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Abstract

This thesis deals with the channel state
estimation (CSE) in Wireless Physical
Layer Network Coding (WPNC) radio net-
works. A non-pilot based estimator for a
two-source H-MAC channel is presented.
The channel phase parametrization is es-
timated based on hierarchical data deci-
sions.

We present the derivation of an max-
imum likelihood (ML) hierarchical data
decision aided estimator and analyze its
theoretical performance limit and proper-
ties of the resulting estimation metric.

Based on the theoretical results we pro-
pose specific estimation algorithms for sce-
narios with both constant and varying
channel phase parametrization and evalu-
ate their performance using a simulation.
Finally, using the CSE together with a
hierarchical demodulator and LDPC de-
coder, we compose a complete working
receiver front-end and evaluate its perfor-
mance in terms of bit error rate.

Keywords: WPNC, iterative channel
estimator, hierarchical MAC channel

Supervisor: prof. Ing. Jan Sýkora, CSc.

Abstrakt

Tato práce se zabývá estimací stavu ka-
nálu v radiových sítích s WPNC. Cílem
je estimátor fáze hierarchického MAC ka-
nálu se dvěma zdroji, který nevyžaduje
použití pilotních signálů. Estimace je pro-
váděna pouze na základě znalosti hierar-
chických symbolů.

Práce obsahuje odvození ML hierarchic-
kého estimátoru a jeho analýzu ve smyslu
stanovení teoretického limitu rozptylu od-
hadů a vlastnosti estimační metriky.

Na základě teoretických výsledků jsou
navrženy konkrétní estimační algoritmy
pro případy konstantní i proměnné fáze
kanálu. Jejich vlastnosti jsou analyzovány
pomocí numerických simulací. Na závěr
je pomocí navrženého estimátoru, hierar-
chického demodulátoru a LDPC dekodéru
utvořen kompletní frontend přijímače a na
základě simulace vyhodnocená jeho bitová
chybovost.

Klíčová slova: WPNC, iterativní
estimátor kanálu, hierarchichý MAC
kanál

Překlad názvu: Estimace kanálu a
síťově kódované modulace pro
parametrický H-MAC kanál v WPNC
rádiových sítích
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Chapter 1

Introduction

Wireless Physical Layer Network Coding is a concept addressing the physical
layer of dense radio networks. In such networks with many nodes, who all
wish to communicate at the same time, the classical concept of orthogonal
separation has little application. WPNC on the other hand tries to make use
of the crowded spectrum and deliberately allows multiple sources to transmit
in the same channel. The interacting signals are assumed to get relayed
multiple times before arriving at the destination. From the superposition of
multiple signals, the relay is typically not able to decode the original messages.
It applies a so-called hierarchical decoding, by which it decodes only some
many-to one function of the original messages and this is what gets passed on
to further relaying nodes. At the destination however, the original message
must reliably decodable. For this to work, it is crucial that the individual
nodes are aware of the whole network topology and can choose such signal
processing strategies that ensure the overall end-to-end solvability. This way
one message can travel trough multiple paths and combine at its destination.
This technique increases the overall network throughput and can use the
radio resources more efficiently.

For the hierarchical decoding at the relay, the knowledge of the (many to
one) channel state is important. Mainly because the combined constellation
as perceived by the relay, depends on the relative channel parametrization in
a nonlinear way. This work focuses on the channel state estimation in such a
scenario, where multiple transmitting nodes share one radio resource. For a
time varying channel, the main difficulty remains in the signal superposition,
where it is not possible to separate individual sources and thus pilot based
approaches cannot be applied.

1 ctuthesis t1606152353
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Chapter 2

Fundamental Principles of WPNC

Wireless Physical Layer Network Coding (WPNC) is a new paradigm of
network communication. It has the potential to be superior to the classical
approach in terms of throughput and efficiency. WPNC combines two major
ideas namely network coding (NC) and its application directly on the wireless
physical layer. This chapter is based on [3], where you can find additional
details and further aspects of WPNC, not covered in this brief introduction.

2.0.1 Network Coding

Let us suppose we have a classical wired network with data source nodes,
relay nodes and data destination nodes, all connected by metallic links. Such
a network can be represented in terms of a graph. Individual links are
represented by edges, weighted by the respective link capacities. In networks
with one source node and one destination node, the maximal throughput can
be found as the capacity of the minimal cut, separating the source node from
the destination node. This is known as the Max-flow min-cut theorem. In
this case the relay nodes play a role of simple switches with a direct link from
inputs to outputs. If, however, there are multiple destination nodes which
receive the same data, the maximum flow cannot be achieved using such
simple relay nodes. For such cases, we need relays which compute and pass on
some function of their input data. This principle can be nicely demonstrated
on a so-called butterfly network, which comprises of two source nodes SA, SB,
two relays R1, R2 and two destination nodes DA, DB. Their interconnection
is shown in Figure 2.1. All links are of equal capacity, allowing them to pass

3 ctuthesis t1606152353



2. Fundamental Principles of WPNC............................
SA SB

DBDA

R1

bA bB

bA bB

R2

bA

bAbA

(a) : Conventional case.

SA SB

DBDA

R1

bA bB

bA bB

R2

bA ⊕ bB

bA ⊕ bB

(b) : Whit network coding.

Figure 2.1: Butterfly network

one message. Let us suppose that each source node has a binary message of
length m. We denote them bA, bB ∈ Fm2 respectively. Both messages need
to be transferred to each destination DA, DB. In a network without NC,
the capacity of the link (R1, R2) would force R1 to choose only one of its
incoming messages to be forwarded. R2 would then duplicate its incoming
message to both outgoing links. From Figure 2.1a we clearly see, that by
using this approach, we consume the whole link capacity and are not able
to transfer bB to DA. If we use NC instead, R1 forwards a function of
both its incoming messages. In this particular case we use a simple sum
on Fm2 which is the same as bit-wise XOR. Using the fact that x ⊕ x = 0,
the message bB can be obtained from the inputs of DA as their sum since
bA⊕(bA⊕bB) = (bA⊕bA)⊕bB = bB . The same holds for DB as well. On this
simple example we can demonstrate how we can increase the throughput of a
complex network with multiple sources and destinations by the involvement
of NC.

2.0.2 Wireless Network

In a wired network we have precisely defined point to point links, formed by
individual wired connections. In a wireless network however, the electromag-
netic waves from the transmitters propagate in all directions and combine
together at the receiver’s antenna. In the classical approach this is perceived
as a negative phenomenon and the goal is to separate the useful part of the
signal from the rest, the interference. This is accomplished by a division of

ctuthesis t1606152353 4



............................ 2. Fundamental Principles of WPNC

the signal space into orthogonal subspaces in time, frequency or by means of
spatial separation. The orthogonal subspaces are then assigned to individual
point to point links. This is in agreement with the frequently used layered
model paradigm. According to this model, the communication is divided into
multiple sub-tasks, which are then addressed independently on different levels
of abstraction. For example in the OSI model, we have the physical layer,
which is responsible for the point to point transmission over the physical
medium, and the network layer which, is in charge of routing and traffic
control. This strict isolation of different parts of the problem leads, in a
general case, to an inefficient solution. The relay R1 from Section 2.0.1 would,
according to the layered model, first need to get bA, bB separately at the phys-
ical layer (using two orthogonal signal subspaces) and then separately apply
the XOR function at the routing layer. In the case of R2, also two orthogonal
subspaces would be needed to form the links (R2, DA) and (R2, DB). WPNC,
on the other hand, addresses the problem of network routing directly on the
physical layer. This means that the knowledge of the network topology is
available at the physical layer and thus the radio resources can be used more
efficiently.

This principle can be demonstrated on the operation of R1 in the butterfly
network. Let us suppose that an uncoded BPSK modulation is used on both
sources SA, SB. Further we assume a perfect symbol timing synchronization
between them and ideal radio channels, which do not transform passing
signals. If we allow both sources to transfer one bit in the same radio resource,
both signals interfere at the receiving antenna of R1. In Figure 2.2a we
see a classical BPSK constellation as transmitted from the sources. On the
relay however, due to signal superposition, we get a constellation as shown
in Figure 2.2b. Clearly it is not possible to recover the two-bit combination
which was originally sent. If the relay receives the constellation point 0, it
cannot decide whether the originally sent combination was (1, 0) or (0, 1).
However the physical layer is aware of the network topology and the used
NC, so it does not attempt to decode both individual messages but only their
NC function (in our case the XOR), which can be done with certainty. As
shown in Table 2.1, in our case it is enough to decide whether we received a
0 or a ±2. This way we do not need two orthogonal subspaces to accomplish
a transmission from multiple sources to one relay.

