
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Radio Engineering

Master’s Thesis

Implementation of Simple WPNC
System on the Experimental
Transceiver Network Testbed

Jozef Lukáč
Communication and Signal Processing, Open Electronic Systems
lukacjo1@fel.cvut.cz

May 2019
Supervisor: prof. Ing. Jan Sýkora, CSc.

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

434697Osobní číslo:JozefJméno:LukáčPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra radioelektroniky

Otevřené elektronické systémyStudijní program:

Komunikace a zpracování signáluStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Implementace jednoduchého WPNC systému v experimentální síti laboratorních transceiverů

Název diplomové práce anglicky:

Implementation of Simple WPNC System on the Experimental Transceiver Network Testbed

Pokyny pro vypracování:
The student will get acquainted with the fundamentals of WPNC (Wireless Physical Layer Network Coding) with isomorphic
layered NCM, channel estimation algorithms for hierarchical MAC channel, and with the laboratory experimental Ettus-USRP
based transceiver network testbed. The work goal is to implement a simple end-to-end WPNC system including layered
NCM, H-decoding, H-BC stage, and H-MAC/H-BC channel estimation. The scenario should include at least butterfly
network topology with PSKmodulated sources using outer state-of-the-art code (e.g. LDPC). An optional goal may include
an extension for more than 2 source nodes and/or some form of encapsulated network. The system should first be implement
by a computer simulation which will later serve as a benchmark reference for the over-the-air experiments.

Seznam doporučené literatury:
[1] Jan Sykora, Alister Burr: Wireless Physical Layer Network Coding, Cambridge University Press, 2018
[2] dokumentace Ettus USRP

Jméno a pracoviště vedoucí(ho) diplomové práce:

prof. Ing. Jan Sýkora, CSc., katedra radioelektroniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 24.05.2019Datum zadání diplomové práce: 28.01.2019

Platnost zadání diplomové práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
prof. Mgr. Petr Páta, Ph.D.
podpis vedoucí(ho) ústavu/katedry

prof. Ing. Jan Sýkora, CSc.
podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I would like to thank to prof. Ing.
Jan Sýkora, CSc. for giving me the ini-
tial concept of the whole thesis, for his
leadership, consultations and his time.
Next, I thank to my parents and whole
my family.

I declare, that the submitted work
was elaborated independently and that
I have mentioned all the used informa-
tion resources in accordance with the
guidelines on compliance with ethical
principles in preparing university final
theses.

v

Abstrakt / Abstract

V této práci vyvíjíme simulaci bez-
drátové sítě, konkrétně sítě využívající
principy WPNC. Na začátku jsou od-
vozeny estimátory pro H-MAC a H-BC
kanály. Následuje implementace odvoze-
ných estimátorů v MATLABu společně
s implementací pomocných objektů a
funkcí. Dále prezentujeme softwarová
rádia a jejich vlastnosti. Základní, čistě
počítačová simulace přenosu one-to-one
je vytvořená v MATLABu, za ní ná-
sleduje simulace využívající softwarová
rádia. Na konci jsou prezentovány při-
jaté obrázky. Z matematických metod
byla použita Monte Carlo Integrace a
odvození s pomocí skalárního součinu.
Z programovacích technik bylo použito
Objektově orientované a funcionální
programování s aplikací vektorových
operací. Jedním z nejvýznamnějších
výsledků této práce je úspěšný přenos
a dekódování několika Hierarchických
rámců v H-MAC kanálu v simulaci se
softwarovými rádii.

Klíčová slova: WPNC, Softwarové rá-
dio, MATLAB simulace

In the thesis we develop a simulation
of a wireless network. Specifically, a
network that uses WPNC principles. In
the beginning, there are estimators for
H-MAC and H-BC derived. A MAT-
LAB implementation of the estimators
follows together with implementation of
auxiliary objects and functions. Next,
software radios are presented and their
properties are examined. A basic MAT-
LAB pure-computer simulation of a
one-to-one transmission is developed
followed by over-the-air simulation.
In the end, resulted received pictures
are examined. From the math methods,
Monte Carlo Integration and derivations
with dot product were used. From the
programming methods, Object Oriented
and Functional Programming were used
with vectorized operations. One of
the significant results of the work is a
successful transmission, reception and
decoding of several Hierarchical frames
in H-MAC stage in the over-the-air
simulation.

Keywords: WPNC, Software Radio,
MATLAB simulation

vi

/ Contents

1 Introduction .1
1.1 Basic definitions and concepts . .1
1.2 Examined topology3

2 Transmitter and Receiver com-
position .5

2.1 Frame composition.6
2.2 Synchronization sequence.7
2.3 Channel-state estimators8
2.4 Estimator performance –

Cramér-Rao Lower Bound.8
2.5 Frame synchronization 13
2.6 Encoding-decoding 16
2.7 Configuration structure 20
2.8 BitSource, BitEval and bi-

tRelay objects 20
2.9 TxEmul and RxEmul objects. . 21

2.10 Tx and Rx pure computer
simulation, starting point. 22

3 Software radios 24
3.1 MATLAB interface with

software radios 25
3.2 Radio performance 27

4 Simulation performance and
results . 31

4.1 Base-level simulation 31
4.2 Butterfly network simulation . . 34
4.3 Conclusion . 41

A Abbreviations . 43
B Mathematical Derivations 44
B.1 Bessel J0 function 44
B.2 Trigonometric identity 1 44
B.3 Expression with a scalar

product 1 . 45
B.4 Expression with a scalar

product 2 . 45
C Included Files . 46

References . 48

vii

Tables / Figures

2.1. Indices used in computation
of adapted scalar product. 10

4.1. Start index in H-signal for de-
modulation by original pulse. . . 36

1.1. Butterfly network topology3
1.2. Example 1 of H-symbols4
1.3. Example 2 of H-symbols4
2.1. A Tx composition5
2.2. A Rx composition5
2.3. A normal frame composition6
2.4. H-frame composition6
2.5. CRLB of all 3 estimators 12
2.6. CRLB of ϕ̂ and γ̂ and their

computed variances.. 12
2.7. CRLB of τ̂ and variance of

k̂0. 12
2.8. “Real-time” synchronization. . . 16
2.9. “Post-process” synchroniza-

tion. 17
3.1. A photo of the software ra-

dios used for the experiment. . . 24
3.2. Measurement 1, unsuccessful

reception of a whole frame by
parts . 27

3.3. Measurement 1, pilot part. 28
3.4. Measurement 2, pilot defor-

mation . 28
3.5. Measurement 2, pilot defor-

mation with another pilot
signal . 29

3.6. Measurement 3, pilot defor-
mation with zero-mean pilot
signal, Ns = 2.. 29

3.7. Measurement 3, pilot defor-
mation with zero-mean pilot
signal, Ns = 4.. 30

4.1. Example pictures result-
ed from base-level pure-
computer simulation 34

4.2. Example 1 of the over-the-air
base-level simulation 34

4.3. Example 2 of the over-the-air
base-level simulation 35

4.4. Proposed pairs of Tx and Rx
for Butterfly network simula-
tion. 37

4.5. A change of pairs of Tx and
Rx in Butterfly network sim-
ulation for 2 subframes in one
LDPC frame. 37

viii

4.6. Received pictures from the
Butterfly network pure-
computer simulation; direct
transmission. 39

4.7. Received pictures from
the Butterfly network
pure-computer simulation;
H-MAC and H-BC stage. 39

4.8. Received and decoded pic-
tures from HMAC stage of
the Butterfly network HW
simulation. 40

4.9. Received and decoded pic-
tures in destination B di-
rectly from source B of the
Butterfly network HW simu-
lation. 40

ix

Chapter 1
Introduction

Wireless Physical layer Network Coding (WPNC) is relatively a new concept, emerging
around early 2000’s (see e.g. [1]).

One of the key concepts of WPNC is using interference of two or more signals for
increasing capacity of a wireless communication channel. Wireless channel implicitly
enables and cannot easily prevent shared access. Transmitted signals in one stage are
not orthogonal, they are transmitted at the same frequency and at the same time-slot.
Properly prepared and maintained interference is not perceived as harmful.

In Multiple Access Channel (MAC) phase, several transmitters are transmitting con-
currently. Signals are superimposed at physical layer, electromagnetic waves interfer-
ence occurs. A receiver senses the mixture of signals. From the received signal then Rx
tries to determine, resp. to compute a function of original signals. The output of that
function is transmitted at a next stage.

The aim of the thesis is to demonstrate basic principles of WPNC in some simple
network topologies by simulations and using software radios (SRs) for an over-the-air
transmission.

All algorithms were developed in MATLAB program environment.

1.1 Basic definitions and concepts
In the section we will introduce some notions of WPNC necessary for the following
work. There will be made an effort to briefly describe required knowledge also for a
“hands-off” reader. The sections draws knowledge mainly from the [2].

In a general WPNC network there are source-nodes, destination-nodes and relay-
nodes. Let’s now focus to relay-nodes strategies. We distinguish 3 types of strategies:

. Amplify and Forward (AF). The simplest strategy. The relay just amplifies received
signal and retransmits it. All the processing is left to destination-nodes. One of
drawbacks is the noise-amplification (together with received signal).. Joint Decode and Forward (JDF). Each source in MAC stage is decoded separately.
Then a network code function is applied to the decoded symbols, and the result is
broadcasted to destinations. An advantage is the possibility to choose an arbitrary
function.. Hierarchical Decode and Forward (HDF). The relay decodes network-coded function
directly from the received signal. It does not try to decode each source separately,
it attempts to decode the output of a given network code function, as if the result
signal was transmitted from one source. Such a signal we will denote as hierarchical.
Hence the name Hierarchical Decoding.

In the work, we will aim our attention at HDF; it assumes so called Network Coded
Modulation (NCM).
Definition 1.1. Network Coded Modulation is a channel encoding taking into account
the network structure and channel-model. Literally, code is applied by the network

1

1. Introduction .
according to the channel-model. Every single source particularly contributes to the
overall code. The Hierarchical signal (H-signal) is received in a superposition with
other NCM signals in the same stage. E.g. for a channel model: x = sA + sB . Where
x is a received symbol; sA, sB are BPSK symbols (±1) from two source nodes: A, B.
A receiver senses Hierarchical-symbols (H-symbols): −2, 0, 2.

In the following text we will hold a rule for naming:

. bi – will be raw binary data from the source i. It will be one symbol, a data-word or
a whole message depending on a context.. ci – will be encoded binary data by a code Ci. So ci = Ci(bi).. si – will be constellation point(s) resulting from the ci encoded data. The one to one
mapping will be marked as Ai: si = Ai(ci).

As in the classical communication networks also in networks using WPNC there is
defined a certain layered approach. (cf. ISO/OSI model 1) – the Layered NCM.
Definition 1.2. Layered NCM consists of (1) outer codebooks Ci with discrete encoded
symbols ci = Ci(bi) and (2) inner constellation space symbol one-to-one mappers si =
Ai(ci). We define Hierarchical Network Code (HNC) mapping (i.e. a mapping for
NCM) on both data b̄ = {bi}i (marking for a set of raw binary data of all source nodes)
and outer layer encoded symbols c̃ = {ci}i. I.e. b = χ(b̄) ≡ χ(b1, b2, . . . , bn) and
c = χc(c̃) ≡ χc(c1, c2, . . . , cn). The H-constellation associated with Layered NCM is the
one related to the outer layer encoded symbols

U(c) =
{
u : u = u

(
{si(ci)}i∈{1,2,...,n}, h̃

)
|c = χi(c̃)

}
, (1)

where h̃ is a vector channel parameter: each element for one Tx-to-Rx channel. We
also define a product component code C̃ = C1 × · · · × Cn. c̃ = C̃(b̄).

One further specification of Layered NCM is Isomorphic Layered NCM.
Definition 1.3. Isomorphic Layered NCM is Layered NCM consisting of outer codes Ci,
ci = Ci(bi), and HNC data and code symbol maps b = χ(b̄), c = χc(c̃) such that there
exists a valid one-to-one equivalent isomorphic hierarchical codebook (IH-codebook) C,
such that c = C(b), i.e.

∀b̃ : c = χc
(
C̃(b̃)

)
= C

(
χ(b̃)

)
. (2)

In our work we will use the same linear code Ccom 2 for every source node, specifically
LDPC code and HNC mapping i.e. χ and χc will be XOR function. So the condition
for Isomorphic Layered NCM is automatically fulfilled. In our case:

C̃ = Ccom × Ccom × · · · × Ccom,
C = Ccom,
b̃ = (b1, b2, . . . , bn),
χc = χ = XOR

c = χc(C̃(b̃)) ≡ χc(Ccom(b1), Ccom(b2), . . . , Ccom(bn)),
= Ccom(b1)⊕ Ccom(b2)⊕ · · · ⊕ Ccom(bn),
(a)= Ccom(b1 ⊕ b2 ⊕ · · · ⊕ bn)
= Ccom(χ(b̃)) = C(χ(b̃)). (3)

1 https://en.wikipedia.org/wiki/OSI_model
2 com – common

2

https://en.wikipedia.org/wiki/OSI_model

. 1.2 Examined topology

(a) – linearity of XOR function.
In a WPNC network a MAC and Broadcast Channel BC stages have an adjective

Hierarchical H-.

1.2 Examined topology
The network topology we have examined is called butterfly network 1.1.

R

SA SB

DB DA

Figure 1.1. Butterfly network topology.

It consists of two sources: SA, SB , two destinations DA, DB and one relay-node R.
The communication schedule is following:
1. Stage 1 (H-MAC): SA and SB transmits, R, DA and DB receives. R receives H-signal

whereas DA, DB receive an ordinary signal from a SISO channel.
2. Stage 2 (H-BC): R decodes H-symbols and transmits them to nodes DA and DB .

The destinations then can decode messages from both sources: SA and SB .
Now, we will explain technicalities involved. At the raw-binary data view:
In MAC stage bA and bB are transmitted. HNC mapping is XOR function, so relay

receives: b = bA ⊕ bB , DA receives bA; DB receives bB . In BC stage, R transmits b to
the DA, DB . DA has in MAC stage received bA and for obtaining bB executes following
processing: bB = bA⊕ b. Similarly DB has in MAC stage received bB and for obtaining
bA performs: bA = bB ⊕ b.

Because we have used linear code and XOR function as HNC function. The commu-
nication is isomorphic layered NCM 1.3. And similar derivation hold also for encoded
data: cA, cB .

At the PHY layer we assume an AWGN channel with attenuation and phase rotation:
x = hi · si + w. So for the relay we have

x = hA · sA + hB · sB + w = hA(sA + h · sB) + w. (4)

Where h = hB/hA is called relative attenuation and hA is called common attenuation.
We can see the relay as receiving H-symbols: sA+h ·sB in the ordinary AWGN channel
with attenuation. We see, H-symbols depend on relative channel attenuation. From
the H-symbols the Relay tries to decode output of the XOR function hypothetically
performed in background on cA and cB data; this is called H-decoding.

In the pictures 1.2 and 1.3 we can see H-symbols for 2 different relative channel
attenuations.

3

1. Introduction .

−2 −1 1 20
Re(s)

Im(s)

Figure 1.2. Example of H-symbols for relative attenuation h = 0.9.

−2 −1 1 20
Re(s)

Im(s)

Figure 1.3. Example of H-symbols for relative attenuation h = 0.9 exp(j25/180·π).

4

Chapter 2
Transmitter and Receiver composition

The simulation is developed in the MATLAB environment, as a two separate processes
running MATLAB. Every communication stage is simulated as a transmitter(s) in one
process and receiver(s) in the second and vice versa. In the figure 2.1 we can see a basic
transmitter composition, in the figure 2.2 there is a basic schema of a receiver. In this
section we will explain the blocks that are included in these schema.

frame
composer

↑ Ns

LDPC
enc.

⊕scramble

b Tx

BPSK map

mod. filt

D/A

pil. synch pil. chanEst PLenvc

s = PL

senv = PLenv

Figure 2.1. A transmitter composition.

A/D

synch.
filt.

| · |2 synch.
detection

buffer

dot
product

matched
filter

↓ Ns

LLR

ĥ σ̂2
w

LDPC
dec.

⊕scramblêb⊕ scr

b̂
Rx

Figure 2.2. A receiver composition.

Two separate approaches are implemented:

. Pure computer simulation. The communication channel is implemented by means of
a shared file. The processes communicate through the shared file.. Over-the-air simulation. The processes use an interface with Software radios in MAT-
LAB. Interfaces are implemented by MATLAB System object 1.

1 https://ch.mathworks.com/help/matlab/matlab_prog/what-are-system-objects.html

5

https://ch.mathworks.com/help/matlab/matlab_prog/what-are-system-objects.html

2. Transmitter and Receiver composition .
The program is designed such that a conversion from pure computer simulation to

over-the-air simulation requires minimum changes in the code.
Both kinds of simulation should enable a mode (a) for a numerical evaluation of

performance and (b) for a real-time visual simulation. Black&White pictures are being
sent in a loop and received images are being drawn if required.

2.1 Frame composition
We will consider communication using frames. Further, because the transmission should
run on Software radios with its antennas close to each other, i.e. there is implicitly a
radio visibility between each pair of antennas, we have to divide H-MAC stage to three
phases:. Phase 1: SA, SB transmit; R receives.. Phase 2: SA transmits, DA receives.. Phase 3: SB transmits, DB receives.

For phase 2 and 3 of H-MAC stage we have chosen a frame according to the picture
2.3. The frame is composed of a pilot signal and Payload. Pilot signal is divided to two
parts: first for synchronization and second for channel-parameters estimation.

pilSynch pilChanEst Payload

Figure 2.3. A frame composition for the transmission of source SA and SB in Phase 2 and
Phase 3 of H-MAC stage.

The frame structure 2.3 has been chosen also for BC stage. Between every pair of
subsequent parts of the frame, several zero-samples have been inserted there.

For phase 1 we have chosen a frame according to the picture 2.4. Pilot signals of
both sources are orthogonal in time.

pilSynchA pilChanEst ∅ PayloadA

∅ pilSynchB pilChanEst PayloadB

Figure 2.4. A frame composition for the transmission of source SA and SB in Phase 1 of
H-MAC stage.

Synchronization part and channel estimation part of the pilot signal consists of a
pseudorandom (PN) BPSK sequence modulated by a short rectangular (REC) pulse of
order (2 or 3 samples per symbol). Payload signal is prepared as follows:
1. Raw binary data bi are split into frames of length suitable for LDPC encoding. LDPC

code is chosen according to the DVB-S2 standard [3]. There is a codeword length
nldpc chosen first. It is either short nldpc = 16200 bits or long nldpc = 64800 bits.
Then, according to a code rate the dataword-length is computed.

2. A spread-sequence, is applied. Raw data are first scrambled by XORing them with
a spread-sequence. The spread-sequence is also chosen from the DVB-S2 standard
[3](pg. 21 BaseBand scrambling).

3. LDPC encoding follows.
4. BPSK constellation space mapping: (bi − 0.5)·2, (i.e. 0→ −1, 1→ 1).
5. Zero-padding and modulation using RRC pulse.

6

. 2.2 Synchronization sequence

2.2 Synchronization sequence
Synchronization sequence is used to locate the frame in a stream of data. We will
build ML estimator for a delay of the frame in the complex AWGN (CWGN) channel
model for continuous time: x(t) = γ exp(jϕ)s(t − τ) + w(t). h := γ exp(jϕ) – channel
attenuation.

Likelihood function of the channel model is:

p(x(t)|γ, ϕ, τ) = α exp
{
−1/σ2

w‖x(t)− γejϕs(t− τ)‖2
}
.

α is an uninteresting normalization factor. Procedure for the obtaining ML estimator
for the delay τ is following: (1) marginalize channel likelihood function over phase ϕ,
then (2) find its arg max w.r.t. τ . A note: Dot product is defined as: 〈f(t), g(t)〉 =∫
R f(t)·g∗(t) dt. ‖s(t− τ)‖2 = 〈s(t− τ), s(t− τ)〉 = ‖s(t)‖2. However, the dot product

will be computed from signal-samples. Because it holds: 〈x(t), s(t)〉L2 = 〈x, s〉`2 . For
base functions: sinc(t) = sin(πt)/(πt).

p(x(t)|γ, ϕ, τ) = α exp
{
−1/σ2

w

(
‖x(t)‖2 + γ2‖s(t)‖2

)}
·exp

{
2/σ2

w<
{〈
x(t), γejϕs(t− τ)

〉}}
.

p(x(t)|γ, τ) =
∫ π

−π
p(x(t)|γ, ϕ, τ)p(ϕ) dϕ,

= c(γ)
∫ π

−π
exp(2γ/σ2

w<{e−jϕ 〈x(t), s(t− τ)〉}) dϕ,

= | assign sp = 〈x(t), s(t− τ)〉 (scalar product)|,

= c(γ)
∫ π

−π
exp(2γ/σ2

w [cosϕ<{sp}+ sinϕ={sp}]) dϕ,

= |assign A = 2γ/σ2
w<{sp}, B = 2γ/σ2

w={sp}|,

= c(γ)
∫ π

−π
exp(A cosϕ+B sinϕ) dϕ,

(a)= c(γ)
∫ π

−π
exp{

√
A2 +B2 cos[ϕ− arctan(B/A)]} dϕ,

(b)= c(γ)I0(−
√
A2 +B2) = c(γ)I0(−2γ/σ2

w| 〈x(t), s(t− τ)〉 |). (1)

(a) – trigonometric identity applied (5). (b) – property of the modified bessel function
of the first kind (4).

So our ML delay-estimator:

τ̂ = arg max
τ̌

p(x(t)|γ, τ̌),

= arg max
τ̌

c(γ)I0(−2γ/σ2
w | 〈x(t), s(t− τ̌)〉 |),

(a)= arg max
τ̌
| 〈x(t), s(t− τ̌)〉 |. (2)

(a) – the function I0(x) = I0(−x) = J0(−jx) is increasing (4). For a saving of compu-
tation power we will decimate sequence of received envelope samples by a factor Nspil –
number of samples per symbol in pilot – and correlate it with synch. sequence samples
(not whole envelope of synchronization sequence). When we detect frame, we start
saving the received signal and after whole frame is stored, i.e in postprocessing part,
the whole synchronization signal envelope is used for a precise determination of the
frame.

7

2. Transmitter and Receiver composition .

2.3 Channel-state estimators
Now, when we have estimated delay of frame, we will estimate state of channel, i.e.
attenuation γ and phase rotation ϕ. Consider channel model

x = γejϕs + w. (3)

Likelihood function for the channel model is

p(x|γ, ϕ) = α exp[−1/σ2
w‖x− γejϕs‖2] = c(γ) exp[2γ/σ2

w<{e−jϕ 〈x, s〉}]. (4)

So ML phase estimator is:

ϕ̂ = arg max
ϕ̌

p(x|γ, ϕ̌) = arg max
ϕ̌
<{e−jϕ̌ 〈x, s〉},

= arg max
ϕ̌
<{| 〈x, s〉 |ej(arg〈x,s〉−ϕ̌},

= arg 〈x, s〉 . (5)

Using phase-estimator we will estimate channel attenuation γ:

γ̂ = arg max
γ̌

ln p(x|γ̌, ϕ̂),

= arg max
γ̌

−1
σ2
w

(
‖x‖2 + γ̌2‖s‖2

)
+ 2γ̌
σ2
w

| 〈x, s〉 |.

= | 〈x, s〉 |
‖s‖2 . (6)

∂ ln p(x|γ̌, ϕ̂)
∂γ̌

= −2
σ2
w

γ̌‖s‖2 + 2
σ2
w

|〈x, s〉| != 0.

And finally, we will need to estimate noise variance. Using all the estimators above
we will estimate noise realization and from it the variance will be computed. Note: We
consider complex noise.

v := x− γ̂ejϕ̂s,
σ̂2
w = 2·var [<{v}] . (7)

2.4 Estimator performance – Cramér-Rao Lower
Bound

In this section we will evaluate CRLB for all the three estimators. We should note,
that we have derived delay-estimator for continuous time τ , but only samples of received
signal are available. So we estimate coefficient k0 of a discrete channel model: x[n] =
γejϕs[n− k0] + w instead of τ .

CRLB is a lower bound on the variance for any unbiassed estimator of a deterministic
(fixed for all samples of the observation vector) parameter [4]. The only input to the
evaluation is a relation how the received signal depends on the examined parameter
θ (general unknown parameter) – the channel likelihood function: p(x|θ). The CRLB
says variance of every estimator is [4]:

var[θ̂] ≥
(
−E

[
∂2 ln p(x|θ)

∂θ2

])−1

=
(

E
[(

∂ ln p(x, θ)
∂θ

)2
])−1

. (8)

8

. 2.4 Estimator performance – Cramér-Rao Lower Bound

For the ϕ̂ and γ̂ estimators we have used the CWGN model (4). For the unified
evaluation and comparison consider ‖s‖2 = 1 and SNR = γ2/σ2

w. Further we will use:
〈x, s〉 =

〈
γejϕs + w, s

〉
= γejϕ‖s‖2 + 〈w, s〉.

∂ ln p(x|γ, ϕ)
∂ϕ

= ∂

∂ϕ

2γ
σ2<{e

jϕ 〈x, s〉} = 2γ
σ2
w

<{ejϕ(−j) 〈x, s〉},

∂2 ln p(x|γ, ϕ)
∂ϕ2 = 2γ

σ2
w

<{e−jϕ(−j)2 〈x, s〉}.

−E
[
∂2 ln p(x|γ, ϕ)

∂ϕ2

]
= 2γ
σ2
w

(
e−jϕγejϕ‖s‖2 + <{e−jϕE [〈w, s〉]}

)
= 2γ2

σ2
w

= 2SNR.

var[ϕ̂] ≥ 1
2 SNR . (9)

The CRLB of γ̂ follows:

ln p(x|γ, ϕ) = lnα+
(
−1
σ2
w

)
(‖x‖2 + γ2‖s‖2) + 2γ

σ2
w

<{e−jϕ 〈x, s〉}.

∂ ln p(x|γ, ϕ)
∂γ

= − 2γ
σ2
w

‖s‖2 + 2
σ2
w

<{e−jϕ 〈x, s〉}.

∂2 ln p(x|γ, ϕ)
∂γ2 = − 2

σ2
w

‖s‖2.

−E
[
∂2 ln p(x|γ, ϕ)

∂γ2

]
= 2
σ2
w

‖s‖2 = 2γ2

γ2σ2 = 2 SNR
σ2
w

.

var[γ̂] ≥ γ2

2 SNR . (10)

For the computation of CRLB of delay-estimator τ̂ several relations will be
necessary. One of them is d

dxI0(x) = I1(x). Next is d
dτ | 〈x(t), s(t− τ)〉 | =

−| 〈x(t), s′(t− τ)〉 | cos(arg 〈x(t), s(t− τ)〉 − arg 〈x(t), s′(t− τ)〉) and the last one
relation for computing dot-product of a vectors a(t) and b′(t) in L2 space using
sample-vectors a, b. 〈a(t), b′(t)〉 =

∑∞
n=−∞ an

∑∞
q=−∞ b

∗
n−q

(−1)q
q , q 6= 0. See appendix

(7) and (8).

p(x(t)|γ, τ) = c(γ)I0
(

2γ
σ2
w

| 〈x(t), s(t− τ)〉 |
)
,

∂ ln p(x(t)|γ, τ)
∂τ

= 1
p(x(t)|γ, τ)

∂p(x(t)|γ, τ)
∂τ

,

=
c(γ)I1

(
2γ
σ2
w
| 〈x(t), s(t− τ)〉 |

)
c(γ)I0

(
2γ
σ2
w
| 〈x(t), s(t− τ)〉 |

) · 2γ
σ2
w

∂| 〈x(t), s(t− τ)〉 |
∂τ

. (11)

For the numerical evaluation of the mean square value of (11) and evaluation of esti-
mator ϕ̂ and γ̂, the \matlab files\testFiles\eval CRLB.m script was used.

Important note on computation of mean square value of (11). For evaluation of
〈a(t), b′(t)〉 using vectors a and b of length LL (i.e. their indices are 0,...,LL-1) an
equivalent vector b′ is created. It is created as follows.

The result (8) is bounded on vector indices. The bounds come up from the bounds on
index of a and b, i.e. 0 ≤ n ≤ LL− 1, 0 ≤ n− q ≤ LL− 1 ≡ n ≥ q ≥ n−LL+1:

〈a(t), b′(t)〉 =
∞∑

n=−∞
an

∞∑
q=−∞6=0

b∗n−q
(−1)q

q
,

9

2. Transmitter and Receiver composition .

=
LL−1∑
n=0

an

n∑
q=n−LL−1 6=0

b∗n−q
(−1)q

q
. (12)

An example for LL = 7 is presented. Values of q and n− q are given in the table:

n 0 1 2 3 4 5 6
q -6 -5 -4 -3 -2 -1 1

-5 -4 -3 -2 -1 1 2
-4 -3 -2 -1 1 2 3
-3 -2 -1 1 2 3 4
-2 -1 1 2 3 4 5
-1 1 2 3 4 5 6

n-q 6 6 6 6 6 6 5
5 5 5 5 5 4 4
4 4 4 4 3 3 3
3 3 3 2 2 2 2
2 2 1 1 1 1 1
1 0 0 0 0 0 0

Table 2.1. Indices used in computation of the adapted scalar product.

We can notice, that the matrix in the upper part of 2.1 is flipped Toeplitz matrix.
The fact is used in the MATLAB implementation:

row = 1:LL-1; col = [1 -1:-1:(-LL+1)];
q_idx = flip(toeplitz(row, col), 2);

%index in s-vector, +1 for 1-based indexing
s_idx = (0:LL-1) - q_idx +1;

%equivalent vector to s’(t-tau)
s_tau2_diff_delay = dot(s_tau2_delay(s_idx), (-1).ˆq_idx./q_idx).’;

For the computation of mean square value of (11) we will use Weighted Monte Carlo
Integration, [5] with noise-samples as the evaluation points. So we will express the two
scalar-products using noise vector:

〈x(t), s′(t− τ)〉 = γejϕ 〈s(t), s′(t− τ)〉+ 〈w(t), s′(t− τ)〉 . (13)
〈x(t), s(t− τ)〉 = γejϕ 〈s(t), s(t− τ)〉+ 〈w(t), s(t− τ)〉 . (14)

Monte Carlo Integration evaluates an integral of an integrand function over a region
by generating points from the region and computing a (weighted) average of the inte-
grand evaluated in these points. Key-idea is the generating points. The points can be
generated from a uniform distribution over the given integration region, if the integrand-
values, resp. integrand-shape is not known. But if the integrand-shape is known, at
least approximately, it is better to generate points from the region according to a dis-
tribution with probability density function (PDF) similar to the integrand-shape as
much as possible. The computing of mean value is the case, in which we know approx-
imate shape of integrand – it is the shape of PDF, so we generate points from that
distribution. The general form of Monte Carlo Integration is:∫

Ω
g(x) dx ≈ 1

N

N−1∑
i=0

g(xi)
pdf(xi)

. (15)

10

. 2.4 Estimator performance – Cramér-Rao Lower Bound

In our case:

E[f(X)] =
∫

Ω
f(x) pdfX(x) dx ≈ 1

N

N−1∑
i=0

f(xi) pdfX(xi)
pdfX(xi)

,

= 1
N

N−1∑
i=0

f(xi). (16)

We have expressed our examined function (11) by noise samples because the CWGN
noise has known PDF and its samples can be easily generated instead of x (samples of
x(t)). A code listing from the evaluation of the CRLB for τ̂ :

N_mean = 10000; %number of noise vectors for one sigmaˆ2
tauVar = zeros(N_snr,1);
for i=1:N_snr

sigma2 = gammaˆ2 / snr_lin(i); %sigmaˆ2
w = sqrt(sigma2/2) * (randn(LL, N_mean) + 1i * randn(LL, N_mean));
sp = h*scProd_s_s + sc_prod_s(w); %scalar product <x(t), s(t-\tau)>

%scalar product <x(t), s’(t-\tau)>
sp_diff = h*scProd_s_s_diff + sc_prod_s_diff(w);

auxCoeff = 2*gamma/sigma2;
argBess = auxCoeff * abs(sp);
auxVect = besseli(1,argBess)./besseli(0,argBess) .* ...

auxCoeff .* abs(sp_diff) .* cos(angle(sp) - angle(sp_diff));
auxVect = auxVect.ˆ2; %E [(dˆ2 ln(p(x|gamma,phi))/ d phiˆ2)ˆ2]
tauVar(i) = 1/mean(auxVect); %computed variance

end

Note, that vectorized operations have been used.
Graphical results follows.

-15 -10 -5 0 5 10 15

snr [dB]

10-3

10-2

10-1

100

101

102

103

v
a

r
[s

2
]

|
[r

a
d

2
]

|
[-

]

Cramer-Rao lower bound of estimators

CRLB[tau]

CRLB[phi]

CRLB[gamma]

11

2. Transmitter and Receiver composition .
Figure 2.5. CRLB of all 3 estimators: ϕ̂, γ̂ and τ̂ .

-15 -10 -5 0 5 10 15

snr [dB]

10-2

10-1

100

101

102

v
a

r
[r

a
d

2
]

|
[-

]

Cramer-Rao lower bounds and variances of and .

var[phi]

var[gamma]

CRLB[phi]

CRLB[gamma]

Figure 2.6. CRLB and computed variances of estimators ϕ̂ and γ̂.

In the picture 2.6 we can see the ϕ̂ estimator has lower variance than its CRLB for
low SNR. It can be caused by phase-folding to the interval (−π, π]. The γ̂-variance is
also lower than its CRLB in vicinity of 0 dB. It can be caused by increased ϕ̂ variance
– recall, that γ̂ ML estimator uses ϕ̂ estimate. Further, both estimators achieve their
CRLB for high SNR.

-15 -10 -5 0 5 10 15

snr [dB]

10-4

10-2

100

102

104

106

v
a

r
[s

2
]

|
[-

]

Cramer-Rao lower bound of estim. and var[k
0
] of discrete delay

CRLB[tau]

var[k
0
]

Figure 2.7. CRLB of τ̂ and variance of k̂0 discrete-estimate.

12

. 2.5 Frame synchronization

In the picture 2.7 there is depicted the CRLB for τ̂ and variance of k̂0 estimator. We
can see no similarity. Clearly, a different approach is needed for performance-evaluation
of estimators with discrete parameter space.

The function matlab files\func\estim chanParams.m has been created for es-
timation of ϕ, γ and σ2

w from a received signal x received of the channel model
x = γejϕs + w. Code follows.

if any(size(x_received) ˜= size(s_orig))
%ensure column vector and replicate
s_orig = repmat(reshape(s_orig,[],1) ,1, size(x_received,2));

end
%first argument is conjugated
scProd = dot(s_orig, x_received);
s_origAbs2 = dot(s_orig, s_orig);
h_phi_est = angle(scProd);
h_abs_est = abs(scProd) ./ s_origAbs2;
h_est = h_abs_est .* exp(1i*h_phi_est);
sigma2_est = 2* mean(real(x_received - h_est .* s_orig).ˆ2);

Input parameters are

. x received received signal; matrix of size L x N, L – length of vectors, N – number
of vectors.. s orig pilot signal of size L x 1, resp. 1 x L or L x N (if required a different pilot for
each vector).

Output parameters are row vectors of ϕ̂, γ̂ and σ2
w estimates for each column of

x received.

2.5 Frame synchronization
The delay estimator (2) derived and evaluated in previous sections works well if we
have whole signal available and we are sure, that it contains synchronization pilot-
signal. But in reality we receive signal by parts and we don’t know if there is, resp.
should be synch. pilot-signal or not. We will design and examine an ad-hoc criterium
for deciding whether there is synch. pilot in the received part of signal or not.

For examination of frame-synchronization there was a script
matlab files\testFiles\testFrameSynchEnv.m created. The “-Env” suffix em-

phasizes synchronization at complex-envelope level, not on symbol level. A short de-
scription of the script and examination-results go next. At the beginning a synchro-
nization sequence and a channel estimation sequence are created (pseudorandom BPSK
symbols). The pilot samples are created as follows:

. A REC modulation pulse was used with length Ns pil (number of samples per sym-
bol in pilot), i.e. Ns pil samples per (BPSK) symbol will be used. Also there is
a possibility to use 2 x Ns pil samples per (BPSK) symbol to use narrower band-
width.. Synch. sequence is inserted Nrep-times (number of repetitions), but starting by the
second-half and ending by the first-half of it. Schematically [2][1 2]...[1 2
][1]. This scheme – with incomplete sequences at ends – was chosen, because it
has better synchronization properties than an ordinary repeated sequence.. There is an N fill samples between synch. part and channel estimation part left
zero.

13

2. Transmitter and Receiver composition .
. The channel estimation sequence is inserted.. An finally, the REC modulation pulse is applied.

After the pilot samples, there are N fill zero-samples inserted and next, N PL symbs
payload BPSK symbols are filled in. The whole packet is inserted to a longer sequence
testEnv (of length NtestSeqEnv) starting at index initIdx pil. At that point, the
channel model is applied. The attenuation h is initialized by its phase h phi and
magnitude h abs. The CWGN noise is of variance sigma2 (σ2

w). A simulation of
receiving testEnv-signal by parts comes next. According to the derived delay-estimator
(2) we need to compute dot-product of received signal and shifted version of synch.
sequence for every shift. That is achieved by filtering the received signal using a FIR
filter. To save a bit of computation-power, we decimate (with no prefiltering) the part
of testEnv signal, that is currently under test – testSig. The decimation is done by
a factor Ns pil. The filter impulse-response, consists of reversed sequence of symbols
that we are looking for. We are looking for Nrep-1-times repeated synchronization
sequence.

synchFilt = dsp.FIRFilter(’Numerator’, ...
flip(repmat(synchSeq,Nrep-1,1),1).’);

From the output of filtration of decimated testSig, the squared magnitude is computed.
At this time, we have desired vector for maximum-search – corrOutPartAbs2. However,
we need a criterium to decide whether the pilot was transmitted. We have created a
decision level. The decision level is computed as

decLevel(partIdx) = facMean * mean_val + facStd * sqrt(var_val);

where mean val is a mean value of the corrOutPartAbs2 vector and var val is the
variance of the corrOutPartAbs2 vector. The factors facMean and facStd are ad-hoc
parameters chosen in initialization section . In the script there is also implemented
an exponential decay with parameter fac oldVar for the decision levels. A comeback
to the decision. If all vector-elements are under the level, we decide, no pilot was
transmitted and we continue to process next part of testEnv signal. If any element
is larger than the level, we decide, there was a transmission and we save the part to
a separate matrix framesStored; following parts are stored in the matrix until the
N partsInFrame-number of parts is reached. We use a flag hasReachedBeg to indicate
whether a frame beginning was reached. After cycling through whole testEnv signal,
we post-process the stored signal in the framesStored matrix.

The post-processing is similar to the “real-time ” processing. But unlike the “real-
time” processing, it filters the signal from stored matrix framesStored. It selects
first few parts (NpartsToCorrel) for the correlation. This time we are looking for
the whole envelope not just symbols. The searched envelope-samples are composed by
modulation of the Nrep-1-times repeated synch. sequence. The samples are stored in
synchSeq env vector. The filter coefficients consists of reversed synchSeq env vector-
samples. Subsequently after the filtration the magnitude squared is computed and
stored in outCorrAbs2 allPilotEnv vector. Next, the outCorrAbs2 allPilotEnv
vector is sorted so to find first few maximums. Number of considered maximums is
computed as N peaks*(2*Ns pil-1), where N peaks is expecting number of peaks in
outCorrAbs2 allPilotEnv. We are interested in the position of the N peaks peaks.
This arrangement was done because in a peak vicinity there are 2*Ns pil-2 numbers
large enough to “shadow” other peaks. Thereafter the absolute maximum (maxIdx 1)
is found. We know, the position of other peaks w.r.t. the absolute maximum peak

14

. 2.5 Frame synchronization

position differs by an integer multiple of N synch*Ns pil. So we can construct possible
position of indices of other peaks. These indices are then intersected by indices of top
N peaks*(2*Ns pil-1) largest values in outCorrAbs2 allPilotEnv vector.

N_peaks_half = floor(N_peaks/2);
aux_delta = N_peaks_half*N_synch*Ns_pil;
maxIdx_possible_peaks = ...

(maxIdx_1 - aux_delta): (N_synch*Ns_pil) : (maxIdx_1 + aux_delta);
maxIdx_peaksFinal = intersect(maxIdx_possible_peaks, maxIdx);

Finally, the position of the last peak is chosen as a reference. The value is stored
in idxLast final. The position is computed w.r.t. the outCorrAbs2 allPilotEnv
vector, nonetheless we are interested in position-index in original sequence, resp. w.r.t.
the beginning of stored parts – framesStored. For that we perform a conversion.

idxEstAugPL = (idxFirstPart-1)*partLen + idxLast_final ...
- round(N_synch/2)*Ns_pil + (Ns_pil-1);

The idxLast final index is converted to the idxEstAugPL index (index of estimated
augmented payload). By augmented payload we mean channel estimation part of pilot
together with payload segment, including N fill initial zeros in front of chan. est.
part. The new index is the one after end-sample of the synchSeq env in the whole
testEnv signal, i.e. the first zero sample of N fill zero-samples between synch. seq.
segment and chan. est. segment of pilot.

At the moment, we can extract channel-estimation part and payload part. We de-
modulate channel-estimation section to symbols and estimate channel parameters. The
parameters are estimated both from the whole envelope part and from the demodulated
symbols. After running the script, the estimated channel parameters are printed to the
command window together with original values. To show, which estimator – either that
from demodulated symbols or that from whole envelope – is closer to the original value
o-sign is put at the more precise estimate.

A note on a computation of correlation. In MATLAB, correlation / convolution can
be computed by at least 3 ways:

. By conv function.. By calling dsp.FIRFilter object.. By filter function.

The fastest seems to be the filter function. The comparison performance of
the listed ways to compute correlation / convolution is done in the script: mat-
lab files\testFiles\testConvolution.m.

To perform the synchronization task, the frameSynchEnv class was created. It con-
tains algorithms for synchronization described in this section and developed in the
matlab files\testFiles\testFrameSynchEnv.m script. The object is created and
used at the end of the script. Among other properties one of its properties is a flag
.isFramePrepared indicating whether the frame is prepared to be returned from the
object. The object also implements a method .getFrames(), that returns augmented-
frame samples. Augmented-frame is a frame consisting of: N fill zero samples, enve-
lope of chan. estimation sequence, next N fill zeros samples and in the end envelope
of payload symbols. The object supports also synchronization to multiple sources –
N SIGS constructor parameter – but the synchronization is done w.r.t the first stream.
The sample-streams are given to the input when called within step function. Each
steam should be in one column. When synchronized, the method .getFrames() returns

15

2. Transmitter and Receiver composition .
augmented valid frames for each stream. It also returns isValidFlags row vector of
logical values. The vector is of length N sigs and contains true for stream with success-
ful acquisition of augmented frame; or contains false for a stream in which the synch.
sequence was not found. Synchronization to multiple sources is used in BC stage, when
one frameSynchEnv object is used for two destinations: DA and DB .

An example of output plots will be presented and the content explained.

0 1000 2000 3000 4000 5000 6000 7000 8000

samples [-]

0

5

10

15

20

25

30

a
b
s
(C

o
rr

)2
 [
-]

abs(Correlation) 2 of synchSeq with testEnv(initIdx:Ns_pil:end)

corr out

decision lev

Figure 2.8. “Real-time” synchronization.

In the figure 2.8 we can see the magnitude squared of the filtered testEnv signal –
the black lines. There was used Nrep parameter equal to 3. Blue lines are the decision
levels for the corresponding range of samples, width of lines depicts the part range. The
red line is a decision level for a part in which the criterium is fulfilled. From that part,
the buffering of parts starts. It doesn’t matter if the criterium is fulfilled for subsequent
parts or not.

In the figure 2.9 we see the post-process synchronization. The correlation is performed
with whole synch. seq. envelope and its magnitude squared is depicted in green.
Identified peaks are depicted by red asterisks.

2.6 Encoding-decoding
For channel coding there was an LDPC code used. It was chosen from the DVB-S2
standard. In MATLAB there is a function dvbs2ldpc that can generate parity-check
matrix according to a given nominal rate. However, there is no support for short
frames (nldpc = 16200 bits), so the function matlab files\func\dvbs2ldpc custom.m
has been created as a copy of the former extended by the possibility to generate also
short frames. It was necessary just to handle effective rate-values that are not the same
as nominal, “q”-values that are not equal to M/NB and to copy tables of addresses of
parity bit accumulators [3] (M is a number of parity bits, NB is a number of bits in a
block – 360).

16

. 2.6 Encoding-decoding

0 200 400 600 800 1000 1200 1400

sample [-]

0

10

20

30

40

50

60

a
b
s
(C

o
rr

)2
 [
-]

abs(Correlation) 2 of frame with synchSeq_envelope

abs(corr)
2

found peaks

Figure 2.9. “Post-process” synchronization.

For the encoding and decoding MATLAB System objects have been used. For encod-
ing the comm.LDPCEncoder, for decoding comm.LDPCDecoder object. Both are created
using parity-check matrix. When creating decoder there is a possibility to set some
additional parameters. Some useful parameters are these:

. a possibility to output whole codeword instead of just an information part (’Out-
putValue’, [’Whole codeword’ | ’Information part’ (default)]).. maximum number of iterations (’MaximumIterationCount’, <number> (default
50)). decoding termination condition (’IterationTerminationCondition’, [’Parity
check satisfied’ | ’Maximum iteration count’ (default)]).

MATLAB System objects are used through step function. First input to the function
is a handle to a system object. Next inputs are inputs to the system object. For the
encoder the input is a data-word (vector of suitable length of logical values); for the
decoder the input is Log-Likelihood Ratio (LLR) function computed from received
symbols. The LLR is given as: 1

L(ci) = log
(

Pr(ci = 0| channel output for ci)
Pr(ci = 1| channel output for ci)

)
. (17)

Derivations of LLR for an ordinary one-to-one channel and HMAC channel follow.
For an ordinary one-to-one transmission and CWGN channel model x = hs + w we

have symbol-wise channel likelihood function

p(xi|h, si) = α exp
(
−|xi − hsi|

2

σ2
w

)
. (18)

1 Decoding Algorithm part: https://ch.mathworks.com/help/comm/ref/comm.ldpcdecoder-system-
object.html#bs8gdxn-1

17

https://ch.mathworks.com/help/comm/ref/comm.ldpcdecoder-system-object.html#bs8gdxn-1
https://ch.mathworks.com/help/comm/ref/comm.ldpcdecoder-system-object.html#bs8gdxn-1

2. Transmitter and Receiver composition .
Because we use one-to-one mapping si = A(ci) the p(xi|h, si) = p(xi|h, ci). For the
evaluation of LLR we need a posteriori probability p(ci|xi, h), it can be expressed using
Bayes rule as

p(ci|xi, h) = p(xi|ci, h)p(ci)
p(xi)

. (19)

ci symbols are equiprobable, i.e. Pr{ci = 0} = Pr{ci = 1} = 1/2. So the required ratio
is given as:

Pr{ci = 0|xi, h}
Pr{ci = 1|xi, h}

=
p(xi|ci = 0, h) 1

2Pr{xi}

p(xi|ci = 1, h) 1
2Pr{xi}

,

=
α exp

(
− |xi−h(−1)|2

σ2
w

)
α exp

(
− |xi−h(1)|

2

σ2
w

) ,
= exp

(
−(|x|2 + |h|2 + 2<{hx∗}) + |x|2 + |h|2 − 2<{hx∗}

σ2
w

)
,

= exp
(
−4<{hx∗}

σ2
w

)
. (20)

When evaluating LLR, we can use ln instead of log, the result is then scaled by an
uninteresting positive constant. Even the number 4 in the formula we could omit, that
would cause a decoder performance degradation by a few percent in low SNR. Therefore

L(ci) = −4<{hx∗}
σ2
w

. (21)

For an HMAC channel and CWGN model x = hAsA+hBsB+w we have symbol-wise
channel likelihood function

p(xi|hA, hB , sAi, sBi) = α exp
(
−|xi − (hAsAi + hBsBi)|2

σ2
w

)
. (22)

We will use so called Hierarchical Soft-Output Demodulator H-SODEM [2] (Section
4.4), resp. its symbol-wise version. In our case the “soft-output” is the p(xi|ci) likelihood
function. We use χc = XOR and uniform alphabet symbols ci, that implies [2]:

p(xi|ci) = 1
MK−1
c

∑
c̃i:χc(c̃i)=ci

p(xi|c̃i). (23)

(Mc – cardinality of ci alphabet, K – number of transmitters in HMAC channel) In our
case Mc = 2, K = 2.

p(xi|ci = 0) = 1
2[p(xi|cAi = 0, cBi = 0) + p(xi|cAi = 1, cBi = 1)]. (24)

p(xi|ci = 1) = 1
2[p(xi|cAi = 0, cBi = 1) + p(xi|cAi = 1, cBi = 0)]. (25)

Similarly as in one-to-one transmission it holds that p(xi|cAi, cBi) = p(xi|sAi, sBi) be-
cause of bijective mappings sAi = A(cAi), sBi = A(cBi). The a posteriori probability of
the H-symbols is

p(ci|xi, hA, hB , sAi, sBi) = p(xi|ci, hA, hB , sAi, sBi)p(ci)
p(xi)

. (26)

18

. 2.6 Encoding-decoding

And the required likelihood ratio for decoding is (conditioning by channel parameters
is assumed as implicit)
p(ci = 0|xi)
p(ci = 1|xi)

= p(xi|ci = 0)
p(xi|ci = 1) ,

=
1
2 [p(xi|cAi = 0, cBi = 0) + p(xi|cAi = 1, cBi = 1)]
1
2 [p(xi|cAi = 0, cBi = 1) + p(xi|cAi = 1, cBi = 0)]

,

=
α exp

[
− 1
σ2
w
|xi − (−hA − hB)|2

]
+ α exp

[
− 1
σ2
w
|xi − (hA + hB)|2

]
α exp

[
− 1
σ2
w
|xi − (−hA + hB)|2

]
+ α exp

[
− 1
σ2
w
|xi − (hA − hB)|2

] ,
=

e−
|xi|

2

σ2
w e−

|hA+hB |
2

σ2
w

[
exp

[
− 2<{xi(hA+hB)∗}

σ2
w

]
+ exp

[
− (−2)<{xi(hA+hB)∗}

σ2
w

]]
e−
|xi|2
σ2
w e−

|hA−hB |2

σ2
w

[
exp

[
− 2<{xi(hA−hB)∗}

σ2
w

]
+ exp

[
− (−2)<{xi(hA−hB)∗}

σ2
w

]] ,
= exp

[
−4<{hAh∗B}

σ2
w

] cosh
[

2<{xi(hA+hB)∗}
σ2
w

]
cosh

[
2<{xi(hA−hB)∗}

σ2
w

] (27)

And finally LLR is

L(ci) = −4<{hAh∗B}
σ2
w

+ ln

cosh
[

2
σ2
w
<{xi(hA + hB)∗}

]
cosh

[
2
σ2
w
<{xi(hA − hB)∗}

]
 . (28)

Implementation of both LLR is done in the function
matlab files\func\llr4ldpcDec.m. Code of the function follows.
if size(h,1) == 1

llr = -4*real(conj(h) .* x) ./ sigma2;
else

llr = -4*real(h(1,:) .* conj(h(2,:))) ./ sigma2 ...
+ log(cosh(2* real(conj(sum(h)) .* x) ./sigma2) ./ ...

cosh(2* real(conj(diff(h)) .* x) ./sigma2));
end

Its input arguments are:. Received symbols x as a matrix of size L x N, N – number of vectors, L – length of
vectors.. Channel attenuation h as a matrix of size 1 x N, resp. 1 x 1 or 2 x N, resp. 2 x 1.
According to the first dimension it is decided whether to apply one-to-one channel
or HMAC channel. If the second dimension is 1, the h parameter(s) are applied to
every column of x.. Noise power sigma2 (σ2

w) as a matrix of size 1 x N, reps. 1 x 1. If the second
dimension is 1, the same noise power is applied to every column of x.
Output is the required LLR of the same dimensionality as input x. Performance of the

LDPC decoder is done in the script matlab files\testFiles\testLDPCDecoder.m.
A poor performance of version for HMAC channel has been noticed for low σ2

w (σ2
w ≈

5·10−4). It may be caused by a lot of ±∞ values as a result of low numerical stability of
used formula. From the view of the code-word level, decoder receives a corrupted code-
word cH,corrupted = cA⊕cB⊕w. Due to the Isomorphic Layered NCM, the same encoder
and decoder can be used to estimate hierarchical code-word and a normal code-word –
in one-to-one transmission: cNcorrupted = corig ⊕ w.

19

2. Transmitter and Receiver composition .

2.7 Configuration structure
In the simulation there is quite a lot of parameters. To share them easily a configu-
ration structure has been created. The structure is returned from the function mat-
lab files\func\nodes config.m, resp. matlab files\func\nodes config short.m.
The short suffix originates from the need to work with frames carrying “short” pay-
load. Instead a frame carrying whole LDPC code-word (in next text, just LDPC
frame) a shorter frames were created, each bearing only a part of the whole LDPC
code-word. I.e. the whole LDPC code-word was parsed to smaller pieces and trans-
mitted by parts. At the receiver the subframes are assembled. When whole LDPC
frame is reached, the decoding can start. The “short” suffix occurs also in names
of other files to emphasize they works with short frames. The short version of the
config function contains variable N PL, that determines number of payload symbols
in one frame. Other variables are identical in both configuration files; some dif-
fers only by their values. A configuration structure contains some variables that
are generated statically. The static configuration is contained in .mat files: mat-
lab files\func\nodes config static.mat and its “short” version. The files are cre-
ated from scripts matlab files\func\nodes config matFile.m and also its “short”
version. In scripts, vectors for source A, source B and relay node are created. There
are vectors such as synchronization sequence, channel estimation sequence, their ver-
sions with repeated basic sequence, complex envelopes of the sequences, modulation
pulse parameters and samples, and others. Modulation pulse was used RRC – for pay-
load symbols, a function that returns its samples is matlab files\func\srrc.m. The
function is taken from [6]. There was made an effort to hold some naming rules:

. N and N prefix means a number; number of something.. seq suffix means the parameter contains a sequence, resp. a vector. Variables with
the suffix contain sequence of modulation symbols or a spreading sequence.. env suffix means the parameter contains an envelope samples.

In scripts, the output of the function nodes config is stored in a variable cs (config.
structure). The structure is often used as a functions’ parameter.

2.8 BitSource, BitEval and bitRelay objects
In any simulation we need a source of information and an evaluator of error. The
bitSource object was created for the purpose of “creating” data. The object is con-
structed with one parameter – name of a picture file. The file is being read, every
pixel is being quantized according to the half of its range to Boolean values. In the
call of step function the object accepts one parameter – number of bits to return, and
it returns the required bits from the picture. The picture is read column-wise and is
periodically extended if needed. In the object there is an index of bit to start reading
from, subsequent call to step function returns bits starting from the index. When the
object is reset, the index is set to 1.

For error evaluation there was the bitEval object created. At construction it accepts
a picture filename and a flag whether to show received image. It reads the image and
expects to receive bits from that picture. At the step-function call, it accepts a vector of
logical values. The values are filled-in to an internal array picData test and compared
to the corresponding bits of the reference picture (property picData). Among other
properties there are variables Nbits and Nerrs. The former contains overall number

20

. 2.9 TxEmul and RxEmul objects

of processed bits, the latter contains overall number of error bits. When the object is
reset, both numbers are set to 0 and index-variable is set to 1.

The script matlab files\testFiles\testBitEval.m was created for demonstration
of usage of both objects.

For simulation of a network with relays, it is needed an object that buffers some data
and returns it when required. For that purpose, a class bitRelay2 was created. It is not
derived from matlab.System class, but rather handle class. The number 2 indicates
second version. The first version was derived from the matlab.System class, but there
were problems when input data type changed (from logical to double). The object
contains properties from bitSource and bitEval objects, but does not enable cyclic
overwrite of the contained picture. The performance of bitRelay2 is demonstrated in
the script matlab files\testFiles\testBitRelay.m.

For multiple sources and sinks there were created versions of bitSource and bitEval
with multi suffix. Their usage is demonstrated in matlab files\testFiles \test-
BitEval multi.m script.

2.9 TxEmul and RxEmul objects
As mentioned in the beginning of the chapter, we are designing 2 types of simulation:
1) a pure computer simulation and 2) an over-the-air simulation. In this section we will
focus on the former one, specifically on the transmitter and receiver emulation.

The pure computer simulation was developed as two separate processes running
MATLAB. The communication between the processes was done by means of a shared
file. To imitate the API of the software radios, two objects have been developed. The
TxEmul object is for transmission and RxEmul object is for reception using a shared-
memory file. Creation parameters of both objects are a name of a shared-memory file,
a number of complex numbers to be able to store in the file and a WRITTEN FLAG –
a number used as a sign, that a process using this flag has written something to the
shared file. TxEmul and RxEmul objects of one process should have the same flag –
say it is a number WF1. TxEmul and RxEmul objects of another process should use
a flag, that is the opposite to the other-process flag, i.e. WF2 = −WF1. Rx object
has an additional creation-parameters – FRAME SIZE – a number of complex samples to
return when called within the step function and a number of output channels NUM OUT.
Output streams are in columns of an output matrix. A “fraud” has been committed,
in the sense that the output signal for all channels is the same. A matrix of NUM OUT
columns and FRAME SIZE rows is returned. Using parameter numOut bigger than 1 is
intended as a Broadcast Channel stage.

When the objects are being created, first it is checked if the file exists. If it exists, an
error is reported when it doesn’t have enough space for storage – if so, you should set
the handle to the file (.mmFile property) to [] or an easier option: just clear objects
using that file and finally remove the file. Then the creation should work. If the file
doesn’t exist, it is created and mapped. The file is accessed as a matrix. First few
numbers in the file are used as a header. The header contains information about

. A number of complex numbers currently written and not read yet.. An offset in the file for reading by parts.. A written flag – indication of a state. The flag is used as a signal, resp. mutex.

When calling the TxEmul object with step function, the object accepts 3 parameters:

. A matrix of input data – inSamples. One column for each source.

21

2. Transmitter and Receiver composition .
. Channel attenuation parameters – h params. It should be a row vector – for each

source one number.. Noise samples – w. It should be a column vector of same length as data.

TxEmul object simulates MAC channel by receiving inSamples matrix that has 2 or
more columns. Within step function call it accepts also channel attenuation parameters
h params and noise samples w. h params should be a row vector of the same length as
the number of input channels – number of columns in the inSample matrix. It applies
the channel model:

sum(repmat(h_params,size(inSamples,1),1) .* inSamples, 2) + w; %AWGN

and saves the the samples to the shared file. MATLAB does not enable to store complex
numbers, so the real and imaginary parts are separated, a new matrix is composed and
stored to the file in its linearized form:

outSigMat = [real(outSig).’;imag(outSig).’];
obj.mmFile.Data(obj.dataIdx : obj.dataIdx+2*dataLen-1) = outSigMat(:);

Then a setting of the header of the shared file follows.
The RxEmul object takes no input parameter.
Usage of both objects is demonstrated in scripts matlab files\testFiles \test-

TxEmul.m and matlab files\testFiles\testRxEmul.m. These scripts should be exe-
cuted from separate processes running MATLAB.

2.10 Tx and Rx pure computer simulation, starting
point

In this section, there will be an introduction to the pure computer simulation
given. There will be presented m-files for simulation of Tx and Rx. The m-file
matlab files\testPair\testChainTx.m contains transmitter simulation and mat-
lab files\testPair\testChainRx.m contains receiver simulation. It is necessary to
use at least two separate processes running MATLAB. One script should run in one
process, the second script in another process. Be sure to run the scripts from the
matlab files\testPair folder. Run scripts by sections – first the initialization section
of both, then %% send data in Tx and %% receive data in Rx.

A picture is transmitted and evaluated. The picture is sent by a “long” frames, i.e.
whole LDPC frame at once. In each loop cycle there are printouts of current itera-
tion number and channel parameters used/estimated. A description of a transmitter
iteration loop follows:

1. N InfoBits is taken from the picture and stored in bitFrame.
2. The bitFrame is scrambled by a scramble sequence cs.scrambleSeq and encoded

by an LDPC encoder. The ldpcFrame of length cs.N ldpc is returned.
3. A mapping of payload data to phyFramePL – constellation symbols is executed.
4. phyFrame env – complex envelope of the phyFramePL symbols is constructed using

RRC modulation pulse and cs.pulse Ns samples per symbol. For modulation of
symbols a function modulate symbs was created – it supports modulation of multiple
symbol-frames.

5. wholeFrame env vector is composed of a pilot envelope, a guard zeros samples and
phyFrame env samples.

22

. 2.10 Tx and Rx pure computer simulation, starting point

6. Some initial and final zero-samples are added to the wholeFrame env samples, to
stimulate frame synchronization.

7. A noise is generated and the frame is “transmitted” using TxEmul object.

Now, we will describe a receiver iteration loop:

1. Frame synchronization object is reset – flags and filter states are set.
2. A while loop iterates as long as a frame is not prepared. It calls Rx object and frame

synch. object.
3. The phyFrameAug augmented frame is acquired from frame synch. object.
4. Next, channel estimation part is extracted to the xChanEst variable. Position in-

dices of channel estimation part in augmented frame are stored in config. struc-
ture in a substructure .idx. Names of fields of the substructure follow the rule:
[H|N] [PL|ChE] [i|f] – first letter indicates hierarchical frame or normal frame,
second part indicates payload or channel estimation part and the third part indi-
cates initial or final index.

5. xChanEst symbs channel estimation symbols are acquired by demodulation of xChan-
Est signal. For demodulation of symbols from complex envelope the function demod-
ulate symbs was created, as the function modulate symbs it also supports multiple
envelope-frames.

6. Channel parameters are estimated.
7. Payload envelope part is taken from the augmented frame.
8. Payload symbols are acquired from the payload envelope.
9. Log Likelihood Ratio for LDPC decoder is computed.

10. A code word estimate is produced.
11. Data word estimate is computed as a xor of an estimated code word and a scramble

sequence.
12. Finally, data word is evaluated in bitEval object.

23

Chapter 3
Software radios

In this chapter we will describe software radios used for simulation. We will take a look
at their interface with computer, usage in MATLAB, their parameters and others.

Software radios (SR), used for experiments, are devices connected to a computer
through an ethernet cable through a network switch. Every radio has its own antenna
and some additional inputs e.g. for timing and frequency synchronization. Through
the ethernet cables, there are complex envelope (CE) samples transmitted. SR Tx
modulates the CE to a desired center frequency and transmits it through its antenna.
SR Rx demodulates received signal from a center frequency to a CE, samples it and
sends samples to the computer. So computer communicates with radios by means of
CE samples.

Our software radios are of type USRP N210 1 from Ettus Research company. REF
CLOCK input is for frequency synchronization and PPS IN (pulse per second signal)
input is for timing synchronization. For the USRP N210 model the REF CLOCK is fixed
at 100 MHz. PPS input is optional, it helps to synchronize two or more radio devices
at simultaneous transmission. We have also a clock generator for synchronization of
the radios. All radios are connected to the computer through a 1Gb ethernet switch.
In the picture 3.1 we can see software radios used for the experiments.

Figure 3.1. A photo of software radios used for the experiment.

1 http://www.ettus.com/wp-content/uploads/2019/01/07495_Ettus_N200-210_DS_Flyer_HR_1.pdf

24

http://www.ettus.com/wp-content/uploads/2019/01/07495_Ettus_N200-210_DS_Flyer_HR_1.pdf

. 3.1 MATLAB interface with software radios

3.1 MATLAB interface with software radios
MATLAB provides an add-on of Communications Toolbox for support of USRP radios
1. It can be downloaded directly from the site or through the MATLAB environment:
Home → Add-Ons → Get Add-Ons. Look for “USRP Radio”. The download is often
not successful, a certain workaround is needed. The add-on contains among other
things the transmitter comm.SDRuTransmitter 2 and the receiver comm.SDRuReceiver
3 system objects. These objects are used for communication with radios in MATLAB.
Next we will describe some properties of these two objects.

SDRuTransmitter object properties:

. Platform – For USRP N210 the property should be ’N200/N210/USRP2’.. IPAddress – <ip address string>. IP address(es) of the radio. When there is a re-
quirement for simultaneous transmission of more radios at once, the property contains
more IP strings separated by commas, e.g. ’192.168.10.101,192.168.10.105’.. ChannelMapping – For USRP N210, it is a row vector 1 up to number of radios used
for simultaneous transmission (NumR). When simultaneous transmission is selected.
The SDRuTransmitter at step function call, expects a matrix of NumR columns. It
uses the mapping from the property to assign columns to the radios.. CenterFrequency – Desired center frequency for transmission in Hz. Default value
is 2.45 GHz.. PPSSource – Source of PPS signal [’External’|’Internal’].. ClockSource – Source of a 100 MHz clock signal [’External’|’Internal’].. InterpolationFactor – Factor of interpolation. The radios processes the samples
at 100 MHz, but it is possible to send the data to radio at lower rates. The ra-
dio interpolates the samples by InterpolationFactor and then converts to analog,
modulates and transmits. The maximal interpolation factor possible is 512. So the
minimal data rate of samples is 100·106/512 ≈ 195 kHz.. Gain – overall transmission gain involving discrete and analog part.. TransportDataType – [’int8’|’int16’]. Transmitter object expects samples of
magnitude lower than 1. Every sample in input vector is quantized to the Trans-
portType. E.g. when ’int8’ is selected, for real part there are 8 bits and for the
imaginary part there are also 8 bits, for each sample.. EnableBurstMode – true | false. Burst mode of transmission is a way of sending
data such, that there are frames buffered until a limit and transmitted as a whole at
once.. NumFramesInBurst – <number> (default 100) A number of frames in one burst.
When selected EnableBurstMode to true, it buffers NumFramesInBurst until real
transmission. So a real transmission is done in every NumFramesInBurst-th call of
the SDRuTransmitter within the step function.

SDRuTransmitter object at step function receives vector or matrix of samples. In
our case – of BPSK modulation – pure real samples, but it can receive also complex
samples. When called for the first time within step function, the object is initialized
to a type of the input and you cannot change it until you release the object. So e.g.

1 https: / / ch . mathworks . com / matlabcentral / fileexchange / 40406-communications-toolbox-
support-package-for-usrp-radio?s_tid=prof_contriblnk
2 https: / / ch . mathworks . com / help / supportpkg / usrpradio / ug / comm . sdrutransmitter-system-

object.html
3 https://ch.mathworks.com/help/supportpkg/usrpradio/ug/comm.sdrureceiver-system-object.

html

25

https://ch.mathworks.com/matlabcentral/fileexchange/40406-communications-toolbox-support-package-for-usrp-radio?s_tid=prof_contriblnk
https://ch.mathworks.com/matlabcentral/fileexchange/40406-communications-toolbox-support-package-for-usrp-radio?s_tid=prof_contriblnk
https://ch.mathworks.com/help/supportpkg/usrpradio/ug/comm.sdrutransmitter-system-object.html
https://ch.mathworks.com/help/supportpkg/usrpradio/ug/comm.sdrutransmitter-system-object.html
https://ch.mathworks.com/help/supportpkg/usrpradio/ug/comm.sdrureceiver-system-object.html
https://ch.mathworks.com/help/supportpkg/usrpradio/ug/comm.sdrureceiver-system-object.html

3. Software radios .
when you first transmit pure real data and then you want to transmit complex data, it
complains about errors of data-type change.

From trial tests performed, it has been found that even though the property Enable-
BurstMode is set to false, there is a certain minimal number of samples to be buffered
before real transmission. E.g. for InterpolationFactor 512 it was about 8000 samples
buffered before real transmission (buffer settings were unknown).

SDRuReceiver objects has similar properties as SDRuTransmitter. Their enumera-
tion follows:

. Platform – For USRP N210 – ’N200/N210/USRP2’ value.. IPAddress – <ip address string> IP address(es) of controlled radio(s). Same as
Tx. If multiple simultaneous reception is required, the IP addresses of used radios
are separated by commas.. ChannelMapping – vector – a permutation of numbers 1..NRx, where NRx is the
number of receivers controlled by the object. When the object is called within step
function it returns a matrix of NRx columns. The mapping controls assignment of
IP address to the column of output matrix.. CenterFrequency – <number> (default 2.45e9). Center frequency in Hz for re-
ception.. PPSSource – [’Internal’|’External’] Source of pulse per second signal.. ClockSource – [’Internal’|’External’] Source of 100 MHz clock signal.. SamplesPerFrame – <number> (default 362). Length of returned vector when the
object is called within step function (number of rows in returned matrix).. Gain – <number> Overall gain of discrete and analog part.. DecimationFactor – <number>. The receiving radio generates samples at 100 MHz,
decimates them by this factor and sends to the computer. Maximal decimation factor
is 512.. TransportDataType – [’int16’|’int8’] Data type used for transport from radio
to PC. Radio quantizes real and imaginary part of input samples (of magnitude lower
than 1) to int16 or int8 data type.. OutputDataType – [’double’|’single’|’Same as transport data type’ (de-
fault)]. Data type of returned matrix. The SDRuReceiver object performs conver-
sion from the TransportDataType to double or single precision real numbers (real
and imaginary part). Or it lets the type same as TransportDataType.. EnableBurstMode – [true | false]. Similar property as in Tx object. When true,
it buffers NumFramesInBurst frames and returns first frame. Subsequent call of step
function returns the next buffered frame until all are read. When the buffer is empty
and the step function is called, it again buffers NumFramesInBurst new frames.. NumFramesInBurst – <number> Number of buffered frames per one real samples-
acquisition process.

The SDRuReceiver returns also a length (number of rows) of output vector / matrix
of samples. The length is either 0 or SamplesPerFrame. The 0 indicates unsuccessful
reception. The event occurs at first few initial calls of the object. Because of it there is
used a construction:

len = 0;
while(len <= 0)

[phyEnv, len] = step(rxObj); %envelope of phy frame
end

instead of just a direct call.

26

. 3.2 Radio performance

Some useful application notes 1 follows. When using SDRuTransmitter and SDRuRe-
ceiver objects, some warnings can appear. One of the most often are UHD: U and UHD:
O, resp. UHD: D warning messages. UHD: U warning message indicates the Underflow,
i.e. SDRuTransmitter did not produced data at a rate required by radio. UHD: D warn-
ing message indicates the Overflow, i.e. SDRuReceiver object did not processed received
data fast enough. On Linux systems it can help to start MATLAB as a privileged user.
That can increase thread priorities.

There are several examples for Simulink and pure MATLAB 2 that demonstrates
usage of these objects. There is also possible to assign one physical device to SDRu-
Transmitter and at the same time to the SDRuReceiver, but only from one process.

3.2 Radio performance
For initial transmission and reception tests, scripts matlab files \testPair
\testChainTx HW.m and matlab files\testPair\testChainRx HW.m were created.
They are derived from the versions without HW suffix. TxEmul and RxEmul objects are
replaced by comm.SDRuTransmitter and comm.SDRuReceiver objects. The scripts are
not written in a nice way, there is a lot of commented-out code, but these scripts have
been used for an acquisition of useful measurements.

First measurement was aimed at frame synchronization. In one process a transmitter
was transmitting in a loop and in second process a receiver with frame synchronizer were
launched in a loop. At the beginning default number of SamplesPerFrame was chosen
(362). After several attempts the synchronization was successful, but the received
frame was composed of several subframes, not continuing its predecessor subframe.
In the figure 3.2 we can see the original frame samples that were sent (blue line) and
received frame samples (red lines). The received frame is cut and aligned to the original
frame so that the cut-parts match the original frame samples. For the visualization of
received (complex) samples only a real part is displayed. A scaling by a constant is also
applied so to match the amplitude of the sent signal.

1500 2000 2500 3000 3500 4000 4500

samples [-]

-2

-1

0

1

2

3

4

5

re
a

l
p

a
rt

 s
c
a

le
d

 [
-]

receiving a long packet by parts

orig

received

Figure 3.2. Measurement 1, unsuccessful reception of a whole frame by parts.

We can notice a peak in the place of the cut and a little oscillations of amplitude
of received signal. The oscillation of amplitude is caused by a little misalignment of
center frequencies of receiver w.r.t. the transmitter. The cause of origin of the peak is
not known to me.

In the figure 3.3 we can see the same frames as in the figure 3.2. Their initial parts
are visualized. We can see the separator between pilot-synch. part and pilot-channel
1 https://files.ettus.com/manual/page_general.html
2 https://ch.mathworks.com/help/supportpkg/usrpradio/application-specific-examples.html

27

https://files.ettus.com/manual/page_general.html
https://ch.mathworks.com/help/supportpkg/usrpradio/application-specific-examples.html

3. Software radios .
estimation part – it is a N fill = 5 zero samples near the 480-th sample. Further,
we can notice pilot deformation. The deformation could be particularly caused by an
insufficient bandwidth of transmitter and receiver. The thinnest rectangle pulses are
of width 2 samples. We see, parts of the thinnest pulses are almost completely erased
but only in one polarity, that is remarkable. I think it may be caused by an “effort”
of system to preserve zero mean value of signal samples. We can see that majority of
wide pulses have positive amplitude. The effect of non null mean value is enhanced by
repetition of base synchronization sequence in pilot.

0 100 200 300 400 500 600 700 800 900

samples [-]

-1

-0.5

0

0.5

1

re
a
l
p
a
rt

 s
c
a
le

d
 [
-]

sent and received frame-part

orig

received

Figure 3.3. Measurement 1, pilot part is displayed.

In this measurement, there were parameters set as follows:

. pilot Ns = 2 samples per symbol in pilot envelope.. InterpolationFactor and DecimationFactor were set to 50.. Gain of transmitter and receiver were maximal possible. Tx gain was 31.5 dB and
Rx gain was 38 dB.

With this settings the second measurement was performed.
The second measurement was targeted to the pilot deformation. With the previous

setting several frames have been acquired and pilots have been extracted. In the figure
3.4 we can see 4 pilots and the original signal. Again only scaled real part of received
signals is visualized.

320 330 340 350 360 370 380 390 400 410 420

samples [-]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

re
a
l
p
a
rt

 s
c
a
le

d
 [
-]

several received pilot envelope signals

orig

1

2

3

4

Figure 3.4. Measurement 2, pilot deformation.

We see the same phenomenon as in the figure 3.3. Non-null mean of the original
signal caused that thin peaks are almost erased in one polarity.

The same measurement was done also for settings:

28

. 3.2 Radio performance

. Effectively 4 samples per symbol in pilot envelope.. InterpolationFactor and DecimationFactor were set to 512.. Gain of transmitter and receiver were maximal possible. Tx gain was 31.5 dB and
Rx gain was 38 dB.

The result of measurement is in the figure 3.5. And again there is an effect of non-null
mean value of original pilot signal.

40 60 80 100 120 140 160 180 200 220 240

samples [-]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ra
e
a
l
p
a
rt

s
 [
-]

Sent and received pilot signal

orig

received

Figure 3.5. Measurement 2, pilot deformation with another pilot signal.

After the performed tests. The function matlab files\func\getRandZeroMean.m
was created. It generates random BPSK symbols with 0 mean value. It gen-
erates N rows/2 random indices. The indices are used to set a value 1 in the
output matrix. The matrix is of the size N rows x N cols. Other indices are set
to -1. For indices generation a built-in function randperm was used. The func-
tion getRandZeroMean is applied in generation of static configuration, i.e. in files
nodes config matFile[short].m.

After the generation of new zero-mean pilot signals. The test was run again. Re-
sults for the 2 samples per symbol in pilot envelope are in the figure 3.6, results for 4
samples per symbol in pilot envelope are in the figure 3.7. For both measurements, the
interpolation and decimation factor was 512.

50 100 150 200 250 300 350 400

samples [-]

-0.5

0

0.5

ra
e

a
l
p

a
rt

s
 [

-]

Sent and received pilot signal

orig

received 1

received 2

received 3

Figure 3.6. Measurement 3, pilot deformation with a zero-mean pilot signal using 2 samples
per symbol in pilot envelope.

Conclusion from the measurements is that there was made a mistake when it was
not checked the mean value of the pilot signal. In the code, there was blindly used
randi random number generation function to generate synch. sequence and channel

29

3. Software radios .

100 200 300 400 500 600 700 800

samples [-]

-0.5

0

0.5

ra
e
a
l
p
a
rt

s
 [
-]

Sent and received pilot signal

orig

received 1

received 2

received 3

Figure 3.7. Measurement 3, pilot deformation with a zero-mean pilot signal using 4 samples
per symbol in pilot envelope.

estimation sequence. The mean value was emphasized by repetition of synchronization
sequence in the pilot. The overall system bandwidth seems to be enough for 4 samples
per symbol for rectangular pulse used. Finally, it is better to receive longer frames –
at least 3-times longer than length of the transmitted frame – than try to receive and
process successive short frames (shorter than the transmitted one). Even though, the
acquiring and processing of consecutive short frames can be achieved most of the time
and on Linux systems in the root regime even more often, there is no warranty.

30

Chapter 4
Simulation performance and results

In this chapter we will describe final simulation files for the pure computer simulation
and the simulation with software radios. We will discuss simulation results and problems
that occurred. There was one more level of simulation designed before butterfly network
simulation – a base-level simulation. Simulation files of the base-level simulation should
serve as a skeleton for simulation of more complex networks.

4.1 Base-level simulation
The concept of base-level simulation uses one pair of transceiver and receiver in both
processes (simulation files). The goal is to exchange data between these processes. Each
process should transmit its image a receive an image of the second process. In the pure
computer simulation, processes are synchronized using a flag in the shared file, but in
the over-the-air simulation there is no such flag. Because of that, there was a modified
communication protocol ARQ Stop & Wait implemented [7]. In the original version of
ARQ Stop & Wait protocol there is one sender on one side and one receiver on the other
side. Sender sends its message and waits until it receives an acknowledgement (ACK)
from receiver. If the sender does not receive an acknowledgement until a specific time,
it resends its message. The receiver also waits for message until a specific time and if it
does not get it, it resends ACK to sender. The receiver sends acknowledgements only.
There are two versions of ACK to indicate sequence number of sent frame. Without
the two versions of ACK, it can happen e.g. that sender receives ACK for last but
one frame, but it thinks it is an ACK for last frame (the Rx resent ACK for last but
one frame, because it has not received the last one), so sends a new frame. Hence, the
receiver will miss one frame. The protocol is modified in a sense that unlike in the
original case the communication is peer2peer. Together with a message, there is an
ACK sent also.

In our case the ACK’s role is fulfilled by 2 versions of channel estimation sequence. In
the configuration files matlab files\func\nodes config matFile[short].m there is
chanEst seq1 vector besides the chanEst seq. Implicitly there is chanEst seq used
in pilots and if required it is changed for chanEst seq1. The ACK is handled by two
functions. matlab files\func\addAckMark.m changes implicit chanEst seq in pilot envelope

signals for chanEst seq1 in every second loop iteration.. matlab files\func\isFrameAcknoledged.m checks whether it was received a right
ACK. First it checks which channel estimation sequence was used. The task is similar
to frame synchronization task. We are looking for a sequence in the received signal.
In this case we don’t alternate delay of vectors, but rather versions of looking-for
sequence. The more probable is the one channel estimation sequence with bigger
absolute value of its scalar product with received symbols.
The functions are designed in a way to handle signals from all kinds of network stages

(MAC, BC and also ordinary one2one stage).

31

4. Simulation performance and results .
Next, there will be simulation scripts presented. The base-level simulation is done in

files matlab files\testPair\tCh short[1|2] ack v2.m. The main loop consists of 4
basic parts / operations, they are:

1. data preparation
2. transmission
3. reception
4. processing of received data

The second script contains the same operations in its main loop – also in the same
order – but it starts the main loop with reception and after the main loop ends, it sends
last message. For data preparation and processing of received data, there were separate
functions created. These functions are

. matlab files\func\getBitsToSend short.m for returning bits that will be directly
modulated and sent, and. matlab files\func\processFrame short.m for collecting and processing of received
samples.

Both functions are used to handle correct decomposition and composition of a whole
LDPC frame from subframes (“short” frames). In these functions, there are persistent
1 variables used (equivalent of static variables in C language). This feature enables
us to use benefits of global variables (such as storing current state of a variable) with-
out their negatives (their open access from workspace). Again, as functions for ACK
management, also these functions are written in a general way to handle frames in
all possible stages (HMAC, BC and one2one). Next, a description of both functions
follows.

Function getBitsToSend short.m. It stores current data-word and code-word bits,
together with an index of lastly access code-word bit. Decides according to the index
value whether there is a need to create a new code-word or there is a demand to access
next bits in the current code-word. And returns required number of bits from each
code-word (in a matrix of dimension N bits x number of sources).

Function processFrame short.m processes augmented frames. Recall that aug-
mented frame is the PL envelope augmented by channel estimation envelope and N fill
initial zeros – as returned from frame synch. object. It also distinguish between normal
frame and hierarchical frame. The decision is made according to the length of input
frame(s). First, there is extracted channel estimation part of envelope using precom-
puted indices. These indices are stored in configuration structure in a substructure
.idx. The k0 est variable relates to the H-frame. It is an estimate of delay of the sec-
ond source w.r.t the first source. This will be explained later in this chapter. Further, if
the frame is H-frame, the channel estimation part of the second frame is extracted and
concatenated to the channel estimation part of the first source. Channel estim. parts
are held in x chanEst env matrix. Next, channel estimation symbols are demodulated
and there is made a decision which channel estimation sequence was used, it should be
same for all sources / columns. Using this sequence, channel parameters are estimated.
Payload extraction and demodulation follows. From the demodulated symbols, LLR
is computed, filled to the persistent variable llr whole and if this was last subframe
a decoding follows. After decoding, there is xor with scramble sequence applied if the
frame is not H-frame. In H-frame, decoded H-data-word does not have to be scram-
bles, because the scramble sequence cancels out: (bA ⊕ bscr)⊕ (bB ⊕ bscr) = bA ⊕ bB, as

1 https://ch.mathworks.com/help/matlab/ref/persistent.html

32

https://ch.mathworks.com/help/matlab/ref/persistent.html

. 4.1 Base-level simulation

opposed to the one2one decoded bits when there is a need to apply scramble sequence
to data-word so to extract unscrambled version of data-word: (bA ⊕ bscr) ⊕ bscr = bA.
Unscrambled data are then evaluated.

Next we will mention the matlab files\func\prepare envSamp short.m function.
The function constructs envelope(s) samples of a normal frame or H-frame based on
the dimension of input matrices. It accepts payload bits to modulate, pilot envelopes
samples and configuration structure. Every column of data bits and pil samps corre-
sponds to a new source. If there are multiple sources, pilots are placed so that they are
orthogonal in time and there is N fill additional zero samples inserted between each
subsequent pilots. Payload bits are mapped to BPSK symbols (0→ −1, 1→ 1) and
modulated using RRC pulse and pulse Ns samples per symbol. Finally, whole frames
are composed by concatenation of pilots and payload envelopes.

In the scripts, there are also some simple functions used: matlab files\func \gen-
Noise.m generates samples of CWGN of the given variance and according to a required
size or output matrix. Function matlab files\func\prepAppZeros.m prepends and
appends zeros to the input matrix. This is used to employ the frame synchronizer. And
function for initialization of objects: matlab files\func\initObjs.m – it initializes
objects according to its class / type and supports variable number of inputs.

Finally, there is also a function matlab files\func\waitForFrame.m used. The
function accepts a receiver rxObj handle, a frame-Synchronizer frSynchObj handle and
a number of trials to perform N iter. It tries to synchronize in the first N iter frames
– returned by the receiver object. If the frame beginning was reached within these
N iter trials, it continues until a whole frame is prepared in frame synchronizer object.
This function works with RxEmul and comm.SDRuReceiver receiver object. In the end
of the function there is a test whether a frames have been found; if yes, (augmented)
frames are returned together with their validity flags.

In the beginning of both scripts there are 7 objects created: bitSrcObj, bitEvalObj,
ldpc enc, ldpc dec, txObj, rxObj and frSynchEnv. Names of used variables are the
same in both scripts. Be sure to run the script from the matlab files\testPair folder.
First, run the initial section of both scripts then %% one2one transmission sections.
In the figure 4.1 we can see example outputs of the mentioned scripts. The simulation
settings was as follows. Script 1: channel parameters from 1 to 2: hA = 0.92 ·ej1.9,
σ2
w = 0.89; Script 2: channel parameters from 2 to 1: hA = 0.96·ej1.3, σ2

w = 0.91.
Left picture of the figure 4.1 was received in script 1 with 6% of error bits. Right

picture of the figure 4.1 was received in script 2 with 7% of error bits.
For the over-the-air simulation, there were derived scripts used. The scripts have

a suffix HW: matlab files\testPair\tCh short[1|2] ack v2HW.m. In these scripts,
only receiver and transmitter objects are substituted by SDRuReceiver, resp. SDRu-
Transmitter. In the scripts, Tx and Rx objects use the same device (same IP address
is assigned to Tx and Rx in one script), but there were also tests where the devices are
different.

The simulation did not work entirely as expected. In the figure 4.2 we see the
most successfully received images. When the transmission of the whole LDPC frame
was performed by parts, insertion of an error subframe happened often, that broken
decoding of the whole frame. So there was transmission of the whole LDPC frame
selected.

Substantial settings of the over-the-air simulation, from which the pictures 4.2 result:

. N PL = N ldpc, i.e. whole frame was transmitted at one call of Tx object.

33

4. Simulation performance and results .

Figure 4.1. Example of received pictures as an output from base-level simulation.

. rxFrameSize = 375000 samples – maximal length of received frame (of Rx object)
have been chosen (Rx parameter: SamplesPerFrame).. N iter = 1. As mentioned in conclusion of measurements – one attempt was chosen
to receive and synchronize.

Figure 4.2. Example of the most successfully received pictures from the over-the-air base-
level simulation.

From the received pictures in the figure 4.2 we can see, that decoding was either
successful with no errors or fully unsuccessful with around 50 % of error bits. It is
because of antennas were close to each other and high Tx and Rx gains were used, i.e.
there was high SNR in the channel.

In the figure 4.3 we can see some less successfully transmitted pictures. From this
trial, we can see, that some kind of a “buffer-overlap” can occur.

4.2 Butterfly network simulation
In the previous section a base-level simulation has been developed. The task of this
section is to illustrate a way how to simulate a complex network using the base-level
simulation skeleton. But first, we will examine H-frame decoding.

34

. 4.2 Butterfly network simulation

Figure 4.3. Example of less successfully received pictures from the over-the-air base-level
simulation.

For LDPC decoder we need LLR. In case of H-frame, LLR depends on channel
attenuation in both subchannels and a noise variance. So, we need to extract the
channel estimation part from H-frame for both sources. Then, we will estimate channel
parameters, demodulate payload and compute LLR. In HMAC stage, transmitters need
to be synchronized well. If they are not synchronized, an additional processing is
required to handle it. To look for the channel estimation part of H-frame of the second
source, the function matlab files\func\estim delay.m has been created. It takes
an x – signal corrupted by CWGN and pilots – a look-for sequence. The function
performs correlation of these vectors and returns position of maximum magnitude of
the correlation. It supports multiple corrupted signals – column-wise structure of x is
assumed. pilots can be a column-vector or a matrix with the same number of columns
as x.

Examination of what happens when sources in HMAC stage are not fully synchro-
nized and how it affects decoding, was done in the script matlab files\testFiles
\testHMAC synchChanEst.m First, there is a demodulation error examined. BPSK
symbols for both sources are created and modulated to complex envelopes. Expected
H-symbols (s symbs) are computed. Next, a model of received signal is constructed – H-
channel model without noise is applied to unsynchronized envelope samples. Envelopes
are unsynchronized by k0 samples. Further, an ad-hoc methods to retrieve expected
H-symbols are tried. First method is an application of modified demodulation pulse
pulse f to H-signal. pulse f is constructed as a mean of original and shifted version of
modulation pulse: f [n] = (g[n] + g[n− k0])/2. Demodulation starts from the first sam-
ple of composed H-signal. Second method is an application of original (de)modulation
pulse pulse g to H-signal, but starting from 1st up to k0 +1-th H-signal sample. De-
modulated H-symbols are compared to the expected H-symbols using mean magnitude
square error (MSE). MSEs are printed to the command line. For the shift k0 = 1, MSE
is minimal for demodulation by pulse f. For other shifts k0 the MSE is minimal for
demodulation with pulse g with displaced H-signal beginning. In the table 4.1 we see
the option of start index for demodulation of H-signal using pulse g, that minimizes
MSE. There were 4 samples per symbol used. Taking into account only shifts 0 to 4,
a formula for start index is ceil((k0 + 1) /2) (we assume MATLAB indexing –
starting from 1).

35

4. Simulation performance and results .
k0 start index start index -1
0 1 0
1 1 0
2 2 1
3 2 1
4 3 2
5 4 3

Table 4.1. Start index in H-signal for demodulation by pulse g, that minimizes MSE for
different shifts k0.

For simplicity, the demodulation of H-signal is done using the pulse pulse g together
with adapted start index. In next part we will use a difference from original start index
– displayed in the third column of 4.1 and computed as floor(k0 /2).

In the next part of the script there is overall process of construction and demod-
ulation of H-frame examined. There are auxiliary objects created. It is possible
to select also negative k0. H-frame is composed and inserted to a longer zero-
vector. Finally, noise is added. Then, synchronization is performed and an aug-
mented frame is acquired. Further, there are channel estimation parts extracted.
Position of the second channel estimation sequence is estimated using function es-
tim delay. Next, k0 est estimate is computed and auxiliary difference k0 half est
= sign(k0 est)*floor(abs(k0 est)/2); is obtained. The difference is used to
shift start and end index of payload envelope and second channel estimation part.
Script proceeds by the estimation of channel parameters followed by demodula-
tion of envelope, computation of LLR and final code-word decoding. There is an
information printout about a number of error bits at the end. The function mat-
lab files\func \prepare envSamp.m is used in the script. It is almost identical to
the version with short suffix, with a difference, that it performs LDPC encoding.
Findings about demodulation of H-frame from the script are applied in the function
matlab files\func\processFrame short.m.

In the remaining part of the section we will focus on simulation of complex networks
using base-level simulation skeleton. Whole main loop remains the same, only objects
are used in a circular manner and several variables cycle through predefined values.
A code for the change of currently active objects and variables is added to the main
loop of base-level simulation scripts. To simulation a complex network using base-level
simulation, we need to design, resp. to fit transmission and reception into a one2one
manner – into “pairs”. For Butterfly network 1.1, the pairs are proposed as in the in
figure 4.4. There is used a multiple source for SA and SB. And a multiple destination
for DA and DB. The relay, functioning as a destination is in a different pair than the
relay functioning as a source to enable transmission of subframes. Relay needs to wait
to receive whole H-frame, then it can decode it, again encode and transmit it.

One pair of Tx and Rx works until one codeword is exchanged. Then a switch to the
second pair should be done after transmitters and receivers in the pair have exchanged
their one code-word, the simulation should switch again to the first pair. Recall, that
the main-loop of the base-level simulation consists of 4 parts: 1) data preparation,
2) transmission, 3) reception of data from the other script and 4) processing of the
received data. There will be a code for a change of current objects and variables
inserted. An example of pair exchange for Butterfly network is depicted in the schema
4.5. There are 2 subframes in one LDPC frame used in the example schema. So,
every transmitter transmits 2 times before it changes to a next transmitter, and also

36

. 4.2 Butterfly network simulation

SA
SB

R

SBDB

SA

DA RDB

DA

pair 1 pair 2

Figure 4.4. Proposed pairs of Tx and Rx for Butterfly network simulation using base-level
simulation skeleton.

every receiver receives 2 times before it switches to a next receiver. To emphasize relay
functioning as a destination the DR is used, similarly SR is used to emphasize the relay
working as a source.

prepare SAB
send SAB receive DR

process DR

prepare SB

send SBreceive DB
process DB

prepare SAB
send SAB

receive DB
process DB

receive DR
process DR

prepare SB

DR → DA

send SB

receive DA
process DA

prepare SR

SB → SR

DB → DAB

SAB → SA

prepare SA
send SA

receive DAB
process DAB

send SR

prepare SA
send SA

receive DAB
process DAB

DAB → DB

SA → SAB

receive DA
process DA

prepare SR

DA → DR

send SR

receive DR
process DR

prepare SAB
send SAB

SR → SB
prepare SB

send SBreceive DB
process DB

prepare SAB
send SAB receive DR

process DR

prepare SB

DR → DA

send SBreceive DB

Figure 4.5. An example of a change of pairs of transmitters and receivers in a pair for
Butterfly network simulation using 2 subframes in one LDPC frame.

On the left, there is process 1. On the right, there is process 2. One iteration of main
loop is visualized by rectangle around corresponding commands. If we mark number of
subframe necessary for one whole LDPC frame by N subFr, we can say that, in process
1, there is a change of receiver and transmitter every k * N subFr-th iteration of the
main loop; where k is a natural number. In process 2, there is a change of receiver
every k * N subFr-th iteration of the main loop and transmitter changes in the next
main-loop-iteration after the change of receiver.

Files for simulation of a complex network are these: matlab files\testPair
\tCh short[1|2] ack whole.m. There is a function matlab files\func \get-
PicXOR.m used in two ways. We will briefly describe its purpose. The function

37

4. Simulation performance and results .
computes XOR function from quantized pictures. In the function, there is varargin
input parameter, that enables to enter multiple picture files to compute XOR of. Input
files are read and quantized according to the half of pixel-range. The quantization to
logical values is done in the local function quantizeIm. Effectively, only first N rows *
N cols picture pixels are taken from the linearized picture matrix. If necessary, pictures
are periodically extended. The extension is done by the local function extentPic.
Finally, XOR function of all pictures is computed and returned as a logical matrix of
size N rows x N cols. The function is often used with one picture as a parameter.
In this case, the picture is quantized and first N rows * N cols picture pixels are
returned.

In the scripts, a pair change is implemented according to the figure 4.4. Auxiliary
cell arrays are constructed. There are cell array of bitSources bsObjs, bitEval objects
beObjs, transmitters TxObjs, receivers RxObjs, frame synchronizers frSynchObjs, pilot
envelopes samples pilots and channel attenuations h atten. A little note on objects.
In MATLAB there are two types of objects: 1 value objects and handle objects. When
copying value-objects there is a new separate object created. The new object is inde-
pendent on the original one. When creating handle objects a handle is returned. It is a
reference to the object. When copying the handle, only a handle value is copied, no new
object is created. This property of handle objects is used. All matlab.System objects
are derived from handle class. Also the relay class bitRelay2 is derived from handle
class. We collect handles to an existing objects in cell arrays and we cycle through them.
The cycling is directed by an index idx pair and performed by an auxiliary function
matlab files\func \getIdxthCell.m. The function takes an index idx and a vari-
able number of cell arrays and returns idx-th cell value from each cell array. According
to the figure 4.5, a code for pair change is inserted to the main loop in both scripts. In
the script 1, source and destination are changed together, when a whole frame for LDPC
decoding is transmitted – i.e. the condition if mod(i * cs.N PL, cs.N ldpc) == 0
holds. The code is the last part of the main loop. In the script 2, destination is changed
earlier than source by one loop iteration. As in the script 1, destination changes when
the condition if mod(i * cs.N PL, cs.N ldpc) == 0 holds. Together with the des-
tination update the cycling index idx pair is updated. Source is changed in the next
loop iteration, when the condition if i>1 && mod((i-1) * cs.N PL, cs.N ldpc) ==
0 holds. The source-update is done using the current idx pair.

Next, we will present simulation results. In the figure 4.6 we can see pictures received
in a direct transmission from source to destination. On the left, there is a picture
received in destination B. On the right, there is a picture received in destination A.

Effectively they are the same as in base-level simulation 4.1. They are only period-
ically extended a little. The extension is done so to enable construction of a natural
number of data-words for LDPC encoding and not overwrite beginning of pictures when
receiving. In the figure 4.7 we can see pictures received in BC stage and MAC stage.
On the left, there is a picture received in BC stage in both destinations. On the right,
there is a picture received in MAC stage in relay.

Simulation settings was as follows:. MAC channel attenuations: hA = 0.97ej2.3, hB = 0.94ej1.8. Noise variance: σ2
w = 0.9.. SA → DA channel. Attenuation: hAA = 0.92ej1.9. Noise variance: σ2

w = 0.9.. BC stage attenuation (the same for both subchannels): hBCstage = 0.97ej0.3. Noise
variance: σ2

w = 0.85.. SB → DB channel. Attenuation: hBB = 0.92ej1.2. Noise variance: σ2
w = 0.85.

1 https://ch.mathworks.com/help/matlab/matlab_oop/comparing-handle-and-value-classes.html

38

https://ch.mathworks.com/help/matlab/matlab_oop/comparing-handle-and-value-classes.html

. 4.2 Butterfly network simulation

Figure 4.6. An example of received pictures resulted from the Butterfly network simulation
run. There in a received picture in destination B directly from source B, on the left. On

the right, there is a received picture in destination A directly from source A.

Figure 4.7. An example of received pictures resulted from the Butterfly network simulation
run. There in a received picture in destination A,B from the relay, on the left. On the

right, there is a received picture in relay from sources A and B in HMAC stage.

. Two subframes per whole LDPC frame were used. I.e. payload of one frame consisted
of 8100 code-word bits.

Error rate of received pictures:

. Destination B, directly from source B (4.6, left). 5.9 % of error bits.. Destination A, directly from source A (4.6, right). 7.21 % of error bits.. Relay, from HMAC stage (4.7, right). 17.9 % of error bits.. Destinations A and B in BC stage (4.7, left). 26.5 % of error bits.

The error is computed with respect to the expected pictures. In relay we expect to
decode XOR or source images. In destinations of BC stage we also expect to receive
XOR of source images. From the error rate enumeration, we can observe that in one
to one transmission there is approximately 6.5 % of error bits after decoding. We can
say, that error rate of BC stage reception (26.5 %) is the error rate of relay reception
(17.9 %) roughly increased by this rate. Further, we can notice incorrectly decoded
codeword in relay picture (4.7, right) – there is one, more or less, black strip. The one

39

4. Simulation performance and results .
strip before the black one seems to be inverted and shifted down. This phenomenon
may be caused by simulation imperfections, specifically a concurrence issue.

Finally, a version of the simulation for software radios was done. The simulation files
are matlab files\testPair \tCh short[1|2] ack wholeHW.m. Receivers and trans-
mitter have been changed for SDRuReceiver and SDRuTransmitter objects. In the
script 1, you can notice the creation of SDRu objects operating two physical devices.
They are created with multiple IP addresses and channel mapping:

’IPAddress’,[cs.ip.ip1, ’, ’ cs.ip.ip4],...
’ChannelMapping’,[1,2],...

There is a burst mode transmission used and number of frames in burst is set to 1. To
ensure long frames are transmitted as a unit. An error occurred when switching from
multiple-device transmitter SA,B to single-device transmitter SA. The objects were
created using the same device (with IP address ip1). MATLAB complained that, it
cannot use single-device transmitter because it is currently assigned to another active
object. So at least, the most interesting part of the simulation was performed – the
HMAC stage. The most successful results of received and decoded images in relay from
HMAC stage are in the figure 4.8.

Figure 4.8. An example of the most successfully received and decoded images in HMAC
stage from real over-the-air simulation.

For completeness we add also the most successfully received pictures in the other
process. It is the picture from destination B. The best received images are in the figure
4.9.

Figure 4.9. An example of the most successfully received and decoded images from desti-
nation B, directly receiving from source B, from real over-the-air simulation.

40

. 4.3 Conclusion

The simulation was set to send and receive a whole LDPC frame at once. In the
pictures, received and decoded by relay (4.8), we can see, that some frames were decoded
with complete decoder failure – there are fully black and fully white strips. Some strips
are at least grainy – decoder returned an alternating code-word sequence. One strip
in the left picture expose a bit-inversion. Finally, some strips indicate a more-or-less
correct decoding.

4.3 Conclusion
Even though the simulations didn’t work as was expected, some correctly received
frames confirmed the correctness of the derived formulae for synchronization, channel
estimation and computation of the LLR. For the future simulations using software
radios, I would suggest not to use Tx and Rx mixed in one process. I think, when there
was a switch from Tx to Rx in one process, Rx received at least a bit of transmitted
signal. The better option would be to distribute all the Tx to one process and to use
only one Rx in the second process. ACK confirmation and relay simulation could be
done with help of a shared file.

The goal of this thesis was to get acquainted with fundamentals of WPNC and
to implement a MATLAB simulation of a Butterfly network, that would serve as a
benchmark for the over-the-air experiments. In the thesis :

. There are estimators for H-MAC and H-BC channel derived.. CRLB for the derived estimators is evaluated and compared to the computed vari-
ances.. There are functions and objects for composition of the frame envelope developed. The
envelope then can be directly transmitted using comm.SDRuTransmitter object.. Functions and objects for processing of a frame envelope were designed.. Transmission properties of the radios were examined.. A basic over-the-air simulation was executed and resulted pictures were presented.

All the code was developed to be able to run on MATLAB R2014a and MATLAB
R2017a.

41

Appendix A
Abbreviations

ACK . Acknowledgement
AF . Amplify and Forward
API . Application Programming Interface
ARQ . Automatic Repeat Request
AWGN . Additive White Gaussian Noise
BC . Broadcast Channel
BPSK . Binary Phase Shift Keying
CE . Convex Envelope
CRLB . Cramér-Rao Lower Bound
CWGN . Complex Additive White Gaussian Noise
DVB-S2 . Digital Video Broadcasting - Satellite - Second Generation
FIR . Finite Impulse Response
H- . Hierarchical-
H-SODEM . Hierarchical Soft-Output Demodulator
HDF . Hierarchical Decode and Forward
HNC . Hierarchical Network Code
IH . Isomorphic Hierarchical
JDF . Joint Decode and Forward
LDPC . Low Density Parity Check
LLR . Log-Likelihood Ratio
MAC . Multiple Access Channel
ML . Maximum Likelihood
MSE . Mean Square Error
NCM . Network Coded Modulation
PDF . Probability Density Function
PHY . Physical
PN . Pseudorandom
REC . Rectangular
RRC . Root Raised Cosine
Rx . Receiver
SISO . Single Input Single Output
SR . Software radio
Tx . Transmitter
WPNC . Wireless Physical layer Network Coding
XOR . Exclusive OR

43

Appendix B
Mathematical Derivations

The appendix contains mathematical derivations used in the text.

B.1 Bessel J0 function
The J0 function is given using polynomial expansion as [8] (eq. 78):

J0(z) =
∞∑
k=0

(−1)k (z2/4)k

(k!)2 . (1)

We will point out that for z ∈ R the function J0(−jz) = I0(z) [9] is increasing. Direct
substitution to the formula:

J0(−jz) =
∞∑
k=0

(−1)k (−1)k(z2/4)2

(k!)2 =
∞∑
k=0

(z2/4.)k

(k!)2 . (2)

Clearly, there are only positive expansion coefficients, so the function J0(−jz) for z ∈ R
is increasing on R.

For the J0 function holds [8] (eq. 79):

J0(z) = 1
π

∫ π

0
ejz cos θ dθ. (3)

We will show another two identities:

J0(z) = 1
π

∫ π

0
ejz cos θ dθ (a)= 1

2π

∫ π

−π
ejz cos θ dθ,

(b)= 1
2π

∫ π

−π
ejz cos(θ+γ) dθ, ∀γ ∈ R.

Recall J0(−jz) = 1
2π

∫ π

−π
ez cos(θ+γ) dθ is increasing (2) on R,∀z ∈ R. (4)

(a) – even symmetry of cos θ function. (b) – integration of a periodic function over one
period doesn’t depend on the interval shift.

Now

B.2 Trigonometric identity 1

A cos(α) +B sin(α) = C cos(α+ β) (5)

We will determine C and β.

C cos(α+ β) = C cos(α) cos(β)− C sin(α) sin(β),
A = C cos(β), B = −C sin(β),
C =

√
A2 +B2, β = arctan(−B/A) + k ·π, k ∈ Z (6)

Note, equation (5) holds for every k in the expression for β (6).

44

. B.3 Expression with a scalar product 1

B.3 Expression with a scalar product 1
We will evaluate the derivative of | 〈x(t), s(t− τ)〉 | w.r.t. τ The shortcut sp =
〈x(t), s(t− τ)〉 will be used.

d
dτ | 〈x(t), s(t− τ)〉 | =

d
dτ
√

sp·sp∗,

= 1
2|sp| [〈x(t), s

′(t− τ)〉 (−1)·sp∗ + sp·〈x(t), s′(t− τ)〉 (−1)] ,

= −2
2<{〈x(t), s

′(t− τ)〉 sp∗

|sp| },

= −| 〈x(t), s′(t− τ)〉 |<{ej arg〈x(t),s′(t−τ)〉e−j arg sp},
= −| 〈x(t), s′(t− τ)〉 | cos (arg 〈x(t), s′(t− τ)〉 − arg sp) . (7)

B.4 Expression with a scalar product 2
Sometimes it’s necessary to evaluate s scalar product in L2 space in which one of
the vectors is a derivative of a function. We would like to use samples of original
vectors to evaluate it. In the derivation there will be used Fourier transform F of
form: F{a(t)}(f) =

∫∞
∞ a(t) exp(−j2πft) dt, sinc(t) = sin(πt)/(πt) and rect(t) = H(t+

1/2)−H(t− 1/2) functions (H(t) is Heaviside function). Assign ζ(t) = sinc(t/Ts) (Ts –
sampling period).

〈a(t), b′(t)〉 =
∫ ∞
−∞

a(t)b′∗(t) dt =
∫ ∞
−∞

∑
n

anζ(t− nTs)
∑
m

b∗mζ
′∗(t−mTs) dt,

=
∑
n

an
∑
m

b∗m
〈
ζ(t− nTs), ζ ′∗(t−mTs)

〉
,

=
∑
n

an
∑
m6=n

b∗m
(−1)n−m

n−m
, 6= 0

=
∑
n

an
∑
q 6=0

b∗n−q
(−1)q

q
. (8)

〈
ζ(t− nTs), ζ ′∗(t−mTs)

〉 (a)=
〈
e−j2πfnTs ·Tsrect(Tsf), j2πfe−j2πfmTs ·Tsrect(Tsf)

〉
,

= (−j)2πT 2
s

∫ 1/(2Ts)

−1/(2Ts)
fe−j2πfTs(n−m) df,

(b)= −j2πT 2
s

[
e−j2πfTs(n−m)

−j2πTs(n−m)

(
f − 1
−j2πTs(n−m)

)]1/(2Ts)

−1/(2Ts)
,

= 1
n−m

[
cos(π(n−m))− 1

π(n−m) sin(π(n−m))
]
,

= (−1)n−m

n−m

(a) – Parseval theorem applied. (b) – assume n−m 6= 0; for n = m the integral is zero.

45

Appendix C
Included Files

matlab_files
|---- func

|-- addAckMark.m
|-- demodulate_symbs.m
|-- dvbs2ldpc_custom.m
|-- estim_delay.m
|-- estim_chanParams.m
|-- genNoise.m
|-- getBitsToSend_short.m
|-- getIdxthCell.m
|-- getPicXOR.m
|-- getRandZeroMean.m
|-- initObjs.m
|-- isFrameAcknoledged.m
|-- llr4ldpcDec.m
|-- modulate_symbs.m
|-- nodes_config.m
|-- nodes_config_matFile.m
|-- nodes_config_matFile_short.m
|-- nodes_config_short.m
|-- nodes_config_static.mat
|-- nodes_config_static_short.mat
|-- prepAppZeros.m
|-- prepare_envSamp.m
|-- prepare_envSamp_short.m
|-- printInfo.m
|-- processFrame_short.m
|-- srrc.m
|-- waitForFrame.m

|---- syObjs
|-- bitEval.m
|-- bitEval_multi.m
|-- bitRelay2.m
|-- bitSource.m
|-- bitSource_multi.m
|-- frameSynchEnv.m
|-- RxEmul.m
|-- TxEmul.m

|---- testFiles
|-- eval_CRLB.m
|-- testBitEval.m
|-- testBitEval_multi.m
|-- testBitRelay.m
|-- testBitSource.m

46

. .
|-- testConvolution.m
|-- testFrameSynchEnv.m
|-- testHMAC_synchChanEst.m
|-- testLDPCDecoder.m
|-- testRx.m
|-- testRxEmul.m
|-- testTx.m
|-- testTxEmul.m

|---- testPair
|-- testChainRx.m
|-- testChainRx_HW.m
|-- testChainTx.m
|-- testChainTx_HW.m
|-- tCh_short1_ack_v2.m
|-- tCh_short1_ack_v2HW.m
|-- tCh_short1_ack_whole.m
|-- tCh_short1_ack_wholeHW.m
|-- tCh_short2_ack_v2.m
|-- tCh_short2_ack_v2HW.m
|-- tCh_short2_ack_whole.m
|-- tCh_short2_ack_wholeHW.m

pictures
|-- logo_fel_zkratka_cb.jpg
|-- symbol_cvut_plna_doplnkova_verze_cb.jpg

47

References

[1] Shengli Zhang, Soung Chang Liew, and Patrick P. K. Lam. Physical Layer Network
Coding. 2007.

[2] Jan Sykora, and Alister Burr. Wireless Physical Layer Network Coding. Cambridge
University Press, 2018. ISBN 9781107096110.

[3] European Telecommunications Standards Institute. DVB-S2 Standard. 2014.
http://www.etsi.org/deliver/etsi_en/302300_302399/30230701/01.04.01_60/
en_30230701v010401p.pdf.

[4] Jan Sykora. Statistical Signal Processing – Lectures. 2017.
[5] Scratchapixel. Monte Carlo Methods in Practice.

https: / / www . scratchapixel . com / lessons / mathematics-physics-for-computer-
graphics/monte-carlo-methods-in-practice/monte-carlo-integration.

[6] Phil Schniter. Introduction to analog and digital communication – lecture site.
http://www2.ece.ohio-state.edu/˜schniter/ee501/.

[7] Stop-and-wait ARQ.
https://en.wikipedia.org/wiki/Stop-and-wait_ARQ.

[8] Eric W. Weisstein. Bessel Function of the First Kind. 2019.
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html.

[9] Eric W. Weisstein. Modified Bessel Function of the First Kind. 2019.
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html.

48

http://www.etsi.org/deliver/etsi_en/302300_302399/30230701/01.04.01_60/en_30230701v010401p.pdf
http://www.etsi.org/deliver/etsi_en/302300_302399/30230701/01.04.01_60/en_30230701v010401p.pdf
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-integration
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-integration
http://www2.ece.ohio-state.edu/~schniter/ee501/
https://en.wikipedia.org/wiki/Stop-and-wait_ARQ
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Basic definitions and concepts
	Examined topology

	Transmitter and Receiver composition
	Frame composition
	Synchronization sequence
	Channel-state estimators
	Estimator performance -- Cramer-Rao Lower Bound
	Frame synchronization
	Encoding-decoding
	Configuration structure
	BitSource, BitEval and bitRelay objects
	TxEmul and RxEmul objects
	Tx and Rx pure computer simulation, starting point

	Software radios
	MATLAB interface with software radios
	Radio performance

	Simulation performance and results
	Base-level simulation
	Butterfly network simulation
	Conclusion

	Abbreviations
	Mathematical Derivations
	Bessel J_0 function
	Trigonometric identity 1
	Expression with a scalar product 1
	Expression with a scalar product 2

	Included Files
	References

