
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Master’s Thesis

Scalability of Car Sharing System

Bc. Filip Ravas
Open Informatics, Software Engineering

May 2019
Supervisor: doc. Ing. David Šišlák, Ph.D.

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

434955Osobní číslo:FilipJméno:RavasPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Scalability of Car Sharing System

Název diplomové práce anglicky:

Scalability of Car Sharing System

Pokyny pro vypracování:
This diploma thesis addresses the scalability aspect of Car Sharing System with respect to the number of users and their
car shares.
1) In the existing system identify scalability bottleneck.
2) Propose proper application performance metrics to evaluate scalability of the system.
3) Implement appropriate simulation where the system can be loaded by varying number of users and resulting car shares.
4) Design and implement changes in the system which leads into better scalability of the system.
5) Perform empirical evaluation of the existing and proposed changes in the system using developed simulation.
6) Discuss results and propose further improvements of the system.

Seznam doporučené literatury:
[1] Gormley C., Tong Z.: Elasticsearch: The Definitive Guide. O’Reilly, 2015.
[2] Chodorow K.: MongoDB: The Definitive Guide. O’Reilly, 2013.
[3] DeCapua T., Evans S.: Effective Performance Engineering. O’Reilly, 2016.
[4] Jain R.: The Art of Computer Systems Performance Analysis. Wiley, 1991.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. David Šišlák, Ph.D., centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 24.05.2019Datum zadání diplomové práce: 18.02.2019

Platnost zadání diplomové práce: 19.02.2021

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. David Šišlák, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I would like to express my special
thanks and gratitude to doc. Ing.
David äiölák, PhD. for providing pro-
fessional guidance, experience and
valuable knowledge that I acquired
during consultations.

I hereby declare that the thesis here
submitted is original except for the
source materials explicitly acknowl-
edged with respect to the Ethical
Guidelines for University Final Theses.
I also acknowledge that I am aware of
legal regulations related to the thesis
publication, particularly the Act N.o
121/2000 Coll. of the Czech Repub-
lic, the Copyright Act, and especially
that the Czech Technical University in
Prague is eligible to conclude a fixed-
term licensing contract applied to the
thesis as a school work in accordance
with § 60, Article 1 of the Copyright
Act and with respect to the duration of
the Contract.

The handling of the thesis is gov-
erned by the Contract of cooperation
between the Czech Technical Univer-
sity in Prague, äKODA AUTO a.s.
and Smart City Lab s.r.o. managing
the research Project „Carsharing for
university students“. The Contract is
published in the national registry of
contracts and has ID 5546159.

I am obliged to the non-disclosure
agreement (NDA) governing the third-
party access to the information I have
obtained or created within the Project.

With accordance to the statements
above, the work cannot be publicly
accessible until the NDA agreement is
valid, explicitly until May 31st 2023.

In Prague, 23. 5. 2019

. .

iii

Abstrakt / Abstract

Predmetom diplomovej práce bolo
vytvori� a implementova� platformu pre
v˝konnostné vyhodnotenie existujúceho
car sharing systému, za ú�elom identi-
fikácie úzkeho miesta ökálovate�nosti a
následne navrhnú� zmeny pre zaistenie
lepöej ökálovate�nosti a stability systému
v budúcnosti. Prvé ötádium zah��alo
definovanie metrík pre vyhodnotenie
v˝konnosti, nájdenie vhodného nástroja
pre zber dát a automatizáciu celého
procesu. Dôkladné testovanie odhalilo,
ûe ukladanie vöetk˝ch telemetrick˝ch
dát do jednej tabu�ky v rela�nej data-
báze je neefektívne. Navrhnuté rieöenie
spo�ívalo v ukladaní len posledn˝ch dát
a presmerovaní príjmu telemetrie do
vhodnejöieho NoSQL úloûiska dát. Vyö-
öie zmienené zmeny v systéme mali za
následok v˝znamn˝ nárast v˝konnosti
a stability pod ve�k˝m za�aûením a pri-
pravili ho pre �alöiu expanziu projektu.
Okrem toho testovacia platforma po-
skytuje uûito�n˝ základ pre vylepöenia
systému v budúcnosti.

Kľúčové slová: diplomová závere�ná
práca, ökálovate�nos�, performance
testing, car sharing, SQL, NoSQL,
MongoDB, Elasticsearch

The subject of this diploma thesis was
to create and implement performance
testing platform for existing car sharing
system, in order to identify scalability
bottleneck, followed by design changes
that would ensure better scalability and
stability of the system in the future.
The first stage involved defining met-
rics for performance evaluation, finding
a fitting tool for data collection and
automatization of the whole process.
Thorough testing revealed that saving
all of the telemetry data into one table
of a relation database is too ine�cient.
The proposed solution was to save only
the latest data and redirect telemetry
ingestion into more suitable NoSQL
data store instead. The aforementioned
changes in the system resulted in major
increase in performance and stability
under heavy load and prepared it for
further expansion of the project. Addi-
tionally, the testing platform provides a
useful baseline for other improvements
of the system in future.

Keywords: Master’s thesis, scalabil-
ity, car sharing, performance testing,
SQL, NoSQL, MongoDB, Elasticsearch

iv

Contents /

1 Introduction .1
1.1 Shared economics and car

sharing .1
1.2 Uniqway project1

1.2.1 First stage2
1.2.2 The execution of plans2
1.2.3 The expansion2

2 Existing system description.3
2.1 Used technologies for back-

end system .3
2.2 Deployment infrastructure.4

3 Application performance metrics . .6
3.1 User Satisfaction / Apdex

Scores. .6
3.2 Average and median re-

sponse time. .6
3.3 Error rates .7
3.4 CPU and memory usage7
3.5 Metrics collection and evalu-

ation .7
4 Implementation of appropri-

ate simulation .8
4.1 Research of available tech-

nologies .8
4.2 Locust implementation of

system clients .8
4.3 Parameters of performance

testing .9
4.3.1 Carsharing user9
4.3.2 Car park administrator . . 10
4.3.3 Car module 10

4.4 Virtual machine resources
utilization . 10

4.5 PostgreSQL metrics. 10
4.6 Metrics visualizations 11
4.7 Environment for running

tests . 12
4.8 Performance testing. 13

4.8.1 Apdex . 13
4.8.2 Requests statistics 14

5 Identifing scalability bottle-
neck in existing system 15

5.1 Scalability of software sys-
tems . 15
5.1.1 Horizontal scaling 15
5.1.2 Vertical scaling 15

5.2 Results evaluation from the
first load test. 15
5.2.1 Performance evalua-

tion for admin end-
points . 16

5.3 Identification of bottleneck 17
6 Design and implementation of

system changes that lead to
better scalability 19

6.1 Table for storing only the
latest car data. 19

6.2 System functionality testing . . . 19
6.2.1 Functionality test sce-

nario . 20
6.3 Test implementation 20
6.4 Implementation of table for

latest car data. 21
6.5 Usages of public methods

in CarDataService and Car-
RequestService 23
6.5.1 Usages of CarRequest-

Service public methods . . 23
6.5.2 Usages of CarDataSer-

vice public methods. 23
6.6 Experimental performance

tests after the changes 24
6.7 Caching IDs of model entities. . 24

6.7.1 Implementation of
cache in Play Frame-
work . 24

6.7.2 Code changes for cache
integration 24

6.8 Measurements after imple-
mentation . 25

7 Method for persisting teleme-
try data . 26

7.1 NoSQL databases 26
7.1.1 ACID and BASE con-

cepts . 26
7.1.2 CAP theorem 27
7.1.3 Use case of storing

telemetry from cars 27
7.1.4 MongoDB 28
7.1.5 Elasticsearch 28

7.2 Integration of selected data
stores to the existing system . . 28

v

7.3 MongoDB integration. 29
7.4 Elasticsearch integration. 31

8 Empirical evaluation of the ex-
isting and proposed changes 33

8.1 Infrastructure for perfor-
mance tests . 33

8.2 Result data evaluation 35
8.2.1 MongoDB 35
8.2.2 Elasticsearch 36
8.2.3 Comparison of re-

sponse times 37
8.3 Conclusion . 38

9 Discuss results and propose
further improvements of the
system . 39

9.1 Further improvements 39
9.1.1 Caching. 39
9.1.2 Infrastructure provider . . 40
9.1.3 Separation of backend

application 40
References . 41

vi

Chapter 1
Introduction

1.1 Shared economics and car sharing
Consumption of goods is the driving force of the economy and our society as we know it.
Consumption was always associated with ownership, however, the increased popularity
of services such as Netflix, Spotify, Uber, Rekola or Lime in recent years shows a change
in the way we approach things. All of these services o�er an alternative to ownership
- so-called access-based consumption [1]. Providing access to goods without owning
them for a fee based on the amount of the goods or the length of the contract. This
opens up a lot of new options for the consumers as ownership can be impractical.

Ownership of a car is a great example. First of all, the prices of new vehicles are too
high for young people who just started working or are still at university. The value of
a brand new car drops significantly immediately after its purchase. The other option is
buying a used car, but that carries a lot of risks, such as uncertain condition of the car,
short or nonexistent warranty or even unethical and illegal practices by car dealers e.g.
lowering the mileage. The car also has to be serviced - tires changes, refueling, cleaning,
annual technical inspections/checkups not only cost money but more importantly take
up time. As the car gets older it also tends to break down more frequently and the
repair costs go up. Uber/Taxi services provide an alternative, but because the cost
also involves paying a driver it doesn’t make sense economically in some situations like
going shopping, going on a trip, etc. because it gets too expensive. They also carry the
risk of bad drivers or potential scammers. This is why car sharing services have become
more and more popular in recent years as they provide the best of both worlds.

Vehicles of multiple car sharing companies can be observed in the streets of Prague.
Consumers can either access cars owned by a company (CAR4WAY, AJO) or they can
choose a peer-to-peer sharing model (HoppyGo) in which the vehicles are provided by
other users of the service.

The reported number of students in Prague for the year 2018 was 90 7581. Students
typically can’t a�ord to buy a car and cover the expenses that come with it. They are
dependent on public transport which isn’t practical for moving to or from dormitories,
shopping for furniture or other large objects. Before starting the project, we sent out a
questionnaire to the students. They showed great interest in the service and also often
mentioned that if there was an option to use a shared car, they would use it to go on
weekend trips outside of the city.

1.2 Uniqway project
The Uniqway project was created as a result of joint e�orts of three Prague universities
(CTU, VSE, CULS) to bring car sharing to students. What is really unique about the
project is that the creators of the project are exclusively students under the supervision
1 https://dsia.msmt.cz//vystupy/vu_vs_f1.html

1

https://dsia.msmt.cz//vystupy/vu_vs_f1.html

1. Introduction .
of mentors from the universities. They are responsible for all of the technical solutions,
marketing, economy, social media interactions and all the other duties involved in the
upkeep of such a large project.

Responsibility of team from CTU is to create a technical solution for this service. The
platform consists of a backend server and multiple client appliactions: a smartphone app
for end users (native Android and iOS), a web application for car park administrators
and a hardware module located inside of the car. The tech team includes around 15
people from the Faculty of Electrical Engineering, Faculty of Information Technology
and Faculty of Mechanical Engineering.

1.2.1 First stage
When the project started the software team consisted of only three fairly inexperienced
students with limited resources and only one car to take care of. As such the technolgy
used matched the small scale of the project and served more as a proof of concept rather
than actual full scale infrastracture.

1.2.2 The execution of plans
The first real plans involved six Skoda Fabia vehicles provided by äKODA AUTO
DigiLab to establish the service and start raising awareness among the students of
the involved universities. During this part of the project the backend infrastructure
created in the early stages was still su�cient and showed no significant problems with
it’s functionality.

1.2.3 The expansion
The car park currently consists of 17 cars. There are circa 900 pre-registered users,
around 400 of them are activated, meaning they can actually use the service. On
average the service reaches approximately one hundred car shares every week, resulting
mileage of around 3000 kilometers. These rising numbers proved to be problematic for
the old infrastructure and it started developing bottlenecks. A solution was needed, as
well as developement of new ways to stresstest the system.

2

Chapter 2
Existing system description

The existing software system of the service is based on HTTP server that is providing
API for client applications. There are three main client types that are interacting with
the system:

. Carsharing user: Or our customer - student. For successful usage of the service, user
needs to be able to choose from available vehicles, reserve the one that is the most
suitable for him (car type, its location, etc.), physically find it and be able to lock
or unlock it at will. Finally, the user has to end the reservation and pay for the
service. Nowadays we can assume that the majority of students own a smartphone,
so we decided to implement the client application in form of smartphone app. We
started with development for Android systems (Android smartphone are generally
more accessible in terms of price and they make up most of the smartphone market)
and now we also have a full-featured app for mobile devices with an iOS operating
system.. Car park administrators: Group of users with special privileges, that are working in
the project, who need to have admin access to the system. They require access to
the car locations, reservations, users and other general information for the purpose
of maintenance and customer support in case of unexpected events. API endpoints
for these users are di�erent and to access them, logged user needs to have assigned
administrator role.. Car module: Hardware unit embedded in a car that has multiple purposes. It has
several parts: RFID card reader that is serving for two-factor authentification, GPS
module and connection to on-board diagnostics for data gathering. The module has
a connection to the Internet and acts like HTTP client that sends telemetry to the
backend. The module is also critical for (un)locking of the car.

2.1 Used technologies for backend system
While choosing technologies to use for backend, we had to keep in mind that the team
developing the project consist exclusively of students. This means we should mainly
consider technologies that are part of the university’s curriculum. Because of that, we
choose Java as the main programming language for backed implementation. During
studies, the students are introduced to Java Enterprise Edition, but because of the
complexity of the whole platform we decided not to use it. Instead of Java EE we
decided to go with Play - an open source framework which follows MVC architectural
pattern. Some reasons behind this decision are:

. Good documentation quality: Documentation of the framework/platform is a fun-
damental property because it is the main source of the information, therefore critical
for the usability of the selected technology

3

2. Existing system description .
. Active community: Community is a vital part of open source projects, it’s really

important to have a large and active community that is often contributing to the
framework - bug fixes, features requests and overall development.. Modern stack trace and error handling: Also a feature that makes development
smoother - compilation error is printed in a browser (while the application is running,
thanks to in-time compilation) together with code snippet. Previous experience with framework: Previous experience of multiple project devel-
opers with Play Framework was also a factor in the decision process

For persisting of a state of the system, we could choose from the number of avail-
able technologies. We decided to use a traditional relational database, that we’ve had
experience with from university - PostgreSQL. It is widely used and suitable for well-
structured data.

2.2 Deployment infrastructure
Every software system has to have an underlying infrastructure where it’s deployed.
Because we don’t have the capacity and resources to maintain the infrastructure from
bottom up, we outsourced taking care of the hardware. Uniqway has a contract with
the Technical University of Ostrava that is providing virtual machines for the project.
The operational environment consists of three virtual machines:

. api.uniqway.cz:

. 2 CPU, 2 GB Memory. virtual machine with Nginx that is used as a proxy that forwards HTTPS re-
quests to proper backend application and is used by both production and staging
environments

. vsb-environment-core-1.uniqway.cz:

. 2 CPU, 16 GB Memory. virtual machine running backend application

. vsb-environment-db.uniqway.cz:

. 4 CPU, 20 GB Memory. virtual machine running PostgreSQL database server

Since Uniqway is a students’ project, we simply don’t have enough resources and
finances to pay for expensive enterprise software and licenses. That is why we decided
to use mainly open source software. When we were deciding which tools to use for
a specific purpose (monitoring, build management, etc.) we took into consideration
factors like community size and it’s activity. How frequent are contributions? Are
bugs being fixed in a reasonable time? Are feature requests taken into consideration?
And of course, an important factor is also previous experience with given tool - either
from university or work. When it comes to system infrastructure, our goal is to have a
platform as simple and as unified as possible. The operating system of all of the virtual
machines is CentOS, currently in version 7. For the purpose of unifying deployment
of the backend application, build management server, and other necessary applications
we decided to use open source container platform Docker1.
1 https://www.docker.com/

4

https://www.docker.com/

. 2.2 Deployment infrastructure

For minimizing operations work and manual system changes we apply infrastruc-
ture as a code concept. For system management we use Puppet1, every Docker
deployment is defined using Docker Compose2. For the build management we use
TeamCity3. It’s also necessary to monitor the infrastructure. For this purpose
we use ecosystem of Elastic Stack4. Our infrastructure for monitoring consists
of Elasticsearch5 and Kibana6 deployed on separate virtual machine. We use
Metricbeat7 for collection of system resources utilization data and their exporting to
Elasticsearch.

1 https://puppet.com/
2 https://docs.docker.com/compose
3 https://www.jetbrains.com/teamcity/
4 https://www.elastic.co/guide/en/infrastructure/guide/current/infrastructure-monitoring-

overview.html
5 https://www.elastic.co/products/elasticsearch
6 https://www.elastic.co/products/kibana
7 https://www.elastic.co/products/beats/metricbeat

5

https://puppet.com/
https://docs.docker.com/compose
https://www.jetbrains.com/teamcity/
https://www.elastic.co/guide/en/infrastructure/guide/current/infrastructure-monitoring-overview.html
https://www.elastic.co/guide/en/infrastructure/guide/current/infrastructure-monitoring-overview.html
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://www.elastic.co/products/beats/metricbeat

Chapter 3
Application performance metrics

As our service grows and gains more and more users, there is also a bigger demand
for system features. With more features, system complexity also increases. One of the
challenges that come with the implementation of new features and increased load is to
maintain system performance. It is desirable to avoid problems connected with slow
website loading, failing requests and other indicators of poor performance. Such system
behavior could result in users moving to another platform that is not su�ering from
mentioned problems. In order to avoid that, metrics data are needed, so that overall
performance could be evaluated. Metrics that indicate system behavior may di�er and
have to be set before any data collection starts.

Selection of such metrics is usually based on system requirements. In our case, the
user needs to be able to comfortably interact with the system and be able to execute
basic actions connected to the usage of the service - clients lean heavily on response
time so that the application doesn’t load too long, possibly confusing the user. Besides
that, it’s also important to process all of the requests from the modules inside of the
cars in order to have the most up to date information about their location and another
telemetry.

3.1 User Satisfaction / Apdex Scores
Apdex1 scoring system works by specifying a target response time length for a specific
HTTP request or a transaction. These transactions are then bucketed into categories:
satisfied (fast), tolerated (sluggish), too slow, and failed requests. A simple math
formula is then applied to provide a score from 0 to 1, where 0 means that all requests
were frustrated and 1 means all requests were satisfied.

Figure 3.1. Apdex formula

3.2 Average and median response time
Response time is the amount of time an application takes to return a response for a
user request. Requests are sent to the server, the time between first and the last byte
sent is measured for every request. From measured response times average and median
response time can be obtained. We usually work with the average response time,
however, average metrics are a�ected by extremes and that is why median response
time is collected as well.
1 http://apdex.org/overview.html

6

http://apdex.org/overview.html

. 3.3 Error rates

3.3 Error rates
Applications errors are important health metrics of the system, they usually indicate
greater problems and it’s critical to keep their occurrence as low as possible. We can
di�erentiate types of errors:

. HTTP Errors - Client applications sent a request to the server and server returns
status code that starts with the digit 5. Such return code means that the server
failed to complete the request and error occurred on the server side.. Logged Exceptions - We can also count a number of exceptions that appeared in
application logs. They indicate unexpected system event or state and they are also
often accompanied with HTTP error.

3.4 CPU and memory usage
If the CPU usage on the server is extremely high, it will lead to application perfor-
mance problems. Monitoring the CPU usage of the server and applications is a basic
and critical metric. The same principle applies to memory usage. Tracking of a system
utilization metrics can be integrated with mechanisms like auto-scaling when the sys-
tem automatically spins up a new node that will join the existing pool and will start
processing the current system load.

3.5 Metrics collection and evaluation
All of the aforementioned metrics are relevant for the proper functionality of our system
and we, therefore, need a performance testing tool, that can not only collect all of these
data but also simulate more complicated load than a simple GET request.

In order to access the collected information and use it for its intended purpose,
it needs to be easily accessible. The best solution would be to send them to already
deployed Elasticsearch, which handles the system load metrics from the virtual machines
as well so that we could access them comfortably through Kibana. This would allow
easy filtering and creation of visual reports.

7

Chapter 4
Implementation of appropriate simulation

As mentioned in the previous chapter, the choice of a tool for performance testing de-
pends on two main factors. Firstly, for purposes of scalability bottleneck identification,
the tool has to be able to simulate the behaviour of all our client types and secondly
the tool has to have an ability to collect metrics mentioned in the previous chapter.

4.1 Research of available technologies
There is a lot of performance testing tools that can be used. We only considered ones
that provide an option to write simulation scenarios as a code, which is a must-have
feature. There are also tools where one can only define the behaviour of client using UI
which is highly impractical and unusable for our use case. This is a list of tools worth
mentioning:. gatling 1 : open source tool developed in Scala programming language, it is also

used for writing simulation scripts.. tsung 2 : open source tool developed in Erlang programming language, it is also
used for writing simulation scripts. Besides HTTP, the tool can also be used for
performance test of protocols and technologies like: WebDAV, SOAP, PostgreSQL,
MySQL, AMQP, MQTT, LDAP and Jabber/XMPP servers.. jmeter 3 : open source tool developed in Java programming language, which is also
used for writing simulation scripts. Like tsung mentioned above, it can be used for
various protocols and technologies like :SOAP / REST Webservices, FTP, Database
via JDBC, LDAP, Message-oriented Middleware (MOM) via JMS, Mail - SMTP(S),
POP3(S) and IMAP(S) and so on.. locust 4 : open source tool developed in Python, programming language.
After a comparison of selected tools, it was clear that locust was the most suitable

and satisfied our requirements best. It has an active community and it’s written in
Python - a language we are familiar with, it’s easy to learn its syntax and also it’s
simple to implement a simulation of client behaviour scripts. These are key parameters
for writing the tests - new members of the team can edit or write new tests easily.

The locust provides a collection of metrics like average and median response time,
request response time distribution out of the box. Reports don’t contain apdex, but the
tool provides a fairly simple way of extending it so we can implement this functionality.

4.2 Locust implementation of system clients
We implemented locust client classes for all three types of clients that exist in the
system. We won’t be developing complicated simulations that would consist of a process
1 https://github.com/gatling/gatling
2 https://github.com/processone/tsung
3 https://github.com/apache/jmeter
4 https://github.com/locustio/locust

8

https://github.com/gatling/gatling
https://github.com/processone/tsung
https://github.com/apache/jmeter
https://github.com/locustio/locust

. 4.3 Parameters of performance testing

of unlocking a car, but we will focus on use cases that are most common and that
generate a majority of the system load.

. car sharing user: Most often, this client is getting data from public endpoints that
do not require authentication:

. parking zones where the user is allowed to return a car to the system

. locations and information about cars that are available for sharing

. details for a selected car - fuel level, type, engine and the car model

. car park administrators: Requests that always require authentication and are avail-
able only for administrators - users with special privileges:

. detailed information about all the cars (including the ones that are reserved) such
as last time car sent request to the system, what is the version of module’s hardware
and software, etc.

. information about users, their reservations etc.

. information for dashboard - how many cars are in the system, number of cars that
are not responding, the current number of reservations for the day

. hardware module in car: Car module is periodically sending requests with telemetry
to the backend. The module also sends a request in a case that event of attaching
RFID card to a reader placed on windshield occurs, but it rarely happens and no
data are persisted, that is why we omit this type of a request.

Every locust client can implement on_start method that is run for every client at
the beginning of the performance test. Since car sharing users have to be authenticated
only for requests that are rarely used compared to the ones on public endpoints, we will
ignore them and on_start method can remain empty. For car park administrator we
will call login to the system in on_start method. This method is the most complicated
for the car module. We need to dynamically create a car with every attached entity.
It consists of multiple car administrator API calls which can take multiple seconds.
Additionally, we are going to send one request from the car, so that we are really sure
everything was created correctly. That’s why we added an additional build step for
creating cars and writing car credentials to file and specifying it as a build artifact. In
on_start method, cars will just read car credentials.

4.3 Parameters of performance testing
For each run of performance test, we need to specify run parameters, such as a number
of clients, time of test run and request frequency. We will operate with run time for
every test - first test runs, and runs in process of development would be shorter than
runs used for comparison of some specific implementations - for that, we would run
each test for one hour to get relevant data. Other parameters were chosen for every
client type and test run independently.

4.3.1 Carsharing user

Currently, we have 400 activated users (means that they are able to actually use the
service - create reservation) and 800 registered users. While searching for a car, the
client is doing approximately one request for API every 3 to 9 seconds.

9

4. Implementation of appropriate simulation .
4.3.2 Car park administrator

At the moment there are 50 people with administrator privileges. We will use this
number for every run of the test. We do not expect this number to rise with an increasing
number of cars and registered users. That’s why we will manipulate more with a number
of cars for load tests. If you have admin application opened, it’s refreshing data every
10 seconds.

4.3.3 Car module
The car park currently includes 17 cars. But in summer we expect the number to rise to
30. As mentioned before, the module is periodically sending telemetry to the backend.
That period depends on whether there is an active reservation in the system. In that
case, the car is sending telemetry every 5 seconds, if not the interval is 30 minutes. We
will simulate the state in which all cars are reserved. Telemetry data that are sent to
processing are randomly generated.

Cars in the system Number of admins Number of clients
1 17 50 400
2 30 50 600
3 60 50 1200
4 100 50 1800
5 150 50 2800
6 200 50 4000
7 250 50 5000
8 300 50 6000
9 350 50 7000
10 400 50 8000
11 450 50 9000
12 500 50 10000

Table 4.1. Proposed numbers of clients for specific test runs.

4.4 Virtual machine resources utilization
Besides response time, for better understanding of system performance under a certain
load, we also used basic metrics from virtual machines such as CPU usage, memory
usage, disk IOPS, etc. For metrics collection we used Metricbeat1 from Elasticsearch
monitoring ecosystem mentioned before.

4.5 PostgreSQL metrics
For a better understanding of database performance, we also use a module for
PostgreSQL metrics. Most useful metric set for us is statements. It’s using
pg_stat_statements2 extension, that provides a way for tracking statistics of SQL
statements. The extension is gathering data from the time it was enabled. Because
of that, we are not able to get statistics for a particular load test. That is why we
have to invoke pg_stat_statements_reset() function before every performance test
1 https://www.elastic.co/products/beats/metricbeat
2 https://www.postgresql.org/docs/current/pgstatstatements.html

10

https://www.elastic.co/products/beats/metricbeat
https://www.postgresql.org/docs/current/pgstatstatements.html

. 4.6 Metrics visualizations

execution. In that way, we get statistics for statements that are only executed during
the individual test.

We are interested mainly in these attributes of metrics data: query - text of a rep-
resentative statement, total_time - total time spent in the statement, in milliseconds

4.6 Metrics visualizations

Since we are using Elasticsearch for gathering all metrics, we can use Kibana - open
source data visualization plugin. We created three basic visualizations:

. CPU: Line chart that shows the percentage of CPU time spent in states other than
Idle and IOWait.. Memory: Line chart that shows the percentage of actually used memory.. SQL queries: Data table with query text and total time spent in the statement.

To obtain information about resources utilization of one needs to look in build logs
at the exact start and end time of performance test run of corresponding TeamCity
build. The acquired time range can be specified in Kibana.

Figure 4.1. CPU usage visualization

Figure 4.2. Memory usage visualization

11

4. Implementation of appropriate simulation .

Figure 4.3. Slow queries visualization

4.7 Environment for running tests

Tests are run from teamcity build agent against staging environment that is the same
as production. We also have a build that can sync data from production database to
staging.

Figure 4.4. Diagram environment for tests.

12

. 4.8 Performance testing

4.8 Performance testing

4.8.1 Apdex
Apdex is a feature that is missing in locust. Luckily for us, locust o�ers a defined way
to extend its functionality1 using event hooks.

We need to implement apdex class that will be able to compute the apdex index. We
started with a test:

def test_apdex_correct_computation(self):
apdex = Apdex(apdex_file_path=’apdex’,

satisfied=1000,
tolerated=3000)

satisfied = [333, 111, 334, 33, 44, 11, 344, 481, 114, 560]
satisfied_count = len(satisfied)
tolerated = [2000, 2010, 2799, 2787, 1220]
tolerated_count = len(tolerated)
frustrated = [4444, 8984, 14849]
frustrated_count = len(frustrated) + 2

for response_time in satisfied + tolerated + frustrated:
apdex.process_request(response_time)

apdex.process_failed()
apdex.process_failed()

expected_apdex = (satisfied_count + (tolerated_count / 2)) / (
frustrated_count + satisfied_count + tolerated_count)

self.assertEqual(expected_apdex, apdex.apdex)

. process_request(response_time):

. method with a response time of request as a parameter. will compare time to satisfied and tolerated parameters (set in constructor) and
will increase the corresponding count

. process_failed(): if the response code is di�erent than 200, it means that request
failed and we do consider it as frustrated and increment the corresponding count.. write_apdex_to_file(): we need to propagate computed apdex so we can read the
information, we will write the result to a text file as JSON, that we can parse easily

Then we have to define event handlers and bind them to corresponding events.

apdex = Apdex(satisfied=os.environ[’APDEX_SATISFIED’],
tolerated=os.environ[’APDEX_TOLERATED’],
apdex_file_path=os.environ[’APDEX_FILENAME’])

def apdex_success_handler(request_type, name, response_time):
apdex.process_request(response_time)

def apdex_fail_handler(request_type, name, response_time, exception):

1 https://docs.locust.io/en/stable/extending-locust.html

13

https://docs.locust.io/en/stable/extending-locust.html

4. Implementation of appropriate simulation .
apdex.process_failed()

def finish_handler():
apdex.print()
apdex.write_apdex_to_file()

events.request_success += apdex_success_handler
events.request_failure += apdex_fail_handler
events.quitting += finish_handler

4.8.2 Requests statistics
All values in report form locust performance test run are in milliseconds. Measurement
report for requests statistics from the load test is a table where fields for every URL
are:

. number of requests. number of failed requests. average response time. minimal response time. maximal response time. median response time. number of requets sent per second

Name # requests fails average (ms) median (ms)
GET admin/cars 13 0 1244 929
GET admin/dashboard 8 0 2361 2071
GET admin/reservations 13 0 1268 757
GET admin/rides 14 0 992 581

Table 4.2. Example output from load testing of administrator behaviour.

Locust can export reports in CSV format, so output files can be easily parsed. We
used this feature and at the end of every test run, CSV files are parsed and sent to
mentioned Elasticsearch. Thanks to that, we have easy and practical access to the
reports together with all other metrics.

14

Chapter 5
Identifing scalability bottleneck in existing
system

Developed simulation from the previous chapter can be now used to generate a load of
various numbers of specific users and to collect key performance metrics data specified
in chapter 3.

5.1 Scalability of software systems
Scalability is the ability of a system to properly operate and adapt to rising load, by
means of adding resources. The rising load is usually caused by an increased number
of clients and it’s connected to the growth of popularity of the system.

Applied to our system, it can be interpreted as an ability to process and persist
telemetry from car modules with an increasing number of cars and clients while main-
taining a tolerated response time of requests from client applications.

Scalability bottleneck is usually caused by part of the system utilizing the resources
ine�ectively - for example, slow database query or suboptimal algorithm.

There are two types of scaling - horizontal and vertical.

5.1.1 Horizontal scaling
Increasing resources by adding more nodes to the cluster. This type of scaling needs
some abstraction for handling various challenges such as load distribution to available
nodes, cluster configuration, health-checking of nodes - there is a need for knowing that
node became corrupted so no more additional work is assigned to such node)

5.1.2 Vertical scaling
Scaling by adding more resources to existing nodes (virtual machines or hardware
servers). Typically increasing number of CPUs, adding memory or disk space. Ver-
tical scaling is usually a more expensive option and it is almost impossible to apply
when it comes to adaptation to the load generated by millions of users.

5.2 Results evaluation from the first load test.
To evaluate apdex for client API endpoints, we need to specify time response thresholds
for every client type. We are most strict while setting satisfied and tolerated parameters
for the car sharing user. In the book E�ective Performance Engineering [2], the author
is mentioning performance culture in Google. They keep in mind that 40% of users
abandon a site when response takes more than 2-3 seconds. That’s why we set tolerated
time to 2 seconds.

For admins, we will setup apdex parameters to be more tolerant because the user
experience is less important for employees. Although we realize that slow response is
a�ecting productivity, the main concern is maintaining admin app usable.

15

5. Identifing scalability bottleneck in existing system .
Client app satisfied (ms) tolerated (ms)
User 1500 3000
Admin 3000 6000
Module 4500 5000

Table 5.1. Specified thresholds for client applications.

As mentioned before, the module is sending periodically every 5 seconds, when re-
served. We are assuming case when all cars are fully utilized - biggest load to the
system.

After running first test with current number of cars (17), users (400) and admins
(50) for 15 minutes we got following results:

Client app apdex # requests fails average (ms) median (ms)
User 0.999 50842 0 39 21
Admin 0.008 1440 0 25644 25000
Module 1 2884 0 59 52

Table 5.2. Report for first performance test run.

We can observe that module and user client types have reasonable Apdex and with
a current number of clients and modules system performance is acceptable. For admin
it’s very di�erent, apdex is 0.008 and that is not acceptable.

5.2.1 Performance evaluation for admin endpoints

Figure 5.1. CPU usage

From visualization we can see that CPU utilization is at 100% most of the time.

16

. 5.3 Identification of bottleneck

Figure 5.2. Slow queries visualization

From PostgreSQL statements metrics of queries with biggest execution time during
a load test, and generated CPU load for database virtual machines, we identified that
most of the time is spent on a query that is getting last request times for every car.
Next slow query is getting value from car_data table for specific car_data_type.

5.3 Identification of bottleneck
The hardware module is under active development as any other component of the system
and that means that backend has to process and store telemetry with properties that
vary. That’s why every property of telemetry record is stored in a table as one row and
mapped to the corresponding record.

Figure 5.3. Diagram of SQL tables used for telemetry storage.

Currently, we have 21 data types that we need to store for every request for the car.

17

5. Identifing scalability bottleneck in existing system .
Basically, every time we need to get latest data for cars (for example location, a

timestamp for last time car sent telemetry to serve, etc.), we need to search through
car_requests and car_data tables.

Right now we are not querying any historical data from telemetry, but in future, we
will need to. Method for obtaining the latest car data, therefore, needs to be changed,
otherwise, we won’t be able to achieve reasonable system performance.

18

Chapter 6
Design and implementation of system
changes that lead to better scalability

In the previous chapter, we identified that we are storing all the data in car_data
and car_requests table and access to them is very slow and causes intolerably long
response times. For all our current use cases, we need to have access to the latest data
from car modules.

6.1 Table for storing only the latest car data
We can significantly reduce the time of querying latest car data by storing them into
separate table where instead of inserting, we will just update existing entry for a par-
ticular car data type.

Figure 6.1. Proposal of SQL schema for new table.

6.2 System functionality testing
Before we start replacing getting data from car_data table, we will need to have con-
fidence that changes are not going to a�ect the functionality of the system. Unfortu-
nately, the system is poorly covered with tests, that’s why we need to start with writing
the tests first.

We decided that first, we will create a high-level test for basic system functionality
so that we can be sure that the system is operational and works as expected. This
test will have high sensitivity and low specificity - we will know that something is not
working but it’ll be harder to identify which part of the system is causing the test to
fail.

In this test, we create a car with all required entities and create a reservation with a
testing user. Then we simulate the opening of the car, the start of ride and movement
of the car. During this, we are sending request from admin account and assert if car
and ride are always in the state (have values of their attributes) that we expect.

19

6. Design and implementation of system changes that lead to better scalability
6.2.1 Functionality test scenario

At first, we have to describe a scenario for the test:

1. Initialization: Before the actual testing starts, we need to do steps such as:
. Login of admin client: We need to be able to interact with the system using admin

endpoints. Since admin has access to all of the data that are sent from car modules,
we will use this API to get the latest data and compare it to data that we sent to
backend during the test.

. Initialization of car module client: Using admin client we create car module with all
required entities using admin API and we will use data like module id, car id, and
module hash so we have everything we need to successful module authentication
and therefore interaction with the system.

. Login of user client: We will use it for creating reservation and interaction with
the car - locking and unlocking.

2. Car sends initial data to backend
3. User reserves newly created car
4. Car unlock: This step includes user sending request that will store a new entry in

car_instruction table. In the next step, we will send a request from the car where
we will simulate user physically putting his RFID card to a card reader. The system
will check if there is pending car instruction, if yes, it will compare RFID card to
card of user that has reserved the car. If card numbers match, the system will pass
instruction for unlocking to the car in request response. We will also send telemetry
from car where locked value is set to true, so lock state of car will update in the
system.

5. Drive with the car: We created a small array of di�erent car locations that we will
send to backend from car module. We will also increment mileage with every request.

6. Car lock: Simpler than unlocking because we don’t need to approve instruction for
locking the car with using RFID card.

7. Reservation finish: If the car is locked and in a parking zone, user can send a request
for finishing the reservation.

This scenario is testing only positive flow, but in the future we can use the same
approach to test also behavior of the system in unexpected and more complex situations.

6.3 Test implementation
Since functional test will operate on HTTP level and system simulation is already
implemented in Python, it makes sense to use the same programming language. In
that way, classes that already have some functionality (login, or car creation for admin
user client) can be reused in functional tests.

Example method, where the car is being unlocked and checked if everything pro-
ceeded as expected.

def __unlock_car(self):
self.client.car_unlock()
car_event_response = \

self.module.send_car_event()
instruction_id = \

car_event_response.get(’instructionId’)
instruction_code = \

20

. 6.4 Implementation of table for latest car data

car_event_response.get(’instructionCode’)
self.assertNotEqual(-1, instruction_id)
self.assertEqual(2, instruction_code)

self.module.update_instruction(
instruction_id,
instruction_status=3)

unlock_status = \
self.client.get_unlock_status().get(’status’)

self.assertEqual(’ok’, unlock_status)

6.4 Implementation of table for latest car data
The goal is to introduce a database table that will serve for purposes of holding only the
most recent data sent from car modules. In that way, data will be accessible without
the need for searching through a table filled with historical data.

Implementation is divided into steps. Firstly evolutions1 script needs to be created
for the new table.

--- !Ups
create table latest_car_data
(

id bigserial not null,
car_data_type_id bigint not null,
value varchar(255) not null,
car_id bigint,
received_at timestamptz not null,

constraint pk_latest_car_data primary key (id),
constraint fk_latest_car_data_car_data_type_id

foreign key (car_data_type_id)
references car_data_types (id)
on delete restrict on update restrict,

constraint fk_latest_car_data_car_id
foreign key (car_id)
references cars (id)
on delete restrict on update restrict

);

--- !Downs
drop table if exists latest_car_data cascade;

Now model class LatestCarData can be created. It represents the entry of
latest_car_data SQL table.

@Entity
@Table(name = "latest_car_data")
public class LatestCarData extends Model {

@Id
@GeneratedValue
private Long id;

1 https://www.playframework.com/documentation/2.7.x/Evolutions

21

https://www.playframework.com/documentation/2.7.x/Evolutions

6. Design and implementation of system changes that lead to better scalability

@ManyToOne
@JoinColumn(name = "car_data_type_id", nullable = false)
private CarDataType type;

@Column(nullable = false)
private String value;

@Temporal(TemporalType.TIMESTAMP)
@DateTimeFormat(pattern = "yyyyMMdd hh:mm:ss")
@Column(nullable = false, name = "received_at")
private Date receivedAt;

@ManyToOne
@JoinColumn(nullable = false, name = "car_id")
private Car car;

}

We can continue with the implementation of DAO (Data Access Object) for inserting
data to SQL table and also for accessing them. Since we are extending the functionality
of BaseDao class, we can use methods like find, persist and update out of the box.

public class LatestCarDataDao
extends BaseDaoÈLatestCarData, LongÍ {
public LatestCarDataDao() { super(LatestCarData.class); }

public LatestCarData getLatestDataOfType(Long carId, String type) {
return finder.query().where()

.eq("car.id", carId).eq("type.name", type)

.findOne();
}

}

New service that works with the car data model needs to be implemented. It’ll
consist of two public methods. A public method for updating the latest data with a
responsibility to update an existing entry in the database, or inserting new table row
- in case that entry doesn’t exist yet. In that case, private method for storing of the
entry is called.

public LatestCarData update(String dataType,
String dataValue,
Date receivedAt,
Car car) {

LatestCarData latestCarData =
findLast(car.getId(), dataType);

if (latestCarData == null) {
return store(dataType, dataValue,

receivedAt, car);
}

latestCarData.setValue(dataValue);
latestCarData.setReceivedAt(receivedAt);
latestCarDataDao.update(latestCarData);
return latestCarData;

}

22

. 6.5 Usages of public methods in CarDataService and CarRequestService

private LatestCarData store(String dataType,
String dataValue,
Date receivedAt,
Car car) {

CarDataType carDataType =
carDataTypeService.findByName(dataType);

LatestCarData data = new LatestCarData();
data.setType(carDataType);
data.setValue(dataValue);
data.setReceivedAt(receivedAt);
data.setCar(car);
latestCarDataDao.persist(data);
return data;

}

Mechanism for obtaining specific latest car data for specific car and car data type
also has to be provided.

public LatestCarData find(Long carId,
@NotNull String type) {

return latestCarDataDao.getLatestDataOfType(carId, type);
}

After all required framework layers for proper integration of newly created table are
created, we need to identify all usages of original service classes that access the table
with historical car data, so they can be replaced with the usage of service created in
previous steps.

6.5 Usages of public methods in CarDataService and
CarRequestService

Both CarDataService and CarRequestService provide multiple public methods that
are querying the latest data from car_data and car_requests tables.

6.5.1 Usages of CarRequestService public methods

. findLast(Long carId): Method used in CarService for endpoint /admin/cars used
for geting data like last request timestamp, gps validity and gps fix type.. findLastWithValidGps(Long carId): Method that is used just in CarDataService. findLastWithValidObd(Long carId): Method that is used just in CarDataService. getLast(): Method that is used just in DashboardService

6.5.2 Usages of CarDataService public methods

. findLastWithFwVersion(Long carId): Method that is used just in CarService. findLastWithHwVersion(Long carId): Method that is used just in CarService. findLast(Long carId, String type): Method that is used just in CarService. findLastWithValidGps(Long carId, String type): Method that is used in
CarLocationService and ParkingService. findLastWithValidObd(Long carId, String type): Method that is used in
CarService, CarTankService and RideService

23

6. Design and implementation of system changes that lead to better scalability
Every one of these methods can be replaced with find(Long carId, String type)

method from LatestCarDataService.

6.6 Experimental performance tests after the changes
We did small tests for 15 minutes. For a current number of cars - 17 and for 100 cars,
apdex numbers were okay (for the client it went to 0.892 for 1800 clients). But when
we run the test with 300 cars, apdex for module fell to 0.017 with 43 failed requests
and median response time 12000 and avg response 13618.

From visualization of slow SQL statements, we can see that

select id, value, received_at, car_data_type_id, car_id
from latest_car_data where car_id = \$1
and car_data_type_id = \$2;

takes most of the time - 218.512 seconds. That query is invoked when we want to find
and then update LatestCarData model.

Since it’s the most expensive operation now and we have to do it multiple times for
just one request from the car it has become our current bottleneck. One way of limiting
accesses to the database that is occurring just for obtaining the ID of entry for a specific
car and car data type is to cache IDs in memory.

6.7 Caching IDs of model entities.
Caching is a widely used way of optimization in modern applications. Instead of always
accessing used data store, data that are frequently queried are loaded into memory. In
our case we will use caching for quick access to the IDs of latest car data entries.

6.7.1 Implementation of cache in Play Framework
Play Framework o�ers cache implementation1 based on open source caching library
Caffeine2.

In our case, we need to have quick access to the ID of LatestCarData model for a spe-
cific car and car data type. That’s why we will use string Ècar IDÍ:Ècar data type IDÍ
as a key for the cache.

We can configure basic cache properties such as initial capacity. This parameter is
set accordingly to a number of used car data and number of the car so every ID will be
able to fit into cache.

6.7.2 Code changes for cache integration
After adding cache to project dependencies, we are able to inject it into code using
standard dependency injection. In class LatestCarDataService we add:

private SyncCacheApi cache;

@Inject
public void setCache(SyncCacheApi cache) {

this.cache = cache;
}

1 https://www.playframework.com/documentation/2.7.x/JavaCache
2 https://github.com/ben-manes/caffeine/

24

https://www.playframework.com/documentation/2.7.x/JavaCache
https://github.com/ben-manes/caffeine/

. 6.8 Measurements after implementation

Now we are able to use its method for updating the latest data. We will need to do
a few adjustments. At first, we will check if ID we need to use is aleady in the cache,
if yes we are now able to create an object that we will use for database update. If we
don’t find the desired ID in the cache, we are going to need to look into the database
like in the first version of the method. If we get an object from the database, we will
add a new entry to cache and proceed. If null object returns from the database, we’ll
know that this parameter is not persisted yet and we need to store it.

Now we have an object with ID and we can set new values for properties receivedAt
and value, then update it in the database.

update(String dataType, String dataValue,
Date receivedAt, Car car) {

OptionalÈLongÍ id =
cache.getOptional(car.getId() + ":" + typeId);

LatestCarData latestCarData;

if (!id.isPresent()) {
latestCarData = find(car.getId(), typeId);
if (latestCarData == null) {

return store(typeId, dataValue, receivedAt, car);
}
cache.set(car.getId() + ":" + typeId, latestCarData.getId());

} else {
latestCarData = new LatestCarData();
latestCarData.setId(id.get());

}

latestCarData.setValue(dataValue);
latestCarData.setReceivedAt(receivedAt);
latestCarDataDao.update(latestCarData);
return latestCarData;

}

6.8 Measurements after implementation
We are going to run a set of tests to see if we achieved the desired speedup of saving
the latest data to a separate table. Results from last test for 500 cars, 10000 clients
and 50 admins:

Client app apdex # requests fails average (ms) median (ms)
User 0.891 116777 1242 1963 720
Admin 0.966 5758 0 1807 1700
Module 1 73081 0 581 480

Table 6.1. Performance test run report after cache integration.

Those are fairly satisfactory results and achieved performance is su�cient, but the
problem with storing historical data still persists and it has to be solved.

25

Chapter 7
Method for persisting telemetry data

Currently, we have 6 months worth of data stored in car_data table, and we are almost
at 25 million entries. A number of rows stored greatly depends on the utilization of
cars - as we mentioned before, reserved cars are sending telemetry every 5 seconds, cars
available for reservations only once every 30 minutes. In a state where all 500 cars are
fully utilized and we are storing only data that the modules are able to gather now (21
entries in car_data_types table), we would reach almost 5 billion inserted rows every
month. If we consider the performance of querying data from the table in the current
state of the project, it’s obvious that we have to come up with other solution for storing
telemetry from hardware modules.

7.1 NoSQL databases
Today’s software systems are expected to handle a huge number of users, process an
extensive amount of data and they need to be ready to react and adapt to load that can
increase in a short time. Traditional SQL databases are suitable for standard CRUD
web applications that require high consistency and have well-structured data. As we
mentioned before, they are typically hard to scale horizontally - scaling can get very
expensive. To address issues with traditional databases, multiple new systems were
developed. As Rick Cattell mentioned in his paper [3], NoSQL databases have prop-
erties such as the ability to horizontal scaling, distribution of data to nodes, dynamic
attributes set of records, low latency for R/W operations and weaker consistency of
data.

7.1.1 ACID and BASE concepts
Transactions of traditional relational databases usually have ACID [4] set of properties:. Atomicity: If a transaction is atomic, it means that operations in the transaction

will either be executed all or none of them. Operations are considered as one unit
and changes will be visible only after all updates are done.. Consistency: All defined constraints must be preserved all the time. If some opera-
tions inside transaction violate defined rules, all operations have to be rolled back.. Isolation: In case that there are concurrent transactions accessing the same data,
consistency must be preserved and resulting changes must be exactly the same as if
the transactions were executed serially.. Durability: In case of power failure or another unexpected failure, all operations in
a transaction that was successfully executed before has to be persisted to disk.

Contrary to ACID transaction properties, NoSQL databases have BASE[5] philoso-
phy:. Basically Available: Response to request, but not guaranteed to get a correct result

- there can be some changes happening and response can be ẅaiting for changes to
complete¨

26

. 7.1 NoSQL databases

. Soft state: System state can change over time - eventual consistency can cause that
data is moved across the system event without the impact of external factors.. Eventual consistency: Data/System will eventually become consistent after all
changes are done, data propagated to all nodes, etc.

7.1.2 CAP theorem
Eric Brewer formulated CAP theorem[6] in which he declared that distributed data
storage can only have 2 of these properties:

. Consistency: Operations for retrieving data always returns the most recent data.. Availability: Every request returns response - either successful one or an error re-
sponse.. Partition tolerance: System remains operational despite a number of failed/delayed
messages between nodes.

Mapped to Brewer’s theorem and BASE principles, NoSQL databases typically trade
consistency for availability or partition tolerance.

7.1.3 Use case of storing telemetry from cars
Hardware module in car has mutliple source of data that can be gathered. It has GPS
unit and is connected to on-board diagnostics of a car. It’s able to collect data from
these sources, create JSON and send HTTP request to backend with the JSON message
as request data.

Example of JSON sent to backend:

{
"backupBattery": true,
"batteryVoltage": 20,
"beBackBtn": true,
"fwVersion": "Mar 5 2019 20:22:00",
"gps": {

"data": {
"latitude": 50.069558,
"longitude": 14.475211,
"speed": 5

},
"gpsFixType": "D",
"valid": true

},
"hwVersion": "ver.2",
"locked": true,
"obd": {

"data": {
"consumption": 0,
"fuelLevel": 40,
"odometer": 150,
"rpm": 0,
"speed": 0

},
"valid": true

},
"tamper": false

27

7. Method for persisting telemetry data .
As we metioned before, hardware unit in car is under active development. Hardware
team announced that module will be able to read data from gyroscope, and more
informations from on-board diagnostics. For backend it means that we need to count
that JSON sent to backend can be changed, fields can and will be added. These
additional fields will not be critical for the basic functionality of the system, but we will
definitely need to have acceess to them and be able to query them. This requirements
fit to category of NoSQL databases with document store data model. Stored documents
are indexed and they are semi-structured. Semi-structured data do not have to obey
pre-defined structure and their attributes can di�er. They are usually stored in XML
or JSON format. This type of database fits our use case. We will select two document
data stores for comparision.

7.1.4 MongoDB
MongoDB[7] is open source data store developed by MongoDB Inc. The used pro-
gramming language is C++ and stores JSON-like documents. It supports horizontal
scaling, automatic sharding and document distribution over nodes. For work with data
it provides query mechanism with dynamic queries and atomic operations on fields.

7.1.5 Elasticsearch
Elasticsearch[8] is not only NoSQL datastore but also a search engine. It’s open source
project developed by Elastic NV written in Java programming language. Like Mongo
DB it supports horizontal scaling, sharding and document distrbution, replication over
cluster nodes and uses schema-free JSON documents. Elasticsearch also has additional
features like support for full-text searches.

7.2 Integration of selected data stores to the existing
system

Both data stores provide Java clients, we will have to test correct behaviour of the
clients. Most realistic tests always include actual interaction with system, instead of
mocking behaviour of the system.

We choose to use Java library testcontainers1 which provides easy way to run and
destroy mechanism for testing common database systems or other dockerized applica-
tions. We will describe integration testing for MongoDB and Elasticsearch separately.
Tests will consists of data insertion to data store and then using privided mechanism
for querying inserted data. In that way we will also have some knowledge that will
possibly be useful for next steps of integrating selected data store to the system.

We will implement methods for passing telemetry data to both Elasticsearch and
MongoDB. Then we will need to run performance test for both data stores, that’s why
we decided to control (enable/disable) telemetry passing using configuration file. We
created class TelemetryService with method passTemeletry where application configu-
ration is parsed and it’s decided which data store is used for passing of a telemetry. We
used dependency injection to inject service to ModuleService that is handling requests
from car module.

1 https://www.testcontainers.org/

28

https://www.testcontainers.org/

. 7.3 MongoDB integration

In constructor of TelemetryService we inject Configuration object that is play.api
package. Using this object we can read application configuration file application.conf
where we added new entries for controlling data stores:

telemetry {
mongo {

enabled = no
host = localhost
port = 27017
databaseName = "teledb"
collectionName = "teledb"

}
elastic {

enabled = no
host = localhost
port = 9200

}
sql {

enabled = yes
}

}

@Inject
public TelemetryService(Configuration configuration) {

isElasticEnabled = (Boolean) configuration
.getBoolean("telemetry.elastic.enabled").get();

isMongoEnabled = (Boolean) configuration
.getBoolean("telemetry.mongo.enabled").get();

isSqlEnabled = (Boolean) configuration
.getBoolean("telemetry.sql.enabled").get();

}

In method passTemeletry, we are not going to save JSON from a car module exactly
like it was received because it would be impossible to map specific requests from a
specific ride. We will do data enrichment and we will also add a field for car name
and if there is existing registration for cars, we also add user ID, and reservation ID to
fields. After that, we will make use of our configuration entries for Elasticsearch and
MongoDB and if we enable the data store, the data will call method for data pass of
the enabled service.

7.3 MongoDB integration
As mentioned before, we will use testcontainers for integration testing. We created class
MongoIntegrationTest, where we implemented a basic test that will use MongoService
for passing telemetry entry getting it from MongoDB data store, then compare a few
basic data like timestamp and location.

We have to initialize and run container so we can connect our MongoService with it.
We will do that before the start of every integration test. On background it’ll start a
docker container with an image name that is passed to the constructor - in our case
o�cial MongoDB1 Docker image. We can get an IP address and port where MongoDB
is running and pass it to the constructor of our MongoService.
1 https://hub.docker.com/_/mongo

29

https://hub.docker.com/_/mongo

7. Method for persisting telemetry data .
We also have to implement TearDown() method that is called after every test run,

where we need to stop and remove the container that we started before the integration
test.

private GenericContainer container;

@Before
public void setUp() {

container = new GenericContainerÈÍ("mongo");
String address = container.getContainerIpAddress();
Integer port = container.getFirstMappedPort();
mongoService = new MongoService(address, port);

}

@After
public void TearDown() {

container.stop();
}

We will continue with the writing of a test, where we are assuming that MongoService
already has implemented methods passTelemetryEntry(String json) and getFirstDoc-
umentForModule(Long moduleId). We are using hardcoded JSON string of telemetry
to pass to MongoDB, in second step we are getting few attributes from first record (in
our case also the only record - we are always running new clean instance of data store
before every test) and compare them to expected values.

@Test
public void testSimplePutAndGet() {

boolean passingSuccessful =
elasticService.passTelemetryEntry(telemetryJson);

assertTrue(passingSuccessful);

MapÈString, ObjectÍ firstDocument =
elasticService.getFirstTelemetryEntryForModule(1L);

assertEquals("2019-05-19T00:26:34.735",
firstDocument.get("timestamp"));

assertEquals("50.069558,14.475211",
firstDocument.get("location"));

}

This test will fail because we didn’t actually implement MongoService class yet. We
will start with constructor where we initialize o�cial MongoDB Java client and get
collection we are going to use.

public MongoService(String address, Integer port) {
ServerAddress serverAddress =

new ServerAddress(address, port);

ListÈServerAddressÍ addressList =
Collections.singletonList(serverAddress);

MongoClientSettings settings = MongoClientSettings
.builder()
.applyToClusterSettings(

builder -> builder.hosts(addressList))

30

. 7.4 Elasticsearch integration

.build();

collection = MongoClients
.create(settings)
.getDatabase("default")
.getCollection("default");

}

We have MongoCollection object initialized, so we can continue implementing a
method that will insert document represented with JSON string to the collection.

public boolean passTelemetryEntry(String json) {
try {

collection.insertOne(Document.parse(json));
} catch (MongoException e) {

return false;
}
return true;

}

If we wanted to use console for such insert, the command would look very similiar:
db.default.insertOne({name:example json})

In the next step, we implement a method for querying first record with module ID
matching the id passed to the method.

public Document getFirstTelemetryEntryForModule(Long moduleId) {
return collection.find(eq("moduleId", moduleId)).first();

}

Now we have passing integration test for MongoDB integration.

7.4 Elasticsearch integration
For Elasticsearch we will proceed the same way as we did with MongoDB. Integration
test will look almost the same as it did for MongoDB, with few small changes. We
don’t have to use GenericContainer class, but we can use class ElasticsearchContainer
created specifically for Elasticsearch. Another change is that we will operate with
MapÈString, ObjectÍ object returned from a query and not with Document object as we
did when working with MongoDB.

@Test
public void testPassAndGetTelemetry() {

boolean passingSuccessful =
elasticService.passTelemetryEntry(telemetryJson);

assertTrue(passingSuccessful);

MapÈString, ObjectÍ firstDocument =
elasticService.getFirstDocumentForModule(1L);

assertEquals("2019-05-19T00:26:34.735",
firstDocument.get("timestamp"));

assertEquals("50.069558,14.475211",
firstDocument.get("location"));

}

31

7. Method for persisting telemetry data .
We now have failing test, and we can proceed with implementation of class

ElasticSearchService. In constructor, we initialize Java class RestHighLevelClient
which is o�cially provided Java client for Elasticsearch.

client = new RestHighLevelClient(
RestClient.builder(new HttpHost(address, port)));

Next, we can proceed and implement method for inserting JSON to data store:

public boolean passTelemetryEntry(String json) {
IndexRequest indexRequest =

new IndexRequest(indexName)
.source(json, XContentType.JSON)
.type("_doc");

try {
IndexResponse indexResponse =

client.index(indexRequest, RequestOptions.DEFAULT);
return indexResponse.status().getStatus() == 201;

} catch (IOException e) {
return false;

}
}

Because Elasticsearch also supports full-text searching, mechanism for searching and
querying data is more complex compared to MongoDB.

public MapÈString, ObjectÍ getFirstDocumentForModule(Long moduleId) {
SearchRequest searchRequest = new SearchRequest(indexName);
BoolQueryBuilder query = new BoolQueryBuilder()

.must(new TermQueryBuilder("moduleId", moduleId));

SearchSourceBuilder searchSourceBuilder =
new SearchSourceBuilder();

searchSourceBuilder.query(query);
searchSourceBuilder.size(1);
searchRequest.source(searchSourceBuilder);

SearchResponse searchResponse;
SearchHits searchHits;
SearchHit[] hitArray = new SearchHit[0];

try {
searchResponse =

client.search(searchRequest, RequestOptions.DEFAULT);
searchHits = searchResponse.getHits();
hitArray = searchHits.getHits();

} catch (IOException e) {
e.printStackTrace();

}
return hitArray[0].getSourceAsMap();

}

We can now run integration test also for Elasticsearch and it’ll pass.

32

Chapter 8
Empirical evaluation of the existing and
proposed changes

So far, there isn’t an existing use case for querying historical data from data store
even though there are plans to introduce features that will display the data on the
presentation layer of the system. For example, showing driving route for previous
user’s car shares, or allowing the administrators to show the route for a specific ride.

However, it’s crucial that the data is saved to the data store and there is a defined
way how to query and integrate them to the system while implementing mentioned
features. It’s also important to have the option to do analytics and report on the data,
for marketing purposes and statistics associated with the service, such as the most
frequently used parking zones, the most common types of trips or the most frequent
routes. The data are also vital for dealing with driving tickets and other potential legal
issues associated with the service as a piece of evidence.

At the moment we are working with a scope that is reduced to the ability of the
system to process and persist telemetry with an increasing number of cars. There is
a question of how many cars really makes sense to simulate during performance tests.
There is no point in testing on the scale of thousands of vehicles. Firstly we don’t
have the infrastructure that could process such load and secondly, in next few years
we are aiming to expand to other universities, maybe in other cities like Brno, but so
far there are no ambitions to expand internationally. If our project reached the same
number of users and car utilization as CAR4WAY, a car sharing for the general public
that is already in Brno, we would reach a number of around 500 cars. That is why our
performance tests will assume with the gradual growth of car park by 50 vehicles.

Our goal is to empirically evaluate which one of our choosen NoSQL data stores will
perfrom better under such load. We will use simulation that we have developed.

8.1 Infrastructure for performance tests
As we did for the performance test before, we will run a performance test from the
TeamCity build server. During the run of previous tests, we developed a build chain,
that is making a backup from production PostgreSQL database and restores it on
the environment we are using for performance testing. After that continues build for
running performance test for the existing number of cars - 17, then there is build
configuration for creating an additional number of cars needed for the next test and so
on. Code snipped from TeamCity configuration:

for (config in Configs.all()) {
val createCars = assureCars(config.numberOfCars,

previousConfig.numberOfCars,
previousTest)

val moduleLoadTest = loadTestBuild("module",
config.numberOfCars,

33

8. Empirical evaluation of the existing and proposed changes .
config.numberOfCars,
minutes,
createCars)

buildTypes.add(createCars)
buildTypes.add(moduleLoadTest)

previousTest = moduleLoadTest
previousConfig = config

}

We need to deploy our selected data stores to some virtual machine. In the data
center where we are running the whole infrastructure for the project, we deployed an
additional virtual machine for performance tests. It has 2 CPUs, 16GB RAM and
50GB of storage. As on every other VM the operating system we are using is CentOS
in version 7. We will deploy both MongoDB and Elasticsearch using o�cial Docker
images with recommended configuration of containers and tool Docker compose.

Figure 8.1. Infrastructure for evaluation

Firstly we will deploy MongoDB, after that we will take advantage of configura-
tion file from where we can control all of the data stores (including storing data to
original car_data table SQL) and will enable passing telemetry to MongoDB with
corresponding hostname, port, and authentication credentials, then we can go ahead
and run performance tests. After all, tests are done, we will do the same thing for
Elasticsearch.

34

. 8.2 Result data evaluation

8.2 Result data evaluation
Every run of performance test was one hour long. We run tests with a number of cars
in this sequence: 17 (current number of cars in the system), 30 (expected number of
cars after summer 2019), 60, 100, 150, 200, 250, 300, 350, 400, 450 and 500.

8.2.1 MongoDB

Figure 8.2. CPU utilization - Mongo

From visualizations it can be observed that the CPU of the virtual machine where
was MongoDB deployed basically stayed on almost completely unused. On the other
hand CPU usage of the machine with backend application gradually grew.

Figure 8.3. Memory utilization - Mongo

Memory utilization on all virtual machines involved in performance test stayed under
40 percent without significant growth.

35

8. Empirical evaluation of the existing and proposed changes .
Number of cars apdex # requests fails average (ms) median (ms)
1 17 1 11,493 0 74 47
2 30 1 20,362 0 48 44
3 60 1 40,591 0 52 44
4 100 1 67,416 0 56 45
5 150 1 99,867 0 112 51
6 200 1 130,515 0 209 60
7 250 1 160,548 0 290 76
8 300 1 189,265 0 375 120
9 350 1 217,444 0 456 200
10 400 1 244,884 0 532 330
11 450 1 271,399 0 613 510
12 500 0.999 298,625 1 661 600

Table 8.1. Results for all performance test runs of MongoDB

Except for last performance test that generated largest system load, apdex stayed on
1 - which means that all requests response were satisfied and both average and median
time stayed under 0.7 second, which is a satisfactory result.

8.2.2 Elasticsearch

Figure 8.4. CPU utilization - Elasticsearch

Graphical representation of CPU utilization for Elasticsearch indicates a similar pat-
tern of growth for a virtual machine for backend application. Contrary to the test of
MongoDB, for VM were Elasticsearch is deployed increased CPU usage of can be ob-
served. This can be caused by the fact that Elasticsears is also a full-text search engine
and it’s using CPU power for indexing for all documents that were sent there.

36

. 8.2 Result data evaluation

Figure 8.5. Memory utilization - Elasticsearch

In terms of memory usage, the situation is very similar performance tests of MongoDB
- no significant growth occurred.

Number of cars apdex # requests fails average (ms) median (ms)
1 17 1 11,537 0 54 51
2 30 1 20,357 0 51 47
3 60 1 40,580 0 54 47
4 100 1 67,341 0 60 47
5 150 1 100,281 0 93 51
6 200 0.999 131,125 0 181 58
7 250 0.999 161,294 0 261 76
8 300 1 191,936 0 295 110
9 350 0.998 218,035 0 431 180
10 400 1 249,103 0 426 190
11 450 1 278,210 0 465 250
12 500 1 303,048 0 575 440

Table 8.2. Results for all performance test runs of Elasticsearch

Apdex is not always 1, but no HTTP request failure occurred. Based on that we can
say that some of the request response times exceeded trash hold of 5000 milliseconds.

8.2.3 Comparison of response times

Figure 8.6. Average response time

37

8. Empirical evaluation of the existing and proposed changes .

Figure 8.7. Median response time

The same pattern can be seen for both average and median response time. Elastic-
search performed slightly better when a number of cars was over 350.

8.3 Conclusion
Both selected data stores were able to process the telemetry during simulation without
any major problems and performance issues. They could both be successfully integrated
into the existing system. MongoDB data store was more e�cient in terms of resources
usage and overall system integration, especially querying mechanism seemed simpler
and more straightforward compared to Elasticsearch.

38

Chapter 9
Discuss results and propose further
improvements of the system

During the early stages of work on the thesis, the system was practically not operational
under the load of 300 cars. Database queries were so ine�cient that client application
for car park administrators was unusable even with s small number of simultaneous
users. We identified the biggest scalability bottleneck and implemented changes that
resulted in significant performance improvements.

The testing platform that we built also brings significant value to the project and its
potential expansion. We developed well defined and automated process for performance
testing that can be reused and new use cases can be added. The project developers can
also continue with its development and increase its functionality. The platform also
helped to build and maintain performance culture within the whole team. One of the
already mentioned notes from Google’s talk about this issue says: “There is no “I“ in
performance. A performance culture is a team sport.“.

One of the steps that would ensure su�cient performance and therefore better scal-
ability, is to set the thresholds and build performance testing into the release process
and pipeline. This would prevent the introduction of possible scalability bottlenecks,
that would be otherwise merged and eventually deployed to the production system.

Besides Java unit tests, the system was lacking more complex testing that would
cover the overall functionality of basic features. It was necessary to implement such
tests, in order to unlock the ability to safely make changes to the existing system. We
implemented REST API changes that will contribute to the overall reliability of the
system and will add a certain level of confidence to developers before deploying the new
release to production. We understand that the system is still inadequately tested and
although we contributed to the quality assurance of the system, it was done only in
scale necessary for the completion of this thesis.

In the age of big data with a huge emphasis on targeted commercials and tailored
experience for users, a database like ours could be useful for conducting research by
other students or projects. Information about the usage of vehicles could prove useful
in many fields and it could be used to further develop the service.

9.1 Further improvements
Performance tests we run were on the scale of hundreds of vehicles. In case that we
would need to scale up to thousands or even tens of thousands, the situation would be
dramatically di�erent and it would have an impact on several things. We will discuss
the impact since it’ll be a good way to describe further possible improvements that
would be resulting in even better overall scalability of the system.

39

9. Discuss results and propose further improvements of the system
9.1.1 Caching

As we found out during performance evaluations, accesses to the database are really
time-consuming. One of the reasons why is that JVM driver for a database is syn-
chronous, so we can’t take advantage of backend framework that is asynchronous. We
need to access the database for practically every HTTP request that is sent to the
system. That is why it would really ease up the load if we would cache more data
from the database. For example, we could cache current locations of the vehicles and
parking zones - these are data that are retrieved most often. And since cars are sending
the telemetry only once every 30 minutes, they are quite static and don’t change very
often.

In case we had to deal with load from hundreds of thousands and even millions of
users, we would definitely need to scale up count of nodes used for running backend
application - in that case, we would also need to change technology used for caching
- because used cache, based on Ca�eine is not distributed and every instance of the
backend application would need to load data to its own cache memory. For distributed
caching we could use for example open source in-memory data store redis1. There
is already existing plugin2 for the integration of redis with Play Framework. This
plugin also has an asynchronous variant that could use the benefits of the mentioned
architecture of the framework.

9.1.2 Infrastructure provider
Our whole infrastructure is running in a data center in Ostrava and even for a change
of CPUs number for some virtual machine there has to be a contract amendment and
even such a simple change can take several days or even weeks. This system would be
very ine�cient and would need to be changed in case we would have to dynamically
react to a significant user base growth.

We could follow the trends and migrate to a cloud solution such as Amazon Web
Services or Google Cloud platform. In the cloud, we could scale nodes in much more
dynamic fashion, even implement features like auto-scaling where we could dynamically
add or terminate nodes after detection of significant load increase or decrease. However,
with such features come challenges such as load balancing. A lot of problems like that
are already solved in platforms for container orchestration such as Kubernetes3. We
are already deploying backend application using Docker, that’s one of the reasons why
we should reach for such solution.

9.1.3 Separation of backend application
In the current situation, our backend application is handling requests for car sharing
users, car park administrators, and car modules. There are several disadvantages con-
nected to traditional monolith architecture. One of them is lack of ability to deploy
changes connected only to clients or car modules. At the moment we have to deploy all
parts of the system at once. One of the consequences of the separation of the system
logic that is handling requests from modules to separately deployable unit would be the
ability to not only deploy but also scale that part of the system separately. It would be
especially useful in situations where there is big portion of concurrent car shares and a
lot of cars are sending telemetry every 5 seconds instead of every 30 minutes.

1 https://redis.io/
2 https://github.com/KarelCemus/play-redis
3 https://kubernetes.io/

40

https://redis.io/
https://github.com/KarelCemus/play-redis
https://kubernetes.io/

References

[1] Fleura Bardhi, and Giana M Eckhardt. Access-based consumption: The case of car
sharing. Journal of consumer research. 2012, 39 (4), 881–898.

[2] Shane Evans Todd DeCapua. E�ective Performance Engineering. O’Reilly Media,
Inc., 2016. ISBN 9781491950869.

[3] Rick Cattell. Scalable SQL and NoSQL data stores. Acm Sigmod Record. 2011, 39
(4), 12–27.

[4] Theo Haerder, and Andreas Reuter. Principles of transaction-oriented database
recovery. ACM computing surveys (CSUR). 1983, 15 (4), 287–317.

[5] Werner Vogels. Eventually consistent. Communications of the ACM. 2009, 52 (1),
40–44.

[6] Eric Brewer. CAP Twelve years Later: how the. Computer. 2012, (2), 23–29.
[7] Kristina Chodorow. MongoDB: The Definitive Guide, 2nd Edition. O’Reilly Media,

Inc., 2013. ISBN 9781449344689.
[8] Clinton Gormley Zachary Tong. Elasticsearch: The Definitive Guide. O’Reilly Me-

dia, Inc., 2015. ISBN 9781449358549.

41

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Introduction
	Shared economics and car sharing
	Uniqway project
	First stage
	The execution of plans
	The expansion

	Existing system description
	Used technologies for backend system
	Deployment infrastructure

	Application performance metrics
	User Satisfaction / Apdex Scores
	Average and median response time
	Error rates
	CPU and memory usage
	Metrics collection and evaluation

	Implementation of appropriate simulation
	Research of available technologies
	Locust implementation of system clients
	Parameters of performance testing
	Carsharing user
	Car park administrator
	Car module

	Virtual machine resources utilization
	PostgreSQL metrics
	Metrics visualizations
	Environment for running tests
	Performance testing
	Apdex
	Requests statistics

	Identifing scalability bottleneck in existing system
	Scalability of software systems
	Horizontal scaling
	Vertical scaling

	Results evaluation from the first load test.
	Performance evaluation for admin endpoints

	Identification of bottleneck

	Design and implementation of system changes that lead to better scalability
	Table for storing only the latest car data
	System functionality testing
	Functionality test scenario

	Test implementation
	Implementation of table for latest car data
	Usages of public methods in CarDataService and CarRequestService
	Usages of CarRequestService public methods
	Usages of CarDataService public methods

	Experimental performance tests after the changes
	Caching IDs of model entities.
	Implementation of cache in Play Framework
	Code changes for cache integration

	Measurements after implementation

	Method for persisting telemetry data
	NoSQL databases
	ACID and BASE concepts
	CAP theorem
	Use case of storing telemetry from cars
	MongoDB
	Elasticsearch

	Integration of selected data stores to the existing system
	MongoDB integration
	Elasticsearch integration

	Empirical evaluation of the existing and proposed changes
	Infrastructure for performance tests
	Result data evaluation
	MongoDB
	Elasticsearch
	Comparison of response times

	Conclusion

	Discuss results and propose further improvements of the system
	Further improvements
	Caching
	Infrastructure provider
	Separation of backend application

	References

