
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 25, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Data Management Plans Migration for the DS Wizard Tool

 Student: Bc. Josef Doležal

 Supervisor: Ing. Robert Pergl, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

- Acquaint yourself with the Data Stewardship Wizard (DSW) project with the focus to current solution of
Knowledge Model (KM) migrations.
- Acquaint yourself with the Haskell programming language.
- Design and implement a solution for migrating data management plans created in DSW under specific
KMs.
- Test the solution and demonstrate it on a non-trivial case study.
- Document your work.

This topic is offered by the #CCMi research group in collaboration with the GO-FAIR initiative.

References

Will be provided by the supervisor.

Master’s thesis

Data Management Plans Migration for the
DS Wizard Tool

Bc. Josef Doležal

Department of Software Engineering
Supervisor: Ing. Robert Pergl, Ph.D.

May 6, 2019

Acknowledgements

In this section, I would like to thank everyone who helped me throughout
writing this thesis.

Firstly my supervisor, Ing. Robert Pergl, Ph.D. for his willingness, valu-
able advice and introduction to the data stewardship domain.

Thank everyone from the DataStewardship Wizard team, namely Ing. Jan
Slifka, Ing. Vojtěch Knaisl and Ing. Marek Suchánek, for their help with the
implementation part of the thesis.

I would also like to thank my family and friends for their support and help.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 6, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Josef Doležal. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Doležal, Josef. Data Management Plans Migration for the DS Wizard Tool.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2019. Also available from: 〈https://github.com/josefdolezal/
fit-mi-dip〉.

https://github.com/josefdolezal/fit-mi-dip
https://github.com/josefdolezal/fit-mi-dip

Abstrakt

Tato práce se zabývá návrhem a implementací nástroje pro migraci plánů řízení
dat. Na základě požadavků a výstupů analýzy byl navržen modul aplikace in-
tegrovatelný do existujícího systému Data Stewardship Wizard. Práce reflek-
tuje standardní postup návrhu software a obsahuje tak analýzu, návrh, real-
izaci a testování. Výstupem implementační části jsou moduly pro serverovou a
klientskou část aplikace, umožňující migrovat existující plány na novější verze
Knowledge Modelu.

Klíčová slova data stewardship, FAIR, otevřená věda, haskell, elm, funk-
cionální programování

Abstract

This thesis deals with the analysis and implementation of the data manage-
ment plans migration tool. The application module for the existing system
Data Stewardship Wizard is designed, based on the requirements and analy-
sis. The thesis reflects the standard software development process and includes
analysis, design, realization, and testing. The output of the implementation
part is modules for both server and client application, allowing to migrate
existing plans to a newer version of a Knowledge Model.

Keywords data stewardship, FAIR, open-science, haskell, elm, functional
programming

vii

Contents

Introduction 1

1 State-of-the-art 3
1.1 Data Stewardship Wizard . 3
1.2 System architecture . 5
1.3 Server-side application . 5
1.4 Frontend application . 11
1.5 Knowledge model migrations 16
1.6 Deployment . 19

2 Analysis 21
2.1 Requirements . 21
2.2 Use cases . 23
2.3 Scenarios . 24
2.4 Domain model . 28

3 Design 33
3.1 User Interface . 33
3.2 Class diagram . 38
3.3 Server Interface . 44
3.4 Questionnaire structure . 46
3.5 Questionnaire overview . 47
3.6 Questionnaire states . 49

4 Realization 51
4.1 Used technologies . 51
4.2 Application structure . 55
4.3 Implementation . 57
4.4 Design . 65

ix

5 Testing 69
5.1 Testing cases . 69
5.2 Testing use case . 70

Conclusion 75

Bibliography 77

A Acronyms 81

B Development Guide 83
B.1 Client-side Application . 83
B.2 Server-side application . 84

C Contents of enclosed CD 85

x

List of Figures

1.1 JWT token structure example . 9
1.2 The knowledge model editor . 15
1.3 The system architecture . 16
1.4 The application deployment schema 20

2.1 Use cases relationship diagram . 25
2.2 Domain model with relationships between entities 29

3.1 List of questionnaires with notification about available upgrade . . 34
3.2 Modal dialog asking the user to select a newer version of the knowl-

edge model . 35
3.3 Questionnaire migration detail (focused on question difference) . . 36
3.4 Updated state of the migrated question with expanded context . . 36
3.5 Questionnaire in the process of migration 37
3.6 Migrated questionnaire together with its original version 38
3.7 Server class diagram . 39
3.8 Client class diagram with the relationship between entities 41
3.9 Item template question type example 46
3.10 Tree representation for item template replies 47
3.11 The state transition diagram of the migrated questionnaire 49

4.1 Structure of the server application 56
4.2 Structure of the client application 57
4.3 A mapping between tree structure and diff events 64
4.4 Available migration notification . 66
4.5 Modal with target version selection 66
4.6 Migrated chapter text difference 67
4.7 Migrated question difference . 67
4.8 Migrated questionnaire alongside its original version 68

5.1 Visualization of knowledge model customization events 72

xi

List of Tables

2.1 Coverage of functional requirements by use cases 24

3.1 Wireframe covering of identified use cases 38

xiii

Introduction

From the beginning of the ages, science has served to expand the collective
consciousness of our society. It was, however, a privilege of experts in the
industry and their research results were not accessible to the general public.
With the rise of technologies of the twenty-first century, science is undergoing
significant changes.

Science is no longer meant to serve a small group of scientists. Instead,
we all use it in different forms in our daily lives. Today, strategic decisions
in the commercial business are almost exclusively based on data analysis.
Public participation in the processing of researched data is therefore almost
unavoidable.

Making science accessible is however necessary not only for the general
public. It also serves the future researchers who would like to start their
research on the existing data. The Open Science Movement is focusing on
making science researches accessible and reproducible.

In 2019, near to 1.4 billion euro will be funded into science and research
from taxpayers’ money in the Czech Republic itself[1]. In addition to that,
the European Union will invest more than 97 billion euro under the Horizon
Europe project for research and innovation in the years 2021-2027[2].

It is primarily the responsibility for the public funds, that should make
researches funded in such manner accessible (both by humans and machines),
available free of charge, reusable and reproducible. The format of publications
using scientific articles, used during the whole twentieth century, is therefore
not sufficient anymore. Such format of results is often not machine-processable
or open (charged using paywalls), data are not understandable, and research
conclusions are not reproducible.

The goal of the Open Science Movement is to change such an approach
to science. By Open Science, we can understand an umbrella term for a
systematic change in how researchers work, collaborate, share ideas and makes
their researches more accessible and reusable. The guiding principle for Open
Science, therefore, is making research data and its related tools fulfill the FAIR

1

Introduction

principles.
According to these principles, all research data should meet four basic

requirements: Findable, Accessible, Interoperable, Reusable (FAIR). Data
should be findable for both humans and machines, accessible using open and
universal protocols, interoperable with the use of formal language and vo-
cabulary, and reusable with clear and accessible license and with relevant
attributes.

As FAIR only covers theoretical principles, there is no strict implemen-
tation. One of the existing implementations is Data Stewardship Wizard
(DSW). This system is developed in cooperation with ELIXIR1 (specifically
by ELIXIR CZ and EXILIR NL nodes) organization.

Goals of the thesis
This thesis extends the thesis of Ing. Vojtěch Knaisl which dealt with the topic
of developing a migration tool for Knowledge Model (KM) in DSW system.

The main goal is to create a migration tool for Data Management Plans
(DMP) in DSW. This tool will help researchers migrate existing plans based
on an older version of knowledge model (or its customization) to a new version
which includes updated information and changes.

The first chapter sums up the current state of the system and introduces
the reader to the system architecture.

After that, in the second chapter, I will define formal system requirements
together with use cases and user scenarios.

In the following chapter, Design, I will describe the conceptual design of
the proposed solution together wireframes of the application user interface.

Then, in chapter Realization, I describe the implementation part of the
conceptual design and its integration into the existing system.

The last chapter, Testing, describes which technique I used to verify whether
the tool is working correctly, as designed.

1ELIXIR is a multinational group of scientists associating scientific resources such as
databases, software tools, and educational materials across Europe.

2

Chapter 1
State-of-the-art

This chapter deals with the analysis of the current state of the DSW applica-
tion. In the first section, the reader is briefly introduced to the architecture of
the application and is acquainted with parts which have been already done.

After the introduction to the system design, I summarize the need for the
migration tool for data management plans. Further, I analyze modules of
each part of the system in detail. The reader will be acquainted with current
solution design and application deployment.

1.1 Data Stewardship Wizard

As has been already stated, the DSW application is being developed in coop-
eration of ELIXIR CZ and ELIXIR NL research groups. The development is
currently split into multiple independent parts.

The whole system is available as an open-source2. That said, the source
code, documentation, and the development process are publicly accessible and
open for contribution.

The most significant part of the project is the server application called
DSW-Server. This application implements all the functionality and business
logic of the system, persists data and provides an open Application Program-
ming Interface (API). Using standard terminology, we can refer to it as a
backend.

Since the server application does not provide any User Interface (UI) and
only exposes an API using REST standard), there is a complementary web
application called DSW-Client (or, in DSW terminology, called just client for
short) which does just that. Using standard terminology, such application is
referred to as a frontend.

2Application repositories are available at GitHub under the organization page at
https://github.com/ds-wizard.

3

1. State-of-the-art

1.1.1 DSW-Server

The backend part of the application is written using the Haskell programming
language. The primary goal of this portal is to help researchers create data
management plans for their experiments. To be able to create a management
plan, at least one knowledge model must be created. At the time of writing,
the DSW is shipped without any prebuild knowledge model by default. The
maintaing team, however, provides the core knowledge model separately to
help data stewards setup initial data faster[3].

Public knowledge models (such as core) are represented using JavaScript
Object Notation (JSON) and stored in a file on a public server. Data stewards
then use these models to create questionaries. The role of researchers is to fill
in the questionaries with meta information about their research.

Filled-in questionaries are used by data stewards to create management
plans. This flow mostly covers system features.

We, however, have silent assumptions in the flow described above. The
portal also has to support the following features in addition to the mentioned
business logic:

• User management (roles, authorization, and authentication),

• Knowledge model (and its customizations) administration including cre-
ation, editing, and versioning,

• Data persistence (database connection, file system integration),

• REST API.

All of the mentioned functions are split into independent Haskell modules.
The REST API layer is built using Scotty framework3.

1.1.2 DSW-Client

DSW-Client is a frontend application written in Elm programming language4.
It provides a web-based user interface for the server application.

The implementation was done by Ing. Jan Slifka as a part of his master’s
thesis in 2018[4].

The application is built using Elm Architecture. The logic of such an
application is split into three separated parts:

3Scotty is an open-source web framework written in Haskell, inspired by Ruby’s Sinatra.
It is a lightweight alternative to frameworks like Yesod or Spock. The source code and more
information is available on the project homepage: https://github.com/scotty-web/scotty.

4Elm is a type-safe programming language used for web applications frontend. The
source code written in Elm is transpiled into JavaScript and interpreted using a web browser.
Elm website: https://elm-lang.org.

4

1.2. System architecture

Model – represents application state,

Update – allows updating the state,

View – interprets state using HTML.

This architecture has a similar approach to state modification as famous
state container called Redux. Redux is also used for frontend applications,
most commonly together with the React view library.

In oppose to React and Redux, Elm language was built with an architec-
ture pattern in mind from the beginning. According to the official website[5],
Elm is up to two times faster than the same application written in React.

The application is fully rendered locally in the user’s web browser. That
makes the server and client applications entirely independent of each other.
Development of both parts is, therefore, break up into two separate reposito-
ries.

1.2 System architecture
As was briefly described in previous sections, the system consists of two inde-
pendent parts.

In the following section, I will describe the architecture of the server-side
part of the project in deep. After that, the next section is dedicated to the
front end application.

1.3 Server-side application
As mentioned earlier, the server part of the application is written using Haskell
programming language using Scotty web framework. The application exposes
public Representational State Transfer (REST) API over HTTP protocol.

To achieve modularity and lose coupling, the server application is split into
multiple modules. Those modules are grouped into logical partitions based on
their purpose. The most significant parts are:

• Handler layer,

• Service and Data Transfer Object (DTO) layers,

• Model and Data Access Object (DAO) layers.

1.3.1 Handler layer

A handler is responsible for processing API requests. It directly interacts with
Scotty framework, transforms incoming data into strongly typed objects and
orchestrates other layers to evaluate response.

5

1. State-of-the-art

Handler groups together multiple endpoints. Those endpoints are uniquely
registered to a specific Uniform Resource Locator (URL) and HyperText
Transfer Protocol (HTTP) method. In terms of the server application, we
refer to such pair as a route.

1 -- Registering HTTP method with its route
2 createEndpoints :: BaseContext -> ScottyT Text BaseContextM ()
3 createEndpoints context = do
4 get "/questionnaires" getQuestionnairesA
5 post "/questionnaires" postQuestionnairesA
6 put "/questionnaires/:qtnUuid" putQuestionnaireA
7

8 -- Questionnaire detail endpoint
9 getQuestionnaireA :: Endpoint

10 getQuestionnaireA =
11 checkPermission "QTN_PERM" $
12 qtnUuid <- param "qtnUuid"
13 eitherDto <- getQuestionnaireDetailById qtnUuid
14 case eitherDto of
15 Right dto -> json dto
16 Left error -> sendError error

Listing 1.1: Routes definition and route endpoint (simplified)

Once the correct handler for the requested route is selected, it starts pro-
cessing data from the request. Such data might be URL (or query) parameters
and/or request body. Those data are transformed into language primitives
(such as Int or String) or complex objects called DTO (explained later). In
case of invalid or malformed data, the request is aborted immediately with
appropriate error information in response.

