part of future work.

Before the application was deployed on a server, it was asked if it would
be possible to release it live and running on a server [44]. In the end, the
application was deployed to Netlify.

It was also discovered that the application’s origin URL might need to
be manually added to the user’s profile document as a trustedApp for certain
Solid POD providers [44]. As of writing this thesis, this behavior was disabled
altogether on Inrupt and Solid Community PODs, and there are further ongo-
ing works in this regard for users to somehow authorize applications directly
from the POD itself [44].

It was suggested that it would be great if it was possible to control whether
or not the user wants to link back to comments or likes from other people [44].
This behavior could be added either as an additional step in the data distri-
bution or as a retrospective measure through a moderating tool to disable
showing certain comments or likes under user’s images. A minor clean up
of the data model was also suggested, as it would be better not to use file

62http://www.imagesnippets.com/

109

http://www.imagesnippets.com/

6. Release and Feedback

extension suffixes in URIs and was proposed to use nodes with hashes (e.g.,
#like) to denote the like statement [44]. That could be achieved by changing
the naming of created files.

It was also proposed that it would be a good practice to use a preferred
storage location from the user’s profile document as a base for specifying
the application folder [44]. That could be achieved by retrieving and using
this information from the user’s profile. Along with that, on the application
folder selection screen, it would be better to make it clear from the UI that
a subdirectory structure is allowed in the name of the application folder [44].
This could be for example achieved by adding an additional tooltip stating
this fact. It was also suggested that it could be more clear as to where the
images are being stored after the upload [44]. That could be done by stating
the location of the image in a notification after the upload, or by adding
additional info about the directories on the profile page.

6.3.3 Feedback Summary

Overall, the application was warmly welcomed and appreciated by the com-
munity, as well as provided with the constructive suggestions to how it could
be improved. The suggested improvements and possible extensions could be
further worked on and are taken into consideration for future work.

110

Conclusion

The goal of this thesis was to design, implement, and test a Solid based ap-
plication supporting uploading and viewing images stored on the Solid POD,
which would include user authentication using WebID-TLS andWebID-OIDC.

After the research of state-of-the-art technology, we discussed the anal-
ysis of the photo management application, along with its requirements and
functionality. With the usage of the defined requirements, we constructed in-
dividual use cases with their use case scenarios. The important application’s
entities were identified and captured in the domain model. Based on the
analysis, we continued with designing the architecture, user interface, along
with wireframes, and branding of the application. Application’s key classes
were defined and visualized in the class diagram. Afterwards, we covered the
application’s development process, along with used technologies, and imple-
mentation focuses. We also showcased the look of the final version of the
application. Later, we described the process of testing the application, cov-
ering the automated testing, along with the alpha testing scenarios. Finally,
we discussed the release and deploy of the application. We also addressed the
positive feedback and suggestions received by the Solid developer community.

The output of the thesis is a working Web application supporting re-
decentralization of the Web. The application is capable of authenticating
via WebID-OIDC and WebID-TLS, uploading and viewing user’s and user’s
friends’ images, comments, and likes stored on multiple Solid PODs. The
thesis’ output fulfills all of the requirements defined in the assignment of the
thesis and its analysis. The application is published as open-source, hosted
on a public repository.

The work was welcomed and appreciated by the community, as it supports
the development of new Solid based applications. In the future, the applica-
tion can be further extended to support additional functionality. There is for
example room for editing and moderating content, further expanding access
rights to comments and likes, or integrating with other Solid based applica-
tions.

111

Bibliography

[1] INTERNET USAGE STATISTICS. [online], December 2018, [cit.
2018-12-11]. Available from: https://www.internetworldstats.com/
stats.htm

[2] Bieg, M. Server-based-network. Wikimedia Foundation, Jan 2007,
[cit. 2019-2-6]. Available from: https://en.wikipedia.org/wiki/File:
Server-based-network.svg

[3] Bieg, M. P2P-network. Wikimedia Foundation, Aug 2007, [cit.
2019-2-6]. Available from: https://en.wikipedia.org/wiki/File:P2P-
network.svg

[4] Cohen, B. Incentives Build Robustness in BitTorrent. [online],
May 2003, [cit. 2019-2-6]. Available from: http://bittorrent.org/
bittorrentecon.pdf

[5] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. [on-
line], Oct 2008, [cit. 2019-2-6]. Available from: https://bitcoin.org/
bitcoin.pdf

