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Prague, May 22, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





Abstract

Realistic cloud simulation is a hot topic in computer graphics research. In this thesis we
present a possible approach of modeling orographic clouds using SkewT/LogP diagrams
as proposed by Rui Pedro Duarte. We extend this simulation with well-known Lattice
Boltzmann method to simulate wind and its effects on clouds in mountainous environ-
ments. We parallelize both methods on the GPU using CUDA technology by NVIDIA.
Lastly, we propose a simple extension of volumetric rendering method by Simon Green
that uses phase functions to enhance graphical fidelity of our cloud images. We present
this simulator in a simple to use application that gives its users a wide variety of tools
to create desired results.

Keywords: cloud dynamics, particle systems, SkewT/LogP diagrams, Lattice Boltz-
mann method, CUDA

Abstrakt

Realistická simulace mrak̊u je žhavým tématem výzkumu v oboru poč́ıtačové grafiky.
V této práci představ́ıme možný zp̊usob modelováńı orografických mrak̊u za pomoci
SkewT/LogP diagramů, jež navrhl Rui Pedro Duarte ve své disertačńı práci. Simulaci
mrak̊u jsme rozš́ı̌rili o známou Lattice Boltzmannovu metodu pro simulaci větru a jeho
vlivu na mraky v hornatých prostřed́ıch. Obě metody paralelizujeme na GPU za použit́ı
CUDA technologie od společnosti NVIDIA. Na závěr představ́ıme jednoduché rozš́ı̌reńı
Simon Greenovy metody pro vykreslováńı volumetrických dat, které použ́ıvá fázovou
funkci pro realističtěǰśı zobrazeńı mrak̊u. Simulátor demonstrujeme v aplikaci, jej́ıž
použit́ı je jednoduché a nab́ıźı velké množstv́ı nástroj̊u pro tvorbu kýžených výsledk̊u.

Kĺıčová slova: dynamika mrak̊u, částicové systémy, SkewT/LogP diagramy, Lattice
Boltzmannova metoda, CUDA
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1 Introduction

Clouds play a large role in visualizing expressive outdoor scenes in multiple media such as
movies and video games. Shapes, movement and appearance of clouds have been studied
for decades in the field of computer graphics. Their research spawned countless methods
ranging from realistic fluid simulations to purely procedural approaches. Our main focus
in this thesis are orographic clouds which are formed in mountainous environments.
To achieve this, we utilize so-called SkewT/LogP (STLP) method for simulating cloud
dynamics as proposed by Duarte in his dissertation thesis [Dua16]. We present a parallel
implementation of the STLP method with two improvements. First, Duarte’s wind
simulation uses sounding data to naively advect particles, whereas our implementation
uses a flow field generated by Lattice Boltzmann method (LBM) which is a staple in the
field of computational fluid dynamics (CFD). Secondly, we parallelize both STLP and
LBM on GPU using NVIDIA CUDA technology to achieve real-time results on common
hardware for large amounts of particles.

To evaluate our generated cloud shapes, we have implemented a volumetric data
rendering technique presented by Green [Gre08]. Since this method was used primarily
to simulate smoke, we have extended it with anisotropic light scattering by using phase
functions to more closely resemble clouds. This is particularly apparent when the ob-
server is looking directly at the sun where the silhouette of the observed cloud is much
more pronounced due to light passing through its low density regions.

We incorporate all these methods into our framework that was implemented in C++
and OpenGL/CUDA. The framework provides a vast range of options and parameters to
customize the simulation. Furthermore, additional tools such as terrain generation and
custom shaped emitters are present to make the process of cloud creation and simulation
as easy to use as possible.

In the rest of this chapter, the general cloud classification and a short description
of orographic clouds will be presented. Relevant cloud dynamics theory that is used by
Duarte [Dua16] will be covered in Chapter 2. In Chapter 3, selected important methods
from the field of cloud simulation and rendering will be examined. In Chapter 4, Chap-
ter 5 and Chapter 6 we will look at each of the main three methods used in this thesis:
STLP, LBM and cloud rendering, individually. In Chapter 7 we propose an integration
of these methods into a single framework and in Chapter 8 the implementation details
are presented. In Chapter 9 we present results obtained with our method and perfor-
mance measurements. Lastly, in Chapter 10 we conclude our work and in Chapter 11
we discuss possible future improvements.
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Chapter 1. Introduction

Figure 1.1: Cloud classification diagram [Ahr11].