In addition to that, some routes may also require several permissions in
order to be executed. Those routes need requests to be authenticated using
Javascript Web Token (JWT) technology and user tied with given token must
be granted such permissions.

If the request is validated successfully, required data are passed into a
service layer where the actual business logic happens.

1.3.2 Service layer

Services are responsible for application logic. This means that its public in-
terface is exposed to other layers using DTO. Private functions and internal
dependencies (such as data persistence) are thus implementation detail of the
layer itself and do not affect its interface.

6

1.3. Server-side application

In DSW, service layer takes care of basic Create, Read, Update, Delete
(CRUD) operations over persisted entities. This includes application objects,
for example, User, KnowledgeModel or Questionnaire.

In addition to data persistence, this layer also manages application con-
figuration, knowledge model migrations, DTO mapping and maintains data
consistency. To keep the public interface simple, services are usually composed
using other services or DAO.

Services make operations based on given input data (objects identifiers,
DTO, . . .). Operations itself then converts DTO objects into internal rep-
resentation (persisted object) and do computations on it. As a result of all
computations, the DTO object is returned from service.

1.3.3 DTO

While describing the Service layer earlier in this chapter, there were multiple
references to objects called DTO. These objects’ goal is to create a framework-
independent interface between layers. DTOs are plain objects5 representing
standard model objects, usually in many ways.

Model objects may be complex structures containing a significant amount
of data. Such complexity may or may not be appropriate for some service
operations.

While presenting a list of data (populated by DTO) to the user, it is not
necessary to fetch all nested objects recursively. Instead, simplified objects
may be used. Additional data may then be requested on demand. On the
other hand, when the user wants to see the detail of some list item, the DTO
object should contain enough data to fulfill the user’s expectation. For such
usecase, there would be two different objects, and the service layer would
choose the one which best fits user expectation.

In DSW this approach is used to display either list or detail of question-
naires, knowledge models or knowledge model customizations. Conversion
between model and DTO objects is done using specific services.

1.3.4 Authentication

In section 1.3.1 about HTTP requests handling, I briefly discussed endpoint
authentication using JWT. In this section, the reader will be acquainted with
how these tokens work.

Even though some endpoints (such as login or registration) do not require
the user to be authenticated, the vast majority of the application is based on
managing private data. Therefore, the user needs to be authenticated using

5By plain objects, we usually mean structures, which are not restricted by any framework
and are built only constructs available in the language itself or by other plain objects (using
composition). The same pattern is available in other languages. In Java programming
language, this concept is referred to as Plain Old Java Object (POJO)[6].

7

1. State-of-the-art

1 -- Define DTO
2 data QuestionnaireDetailDTO = QuestionnaireDetailDTO
3 { uuid : String
4 , knowledgeModel : KnowledgeModelDTO
5 , replies : [ReplyDTO]
6 }
7

8 -- Convert Model object to DTO
9 toQuestionnaireDetailDTO :: Questionnaire

10 -> QuestionnaireDetailDTO
11 toQuestionnaireDetailDTO model =
12 QuestionnaireDetailDTO
13 { uuid = model ^. uuid
14 , knowledgeModel = model ^. knowledgeModel
15 , replies = model ^. replies
16 }

Listing 1.2: DTO definition and transformation from the Model object

username and password before he or she can access these data. Similarly to
data persistence, also authentication may be done in many ways. There is
basic authorization6, API keys, JWT and many more.

The DSW application uses JWT tokens, which stands out by having the
ability to be verified for issuer authenticity. Thanks to this, the issuer (in this
case the server application) can embed custom payload into token and be sure
those data will not be modified by an unauthorized person.

To become authorized, the user first has to log in to the application using
username and password. If those credentials are correct, the server will issue
an access token and send it back to the user. For all request requiring autho-
rization, the user has to send issued token in the request header. The server
will read the payload, verify token integrity and check the user’s permissions.
If the token is valid, the appropriate handler is called.

All JWT tokens have the same structure (pictured in figure 1.1). The
token consists of three parts: Header, Payload, and Signature[8].

The header contains information about the token type and hashing algo-
rithm used to generate the signature. The payload is an arbitrary JSON object
containing publicly visible data (such as user identifier). Token signature is
created by hashing header and payload (both encoded using the Base64 algo-

6Base64 is an HTTP authentication used to encode user’s credentials into request header
directly. Such aan pproach is considered as insecure as the credentials are easily captured
by an unauthorized person[7].

8

1.3. Server-side application

Figure 1.1: JWT token structure example

rithm) by hashing algorithm specified in the header and also encoded using
Base64.

These three parts are combined using period (.) character and returned
as a String.

1.3.5 Authorization

In modern application, authenticating users is not enough. We might want a
system to support a wide range of users hierarchy, capabilities and responsi-
bilities. In DSW this is solved using combinations of roles and permissions.

Each user has one of the following roles:

• Administrator,

• Data Steward,

• Researcher.

Once the user entity is created, it has assigned a role and a default set of
permissions. Having two levels of authorization is a vital system feature as
the user’s account might gain or lose privileges over its lifetime.

Permissions are resource specific, and for each resource, we might distin-
guish between multiple permissions (for example read and write permissions).
Default permissions are system-wide configurable using a configuration file
(which is loaded at startup time).

In the default environment, Administrator has all possible permissions
including management of the users, organizations, and content. The Data
Steward – the role in the hierarchy just under the Administrator – has similar
permissions but is unable to manage organizations and other users. The Re-
searcher can see knowledge models and public questionnaires but is able only
to modify the content he created.

As mentioned earlier in section 1.3.1, permissions are checked in handler
before any business logic happens. Each handler has defined which permis-
sion is required (for example Read questionnaire). Once the user makes
a request, handler checks authentication state and search user’s permissions

9

1. State-of-the-art

(demonstrated in code example 1.1). If user the has granted required permis-
sions, request processing continues. Otherwise, the request is aborted imme-
diately.

1.3.6 DAO

DAO is a way to access persisted data using a simplified interface. In general,
application data may be persisted in many ways. The most common approach
to this is using a database[9]. However, even database persistence may be
implemented in different ways.

On the market, there are several options available. There are various kinds
of databases: Graph databases, Relational databases, Document databases,
and many others – moreover, all of those offered as free to use as well as
business solutions.

In DSW, the Mongo DB was chosen as a database for persisting data.
Mongo DB is a NoSQL document database (explained later), which allows to
storing data using nested structures.

The goal of DAO is to encapsulate such technical detail from other appli-
cation layers. The underlying database may change over time, but as long as
the data model stays the same, the only affected layer will be DAO.

In Haskell, such layer is implemented using independent modules where
each module manages one resource (Mongo DB collection). The module public
interface is implemented using free functions. Those functions offer high-level
API such as findAll, findById and similar for all CRUD operations.

1 -- Finds questionnaire by its ID
2 findQuestionnaireById :: String
3 -> Context (Either AppError Questionnaire)
4 findQuestionnaireById id = do
5 let action = findOne $ select ["id" =: id] collection
6 maybeQuestionnaireS <- runDB action
7 return . deserializeMaybeEntity $ maybeQuestionnaireS
8

9 findQuestionnaires :: Context (Either AppError [Questionnaire])
10 findQuestionnaires = ...

Listing 1.3: DAO module example for Questionnaire entity

1.3.7 Mongo DB

Mongo DB was chosen as a persistent layer in the early development of DSW.
As stated earlier in section 1.3.6, Mongo DB is a document database.

10

1.4. Frontend application

By document database, we understand system which can store hierar-
chical tree structures (so-called documents) composed using scalars (String,
Integer, . . .), hashable maps, arrays or nested documents[10]. These docu-
ments are identified using unique internal identifiers and grouped into collec-
tions.

On collections, we can run standard CRUD queries to manipulate with
stored data. Mongo DB provides an API for querying objects using notation
based on JSON. This notation allows querying on nested objects, aggrega-
tions, relations or regular expressions. Since JSON notation may be unnec-
essarily verbose, documents are internally stored in Binary JSON (BSON)
representation[11].

1 // Find Questionnaire with id '729fb982'
2 db.questionnaire.findOne(
3 { "id": "729fb982" }
4)

Listing 1.4: Mongo DB query for finding questionnaire using its identifier

In oppose to standard relational databases, collections and documents do
not have an explicit schema. Therefore there might be stored almost any kind
of data in collection at one time.

Another notable difference is in data normalization. Standard databases
(based on Structured Query Language (SQL)) use data decomposition and
normalization to achieve better performance and great organization of tables
and columns. In the case of Mongo DB, related documents are usually tightly
coupled together (using composition) and duplicated instead of relations using
foreign keys.

As mentioned before, the data are internally stored in binary format which
is not directly usable in Haskell. Therefore the database driver exposes two
special Typeclasses7 for encoding and decoding binary formatted data. Such
typeclasses must be implemented by all types which will be stored in database.

In addition to coding typeclasses, the driver also exposes a type-safe inter-
face to build CRUD queries. These queries are created using simple Domain
Specific Language (DSL) as shown in example 1.3.

1.4 Frontend application

In this section, I will in detail discuss the approach of development of the
frontend (client) application. As stated earlier in section 1.1.2, this part of

7More information about Haskell Typeclasses are available at
https://www.haskell.org/tutorial/classes.html

11

1. State-of-the-art

1 instance ToBSON Questionnaire where
2 toBSON model =
3 ["uuid" BSON.=: model ^. uuid
4 , "knowledgeModel" BSON.=: model ^. knowledgeModel
5 , "replies" BSON.=: model ^. replies
6]
7

8 instance FromBSON Questionnaire where
9 fromBSON doc = do

10 uuid <- BSON.lookup "uuid" doc
11 knowledgeModel <- BSON.lookup "knowledgeModel" doc
12 replies <- BSON.lookup "replies" doc
13 return Questionnaire { .. }

Listing 1.5: Example of Typeclasses used to transform the Model object into
binary representation

the application is written using functional language Elm.
Even though Haskell and Elm have similar syntax, the application struc-

ture is entirely different. Elm application entry point is a module called Main.
This module’s responsibility is to initialize the application in the browser win-
dow and set its state based on the current browser URL.

The application view is a function of the state. Every time the state
changes, the view function is called with the latest state value and returns
corresponding UI elements. The resulting view is then passed to Elm runtime.

The runtime will compare the given view with current Document Object
Model (DOM)8 and applies only appropriate modifications. Since rendering
the whole DOM may be slow[12], Elm may group multiple changes and render
them at once. This means the browser does not have to render the whole tree
so often and the user experience may increase.

For an extensive application as DSW is, it is not possible to keep the ar-
chitecture that simple. Instead, for each screen new module with the same
architecture is created. In the rest of this thesis, I will refer to such modules as
"subapplicatons" for clarity. This means that state update, view functions, and
messages are created from scratch for each screen. To accomplish interopera-
tion between subapplications and standard Elm architecture, the composition
is used.

In this case, the composition means that every nested application screen
state is managed by its superior screen. A similar idea is used for update

8HTML DOM is a tree of web document (page) objects. It is used to create dynamic
HTML modifiable by JavaScript. More information about DOM is available at W3C docu-
mentation: https://www.w3schools.com/js/js_htmldom.asp.

12

1.4. Frontend application

function where superior screen calls nested’s screen update function.
In the time of writing, the client is composed of six subapplications,

namely: Users, Questionnaires, KMEditor, KnowledgeModels, Organization,
and Public. In the following sections, I will shortly introduce the reader to
each of these.

1.4.1 Users module

This module is primarily used by the system administrator. The administrator
can list registered users, manage their profiles and roles.

For each user, the administrator may update the user’s profile information
(including email) and change password. The user also may be deleted or
deactivated in order not to be able to use application furthermore.

The rest of the users are only allowed to update their profiles without
being able to deactivate or delete it.

1.4.2 Questionnaires module

Questionnaires module has two parts available to all user roles. As each of
those parts contains complex logic (such as network calls and state manage-
ment), it is also separated into individual subapplications.

The first part is a list of existing questionnaires with the ability to cre-
ate a new one. Each user can see either public questionnaires or private
questionnaires he or she created. By selecting a questionnaire, user can see
questionnaire detail.

The second part is a possibility to fill a questionnaire and generate the
data management plan. User fills the questionnaire by answering a set of
questions from the knowledge model which was selected during the process of
creating the questionnaire. Some of the questions have assigned FAIR metrics.
By selecting an answer to a question, its metrics may positively or negatively
affect the overall questionnaire.

Since researched project state may change over time, the user can change
its phase on the questionnaire detail page. As some questions are only desired
in a specific project phase, this action will also probably affect set questions
which need to be answered.

Questions are designed to be infinitely nested and composed using other
questions. Nested questions are in terms of DSW called Item Templates. In
order to answer such question, the user is required to create item answer and
reply to all nested questions in it.

Another type of nested question is follow-up questions for answer item
(from the single choice list). The application is designed to make follow-up
questions optional for items which do not require it. Since questionnaires may
quickly become complicated and hard to orientate in, follow-up questions are
not visible until the appropriate answer is selected.

13

1. State-of-the-art

1.4.3 KMEditor module

In section 1.5 about knowledge models migration, I will describe how editing
knowledge models is designed and implemented. In this section, I will describe
how the UI of customizing knowledge models work.

KMEditor module is mainly designed for data stewards (even though it is
available to other roles too). Stewards are allowed to list existing knowledge
models customizations or create a new one. We can understand customization
as a new branch of existing (or even new) knowledge model which contains
changes from the superior knowledge model.

Together with listing existing customizations, the user can also create a
new one. When creating a new one, the user is asked to either select superior
knowledge model or start from scratch. In both options, a new screen is
displayed with details of customization.

The editor allows managing the whole knowledge model structure men-
tioned earlier: Chapters, Questions, Answers, References, and Experts. All
of these may be added, modified or deleted. Changes are synchronized to
the server in a batch once the user decides to save the current version of the
knowledge model explicitly.