In the case of R2 WPNC would also bring a benefit. Because the physical
layer is aware of the network topology it can exploit the fact that the message
for both destination nodes is the same and it is sufficient to send it only once,
using one orthogonal subspace. In the classical approach, the physical layer
is not aware of the surroundings and would use one orthogonal resource for
each link (R2, D1), (R2, D2).

5 ctuthesis t1606152353



2. Fundamental Principles of WPNC............................

0 1

(a) : Single source.

00 1110 01

(b) : Two superposed sources.

Figure 2.2: BPSK constellation

bA bB b = bA ⊕ bB s(bA) s(bB) s(b) = s(bA) + s(bB)
0 0 0 -1 -1 -2
0 1 1 -1 1 0
1 0 1 1 -1 0
1 1 0 1 1 2

Table 2.1: Two source data combinations and corresponding BPSK constella-
tion points. bA, bB denote the source bits, b the target bit and s(.) a BPSK
constellation mapper.

2.1 Definitions and Network Model

Now we have an intuitive understanding of the basic ideas behind WPNC.
In this section we provide the necessary definitions and the overall network
model to develop a good understanding of the whole system.

2.1.1 Network Model

The network is made of a set of source nodes {SA, SB, . . .}, relay nodes
{R1, R2, . . .} and destination nodes {D1, D2, . . .}. Each source node is con-
nected with its source message {bA, bB, . . .}, which are assumed independent
among source nodes. Similarly each destination node is a target for a given
message.

The signal space throughout the whole network is divided into mutually
orthogonal subspaces called stages. This means, that the inner product of two
signals from different stages is equal zero. With the assumption of Gaussian
noise, this implies that at the receiver, signals from different stages can be
separated.

From the perspective of a relay, at least two stages are needed. This follows
from the so-called half-duplex constraint. This is a physical limitation given by

ctuthesis t1606152353 6



.............................2.1. Definitions and Network Model

the hardware, which is not able to transmit and receive simultaneously on the
same channel. Denoting the received signal at Rj as xj and the transmitted
signal as vj , the half-duplex constraint can be expressed as 〈xj ; vj〉 = 0.
Since the data transmitted by a relay are often causally connected with the
data received, we will consider the half-duplex constraint to be fulfilled by a
separation in the time domain. The stage where the relay receives a signal
composed from multiple sources is usually called the multiple access channel
(MAC) stage and the opposite, where the relay transmits to, possibly multiple,
receiving nodes, the broadcast channel (BC) stage.

In Figure 2.3 we see an example network. The edges represent individual
signal paths and are numbered according to the stages, in which they operate.
The source data is labeled as bA, bB, bC , the many to one relay functions as
χ1, χ2 and the relay target symbols as b1, b2. This example nicely demonstrates
how the source information travels trough the network and gets encapsulated
at individual relay nodes. From this encapsulation we use the following terms:

.Hierarchical Network Code map (HNC map) a many to one func-
tion of the received symbols at a relay. In this case HNC maps are χ1
and χ2.. hierarchical symbol the output from a HNC map at a relay. In this
case b1 is a hierarchical symbol at R1 and b2 a hierarchical symbol at R2.. hierarchical MAC (H-MAC) stage a MAC stage as a part of the
network hierarchy. In this case H-MAC stages are stage 1 w.r.t. R1 and
stage 2 w.r.t. R2.. hierarchical BC (H-BC) stage a BC stage as a part of the network
hierarchy. In this case H-BC stages are stage 2 w.r.t R1 and stage 3 w.r.t
R2.. global HNC map 1 is the mapping function which is seen from the
perspective of a destination node. In this example D1 receives the global
HNCmap χ1(bA, bB) at stage 2 and the global HNCmap χ2(χ1(bA, bB), bC)
at stage 3. The two resulting symbols are put into a vector and denoted
as ~χi(b̃), where i is the index of the destination node and b̃ the set of all
source node symbols.

The main goal of the network is that every destination node has enough
information to be able to determine its target symbol without ambiguity. In
other words, the global HNC map at Di has to be solvable for bi. This holds

1defined for cycle free networks only

7 ctuthesis t1606152353
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SA SB

D1

R1

R2

SC

1 1

2

2

2

3

bA bB

b1 = χ1(bA; bB)

χ1(bA; bB)

bC

b2 = χ2(χ1(bA; bB); bC)

Figure 2.3: Example network.

if and only if

∀b̃(bi), b̃(b′i) : bi 6= b′i ⇒ ~χi
(
b̃(bi)

)
6= ~χi

(
b̃(b′i)

)
, (2.1)

where b̃(bi) is the set of all source symbols consistent with bi.

2.1.2 Node model

In this section we discuss the inner structure and the processing chain of a
node. Because source and destination nodes can be interpreted as special
cases of a relay node, we can focus only on relay nodes. We consider only
the case of a layered network coded modulation (NCM), where the forward
error correction coding is decoupled from the hierarchical network structure.
In this case standard single user error correction codes can be used. For a
general case see [3].

A general processing chain is shown in figure 2.4. We see a simple network
with two source nodes and one relay. First the two source data symbols get
forward error correction (FEC) encoded and mapped onto constellation points
sA, sB. Since both source nodes transmit in one stage, their constellations
get combined according to the relative channel parametrization h. This way
we get a hierarchical channel-combined constellation point u. As depicted
in the node structure figure, the processing of the relay can be divided into
three phases, the front-end, node processing and back-end. In the first phase,
the received signal from the H-MAC stage x is processed into the target

ctuthesis t1606152353 8
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bB

CB
cB sB(cB)

bA

CA
cA sA(cA)

h x µc(x) µb(x) v

c = χc(cA; cB) b = χb(bA; bB)

SA

SB

R1

front-end node processing back-end

u

Figure 2.4: Node processing structure.

code symbol decoding metric. The metric can have different forms such as
some sort of a soft information measure or a hard decision. The target code
symbol c is, in general, a many to one function of the source code symbols
cA, cB. However µc must be a sufficient statistic for the decoding µb. The
target symbol measure µb is an information measure of the target hierarchical
symbol b and is processed in the second phase. The back-end is responsible of
the transmission of the hierarchical information measure µb in the following
H-BC stage.

9 ctuthesis t1606152353
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Chapter 3

H-MAC Estimator Derivation and
Theoretical Analysis

3.1 System Model

For the purpose of this work we will consider a single 2-component H-MAC
stage with two source nodes and one relay. We assume a perfect symbol-
timing synchronization among all three nodes. We have two binary source
messages bA,bB ∈ Fm2 of length m. At the source nodes they get encoded by
a common binary linear FEC C with rate R = m

N . The resulting code vectors
cA = C(bA), cB = C(bB) ∈ FN2 are symbol-wise mapped on constellation
points using the BPSK alphabet As = {±1} as s(cn) = 1 − 2cn at both
source nodes. Both HNC maps χb, χc are realized by the XOR function. This
way we get a so-called minimal HNC map. This means that given any two
elements from {bn, bA,n, bB,n}, where bn = χB(bA,n, bB,n), we can uniquely
determine the third one. Further since we use a common linear code on both
sources, it holds that

c = χc (C(bA), C(bB)) = C (χb(bA,bB)) . (3.1)

Together with the fact, that the FEC is decoupled from the hierarchical
processing, this gives us an isomorphic layered NCM.

The 2-source H-MAC channel is assumed memoryless with AWGN modeled

11 ctuthesis t1606152353



3. H-MAC Estimator Derivation and Theoretical Analysis...................
as

x = hAs(C(bA)) + hBs(C(bB)) + w
= hAs(cA) + hBs(cB) + w
= u(cA, cB) + w,

(3.2)

where the fading coefficients are given by magnitude and phase as

hA = 1 ejφA , hB = η ejφB , 0 ≤ η ≤ 1 (3.3)

and w is the AWGN with σ2
w variance per dimension. The frame observation is

of length N and the SNR will be related w.r.t. SA and denoted as γx = E[|s|2]
σw

.

3.2 H-MAC Channel Phase Properties

In this section we will analyze the relative channel parametrization, which is
given by mutual fading of the two source signals. It has a significant impact
on the decoding process of the hierarchical data since it causes a nonlinear
transformation of the resulting hierarchical constellation observed by the
relay node.

3.2.1 H-MAC Channel Phase Invariance

Since the target symbol at R is a many-to-one function, multiple source symbol
combinations (s(cA,n), s(cB,n)) correspond to one H-code symbol cn at the
relay. This phenomenon is called hierarchical dispersion. In our observation
model, it demonstrates through the phase ambiguity. Our hierarchical channel-
combined constellation point is given as

un(ϕ, cn = χc(cA,n, cB,n)) = ejϕA s(cA,n) + η ejϕB s(cB,n), (3.4)

where ϕ = [ϕA, ϕB]T is the parametric channel phase vector. Using the
constellation mappers s(c) = 2c− 1 and the fact, that our HNC map fulfills
the property χc(cA,n, cB,n) = χc(1 − cA,n, 1 − cB,n), it is easy to show that
the following holds

un(ϕ, cn) = un(ϕ+ [(2k1 + 1)π, (2k2 + 1)π]T , χc(1− cA,n, 1− cB,n)) (3.5)

for k1, k2 ∈ Z. In other words, a shift by a odd multiple of π in either
coordinate of ϕ does not change the hierarchical code symbol cn.

ctuthesis t1606152353 12



........................... 3.2. H-MAC Channel Phase Properties

- - /2 0 /2

-

- /2

0

/2

Figure 3.1: H-MAC channel phase symmetries. Solid line marks P, dashed line
equivalent shifted versions P′,P′′. The full circle is the true phase vector for
target symbol c, the gray filled circle is an equivalent phase vector w.r.t. c and
the empty circle is the phase vector corresponding to the a flipped target symbol
1− c.

This means, that from the perspective of the relay we can define a rectangle

P =
{

[ϕA, ϕB] : −π2 < ϕA ≤
π

2 ,−π < ϕB ≤ π
}
, (3.6)

for which it holds that phase vectors ϕ ∈ P are unambiguous w.r.t. c. From
the perspective of a H-data aided CSE, all phase estimates ϕ /∈ P can be
shifted according to Equation 3.5 to an equivalent solution laying in P. Notice
that this does not generally hold for a classical full data cA, cB aided estimator.
In Figure 3.1 we see a phase vector ∈ P marked with a black filled circle and
its equivalent shifted version marked with a gray filled circle.

3.2.2 H-MAC H-symbol Dependence on Channel Phase

From the HNC map it follows that for the target hierarchical symbol cn
to change, exactly one source symbol has to change. This change can be
translated to an equivalent change in the channel parametrization as it follows

13 ctuthesis t1606152353



3. H-MAC Estimator Derivation and Theoretical Analysis...................
from Equation 3.4. It is easy to see, that a flip of the target hierarchical
symbol cn is connected with a sign change of the corresponding constellation
point, which in turn relates to a phase change of an odd multiple of π in the
respective coordinate of ϕ. Thus we can write

un(ϕ, c) = un(ϕ+ (2k + 1)π[1, 0]T , 1− cn)
un(ϕ, c) = un(ϕ+ (2k + 1)π[0, 1]T , 1− cn)

(3.7)

for k ∈ Z. Figure 3.1 illustrates a shift in the coordinate ϕB.

3.3 Hierarchical Soft Output Demodulator
(H-SODEM)

In this section we will derive a hierarchical demodulator considering our par-
ticular system model, a general case can be found in [3]. From the perspective
of the node processing chain of R, the SODEM implements a part of the
front-end. It processes the received signal x and outputs the soft decoding
metric µc, which is in our case given by the log likelihood ratio. Because our
channel is memoryless, it holds that p(x|cA, cB) =

∏
n p(xn|cA,n, cB,n) and

thus the likelihood can be evaluated symbol-wise. Since we are interested
only in the hierarchical symbol cn, we marginalize the likelihood over all
combinations of cA,n, cB,n consistent with it, denoted as c̃n : χc(c̃n) = cn. The
marginalized likelihood can be expressed as

p(xn|cn) =
∑
c̃n:χc(c̃n)=cn

p(xn|c̃n)p(c̃n)∑
c̃n:χc(c̃n)=cn

p(c̃n) . (3.8)

Assuming that cA,n, cB,n ∈ {0, 1} are equiprobable, we get

p(ci,n) = 1
2

p(c̃n) = 1
22

p(cn) =
∑

c̃n:χc(c̃n)=cn

p(c̃n) = 2p(c̃n) = 1
2 ,

(3.9)

where we used the fact that our HNC map is minimal and thus one cn
corresponds to exactly two different combinations c̃n. After substitution of
Equations 3.9 into Equation 3.8 we get

p(xn|cn) = 1
2

∑
c̃n:χc(c̃n)=cn

p(xn|c̃n). (3.10)
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....................... 3.4. Hierarchical MAC Channel Phase Estimator

With the assumption of a known the channel parametrization hA, hB at the
demodulator, we can substitute the channel model given in Equation 3.2 and
get

p(xn|cn) = 1
2

∑
c̃n:χc(c̃n)=cn

pw(xn − un(c̃n))

= 1
2πσ2

w

∑
c̃n:χc(c̃n)=cn

exp
(
− 1
σ2
w

∣∣∣xn − un(c̃n)
∣∣∣2) . (3.11)

The final hierarchical decoding metric µc is given as s symbol-wise LLR

LLRn = log
(
p(xn|cn = 0)
p(xn|cn = 1)

)
. (3.12)

3.4 Hierarchical MAC Channel Phase Estimator

Now we derive a H-Data decision aided H-MAC channel maximum likelihood
(ML) phase estimator based on [2]. This means the estimator does not have
the individual messages bA,bB nor their coded versions cA, cB available. It
has only the many-to-one hierarchical function estimate ĉ = χc(cA, cB) given
from the H-decoder. We assume that the estimate is reliable ĉ = c and both
the noise variance σ2

w and η are known.

3.4.1 Estimator Derivation

Using the fact of the memoryless channel, we can proceed symbol-wise. We
start with the observation likelihood

p(x|ϕA, ϕB, cA, cB) ≡ exp
(
− 1
σ2
w

∣∣∣xn − ejϕA s(cA,n)− η ejϕB s(cB,n)
∣∣∣2) ,
(3.13)

where we dropped unimportant scaling. Since the constellation mappers are
one-to-one functions, we introduce sA,n = s(cA,n), and sB,n = s(cB,n). After
some manipulations we get∣∣∣xn − ejϕA sA,n − η ejϕB sB,n

∣∣∣2 = |x|2 +
∣∣∣ejϕA sA,n

∣∣∣2 +
∣∣∣η ejϕB sB,n

∣∣∣2
+ 2<

{
ej(ϕA−ϕB) ηsA,ns

∗
B,n

}
− 2<

{
x e− jϕA s∗A,n

}
− 2<

{
x e− jϕB ηs∗B,n

}
.

(3.14)
For BPSK we have |sA,n| = |sB,n| = 1, then it follows that only the last three
terms are functions of ϕA, ϕB, sA,n, sB,n. The rest can be neglected because
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3. H-MAC Estimator Derivation and Theoretical Analysis...................
it acts only as a multiplicative constant w.r.t. the likelihood. When applied
and substituted back into Equation 3.13 we obtain

p(x|ϕA, ϕB, sA,n, sB,n) ≡ exp
(
− 2
σ2
w

η<
{

ej(ϕA−ϕB) sA,ns
∗
B,n

})
exp

( 2
σ2
w

(
<
{
x e− jϕA s∗A,n

}
+ η<

{
x e− jϕB s∗B,n

}))
.

(3.15)
Still there is a dependence on the individual source constellation points
sA,n, sB,n. We can use the minimal property of the HNC map, giving us sB,n
as a function of the hierarchical symbol and sA,n

sB,n = sB(sA,n, cn) = 1− 2cB,n = 1− 2(cn ⊕ cA,n) = (1− 2c)sA,n. (3.16)

Which gives sB,n = sA,n for cn = 1 and sB,n = −sA,n otherwise. Combined
with the assumption of IID source symbols, which gives p(sA,n) = p(sB,n) =
1
2 = p(cn), the marginalization can be written as

p(x|ϕA, ϕB, cn) ≡ 1
p(cn)

∑
(sA,n,sB,n):cn

p(x|ϕA, ϕB, sA,n, sB,n)p(sA,n)p(sB,n)

= 1
2
∑
sA,n

p(x|ϕA, ϕB, sA,n, sB(sA,n, cn)).

(3.17)
We may notice that our 2-source BPSK NCM with XOR HNC map results
in sA,ns∗B,n being a one-to-one function of cn namely

sA,ns
∗
B,n = s(cn) = (1− 2cn)|sA,n|2 = 1− 2cn. (3.18)

Using this together with As = {±1}, the marginalized H-symbol conditioned
likelihood (dropping unimportant scaling) yields

p(x|ϕA, ϕB, cn) ≡
∑

sA,n∈As

exp
(
− 2
σ2
w

η<
{

ej(ϕA−ϕB) s(cn)
})

exp
( 2
σ2
w

(
<
{
x e− jϕA s∗A,n

}
+ η<

{
x e− jϕB s(cn)s∗A,n

}))
= exp

(
− 2
σ2
w

η<
{

ej(ϕA−ϕB) s(cn)
})

2 cosh
( 2
σ2
w

(
<
{
x e− jϕA

}
+ η<

{
x e− jϕB s(cn)

}))
.