1.1 Cloud Classification

Clouds are a large group of tiny water droplets or ice crystals that are suspended in
the air. They are aesthetically pleasing elements of our atmosphere that come in many
shapes and forms. Generally, clouds are categorized into four major groups based on
their altitude, appearance and characteristics. These are low clouds, middle clouds, high
clouds, and clouds with vertical development [Ahr11]. This classification has its origins
in 1803 when it was proposed by an English naturalist Luke Howard and has been widely
accepted since. Howard’s system employed Latin words to describe clouds as they appear
to the observer. As an example, cumulus clouds, which are the main focus of Duarte’s
thesis, can be translated as “heap” clouds due to their puffy shape. In 1887, Ralph
Abercromby and Hugo Hildebrandsson expanded Howard’s system by separating the
clouds into the mentioned four major groups while keeping Howard’s system to classify
individual subgroups within them as shown in Figure 1.1.

1.2 Orographic Clouds

There are four major mechanisms that lead to cloud development: surface heating fol-
lowed by free convection, orographic lift, ascent due to convergence of surface air, and
uplift along weather fronts [Ahr11]. Out of these four we are mainly interested in the
first two. Surface heating and free convection will be examined in the cloud dynamics
oriented Chapter 2. Let us now look at the main topic of this thesis, orographic clouds.
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Figure 1.2: Diagram showing orographic lifting for moist air on the windward side
[Ahr11].

Orographic clouds can belong to either major cloud group depending on their cloud
base height [Py16]. They are produced by the second mentioned mechanism of cloud
development: orographic lift. Orographic lift occurs when an airflow encounters a moun-
tain or another type of an obstacle, and is forced to rise. If the flow is sufficiently humid,
clouds form on the windward side of mountains as depicted in Figure 1.2. Orographic
influence is not limited to the windward side of the mountain. On the leeward side,
particularly in areas with strong winds, the airstream that was disturbed by a barrier
starts to oscillate as it moves downstream, generating mountain waves [wmob]. These
conditions produce so-called wave clouds that are usually formed from lenticular clouds.
Example of wave clouds that were captured from a satellite along with diagram showing
the process of their creation is shown in Figure 1.3. Another cloud types that are formed
through orographic influence can be seen in Figure 1.4.

3
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(a) Diagram showing orographic influence on the lee-
ward side that produces wave clouds [Ahr11].

(b) Satellite image of wave clouds composed of
lenticular clouds flowing around volcanic Amster-
dam Island [Sch].

Figure 1.3: Orographic influence on the leeward side creates wave clouds with streamline
pattern that can be observed from high altitudes.

(a) Banner cloud [wmoc]. (b) Lenticular clouds [wmod].

Figure 1.4: Examples of common cloud types that are formed through orographic influ-
ence.
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2 Cloud Dynamics

Realistic visualization of clouds can be decomposed into multiple smaller parts. These
would fall under two major groups, dynamics and radiometry as described by Harris in
his dissertation thesis [Har03]. Cloud dynamics describe the motion of air and its effects
on cloud formation. Dynamics are also concerned with meteorological processes such
as phase changes, mainly condensation and evaporation of water. Cloud radiometry is
the study of how light interacts with clouds [Har03]. In this thesis, our initial goal was
mainly oriented towards realistic cloud dynamics. Because cloud radiometry is tackled
by using a procedural method, radiometry is only briefly mentioned in Chapter 6 where
anisotropic light scattering is described.

2.1 Parcel Theory

Let us say that an air parcel is an observed small mass of air that has slightly different
characteristics than the air that surrounds it, usually called environmental air. The air
parcel is influenced by the environment, but it does not affect the environment itself. The
parcel has a different temperature, composition and density than the surrounding air
and thanks to this moves through the environment as a result [And10]. Basic principle is
shown in Figure 2.1 where we can see a parcel of air expand and cool as it moves upwards
and vice-versa when descending. This is initiated when ground is warmed enough by
the sun for a parcel to start rising which is the first mechanism of cloud formation as
mentioned previously.

2.2 Equations of Cloud Motion

Let us look at theory behind the convection process (ascension and descension) of cumu-
lus clouds as shown in Figure 2.1. The upcoming section is paraphrased and shortened
from Duarte’s thesis [Dua16].