Nodes overview is displayed in a hierarchical tree view where modified
nodes are highlighted using appropriate color. Navigation in the knowledge
model is done using either tree view on the left side of the screen or from the
selected node overview on the right side.

Node overview displays configuration specific to each node type together
with its nested nodes.

During the time of writing this thesis, new capabilities for the editor are
currently in development by its maintainers. The first one allows to tag ques-
tions. It helps to categorize questions into logical groups by them. Later,
while creating a new questionnaire, data steward can pick only questions hav-
ing specified tags, which are relevant for the questionnaire.

The second one is a knowledge model preview. Currently, there is no way
to quickly preview how questionnaire built on edited knowledge model will
look like. To do that, the user is required to save and publish the knowledge
model and then create a questionnaire to see the UI. In the new version, users
will be able to see an overview of final then questionnaire right in the editor
without a need to publish unfinished customization.

The editor UI is shown in figure 1.2.

1.4.4 Knowledge models module

This module partially groups features from both Questionnaires and KMEditor
modules. The main difference is, that this screen directly operates with knowl-
edge models, instead of customizations. This, however, is not a significant dif-
ference because all published customizations are listed in knowledge models

14

1.4. Frontend application

Figure 1.2: The knowledge model editor

too. For the rest of the features, all users may see knowledge models with its
detail, create a questionnaire or new customization.

The last feature is related to system interoperability. Users are allowed to
both import new knowledge models or export an existing one in JSON format.

This is an essential feature as base knowledge may, in theory, be created
by anyone – either by individuals or enterprises. Such models then could be
shared publicly and used in an arbitrary instance of DSW.

Even today, importing models is a very useful feature. The default instal-
lation package of DSW is currently shipped without any content. However,
the initial base model (described later in section 1.5) maintained by Mr. Rob
Hooft is shared publicly and can be easily imported.

1.4.5 Organization module

Organization management is a simple module which allows the administrator
to manage necessary information (currently only name and identifier) of an
organization operating the given instance of the application. This information
is mostly used to identify knowledge models created by the organization and
to add metadata to exported data management plans.

1.4.6 Public module

Public module groups all subapplications which are accessible without being
logged in to the system. Those modules are:

15

1. State-of-the-art

«device»

DSW Server

«execution environment»

Web Server

dsw-server

«device»

DSW Client Server

«execution environment»

Web Server

«artefact»
index.html

«artefact»
main.js

«http» «http»«device»

PC

«execution environment»

Web Browser

dsw-client

Figure 1.3: The system architecture

• Login,

• Registration,

• Public questionnaire.

The login module is predominantly self-explanatory. It is and landing
page for not-logged-in users who are prompted to enter credentials. After a
successful login, the server will issue a JWT access token which will authorize
the user to see private pages.

Registration module is similarly straightforward. It is designed for users
who are not signed up to the system yet and wants to use it. After successful
registration, the user is required to confirm his email address and activate the
account. Once the profile is activated, the user able to log in to the system.

Last part is a public questionnaire. This serves as an application demo
which allows unauthenticated researchers to fill a prepared questionnaire.
Since the public questionnaire is for demonstration purpose only, its data
answers are not stored anywhere and will be forgotten once the user leaves
the screen.

1.5 Knowledge model migrations

Initially, the DSW portal was created as a user-friendly alternative to knowl-
edge model management which was previously built using JSON notation.

16

1.5. Knowledge model migrations

This notation was initially created and maintained by Rob Hooft9 and is still
used as core knowledge model in DSW.

As knowledge models may change over time, it is required to keep track
of all possible versions created in the past. In terms of DSW, such process of
modifying knowledge model is called migration. The migration process was
designed and implemented by Ing. Vojtěch Knaisl as a part of his master
thesis[13].

Migration consists of two parts: modification and upgrade. In the modifi-
cation part, data steward may do CRUD operations on all knowledge model
nodes (this includes chapters, questions, answers, references, and experts).
Once the modifications are done, data steward publishes a new version of the
knowledge model, so the modifications are available to other stewards.

The second part, upgrade, is done on knowledge model customizations.
These customizations may be for example localizations, which needs to reflect
changes in its parent knowledge model. During the upgrade, the system asks
data steward step by step for all knowledge model changes coming from parent
knowledge model. Since modifications on a single node may be done on both
customizations and parent knowledge model, conflicts may occur.

In case of conflict, the user is asked to solve it manually. There are two
options for the user to solve a conflict. User may either accept incoming
change (which will discard customization changes) or reject the incoming
change (which will in oppose prefer customization changes). Changes which
do not cause conflict are merged automatically without user interaction.

Once all conflicts are resolved, data steward is asked to finalize the migra-
tion by publishing new a version of customization.

On top of knowledge models, researchers create and fill questionnaires
which are later used to create data management plans. Questionnaires are
currently tightly coupled to knowledge model they were initially created on.
This, however, means, that once a new version of the knowledge model is
released, a new questionnaire has to be created and filled from scratch.

As a result of this master’s thesis, researchers will be able to migrate
their questonnaires to newer version similarly as data stewards can migrate
knowledge models.

1.5.1 Event-driven architecture

In previous section 1.5, I discussed the idea behind having multiple versions
of the same data source at once. In this section, I would like to describe the
technical details of that idea briefly.

In system representation, knowledge models are nothing more than a se-
quence of modification events. Those events are strictly defined and must

9Rob Hooft is a manager of Netherland node of ELIXIR group (ELIXIR NL). Mr. Hooft
created the original knowledge model data source which is currently used in DSW as an
optional component.

17

1. State-of-the-art

always be performed in the order they initially were created. The single event
represents one specific modification. This modification may be "Add chapter",
"Add question" or "Remove answer". Together, the system supports exactly
twenty events where each of these events contains additional metadata. In
Haskell, such structure is represented using multiple constructors of the same
data type (example 1.6).

1 -- Knowledge model modifications events enumeration
2 data Event
3 = AddKnowledgeModelEvent' AddKnowledgeModelEvent
4 | AddChapterEvent' AddChapterEvent
5 | DeleteChapterEvent' DeleteChapterEvent
6 | AddQuestionEvent' AddQuestionEvent
7 | ...
8

9 -- New knowledge model meta data
10 data AddKnowledgeModelEvent = AddKnowledgeModelEvent
11 { _addKnowledgeModelEventUuid :: UUID
12 , _addKnowledgeModelEventKmUuid :: UUID
13 , _addKnowledgeModelEventName :: String
14 }

Listing 1.6: Event representation in DSW

Such an approach is generally known as event-driven architecture[14]. One
of the main benefits for DSW is that by repeatedly applying the same events
again, we always get the same result.

This works well with Mongo DB as a persistence layer. Instead of compiling
(by applying events) knowledge models and storing the result in the database
multiple times (for each customization, questionnaire, . . .), only events are
stored. When user requests compiled knowledge model, it is always compiled
on demand and presented using DTO. Thanks to that, the user always has the
latest possible version without problems with the inconsistency which would
not be possible over time otherwise.

Another great feature of a chain of events is that it can be easily manip-
ulated. For example, merging two customizations of knowledge model may
be quickly done by applying one set of events at the end of the other chain.
It also allows the user to cherry pick events and apply only a subset of in-
coming changes. Those properties are greatly utilized in the knowledge model
migrations mentioned earlier.

18

1.6. Deployment

1.6 Deployment
In previous sections, I described the architecture of the DSW distributed sys-
tem. This section is dedicated to the production environment of this applica-
tion.

Since both parts of the system are independent, deployment of the whole
application is done in two steps. In one step, the server side application is
deployed. As discussed earlier, Haskell application does not need application
server (the requests are handled directly by the application) but depends on
the persistence layer. To make the deployed application lose coupled, two
Docker containers10 are used to decouple application itself from the database.
To interconnect the containers, Docker compose is used to make a private
network between them. From the user perspective, the application behaves as
a monolith which internally encapsulates its complexity.

In the second step, the client application is deployed similarly. Since Elm
application runs in the user’s internet browser, there is an additional container
which handles HTTP requests and servers the application to the user. This
container may be an arbitrary HTTP server. For the purpose of DSW, the
Nginx HTTP server was chosen. Nginx is configured to return an empty HTTP
document which links compiled Elm application. The actual logic (including
routing) is handled locally in the browser.

The deployment schema is shown in figure 1.4.

10Docker is a development and deployment tool using containers to package up an appli-
cation (together with its dependencies) and deploy it as a single package. Containers utilize
hosts OS kernel instead of creating virtual a machine and virtual OS [15].

19

1. State-of-the-art

«device»

DSW Server

«execution environment»

Docker container

dsw-server

«execution environment»

Docker container

«database system»

MongoDB

«execution environment»

Nginx Web Server

«artefact»
index.html

«artefact»
main.js

«http»

«device»

PC

«execution environment»

Web Browser

dsw-client

Figure 1.4: The application deployment schema

20

Chapter 2
Analysis

In this chapter, the reader will be acquainted with general requirements em-
phasized on the solution.

Firstly, I will identify the functional and non-functional requirements for
questionnaire migrations and specify each requirement further.

Next, identified requirements are extended and defined further with spe-
cific use cases.

Then, I will describe individual scenarios for given use cases in detail.
Lastly, I will describe the domain model of the application, identify basic

entities for such model and defined relationship between them.

2.1 Requirements

In this section, I will define functional and non-functional requirements for
the DSW portal.

2.1.1 Functional requirements

This section will introduce a list of identified functional requirements to the
reader. There are the following requirements:

FR1 – User is notified about available upgrade

User is visually notified when a newer version of the knowledge model
is available for the given questionnaire.

FR2 – Create questionnaire migration

This requirement enables the user to create new questionnaire migra-
tion from current knowledge model to its newer version.

FR3 – Explore questionnaire on new knowledge model

21

2. Analysis

User can see a preview of the migrated questionnaire before the ques-
tionnaire is fully migrated. This includes a preview of all questionnaire
nodes together with the user’s replies from previous knowledge model
version.

FR4 – Guide user through the list of changes
User is guided by the system through changes relevant to the migrated

questionnaire.

FR5 – Resolve question change
Question change may be marked as resolved, so the user does not have

to remember which changes need to be reviewed before the questionnaire
is migrated.

FR6 – Display node difference between versions
Questionnaire nodes are shown in both the old version and new version

with a visual representation of textual changes (removed, changed or
added characters).

FR7 – Mark question change for review
Allows user to mark questions which need to be carefully reviewed

once the migration is done. This enables the user to adjust open-ended
answers or choose a different choose different answer in the hierarchical
tree.

FR8 – Migrate questionnaire
User is allowed to finish migration and upgrade questionnaire knowl-

edge model version.

FR9 – Cancel questionnaire migration
Questionnaire migration which was not finalized by the user may be

canceled without affecting the original questionnaire.

2.1.2 Non-functional requirements

Now, I would like to discuss the non-functional requirements of the system.
These requirements specify entitlements for system and further define the
functional requirements.

NR1 – User authentication
User is only allowed to create, modify, finish and cancel migration of

questionnaires belonging to him. The system administrator is allowed
to migrate an arbitrary questionnaire. Unauthenticated users are not
authorized to access the migration feature at all.

22

2.2. Use cases

NR2 – Migrated question consistency

The question may be either unmarked, marked as resolved or marked
for later review. Other states are illegal.

NR3 – Preserve existing replies

If the user’s reply to a question is compatible with the new knowl-
edge model (for example, the question type did not change), it must be
preserved.

NR4 – State synchronization

Question state is synchronized automatically without user interaction.

NR5 – Migration interoperability

Questionnaire migrations are integrated into the existing system and
are compatible with its domain model.

2.2 Use cases
Based on identified requirements from the previous section, I would like to
further discuss application use cases covering these requirements. The use
cases are initiated by authenticated users without the need for increased per-
missions. All identified use cases together with short description are listed
below.

UC1 – Initiate questionnaire migration

Enables user to start the questionnaire migration process in case he
is notified about new knowledge model version availability.

UC2 – Cancel questionnaire migration

Enables user to discard process of the questionnaire migration without
affecting the state of the initial questionnaire or its replies.

UC3 – Display migration change context

Enables user to navigate through the new knowledge model version
in the context of filled in questionnaire replies.

UC4 – Change migrated question state

Enables user to modify changed question state to one of the following
states:

• Initial state – changed question without state modification,

23

2. Analysis

• Needs review – a change needs to be reviewed after the migration
is finalized,

• Resolved – a change does not affect the user’s previous answer.

UC5 – Migrate questionnaire
Enables user to migrate questionnaire to the new version of the knowl-

edge model.

2.2.1 Requirements coverage

Requirements coverage ensures that all functional requirements identified in
section 2.1.1 are covered by defined use cases. Table 2.1 shows how all iden-
tified requirements are covered by use cases.

functional requirement
use case FR

1

FR
2

FR
3

FR
4

FR
5

FR
6

FR
7

FR
8

FR
9

UC1 • •
UC2 •
UC3 • • •
UC4 • •
UC5 •

Table 2.1: Coverage of functional requirements by use cases

Figure 2.1 shows the use cases diagram together with relationships between
them. Since questionnaire migration feature is integrated into the system only
for authenticated users, the diagram contains exactly one actor. The analysis
of non-functional requirements shows that all authenticated users (regardless
of role) are allowed to manage migrations. Therefore only one role is used.

2.3 Scenarios
In previous sections, I described which requirements are relevant to question-
naire migrations. Requirements were validated against use cases. In this
section, the reader will be further acquainted with use case execution demon-
strated on scenarios.

Scenarios are presented in a step-by-step form where each step represents
interaction with the system.