[6] McCoy, D.; Bauer, K.; et al. Shining Light in Dark Places: Under-
standing the Tor Network. [online], Jul 2008, [cit. 2019-2-6]. Available
from: http://www.cs.umd.edu/class/spring2017/cmsc818O/papers/
understanding-tor.pdf

[7] Farmer, C. Five projects that are decentralizing the web in slightly
different ways. [online], September 2018, [cit. 2019-1-19]. Avail-
able from: https://medium.com/textileio/five-projects-that-
are-decentralizing-the-web-in-slightly-different-ways-
debf0fda286a

[8] How does diaspora* work? [online], 2018, [cit. 2019-1-19]. Available from:
https://diasporafoundation.org/about

113

https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm
https://en.wikipedia.org/wiki/File:Server-based-network.svg
https://en.wikipedia.org/wiki/File:Server-based-network.svg
https://en.wikipedia.org/wiki/File:P2P-network.svg
https://en.wikipedia.org/wiki/File:P2P-network.svg
http://bittorrent.org/bittorrentecon.pdf
http://bittorrent.org/bittorrentecon.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.cs.umd.edu/class/spring2017/cmsc818O/papers/understanding-tor.pdf
http://www.cs.umd.edu/class/spring2017/cmsc818O/papers/understanding-tor.pdf
https://medium.com/textileio/five-projects-that-are-decentralizing-the-web-in-slightly-different-ways-debf0fda286a
https://medium.com/textileio/five-projects-that-are-decentralizing-the-web-in-slightly-different-ways-debf0fda286a
https://medium.com/textileio/five-projects-that-are-decentralizing-the-web-in-slightly-different-ways-debf0fda286a
https://diasporafoundation.org/about

Bibliography

[9] Web inventor Tim Berners-Lee’s next project: a platform that gives users
control of their data. [online], November 2015, [cit. 2018-11-26]. Available
from: https://www.csail.mit.edu/news/web-inventor-tim-berners-
lees-next-project-platform-gives-users-control-their-data

[10] Berners-Lee, S. T. One Small Step for the Web... [online], September
2018, [cit. 2018-11-26]. Available from: https://www.inrupt.com/blog/
one-small-step-for-the-web

[11] Solid. [online], October 2018, [cit. 2018-11-26]. Available from: https:
//solid.mit.edu/

[12] How it works. [online], September 2018, [cit. 2018-11-26]. Available from:
https://solid.inrupt.com/how-it-works

[13] nicola; dmitrizagidulin; et al. Solid. [online], November 2018, [cit. 2018-
11-26]. Available from: https://github.com/solid/solid

[14] Mansour, E.; Sambra, A. V.; et al. A Demonstration of the Solid Platform
for Social Web Applications. [online], May 2016, [cit. 2018-11-26]. Avail-
able from: http://ds.qcri.org/publications/2016-mansour-www.pdf

[15] Capadisli, S.; Guy, A. Linked Data Notifications. [online], May 2017, [cit.
2018-11-26]. Available from: https://www.w3.org/TR/ldn/

[16] nicola; deiu; et al. solid-apps. [online], September 2015, [cit. 2018-11-26].
Available from: https://github.com/solid/solid-apps/

[17] Semantic Web. [online], 2015, [cit. 2018-12-11]. Available from: https:
//www.w3.org/standards/semanticweb/

[18] Berners-Lee, T. Linked Data. [online], July 2006, [cit. 2018-12-11]. Avail-
able from: https://www.w3.org/DesignIssues/LinkedData.html

[19] McCrae, J. P.; Abele, A.; et al. The Linked Open Data Cloud. [on-
line], November 2018, [cit. 2018-12-11]. Available from: https://lod-
cloud.net/

[20] Berners-Lee, T.; Fielding, R. T.; et al. Uniform Resource Identifier (URI):
Generic Syntax. [online], January 2005, [cit. 2018-12-11]. Available from:
https://tools.ietf.org/html/rfc3986

[21] Keil, J. M. IRI, URI, URL, URN and their differences. [on-
line], November 2016, [cit. 2019-1-26]. Available from: http:
//fusion.cs.uni-jena.de/fusion/blog/2016/11/18/iri-uri-url-
urn-and-their-differences/