Majority of the Earth’s atmosphere up to an altitude of about 90km is composed of
ideal gases such as nitrogen (78%), oxygen (21%) and a variety of trace gases. All these
gases obey the ideal gas law [Har03]. The law states that each of its moles follows the
equation

PVm = RT (2.1)

where P is the pressure, Vm is the volume of one mole, R is the universal gas constant and
T is the absolute temperature. The corresponding law for unit mass of air by denoting
Mm as mass of one mole is then described as
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Chapter 2. Cloud Dynamics

Figure 2.1: Basic idea of parcel theory, surface heating and convection [Ish].

P = RaTρ (2.2)

where Ra = R/Mm [Jkg−1K−1] is the gas constant per unit mass of air. The gas constant
Ra takes value Rd = 287.05307 for dry air and Rm = 461.5 for moist air (sometimes also
denoted as specific gas constant for water vapor Rv) [And10, Dua16].

At the start, when air has no liquid water, it is called dry air. A dry air parcel is
described by three properties: absolute temperature T in K, pressure P in Pa = N/m2

and density ρ in kg/m3. As the air expands in response to the decrease in pressure, its
temperature also decreases, resulting in a process called adiabatic expansion. Generally,
adiabatic processes are such processes where no heat is transferred between the air parcel
and its surrounding environment.

Gravity is the most important external force acting on the atmosphere. The envi-
ronment pressure Pe and parcel pressure are said to be in hydrostatic balance when(

dPe
dz

)
z

≈ −ρe(z)g ≈ −ρp(z)g (2.3)

where ρe is the environment density, ρp is the parcel density, g is the acceleration due
to gravity, and z is the air parcel altitude. Left side of Equation 2.3 ((dPe/dz)z) is
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Chapter 2. Cloud Dynamics

the upward force (environmental pressure gradient) and −ρp(z)g is the downward force.
According to Newton’s law of motion, we have

ρp(z)
dv

dt
= −

(
dPe
dz

)
z

− ρp(z)g (2.4)

where dv/dt is the vertical acceleration of the air parcel. Once the air parcel has been
lifted to altitude z, it has the same pressure as the environment, that is, Pe(z) = Pp(z).
Using the Equation 2.2 (P = ρRaT ), we obtain

dv

dt
= g

Tp(z)− Te(z)
Te(z)

(2.5)

which describes the vertical acceleration of the parcel with dependence on its ambient
temperature Tp(z) and ambient temperature of the environment surrounding it Te(z).
To see how we got to this equation, please see Appendix A.

Relation between the temperature and pressure of a gas under adiabatic changes is
defined as

T

T0
=

(
P

P0

)k
(2.6)

where T0 and P0 are the initial temperature and pressure, and T and P are the temper-
ature and pressure after the adiabatic change. The exponent k is defined as

k =
Rd
cpd

=
cpd − cvd
cpd

≈ 0.286 (2.7)

where cpd and cvd are the specific heat capacity of dry air at constant pressure and
volume, respectively.

Potential temperature θ is a more convenient variable to account for adiabatic changes
of temperature and pressure since its value is constant under adiabatic changes of al-
titude. It is defined as a temperature that an air parcel would have if it were moved
adiabatically from pressure P and temperature T to pressure P0. It is given by

θ = T

(
P0

P

)Rd/cpd
(2.8)

By substituting absolute temperature with potential temperature in Equation 2.5 we
obtain

dv

dt
= g

θp(z)− θa(z)
θa(z)

(2.9)

This equation can be used to determine the vertical displacement of an air parcel by
computing the potential temperature of the parcel itself and its surrounding environ-
ment. This is crucial for the method since computation of these potential temperatures
is possible with utilization of a SkewT/LogP diagram that is described in Chapter 4.
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3 Related Works

Before delving into the selected methods used in this thesis, let us first look at other
works that pertain to cloud simulation. Clouds play an important role in a plethora
of different media, most noticeably in movie and video game industries. In movies and
television, clouds may be integral to the story or to the visual setting. A nice recent
example is the scene shown in Figure 3.1 from the popular TV series Game of Thrones.

Figure 3.1: Scene from the popular TV show Game of Thrones showing captivating vista
composed of heavy cloud layers.

Nowadays, a lot of focus has been shifted to procedural cloud visualization for large
open worlds in the video game industry with games such as Horizon Zero Dawn or
Red Dead Redemption 2 whose cloudscapes are shown in Figure 3.2. Clouds and the
atmosphere have become an important part of all modern game engines such as Decima
Engine, Frostbite, Unreal Engine and others. In many applications, the importance
of clouds is not only visual, but practical as well. These are usually flight or army
simulators that are used to train professionals in their respective industries.