2.3.1 Scenarios actors

Before describing particular scenarios, I will briefly introduce actors partici-
pating in these scenarios. Scenarios have the following actors:

24

2.3. Scenarios

Application

Authenticated
user

UC1 Create questionnaire
migration

«extend»

«include»

UC2 Cancel questionnaire
migration

 «extend»

UC3 Display migration
change context

«extend»

UC4 Change migrated
question state

«include»

«include»

«include»

UC5 Migrate questionnaire

Figure 2.1: Use cases relationship diagram

• User
An actor interacting with them system in the role of an arbitrary au-
thenticated user.

• Application
An actor who represents both client and server side of the system. It
acts as a black box from the client perspective. Its tasks may internally
consist of communication between these two parts.

2.3.2 Scenarios description

This section contains descriptions for individual scenarios. Roles described in
the previous section will be highlighted using the italic text style.

All use cases start in an implicit state where the user is authenticated and
located on a screen with a list of questionnaires.

The scenario for UC1 – Initiate questionnaire migration

25

2. Analysis

1. The user is notified about available migration.

2. The user selects an upgrade option offered by the application.

3. The application prompts the user to select which of the available
versions of the knowledge model wants to migrate to.

4. The user selects the desired version.

5. The user confirms the selection.

6. The application creates questionnaire migration and shows it to the
user

Output state: The migration process is started and the user sees
a preview of a first change.

The scenario for UC2 – Cancel questionnaire migration

Input state: The user created a migration as described in the UC1.

1. The application notifies the user that there is a migration in progress
on one of the user’s questionnaire.

2. The user selects the option "Cancel migration" displayed along with
other questionnaire actions.

3. The application will discard all data related to the questionnaire.

4. The user is notified that there is an upgrade available for the ques-
tionnaire.

Output state: The user reverted questionnaire to the initial state.
The user is at the same state as at the beginning of the scenario
for UC1.

The scenario for UC3 – Display migration change context

Input state: The user created questionnaire migration according
to the scenario for UC1.

1. The application displays detail of a first change in the migration.

2. The user expands the hierarchical structure overview.

3. The application displays a detailed hierarchy structure and high-
lights currently displayed change.

4. The user navigates through to the hierarchy to see the context of
the change.

26

2.3. Scenarios

The scenario for UC4 – Change migrated question state

Input state: The user created questionnaire migration according
to the scenario for UC1.

1. The user selects the option "Continue" migration next to other ques-
tionnaire actions.

2. The application displays the questionnaire migration process fo-
cused on the first change.

3. The user navigates through a list of changes until he sees the first
change of either question or its answer.

4. The application offers to either resolve change or mark it for later
review.

(a) The user selects the resolve change option.
(b) The user selects the review change later option.

5. The application saves the state and notifies the user about the new
state.

Output state: The application stored the updated state so the user
will see the new state next time he uses the application. Such
state may be undone.

The scenario for UC5 – Finalize questionnaire migration

Input state: The user updated the questionnaire migration state
according to UC4 several times.

1. The user selects the option "Continue migration" next to other ques-
tionnaire actions.

2. The application displays the questionnaire migration process fo-
cused on the first change.

3. The user selects "Apply migration" action.

4. The application creates a new copy of the questionnaire on the new
version of knowledge model.

5. The application displays a list of questionnaires with the original
questionnaire (build on the old version of the knowledge model)
and a new questionnaire (build on the version).

Input state: The user has one more questionnaire in the list of
questionnaires.

27

2. Analysis

2.4 Domain model

After the analysis of requirements, use cases and their scenarios, I will further
introduce the domain model. By domain model, we understand a conceptual
model of the domain that incorporates both behavior and data[16].

Based on the previous analysis, I identified the following entities:

• QuestionnaireMigration,

• DiffEvent,

• Questionnaire,

• KnowledgeModel,

• QuestionFlag,

• Chapter,

• Question,

• Reply.

Figure 2.2 shows all identified entities and relationships between them.
Some of the entities already exist in the DSW; my analysis was therefore also
based on Ing. Vojtěch Knaisl’s master’s thesis[13] previously mentioned in
chapter 1. Such entities are explicitly marked in the following list of entities.

2.4.1 QuestionnaireMigration entity

This entity represents the migration itself. It is composed using all entities
which are required to create the migration context. The requirements de-
mand that there must be at most one migration for each questionnaire in one
moment.

Migration is created by the user when he wants to use a newer version of
the knowledge model in his questionnaire.

2.4.2 DiffEvent entity

This entity represents an event which occurred during the knowledge model
customization. Events are further described in section 1.5.1. Data stewards
create events while making customization to the knowledge model in KMEditor
module (discussed in 1.4.3).

The list of events is used to create a set of changes which are presented to
the user.

This entity is already part of the application.

28

2.4. Domain model

DiffEvent

+ oldValue

+ newValue

diffsBy /\

hasQuestionnaire >

hasDiffKnowledgeModel \/

QuestionnaireMigraiton

QuestionFlag

+ title

flaggedBy \/

Quesitonnaire

+ title

hasPreviousKnowledgeModel \/

KnowledgeModel

+ name

hasQuestion >

Chapter

+ title

+ description

replied \/

Question

+ title

+ text

+ type

Reply

+ value

Answer

+ title

+ text

+ type

builtOn \/

hasAnswer \/

hasFollowUp /\

1..*

1

1

1

1
1

1

0..*

0..*

0..*

0..*

0..*

1

0..*

1 0..*

0..1

0..*

0..*

0..*

Figure 2.2: Domain model with relationships between entities
29

2. Analysis

2.4.3 Questionnaire entity

The Questionnaire entity represents currently migrated questionnaire. It
is created by an arbitrary user in the Questionnaires module (described in
1.4.2).

QuestionnaireMigration module uses questionnaires to make a preview
of changes in the context of the user answers.

2.4.4 KnowledgeModel entity

Knowledge models contain the hierarchical structure of chapters, questions,
and answers. In the migration, it is used for comparisons between new and
previous versions of the knowledge model.

There is a unique structure called DiffKnowledgeModel used in the mi-
gration process. It has the same structure as the migrated knowledge model
but also contains nodes, which were deleted – this enables the user to explore
the context of nodes which will no longer be available after the migration is
finished.

The KnowledgeModel entity is already part of the application.

2.4.5 QuestionFlag entity

Flags are used to represent question state. Since flags are not only used
during migration but also in the questionnaire preview, flags are related to
the questionnaire instead of migration.

2.4.6 Chapter entity

Chapters are used to group questions into logical parts. In addition to relation
to questions, chapters contains a title and a description text.

This entity is already part of the application.

2.4.7 Question entity

Questions are in questionnaires used to collect data from the users. This entity
is created by the application when creating (building) knowledge model from
a list of events.

This entity is already part of the application.

2.4.8 Answer entity

This entity is used to represent an answer replied by user to a question. There
are more types of question such as open-ended, single choice or structured
(composed from other questions).

Single choice answers may also have follow-up questions which need to be
replied to too.

30

2.4. Domain model

The answer entity is already part of the application.

2.4.9 Reply entity

Reply entity represents the selected answer for questionnaire question. It
is created by the user when filling up the questionnaire in Questionnaires
module.

Non-functional requirements demand to preserve the reply if it is compat-
ible with newer knowledge model.

This entity is already part of the application.

31

Chapter 3
Design

In this chapter, I will summarize the design of the implementation solution.
Firstly, I will introduce the reader into the UI of the application. The applica-
tion design will be presented using wireframes and further extended by actual
screen designs in chapter 4.

3.1 User Interface

The user interface is a base building block for a modern application. The
better the user’s experience from the application is, the more likely the appli-
cation will be successfull[17].

As a first step, while designing the application, it is common to create
wireframes.

3.1.1 Wireframes

Wireframes are used to help understand the whole scope of the application
while investing a minimum amount of time and effort into the actual design.
More than that, wireframes help to verify that all use cases are covered with
a possibility to correct or add missing scenarios or features quickly.

Before the actual design of the application is created, wireframes are often
used to validate system or feature design by users. Such validation is called
user testing and helps companies to effectively adjust the behavior and look
of the application before it is fully designed or developed.

Figures 3.1 up to figure 3.6 shows wireframes developed for the migration
tool.

Initiating the migration

The migration will be started from a list of existing questionnaires. If the
questionnaire is based on the older of the knowledge model, there is a label

33

3. Design

Figure 3.1: List of questionnaires with notification about available upgrade

notifying the user about available migration (figure 3.1).
The upgrade option is visible with the rest of the actions only when the

questionnaire is focused (hovered by a mouse pointer). By selecting the up-
grade option, the modal window is presented (figure 3.2) to the user asking to
select to which version he wants to upgrade the questionnaire. It is intentional
not to preselect none of the available versions (a especially not the newest one)
as the user might want to upgrade to the newer version but not the latest one.

Migration overview

Once the user selected to which version he wants to migrate the questionnaire
to, the migration process is started, and its overview is displayed. On the
screen, the user sees three main panels (ignoring the base navigation panel on
the left side – figure 3.3):

• Structure overview,

• Old questionnaire overview,

• New questionnaire overview.

34

3.1. User Interface

Figure 3.2: Modal dialog asking the user to select a newer version of the
knowledge model

The structure panel is used to show the whole hierarchy of the question-
naire – all possible chapters, questions, and answers. By default, only chapters
are visible so the user will not get confused by a significant amount of nodes.

The old questionnaire overview displays the questionnaire version from be-
fore the migration. This overview helps the user to see the difference between
migrated versions. All textual changes are displayed using appropriate colors
to make the difference highly visual. When a question node is selected, the
user can see all possible answers with the highlighted user’s reply. If the ques-
tion is of type Items template, only the number of user’s replies is visible.

The overview of the new questionnaire displays the questionnaire version
from after the migration is finalized. The view has the same structure as the
panel with an old questionnaire state, with one significant difference: when
the user’s reply is no longer applicable to the new version, the user is notified.
This might be a meaningful change for the user. Therefore, he is allowed to
mark question for a later review.

Once the question is marked,the user can no longer mark question until
the current mark is not removed (figure 3.4).

To make it easier to explore all changes, athe pplication provides quick
navigation between them using previous and next buttons (figure 3.3).

35

3. Design

Figure 3.3: Questionnaire migration detail (focused on question difference)

Figure 3.4: Updated state of the migrated question with expanded context

36

3.1. User Interface

Figure 3.5: Questionnaire in the process of migration

Canceling the migration

During the migration process, the user is not able to fill the migrated ques-
tionnaire. There might be an exceptional case where the user either wants to
update replies or generally cancel the migration. This can be done from the
questionnaires list as shown in figure 3.5

Finalizing the migration

Once the user reviews all the changes which will be applied to the question-
naire, he can finalize the migration. By finishing the migration, a new ques-
tionnaire on the new knowledge model version will be available along with the
original one. This allows the user to compare replies after the migration is
done.

Use case coverage

Table 3.1 shows which use cases are covered by which wireframe. This ta-
ble makes sure that all identified use cases were implemented into the final
solution.

37

3. Design

Figure 3.6: Migrated questionnaire together with its original version

use case
wireframe U

C
1

U
C
2

U
C
3

U
C
4

U
C
5

WF1 •
WF2 •
WF3 • •
WF4 • •
WF5 •
WF6 •

Table 3.1: Wireframe covering of identified use cases

3.2 Class diagram

In this section, I will introduce the class diagram for both the DSW Server
and the DSW Client applications. This diagram is partially based on the
current state and outcomes of the analysis in chapter 2.

The diagram is split into two parts – one for the server side and one for the
client side. Main entities are then further described for better understanding
of the design.

38

3.2. Class diagram

QuestionnaireMigrationState

+ questionnaire: Questionnaire

+ targetPackageId: String

Questionaire

+ id: String

+ name: String

+ replies: [Reply]

KnowledgeModel

+ id: String

+ name: String

+ chapters: [Chapter]

QuestionFlags

+ id: String

+ name: String

+ replies: [Reply]

+ questionFlags: [QuestionFlag]

«enum»
QuestionFlagType

«enum»
QuestionnaireState

Chapter

+ id: String

+ name: String

+ chapters: [Chapter]

Question

+ id: String

+ name: String

+ chapters: [Chapter]

Answer

+ id: String

+ name: String

+ chapters: [Chapter]

1

1

1

0..1

0..*

1 0..*1

1

0..*

1

1

0..*

1

0..*

0..*

Figure 3.7: Server class diagram

3.2.1 Class diagram in the context of functional
programming

In functional programming, the generally used term class is either not used
at all or (in case of Haskell, for example) has an entirely different meaning.
This, though, does not mean that complex data structures are not used.

Both Haskell and Elm programming languages have the concept of struc-
tured data called either data (in Haskell) or type (in Elm). These structures,
however, do not encapsulate internal state and lack of methods.

To maintain consistency with terms used in the context of software en-
gineering, I decided to use generally know terms such as class diagram. For
such terms, the reader should always refer to this section to avoid misunder-
standing.

3.2.2 Server class diagram

Firstly I would like to introduce a class diagram for the server application.
The diagram is shown in figure 3.7. Entities on the left side the diagram
are either newly introduced or existing entities which needed to be updated.
On the right side of the diagram, there are entities (partially transparent)
which were used in the solution but were not modified, thus serves only for
completeness of the diagram.

39

3. Design

QuestionnaireMigrationState

This entity is used designed to hold the state of the migration. It contains
a deep copy of the migrated questionnaire and an identifier of the target
knowledge model.

Initially, this entity was design to also contain a deep copy of both an old
and new version of the knowledge model. The maintaining team of the DSW,
however, removed knowledge model caching feature, so the knowledge models
are always compiled from scratch[18].

Therefore, all needed knowledge models are referred to only using unique
identifiers.

The state of the migrated question was added to the questionnaire itself as
the state needs to be also preserved once the migration is completed. The deep
copy of the questionnaire is then used to create a new copy of the questionnaire
without modifying the original version.

QuestionnaireState

Questionnaire state is a simple enumeration of three primary cases:

• Default,

• Migrating,

• Outdated.

The Default state represents cases, where the questionnaire is based on
the latest version of the knowledge model (and no migration is therefore avail-
able). Once the user creates a migration for the questionnaire, it is moved into
Migrating state and preserved in such a state until the migration is either
finalized or canceled.

The last possible state represents a questionnaire, which is based on an
older version of the knowledge model and can be migrated to the newer one.

QuestionFlags

Question flags represent a state of migrated questions. Questionnaire holds
a collection of QuestionFlags object, which is composed of question unique
identifier and a set of question flags (represented by QuestionFlagType.).

Currently, at most one flag is allowed to be added to each question.
QuestionFlags is however designed to keep an arbitrary number of flags.

This makes such feature future proof as more flag types may be easily
added later. On the other hand, such behavior requires more sophisticated
management of the flags because of integration constraints.

40

3.2. Class diagram

«enumeration»
DiffState

+ node: DiffNode

«enumeration»
DiffNode

1

1..2

Model

+ diffStates: [String: DiffState]

+ diffTree: [String: TreeNode]

+ selectedUuid: String

+ diffEventsUuids: NodeUuids

TreeNode

+ uuid: String

+ treeNodeUuid: String

+ children: [String]

+ title: String

+ expansionState: ExpansionState

hasChildren /\

+ path: [String]

+ nodeType: TreeNodeType

«enumeration»
TreeNodeType

+ reply: Maybe Reply

hasState \/

«enumeration»
ExpansionState

NodeUuids

+ treeUuid: String

+ diffStateUuid: String

+ selectedUuid: String

+ diffEventsUuids: NodeUuids

1 0..*

1

0..*

1

0..*

1

1

1

1

«enumeration»
TreeNodeType

+ reply: Maybe Reply

1

1

Figure 3.8: Client class diagram with the relationship between entities

QuestionFlagType

This enumeration represents all possible types of migrated question state.
Currently, only two cases are implemented: NeedsReview and Resolved.

These cases correspond to states identified in functional requirements in
section 2.1.1. As described in the previous section, these cases are currently
mutually exclusive. Therefore additional business logic needs to keep data
consistent.

3.2.3 Client class diagram

In this section, I will discuss the design of the class diagram of the client
application. For simplicity, the diagram only shows entities which were newly
added as existing entities do not have a significant impact on the design. The
diagram is shown in figure 3.8 and is further described in the following sections.

Model

The Model entity is a base structure keeping the whole state of the ques-
tionnaire migration subapplication. The name was chosen according to Elm

41

3. Design

architecture described in section 1.4.
This entity is used as a source of truth for the rest of the subapplication,

and whenever it changes, the whole view structure must be recreated from
scratch.

TreeNode

This entity represents a single row in the questionnaire structure overview
(the left panel on figure 3.4). The Model entity keeps tree nodes in a lookup
table so it can be quickly looked-up by its identifier.

Because the hierarchy view needs to display some additional nodes (not
presented in the questionnaire directly), it uses the node path to represent the
node location in the tree.

The path is a unique identifier which is made of node identifier composed
with its all predecessor’s identifiers. This allows having duplicate nodes in the
tree in a deterministic way (by adding custom nodes to the path).

All nodes contain its expansion state, path, list of successors’ identifiers
and its type.

Children nodes are rendered using repeated lookups in the table of nodes
mentioned above.

TreeNodeType

The node type entity is used to differentiate between questionnaire node types.
This allows rendering each node with a sligthly different design, so it is visually
recognizable to the user.

ExpansionState

The expansion state entity is used to tell the rendering function whether or
not it should also render all of the node successors. This state may change
every time the user toggles the expansion indicator.

DiffState

A DiffState entity represents a difference state of each node of the question-
naire. It is implemented as an enumeration with the following cases:

1. Unchanged,

2. Created,

3. Modified,

4. Deleted.

42

3.2. Class diagram

The Unchanged represents a node, which was not edited between migrated
versions of the knowledge model.

The next type, Created is a constructor only accepting one node which
represents the created node. When constructing such node, all texts in it are
marked with the Added state so it can later visually br represented to the user.
In this case, only the node in the right panel will be displayed.

The Modified case accepts two nodes: the old version and new version.
Its texts are differentiated by letters, which allows to mark deleted and added
letters. The old version contains original texts with marked deleted letters.
The new version, on the other hand, displays the current version of texts with
marked added letters.

Lastly, the Deleted node is the opposite of the Created node mentioned
above. It only displays the node in the left panel with all texts marked as
deleted.

This entity is directly created from the knowledge model customization
event. Because customization events are not structured hierarchically, the
difference state cannot be directly mapped to the tree node and does not
contain a unique path.

DiffNode

This enumeration entity is used to created DiffState entity mentioned in the
section above. It contains constructor for each questionnaire node type. The
constructors are

• KnowledgeModelDiffNode,

• ChapterDiffNode,

• QuestionDiffNode,

• AnswerDiffNode.

Each of these constructors further accepts data structure specialized for
each node type so it can be adequately rendered.

NodeUuids

This structure is used to map identifiers between composed path (used in
TreeNode) and unique node identifier from the knowledge model (used in
DiffState). It is an pair containing path as a one component and node
identifier as secong. Thanks to that, there is a quick way to find difference
state for all tree nodes and vice versa.

43

3. Design

3.3 Server Interface

In this section, I will discuss what interface is needed to be provided by the
server to enable all required features. The interface is described in the form of
REST API endpoints. All endpoints are further defined in individual sections.

3.3.1 Create questionnaire migration

This endpoint is used to create a new questionnaire migration. The migration
is created for the questionnaire, whose identifier is passed as a URL parameter.

The other parameter, targetPackageId is passed in the request body and
represents the identifier of the newer version of the knowledge model.

• URL

– /questionnaires/:qtnUuid/migrations

• Method

– POST

• URL Parameters

– qtnUuid – Migrated questionnaire unique identifier

3.3.2 Get existing migration detail

Endpoint used to retrieve information about existing migration. The migra-
tion is searched for by migrated questionnaire identifier, which is passed in as
a URL parameter.

Returns an error code if there is no migration for the given questionnaire.

• URL

– /questionnaires/:qtnUuid/migrations

• Method

– GET

• URL Parameters

– qtnUuid – Migrated questionnaire unique identifier

44

3.3. Server Interface

3.3.3 Delete existing migration

Cancels an existing migration by migrated questionnaire identifier passed in
as a URL parameter.

• URL

– /questionnaires/:qtnUuid/migrations

• Method

– DELETE

• URL Parameters

– qtnUuid – Migrated questionnaire unique identifier

3.3.4 Update migrated question state

Allows updating migrated question state by setting it into NeedsReview or
Resolved state. The questionnaire is identified by an identifier passed in as a
URL parameter.

The new state is passed in as a structure composed from question identifier
and collection of question flags. When no flag is provided, the question is set
to the default state.

• URL

– /questionnaires/:qtnUuid/migrations/resolveQuestionEvent

• Method

– PUT

• URL Parameters

– qtnUuid – Migrated questionnaire unique identifier

3.3.5 Finalize migration

This endpoint enables the user to finalize existing migration and migrate the
questionnaire from an older version of the knowledge model to a newer one. By
calling this endpoint, a new copy of the questionnaire (with a new identifier)
is created and saved along with the original version.

• URL

– /questionnaires/:qtnUuid/migrations

• Method

45

3. Design

– PUT

• URL Parameters

– qtnUuid – Migrated questionnaire unique identifier

3.4 Questionnaire structure
Questionnaire structure represents a view panel where the user can preview
all nodes and answer paths. This structure is created from knowledge model
nodes combined with the user’s replies.

3.4.1 Creating the structure

The hierarchical structure is created using a lookup table keyed by string
identifiers. The final lookup table is generated by recursively passing through
a knowledge model and its successors.

Each successor is then also recursively inserting its successors until it
founds a leaf (either question, answer or reply) of the tree. Nodes are added
into the lookup table by its unique path in the tree. The path is given by
chaining sequence of predecessors’ identifiers combined using period (.) char-
acter. This helps to distinguish nodes with the identifier inserted into multiple
locations in the tree while maintaining compatibility with the current imple-
mentation of replies identification.

3.4.2 Meta nodes

To accomplish a clear structure of the user’s replies, some questions require
to insert meta nodes which do not exist in the tree. Such a strategy is used
for the template items question type, where the user is required to reply by
filling structure of nested questions.

Common ELIXIR Knowledge Model
Chapter – Design of experiment

Question – What database will you use?
Q1 – What is the name of the database?
Q2 – What version of the database?
Q3 – Is it an open-source database?

Answer – Yes
Answer – No

Figure 3.9: Item template question type example

In example 3.9, the researcher might want to use multiple databases and
therefore would reply by filling the template multiple times. This would create

46

3.5. Questionnaire overview

a Reply entity for each question by inserting an index tag of the item into
nodes paths. Knowledge models, however, do not support such paths and
replies cannot be directly applied to it because of that.

Item templates replies

As mentioned in the introduction to this section, knowledge model must be
combined with the user’s to render meta items and answers correctly. For
database question example mentioned above, the final rendered tree would
look like the one on figure 3.10 for two replied items.

Common ELIXIR Knowledge Model
Chapter – Design of experiment

Question – What database will you use?
Item 1

Q1 – What is the name of the database?
Q2 – What version of the database?
Q3 – Is it an open-source database?

Answer – Yes
Answer – No

Item 2
Q1 – What is the name of the database?
Q2 – What version of the database?
Q3 – Is it an open-source database?

Answer – Yes
Answer – No

Figure 3.10: Tree representation for item template replies

By selecting any of the node nested in the item template, the user will be
able to see the appropriate answer. There might be however the case, where
the user did not reply by any item template, and therefore there is no meta
node which would render nested questions. In such a case, the tree would
have a flat structure as in figure 3.9.

3.5 Questionnaire overview

Questionnaire overview panel is used to visualize the difference between nodes
from different questionnaire versions. This difference is modeled over previ-
ous and target knowledge model versions. Because each node is build using
different data, its overview must be adjusted too.

47

3. Design

3.5.1 Knowledge model difference

The only editable property of the knowledge model is its title. Therefore, the
difference only shows to the user how its title’s text changed (according to
3.2.3).

To achieve simplicity for the overview, nested nodes are not shown in this
panel and are only visible in questionnaire structure as described in 3.4.

3.5.2 Chapter difference

Chapters are composed of title and detailed description (called text). As
both of those properties might have changed, the user can see the character-
by-character difference of these texts.

Similarly to knowledge models difference, nested nodes (questions) are left
out for the screen simplicity.

3.5.3 Question difference

Question node contains information about its title and description (also called
text). Similarly to chapters, both of these properties are displayed using
character-by-character difference.

Because the overview should show most of the available questionnaire con-
text to help the user get orientated, questions answers are displayed too. The
displayed information is based on the question type. The description of how
the answer differs for each question type follows.

Value question type

This type represents an open-ended question. While filling the questionnaire,
the user is allowed to input an arbitrary text.

To achieve the highest similarity, the user’s reply is rendered as a read-only
value under the question as it would be in the questionnaire.

Options question type

Options represent a single-choice question. User replies to this question by
selecting one of the offered answers.

Under the question difference, all answers are shown as read-only single-
choice options. The options are rendered in the exact state they appear in
the knowledge model. If the user selected a specific answer while filling the
questionnaire, it would be marked.

Item templates question type

This type represents a question type described in section 3.4.2. Because item
template may contain complex nested structures which would be confusing

48

3.6. Questionnaire states

Questionnaire state transition

Default

Migrated questionnaire to
the newest knowledge model

version

Migrating

OutdatedNew knowledge model
version was published Initiated questionnaire

migraiton

Canceled the migration /
Migrated to the outdated

knowledge model

Figure 3.11: The state transition diagram of the migrated questionnaire

in this context, it was decided not to show it. Instead, the user can see
information about how many answers he replied and is referenced to navigate
to the left panel to see the nested questions.

3.5.4 Answer difference

The answer represents a single-choice option answer for the question. This
node contains a label and advice texts. These texts are differenced as other
texts in the overview panel.

Follow-up questions nested in the answer are not displayed directly in the
overview and are only visible in the questionnaire structure.

3.5.5 Tags difference

In the client application analysis in chapter 2, I briefly introduced a new
feature called tags used to group questions into logical parts. As this feature
is not entirely done at the time of the writing, question tags changes are
currently ignored.

3.5.6 Incompatible question answer

One of the non-functional requirements identified in section 2.1.2 demands
the question replies to be preserved after the migration is finalized. This is,
however, only possible if the question type was not changed.

If the question type was modified, the user is noticed that his answer is
not applicable in the newer version and is recommended to mark question for
later review.

3.6 Questionnaire states
To summarize how the questionnaire states may change, I prepared a state
transition diagram shown in figure 3.11.

49

Chapter 4
Realization

In this chapter, I will describe the implementation details of the migration
tool. Firstly, I will introduce tools and technologies for both client and server
side used to implement the migrator. Then, I will go further and describe how
the main parts on both platforms are implemented. Lastly, I will acquaint the
reader with the final application design.

4.1 Used technologies

Now, I would like to introduce the reader to the technologies used to build the
migration tool. As was already stated in the non-functional requirements in
section 4.1, the tool needs to be fully compatible and interoperable with the
current application.

4.1.1 Server application

I described the tools currently used in the DSW in the analysis in chapter 2.
Here, I will briefly highlight the main parts.

Haskell programming language

The server part of the application is fully implemented in the Haskell pro-
gramming language. Haskell is a purely functional programming language. It
means that all functions are pure and all data are immutable[19]. By pure
functions, we understand every function which is free of side effects. Thanks
to side effects elimination, functions become more straightforward and more
comfortable to reason about – each function will for the same input return
the same output every time.

Because the entire server application was already built in Haskell, there
was not much space for choosing a programming language.

51

4. Realization

The migration tool could be built as an individual service (often called mi-
croservice [20]) in an arbitrary programming language. This would, however,
introduce unnecessary complexity in development itself, but also deployment
and application management.

Because building microservice would mean to rebuild the vast majority of
the existing application (an significant part of the model layer and the API
layer), I decided to implement the migrator as a new module which is part of
the existing code base.

Integrated Development Environment

Integrated Development Environment (IDE) is a software application inte-
grating numerous tools for helping faster development[21]. Such application
helps with code syntax highlighting, compiling, testing or even deploying the
developed application.

To name a few, applications like Atom, Visual Studio Code or IntelliJ
IDEA support development in Haskell11.

For a project as extensive as DSW is, neither of those applications was
working correctly. All of the mentioned suffered by lousy performance, invalid
symbols recognition, and invalid error reporting.

After consultation with team members of the DSW maintainers, I decided
to turn off all advanced language support and used only syntax highlighting
in IntelliJ IDEA. Such disadvantage had unfortunately significant impact on
the development time and orientation in the project.

Scotty web framework

The communication between the server and the client application is done using
the REST API. The API interface is built on top of the Scotty web framework.

Scotty is a framework written in Haskell which allows to create type-safe
API routing and provides convenient helper functions to parse HTTP requests.

Most of the work with integrating Scotty with DSW was already done
when I joined the project. My only interaction with the framework was to
register all supported routes for the migration tool and convert data between
internal representation and public JSON.

4.1.2 Client application

Similarly to the server tooling, used technologies were already decided by the
DSW maintainers at the beginning of the project. In the application analysis
in chapter 2, I described in depth the client side application architecture and

11Haskell is usually not supported out of the box by IDEs. Instead, a plugin with language
support and advanced features needs to be installed. Those plugins are usually based on
either ghc-mod or Intero libraries.

52

4.1. Used technologies

its base modules. In this section, I would like to summarize tools and used
technologies briefly.

Elm programming language

The entire client application is currently written in the Elm programming
language (described in 1.4). Elm is a functional language with similar syntax
to Haskell. Its base in building frontend application lays in unidirectional
architecture called Elm architecture.

The term unidirectional describes how data are passed through the appli-
cation. In Elm, the data are always passed one way, through its base archi-
tectural pattern represented by the model, update and view. The application
state is represented by the model, changed using update function and then
presented in view.

The great advantage of using Elm is that its functional approach may be
shared and discussed with the server-side team because of syntax similarity.

Even though both languages are functional, there are few differencies[22].
I would like to point out the two most significant.

First one is lack of Typeclasses in Elm. Such disadvantage makes it harder
to create generic constraints which are widely used in Haskell. This makes
Elm core library more verbose as functions such as map must be implemented
for each type individually.

On the other hand, Elm’s record syntax is much more powerful than
Haskell’s. In Elm, all records may be automatically used as free functions
(taking an object as argument and returning record value) out of the box.
Records, thus, may be used in function composition, in combination with
functions like Maybe.map. This makes the code easily readable and maintain-
able.

Haskell offers a similar feature by using lenses language extension; it,
however, requires records to be structured in a specific way which makes harder
to read.

Integrated Development Environment

After the struggle I had with choosing the right Haskell IDE, I decided to keep
the Elm environment as simple as possible. I chose the Visual Studio Code
(or VS Code, for short) for development as it is lightweight, and based on my
own experience, it is faster and more responsible.

I used the VS Code together with elm[23] plugin which enables features like
syntax highlighting, error reporting, type definitions and "jump to definition".
This made my onboarding on the project much faster and development more
convenient than doing the same things on the server side.

53

4. Realization

Node environment and Webpack

Because Elm runs in an internet browser, it needs some kind of a web server
to handle requests and serve the application to the user. In production, open-
source servers like NGINX12 or Apache13 are often used[24].

For development purpose, Elm offers a simple HTTP server called reactor.
With reactor, the developer is able to run an arbitrary Elm source code in a
browser.

The reactor is however shipped with its own HyperText Markup Language
(HTML) template which means that all code used in application HTML will
not be loaded. This includes stylesheets, custom JavaScript scripts or ports
(Elm-to-Javascript interoperability API).

Together with Elm code, application sources also contains SASS which is
compiled into standard CSS. Therefore, building the application is a multistep
process – such process, however, can not be handled by the reactor.

There are many solutions to this problem, the maintaining team of DSW
chose the Node.js14 environment together with Webpack tool.

Webpack is used to compile all application sources with appropriate com-
pilers and creates an application bundle from output. Webpack is also shipped
with development server (as a separate tool) which is able to watch application
sources and run compiler whenever the source change. In addition to that, It
is also capable of refreshing the browser window, so the changes are visible
immediately.

The production build is also done using Webpack which will also set pro-
duction configuration to all bundled sources.

Text Difference

The functional requirements from section 2.1.1 say that the application should
show the exact text difference for all migrated questionnaire nodes. Because
there is no information about the migration differences stored on the server,
this feature is fully implemented on the client side.

The problem of finding the difference between two given texts is called
string metric (also known as similarity metric or string distance)[25]. There
are multiple algorithms solving string distance problem. To name a few, there
is the Myers’ algorithm[26] and Wu’s algorithm[27] which are based on the
same idea. Wu’s algorithm, however, achieves up to four times better perfor-
mance for strings, which shares most of the strings’ characters.

In migrations, I assume the string differences will be in most cases reword-
ings or typo corrections. Therefore the Wu’s algorithm is an excellent fit for
this problem.

12NGINX homepage: https://www.nginx.com.
13Apache HTTP server homepage: https://httpd.apache.org.
14Node.js® is a JavaScript runtime built on Chrome’s V8 JavaScript engine.

54

https://www.nginx.com
https://httpd.apache.org

4.2. Application structure

This algorithm is implemented in elm-diff[28] open-source library. For
any given collection of elements, it will return a new collection with the dif-
ference information for each element. Such elements may be in the following
states:

• NoChange,

• Added,

• Removed.

With a slight modification, it can be used to receive strings (which are not
collections in Elm) directly. The output can be then used to render string
character-by-character and highlighting it with the appropriate color. The
usage of string difference (built on top of the elm-diff) is shown in 4.1.

1 -- String diff function declaration
2 diffStrings : String -> String -> Change Character
3 diffStrings left right = ...
4

5 -- Diff old and new versions of the string
6 diffStrings "modle" "model"
7 {- Outputs:
8 List(6)
9 NoChange 'm'

10 NoChange 'o'
11 NoChange 'd'
12 Removed 'l'
13 NoChange 'e'
14 Added 'l'
15 -}

Listing 4.1: String difference using elm-diff

4.2 Application structure

After a summary of the used tools, I would like to acquaint the reader with
the structure of both server and client applications. The structure for each of
the applications corresponds to sections listed in analysis in chapter 2. For a
more detailed description of modules, please refer to the appropriate section
in the chapter mentioned above.

55

4. Realization

4.2.1 Server application structure

Firstly, I would like to introduce the structure of the server application. The
structure reflects structure beginning in the project root. Some directories
in the project contain a significant amount of subdirectories, which are not
crucial in the context of this thesis. These directories are omitted and replaced
by an ellipsis (. . .) sign. The structure is shown in figure 4.1.

dsw-server
app..................................command line interface sources
config................................application configuration files
lib................................the application sources directory

API..................................REST API related modules
Handler....................................requests handlers
Resource..........................JSON mapping and DTOs

Database.............................BSON mapping and DAOs
Model.....................................internal model objects
Service.....................................application services
...modules unrelated to this thesis

scripts...build scripts
templates..................management plans and emails templates
test ... applications tests
vendor custom third-party libraries

Figure 4.1: Structure of the server application

4.2.2 Client application structure

In this section, I will introduce the client application structure. Similarly to
the server application structure, individual modules are described in detail in
chapter 2. The structure in figure 4.2 lists main application modules. Modules,
which are not related to this thesis are left out and grouped using an ellipsis
(. . .) sign.

The client application project folder contains other sources then Elm source
files. These are not relevant to this thesis and therefore the structure only
shows sources located in the src/elm directory.

56

4.3. Implementation

/src/elm
KMEditor knowledge models editor module
KnowledgeModels.................knowledge models preview module
Questionnaires..................questionnaire management module

Createmodule for creating a new questionnaire
Edit.................module for editing an existing questionnaire
Migration.......................questionnaire migration module

DiffOverview questionnaire diff view
DiffTree questionnaire structure view

...modules unrelated to this thesis
...modules unrelated to this thesis

Figure 4.2: Structure of the client application

4.3 Implementation
In this section, I describe in detail how features designed in chapter 3 are
implemented. Sections are appropriately divided into parts according to the
application where the feature was implemented.

4.3.1 Initialize questionnaire migration

The initialization part of the migration process is handled on both client and
server side. In the following sections, I will describe each part individually.

Server-side implementation

On the server side, the initialization is a one-step process. The server exposes
a REST API route accessible on:

POST /questionnaires/:qtnUuid/migrations .

The route is registered in shared application router using its URL, HTTP
method and handling function. The registration is shown in code example 4.2.

The initialization itself is simple, as it only requires to validate input data
and store the migration state. The state is an uncomplicated data structure
which is composed of the migrated questionnaire (still based on the older
version of the knowledge model) and an identifier of the knowledge model.

Once the request pass validations, its data are passed to the Question-
naireMigrationService module. This module is responsible for migration
consistency – it always transitions from one consistent state to another.

After the questionnaire is created, the stored data are enriched by compiled
knowledge models and the difference events and returned to the client.

By creating a separate structure for keeping the migration state, it is
secured that the original version will never be modified during migration. This

57

4. Realization

1 createEndpoints :: BaseContext -> ScottyT Text BaseContextM ()
2 createEndpoints context = do
3 -- Middleware registration
4 middleware {- logging, authorization, CORS -}
5 -- Routes registration
6 get "/questionnaires/:qtnUuid/migrations"
7 getQuestionnaireMigrationsCurrentA
8 post "/questionnaires/:qtnUuid/migrations"
9 postQuestionnaireMigrationsCurrentA

10 delete "/questionnaires/:qtnUuid/migrations"
11 deleteQuestionnaireMigrationsCurrentA
12 put "/questionnaires/:qtnUuid/migrations"
13 putQuestionnaireMigrationsCurrentA
14 put "/questionnaires/:qtnUuid/migrations/resolveQuestionEvent"
15 putQuestionnaireMigrationsQuestionFlagA

Listing 4.2: Registration of the REST route

approach is more sophisticated than doing the state modification in-place (by
modifying the original questionnaire directly) but significantly helps to keep
system consistency.

Client-side implementation

On the client side, this process requires two steps. In the first step, the
application needs to fetch information about available knowledge models which
user can migrate to. This action is similar to upgrading knowledge models
itself, and the whole code for such functionality was reused from the existing
code base (programmed by Ing. Jan Slifka[4]).

Once the data are fetched, the application will filter out invalid data (older
versions of the knowledge model) and display a modal window with available
options (shown in wireframe 3.1). Once the user selects a target version for the
migration, the application sends data to the server. After the server responds,
the application will load the migration detail and display it to the user.

The code used for the transition between application states is shown in
example 4.3.

4.3.2 Cancel questionnaire migration

Now I would like to acquaint the reader with the implementation of the mi-
gration canceling feature.

58

4.3. Implementation

1 -- Creates action for loading available knowledge models
2 tableActionUpgrade wrapMsg =
3 wrapMsg << ShowHideQuestionnaireUpgradeForm << Just
4

5 -- Updates state based on received message
6 update msg wrapMsg appState model =
7 case msg of
8 ShowHideQuestionnaireUpgradeForm questionnaire ->
9 loadAvailableKnowledgeModels questionnaire

10

11 PostQuestionnaireMigrationCompleted (Ok _) ->
12 let
13 uuid =
14 model.migratedQuestionnaireUuid
15 in
16 redirectToQuestionnareMigrationDetail uuid
17

18 PostQuestionnaireMigrationCompleted (Err error) ->
19 processMigrationError

Listing 4.3: Transitioning between states during migration initialization

Server-side implementation

On the server side, the cancellation is made by deleting the existing question-
naire state. By deleting the initialized state, the original questionnaire will
appear in the same state as it was before the migration was initialized.

The endpoint is available at route:

DELETE /questionnaires/:qtnUuid/migrations .

Once the user sends the request to the server, it is validated by the handler
layer. After validation, the data are processed using service which takes care
of converting request data into the internal representation. The deletion itself
is done using DAO as shown in example 4.4.

The result of the database action is converted into an HTTP status code
and returned to the client application with an empty body.

Client-side implementation

The client application offers the user to cancel migration only in case, where
the server sent questionnaire data with appropriate flag (as shown in wireframe
3.5). When the user chooses to cancel the migration, the application sends

59

4. Realization

1 deleteMigratorStateByQuestionnaireId :: String
2 -> AppContextM ()
3 deleteMigratorStateByQuestionnaireId qtnUuid = do
4 let action = delete $
5 select ["questionnaire.uuid" =: qtnUuid] qtnmCollection
6 runDB action

Listing 4.4: DAO module handling migration state deletion

a request to the server. Once the server responds to the request, a list of
questionnaires is reloaded to correspond with the latest state available at the
server.

4.3.3 Create migration context

The migration context is a feature, where the user can see changes occurred
in between current and target versions of the knowledge model. The context
is made from knowledge model events, which are visualized in the context of
the filled questionnaire. Therefore, the migration context is only done on the
client side of the application – the only purpose of the server for this action
is to provide the current migration state.

Server-side implementation

For the migration state, the server needs to create a diff knowledge model. Diff
knowledge model contains nodes from the newer version together with nodes
which were only available in the previous version and were deleted during
customization.

Such a knowledge model is created using a specific module called Knowl-
edgeModelDiffService. This service module exposes functionality to create
diff knowledge model by giving original and target knowledge models identi-
fiers.

The service will compile the original knowledge model and finds all events
occurred up until the target version. After that, a specialized version of the
knowledge model compiler is called to create the diff knowledge model. The
custom compiler main task is to remove all destructing events and to run the
standard compiler as shown in example 4.5.

Once the knowledge is compiled, it enriches the response to the client
application.

60

4.3. Implementation

1 -- Creates diff knowledge model from base km by applying events
2 runDiffApplicator km events =
3 runApplicator km editedEvents
4 where editedEvents = filter isNotDeleteEvent events

Listing 4.5: Diff knowledge model compiler

Client-side implementation

On the client side, making the context is more complex. There are three
structures which need to be created and maintained; that is:

• DiffTree,

• DiffStates,

• DiffEventsUuids.

As mentioned in section 3.5, the first two structures are incompatible, and
therefore the third structure is used to map between them.

The DiffTree is used to create an overview of the whole questionnaire
structure (with all possible questions and answers) by also taking the user’s
answers into account.

The structure is built on top of the custom created knowledge model, called
diff knowledge model.

Once the client application downloads the migration state, it starts build-
ing the mentioned structures. The first one created is DiffTree. The tree is
created by recursively browsing knowledge model nodes as shown in example
4.6.

Once the tree is created, the diff events are transformed into the internal
representation to build the DiffStates structure. Because the DiffState is
used to show both original and new state, the transformation needs not only
the event as an input, but also both versions of the knowledge model. While
transforming events, there is no information about the hierarchical classifica-
tion of the node. Therefore this structure cannot be directly mapped to the
tree structure and can not take into account the user’s replies. The example
of transforming events into DiffStates is shown in example 4.7.

While creating the state’s structure, there might be multiple events mod-
ifying the same node (for example Added and Modified or Modified and
Removed). Therefore, each event has assigned a significance:

61

4. Realization

1 {- Create the tree root node -}
2 createDiffTree knowledgeModel replies =
3 let
4 chaptersSubtree = {- shortened -}
5 kmNode = {- shortened -}
6 in
7 {- Create root node with chapters subtree -}
8 kmNode chaptersSubtree
9

10 {- Create subtree for chapters -}
11 createChapterDiffSubTree parentPath replies chapter diffTree =
12 let
13 children =
14 List.map getQuestionUuid chapter.questions
15

16 path =
17 List.append parentPath
18 [ChapterPathNode chapter.uuid]
19

20 subtreeDict =
21 List.foldl (createQuestionDiffSubTree path replies)
22 diffTree chapter.questions
23

24 chapterNode = {- shortened -}
25 in
26 Dict.insert chapter.uuid chapterNode subtreeDict

Listing 4.6: Recursive initialization of the questionnaire tree (simplified)

1. Removed,

2. Added,

3. Modified.

Whenever an event for a node occurs, it is only processed when there was
no event for the same node processed previously or when the event has a higher
priority. This makes sure the user sees events classified as they happened from
his perspective.

The last structure used to create a questionnaire overview is DiffEvents-
Uuids. This structure is built after the previous one because its content is
used to quickly search diff state nodes for the overview tree and vice versa. It

62

4.3. Implementation

1 {- Transforms km modification event into diff state -}
2 convertDiffEventToDiffState oldKm diffKm event dict =
3 case event of
4 AddKnowledgeModelEvent data _ ->
5 kmCreatedState diffKm dict
6

7 EditKnowledgeModelEvent data _ ->
8 kmModifiedState data.kmUuid oldKm diffKm dict
9

10 AddChapterEvent data _ ->
11 cptrCreatedState data.chapterUuid diffKm dict
12

13 EditChapterEvent data _ ->
14 cptrModifiedState data.chapterUuid oldKm diffKm dict
15

16 {- ... Continues for each km node-}

Listing 4.7: Transforming knowledge model events into diff state

is created by visiting every node in the DiffTree and looking up its unique
identifier in the DiffState, when the node is found in of both these structures,
it is inserted into the collection. This way, there will be multiple records for
item templates question type if the user replied multiple time. Such behavior
is intentional and correct by design. Illustration 4.3 shows how the mentioned
data structures are connected.

4.3.4 Update migrated questionnaire state

Updating questionnaire state allows the user to add flags to questions which
are listed in the list of diff events.

Server-side implementation

On the server side, the only responsibility is to persist given flags. As there
might be more flags in the future with different entitlements for consistency,
the server does not run any validations on flags provided from the client appli-
cation. Currently, the whole consistency is managed on the client application
only.

Once the provided data from the client are successfully deserialized, it
replaces the current flags for a given question and is stored in the questionnaire
migration state.

63

4. Realization

List DiffEventUuids

0:
0.fabce33

treeUuid:

diffStateUuid:
fabce33

1:
fabce33

diffStateUuid:
1.fabce33

treeUuid:

String: DiffTreeNode

0.fabce33:
{
 uuid: fabce33
 treeUuid: 0.fabce33
 children: []
 ...
}

1.fabce33:
{
 uuid: fabce33
 treeUuid: 1.fabce33
 children: []
 ...
}

String: DiffState

fabce33:
Modified
 {
 uuid: fabce33
 ...
 }

 {
 uuid: fabce33
 ...
 }

Figure 4.3: A mapping between tree structure and diff events

Client-side implementation

The client application allows modifying question state only when the question
is listed in the list of events and has a default state (no flags). To do so,
the application only shows the resolved and needs review buttons when the
question state was not modified previously. In another case, the application
renders an undo button instead to allow the user to return the question to the
default state.

The state is synchronized immediately when the user presses the appropri-
ate button. Once the state change is synchronized with the server, it is also
updated locally (without fetching data from the server). The local update
forces application to re-render the whole screen (in the sense of virtual DOM)
which leads to switching action buttons for the undo action and vice versa.

The application also allows the user to add flags to system answers (for
item templates or single choice answers). This, however, internally adds the
flag to the question instead of the answer because the questionnaire UI does
not support previews of answers only.

64

4.4. Design

4.3.5 Finalize migration

Finalizing the migration is the last step to upgrade the questionnaire knowl-
edge model version.

Server-side implementation

Once the client requests to finalize the migration, the server needs to do the
following tasks:

1. create a new questionnaire with migrated answers,

2. delete the migration state.

The first step ensures that the new questionnaire is created alongside the
original one. Together with the questionnaire, replies and question flags are
copied too.

The second step reverts the original questionnaire into its original state
(so it can be migrated again). Once the migration is finished, the user’s list
of questionnaires will contain the new questionnaire alongside the original.

The API endpoint is available at:

PUT /questionnaires/:qtnUuid/migrations

and returns empty body with appropriate HTTP status code.

Client-side implementation

The client application uses a similar approach as with initializing or finalizing
the migration. The user initiates system action (Message, in Elm terminology)
which is followed by creating an API request to the server.

The action is initiated from the migration detail. Once the server re-
sponds, the application redirects the user to the list of questionnaires. After
the redirect, the application will fetch the latest version of the questionnaires
and user will the newer version display alongside the original one.

4.4 Design
In this section, I will acquaint the reader with the final application design.
The application design was chosen in such a way, so it is consistent with the
rest of the application.

The existing UI components such as modal windows, buttons and color
shades were reused, so the user will feel familiar while using the new migration
tool. The final design is shown in figures 4.4 to 4.8.

65

4. Realization

Figure 4.4: The upgrade action is only visible when there is available migration

Figure 4.5: Modal with target version selection

66

4.4. Design

Figure 4.6: Migrated chapter text difference

Figure 4.7: Migrated question overview with the ability to add a flag

67

4. Realization

Figure 4.8: Migrated questionnaire alongside its original version

68

Chapter 5
Testing

In this chapter, I would like to mention the process of validation of the ap-
plication correctness. For users, the key feature of the migrator tool is the
migration context overview.

I will briefly mention main cases which may occur. Then, I will demon-
strate a migration use-case, where mentioned cases will be used.

5.1 Testing cases

In this section, I will describe all possible cases which may occur during the
migration process one by one.

5.1.1 Added questionnaire node

In each migration process, there might be a new node added to the ques-
tionnaire. Such node needs to be always contained in the list of the diff event
identifiers, so the user can use application navigation to reach the node. More-
over, the node needs to be listed more than once if it is part of the reply to
the item template question type.

The associated event will only reference the new value as there is no original
value to be referenced.

5.1.2 Modified questionnaire node

By definition, the modified node also needs to be listed in the list of the diff
event identifiers with the same condition applying to the node which is part
of an item template reply.

Because the modification event is used to show both the original and a
new version, it needs to reference two questionnaire nodes. One node is ref-
erenced from the original questionnaire knowledge model, the other one from
diff knowledge model.

69

5. Testing

5.1.3 Removed questionnaire node

When an arbitrary node was removed from the knowledge model, it also needs
to be listed in the list of diff event identifiers. Similarly to the addition event,
this event only reference one node too. However, this node is referenced from
the original knowledge model to reflect the version known to the user.

5.1.4 Unchanged questionnaire node

In oppose to previous events, unchanged nodes must not be contained in
the list of diff event identifiers. It will only be available in the DiffStates
structure listed as Unchanged.

This approach will allow the node to be displayed in the overview without
any additional difference information (such as text highlighting). Because
the old and new nodes must be the same (by definition), the event will only
reference the original one, but it will be displayed on both the old questionnaire
and new questionnaire panels.

5.1.5 Preserved migrated question type

In the case of the question node, there might occur the type change cus-
tomization event in addition to textual changes. This event always needs to
be marked as Modified because the question type can only be modified on
the new node if there was aa existing node before (described in 4.3.3).

If the question type was not changed, the question could be treated as it
was not changed at all (an Unchanged event) and its reply or replies must be
preserved.

5.1.6 Changed migrated question type

In the case the question type was changed from either of types Item templates,
Value or Options to another type, there is no possibility to (automatically)
preserve the reply, and therefore it will not be available after the migration is
done.

5.2 Testing use case
In this section, I will demonstrate a non-trivial use case showing how the
system should behave. Firstly, I will specify an input state of the testing case.
The, I will acquaint the reader with the expected result for such input.

5.2.1 Test input state

For the input, I will assume a list of events, which are needed to be presented
to the user during the migration process. The given list will be visualized

70

5.2. Testing use case

in a tree structure representing the original knowledge model on which the
events were applied (in oppose to questionnaire structure, it ignores the user’s
replies). In this tree, I will use following notation for each node:

[STATE] (ID) Title <Type>

, where:

• [STATE] stands for the difference state (either D for deleted, U for un-
changed, A for added or M for modified),

• (ID) stands for node’s unique identifier,

• Title stands for node’s display name,

• <Type> only applies to a question node and represent its type.

To successfully demonstrate the correctness of the migrator solution, the
events must cover non-trivial customizations. Therefore, all the possible dif-
ference states are taken into account. The upgrade contains the following
events:

1. EditKnowledgeModelEvent with identifier KM,

2. EditQuestionEvent with identifier Q2,

3. AddAnswerEvent with identifier A2,

4. DeleteChapterEvent with identifier C3.

There are two important events. One is adding an answer to the template
item question type, and the other is deleting a chapter.

By adding an answer to an item templates question type, the application
needs to take into account user’s replies and create the change overview struc-
tures accordingly. To thoroughly test this behavior, the input state assumes
that there are precisely two user’s reply (filled item template) to this question.

The chapter deletion event demonstrates how the application should be-
have while deleting node composed from other nodes – in this case, the chapter
is composed of nested questions.

71

5. Testing

[M] (KM) Common ELIXIR Knowledge Model
[U] (C1) Chapter 1

[U] (Q1) Question 1.1 <Value>
[M] (Q2) Question 1.2 <Item template>

[U] (Q3) Question A <Value>
[U] (Q4) Question B <Options>

[U] (A1) Answer 1
[C] (A2) Answer 2

[U] (C2) Chapter 2
[U] (Q5) Question 2.1 <Value>

[D] (C3) Chapter 3
[U] (Q6) Question 3.1 <Value>
[U] (Q7) Question 3.2 <Value>

Figure 5.1: Visualization of knowledge model customization events

Figure 5.1 shows how events in the context of existing knowledge model
for better understanding.

5.2.2 Expected output

The expected output contains five changes for the list of four customization
events. The summary of mapping customization events to changes visible to
the user follows.

EditKnowledgeModelEvent

This event should be presented as a single change. Because it is a modification
event, the application presents a knowledge model title and description in the
original and new versions.

The change is previewed in both panels, each displaying an appropriate
version of the knowledge model.

EditQuestionEvent

In this case, editing question should be shown as a single change. The change
should inform the user that there are two replies.

The change is previewed in both left and right panels, each displaying the
appropriate version of the question.

AddAnswerEvent

Adding an answer to a question included in the item template should be shown
as change as many times as the user replied to the question. In this case, the

72

5.2. Testing use case

user replied by filling two item templates and therefore the added question
should be shown twice – each time in the context of one of the answers.

The change is displayed only in the right panel.

DeleteChapterEvent

To ensure simplicity of the migration tool, the user should not be bothered
by information about the deletion of its nested nodes. Because of that, the
chapter deletion should be shown as a single change, and nested questions
should not be shown.

The change is displayed only in the left panel.

73

Conclusion

The goal of the thesis was to design and implement the migration tool for the
data management plans created in the Data Stewardship Wizard.

The thesis starts with the research of the state-of-the-art of the DSW
application. After the research, the reader is acquainted with the analysis
of the solution along with its requirements. Based on defined requirements,
individual use cases and their scenarios are discussed.

In the design chapter, the application design together with its architecture
and primary classes are discussed.

Then, the development process, used technologies, and final application
are introduced.

In the last chapter, the testing case is demonstrated describing how the
application functionality was validated.

The outputs are two application modules, which may be integrated into the
existing system. The first module is a server application written in the Haskell
programming language. The second module is a web application frontend for
the first module, written in the Elm language.

Working with such technologies was a huge personal challenge because
not only I did not write a production-ready application in those technologies
before, I did not even write a frontend or backend applications up until now.
Another unknown field for me was Data Stewardship itself. I had to acquaint
myself with two books [29, 30] to fully understand the domain of the problem.

Project future
Shortly, both modules should become part of the production application avail-
able to the general public. The system itself is in active development; this
means all major changes should be reflected in those modules too. There-
fore, the output will probably stay in active development. In my opinion, it
is the actual usability of the implemented application what makes this thesis
exceptional.

75

Bibliography

[1] Rada pro výzkum, vývoj a inovace. RVVI schválila návrh rozpočtu na
příští tři roky [online]. April 2018, [Cited 2019-01-17]. Available from:
https://www.vyzkum.cz/FrontAktualita.aspx?aktualita=837471

[2] European commission. EU budget: Commission proposes most ambitious
Research and Innovation programme yet [online]. June 2018, [Cited 2019-
01-17]. Available from: http://europa.eu/rapid/press-release_IP-
18-4041_en.htm

[3] ELIXIR Data Stewardship Knowledge Model. [Cited 2019-05-03]. Avail-
able from: https://github.com/ds-wizard/ds-km

[4] Slifka, J. Data Stewardship Portal: Client-side Web Frontend. Master’s
thesis, Czech Technical University, Faculty of Information Technologies,
5 2018.

[5] Evan Czaplicki. Blazing Fast HTML: Round Two [online]. August
2016, [Cited 2019-02-11]. Available from: https://elm-lang.org/blog/
blazing-fast-html-round-two

[6] Plain old Java object. December 2018, [Cited 2019-04-10]. Available from:
https://en.wikipedia.org/wiki/Plain_old_Java_object

[7] Narayan Prusty. How Does HTTP Authentication Work. May
2014, [Cited 2019-04-10]. Available from: http://qnimate.com/
understanding-http-authentication-in-depth

[8] Introduction to JSON Web Tokens. [Cited 2019-05-03]. Available from:
https://jwt.io/introduction/

[9] Sulaiman, A. File System vs. Database. April 2017, [Cited 2019-05-
03]. Available from: https://dzone.com/articles/which-is-better-
saving-files-in-database-or-in-fil

77

https://www.vyzkum.cz/FrontAktualita.aspx?aktualita=837471
http://europa.eu/rapid/press-release_IP-18-4041_en.htm
http://europa.eu/rapid/press-release_IP-18-4041_en.htm
https://github.com/ds-wizard/ds-km
https://elm-lang.org/blog/blazing-fast-html-round-two
https://elm-lang.org/blog/blazing-fast-html-round-two
https://en.wikipedia.org/wiki/Plain_old_Java_object
http://qnimate.com/understanding-http-authentication-in-depth
http://qnimate.com/understanding-http-authentication-in-depth
https://jwt.io/introduction/
https://dzone.com/articles/which-is-better-saving-files-in-database-or-in-fil
https://dzone.com/articles/which-is-better-saving-files-in-database-or-in-fil

Bibliography

[10] What Is a Document Database? [Cited 2019-05-03]. Available from:
https://aws.amazon.com/nosql/document/

[11] What is MongoDB? [Cited 2019-05-03]. Available from: https://
intellipaat.com/blog/what-is-mongodb/

[12] Minnick, C. The Real Benefits of the Virtual DOM in React.js. April 2016,
[Cited 2019-04-15]. Available from: https://www.accelebrate.com/
blog/the-real-benefits-of-the-virtual-dom-in-react-js/

[13] Knaisl, V. Migration Tool for Data Stewardship Knowledge Model. Mas-
ter’s thesis, Czech Technical University, Faculty of Information Technolo-
gies, 5 2018.

[14] Rodriguez, T. S. Understanding Event-Driven Architectures.
September 2018, [Cited 2019-04-13]. Available from: https:
//medium.com/drill/understanding-event-driven-architectures-
eda-the-paradigm-of-the-future-7ae632f056bb

[15] la Torre, C. D. What is Docker? August 2018, [Cited 2019-04-16]. Avail-
able from: https://docs.microsoft.com/cs-cz/dotnet/standard/
microservices-architecture/container-docker-introduction/
docker-defined

[16] Wikipedia. Domain model. April 2019, [Cited 2019-04-19]. Available from:
https://en.wikipedia.org/wiki/Domain_model

[17] Winston, A. Importance Of UI/UX Design In The Develop-
ment Of Mobile Apps. July 2019, [Cited 2019-04-20]. Available
from: https://www.dotcominfoway.com/blog/importance-of-ui-ux-
design-in-mobile-app-development

[18] DSW – Release 1.5. [Cited 2019-04-22]. Available from: https://
github.com/ds-wizard/dsw-server/pull/59

[19] Haskell Programming Language. [Cited 2019-04-24]. Available from:
https://www.haskell.org

[20] Richardson, C. What are microservices? [Cited 2019-04-24]. Available
from: https://microservices.io

[21] Rouse, M. Integrated Development Environment. [Cited 2019-04-25].
Available from: https://searchsoftwarequality.techtarget.com/
definition/integrated-development-environment

[22] Elm: Functional Frontend. [Cited 2019-04-25]. Available from: https:
//mmhaskell.com/blog/2018/11/12/elm-more-functional-frontend

78

https://aws.amazon.com/nosql/document/
https://intellipaat.com/blog/what-is-mongodb/
https://intellipaat.com/blog/what-is-mongodb/
https://www.accelebrate.com/blog/the-real-benefits-of-the-virtual-dom-in-react-js/
https://www.accelebrate.com/blog/the-real-benefits-of-the-virtual-dom-in-react-js/
https://medium.com/drill/understanding-event-driven-architectures-eda-the-paradigm-of-the-future-7ae632f056bb
https://medium.com/drill/understanding-event-driven-architectures-eda-the-paradigm-of-the-future-7ae632f056bb
https://medium.com/drill/understanding-event-driven-architectures-eda-the-paradigm-of-the-future-7ae632f056bb
https://docs.microsoft.com/cs-cz/dotnet/standard/microservices-architecture/container-docker-introduction/docker-defined
https://docs.microsoft.com/cs-cz/dotnet/standard/microservices-architecture/container-docker-introduction/docker-defined
https://docs.microsoft.com/cs-cz/dotnet/standard/microservices-architecture/container-docker-introduction/docker-defined
https://en.wikipedia.org/wiki/Domain_model
https://www.dotcominfoway.com/blog/importance-of-ui-ux-design-in-mobile-app-development
https://www.dotcominfoway.com/blog/importance-of-ui-ux-design-in-mobile-app-development
https://github.com/ds-wizard/dsw-server/pull/59
https://github.com/ds-wizard/dsw-server/pull/59
https://www.haskell.org
https://microservices.io
https://searchsoftwarequality.techtarget.com/definition/integrated-development-environment
https://searchsoftwarequality.techtarget.com/definition/integrated-development-environment
https://mmhaskell.com/blog/2018/11/12/elm-more-functional-frontend
https://mmhaskell.com/blog/2018/11/12/elm-more-functional-frontend

Bibliography

[23] elm - Visual Studio Marketplace. [Cited 2019-04-25]. Available
from: https://marketplace.visualstudio.com/items?itemName=
sbrink.elm

[24] January 2018 Web Server Survey. [Cited 2019-04-25]. Available
from: https://news.netcraft.com/archives/2018/01/19/january-
2018-web-server-survey.html

[25] String metric. October 2018, [Cited 2019-04-27]. Available from: https:
//en.wikipedia.org/wiki/String_metric

[26] MYERS, E. W. An O(ND) Difference Algorithm and Its Varia-
tions. November 1986, [Cited 2019-04-27]. Available from: http://
www.xmailserver.org/diff2.pdf

[27] Sun Wu, G. M., Udi Manber. An O(NP) Sequence Comparison Al-
gorithm. August 1989, [Cited 2019-04-27]. Available from: http://
myerslab.mpi-cbg.de/wp-content/uploads/2014/06/np_diff.pdf

[28] elm-diff. [Cited 2019-04-27]. Available from: https://package.elm-
lang.org/packages/jinjor/elm-diff/latest/

[29] Plotkin, D. Data Stewardship. Morgan Kaufmann, 2013.

[30] Mons, B. Data Stewardship for Open Science. CRC Press, 2018.

79

https://marketplace.visualstudio.com/items?itemName=sbrink.elm
https://marketplace.visualstudio.com/items?itemName=sbrink.elm
https://news.netcraft.com/archives/2018/01/19/january-2018-web-server-survey.html
https://news.netcraft.com/archives/2018/01/19/january-2018-web-server-survey.html
https://en.wikipedia.org/wiki/String_metric
https://en.wikipedia.org/wiki/String_metric
http://www.xmailserver.org/diff2.pdf
http://www.xmailserver.org/diff2.pdf
http://myerslab.mpi-cbg.de/wp-content/uploads/2014/06/np_diff.pdf
http://myerslab.mpi-cbg.de/wp-content/uploads/2014/06/np_diff.pdf
https://package.elm-lang.org/packages/jinjor/elm-diff/latest/
https://package.elm-lang.org/packages/jinjor/elm-diff/latest/

Appendix A
Acronyms

API Application Programming Interface. 1, 3, 5, 11, 44, 52, 54, 57, 65

BSON Binary JSON. 1, 11

CRUD Create, Read, Update, Delete. 1, 7, 10, 11, 17

CSS Cascading Style Sheets. 1

DAO Data Access Object. 1, 5, 7, 10

DMP Data Management Plans. 1, 2

DOM Document Object Model. 1, 12, 64

DSL Domain Specific Language. 1, 11

DSW Data Stewardship Wizard. 1–4, 7–10, 12, 13, 15–19, 21, 28, 40, 51, 52,
54, 75

DTO Data Transfer Object. 1, 5–7, 18

FAIR Findable, Accessible, Interoperable, Reusable. 1, 2, 13

HTML HyperText Markup Language. 1, 54

HTTP HyperText Transfer Protocol. 1, 6, 7, 19, 52, 54, 57, 59, 65

IDE Integrated Development Environment. 1, 52, 53

JSON JavaScript Object Notation. 1, 4, 8, 11, 15, 16, 52

JWT Javascript Web Token. 1, 6–8, 16

81

A. Acronyms

KM Knowledge Model. 1, 2

POJO Plain Old Java Object. 1, 7

REST Representational State Transfer. 1, 5, 44, 52, 57, 58

SASS Syntactically Awesome Style Sheets. 1

SQL Structured Query Language. 1, 11

UI User Interface. 1, 3, 12, 14, 33, 64, 65

URL Uniform Resource Locator. 1, 6, 12, 44, 57

82

Appendix B
Development Guide

This guide contains instructions for running both the server and client side
applications in the development environment.

B.1 Client-side Application
The application’s source code is available at GitHub in the following reposi-
tory:

git@github.com:ds-wizard/dsw-client.git

For building the application, the Node.js environment together with the
yarn package manager is needed. The installation guide for the package man-
ager is available at:

https://yarnpkg.com/en/docs/install

In the terminal, clone the repository change your working directory to the
project root:

1 $ git clone git@github.com:ds-wizard/dsw-client.git
2 $ cd dsw-client

Install the project dependencies:

1 $ yarn install

Run the application:

1 $ yarn start

The application is now running at http://localhost:8080. It expects
the backend to be available at http://localhost:3000.

83

git@github.com:ds-wizard/dsw-client.git
https://yarnpkg.com/en/docs/install
http://localhost:8080
http://localhost:3000

B. Development Guide

B.2 Server-side application
For the server-side application, the Stack tool is required. Installation guide
for the Stack is available at:

https://docs.haskellstack.org/en/stable/install_and_upgrade/

You will also need a MongoDB database and a RabbitMQ messaging
server. For simplicity, there is a Docker compose configuration publicly avail-
able at GitHub:

https://github.com/josefdolezal/dockerfiles/tree/master/dsw-local

Once your development environment is ready, clone the application repos-
itory and change your working directory to the project root:

1 $ git clone git@github.com:ds-wizard/dsw-server.git
2 $ cd dsw-server

Create your application configuration file and fill in your settings:

1 $ cp config/app-config.example.cfg config/app-config.cfg
2 $ vim config/app-config.cfg

Build the application from sources:

1 $ stack build

Run the server in a development configuration:

1 $ stack run dsw-server

The application is now running at http://localhost:3000.

84

https://docs.haskellstack.org/en/stable/install_and_upgrade/
https://github.com/josefdolezal/dockerfiles/tree/master/dsw-local
http://localhost:3000

Appendix C
Contents of enclosed CD

readme.txt........................the file with CD contents description
exe the directory with executables

dsw-client.................directory with the compiled Elm sources
dsw-server................directory with the the Haskell executable

src.......................................the directory of source codes
dsw-client.......................client-side implementation sources
dsw-server...................... server-side implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

85

Josef Dolezal

	Introduction
	State-of-the-art
	Data Stewardship Wizard
	System architecture
	Server-side application
	Frontend application
	Knowledge model migrations
	Deployment

	Analysis
	Requirements
	Use cases
	Scenarios
	Domain model

	Design
	User Interface
	Class diagram
	Server Interface
	Questionnaire structure
	Questionnaire overview
	Questionnaire states

	Realization
	Used technologies
	Application structure
	Implementation
	Design

	Testing
	Testing cases
	Testing use case

	Conclusion
	Bibliography
	Acronyms
	Development Guide
	Client-side Application
	Server-side application

	Contents of enclosed CD