114

https://www.csail.mit.edu/news/web-inventor-tim-berners-lees-next-project-platform-gives-users-control-their-data
https://www.csail.mit.edu/news/web-inventor-tim-berners-lees-next-project-platform-gives-users-control-their-data
https://www.inrupt.com/blog/one-small-step-for-the-web
https://www.inrupt.com/blog/one-small-step-for-the-web
https://solid.mit.edu/
https://solid.mit.edu/
https://solid.inrupt.com/how-it-works
https://github.com/solid/solid
http://ds.qcri.org/publications/2016-mansour-www.pdf
https://www.w3.org/TR/ldn/
https://github.com/solid/solid-apps/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/DesignIssues/LinkedData.html
https://lod-cloud.net/
https://lod-cloud.net/
https://tools.ietf.org/html/rfc3986
http://fusion.cs.uni-jena.de/fusion/blog/2016/11/18/iri-uri-url-urn-and-their-differences/
http://fusion.cs.uni-jena.de/fusion/blog/2016/11/18/iri-uri-url-urn-and-their-differences/
http://fusion.cs.uni-jena.de/fusion/blog/2016/11/18/iri-uri-url-urn-and-their-differences/

Bibliography

[22] Richard Cyganiak, M. L., David Wood. RDF 1.1 Concepts and Abstract
Syntax. [online], February 2014, [cit. 2019-1-10]. Available from: https:
//www.w3.org/TR/rdf11-concepts/

[23] About. [online], 2018, [cit. 2018-12-20]. Available from: https://
wiki.dbpedia.org/about

[24] Nlany; LionKimbro; et al. RdfSyntax. [online], January 2011, [cit. 2019-
1-30]. Available from: https://www.w3.org/wiki/RdfSyntax

[25] Schreiber, G.; Raimond, Y. RDF 1.1 Primer. [online], June 2014, [cit.
2019-2-3]. Available from: https://www.w3.org/TR/rdf11-primer/

[26] Beckett, D.; Berners-Lee, T.; et al. RDF 1.1 Turtle. [online], February
2014, [cit. 2019-1-10]. Available from: https://www.w3.org/TR/turtle/

[27] Sambra, A.; Story, H.; et al. WebID 1.0. [online], March 2014, [cit. 2019-
2-11]. Available from: https://www.w3.org/2005/Incubator/webid/
spec/identity/

[28] Inkster, T.; Story, H.; et al. WebID-TLS. [online], March 2014, [cit. 2019-
2-14]. Available from: https://www.w3.org/2005/Incubator/webid/
spec/tls/

[29] Zagidulin, D.; Kjernsmo, K.; et al. WebID-OIDC Authentication
Spec. [online], April 2017, [cit. 2019-2-16]. Available from: https://
github.com/solid/webid-oidc-spec

[30] Inrupt Design. [online], [cit. 2019-3-15]. Available from: https://
design.inrupt.com/

[31] Team, L. D. rdflib.js. [online], February 2019, [cit. 2019-3-7]. Available
from: https://linkeddata.github.io/rdflib.js/doc/

[32] Verborgh, R. solid-file-client. [online], September 2018, [cit. 2019-3-7].
Available from: https://github.com/solid/query-ldflex

[33] Zucker, J. solid-file-client. [online], November 2018, [cit. 2019-3-7]. Avail-
able from: https://github.com/jeff-zucker/solid-file-client

[34] WebAccessControl. [online], June 2018, [cit. 2019-3-15]. Available from:
https://www.w3.org/wiki/WebAccessControl

[35] Zagidulin, D.; Kjernsmo, K.; et al. Web Access Control (WAC). [online],
April 2016, [cit. 2019-3-15]. Available from: https://github.com/solid/
web-access-control-spec

115

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://wiki.dbpedia.org/about
https://wiki.dbpedia.org/about
https://www.w3.org/wiki/RdfSyntax
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/turtle/
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://www.w3.org/2005/Incubator/webid/spec/tls/
https://www.w3.org/2005/Incubator/webid/spec/tls/
https://github.com/solid/webid-oidc-spec
https://github.com/solid/webid-oidc-spec
https://design.inrupt.com/
https://design.inrupt.com/
https://linkeddata.github.io/rdflib.js/doc/
https://github.com/solid/query-ldflex
https://github.com/jeff-zucker/solid-file-client
https://www.w3.org/wiki/WebAccessControl
https://github.com/solid/web-access-control-spec
https://github.com/solid/web-access-control-spec

Bibliography

[36] Bingham, J.; Martin, J.; et al. Solid React SDK. [online], January
2019, [cit. 2019-3-23]. Available from: https://github.com/inrupt-
inc/solid-react-sdk/