Because clouds are such an important aspect of visualizing outdoor scenes, many
methods were proposed since the very beginning of computer graphics history. Their
classification differs from author to author, but the general outline is the same for all.
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(a) Horizon Zero Dawn [SV15]. (b) Red Dead Redemption 2.

Figure 3.2: Examples of clouds in recent video game releases.

There are two main categories into which we can divide all methods that are used to sim-
ulate clouds, physically-based methods and procedural methods as shown in Figure 3.3.
Furthermore, Dobashi divides methods based on their main purpose into cloud mod-
eling, animation and cloud rendering [DIYN17]. Similarly, Harris divides the methods
into cloud dynamics (modeling and animation) and radiometry (rendering) as mentioned
earlier [Har03]. Lines between the categories can become quite blurred as we’ll see in
the upcoming sections. This is due to the fact that multitude of proposed methods com-
bine ideas from all these subcategories. Additionally, cloud dynamics and rendering are
dependent in terms of data representation. For example, if a simulation uses a particle
system, then the rendering process either also makes use of said particle system or the
data have to be converted to different format which is usually a costly operation. With
this in mind, let us look at both physically-based methods and procedural methods and
list some of their important representatives.

3.1 Physically-Based Methods

Physically-based methods are predominantly used to model realistic physical behaviour
of fluids and fall into the field of computational fluid dynamics (CFD). Since these
methods mainly focus on realism of the simulation, they do not necessarily take visually
pleasing results into account. Furthermore, physically-based methods are in many cases
computationally expensive, especially for large volumes of fluids as is the case with cloud
formations spanning vast terrains.

Physically-based methods involve solving the Navier-Stokes equations. Navier-Stokes
equations are partial differential equations defined as follows:

∂~u

∂t
+ ~u · ∇~u+

1

ρ
∇p = ~g + ν∇ · ∇~u (3.1)

∇ · ~u = 0 (3.2)
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Figure 3.3: Diagram showing basic taxonomy of cloud simulation methods [Dua16].

where ~u stands for the velocity of the fluid, ρ the density of the fluid, p the pressure,
~g the acceleration due to gravity and ν denotes the kinematic viscosity which measures
how viscous the fluid is [Dua16]. To solve these equations, computationally expensive
techniques need to be used in most cases.

Physically-based approach gained a lot of traction in the year 1999 when Jos Stam
introduced a stable method to solve Navier-Stokes equations [Sta99]. This means that
the simulation was guaranteed not to diverge. Since then, a lot of research was built on
this method, including plethora of cloud simulations. A notable example is a discrete
stable solver by Harris et al. that simulates cloud dynamics on the GPU. The solver runs
at real-time speeds by utilizing flat 3D textures to represent the simulation grid [HBSL03]
(see Figure 3.4a). Miyazaki et al. presented two methods for simulating cloud dynamics
that were based on Stam’s stable solver. First, they used so-called coupled map lattice
(CML) which is an extension of cellular automaton. In CML, simulation space is divided
into multiple lattices. Each lattice has several state variables which are, as opposed to
regular cellular automaton, real numbers [MYDN01] (see Figure 3.4b). Later, Miyazaki
et al. proposed a method that extended simulation of smoke by Fedkiw and Stam [FSJ01]
by including phase transitions and adiabatic cooling [MDN02] (see Figure 3.4c).

Geist et al. have proposed a novel technique for lighting participating media based
on the Lattice Boltzmann method (LBM). The LBM is utilized as a grid-based photon
transport model that uses Henyey-Greenstein phase function for anisotropic scattering of
light [GRWS04] (see Figure 3.4d). They later expanded upon this approach by using two
lattices, one is used for an improved photon mapping function while the second is used to
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(a) [HBSL03] (b) [MYDN01]

(c) [MDN02] (d) [GRWS04]

(e) [GSW07] (f) [DYN06]

Figure 3.4: Physically-based methods.

generate spatial and temporal distribution of water density [GSW07] (see Figure 3.4e).
These methods, at the time of their conception, provided sub-minute execution times on
commodity hardware according to the authors.

One caveat of physically-based methods is the customizability of results by the user.
Generally, the methods adhere to physical laws and do not give much freedom in cus-
tomizing the behavior of fluid and therefore the resulting images. To overcome this
problem, Dobashi et al. proposed a method that allows users to specify a desired sil-
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houette of the final cloudscape [DYN06]. Their method uses the simulation proposed by
Miyazaki et al. [MDN02] and renders the clouds using the method proposed by Dobashi
et al. [DKY+00] from 2000. The method has two key features that control the final
shape: feedback control and geometric potential field. The feedback controller promotes
growth of the cloud until top of the target shape is reached. This is done through con-
trolling the latent heat and by supplying additional water vapor to the simulator. The
geometric potential field generates external forces that prevent the clouds from growing
outside the target shape [DYN06]. Results of this method with the pink target contour
are shown in Figure 3.4f.

3.2 Procedural Methods

Procedural methods mainly focus on visually reproducing natural phenomena using func-
tions, usually noise functions, or physical approximations. These methods are much less
computationally expensive and can be utilized in real-time applications. Nowadays, pro-
cedural methods can be used to produce very realistic results at low costs. Their caveat is
the need for trial and error customization of the simulation parameters to obtain desired
results. In some ways, this can be considered as a strength when implemented correctly
and used by artists who have understanding of the system. In these cases, the simulator
can be a powerful tool for authoring cloudscapes according to artistic vision of their
users. Duarte describes three main classes of procedural methods: cellular automata
(CA) based methods, particle systems and volumetric techniques.

3.2.1 Cellular Automata

Nagel and Raschke [NR92] proposed a cellular automaton as a discrete 3D grid where
each cell had three binary state variables: hum, cld, act. These denote humidity (water
vapor), cloud, and state transition between water vapor and clouds. The simulation is
then run by simple state transition rules. Main drawback of this method is that it does
not take extinction into account, meaning that once a lattice node had state variable cld
equal to 1, it would never revert back to 0. This was solved by Dobashi et al. [DNO98]
by introducing an extinction state variable ext and new set of rules (see Figure 3.5a).
Since this approach generated repeating cloud patterns, Dobashi et al. [DKY+00] fur-
ther improved the method by adding probability of extinction to generate more natural
animations. This probability uses a simple coin flip approach where random number is
generated when extinction of cloud should occur. When the random number is below the
probability threshold, extinction occurs as in the previous method. In the same article,
Dobashi et al. propose an efficient rendering technique of clouds and light shafts (see
Figure 3.5b) which was later expanded by Harris in his thesis [Har03] by adding multiple
forward scattering and anisotropic scattering (see Figure 3.5c).
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3.2.2 Particle Systems

Particle systems are well-known and widely used due to their ability to simulate complex
phenomena with boundaries that are hard to define. Particle systems consist of large
numbers of particles that have multitude of properties such as position, lifetime, velocity,
color, size and many more depending on their usage. They are widely used in the video
game industry, where complex effects such as smoke, fire, sparks and many others are
easily simulated with a predefined set of rules. Generally, particles are visualized as
simple quads that may sometimes be oriented towards the camera, in which case they
are called billboards. Naturally, particle systems are a great candidate for simulating
and rendering clouds due to their ease of use and speed on modern hardware.

Harris used particle systems defined by users for cloud rendering using his multiple
forward scattering method [HL01]. The method assumed static clouds and computed
lighting using pixel read back in the preprocessing step. Harris also used impostors to
draw the clouds in real-time. The method additionally took intersections of objects and
impostors into account by splitting the intersected impostors into multiple layers (see
Figure 3.5c and Figure 3.5d).

Wang [Wan03] further improved the method for Microsoft Flight Simulator: A Cen-
tury of Flight by rendering a ring of 8 impostors into which numerous distant clouds are
projected. The method achieved a 100x speedup over [HL01] and it was accompanied by
a shading model that gave a high degree of artistic control to its users (see Figure 3.5f).
A script for generating cloud textures from user defined boxes was proposed a year later
by Wang [Wan04] to give artists an easy to control cloud authoring tool Figure 3.6a.

Bouthors and Neyret proposed a cumulus cloud shape generator based on particles
and implicit surfaces [BN04]. The cloud model consists of levels that are iteratively
generated. Each level contains a set of particles and the surfaces that are defined by
them. During the iterative process, particles are generated in such a way that they
repulse each other and populate all available free surface from the previous level. When
a surface is overcrowded, particles are sometimes removed as well (see Figure 3.5e).

More recently, