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Abstract

Objects moving at high speeds along complex trajectories often appear in videos, especially
videos of sports. Such objects move over non-negligible distances during exposure time of a
single frame and therefore their position in the frame is not well defined. We propose a novel
approach Tracking by Deblatting (TbD) which is based on the observation that motion blur
is directly related to the intra-frame trajectory of an object. Blur is estimated by solving two
intertwined inverse problems, blind deblurring and image matting, which we call deblatting.
Non-causal TbD method estimates continuous, complete and accurate object trajectories. Full
trajectory is estimated by fitting piecewise polynomials, which model physically justifiable
trajectories. The output is a continuous trajectory function which assigns location for every
real-valued time stamp from zero to the number of frames. As a result, tracked objects are pre-
cisely localised with higher temporal resolution than by conventional trackers. The proposed
TbD tracker was evaluated on a newly created dataset of videos with ground truth obtained
by a high-speed camera using a novel TloU metric that generalises the traditional Intersection
over Union and measures accuracy of intra-frame trajectories. Template learning in combina-
tion with a standard long-term tracker allows for long-term object tracking in all speeds. We
show that from the trajectory function precise physical calculations are possible, such as radius,
gravity or sub-frame object velocity. Results show high performance of TbD in terms of TloU,
recall and speed estimation.

Keywords: fast moving objects, deblurring, deblatting, tracking, trajectory estimation
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Abstrakt

Objekty pohybujici se vysokou rychlosti podél sloZitych trajektorii se Casto objevuji ve videich,
zejména ve sportovnich videich. Takové objekty se béhem doby expozice jednoho snimku po-
hybuji pres nezanedbatelné vzdalenosti, a proto jejich poloha v jednom snimku neni presné
definovana. Navrhujeme novy koncept Tracking by Deblatting (TbD), ktery je zaloZen na po-
zorovani, Ze rozmazéani zpisobené pohybem piimo souvisi s trajektorii objektu v ramci jed-
noho snimku. Rozmazani se odhaduje feSenim dvou zavislych inverznich problémd, “blind de-
blurring” a “image matting”, které nazyvame “deblatting”. Nekauzalni TbD metoda odhaduje
spojité, Uplné a presné trajektorie objekti. Cela trajektorie se nalezne pomoci napasovani po
¢astech spojitych polynomi, které modeluji fyzicky vé€rohodné trajektorie. Vystupem je spo-
jitd funkce, ktera prifazuje polohu objektu pro kazdy casovy okamzik dany redlnym c&islem
od nuly do poétu snimkt. Vysledkem je, Ze sledované objekty jsou presné lokalizovany s
vy$§im Casovym rozliSenim neZ vystup standardnich sledovacich metod. NavrZena sledovaci
TbD metoda byla vyhodnocena na nové vytvorené datové sad¢ videi s anotacemi ziskanymi
vysokorychlostni kamerou s vyuZitim nové metriky TIoU, kterd zobeciiuje tradi¢ni prinik
nad sjednocenim (IoU) a méfi presnost trajektorii v ramci jednoho snimku. Uceni Sablony
v kombinaci s dobfe fungujici tradi¢ni sledovaci metodou umoziiuje dlouhodobé sledovéni ob-
jektt libovolnych rychlosti. Ukazujeme, Ze z funkce trajektorie jsou mozné presné fyzikalni
vypocty, jako je napiiklad vypocet poloméru, gravitace nebo rychlosti objektu v rdmci jednoho
snimku. Vysledky ukazuji vysokou uspésnost TbD z hlediska TIoU, pokryti a pfesnosti odhadu
rychlosti.

Klicova slova: rychle se pohybujici objekty, deblurring, deblatting, tracking, nalezeni tra-
jektorie
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CHAPTER 1

INTRODUCTION

The field of visual object tracking has progressed significantly in recent years [WLY 13, K 16,
KML " 16a, K™ 19]. The area covers a wide range of problems, including single object model-
free short-term tracking [LVC™ 17, DHSKF14, VNM13, TYZW 18] where a single target is
localised in a video sequence given a single training example, assuming no occlusion or disap-
pearance from the field of view, long-term tracking covering methods requiring re-detection and
learning [KMM12, M " 16b, MG17, T+ 17], multi-target multi-camera tracking [R* 16, RT18],
multi-view methods [KDVG14] and methods targeting specific objects, e.g. cars [BT00], hu-
mans [MDO03] or animals [F"00]. Many variants of the problems have been considered — static
or dynamic cameras or environments, RGBD input, use of inertial measurement units, to name
a few. The interest to this field has been growing with Visual Object Tracking (VOT) chal-
lenges [KML ™15, KT16, K*19, KML*16b, KML™ 16a] which started in 2013 and the seventh
VOT 2019 challenge is being organised this year addressing short-term, long-term, real-time,
RGB, RGBT and RGBD tracking.

Detection and tracking of fast moving objects is an underexplored area of tracking. In a
paper focusing on tracking objects that move very fast with respect to the camera, Rozumnyi et
al. [RKS*17, Roz17] presented the first algorithm that tracks such objects, i.e. objects that
satisfy the Fast Moving Object (FMO) assumption — the object travels a distance larger than
its size during exposure time. The authors have shown that the performance of standard state-
of-the-art trackers drops significantly in the presence of FMOs, due to the effect of blur —
the objects appear as semi-transparent streaks. Examples of applications with FMOs include
tracking of balls and ball-like objects in sport videos, particles in scientific experiments, and
flying birds and insects. However, the method proposed in [RKS™ 17] operates under restrictive
conditions — the motion-blurred object should be visible in the difference image and trajectories
in each frame should be approximately linear.

Standard trackers, both long and short term, usually provide information about the object
location in a frame in the from of a single rectangle. This gives only one point of object loca-
tion. In case if the output is a segmentation, then object location is even hardly defined. The
true, continuous trajectory of the object centre is thus sampled with the frequency equal to the
video frame rate. For slow moving objects, such sampling is adequate. For fast moving ob-
jects, especially if their trajectory is not linear (bounces, gravitation, friction), a single location
estimate per frame cannot represent the true trajectory well, even if the fast moving object is
inside the reported bounding box or segmentation. Moreover, standard trackers typically fail
even in achieving that [RKST17].

In the bachelor thesis [Roz17], Rozumnyi introduced a method for FMO detection and track-
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Figure 1.1. Trajectory reconstruction using the non-causal Tracking by Deblatting (middle) compared
to the causal TbD (left). Colour codes trajectory accuracy, from red (complete failure) to green (high
accuracy). The ground truth trajectory from a high-speed camera is shown in yellow, mostly under
the estimated trajectory. Speed estimation output is visualised on the right. The ground truth speed
(olive) is noisy due to discretisation and TbD speed estimates (lightgray) are inaccurate, which is
fixed by the proposed TbD-NC (purple).

ing over a large range of speeds. However, the method is based on difference images which
cannot successfully handle objects of very high speeds due to almost no contrast. On top of
that, the method is not mathematically justifiable. We propose a novel methodology for track-
ing fast-moving, blurred objects. The approach untangles the image formation by solving two
inverse problems: motion deblurring and image matting. We therefore call the method Tracking
by Deblatting, TbD in short.

The deblatting procedure simultaneously recovers the trajectory of the object, its shape and
appearance. We introduce a strong prior on the blur kernel and force it to lie on a 1D manifold.
The corresponding curve models the object trajectory within a frame. Unlike a standard general
tracker, TbD does not need a template of the object, since the representation of the shape and
appearance of the object is recovered on the fly. Experiments show that the estimated trajectory
is often highly accurate (see Figure 1.1).

We show that TbD performs well for both fast moving objects, slow moving objects and
objects not moving at all. This makes TbD an all-speed method for object tracking. By com-
bining TbD method with a state-of-the-art long-term tracker FuCoLoT [LCZV 18] and adding
template learning to TbD, we make the method long-term for fast motion and low motion. TbD
can thus successfully detect and track objects which speed up, slow down, disappear and appear
as either fast moving or slow moving.

In its core, TbD assumes causal processing of video frames, i.e. the trajectory reported at
the current frame is estimated using only information from previous frames. Applications of
detection and tracking of fast moving objects do not usually require online and causal process-
ing. FMOs move over distances so quickly that they could travel the scene twice in one second.
Moreover, non-causal trajectory estimation brings many advantages, such as complete and ac-
curate trajectories, which are among TbD limitations, e.g. failures at contact with a player or
missing detections.

We also study non-causal Tracking by Deblatting (TbD-NC) and show that global analysis of
FMOs leads to accurate estimates of FMO properties, such as nearly uninterrupted trajectory,
velocity and shape. Figure 1.1 shows an example of non-causal trajectory estimation, which
makes the trajectory more accurate and continuous throughout the entire sequence.

1.1. Contributions

Compared to the bachelor thesis [Roz17], the introduced method makes use of deblurring and
fitting to estimate accurate and complete trajectories, which was entirely missing before. Thor-
ough experiments on a new dataset with ground truth trajectories from a high-speed camera are
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performed. We compare several variants of the TbD method and make an ablation study of the
most important components. The thesis provides several important contributions over the FMO
method [Rl(g+ 17] and the bachelor thesis [Roz17]. They are following:

e Novel approach to track objects in all-speed fashion is introduced. Objects can range from
very fast and blurred objects as in [RKSt17] to standard moving objects or even objects
with no motion. We show that Tracking by Deblatting can handle different motions. TbD is
a long-term method which is able to learn object appearance and detect the object again when
it is lost. TbD is based on solving two inverse problems of deblurring and image matting,
followed by curve fitting. Previous approaches used only difference images and were not
mathematically justifiable in contrast to TbD.

e We introduce a global non-causal TbD method, referred here as TbD-NC, for estimating
continuous object trajectories by optimising a global criterion on the whole sequence. Seg-
ments without bounces are found by an algorithm based on dynamic programming, followed
by robust fitting of polynomials using a least squares linear program. Recovered trajectories
give the object location in every real-valued time stamp.

e Compared to the causal TbD, TbD-NC reduces by a factor of 10 the number of frames where
the trajectory estimation by TbD completely fails.

e We show that TbD-NC increases the precision of the recovered trajectory to a level that
allows good estimates of object velocity and size. Calculations of object radius, speed and
gravitational force are shown. Experimental section confirms the accuracy of such estimates.

e Experiments are done on a newly created dataset with ground truth trajectories from a high-
speed camera. Dataset and used data will be made publicly available at http://cmp.
felk.cvut.cz/fmo.

Demo version of fast moving object detection is publicly available at https://github.
com/rozumden/ fmo-cpp-demo which is based on Ale§ Hrabalik’s implementation [Hral7].
Implementation of this thesis is available in the attached CD (see Appendix A) and online at
http://cmp.felk.cvut.cz/fmo.

1.2. Thesis Structure

We discuss related work in Chapter 2. Then the posed problem and the solution, Tracking
by Deblatting, are introduced in Chapter 3. In Chapter 4 we explain non-causal Tracking by
Deblatting. Experiments on several datasets as well as applications are shown in Chapter 5. The
TbD dataset is introduced in the experimental section. The thesis is concluded in Chapter 6.


http://cmp.felk.cvut.cz/fmo
http://cmp.felk.cvut.cz/fmo
https://github.com/rozumden/fmo-cpp-demo
https://github.com/rozumden/fmo-cpp-demo
http://cmp.felk.cvut.cz/fmo
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CHAPTER 2

RELATED WORK

Object tracking methods are based on diverse principles, such as discriminative correlation
filters [BCR15, DHSKF14, DHSKF15, LVC"™17, TYZW 18], feature point tracking [TK91],
mean-shift [CRM03, VNM13], and tracking-by-detection [ZMS14, HGS™16]. In addition,
several surveys of object tracking have been compiled [Avi07, BYB11, GRB13]. Excellent per-
formance in visual object tracking has been shown by discriminative correlation filters [BCR15,
DHSKF14, DHSKF15, LVCT17], yet all the methods fail when the tracked object is blurred as
demonstrated in [RKS17].

Recently, LukeZi¢ et al. [LVC™17] proposed a new correlation-based tracker — CSR-DCF,
which achieved state-of-the-art results on standard tracking datasets [K"16] and runs close to
real-time on a CPU. The long-term version of CSR-DCEF, the Fully Correlational Long-Term
(FuCoLoT) tracker [LCZV 18], can even handle more difficult scenarios. The implementa-
tions of these methods are available online and therefore we use them as baseline methods for
standard object tracking in the evaluation.

Methods proposed for object motion deblurring try to estimate sharp images from photos
or videos without considering the tracking goal. Early methods worked with a transparency
map (the alpha matte) caused by the blur, and assumed linear motion [Jia07, DWOS] or rota-
tion [SXJO7]. Blind deconvolution of the transparency map is better posed, since the latent
sharp map is a binary image. Accurate estimation of the transparency map by alpha mat-
ting algorithms, such as [LLWOS], is necessary and this is not tractable for large blurs. Other
methods are based on the observation that autocorrelation increases in the direction of blur
[KL14, SCXP15]. Autocorrelation techniques require a relatively large neighbourhood to es-
timate blur parameters and such methods are not suitable for small moving objects. More
recently, deep learning has been applied to motion deblurring of videos [W* 17, ST17b] and
to the generation of intermediate short-exposure frames [J718]. The proposed convolutional
neural networks are trained only on small blurs. Blur parameters are not available as they are
not directly estimated.

Tracking methods that consider motion blur have been proposed in [W 11, S*17a, M 16a],
yet there is an important distinction between models therein and the FMO problem considered
here. The blur is assumed to be caused by camera motion and not by the object motion, which
results in blur affecting the whole image and in the absence of alpha blending of the tracked
object with the background.

The problem we are interested in can be viewed as an alpha matting of the background and
blurred object of interest. In order to always have non-zero influence of the background, we
consider fast moving objects that move over a distance larger than their size in one exposure
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time. The goal is to create a method which handles fast moving objects as well as standard
moving objects which move over a distance lower than their size, thus they fully occlude the
background in some regions.

To our knowledge, the only published method that tackles the similar problem of tracking
motion-blurred objects remains the work in [RK§+17]. The authors assume linear motion
and the trajectories are calculated by morphological thinning of difference image between the
given frame and the estimated background. Deblurring of fast moving objects has also appeared
recently in a work by Kotera et al. [KS18], but they do not consider FMO tracking or detection.

There are two improvements over the work in [RK§+17]: the Master’s thesis of AleS Hra-
balik [Hral7], which is focused on real-time implementation of FMO detector, and the Bachelor
thesis of Denys Rozumnyi [Roz17], which improves the precision and recall of the FMO de-
tector, but both methods are still based on the difference image. They also lack mathematical
background and have many limitations. In further experiments, we use the improved version
(from the Bachelor thesis [Roz17]) of the pioneering work [RK§+17] when this work is re-
ferred to.



CHAPTER 3

CAUSAL TRACKING BY DEBLATTING

Tracking by Deblatting is a novel framework which unites deblurring, matting, tracking and
long-term object trajectory estimation. In the following sections we will discuss each step in
details.

The proposed method formulates tracking as an inverse problem to the video formation
model. Suppose that within a single video frame I an object ' moves along the trajectory
C in front of background B. Frame [ is then formed as

I=H+«F+(1—Hx*M)B, 3.1)

where * denotes convolution, H is blur kernel or the Point Spread Function (PSF) of the object
motion blur corresponding to trajectory C, and M is the binary mask of the object shape, i.e. the
indicator function of F'. We refer to the pair (F, M) as the object model. The first term in the
formation model (3.1) is the tracked object blurred by its own motion, the second term is the
background partially occluded by the object, and the blending coefficients are determined by
H x M. Inference under the assumption of this formation model consists of solving simultane-
ously two inverse problems: blind deblurring and image matting. The solution is the estimated
blur kernel H and the object model F' and M.

Motion blur in (3.1) is modelled by convolution which implies the following assumption
about the object motion: The object shape and appearance remain constant during the frame
exposure time. Scenarios that satisfy the assumption precisely are following. Either an object of
arbitrary shape is undergoing only translational motion or a spherical object of uniform colour
undergoing arbitrary motion under spatially-uniform illumination. In addition, the motion must
be in a plane parallel to the camera image plane to guarantee constant size of the object. For
the purpose of tracking and trajectory estimation we claim that the formation model (3.1) with
convolution is sufficient as long as the assumption holds at least approximately, which is exper-
imentally validated on the presented dataset which contains rotating objects of various shapes
and colourings.

The proposed TbD method is iterative and causal processing of a new frame ;1 using only
knowledge acquired from earlier frames {/1,...,I;}. Figure 3.1 (shaded area) provides an
overview of the entire TbD pipeline. Inputs are the current estimates of the object model F; and
M;, the background B;, and a region of interest (ROI) D; in I;; 1, which is the neighbourhood
of the predicted object location. Outputs are object model Fj, ; and M _; which are used for
updating the model, estimated blur kernel H; ; and the final curve C;, ; computed from the blur
kernel. All accumulated curves {C1, . ..,Cx} and the corresponding blur kernels are outputs of
TbD.



3. Causal Tracking by Deblatting

v
FMOd
(Re)Detector

Background l
Update |

Fail
Consistency_rzﬂrl
Check (CC) ] -

‘4

Figure 3.1. Long-term All-speed Tracking by Deblatting. TbD sequentially processes video frames
{I;} and estimates trajectory curves {C;} of the tracked object Fj. Iterative deblatting and trajectory
fitting generates new estimates of the object model (appearance F' and shape M) and blur H with
the trajectory fit C. If the blur and trajectory pass a consistency check, extrapolation of the trajectory
predicts the region of interest D in the next frame and both the object model and background B are
updated. The FMO detector is activated during initialisation or if the consistency check fails.

Three main steps are performed in TbD:

1. Deblatting: lIteratively solve blind deblurring and matting in the image region D; with the

model (3.1) and estimate F ;, M/, and H;1; see Section 3.1.

2. Trajectory fitting: Estimate physically plausible motion trajectory (parametric curve) C;
corresponding to H; 1 and optionally adjust D; according to C;+1; see Section 3.2.

3. Consistency check & model update: Verity that the error of the mapping H — C is below
threshold 7, predict the new region of interest D, for the next frame, and update the object
model to Fj 1 and M; ;.

A more detailed illustration of Steps 1 and 2 is in Figure 3.2. Step 1 stops after reaching either
a given relative tolerance or a maximum number of iterations. Steps 1 and 2 are repeated only
if the newly fitted C touches the boundary of D — in this case the new D is the d-neighbourhood
of C where d is the object diameter. Adjusting D this way helps to eliminate the detrimental
influence of other moving objects to correct estimation of H.

If the consistency check (CC) passes, we extrapolate the estimated trajectory to the next
frame and D; is again d-neighbourhood of this extrapolation. To update the appearance
model we use exponential forgetting

Fip1 =vE+ (1 —v)F, (3.2)

where v is a real number between zero and one. M is updated analogically.

To enable long-term tracking, the FMO detector (FMOd) from [RKS*17] determines the
new input if CC fails. First, FMOd tries detecting the object in a gradually enlarged D. The
new proposal of object location is again validated by the three steps with template learned
from previous frames. If it succeeds, the main TbD pipeline is reinitialised with D set as
a neighbourhood of the FMOd detection. If FMOd fails, TbD returns the extrapolation of
trajectory C; as the best guess of C;;; and tracking is restarted anew on the next frame. In case
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Figure 3.2. Deblatting with trajectory fitting. Deblatting, which consists of deblurring and matting,
is described in Section 3.1. After deblurring and matting, an attempt is made to fit the kernel H,
described in Section 3.2. Inputs: incoming frame I;, and current estimates of the object appearance
F;, shape M;, background B; and predicted region of interest D, in I; ;. Outputs: new estimates of
the object appearance Fj, ;, shape M/, and blur H;  ; with the trajectory C;_ ;.

that object speed is lower than a given threshold, instead of trajectory extrapolation we initialise
state-of-the-art long-term tracker FuCoLoT [LCZV*18] and use its output as the best guess.
This enables long-term tracking even at low speeds, when deblatting does not perform so well
and where a lot of research has been done to create well-performing trackers.

The background B; is estimated as a temporal median of frames B;_1, B;_2, .. ., optionally
including video stabilisation if necessary. The first detection is also performed automatically
by FMOd. The object appearance model is either learned “on the fly” starting trivially with
Fy = 1, My = 1, which we call TbD-TO0. Alternatively, the user provides a template of the
tracked object, e.g. a rectangular region from one of the frames where the object is still. This
version is denoted by TbD-T1.

Deblatting works not only for fast motion, but also for low to zero motion. In case of an
object which stays still, the blur kernel H would contain only a single point and fitting is trivial.
If the object abruptly becomes fast moving, e.g. somebody hits the object, then the prediction
step will usually fail and the method waits for the next FMO detection. This implies that the
proposed method is an all-speed tracker.

Long-term for fast motion is achieved by applying deblatting to FMOd with reconstructed
object appearance from previous frames as a template. The recent state-of-the-art Fully Convo-
lution Long-term Tracker (FuCoLoT) [LCZV 18] makes the method long-term for low motion.

So far, only weak relation exists between trajectories in adjacent frames and there is no
hard constraint that the trajectory in previous frame must be consistent with the trajectory in
the following frame. Also due to partial exposure, we always have a gap between consequent
trajectories. Only in the ideal case of the full exposure, they could potentially form continuous
trajectories. But in most cases, the last point in previous frame does not equal the first point in
the following frame. Applying such a hard constraint in deblatting will limit its efficiency and
will require difficult combinatorial problem of simultaneous deblatting in all frames together.

We relax the continuity in sequence constraint during deblatting and construct continuous
trajectory through the whole sequence as a post-processing problem, where the trajectory is
estimated by dynamic programming, followed by fitting polynomial functions which explain
object motion. This final version of TbD is called non-causal Tracking by Deblatting (TbD-NC)
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Input High FPS Blur H F M

Figure 3.3. Deblatting examples — shuttlecock (top) and volleyball (bottom). From left to right: the
input image, the corresponding high-speed camera frame, the estimated blur H, the estimated appear-
ance F and the shape M.

and it is explained in Chapter 4.

3.1. Deblatting

The core step of TbD is the extraction of motion information H from the input frame, which
we formulate as a blind deblurring and matting problem. Inputs are the frame /, domain D,
background B, and the object appearance model F'. The inverse problem corresponding to
(3.1) is formulated as

1
min = ||[H*F+(1—HxM)B-1I|3
F,M,H 2 (3.3)

A R
+§||F — MF|3+ ap||VF|1 + ag|H||

st. 0 < F <M< 1land H > 0in D, H = 0 elsewhere. The primary unknown is H, but F’
and M are estimated as by-products. The first term in (3.3) is the fidelity to the model (3.1).
The second A-weighted term is a form of “template-matching”, an agreement with a prescribed
appearance. The template Fis multiplied by M because if Fis initially supplied by user as a
rectangular region from a video frame, it contains the object and partially also the surrounding
background.

When processing the ¢-th frame, we set F = F;_y as the updated appearance estimate (3.2)
from the previous frame. The first L' term is the total variation that promotes smoothness of
the recovered object appearance. The second L' regularisation enforces sparsity of the blur and
reduces small non-zero values.

If M is a binary mask then the condition F' < M states that F' cannot be non-zero where M
is zero — pixels outside the object must be zero. For computational reasons, we relax the binary
restriction and allow M to attain values in the range [0, 1]. The correct constraint correspond-
ing to this relaxation is then exactly F' < M, assuming F alone is bounded in [0, 1]. Relaxing
the binary constraint also makes it easier to update the model with exponential forgetting fac-
tor (3.2), as +y value is usually a floating point number.

The inequality constraint H > 0 prohibits negative values in H, which are physically im-
plausible for motion blur. For computational speed-up, H is estimated only within the do-

10



3.2. Trajectory Fitting in Frame

main D.

We solve (3.3) in an alternating manner, fix (F, M) and solve for H and vice versa, until
convergence.

Minimising (3.3) with respect to H with (F, M) fixed becomes

1
ml}ni||H*F+(1—H*M)B—IH%—FQHHHHl (3.4)

s.t. H > 0. We use Alternating Direction Method of Multipliers (ADMM) to solve (3.4).
Minimising (3.3) with respect to the joint unknown (F, M) with H fixed is

1 A )
min o |H « F + (1~ Hx M)B ~ I3 + SIE = MFE|%+ ap||VF|; (3.5)

)

s.t. 0 < FF < M < 1. We solve this problem using again ADMM!.
To summarise, the alternating H—(F, M) estimation loop for the i-th frame proceeds as
follows:

1. Initialise M := M*~1 (if available from previous detection) or M = 1; initialise F.=F =1
F:.=MF.

2. Calculate H by solving (3.4).
3. Check convergence, exit if satisfied.
4. Calculate (F, M) by solving (3.5), go to 2.

Examples of the deblatting alone are in Figures 3.3 and 3.4. Figure 3.3 contains from left to
right the input frame (crop), corresponding frame from the high-speed camera, estimated blur
kernel H, estimated object F' and object shape M. In the top row, we see that the shape of
the badminton shuttlecock, though not circular, is estimated correctly. In the bottom row, we
see that if the non-uniform object undergoes only small rotation during motion, the appearance
estimation can also be good. In this case, the shape estimation is difficult due to the mostly
homogeneous background similar to the object.

Figure 3.4 is another interesting example of the deblatting behaviour. The input frame is
in the top left corner and the corresponding part from the high-speed camera is below. The
object casts significant shadow. If we set the size of F' too small, the model cannot cope with
the shadow and the estimated blur will contain artefacts in the locations of the shadow as is
visible in the top row. If instead we make the support of F' sufficiently large, the estimated
mask compensates for the shadow and the estimated blur is clean as shown in the bottom row.
It also means that F' does not only represent the object itself, but it can also explain some other
phenomena in the region of interest or it can even represent image noise.

3.2. Trajectory Fitting in Frame

Fitting the blur kernel H, which is a grey-scale image, with a trajectory C(t) : [0,1] — R?
serves three purposes. First, we use the error of the fit in the Consistency Check to determine if
H is the motion blur induced by the tracked object and thus whether to proceed with tracking,
or to declare the deblatting step a failure and to reinitialise it with different parameters. Second,
the trajectory as an analytic curve can be used for motion prediction whereas H cannot. Third,
C defines the intra-frame motion, which is the desired output of the proposed method.

'Implementation of ADMM is kindly provided by collaborators.

11
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I (top)/high FPS H F

Figure 3.4. The shadow and blur estimation. Top: the domain of F is set too small and the shadow
causes artefacts in H. Bottom: the domain of F' is larger, M can compensate for the shadow and the
blur H is estimated correctly.

The goal of TbD is to produce a precise intra-frame motion trajectory, and not only a single
position per frame in the form of a bounding box.
The fitting is analogous to vectorisation of raster images. It is formulated as the maximum
a posteriori estimation of C, given H, with the physical plausibility of the trajectory used as a
prior. Let C be a curve defined by a set of parameters 6 (e.g. polynomial coefficients) and H¢ be
a raster image of the corresponding C (i.e. blur PSF). We say that the curve C is the trajectory
fit of H if § minimises
m@in |He — H|| st.CeM, (3.6)

where M is the set of admissible curves.

Our main tracking targets are balls and similar free-falling objects, therefore the assumption
is that between impulses from other moving objects (e.g. players), tracked objects can be ap-
proximated in one frame as objects in free flight or objects which bounce off static rigid bodies.
We then define M as a set of piecewise quadratic continuous curves — quadratic to account
for de-acceleration due to gravity and piecewise to account for abrupt change of motion during
bounces. C € M is defined as

t
’ 3.7
) (3.7

s.t. ZZ ckylfk = Zz ckgfk. Single linear or quadratic curves are included as special cases
when f = 1.

Let us view the blur H as a set of pixels with coordinates x; and intensities w; > 0. Sequen-
tial RANSAC finds line segments as follows: sample two points, find inliers of the correspond-
ing line, find the most salient consecutive run of points on this line and in each round remove

12



3.2. Trajectory Fitting in Frame

Figure 3.5. Intra-frame trajectory estimation by Tracking by Deblatting. Close-ups of the tracked
object. Superimposed in white: trajectory estimated by the FMO detector (top row), blur kernel H
estimated by TbD (middle row) and the final trajectory returned by TbD (bottom row). Examples of
(left to right) a linear motion, curved motions and bounces.

the winner from the sampling pool. The saliency is defined as > w; for z; in the inlier set and
“consecutive” means that the distance between neighbouring points is bounded by a threshold.
The search stops when the saliency drops below a specified threshold or there are no more
points. We denote the set of collected linear segments as M. Parabolic arcs are found simi-
larly. We sample four points, find two corresponding parabolas, project the remaining points on
the parabolas to determine the distance and inlier set as well as the arc-length parametrisation
of inliers (required for correct ordering and mutual distance calculation of inliers) and again
find the most salient consecutive run. We denote the set of collected parabolic segments as
Ma.

The solution will be in the vicinity of a curve formed from one or two segments (linear or
parabolic) found so far. Let C;,C2 € M be two linear segments. If the intersection P of
the corresponding lines is close to the segments (with respect to some threshold), the curve
connecting C; — P — C» is a candidate for the piecewise linear trajectory fit. This way we
construct a set M3 of all candidate and similarly M4 with candidates of parabolic pairs.

Finally, for each curve C € M = | J M, we construct H¢, measure the error ||He — H|| and
choose the best candidate as the trajectory fit.

In TbD, the Consistency Check of the trajectory fit C is performed by evaluating the criterion

|He — H|

3.8
Ed G:8)

Figure 3.6 shows examples of trajectory estimation. The left column is the input image with
the estimated PSF superimposed in white and the right column shows the estimated motion
trajectory. The efficacy of trajectory fitting is a crucial part of the framework, the estimated
blur can contain various artefacts (e.g. in the top example due to the ball shadow) and the
trajectory fit still recovers the actual motion.

One of the benefits of TbD is its ability to produce a precise intra-frame motion trajectory.
Most trackers provide output in the form of a bounding box, FMOd outputs line segments;
the deblurring loop of the TbD provides richer trajectory information. Figure 3.5 presents
several examples. The top row contains close-ups of the tracked object in the input frame with

13
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RANSAC ITandC

Figure 3.6. Trajectory fitting in one frame. Input image with estimated blur superimposed in white
(left), linear and parabolic segments found by RANSAC (middle), final fitted trajectory (right).

superimposed line fit provided by FMOd in white. The second row shows the blur H estimated
by TbD and the third row shows the final trajectory returned by TbD after curve fitting. The
examples are ordered, left-to-right, from simple to complicated. FMOd copes well when the
trajectory is linear but fails to provide accurate output in other cases — parabolic trajectory or
when the direction of motion changes during exposure. TbD works well even in these cases.
The examples show that the trajectory fitting step is a crucial part of the framework, in some
cases the estimated blur is noisy — broken into several pieces or containing various artefacts —
and the trajectory fit recovers the actual motion.

Figure 3.7 has a similar structure but provides examples worth attention and failure cases. A
frequent problem in the deblurring phase is caused by background changes during exposure,
e.g. due to shadows cast by the object or when the object bounces off a non-stationary object.
In this case, the estimated blur contains artefacts not related to the object motion but rather
compensating the background change. The artefacts may cause a failure of the trajectory fitting
as shown in Figure 3.7 (a) and (b). In Figure 3.7 (c), the shadow “moves” with the object and is
tracked as though it were part of the object. This causes that the estimated trajectory is shifted.
In some cases, especially when there is low contrast between the object and the background,
the trajectory is clipped, as in Figure 3.7d.

3.3. Motion Prediction

Performing deblurring on the whole input frame is not feasible. Deblurring is rather slow, but
more importantly, the video frame typically contains other objects in motion and those can
cause problems in discerning the motion of the tracked object. For this reason, we calculate
blur kernel H and object model F’ only in a selected region of interest (ROI), where the tracked
object is most likely to appear. Given the motion trajectory from the last available step, we

14
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Figure 3.7. Inaccurate intra-frame trajectory estimation by Tracking by Deblatting. Close-ups of the
tracked object. Superimposed in white: trajectory estimated by FMOd (top row), blur kernel H
estimated by TbD (middle row) and the final trajectory returned by TbD (bottom row). (a) - (b)
blur H contains artefacts due to motion in the background and the shadow of the object causing
inaccurate trajectory fitting, (c) shifted trajectory as the shadow is considered a part of the object and
the trajectory is placed at the centre of this “virtual” object, (d) trajectory is too short due to poor
contrast between the object and background, (e) the object is slow and trajectory fitting is less stable.

extrapolate the motion into the next frame with an assumption that the acceleration (or the
velocity for linear curves) remains approximately constant between two consecutive frames.
At the beginning of tracking (or after reinitialisation) when the direction of motion is unknown,
two ROIs are considered by extrapolating the trajectory in both directions. Then the direction
which gives a trajectory with higher consistency check will be chosen. The trajectory estimated
by the FMO detector has no direction. It will be added one frame later when TbD prediction
is made. If TbD does not succeed in the following frame, the trajectory reported by the FMO
detector will stay without orientation.

Predictions are done by taking values of function C; in the range of either [1,2] C R or
[—1,0] C R, depending on the orientation. To account for unexpected speed up, we extend
these intervals by 0.5 in the direction of motion.

A new initialisation by FMOd is required when the motion prediction step fails and predicts
incorrect region of interest D for the deblurring step. Motion prediction is prone to fail in the
case of abrupt motion changes (bounces, accelerations) and when motion is slow (motion di-
rection is ambiguous). Overestimating the ROI can solve the problem but increases the running
time and probability of including other moving objects in the ROI. Having tested different vari-
ations of the proposed approach, we concluded that small ROIs with FMOd re-initialisation is
more reliable.

Figure 3.8 shows how predictions from one frame to another are made. The shaded area, in
which all computations are made, is updated in each iteration and in every frame. This speeds
up the computations and also removes the influence of other moving objects. If the prediction
is completely wrong, TbD waits for the next detection by the FMO detector and outputs only
the prediction without deblatting, fitting and consistency check.
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3. Causal Tracking by Deblatting

Figure 3.8. Examples of predictions in the TbD framework. From left to right: previous frame with
estimated trajectory, current frame with predicted trajectory, estimated blur kernels, final trajectory fit
in one frame. Predicted area in which computations are done is highlighted. Predictions are coloured
in red. Current estimation of the trajectory is marked in a range from yellow to green, depending on
the Trajectory-IoU.
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3.4. Maximum Likelihood Explanation
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Figure 3.9. TbD framework accepting a true positive detection: FMO detection in the initialisation
step detects a fast moving object and makes a rough guess of its trajectory. Blind deblurring in the E-
step estimates the object appearance F and corresponding blur kernel H. Trajectory fitting (M-step)
Cis performed on H and the goodness of the fit is calculated as the conditional probability p(H |C ),
which in this case is high. The image and background synthesis is not part of the TbD framework. It
illustrates the accuracy of generating input data from estimated variables.

3.4. Maximum Likelihood Explanation

The idea of Tracking by Deblatting is to detect moving objects by estimating their physically
plausible trajectory using a deconvolution algorithm. We first described the proposed frame-
work and then discussed individual steps in detail. Now we will show another mathematical
view on Tracking by Deblatting. Trajectory estimation, which is done by TbD in one observed
frame I, is formally equivalent to a maximum likelihood problem

C =arg méxxlnp(ﬂ(f) . (3.9)

The analytic expression of likelihood p(I|C) is possible if latent variables, such as object F' and
blur kernel H, are introduced. Noting that C and H are dependent while latent ' and H are
independent, the likelihood with latent variables takes the form

p(I,{F, H}|C) = p(I|F, H)p(F)p(H|C)p(C) . (3.10)

Distributions on the right-hand side have analytic expression. The likelihood p(I|F, H) is
given by the noise distribution of N and substitution from the acquisition model (3.1). The
object appearance prior p(F') enforces the smoothness constraint of the object model F'(x). The
trajectory prior p(C) enforces the motion model (4.1) and p(H |C) is the conditional distribution
of the blur kernel H given the trajectory C.

Marginalising p(I, { F, H }|C) with respect to the latent variables {F, H} is intractable and
we therefore apply a variation of Expectation Maximisation (EM) algorithm. The expectation
(E) step becomes

E{F,H}U[lnp(ja {F> H}|C)] = I}‘l%(lnp(l, {F7H}|C) ) (3.11)

where Eyp gy r]°] denotes the expected value with respect to the conditional distribution of
latent variables. To compute the E step effectively, we choose the conditional distributions of
latent variables to be delta distributions and then the expected value is equal to the maximum
value, which explains the equality in (3.11). The E step is thus similar to blind deconvolution,
in which we solve iteratively an inverse problem associated with the formation model (3.1).
The maximisation (M) step becomes

C =arg max Egp gy [l p(L, {F, H}|C)] = arg mgxp(ﬁlc)p(c) : (3.12)
where H is the estimated blur kernel in the E step. The second equality follows from (3.10)
and the M step is similar to a curve fitting problem.

As EM algorithms are prone to local maxima, a good initialisation is important, which is done
by the FMO detection or prediction from the previous frame. Depending on the amount of prior
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Figure 3.10. TbD framework rejecting a false positive detection caused by shadows: FMO detector
makes a false detection. Blind deblurring in the EM-step estimates the most likely appearance of an
object F and blur kernel H that would generate the input region. Since the region is not a result
of the image formation model with convolution, H differs from any admissible trajectory and the
probability p(H|C) is thus low.

knowledge of the tracked object that is built on detection in previous frames, the prediction and
FMO detector generates multiple candidates for trajectories. Trajectories are rendered as initial
blur kernels Hy and then validated by the EM steps.

The E step in the blind deblurring loop improves a blur estimate H and the M step returns
a trajectory estimate C. The object detection is accepted or rejected based on the consistency
check (3.8) between the estimated trajectory and blur kernel

s |He — HJ|
p(H|C) = —5— . (3.13)
14|

We set the threshold for detection to 0.5, which was experimentally validated to be sufficient
for separating false positives. Figure 3.9 shows an example of true positive detection by the
TbD pipeline: initial inaccurate trajectory from FMO detection, improvement in the EM-step,
and final curve fitting with probability calculation. An example of false positive detection
by the FMO detection and final rejection in the EM-step is illustrated in Figure 3.10. FMO
detector was upgraded with the proposed fitting approach rather than simple linear curve fitting
as in [RKST17].
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CHAPTER 4

NON-CAUSAL TRACKING BY DEBLATTING

The outputs of the causal TbD are individual trajectories C; and blur kernels H; in every
frame. They serve as inputs to the non-causal Tracking by Deblatting, which is based on post-
processing of individual trajectories from Tracking by Deblatting. The final output of TbD-NC
consists of a single trajectory C¢(t) : [0, N] C R — R?, where N is a number of frames in
the given sequence. The function C¢(t) outputs precise object location for any real number be-
tween zero and /N. Each frame has unit duration and the object in each frame is visible only for
duration of exposure fraction € < 1. Function C¢(t) is continuous and piecewise polynomial

ds
Cilt) = ch,stk t € [ts_1,ts],s =1..5, 4.1)
k=0

with .S polynomials, where polynomial cg has degree ds. The degree depends on the size of
time-frame in which the polynomial ¢, is fitted to. Variables ¢ form splitting of the whole
interval between O and N, ie. that0 =to < t1 < ... <tg_1 <tg=N.

Polynomials of degree 2 (parabolic functions) can model only free falling objects under the
gravitational force. In many cases forces, such as air resistance or wind, also influence the
object. They are difficult to model mathematically by additional terms. Furthermore, we would
like to keep the function linear with respect to the weights. Taylor expansion will lead to a
polynomial of higher degree, which means that these forces can be approximated by adding
degrees to the fitted polynomials. We validated experimentally that 3rd and 4th degrees are
essential to explain object motion in standard scenarios. Degrees 5 and 6 provide just a small
improvement, whereas degrees higher than 6 tend to overfit.

4.1. Splitting into Segments

When tracking fast moving objects in long-term scenarios, objects commonly move back and
forth, especially in rallies. During their motion, FMOs abruptly change direction due to contact
with players or when they bounce off static rigid bodies. The first step is splitting the sequence
into differentiable parts, i.e. detecting bounces — abrupt changes of object motion due to contact
with other stationary or moving objects. Parts of the sequence between bounces are called
segments. Segments do not contain abrupt changes of motion and can be approximated by
polynomial functions. Theoretically, causal TbD could detect bounces by fitting piecewise
linear functions in one frame, but usually the blur is noisy and detecting bounces in just one
frame is unstable. This inherent TbD instability can be fixed by non-causal processing.
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Non-Causal Tracking by Deblatting

Figure 4.1. Processing steps of the non-causal Tracking by Deblatting. Top row: the causal TbD

20

output with trajectories for all frames overlaid on the first frame. Trajectory-IoU accuracy measure is
colour coded from red (failure) to green (success) by scale (Figure 4.3). Middle rows: splitting TbD
output into segments and fitting polynomials to segments. Bottom row: final TbD-NC output. Colour
coding: bounces between segments (magenta), bounces between non-intersecting parts (red), fitted
polynomials (green), extrapolation to the first and second frame (yellow). Arrows indicate motion
direction. Best viewed when zoomed in a reader.



4.1. Splitting into Segments
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Figure 4.2. Example of dynamic programming. Columns are processed from left to right and 5 neigh-
bouring rows in previous column are used as candidates for trajectory estimate.

To find segments and bounces, we split the whole sequence into non-intersecting parts where
the object does not intersect its own trajectory, i.e. either horizontal or vertical component
of motion direction has the same polarity. Between non-intersecting parts we always report
bounces. Bounces inside non-intersecting parts are found by dynamic programming which is
able to detect abrupt changes of motion and segments.

The segment between bounces forms an interval between frame ¢;_; and ¢;. Dynamic pro-
gramming is used to convert blur kernels H; from all frames in the given non-intersecting
part into 1D signal of continuous points. Our aim is to create an object trajectory function
Cy(t), which is continuous in the whole sequence and non-differentiable only at bounces. The
proposed dynamic programming approach finds the global minimum of the following energy
function

Te

E(P):_Z ZS: Ht(-rypx)"i_’il Z ‘(Px_Px—l)_(Px—l_Px—2)

r=xp t=ts_1 r=xp+2

+"€2(Ct571(0) - be) + ’“53(Pxe - Cts(l)) )

4.2)

where variable P is a discrete 1D version of trajectory C and it is a mapping which assigns y
coordinate to each corresponding x coordinate. The first term is a data term of estimated blur
kernels in all frames with the negative sign in front of the sum which accumulates more values
from blur kernels while our energy function is being minimised. The second term penalises
direction changes and it is defined as the difference between directions of two following points
and it is an approximation of the second derivative. The difference is defined as a change in y
coordinate and only directions -2, -1, 0, +1, 42 are considered as shown in Figure 4.2. This term
makes trajectories smoother and 7 serves as a smoothing parameter, which was experimentally
set to 0.1. The last two terms enforce that the starting point and the ending point are not far
from the ones in the non-intersecting part. Note that the sign in the last two terms is different,
because they try to make trajectories shorter and they compete with the first term which prefers
longer trajectories, e.g. either making trajectory longer is worth it in terms of values in blur
kernels. Parameters ko and k3 were both set to 0.1.

Discrete trajectory P is defined from z;, until z. and these two variables are also being
estimated. They are implemented by additional fictional rows, i.e. in each step every point is
tested on being a starting or ending point.

The energy function in (4.2) is minimised by a dynamic programming (DP) approach, where
accumulated blur kernels H; are sorted column-wise (H;) or row-wise (H; transpose) to ac-
count for camera rotation or objects travelling from top to bottom. For both options we find
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Figure 4.3. Trajectory recovery for all sequences from the TbD dataset. Trajectory Intersection over
Union (TIoU (5.1)) with ground truth trajectories from a high-speed camera is colour coded by the
scale on the left. Arrows indicate the direction of motion.

the global minimum of (4.2) and the one with lower energy is chosen. Let us illustrate the DP
approach for the column-wise sorting. The row-wise case is analogous. DP starts with the first
column and for each pixel in the second column, the best pixel in the previous column is found,
which minimises the energy. Consequently, we store the best previous pixel for each row in
each column. When all columns are checked, the best trajectory is estimated by backtracking.
First, we find a point which gives the lowest energy, which is not necessary in the last column
as we check for ending point in every step. Then backtracking is done until the minimising
next pixel is in the fictional “starting” row.

When each non-intersecting part is converted into 1D signal, it becomes easier to find bounces.
We are looking for points with abrupt changes of direction. When w pixels to the left and w
pixels to the right of the given point have a change of direction higher than some threshold, then
this point is considered a bounce. After this step, the sequence is split into segments which are
separated by bounces.

4.2. Fitting Polynomials
The output discrete trajectory P has a two-fold purpose. It is used first for estimating bounces

and segments, and second for estimating which frames belong to the segment and should be
considered for fitting polynomials. To this end, we assign starting and ending points of each
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4.2. Fitting Polynomials

badminton white

badminton yellow pingpong

tennis

throw tennis

hit tennis hit tennis 2

Figure 4.4. Trajectory recovery by the non-causal TbD (TbD-NC) for all sequences from the TbD
dataset. Estimated trajectories are shown in green colour. The ground truth trajectory from a high-
speed camera is shown in yellow, mostly under the estimated trajectory. Trajectories estimated by
TbD-NC are calculated from the causal TbD output (Figure 4.3). Arrows indicate the direction of
motion. Names of sequences are shown above each image.
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4. Non-Causal Tracking by Deblatting

frame, C;(0) and C¢(1), to the closest segment. For fitting, we use only frames that completely
belong to the segment, i.e. C;(0) and C;(1) are closer to this segment than to any other. The
degree of a polynomial is a function of the number of frames (/V5) belonging to the segment

ds = min(6, [N,/3]). 4.3)

The polynomial coefficients are found by solving a linear least-squares problem

min Y%, Jo ICH(E+ toe) — Celto) dto
S. t. Cf(tg_l) = Ctgfl(()) 4.4)
Cf(tg +e€) = Ctg(l),

and after discretising the time into only 2 points (start and end point), we have

min >3, [ICH(8) = C(O)]1* + [ICs (¢ + €) — C(1)]1?
s.t. Cplte1) =Cr,_,(0) (4.5)
Crlts +€) = C, (1),

where s denotes the segment index. Equality constraints force continuity of the curve through-
out the whole sequence, i.e. we get curves of differentiability class CY. The least-squares
objective enforces similarity to the trajectories estimated during the causal TbD pipeline. The
final trajectory Cy is defined over the whole sequence and the last visible point in the frame ¢
which is C;(1) corresponds to C(t+€) in the sequence time-frame, where the exposure fraction
€ is assumed to be constant in the sequence. The exposure fraction is estimated as an average
ratio of the length of trajectories C; in each frame and the distance between adjacent starting

points
N-1

IC.(1) — Cu(0)|
—1 2 HCm —C,0)]

Frames which are only partially in segments contain bounces. We replace them with a piece-
wise linear polynomial which connects the last point from the previous segment, bounce point
found by dynamic programming and the first point from the following segment. Frames be-
tween non-intersecting parts are also interpolated by piecewise linear polynomial which con-
nects the last point of the previous segment, point of intersection of these two segments and
the first point of the following segment. Frames which are before the first detection or after
the last non-empty C; are extrapolated by the closest segment. Figure 4.1 shows an example of
splitting a sequence into segments which are used for fitting polynomials. More examples of
full trajectory estimation are in Figures 4.3 and 4.4.

(4.6)
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CHAPTER B

EXPERIMENTS

All versions of Tracking by Deblatting mentioned in Chapters 3 and 4 are evaluated on a newly
created TbD dataset. The proposed TbD dataset contains ground truth trajectories from a high-
speed camera. Comparing all version of TbD serves as an ablation study. The best-performing
version of TbD is compared to the state-of-the-art methods both in classical visual object track-
ing and fast moving object tracking. The same comparison to state-of-the-art is performed on
the FMO dataset [RKS17] which is the first dataset of fast moving objects. Unfortunately,
ground truth trajectories for this dataset are not available and the accuracy of trajectory estima-
tion cannot be properly measured. We report only precision and recall of successful detections
with non-zero overlap with the ground truth masks. The TbD dataset also contains frames with
slow and still objects and this extended TbD (eTbD) version of TbD dataset is used for testing
all-speed performance.

We show the results of Tracking by Deblatting and compare it with other trackers on the task
of long-term tracking of motion-blurred objects in real-life video sequences. As a baseline, we
chose the FMO detector (FMOd [RKS™ 17]), specifically proposed for detecting fast moving
objects, and the Discriminative Correlation Filter with Channel and Spatial Reliability (CSR-
DCF [LVC™17]) tracker which performs well on standard benchmarks such as VOT [K"19].
CSR-DCF was not designed to track objects undergoing large changes in velocity within a
single frame and would perform poorly in the comparison. We therefore augmented CSR-DCF
by FMOd reinitialisation every time it outputs the same bounding box in consecutive frames,
which is considered a fail. We use FMOd for automatic initialisation to avoid manual input
and we skip the first two frames of every sequence to establish background B and initialise
CSR-DCF. The rest of the sequence is processed causally (except of TbD-NC), B is estimated
as a moving median of the past 3 — 5 frames. To achieve long-term property, we also compare
to FuCoLoT tracker [LCZV ' 18] which is a long-term extension of CSR-DCF tracker.

5.1. TbD Dataset

The comparison with the baseline methods was conducted on a new dataset consisting of 12
sequences with different objects in motion and setting. The settings include different kinds of
sports, objects in flight or objects rolled on the ground. Sequences were acquired in both indoor
and outdoor scenarios. The sequences contain abrupt changes of motion, such as bounces and
interactions with players, and a wide range of speeds. There are sequences where objects
are thrown, rolled, hit or just falling or used for playing a particular sport. Sports include
badminton, pingpong, tennis, floorball and volleyball. All sequences are listed in Table 5.1
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Figure 5.1. Exponential forgetting factor estimation for TbD-TO and TbD-T1 methods. The graph
compares performance in terms of Trajectory-IoU over a subset of the TbD dataset with varying
exponential forgetting factors for updating the object model. TbD-TO has no object template and the
best performance is achieved for v = 0.5. TbD-T1 was provided with the object template and the
best performing setting was for v = 1.

with the number of frames in each of them. The extended version (eTbD) is listed in Table 5.5
with the higher number of frames.

The dataset is annotated with the ground-truth trajectory obtained from a high-speed camera
footage at 240 frames per second. In comparison, used sequences in the TbD dataset have 30
frames per second. The ground truth for each frame in the standard footage consists of 8 points,
sampling the ground truth trajectory with 8 times finer precision. The object in the first frame of
the high-speed shooting is marked manually by a bounding box. Then a standard tracker CSR-
DCEF is used to find the object location in every following frame. Centres of bounding boxes
denote ground truth points on the trajectory. In the high-speed shooting, objects do not travel
with such a high velocity to be fast moving objects in our definition, because they do not move
over distances higher than their size during exposure time. It also means that they are almost
not blurred in the high-speed footage. In such scenarios, standard trackers can successfully
track the object to create ground truth locations.

We compare the method performance in estimating the motion trajectory in each frame. We
therefore generalise Intersection over Union (IoU), the standard measure of position accuracy,
to trajectories and define a new measure Trajectory-loU (TloU):

TIoU(C,C*; M*) = /IoU (Mg(t), Mg*(t)) dt, (5.1)
t

where C is the estimated trajectory, C* is the ground-truth trajectory, M™ is a mask with true
object appearance obtained from the ground truth, and M, denotes M placed at location x.
TIoU can be regarded as the standard IoU averaged over each position on the estimated trajec-
tory. In practice, we discretise the exposure time into evenly spaced timestamps and calculate
intersection over union of the ground-truth object location and the output of a tracker at each
time stamp. Then these measurements are averaged. Because the ground truth from the high-
speed camera footage was acquired at 8 times higher frame rate, we split exposure time into 8
parts. FuCoLoT and CSR-DCEF trackers only output positions, so in this case we estimate lin-
ear trajectories from positions in neighbouring frames and then calculate TIoU. FMO detector
outputs only non-oriented linear trajectories in each frame independently. In order to calculate
TIoU, we need the curve orientation. To this end, we try both orientations (+1 and -1) and
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5.1. TbD Dataset

Sequence TbD-TO,0 | TbD-TO,0.5 | TbD-T1, 1 TbD-NC TbD-O
TIoU | Rel | TIoU | Rcl | TIoU | Rel | TIoU | Rel | TloU
badminton_white 659 | 092 | 657 | 092 | .694 | 0.97 | 783 | 1.00 | .792
badminton_yellow | .615 | 0.89 | .626 | 0.89 | .677 | 0.91 | .780 | 1.00 | .788
pingpong 581 | 0.89 | 590 | 0.89 | .523 | 091 | .643 | 1.00 | .697
tennis 59 | 092 | 554 | 089 | .673 | 097 | .750 | 1.00 | .827
volleyball 552 |1 087 | 591 | 090 | .795 | 0.97 | .857 | 1.00 | .836
throw_floor 760 | 1.00 | 776 | 1.00 | .810 | 1.00 | .855 | 1.00 | .864
throw _soft 584 | 090 | .564 | 090 | .652 | 097 | 761 | 1.00 | .707
throw_tennis 693 | 1.00 | 777 | 1.00 | .850 | 1.00 | .878 | 1.00 | .872
roll_golf 414 | 1.00 | 346 | 1.00 | .873 | 1.00 | .894 | 1.00 | .898
fall_cube 597 | 1.00 | 590 | 1.00 | .721 | 1.00 | 757 | 1.00 | .744
hit_tennis 564 | 093 | 570 | 093 | .667 | 093 | 714 | 1.00 | .828
hit_tennis2 476 | 0.83 | 496 | 0.83 | .616 | 0.83 | .682 | 0.92 | .738
Average 591 | 093 595 | 093 | 713 | 096 | 779 | 0.99 | .799

Table 5.1. Ablation study on the TbD dataset. Trajectory Intersection over Union (TIoU) and Recall
(Rcl) — comparison of different TbD versions: TbD without template and with exponential forgetting
factors (3.2) v = 0 (TbD-TO, 0) and v = 0.5 (TbD-TO, 0.5), TbD with template and v = 1 (TbD-
T1, 1), non-causal TbD-T1,1 (TbD-NC) and TbD with oracle (TbD-O). TbD-O shows the highest
attainable TIoU for the TbD core as a reference point when predictions are precise. The highest TloU
for each sequence is highlighted in blue colour and the highest recall in cyan colour. When TbD-NC
outperforms TbD-O, the score is highlighted in red.

report the highest TIoU. For standard trackers orientation is given from the centres of bounding
boxes. Estimating orientation is part of the proposed TbD method. In the beginning, when just
a detection by FMOd is given, the orientation is not known. After the prediction is done in both
directions, the orientation with the highest fitting score of TbD is chosen.

We evaluated four flavours of TbD that differ in the presence of the initial user-supplied
template F, the learning rate ~y of the object model in (3.2) and non-causal trajectory estimation.
The presented flavours are:

e TbD-T0,0: Template not available, model update is instantaneous (memory-less), v = 0.
e TbD-TO0,0.5: Template not available, model is updated with the learning rate v = 0.5.

e TbD-T1,1: Template available, model remains constant and equal to the template, v = 1.
e TbD-NC: non-causal TbD-T1,1 with full trajectory estimation (Chapter 4).

Empirical justification of chosen learning rates is presented in Figure 5.1. We evaluated all
learning rates from O to 1 with the step size 0.05 for each method, i.e. TbD-T1 and TbD-TO.
For each step size, the average TIoU was computed over a subset of the TbD dataset and the
best performing setting was chosen. When template is not available, updating model smoothly
with the rate v = 0.5 dominates instantaneous update (v = 0) and no update at all (v = 1),
i.e. keeping the first estimate. When template is available, it is preferable to keep the template
rather than updating it. Even when no update is done (y = 1), it is still preferable to minimise
the loss (3.3) with respect to F'. Template F usually contains only object-specific details.
However, image noise or other phenomena as shadows should be explained by some variables
and minimisation with respect to F' can serve this purpose. For instance, we would like to
include shadows or prompt illumination changes into the object model F', but updating the
template and learning such noise is not desirable. Figure 5.1 (TbD-TO) has two local maxima,
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5. Experiments

TIoU %
TbD | TbD-NC TbD | TbD-NC
TbD  Fails 0.000 0.382 4.7 0.4
TbD TloU> 0 | 0.744 0.800 95.3 99.6

Table 5.2. Comparison of non-causal TbD (TbD-NC) with causal TbD. TbD failure is defined as
frames where Trajectory-IoU equals to zero. TbD-NC decreases the number of frames with failure
by a factor of 10.

one at 0.5 and one at a point near zero. It means that TbD-T0,0 and TbD-T0,0.5 are two versions
of TbD with no template which give reasonable performance.

Comparison of all versions of the TbD method is shown in Table 5.1 in form of an abla-
tion study, sorted from left to right by its performance. Performance is measured by a newly
proposed Trajectory-IoU score and the traditional recall measure, which is a ratio of correctly
found true positive detections over all positives / detections. Detection is called a true positive
if it has non-zero overlap with the ground truth. To evaluate the performance of the core part
of TbD that consists of deblatting and trajectory fitting alone, we provide results of a special
version of the proposed method called “TbD with oracle” (TbD-O). This behaves like regular
TbD but with a perfect trajectory prediction step. We use the ground-truth trajectory to sup-
ply the region D to the deblatting step exactly as if it were predicted by the prediction step,
effectively bypassing the long-term tracking logic of TbD. The rest is identical to TbD-T1,1.
TbD with oracle tests the performance and potential of the deblatting and trajectory estimation
alone because failures do not cause long-term damage — success in one frame is independent
of success in the previous frame. It serves as a reference point of what deblatting and fitting in
one frame can achieve if everything else is given. However, TbD-O can not be used in real-life
scenarios and we use the best-performing TbD-NC in further experiments.

Table 5.2 shows that TbD-NC corrects complete failures of causal TbD when TIoU is zero,
e.g. due to wrong predictions or other moving objects. TbD-NC also improves TIoU of suc-
cessful detection by fixing small local errors, e.g. when the blur is misleading or fitting in one
frame is not precise.

Among other TbD flavours, it is no surprise that availability of the object template is bene-
ficial and outperforms other versions. However, even if the template is not available, TbD can
learn the object model and updating the appearance model gradually during tracking is prefer-
able to instantaneous updates. Trajectory estimation in sequence (TbD-NC) gives even more
boost in performance. This is the only version which can potentially outperform TbD with
oracle and estimate trajectories more accurately by non-causal post-processing of all frames
jointly. This indeed happens in four cases in Table 5.1, where TbD-NC gives better results than
TbD-0. The proposed non-causal TbD outperforms all other TbD flavours in both recall and
TIoU. Recall is 100% in all cases except one, where the first detection appeared only on the
seventh frame and extrapolation to the first six frames was not successful. TbD-O has 100% re-
call in all situations by construction. The average TIoU and recall for TbD-O is just marginally
higher than for TbD-NC and the gap is small considering that TbD-O knowns exactly where
the detection should be.

Table 5.3 presents results of the comparison to the baselines. All versions of Tracking by
Deblatting outperform baseline methods on average by a wide margin, both in the traditional
recall measure as well as in trajectory accuracy TIoU score. FMO detector is less accurate and
more prone to false positives as it lacks any prediction step and by design ignores slow objects.
CSR-DCEF, despite reinitialisations by FMOd, fails to detect fast moving objects accurately.
FuCoLoT is even less accurate, but has higher recall thanks to the long-term property.
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5.2. FMO Dataset

CSR-DCF | FuCoLoT FMO TbD-NC

Sequence # | [LVCT17] | [LCZVT18] | [RKST17] | (this work)

TIoU | Rcl | TIoU | Rcl | TIoU | Rcl | TIoU | Rcl
badminton_white | 40 | .286 | 0.39 | 286 | 0.39 | .242 [ 0.34 | .783 | 1.00
badminton_yellow | 57 | .123 | 0.22 | .123 | 0.22 | .236 | 0.31 | .780 | 1.00
pingpong 58 | .064 | 0.12 | .065 | 0.14 | .064 | 0.12 | .643 | 1.00
tennis 38 | 278 | 0.64 | 294 | 0.89 | .596 | 0.78 | .750 | 1.00
volleyball 41 | 533 | 0.82 | 496 | 0.79 | .537 | 0.72 | .857 | 1.00
throw_floor 40 | 287 | 0.71 | 275 | 0.63 | 272 | 0.37 | .855 | 1.00
throw_soft 60 | 470 | 0.97 | 463 | 095 | 377 | 0.57 | .761 | 1.00
throw_tennis 45 | 444 | 095 | 239 | 098 | .507 | 0.65 | .878 | 1.00
roll_golf 16 | 331 | 1.00 | 360 | 1.00 | .187 | 0.71 | .894 | 1.00
fall_cube 20 | 324 | 0.67 | 324 | 0.67 | 408 | 0.78 | .757 | 1.00
hit_tennis 30 | 329 | 0.93 | 330 | 0.93 | 381 | 0.68 | .714 | 1.00
hit_tennis2 26 | 214 | 0.79 | 226 | 0.79 | 414 | 0.71 | .682 | 0.92
Average 39| 307 068 ] 290 [0.70 | 352 | 0.56 | .779 | 0.99

Table 5.3. Trajectory Intersection over Union (TIoU) and Recall (Rcl) on the TbD dataset — com-
parison of the best performing TbD method (TbD-NC, see Table 5.1) to the state-of-the-art meth-
ods: CSR-DCF [LVC*17] tracker, FuCoLoT [LCZV*18] tracker and the Fast Moving Object
method [RK§+ 17]. CSR-DCF is a standard, well-performing [K*19], near-real time tracker. Fu-
CoLoT is a long-term extension of CSR-DCEF. For each sequence, the highest TIoU (5.1) is high-
lighted in blue and recall in cyan. The number of frames is indicated by "# sign.

A visual demonstration of tracking by the proposed method is shown in Figure 4.3 (for TbD-
T1) and in Figure 4.4 (for TbD-NC). Trajectory-IoU for the causal TbD is visualised in colour
ranging from red (TIoU = 0) through yellow (TIoU = 0.3) up to green (TIoU = 1). Trajectory
estimation in sequence (TbD-NC) reconstructs more precise trajectories than without it (TbD-
T1). Only in frames where the object slows down, dynamic programming approach is not
robust and non-causal trajectory estimation could fail. Such situation and other failures can
be detected by checking the average error of non-causal fitting. For instance, the throw floor
sequence in Figure 4.4 contains segments in the end of the sequence when the object is slow
and bounces a lot. In such case, there is a big deviation between TbD-NC and TbD outputs as
in Figure 4.3 and the segment is not replaced by non-causal fit, e.g. the output of causal TbD
is used for evaluation. The first segment in the beginning was not able to extrapolate to the
first two frames successfully, as the bounce in the second frame was not detected. Similarly,
the throw soft sequence in Figure 4.4 shows a failure of dynamic programming where a bounce
was not successfully detected and thus just the output of causal TbD from Figure 4.3 was used.

5.2. FMO Dataset

FMO dataset [RKS*17] was introduced as the first dataset containing only fast moving ob-
jects, now at version 2. The FMO dataset does not contain ground-truth trajectory data, but
only binary masks which denote regions affected by fast moving objects, annotated by hand.
Therefore, the trajectory accuracy cannot be evaluated and we report traditional precision/recall
measure, which is derived from the intersection of detection and the ground-truth mask. De-
tection is considered successful if it has non-zero overlap with the ground truth mask. On the
FMO dataset, the TbD method is slightly better than the FMO method in recall, owing to the
fact that the initial detection is done by FMOd and if FMOd fails then TbD cannot start track-
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Sequence name 4 FMO [RKST17] TbD-TO, 0.5
Precision | Recall | Precision | Recall
volleyballl 50 100.0 45.5 100.0 70.0
volleyball passing | 66 21.8 10.4 72.7 48.5
darts 75 100.0 26.5 100.0 0.0
darts window 50 25.0 50.0 100.0 0.0
softball 96 66.7 15.4 53.9 25.0
archery 119 0.0 0.0 0.0 0.0
tennis serve side 68 100.0 58.8 93.3 77.8
tennis serve back 156 28.6 59 100.0 44.0
tennis court 128 0.0 0.0 100.0 0.0
hockey 350 100.0 16.1 0.6 1.6
squash 250 0.0 0.0 100.0 0.0
frisbee 100 100.0 | 100.0 100.0 | 100.0
blue ball 53 100.0 524 100.0 66.7
ping pong tampere | 120 100.0 88.7 95.8 88.2
ping pong side 445 12.1 7.3 95.1 55.7
ping pong top 350 92.6 87.8 90.2 79.6
Average 154 59.2 35.5 81.6 41.1

Table 5.4. Precision and recall on the FMO dataset of the TbD tracker (setting: TbD without template
and with exponential forgetting factor v = 0.5) and the FMO method [RKS™17], average on the 16
sequences of the FMO dataset.

ing, but significantly better in terms of precision. Table 5.4 shows aggregated results on all 16
sequences. The number of frames is indicated by ”#” sign. Sequences in the FMO dataset are
much larger and the evaluation took around 20 hours, compared to 1 hour on the TbD dataset.
The TbD dataset contains only the most interesting parts of sequences and unnecessary frames
are cropped, but added to the extended TbD dataset.

The main drawback of the FMO dataset is its lack of ground truth trajectories. Even com-
pletely wrong trajectories, when convolved with the object mask, can lead to perfect overlap
with the ground truth. For instance, if the output trajectory is identical to the real trajectory in
the first part, but then it comes back to the starting point, thus the estimated trajectory is twice
longer. The output trajectory is completely wrong and cannot be used for predicting the object
location in the next frame, but it will produce a 100 % overlap with the ground truth object
location mask. Another example is a trajectory which is oriented in the opposite direction.
Ground truth in the style of the FMO dataset will give 100 % accuracy, whereas ground truth
in the new style of exact trajectories as in the TbD dataset will give close to 0 % accuracy if
trajectories are long enough. Ground truth masks in the FMO dataset do not contain fine details
about the object location, in comparison to the TbD dataset.

There are no object templates provided in the FMO dataset, thus TbD-TO version was used.
For some sequences, where the object is never slow and sharp enough, the real object mask is
not even precisely known.

A visual demonstration of tracking by the proposed method on some sequences of the FMO
dataset is shown in Figure 5.2. Each image depicts trajectories from all frames, superimposed
on a single image from the sequence. Arrows indicate the direction of motion. Standard in-
tersection over union is encoded by colour, from green (IoU=1) to red (IoU=0, false positive).
Trajectories are estimated successfully with the exception of frames where the object is in di-
rect contact with other moving objects, which throws off the local estimation of the background.
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volleyball passing tennis serve side

ping pong paint

Figure 5.2. Trajectory recovery for 9 selected sequences from the FMO dataset [RKST17]. Intersec-
tion over Union (IoU) with the ground truth occupancy mask is colour coded using the scale from
Figure 4.3. Arrows indicate the direction of motion. Names of sequences are shown above each
image.

We do not show full trajectories estimated by non-causal post-processing as this is not directly
possible in the FMO dataset. In many sequences, several different objects of the same class
are visible and thus trajectories are not continuous. For instance, players use one ping pong
ball and when it falls down, they start playing with another ball. This shows the limitations of
non-causal post-processing.

Some sequences in the FMO dataset contain a lot of camera motion. The original FMO
method [RKéJr 17] used camera stabilisation to account for that. TbD method in its core com-
putes the background by moving median of several last frames. For fairness, we also added
camera stabilisation into the proposed TbD method.

5.3. All-speed Tracking

The inner part of the TbD method consists of deblatting and fitting which allow estimating
robust intra-frame object locations. Speed of the object can be arbitrary, albeit performance is
better for higher speed when the object is not perfectly round and homogeneous. We evaluated
the performance of the TbD-NC method on the extended TbD dataset (eTbD), which contains
the same sequences as the TbD dataset but with on average around twice more frames with
objects slowing down and staying still. Originally, the eTbD dataset was created first and the
TbD dataset was made by cropping the eTbD dataset, such that all speeds are represented
equally.

For normalisation, we represent speed in radii per exposure which measures the number of
radii the object travels in one exposure time. Speeds less than one radii per exposure [r/¢],
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Figure 5.3. All-speed tracking. Trajectory-IoU and recall on the extended TbD dataset (eTbD) for
different algorithms (from left to right) — CSR-DCF [LVC*17], FuCoLoT [LCZV 18], FMO al-
gorithm [RKS17] and non-causal Tracking by Deblurring (TbD-NC). The horizontal axis denotes
speed which is measured in radii per exposure. The vertical axis shows both success rates measured
by Trajectory-IoU (5.1) and recall.

Figure 5.4. Objects with varying speeds (0, 1, 3, 5, 7, 9) in radii per exposure, which removes depen-
dence on camera settings and object size.

i.e. not FMOs, represent half of frames in the eTbD dataset and the other half contains FMOs.
Table 5.5 shows results on the eTbD dataset for the TbD-NC method and compares it to other
baselines.

In Figure 5.3, we report histograms of performance of all-speed tracking for every method,
measured by the average TIoU in blue and by recall in cyan. Histogram bins represent dif-
ferent speeds ranging from 1 to 9 radii per exposure. Standard trackers such as CSR-DCF
and FuCoLoT have similar performance which declines quickly for higher speeds. The FMO
method [RKST17] has peek performance for speeds between 3 and 5 radii per exposure, lower
or higher speeds decrease TIoU and recall drastically. FMO method is based on difference im-
ages and very high speeds cause low contrast images and the object becomes almost invisible
in the difference image. On the other side, the FMO method was not designed to track not
so fast moving objects and its performance drops for slow objects. The TbD method solves
both problems and indeed connects the world of fast moving objects and the world of slow or
still objects. For very high speeds, the TbD method does not suffer from low contrast images
because the image formation model is still valid. TbD-NC has a bit decreasing TIoU for higher
speeds, but its recall is close to one in all cases. Lower TIoU for higher speeds can be explained
by the difficulty of deblatting and fitting when the object is severely blurred. When a severely
blurred object has a colour similar to the background, the part of the loss function which min-
imises L' norm of the blur kernel will try to avoid explaining the motion caused by the object.
For sequences where this is the case, we lowered the weights of the total variation term which
enforces sparsity of the blur kernel and reduces small non-zero values.

All-speed tracking posed another problem of estimating background when the object is close
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FuCoLoT FMO TbD-NC
Sequence (extended) # | [LCZVT18) [RKST17] (this work)
TIoU | Recall | TIoU | Recall | TIoU | Recall

badminton_white 125 | .232 0.40 142 0.19 .635 0.85
badminton_yellow 125 | .155 0.33 229 | 0.30 536 | 0.84
pingpong 95 | .062 0.10 .100 0.15 .604 0.98
tennis 118 | .245 0.84 554 0.74 420 0.58
volleyball 72 | .500 0.79 430 0.56 .814 0.97
throw_floor 73 | .147 0.34 153 0.21 .896 1.00
throw_soft 150 | .516 0.98 303 0.51 .790 1.00
throw _tennis 71 | 232 0.99 347 0.46 .867 1.00
roll_golf 16 | .360 1.00 187 0.71 .894 1.00
fall_cube 28 | 414 0.77 341 0.65 .759 1.00
hit_tennis 57 | .330 0.96 225 0.42 172 1.00
hit_tennis2 26 | .226 0.79 414 0.71 .681 0.92
Average 80 | .285 0.69 285 0.47 722 0.93

Table 5.5. Trajectory Intersection over Union (TIoU) and Recall (Rcl) on the eTbD dataset. Extended
version of the TbD dataset is used to evaluate the performance of TbD-NC in long-term scenarios and
on objects with different speeds, ranging from still objects to very fast moving objects. The number of
frames is denoted by “#” sign. The proposed non-causal Tracking by Deblatting (TbD-NC) performs
better than the baselines FuCoLoT and the FMO method. TIoU and Recall are lower than on the TbD
dataset (Table 5.3) due to more challenging tasks in the eTbD dataset.

to still. The median of previous several frames is not sufficient. To this end, we increased the
number of frames used for estimating the background to 20 previous frames, which is used
when object speed is less than a threshold. For still objects with zero speed, the background is
not updated.

5.4. Speed Estimation

TbD-NC provides the function Cy(t), which is defined for each real-valued time stamp ¢ be-
tween zero and the number of frames. Taking the norm of the derivative of Cy(t) gives a
real-valued function of object velocity, measured in pixels per exposure. To normalise it with
respect to the object, we report speed in radii per exposure. This is achieved by dividing the
speed by the object radius. Examples of objects with different speed in radii per exposure are
presented in Figure 5.4. Intra-frame speed estimation for all sequences from the TbD dataset is
visualised in Figure 5.5, where sequences are shown together with their speed functions.

The ground truth speed was estimated from a high-speed camera footage having 8 times
higher frame rate. The object centre was detected in every frame and the GT speed was then
calculated from the distance between the object centres in adjacent frames. Then, the speed is
multiplied by 8 (difference in exposure) and divided by the object radius. Deliberately, we used
no prior information (regularisation) to smooth the GT speed and therefore it is noisy as can be
seen in Figure 5.5. Two factors influenced this. First, the discrete origin of ground truth which
has a noisy derivative. For example, if the object moves with a speed of 2.5 pixels per exposure,
the ground truth gives oscillating speeds of 2 and 3 pixels per exposure. This is caused by the
output of the standard tracker used for calculating the ground truth from the high-speed camera.
Second, the fact that infinitely many speed functions represent the same C(t) function causes
some uncertainty in the speed estimation.
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Figure 5.5. Speed estimation using non-causal Tracking by Deblatting (TbD-NC) on all sequences
from the TbD dataset. Trajectories estimated by TbD-NC are overlaid on the first frame of each
sequence. Graphs contain the speed estimation by the causal TbD method (lightgray) and TbD-NC
(purple) in radii per exposure compared to the “ground truth” speed (olive) calculated from a high-
speed camera. The noise and oscillations in GT are caused by discretisation. Median differences to
GT for all sequences are shown in Table 5.7. The causal TbD has no extrapolation to first frames.
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5.4. Speed Estimation

Duration GT Hrabalik [Hral7] TbD-NC
Serve Speed | Error | Speed | Error
[frames] | [mph] | [mph] [%] [mph] | [%]
1 23 108 105.6 2.2 108.0 | 0.0
2 32 101 103.8 2.8 101.6 | 0.6
3 62 104 106.5 24 1104 | 6.1
4 75 113 101.7 10.0 1158 | 2.5
5 82 104 91.9 11.6 1069 | 2.8
6 30 127 127.4 0.3 1263 | 0.6
7 34 112 116.1 3.7 1075 | 4.0
8 78 125 123.2 1.4 1303 | 4.2
9 67 99 88.3 10.8 89.7 | 94
10 90 108 110.2 2.0 106.2 | 1.6
Mean 57 110.1 | 107.5 4.7 1103 | 3.2

Table 5.6. Speed estimation in a tennis match compared to the radar gun (GT). We used the last 10
serves of the final match of 2010 ATP World Tour. The speed is reported in miles per hour (mph).
The lowest error for each serve is marked in blue.

Spectator’s view Another view (speed in top left corner) Cropped

Figure 5.6. Radar gun measurements. Speed was automatically estimated by the TbD-NC method
from the video on the left. Ground truth acquisition from YouTube video is shown in the middle and
the right images. Table 5.6 compares estimates to the ground truth.

We also report the median of absolute differences between GT and the estimated speed in
Table 5.7. The error is mostly due to the noise in GT. Nevertheless, median error is 0.32 radii
per exposure, which is a small error when speeds are in the range of near 10 radii per exposure.

5.4.1. Speed Estimation Compared to Radar Guns

In sports, such as tennis, radar guns are commonly used to estimate the speed of serves. In this
case, only the maximum speed is measured and the strongest signal usually happens immedi-
ately after the racquet hits the ball.

Hrabalik [Hral7] in his master’s thesis gathered the last 10 serves of the final match of 2010
ATP (Association of Tennis Professionals) World Tour. Rafa Nadal and Roger Federer played
in this match. The serves were found on YouTube from a spectator’s viewpoint!. Ground
truth was available from another footage which showed the measured speed” from radar guns.
Hrabalik’s version of FMO detector achieved quite precise estimates of the speed, with the

"https://youtu.be/3deJOQ0dCDU
https://youtu.be/YCPHpb61Cnk?t=443
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Figure 5.7. Estimating the object velocity from blur kernels. In four consecutive frames (top row),
object trajectories were estimated with TbD. The bottom plot shows the velocity during exposure
calculated from the blur kernels (solid red) and the ground-truth velocity (dashed blue line) obtained
by a high-speed camera. Black crosses show the average velocity per frame calculated from the
trajectory length.

average error of 4.7 %, where the error is computed as

o~ vl

’Ugt

E, (5.2)

Unfortunately, the ATP footage from spectator’s viewpoint is of a very poor quality with
tennis ball being visible only as several pixels. Even in his work, Hrabalik used a special set
of parameters to make the algorithm work in this setting. Deblurring does not perform well
when a video has low resolution or the object of interest is poorly visible. To test only the
performance of full trajectory estimation by TbD-NC, we manually annotated the starting and
ending points of the ball trajectory in several frames after the hit in every serve. Then we find
the time-stamp 5, so that the final trajectory Cy (tnit) at this point is the closest to the hit point.
Then [|C}(tpit) || is the speed measured by TbD-NC.

To convert the speed to real world values as reported by radar gun (miles per hour, mph), we
used the same approach as in Hrabalik’s work. The pixel-to-miles transformation was computed
by measuring the court size in the video (1519 pixels) and dividing it by the tennis standards
(78 feet). Camera frame rate was used according to the standard of 29.97 fps. Figure 5.6 shows
how the ground truth was acquired. Additionally, due to severe camera motion, the video was
stabilised.

Table 5.6 compares the speed estimated by TBD-NC and FMO methods to the ground truth
from the radar. The proposed TbD-NC method is more precise than the FMO method and in
several cases the speed is estimated with GT error close to zero. The estimated average speed
over 10 serves differs from the ground truth only by 0.2 mph, which demonstrates that TbD-NC
calculates object velocity on par with expensive radar guns.

5.4.2. Speed from Blur Kernel

Apart from estimating speed by taking the norm of the derivative of the fitted function Cs(?),
we can also directly estimate speed from the blur kernel H. The values in the blur kernel
are directly proportional to time the object spent in that location. For example, if half of the
exposure time the object was moving with a constant velocity and then it stopped and stayed
still, the blur kernel will have constant intensity values terminated with a bright spot that will be
equal to the sum of intensities of all other pixels. Estimating speed from blur intensity values
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5.5. Shape and Gravity Estimation

Speed Radius Gravity
Sequence Median Diff. | GT | Estimate | Error | Estimate | Error

[r/e] [em] | [em] | [%] | [ms™2] | [%]
badminton_white 0.41 - - - - -
badminton_yellow 0.43 - - - - -
pingpong 0.53 2.00 1.99 0.3 9.53 2.8
tennis 0.39 - - - - -
volleyball 0.37 10.65 10.47 1.7 10.50 7.2
throw _floor 0.29 3.60 3.47 3.7 10.21 4.2
throw _soft 0.19 3.60 3.72 33 9.52 2.9
throw_tennis 0.21 3.43 3.69 7.6 9.19 6.2
roll_golf 0.27 - - - - -
fall_cube 0.38 2.86 2.63 8.0 10.66 8.8
hit_tennis 0.18 - - - - -
hit_tennis2 0.24 - - - - -
Average 0.32 - - 4.1 9.93 5.3

Table 5.7. Estimation of radius, speed and gravity by the proposed TbD-NC method on the TbD
dataset. Trajectories estimated by TbD-NC are used to measure physical properties of the object
and the environment. The speed estimates are compared to the ground truth speed from a high-speed
camera. Radius is calculated when assuming Earth gravity 9.8 ms~2. Standard object sizes are taken
as ground truth for radius. When the radius is known, we compute gravity.

is however not very reliable due to noise in the blur kernel (e.g. camera noise, compression
artefacts). Figure 5.7 illustrates a case where this approach works. All pixels in the blur kernel
H which lay on the trajectory C are used for calculating the object velocity.

5.5. Shape and Gravity Estimation

In many situations, gravity is the only force that has non-negligible influence. Then it is suffi-
cient to fit polynomials of second order

C(t) = o + vt + at®, (5.3)

If parameters of the polynomial are estimated correctly, and the real gravity is given, then
transforming pixels to metres in the region of motion is feasible. Gravity in the equation (5.3)
is represented by a parameter a, which has units [px(%s)_z], where the frame rate is denoted
by f. If we assume the gravity of Earth g ~ 9.8[ms~2], f is known and a is estimated by curve
fitting, the formula to convert pixels to meters becomes

_ 9
2af2’

P 5.4
where p are meters in one pixel on the object in motion. For example, in our case with approxi-
mately round objects, we compute radius in centimetres as r.,, = 100pr from estimated radius
r in pixels found during deblatting or by FMO detector.

The radius estimation by this approach is shown in Table 5.7. Only half of the TbD dataset is
used, i.e. sequences where the object was undergoing only motion given by the gravity (throw,
fall, ping pong, volleyball). In other cases such as roll and hit, the gravity has almost no
influence and this approach cannot be used. The badminton sequences have large air resistance
and the tennis sequence was recorded outside during strong wind. When gravity was indeed
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1st frame 3rd frame 6th frame TbD-NC

Figure 5.8. Gravity and shape estimation on a sequence from a web camera. A floor ball was thrown
from the top. Three images on the left show individual trajectories estimated by causal TbD. The final
trajectory estimated by non-causal TbD is shown on the right, with blue arrows indicating the object
location for every integer time ¢. The final trajectory looks linear, but only its trace is close to linear.
The second order term in the fitted polynomial is used to model acceleration given by gravity which
allows calculating object shape and the gravity itself.

Dodgeball Beach volleyball Air hockey

Figure 5.9. Examples of three sequences found on YouTube which contain fast moving objects. Esti-
mated object trajectories by TbD from multiple frames are rendered into one frame.

the only strong force, the estimation is quite robust with average error of only 4.1 %. Ground
truth was taken from standard sizes of used objects.

Alternatively, when the real object size is known we can instead estimate gravity, e.g. when
throwing objects on another planet and trying to guess which planet it is. In this case, (5.4)
can be rewritten to estimate g. Results are also shown in Table 5.7 and the average error is
5.3 % when compared to the gravity on Earth. This shows robustness of the approach in both
estimating radius and gravity.

The performance of TbD-NC to measure the shape and gravity is tested on an additional
sequence from a web camera. A blue floor ball was thrown in front of the camera so that the
trajectory is almost linear and perpendicular to the floor. In reality, only the trace of the trajec-
tory is linear, but the fitted polynomial needs to be of a higher order. The second order term
in the polynomial is used to model acceleration given by the gravity which allows calculating
object shape and the gravity itself by the same approach. Figure 5.8 shows the final estimated
trajectory. When we fix Earth gravity 9.8 ms~2, then from the equation (5.4) we get floor ball
radius 3.55 cm, which is only 1 % error. When the ground truth radius of 3.6 cm is fixed, then
the estimated gravity is 9.93 m.s~2, which is again 1 % error. The error is mainly due to the ra-
dius estimation in pixels which is computed as half of the size of the estimated object model F'.

5.6. Other Applications

Among other applications of the proposed Tracking by Deblatting are fast moving object re-
moval and temporal super-resolution. The task of temporal super-resolution stands for creating
a high-speed camera footage out of a standard video and consists of three steps. First, a video
free of fast moving objects is produced, which is called fast moving object removal. For all
FMOs which are found in every frame, we replace them with the estimated background. Sec-
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Figure 5.10. Examples of failed trajectory estimation due to interference with other objects (incorrect
background B). Left to right: input image with indicated ground-truth trajectory, background esti-
mated by moving median (see the difference to the actual background in the left), estimated PSF with
artefacts due to background inconsistency, erroneous trajectory fit. From top to bottom the problems
in background (sometime hard to identify) are hand and racket of the player, another player in the far
background, badminton racket of the player, and hand in contact with the volleyball.

ond, intermediate frames between adjacent frames are calculated as their linear interpolation.
Objects which are not FMOs will look natural after linear interpolation. The FMO trajectory
function C¢(t) is split into the required number of pieces, optionally with shortening to account
for the desired exposure fraction. Third, the object model (F, M) is used to synthesise (as in
Figure 3.9) the video formation model with FMOs (3.1). Examples of these applications are
provided in the supplementary files as videos.

5.7. Limitations

Tracking by Deblatting is still limited by several factors. Mainly due to the complexity of
blind deblurring, the method is currently limited to objects that do not significantly change
their perceived shape and appearance within a single frame. TbD works best for approximately
round and uniform objects. Extension to more complicated shapes as well as greater robustness
to interference with other objects is the future work.

Fitting in one frame is not robust to failures when there is other motion in the neighbourhood
of the moving object. Other motions create additional points in the blur kernel which should
be explained by fitting. When motion caused by the object of interest is dominant, RANSAC
used in fitting can successfully deal with outliers, but when it is not dominant, fitting can fail.
However, some failures of fitting in a frame can be fixed later by the non-causal TbD (TbD-NC).

3
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5. Experiments

| —
Figure 5.11. Failures due to a false positive of the FMO detector. From left to right: input image
region where FMOd incorrectly indicated a hit, background estimated by moving median, estimated
blur H, and trajectory fit that passed the consistency check with H.

TbD-NC is limited by our assumption that the object motion under all forces can be ap-
proximated by a piecewise polynomial function. For instance, if somebody ties up a ball on a
rope and rotates it or makes arbitrary motion with it, splitting into segments can fail. Another
example is object motion under the influence of fans.

False negatives occur, for example when objects fly over saturated background, collide with
other moving objects, or get occluded (missed bounce in “air hockey” Figure 5.9 partially
hidden by the frame bottom edge).

Figure 5.10 contains examples of failed blur estimation (and subsequently failed trajectory
estimation) due to discrepancy in the estimated and actual background image 5. The deblurring
step is quite sensitive to having the correct background as input and when another object gets
close enough to appear in the domain D (typically one of the players with their hand or racket,
or some moving object in the far background, as in the case on the second row in Figure 5.10),
the background estimation by moving median fails and as a result also the deblurring and
trajectory estimation are likely to fail.

Figure 5.11 shows different kind of failures, false positives. When the object is lost (or
initially for the first detection), the FMO detector from [RK§Jr 17] is used to detect a candidate
for tracking. Sometimes FMOd gives a false positive in an area with some background motion
but without the object of interest and this false positive passes through the TbD pipeline, and
the corresponding estimated blur is classified as a motion trajectory. As a result, TbD starts
tracking an entirely different object. Figure 5.11 shows examples of several of such cases.

The TbD method assumes that the exposure fraction is given, which is usually static for the
whole sequence. However, there are cameras with dynamic exposure fraction. It is possible to
include dynamic exposure fraction estimation in the TbD framework, which will include only
several previous frames to calculate the exposure fraction in the current frame. However, all
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5.8. Settings

sequences in the FMO dataset and in the TbD dataset have constant exposure fraction.

There is also some ambiguity in the Trajectory-loU measure. For instance, two cases of
“similar mediocre accuracy over the whole time” and “very accurate half the time, and then
lost with zero accuracy” might have exactly the same TIoU score. To disambiguate these two
cases we could report not only the mean TIoU but also its standard deviation . Low standard
deviation implies similar accuracy over all time and the second situation will be indicated by
high . However, in the experiments we avoided this due to the negligible influence on the
comparison. Even with the explained ambiguity of TIoU, this is still a better score measure
than the standard loU measure, which will give even more uncertainty.

5.8. Settings

We used the following L1 weight on H in deblatting: oy = 2, and for sequences badminton
white, badminton yellow, pingpong and throw soft it was set to oy = 0.2 due to low contrast.
The norm on F was set to ap = 2710 for all sequences. The threshold for Consistency Check
7 was set to 0.5 everywhere. We fixed template-matching term A to 0.1. For speed-up, some
sequences were downscaled.

The running time per frame of TbD depends on the ROI size (D) in the deblurring step.
The ROI dimensions are calculated in the motion prediction step and depend on the size of the
tracked object (M) and predicted trajectory length (|C;|). For the presented TbD dataset, the
average ROI size was 100 x 150 pixels and we achieved 0.5 fps in Matlab on the 6th generation
CPU Intel Core i7.
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CHAPTER O

CONCLUSIONS

Small objects moving along complex trajectories with varying speed is a common phenomenon
in real-life videos, especially sports. Tracking such objects is considerably different from stan-
dard object tracking targeted by state-of-the-art algorithms. We proposed a novel approach of
Tracking by Deblatting, deblurring and matting, based on a notion that motion blur in frames is
directly related to object trajectories and by estimating the blur, objects are precisely localised
in time. The method can track objects travelling at a wide range of speeds and without a priori
knowing their appearance. The estimated trajectories have temporal resolution much higher
than a traditional one sample per frame.

Tracking by Deblatting is intended for sequences in which the object of interest undergoes
non-negligible motion within a single frame which needs to be specified by intra-frame tra-
jectory rather than a single position. The blur is estimated by a complex method combining
blind deblurring, image matting and shape estimation, followed by fitting a piecewise linear
or quadratic curve that models physically plausible trajectories. As a result, we can precisely
localise the object with higher temporal resolution than by conventional trackers.

The non-causal Tracking by Deblatting (TbD-NC) estimates more accurate and complete tra-
jectories than the causal TbD. TbD-NC is based on globally minimising an optimality condition
which is done by dynamic programming. High-order polynomials are then fitted to trajectory
segments without bounces. The final output is a continuous trajectory function which assigns
location for every real-valued time stamp from zero to the number of frames.

The proposed TbD method was evaluated on a newly created dataset of videos with ground
truth obtained by a high-speed camera using a novel Trajectory-loU metric that generalises the
traditional Intersection over Union and measures the accuracy of the intra-frame trajectory. The
TbD method outperforms baseline techniques by a wide margin both in recall and trajectory
accuracy. The non-causal TbD-NC method performs even better and complete failures on the
TbD dataset appear 10 times less often than for the causal TbD method. From the estimated
trajectories, we are able to calculate precise object properties such as velocity or shape. The
speed estimation is compared to the data obtained from a high-speed camera and radar guns.
Applications such as fast moving objects removal and temporal super-resolution are shown.

Due to the complexity of blind deblurring, the method is currently limited to objects that
do not significantly change their perceived shape and appearance within a single frame, the
method works best for approximately round and uniform objects.
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