[37] gitname. Deploying a React App* to GitHub Pages. [online], June 2017,
[cit. 2019-4-12]. Available from: https://github.com/gitname/react-
gh-pages/

[38] Cherouvim, I. Deployment. [online], February 2019, [cit. 2019-4-
12]. Available from: https://facebook.github.io/create-react-app/
docs/deployment

[39] Bingham, J. Pixolid - Solid photo manager. [online forum com-
ment], April 2019, [cit. 2019-4-30]. Available from: https://
forum.solidproject.org/t/pixolid-solid-photo-manager/1649/10

[40] Martin, J. Pixolid - Solid photo manager. [online forum com-
ment], April 2019, [cit. 2019-4-30]. Available from: https://
forum.solidproject.org/t/pixolid-solid-photo-manager/1649/11

[41] Vråle, S. Pixolid - Solid photo manager. [online forum com-
ment], April 2019, [cit. 2019-4-30]. Available from: https://
forum.solidproject.org/t/pixolid-solid-photo-manager/1649/35

[42] Jules. Pixolid - Solid photo manager. [online forum comment], April 2019,
[cit. 2019-4-30]. Available from: https://forum.solidproject.org/t/
pixolid-solid-photo-manager/1649/36

[43] Warren, M. Pixolid - Solid photo manager. [online forum com-
ment], April 2019, [cit. 2019-4-30]. Available from: https://
forum.solidproject.org/t/pixolid-solid-photo-manager/1649/29

[44] Veltens, A.; Bingham, J.; et al. Pixolid - Solid photo manager. [online
forum thread], April 2019, [cit. 2019-4-30]. Available from: https://
forum.solidproject.org/t/pixolid-solid-photo-manager/1649

116

https://github.com/inrupt-inc/solid-react-sdk/
https://github.com/inrupt-inc/solid-react-sdk/
https://github.com/gitname/react-gh-pages/
https://github.com/gitname/react-gh-pages/
https://facebook.github.io/create-react-app/docs/deployment
https://facebook.github.io/create-react-app/docs/deployment
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649/10
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649/10
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649/11
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649/11
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649/35
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649/35
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649/36
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649/36
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649/29
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649/29
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649
https://forum.solidproject.org/t/pixolid-solid-photo-manager/1649

Appendix A
Acronyms

API Application Programming Interface.

ASCII American Standard Code for Information Interchange.

CSAIL Computer Science and Artificial Intelligence Lab.

CSS Cascading Style Sheets.

DIG Decentralized Information Group.

FOAF Friend of a Friend.

HOC Higher Order Component.

HTML Hypertext Markup Language.

HTML5 Hypertext Markup Language 5.

HTTP Hypertext Tranfer Protocol.

ID Token Identity Token.

IP Internet Protocol.

IRI Internationalized Resource Identifier.

JPEG Joint Photographic Experts Group.

JSON Javascript Object Notation.

JSON-LD A JSON Serialization for Linked Data.

LDflex Linked Data flex.

117

Acronyms

LDP Linked Data Platform.

LOD Linked Open Data.

MIT Massachusetts Institute of Technology.

N3 Notation3.

OAuth Open Authentication.

OWL Web Ontology Language.

Pixolid Pictures on Solid.

PNG Portable Network Graphics.

POD Personal Online Datastore.

RDF Resource Description Framework.

RDFa Rich Structured Data Markup for Web Documents.

rdflib.js Javascript RDF library for browsers and Node.js.

REST Representation State Transfer.

SDK Software Development Kit.

SKOS Simple Knowledge Organization System.

Solid Social Linked Data.

SPARQL SPARQL Protocol and RDF Query Language.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

Turtle Terse RDF Triple Language.

UI User Interface.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

URN Uniform Resource Name.

W3C World Wide Web Consortium.

118

Acronyms

WebID Web Identity and Discovery.

WebID-OIDC WebID – Open ID Connect.

WebID-TLS WebID – Transport Layer Security.

XML Extensible Markup Language.

119

Appendix B
Developer Guide

This guide contains instructions for developers regarding the application’s
installation, running the application in the development mode, and running
the tests. The application’s structure was discussed in 4.2. Any changes to
the code can be done in the corresponding files.

B.1 Installation
The application’s source code is available in the following repository:

https://github.com/carloss8/pixolid/

Open the terminal and clone the repository:

$ git clone https://github.com/carloss8/pixolid.git

Switch to the pixolid folder:

$ cd ./pixolid/

Install application’s dependencies by:

$ npm install

or

$ yarn install

You have successfully installed the development version of the application.

121

https://github.com/carloss8/pixolid/

B. Developer Guide

B.2 Running the Development Mode
To start the application in the development mode, run the following command:

$ npm start

or

$ yarn start

The application is now available at http://localhost:3000 which can be
viewed in the Web browser. As you make edits to the source code, the page
will automatically reload in real time.

B.3 Running Tests
To start the test runner in the interactive watch mode, run the following
command:

$ npm test

or

$ yarn test

You can then see the test runner options. You can:

• Press a to run all tests.
• Press f to run only failed tests.
• Press p to filter by a filename regex pattern.
• Press t to filter by a test name regex pattern.
• Press q to quit watch mode.
• Press Enter to trigger a test run.

122

http://localhost:3000

Appendix C
Administrator Guide

This guide contains instructions for administrators regarding the application’s
installation, building, and deploying.

C.1 Installation

The application’s source code is available in the following repository:

https://github.com/carloss8/pixolid/

Open the terminal and clone the repository:

$ git clone https://github.com/carloss8/pixolid.git

Switch to the pixolid folder:

$ cd ./pixolid/

Install application’s dependencies by:

$ npm install

or

$ yarn install

You have successfully installed the development version of the application.

123

https://github.com/carloss8/pixolid/

C. Administrator Guide

C.2 Building the Application
To create a production build of the application, run the following command:

$ npm run build

or

$ yarn build

The built application ready for production is available in the build folder.

C.3 Deploying the Application
The deployment process varies by concrete deployment solutions. To specify
a URL where the application will be deployed and served, set the homepage
property in the package.json. Open package.json in a text editor of your choice.
If the application was deployed to the following URL: http://example.org,
you would set the homepage property to:

"homepage": "http://example.org"

To run the application on a static server, you can do so, for example with
serve. You can pass the build folder to it by:

$ serve -s ./build/ -l 3000

The application is then served at: http://localhost:3000. In Figure C.1,
we can see a deployment diagram for the application.

124

http://localhost:3000

C.3. Deploying the Application

«device»
Pixolid Server

«executionEnvironment»

Web Server

PixolidApplication

«device»

Solid POD Provider

«executionEnvironment»
Web Server

SolidServer

«http» «http»

«http»

«device»

Solid POD Provider

«executionEnvironment»

Web Server

SolidServer

«device»
PC

«executionEnvironment»

Web Browser

Figure C.1: Deployment Diagram: Relations among the devices.

125

Appendix D
User Guide

This guide contains information about the application’s functionality, as well
as instructions for users on how to start using the application.

D.1 Functionality

Pictures on Solid (Pixolid) offers a new way to manage your images. All of
your data is stored in your Solid POD. You can sign into the application with
your existing WebID, or by creating a new one.

The application supports uploading images with descriptions to your Solid
POD. You can also set access rights for newly uploaded images to either be
public or private. In the private mode, it is possible to select multiple users
(your friends gathered from your profile), which will be allowed to access and
view the image via the application.

The application supports viewing your uploaded images. You can also view
images posted by your friends (gathered from your profile) via the application.
The application also supports showing the image detail. The detail shows the
image with its description, author, and date of posting.

In the application, you can also post comments to the images, as well as
like the images. Individual comments and likes are shown in the image detail.

Every image, comment, and like is stored in the Solid POD of the user who
posted it. The application gathers all the content from the PODs of individual
users.

D.2 Start Using Pixolid

Assuming that the application is built, deployed, and running on the localhost,
you can start using it by opening: http://localhost:3000 in your Web
browser. As of writing this thesis, you can also start using it by opening:
http://pixolid.netlify.com/ in your Web browser.

127

http://localhost:3000
http://pixolid.netlify.com/

D. User Guide

Figure D.1: Login screen.

D.3 Individual Screens’ Description

Let us cover what you can achieve on individual Pixolid’s screens.

D.3.1 Login Screen

On a login screen (see Figure D.1), you can log into Pixolid with a WebID.
You can get the WebID from multiple providers, or you can directly start the
registration process by clicking on the register for a Solid identity button. To
use an existing WebID, you can either choose a provider from the Select ID
Provider list menu, or click on the Log In with WebID link and paste your
WebID into the WebID text area. Confirm logging in by clicking on the Log
In button. You will get redirected towards the WebID provider login screen,
where you shall enter your username and password. After authenticating with
your provider you will get redirected back into Pixolid.

D.3.2 Application Folder Selection Screen

After your first successful logging into Pixolid, you will see an application
folder selection screen (see Figure D.2). Here you can specify the location,
where Pixolid will store your images, comments, and likes on your Solid POD.

128

D.3. Individual Screens’ Description

Figure D.2: Application folder selection screen.

You can do so by typing into the application folder text area. Folder names
including subdirectories are supported, e.g., public/pixolid will create a pixolid
folder inside the public folder. Confirm the folder selection by clicking on the
Save button.

D.3.3 Application Navigation

To navigate through the application, you can use the tab bar, which is visible
on every screen next to the Pixolid logo. The logo itself and friends’ images
tab button take you to the friends’ images page (see Figure D.4). My images,
upload image, and profile tab buttons take you to my images (see Figure D.5),
upload image (see Figure D.3), and profile (see Figure D.7) pages respectively.
Click on any tab button to show the desired page. You can also hover your
mouse over a profile image button (see Figure D.4), and log out of the appli-
cation by clicking on the Log Out. Clicking on the profile image button itself
will take you to the profile page.

D.3.4 Upload Image Screen

On a upload image screen (see Figure D.3) you can upload a new image.
Type its description into the image description text area. Select an image by

129

D. User Guide

Figure D.3: Upload image screen.

clicking on the select image button. The image preview is shown on under the
image description text area. Select sharing to public or private by clicking
on the Public toggle. When the public sharing is toggled off, you can specify
individual users who can access the image by selecting them from the Share
with list menu. You can choose multiple users or none, which denotes that
you want the image to be accessible only to you. Users can be removed from
the list by clicking on the X button next to their names.

D.3.5 Friends’ Images and My Images Screens

On a friends’ images screen (see Figure D.4) you can see images posted by
your friends. Friends are discovered from your profile document tied to the
WebID. On a my images screen (see Figure D.5) you can see your posted
images. Images on both friends’ images and my images screens are sorted
from newest to oldest, and you can click on any image to see its detail.

D.3.6 Image Detail Screen

On an image detail screen (see Figure D.6) you can see the image detail along
with its description, author’s name and profile picture, date of posting, number
of likes, and comments with their authors. You can like the image as well by

130

D.3. Individual Screens’ Description

Figure D.4: Friend’s images screen.

Figure D.5: User’s images screen.

131

D. User Guide

Figure D.6: Image detail screen.

clicking on the Like button with a thumb icon. You can type a comment into
the type a comment text area, and add it by clicking on the Add button. You
can close the image detail screen by clicking either on the X button or the
gray area around the window.

D.3.7 Profile Screen

On a profile screen (see Figure D.7) you can see information about the current
application folder and your profile. You can change the application folder by
clicking on the Change Folder button. The application folder selection screen
(see Figure D.8) which is similar to the previous one. You can cancel changing
the application folder selection by clicking either on the X button or the gray
area around the window. You can also log out of the application by clicking
on the Log Out button.

132

D.3. Individual Screens’ Description

Figure D.7: User profile screen.

Figure D.8: Application folder change screen.

133

Appendix E
Contents of enclosed CD

readme.txt........................the file with CD contents description
exe the directory with executables

build.................the directory with the build of the application
src.......................................the directory of source codes

impl.............the directory of source codes of the implementation
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

135

	Introduction
	State-of-the-art
	Available Decentralization Solutions
	Solid Framework
	Linked Data
	RDF
	WebID
	Current Photo Managing Applications Built on Solid

	Analysis
	Product Statement
	Business Requirements
	Requirements Definition
	Use Cases Definition
	Scenarios Definition
	Domain Model

	Design
	User Interface Design
	Solid Framework Libraries Description
	Access Lists
	Class Diagram

	Realization
	Used Technologies
	Application's Structure
	Implementation Focuses
	Final Version of the Pixolid Application

	Testing
	Testing Scenarios
	Automated Testing

	Release and Feedback
	Release
	Deployment
	Feedback

	Conclusion
	Bibliography
	Acronyms
	Developer Guide
	Installation
	Running the Development Mode
	Running Tests

	Administrator Guide
	Installation
	Building the Application
	Deploying the Application

	User Guide
	Functionality
	Start Using Pixolid
	Individual Screens' Description

	Contents of enclosed CD