(3.19)
The final symbol-wise estimator metric ρ is given as a logarithm of the scaled
likelihood as

ρ(ϕA, ϕB, cn) =− 2
σ2
w

ηs(cn) cos(ϕA − ϕB)+

ln cosh
( 2
σ2
w

(
<
{
x e− jϕA

}
+ ηs(cn)<

{
x e− jϕB

})) (3.20)
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and for the whole frame as a simple sum

ρN (ϕA, ϕB, c) =
N∑
n=1

ρ(ϕA, ϕB, cn). (3.21)

The estimate is then given such that it maximizes the derived metric

ϕ̂ = arg max
ϕA,ϕB

ρN (ϕA, ϕB, c) (3.22)

3.4.2 Estimator Metric Approximation

We are interested in the number and position of the estimator metric maxima,
however the exact form given in Equation 3.21 is difficult to analyze. In this
section we derive an analytically tractable approximation.

The fully expanded exact expression for the metric is

ρN (ϕ, c) =
N∑
n=1
− 2
σ2
w

ηs(cn) cos(ϕA − ϕB)+

N∑
n=1

ln cosh
( 2
σ2
w

(
<
{
x e− jϕA

}
+ ηs(cn)<

{
x e− jϕB

}))
.

(3.23)

If we assume a very long frame N → ∞ and equiprobable target symbols
Pr(cn = 1) = Pr(cn = −1). In practice, the first assumption is rather fulfilled
since frame lengths of today used LDPC codes are in the order of 64800. The
equiprobability of the hierarchical symbol values directly follows from the
minimal HNC map. Apparently the first sum goes to zero

− 2
σ2
w

cos(ϕA − ϕB)
N∑
n=1

s(cn)→ 0, (3.24)

while the second is a monotonically increasing function of N since

ln(cosh(x)) ≥ 0, ∀x. (3.25)

With a further assumption of the operation in the high-SNR regime, 2
σ2

w
� 1,

we can make use of the following approximation

ln (cosh(x)) = ln
(1

2

)
+ ln(ex + e−x) ≈ ln

(1
2

)
+ |x| for x� 1. (3.26)

Both the additive ln(1
2) and multiplicative 2

σ2
w
do not influence the positions

of extrema so we can drop them and obtain

ρ′N (ϕ, c) ≈
N∑
n=1

∣∣∣<{xn e− jϕA

}
+ ηs(cn)<

{
xn e− jϕB

}∣∣∣ . (3.27)
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3. H-MAC Estimator Derivation and Theoretical Analysis...................
From the perspective of an off-line analysis, we can substitute the observation
model with the true phase vector φ = [φA, φB]T (Equation 3.2) for xn. After
some manipulations we get

ρ′N ≈
N∑
n=1

∣∣∣∣(sA,n cos(φA − ϕA) + ηsB,n cos(φB − ϕA) + <{wn} cos(ϕA)

+ ={wn} sin(ϕA)
)

+ ηs(cn)
(
sA,n cos(φA − ϕB) + ηsB,n cos(φB − ϕB) + <{wn} cos(ϕB)

+ ={wn} sin(ϕB)
)∣∣∣∣

=
N∑
n=1

∣∣∣∣sA,n( cos(φA − ϕA) + ηs(cn) cos(φA − ϕB)
)

+ ηsB,n
(

cos(φB − ϕA) + ηs(cn) cos(ϕB − ϕB)
)

+ <{wn}
(

cos(ϕA) + ηs(cn) cos(ϕB)
)

+ ={wn}
(

sin(ϕA) + ηs(cn) sin(ϕB)
)∣∣∣∣.

(3.28)
At this point we make an assumption of a noiseless channel |< {wn}| , |= {wn}| →
0. Since sA,n ∈ {±1}, the modulus argument of each n-th term in Equation
3.28 can be multiplied by sA,n not changing the overall sum value. Then we
can write

ρ′N (ϕ, c) ≈
N∑
n=1

∣∣∣∣ cos(φA − ϕA) + ηs(cn) cos(φA − ϕB)

+ ηs(cn) cos(φB − ϕA) + η2 cos(φB − ϕB)
∣∣∣∣.

(3.29)

Further we notice that cn is the only part that depends on the summation
index. That is as expected, realizing that the relay metric is marginalized over
the hierarchical dispersion. Using the assumption of cn having equiprobable
values and N being large, the sum can be reordered and split in half according
to the value of s(cn) ∈ {±1}. Dropping the multiplicative N

2 we get the final
expression

ρ′(ϕ) = 2
N
ρ′N (ϕ, c) = ρ′(ϕ, 1) + ρ′(ϕ,−1) (3.30)

where

ρ′(ϕ, s) =
∣∣∣∣ cos(φA − ϕA) + ηs cos(φA − ϕB)

+ ηs cos(φB − ϕA) + η2 cos(φB − ϕB)
∣∣∣∣. (3.31)
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3.4.3 Location of the Metric Extrema

In this section we use the previously derived approximation and analyze its
extrema, focusing on the number and position of maxima. We will proceed
separately for each of the four sign combination of the moduli arguments
ρ′(ϕ, 1), ρ′(ϕ,−1) from Equation 3.30.

[+,+]

If the moduli arguments of both ρ′(ϕ, 1) and ρ′(ϕ,−1) are positive, we can
remove the moduli and after simplification we get

ρ′++(φ) = 2 cos(φA − ϕA) + 2η2 cos(φB − ϕB). (3.32)
Performing the first and second derivative w.r.t. ϕ it yields

∇ϕ =
[
∂ρ′++
∂ϕA

,
∂ρ′++
∂ϕB

]T
= [2 sin(φA − ϕA), η2 sin(φB − ϕB)]T

Hϕ =

 ∂2ρ′
++

∂ϕ2
A

∂2ρ′
++

∂ϕA∂ϕB

∂2ρ′
++

∂ϕA∂ϕB

∂2ρ′
++

∂ϕ2
B

 =
[
−2 cos(φA − ϕA) 0

0 −2η2 cos(φB − ϕB)

]
.

(3.33)
Clearly, we see that both ϕ0 = [φA, φB]T ,ϕ1 = [φA, φB+π]T zero the gradient.
From the metric periodicity we get an infinity of other zero gradient points,
but in terms of Section 3.2.1 they are equivalent to ϕ0 and ϕ1. Evaluating
the definiteness of Hϕ at ϕ0 and ϕ1 we get

Hϕ

∣∣∣∣
ϕ0

=
[
−2 0
0 −2η2

]
⇒ negative definite

Hϕ

∣∣∣∣
ϕ1

=
[
−2 0
0 2η2

]
⇒ indefinite

(3.34)

thus at ϕ0 the metric exhibits a maximum and at ϕ1 there is a saddle
point. Now we need to check if the assumption of positive moduli arguments
stated at the beginning of this section is met at both ϕ0 and ϕ1. Doing the
substitution we get the following conditions

η2 ± 2η cos(φA − φB) + 1 ≥ 0 for ϕ0

1− η2 ≥ 0 for ϕ1
(3.35)

Since η2 ± 2η cos(φA − φB) + 1 ≥ η2 − 2η + 1 = (η − 1)2 ≥ 0 and 0 < η ≤ 1,
both conditions are always fulfilled. This proves that the metric will always
have a maximum at the true phase vector ϕ0 = φ.
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[+,−]

We will proceed similarly as in the previous section. After replacing the
moduli for this case we get

ρ′+−(ϕ) = 2η(cos(φB − ϕA) + cos(φA − ϕB)). (3.36)

The derivatives work out to
∇ϕ = [2η sin(φB − ϕA), 2η sin(φA − ϕB)]T

Hϕ =
[
−2η cos(φB − ϕA) 0

0 −2η cos(φA − ϕB)

]
.

(3.37)

Again, we get two distinct stationary points ϕ0 = [φB, φA]T ,ϕ1 = [φB, φA +
π]T . From

Hϕ

∣∣∣∣
ϕ0

=
[
−2η 0

0 −2η

]
⇒ negative definite

Hϕ

∣∣∣∣
ϕ1

=
[
−2η 0

0 2η

]
⇒ indefinite

(3.38)

we get another maximum at ϕ0 and a saddle point at ϕ1. The sign conditions
follow as

(η2 + 1) cos(φA − φB) + 2η ≥ 0 and
(η2 + 1) cos(φA − φB)− 2η ≤ 0 for ϕ0

(3.39)

(1− η2) cos(φA − φB) = 0 for ϕ1. (3.40)
In this case neither of them is trivially fulfilled. The filled area in Figure 3.2
contains all points which meet both conditions for ϕ0 and thus the metric
contains a false maximum at [φB,φA]T .

[−,−],[−,+]

In the cases of the two remaining sign combinations, we could proceed
analogously, however the derivation would be very similar with opposite signs
of the gradients and hessian matrices and would not lead to any new maxima
or saddle points.

3.4.4 Values of Metric Maxima

In the previous section we concluded that there are in general two maxima.
Now we are interested in their absolute values and what is more important,
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Figure 3.2: Area for which the estimator metric exhibits a false maximum at
[φB ,φA]T .

their mutual relation. We start with Equation 3.30, fix the absolute error
introduced by dropping constants and obtain

ρN (ϕ) ≈ ln(1
2) + N

2
2
σ2
w

(
ρ′(ϕ, 1) + ρ′(ϕ,−1)

)
. (3.41)

An evaluation at the true phase vector yields

ρN (ϕ)
∣∣∣
ϕ=[φA,φB ]T

≈ N ln
(1

2

)
+ 2N
σ2
w

(1 + η2), (3.42)

at the false phase vector the metric evaluates to

ρN (ϕ)
∣∣∣
ϕ=[φB ,φA]T

≈ N ln
(1

2

)
+ 2N
σ2
w

(2η). (3.43)

For the difference we can write

ρN ([φA, φB]T )−ρN ([φB, φA]T ) ≈ 2N
σ2
w

(1+η2−2η) = 2N
σ2
w

(1−η)2 ≥ 0. (3.44)

We see that the maximum at the true phase is always superior except for
η = 1, in which case, they have equal values. From Figure 3.2 it follows that
for this particular case, the second maximum exists independently on the
value of cos(φA − φB). However when looking at the hierarchical channel
combined observation given in Equation 3.4, for η = 1, it holds true that

un([φA, φB]T , cn) = un([φB, φA]T , cn), ∀cn (3.45)

since

ejφA s(cA,n) + ejφB s(cB,n) = ejφB s(1− cA,n) + ejφA s(1− cB,n) (3.46)
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for cA,n 6= cB,n and

ejφA s(cA,n) + ejφB s(cB,n) = ejφB s(cA,n) + ejφA s(cB,n) (3.47)

for cA,n = cB,n. The hierarchical observation is invariant w.r.t. the phase
vector flip because the target hierarchical symbol cn is unaffected.

As a conclusion we can state that for η 6= 1 the metric attains a global
maximum at the true phase vector and when conditions (3.39) are met, a
local maximum at the flipped phase vector. In the singular case when η = 1,
there are two equally valued local maxima but in this situation they both
yield the same observation and are equivalent from the perspective of the
relay.

3.4.5 Cramer-Rao Lower Bound Analysis

The Cramer-Rao Lower Bound (CRLB) is a tool by means of which one can
establish a lower bound on the estimate variance of any unbiased estimator.
For details see [1]. The lower bound is conditioned by the regularity condition
which is in our case given as

E
[
∂ ln(p(x|ϕ, c))

∂ϕ

]
= 0, (3.48)

where E is the expectation operator. From the memoryless channel and the
linearity of E follows that

E
[

ln(p(x|ϕ, c))
]

= E
[
N∑
n=1

ln(p(xn|ϕ, cn))
]

= N Ex,c
[
p(x|ϕ, c)

]
. (3.49)

Realizing this we can rewrite the regularity condition as

E
[
∂ ln(p(x|ϕ, c))

∂ϕ

]
= 0. (3.50)

Performing the derivative w.r.t. ϕA we get

∂ ln(p(x|ϕ, c))
∂ϕA

= 2
σ2
w

ηs(c) sin(ϕA − ϕB) + 2
σ2
w

∂<
{
x e− jϕA

}
∂ϕA

sinh
(

2
σ2

w

(
<
{
x e− jϕA

}
+ ηs(c)<

{
x e− jϕB

}))
cosh

(
2
σ2

w
(<{x e− jϕA}+ ηs(c)<{x e− jϕB})

)
= 2
σ2
w

ηs(c) sin(ϕA − ϕB) + 2
σ2
w

=
{
x e− jϕA

}
tanh

( 2
σ2
w

(
<
{
x e− jϕA

}
+ ηs(c)<

{
x e− jϕB

}))
.

(3.51)
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Similarly for ϕB
∂ ln(p(x|ϕ, c))

∂ϕB
= 2
σ2
w

ηs(c) sin(ϕB − ϕA) + 2
σ2
w

η=
{
x e− jϕB

}
tanh

( 2
σ2
w

(
η<
{
x e− jϕB

}
+ s(c)<

{
x e− jϕA

}))
.

(3.52)

After substitution the regularity condition w.r.t ϕA evaluates to

0 = 2
σ2
w

η sin(ϕA − ϕB) E
[
s(c)

]
+

2
σ2
w

ηE
[
=
{
x e− jϕA

}
tanh

( 2
σ2
w

(
<
{
x e− jϕA

}
+ ηs(c)<

{
x e− jϕB

}))]
.

(3.53)
From the equiprobability of c, the first term evaluates right to zero. The second
term is analytically not manageable, but a numerical Monte Carlo simulation
showed that it also evaluates to 0. Similarly, the regularity condition for ϕB
is fulfilled as well.

The lower bound on the individual estimate components is given by the
diagonal elements of the inverse Fisher information matrix

J = −N E

∂2 ln(p(x|ϕ,c))
∂ϕ2

A

∂2 ln(p(x|ϕ,c))
∂ϕA∂ϕB

∂2 ln(p(x|ϕ,c))
∂ϕA∂ϕB

∂2 ln(p(x|ϕ,c))
∂ϕ2

B

 . (3.54)

The lower bounds are given as

var(ϕ̂A) ≥ [J−1]1,1
var(ϕ̂B) ≥ [J−1]2,2.

(3.55)

The second derivatives needed for the Fisher matrix computation work out to

∂2 ln(p(x|ϕ, c))
∂ϕ2

A

= 2
σ2
w

ηs(c) cos(ϕA − ϕB)− 2
σ2
w

<
{
x e− jϕA

}
tanh

( 2
σ2
w

(
<
{
x e− jϕA

}
+ ηs(c)<

{
x e− jϕB

}))
+ 2

σ2
w
=
{
x e− jϕA

}
cosh

(
2
σ2

w
(<{x e− jϕA}+ ηs(c)<{x e− jϕB})

)
2

(3.56)

∂2 ln(p(x|ϕ, c))
∂ϕ2

B

= 2
σ2
w

ηs(c) cos(ϕB − ϕA)− 2
σ2
w

η<
{
x e− jϕB

}
tanh

( 2
σ2
w

(
η<
{
x e− jϕB

}
+ s(c)<

{
x e− jϕA

}))
+ 2

σ2
w
η=
{
x e− jϕB

}
cosh

(
2
σ2

w
(η<{x e− jϕB}+ s(c)<{x e− jϕA})

)
2

(3.57)
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∂2 ln(p(x|ϕ, c))
∂ϕA∂ϕB

=−2
σ2
w

ηs(c) cos(ϕA − ϕB) + 2
σ2
w

=
{
x e− jϕA

}
2
σ2

w
ηs(c)=

{
x e− jϕB

}
cosh

(
2
σ2

w
(<{x e− jϕA}+ ηs(c)<{x e− jϕB})

)2 .
(3.58)

The final evaluation of the expectation is done using a Monte Carlo simu-
lation in Matlab, where we replace the expectation operator by the sample
mean. To get the correct distribution we implement a simulation of the real
system.

First we define constants, where N represents the observation length and NN
the number of symbols used for averaging.
eta = 0.7;
PhiA = 0 * pi;
PhiB = 0.25 * pi;
SNR_dB_tab = 0:1:20;
N = 1e4; %frame length
NN = 100e3; %length of integration
hA = 1 * exp(PhiA * 1j);
hB = eta * exp(PhiB * 1j);

Next we generate random data for both source nodes, map them using BPSK
mappers and form their combined constellation vector u.
bA = logical(randi([0, 1], NN, 1));
bB = logical(randi([0, 1], NN, 1));
c = xor(bA, bB);
s = 1-2*c;
sA = 2*bA-1;
sB = 2*bB-1;
u = hA * sA + hB * sB;
J = zeros(2,2);
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Figure 3.3: Monte Carlo numerical evaluation of the CRLB with N = 104.

For different SNR values, we evaluate the mean of the second order derivatives,
form the Fisher information matrix J and compute its inverse. Its diagonal
elements represent the bounds for an observation length of one. After division
with the observation length N we get the final results.
for SNR_i = 1:length(SNR_dB_tab)

SNR_dB = SNR_dB_tab(SNR_i);
sigmaw2= 1/(10.^(SNR_dB/10));
w = (randn(NN, 2) * [1; 1j]) * sqrt(sigmaw2/2);
x = u + w;
J(1,1) = -sum( ... )/NN;
J(2,2) = -sum( ... )/NN;
J(1,2) = -sum( ... )/NN;
J(2,1) = J(1,2);
invJ = inv(J);
CBLRAsnr(SNR_i)= invJ(1,1)/N;
CBLRBsnr(SNR_i)= invJ(2,2)/N;

end

The results for a particular parametrization hA = 1, hB = 0.7 exp(j π4 ) are
given in Figure 3.3. The difference between ϕA and ϕB directly corresponds
to the inequality of the fading coefficient magnitudes.
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Chapter 4

H-MAC Estimator Design and
Performance Analysis

In this part we build on the theoretical conclusions from the previous chapter
and propose complete estimator algorithms. We implement them using
Matlab and measure their performance using a H-MAC stage computer
simulation.

4.1 Constant phase estimator

In this section we start with a less practical algorithm, which assumes a
constant H-MAC channel parametrization over the whole frame. It serves
mainly as a proof of concept, where it should theoretically be able to attain
the CRLB derived in Section 3.4.5. Since it is not analytically tractable to
obtain the maximum of 3.21 in closed form, we will use an iterative gradient
search with additive updates. At i-th iteration the equation is given as

ϕ̂i+1 = ϕ̂i + K1µN , (4.1)

where K1 is a properly chosen step-size diagonal matrix and

µN = ∇ϕρN (ϕ̂i, c) =
N∑
n=1
∇ϕρ(ϕ̂i, cn) (4.2)
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is the gradient with symbol-wise components µN,A = ∂ρN

∂ϕA
, µN,B = ∂ρN

∂ϕB
. Using

the partial derivatives derived in Section 3.4.5 we get

µN,A =
N∑
n=1

2
σ2
w

ηs(cn) sin(ϕA − ϕB) + 2
σ2
w

=
{
xn e− jϕA

}
tanh

( 2
σ2
w

(
<
{
xn e− jϕA

}
+ s(cn)η<

{
xn e− jϕB

}))
,

(4.3)

µN,B =
N∑
n=1

2
σ2
w

ηs(cn) sin(ϕB − ϕA) + 2
σ2
w

η=
{
xn e− jϕB

}
tanh

( 2
σ2
w

(
η<
{
xn e− jϕB

}
+ s(cn)<

{
xn e− jϕA

}))
.

(4.4)

For the gradient search to converge, the step-size is crucial. When chosen
too small, the convergence may be very slow, when large the algorithm may
not converge at all. The overall loop gain at the stable node is given as

K = K1K0, (4.5)

where K0 is a diagonal matrix containing the target function derivative
magnitudes at the stable node, in our case at ϕ = φ. Based on the hessian
matrix from Equation 3.33, fixed by the multiplicative constant N

σ2
w
we get

K0 =
[
K0,A 0

0 K0,B

]
=


∣∣∣ ∂µA
∂ϕA

∣∣∣∣∣∣∣∣
ϕA=φA

0

0
∣∣∣ ∂µB
∂ϕB

∣∣∣∣∣∣∣∣
ϕB=φB

 =
[2N
σ2

w
0

0 2N
σ2

w
η2

]
.

(4.6)
We see the relative scaling caused by the unequal fading coefficient magnitudes
and a strong influence of the SNR and observation length. To chancel out
these effects we set

K1 = KK−1
0 , (4.7)

where is K the step-size constant.

The final estimation procedure is given in Algorithm 1. The constants K
and ε� 1, the convergence threshold, need to be set properly. The algorithm
runs the gradient search and then compares the metric at its convergent point
with its values at other maxima and saddle points using the knowledge of
the metric function structure derived in Section 3.4.3. The saddle points are
included since in their neighborhood, the gradient may be very flat and thus
the threshold condition may get triggered erroneously.
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Algorithm 1 Constant phase estimator
1: procedure Estimator1(x, c,K0)
2: K1 ← KK−1

0 . K is a given step-size constant
3: i← 0
4: ϕ̂i ← [0, 0]T
5: repeat
6: µN ← µN (ϕ̂i,x, c)
7: ϕ̂i+1 ← ϕ̂i + K1µN
8: i← i+ 1
9: until µTNK1K1µN < ε . ε is a given threshold

10: A←
[
ϕ̂i, flip(ϕ̂i), ϕ̂i + [0, π]T , flip(ϕ̂i) + [0, π]T

]T
11: M ← ρN (A, c)
12: j ← getMaxIndex(M)
13: if j 6= 1 then
14: ϕ̂i ← A[j]
15: go to 5
16: return ϕ̂i

Implementation

In this section we provide the details of our Matlab implementation of
Algorithm 1.

First we set the initial estimates to 0 and compute the diagonal elements of
K1 according to Equation 4.7.
phiA = 0;
phiB = 0;
K1_1 = sigmaw2/2*K/N;
K1_2 = sigmaw2/2*K/N/eta^2;
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Then we start the iterative estimation. In each iteration, we compute the
gradient for the actual phase estimate and apply an additive update.
while true

muA= sum(2/sigmaw2*eta*s*sin(phiA-phiB)+ ...
2/sigmaw2*imag(x*exp(-1j*phiA)).* ...
tanh(2/sigmaw2*(real(x*exp(-1j*phiA))+ ...
eta*s.*real(x*exp(-1j*phiB)))));

muB= sum(2/sigmaw2*eta*s*sin(phiB-phiA)+ ...
2/sigmaw2*eta*imag(x*exp(-1j*phiB)).* ...
tanh(2/sigmaw2*(eta*real(x*exp(-1j*phiB))+ ...
s.*real(x*exp(-1j*phiA)))));

phiA = phiA + K1_1*muA;
phiB = phiB + K1_2*muB;

If the convergence condition is met, we compose vector A containing the
actual estimate and other stationary points derived from it. In M we store
the corresponding metric values. Then we check whether the maximal value of
M corresponds to the actual estimate. If not, we use the point corresponding
to the maximum metric value as the new estimate and continue with the loop.
In the other case we finish.

if abs(K1_1*muA)^2 + abs(K1_2*muB)^2 < epsilon
A = [phiA,phiB; phiB,phiA; phiA,phiB+pi; phiB,phiA+pi];
M = zeros(1,4);
for i = 1:4

M(i) = sum(-2/sigmaw2*eta*s*cos(A(i,1)-A(i,2))+...
log(cosh(2/sigmaw2* ...
(real(x*exp(-1j*A(i,1)))+eta*s.* ...
real(x*exp(-1j*A(i,2)))))));

end
[~, j] = max(M);
if j == 1

[phiA, phiB] = equivalent_shift(phiA, phiB);
break

else
phiA = A(j,1);
phiB = A(j,2);

end
end

end

In order to get a unambiguous output in terms of Section 3.2.1, we use the
function equivalent_shift, which shifts the result such that it lies in P. The
implementation is given as follows.
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π

−π

π−π

P

Figure 4.1: Illustration of the procedure of the equivalent_shift function. Full
lines mark closed boundaries and dashed lines open boundaries.

First we apply an equivalent shift by [(2k1 +1)π, (2k2 +1)π]T , k1, k2 ∈ Z, such
that both components lie in the interval (−π;π] (outer rectangle in Figure
4.1).
function[phiA, phiB]= equivalent_shift(phiA, phiB)

phiA = phiA - ceil(phiA/(2*pi))*2*pi + pi;
phiB = phiB - ceil(phiB/(2*pi))*2*pi + pi;

Then again, using an equivalent shift, with k1, k2 ∈ {−1, 0}, we place the
vector into P as shown in Figure 4.1.

if phiA <= -pi/2
phiA = phiA + pi;
if phiB > 0

phiB = phiB - pi;
else

phiB = phiB + pi;
end

end
if phiA > pi/2

phiA = phiA - pi;
if phiB > 0

phiB = phiB - pi;
else

phiB = phiB + pi;
end

end
end

31 ctuthesis t1606152353



4. H-MAC Estimator Design and Performance Analysis....................

10
0

10
1

10
-7

10
-6

10
-5

10
-4

10
-3

Figure 4.2: Comparison of a constant phase estimate with the CRLB. (Algorithm
1 with K = 1, ε = 0.01)

Numerical results

In Figures 4.2 and 4.3 we present the results of a simulation of Algorithm
1, in terms of the achieved variance over multiple realizations. We plot the
variance in dependence of the used SNR for both components of ϕ̂. For
comparison we included the theoretical lower bound derived in Section 3.4.5.
As expected, the variance depends highly on the value of the convergence
threshold ε and can be brought to the theoretical limit, provided the supplied
hierarchical target data are reliable.

In Figure 4.4 we evaluated how the variance of the estimates changes when
we loosen the assumption of reliable target data estimates. For this evaluation
we chose a fixed SNR equal to 20 dB. The unreliability of the provided
hierarchical data was introduced by the insertion of a binary symmetric
channel with the parameter p. It gives the probability of each bit being
independently flipped.
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Figure 4.3: Comparison of a constant phase estimate with the CRLB. (Algorithm
1 with K = 1, ε = 0.0025)

4.2 Variable phase estimator

Now we will loosen our strict assumption of a constant channel phase over
the whole frame. Rather we assume the phase to be known at the start of
the frame and the goal is to track the phase drift over the rest of the frame.
For this purpose we propose a modification of Algorithm 1.

Algorithm 2 Variable phase, true data estimator
1: procedure Estimator2(x, c,K0,ϕ)
2: K1 ← KK−1

0 . K is a given step-size constant
3: w ← floor(W2 ) . W is a given averaging window length
4: s← 1
5: ϕ̂(0)← ϕ
6: while s ≤ len(x) + w do
7: nl ← max{1, s−W}
8: nh ← min{len(x), s}
9: µs ← 1

nh−nl

∑nh
n=nl

µ(ϕ̂(s− 1), xn, cn)
10: ϕ̂(s)← ϕ̂(s− 1) + K1µs
11: s← s+ 1
12: return [ϕ̂(w), ϕ̂(w + 1), . . . , ϕ̂(len(x) + w)]T
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Figure 4.4: Dependence of the MSE on the data aid quality. Probability of
erroneous data given by p. (Algorithm 1 with K = 1, ε = 0.0025)

The proposed Algorithm 2 is parameterized by two constants. The step-size
K serves the same purpose as for Algorithm 1. The window length W sets
the dynamical properties. We assume the phase to be quasi-constant over
W consecutive symbols and compute the gradient only over this window.
Qualitatively we can say, that for smaller values of W , the estimator is able
to track a faster changing parameter but is more susceptible to noise.

Implementation

In this section we provide the details of our Matlab implementation of
Algorithm 2.
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We assume, that at the start of the frame, both ϕA, ϕB are known to be
[0, 0]T . First we set the initial estimates to 0 and compute the diagonal
elements of K1 according to Equation 4.7.
phiA = zeros(1,N+w);
phiB = zeros(1,N+w);
K1_1 = sigmaw2/2*K/N;
K1_2 = sigmaw2/2*K/N/eta^2;

Then we iterate over the whole frame. For each symbol we first determine
the lower and upper index and cut out a window of length W .
for n = 2:N+w

n_l = n - W;
if n_l < 1

n_l = 1;
end
n_h = n;
if n_h > N

n_h = N;
end
s_ = 1-2*c_est(n_l:n_h);
x_ = x(n_l:n_h);

Next we compute a window-wide gradient and obtain the new estimate by
applying an additive update to the previous one.

av_len = (n-1-n_l+1);
first_term = sum(2/sigmaw2*eta*s_* ...

sin(phiA(n-1)-phiB(n-1)))/av_len;
muA= first_term ...

+sum(2/sigmaw2*imag(x_*exp(-1j*phiA(n-1)))...
.*tanh(2/sigmaw2*(real(x_*exp(-1j*phiA(n-1)))...
+eta*s_.*real(x_*exp(-1j*phiB(n-1))))))/av_len;

muB= -first_term ...
+sum(2/sigmaw2*eta*imag(x_*exp(-1j*phiB(n-1)))...
.*tanh(2/sigmaw2*(eta*real(x_*exp(-1j*phiB(n-1)))...
+s_.*real(x_*exp(-1j*phiA(n-1))))))/av_len;

phiA(n) = phiA(n-1) + K1_1*muA;
phiB(n) = phiB(n-1) + K1_2*muB;

end
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Figure 4.5: Example of simulated H-MAC channel phase drift.

Finally we remove the first w estimates to equalize the introduced delay.
for n = 1:w

phiA(n) = [];
phiB(n) = [];

end

Numerical results

To evaluate the characteristics of the proposed Algorithm 2, we run a simula-
tion of the H-MAC channel with a randomly time varying phase. The phase
drift is simulated as a random walk. One realization of the H-MAC channel
phase course over a frame of length N = 64800 is depicted in Figure 4.5.

The estimation algorithm was run with the step-size and average window
length experimentally set to K = 0.4N,W = 20. In Figure 4.6 we see a cutout
of one realization of the phase course φA, φB and the estimator output ϕ̂A, ϕ̂B
at low SNR. After symbol number n = 1.1 · 104 we see a transition between
two lock points. From the theoretical part we know that both are equivalent
in terms of Equation 3.5 where for this particular case k1 = −1, k2 = 1.

In Figure 4.8 we see again a cutout from a particular realization. In this
case η was set to 0.3 which demonstrates trough the significantly uneven
performance between both ϕ̂A, ϕ̂B.
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Figure 4.6: Example of perfect H-data aided estimator phase tracking with tran-
sition between equivalent stable lock points. (Algorithm 2 with N = 64800, K

N =
0.4,W = 20)

The overall performance was evaluated in terms of the mean square error
of the phase estimates. During the evaluation, the phase invariance w.r.t. the
hierarchical symbol was taken into account. The results are shown in Figure
4.8. The frame length was also set to N = 64800. In the figure we see the
relationship of the estimate MSE on the SNR for two cases. In the first we
used reliable data estimates, in the later we introduced in each bit an error
with the probability p. We observe that the sensitivity to erroneous data aid
is lower for low SNR where the noise is the main limiting factor.

4.3 Front-end demodulation loop

In this section we consider a very practical scenario, we do not require neither
the data nor the channel phase to be know. We assume only the SNR and
the individual channel coefficient magnitudes to be known, as well as the
initial phase. This can be easily obtained from a short pilot based channel
measurement phase which precedes the payload transmission. This phase
seems unavoidable even from the point of detection and classification of
individual H-MAC stage participants and their channel qualities.
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Figure 4.7: Example of perfect H-data aided estimator phase tracking with
noticeable accuracy difference as a consequence of small η. (Algorithm 2 with
N = 64800, K

N = 0.4,W = 20)

4.3.1 System without FEC

First we consider an uncoded system. In the terms of Section 2, this means
that C is an identity and µc = µb. The system schema is show in Figure
4.9. Because the data is not encoded, there is no inter-symbol dependency
and thus the iterative loop is executed for each symbol independently. The
proposed procedure is given in Algorithm 3. We start with a zero data
estimate and an initial phase estimate given from the pilot phase and iterate
for each symbol the H-SODEM - H-CSE loop (loop 1) I times. The H-CSE
is based on the procedure given in Algorithm 2.

Implementation

In this section we provide the details of our Matlab implementation of
Algorithm 3. First we present the implementation of the SODEM derived in
Section 3.3.
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Figure 4.8: H-data aided estimator MSE. Probability of erroneous data given
by p. (Algorithm 2 with N = 64800, K

N = 0.4,W = 20)
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Figure 4.9: Schema of a node front-end processing with uncoded input.

The function is based on Equation 3.11. Based on the given channel
parametrization we compute the combined constellation points for all four
source symbol combinations. Then, the scaled likelihoods for cn = 1 and
cn = 0 are given as a sum of the corresponding Gaussian densities. Finally
the log-likelihood ratio is computed.
function LLR = sodem(x, sigmaw2, phiA, phiB, eta)

u00 = -(exp(1j*phiA)+eta*exp(1j*phiB));
u01 = -exp(1j*phiA)+eta*exp(1j*phiB);
u10 = -u01;
u11 = -u00;
p0 = exp(-1/sigmaw2*abs(x-u00).^2) + ...

exp(-1/sigmaw2*abs(x-u11).^2);
p1 = exp(-1/sigmaw2*abs(x-u01).^2) + ...

exp(-1/sigmaw2*abs(x-u10).^2);
LLR = log(p0./p1);

end
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Algorithm 3 Variable phase uncoded signal receiver loop
1: procedure Receiver1(x,K0,ϕ)
2: K1 ← KK−1

0 . K is a given step-size constant
3: w ← floor(W2 ) . W is a given averaging window length
4: s← 1
5: ϕ̂(0)← ϕ
6: ĉ← 0
7: while s ≤ len(x) + w do
8: nl ← max{1, s−W}
9: nh ← min{len(x), s}
10: i← 1
11: ϕ̂i ← ϕ̂(s− 1)
12: while i ≤ I do . I is a given number of iterations pro symbol
13: ĉnh

= decide(SODEM(xnh
,ϕi))

14: µs ← 1
nh−nl

∑nh
n=nl

µ(ϕ̂(s− 1), xn, ĉnh
)

15: ϕ̂i+1 ← ϕ̂i + K1µs
16: i← i+ 1
17: ϕ̂(s)← ϕ̂I
18: s← s+ 1
19: return ĉ

The implementation of loop 1 from 4.9 is given as follows.

The initialization stays the same.
phiA = zeros(1,N+w);
phiB = zeros(1,N+w);
K1_1 = sigmaw2/2*K/N;
K1_2 = sigmaw2/2*K/N/eta^2;
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The loop is also very similar as for the pure variable phase estimator. The
main difference is made by replacing the data aid by the output of the SODEM.
To obtain a hard decision from the LLR SODEM output, we simply compare
it with zero. For each symbol, we run the inner loop (loop 1 in 4.9) I times.
for n = 2:N+w

for i = 1:I
n_l = n - W;
if n_l < 1

n_l = 1;
end
n_h = n;
if n_h > N

n_h = N;
else

c_est(n) = ...
(sodem(x(n), sigmaw2, phiA(n), phiB(n), eta) < 0);

end
s_ = 1-2*c_est(n_l:n_h);
x_ = x(n_l:n_h);
av_len = (n-1-n_l+1);
first_term = sum(2/sigmaw2*eta*s_* ...
sin(phiA(n-1)-phiB(n-1)))/av_len;
muA= first_term ...
+sum(2/sigmaw2*imag(x_*exp(-1j*phiA(n-1)))...
.*tanh(2/sigmaw2*(real(x_*exp(-1j*phiA(n-1)))...
+eta*s_.*real(x_*exp(-1j*phiB(n-1))))))/av_len;
muB= -first_term ...
+sum(2/sigmaw2*eta*imag(x_*exp(-1j*phiB(n-1)))...
.*tanh(2/sigmaw2*(eta*real(x_*exp(-1j*phiB(n-1)))...
+s_.*real(x_*exp(-1j*phiA(n-1))))))/av_len;
phiA(n) = phiA(n-1) + K1_1*muA;
phiB(n) = phiB(n-1) + K1_2*muB;

end
end
for n = 1:w

phiA(n) = [];
phiB(n) = [];

end
c_est = (sodem(x, sigmaw2, phiA’, phiB’, eta) < 0);
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Figure 4.10: Bit error rate at different SNR for uncoded system.

Numerical results

In Figure 4.10 we present the result of a simulation based on the schema in
Figure 4.9. The same H-MAC channel model with the drifting phase as in
Section 4.2 was used. Even without the knowledge of the hierarchical data,
nor the channel phase parametrization, the SODEM-CSE loop converges.
The graph shows the measured bit error rates (BER) for different values of
SNR. We see that even without an forward error correcting code, the bit
error rate drops under 10−6 for SNR > 14dB.

4.3.2 System with FEC

Now we extend the system presented in Section 4.3.1 with a FEC. We use an
LDPC code from the DVB-S2 standard with rate R = 1

2 and N = 64800. It
is a linear code and thus by employing it, we obtain an isomorphic layered
NCM. The system schema is shown in Figure 4.11. The first part comprised
from the H-SODEM and H-CSE, together with loop 1, remained the same as
for the uncoded version. Since the first loop runs symbol-wise, and thus does
not exploit the inner signal structure, we add a second loop, which iterates
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Figure 4.11: Schema of a node processing with encoded input.

the LDPC decoder and H-CSE on the whole frame vector.

The overall procedure is a combination of those introduced previously.
First Algorithm 3 is run and then ĉ1 is fed trough the LDPC DEC-ENC pair
and used as the input to Algorithm 2. The newly obtained phase estimate
is used by the H-SODEM, providing an updated code-word estimate ĉ2. At
this point the cycle repeats. The loop is iterated until the LDPC decoder is
able to decode error-free or a predefined number of iterations is reached.

Implementation

In this section we provide the details of our Matlab implementation. The
part implementing loop 1 from Figure 4.11 is the same as showed above and
will not be repeated here. For the LDPC encoder and decoder in loop 2 we
use the Matlab build in implementation.

First we instantiate the LDPC encoder and decoder using a parity matrix
used in the DVB-S2 system.
hEnc = comm.LDPCEncoder(’ParityCheckMatrix’, dvbs2ldpc(rate));
hDec = comm.LDPCDecoder(’ParityCheckMatrix’, ...

dvbs2ldpc(rate), ’FinalParityChecksOutputPort’,true);
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The implementation of loop 2 is as follows. First we get the estimate LLR
from the SODEM and try to decode it. When the decoding succedes and all
parity checks are met, we break the loop and return our estimate b̂. If not,
we pass the hard decision (made by the LDPC encoder) to the encoder to get
a new estimate ĉ. Then we run the H-CSE and obtain an updated version of
the channel phase estimate.
for i = 1:I

c_est = sodem(x, sigmaw2, phiA’, phiB’, eta);
[b_est, parity] = step(hDec, c_est);
if sum(parity) == 0

break
end
c_est = step(hEnc, b_est);
for n = 2:N+w

n_l = n - W;
if n_l < 1

n_l = 1;
end
n_h = n;
if n_h > N

n_h = N;
else

c_est(n) = ...
(sodem(x(n), sigmaw2, phiA(n), phiB(n), eta) < 0);

end
s_ = 1-2*c_est(n_l:n_h);
x_ = x(n_l:n_h);
av_len = (n-1-n_l+1);
first_term = sum(2/sigmaw2*eta*s_* ...
sin(phiA(n-1)-phiB(n-1)))/av_len;
muA= first_term ...
+sum(2/sigmaw2*imag(x_*exp(-1j*phiA(n-1)))...
.*tanh(2/sigmaw2*(real(x_*exp(-1j*phiA(n-1)))...
+eta*s_.*real(x_*exp(-1j*phiB(n-1))))))/av_len;
muB= -first_term ...
+sum(2/sigmaw2*eta*imag(x_*exp(-1j*phiB(n-1)))...
.*tanh(2/sigmaw2*(eta*real(x_*exp(-1j*phiB(n-1)))...
+s_.*real(x_*exp(-1j*phiA(n-1))))))/av_len;
phiA(n) = phiA(n-1) + K1_1*muA;
phiB(n) = phiB(n-1) + K1_2*muB;

end
for n = 1:w

phiA(n) = [];
phiB(n) = [];

end
end
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............................. 4.3. Front-end demodulation loop
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Figure 4.12: Bit error rate at different SNR for both cases, with and without
FEC.

Numerical results

The simulation of the system, based on the schema in Figure 4.11 was run
under the same conditions as for the uncoded case. The performance was also
measured using the bit error rate. The results are presented in Figure 4.12.
For comparison, we repeated the curve for the case without FEC. For the low
SNR region, the performance is nearly the same. For higher SNR hovewer,
we see the performance gain of the FEC. For LDPC codes it is typical, that
the BER falls dramatically in a small SNR range.
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Chapter 5

Conclusions

We introduced the fundamental principles of WPNC and explained the basic
concepts and definitions. In particular, we addressed the overall WPNC
radio network structure and the global solvability condition as well as the
processing chain of individual nodes. Based on the gained understanding,
we defined a particular scenario, assumed throughout the rest of the work.
Namely a two-source H-MAC stage with BPSK modulation and XOR HNC
map. We showed the relation of the hierarchical symbol and the channel
phase parametrization, particularly the link between hierarchical dispersion
and channel phase ambiguity. Further, we performed the derivation of the H-
SODEM and hierarchical data decision aided ML phase estimator considering
our specific scenario. The main theoretical contribution resulted from the
analysis of the estimator metric in terms of the conditions of existence and
positions of local maxima. Using numerical methods, we determined the
theoretical limit of the ML estimator in terms of the CRLB.

Based on the theoretic results, we developed particular estimation algo-
rithms. First we presented an estimator for the case of random, but constant
channel phase over the observation frame. Using a simulation we showed, that
it has the potential to attain the theoretical limit. Next we considered a chan-
nel model with time varying phase and proposed a modified algorithm, which
is capable of tracking the phase drift. Based on a simulation, we obtained the
tracking error for different SNR values and analyzed the performance drop
caused by supplying unreliable hierarchical data estimates. In the end we
implemented a complete receiver front-end, comprising from our H-CSE, a
H-SODEM and a LDPC decoder and measured the resulting performance in
terms of achieved BER.
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Appendix B

Content of the CD-ROM

ROOT

matlab_scripts

Constant_phase_estimator.m

Constant_phase_estimator_unreliable_data_aid.m

equivalent_shift.m

H-CSE_CRLB.m

sodem.m

square_error.m

Variable_phase_coded_system.m

Variable_phase_estimator.m

Variable_phase_uncoded_system.m

results

workspace_*.mat

Thesis.pdf
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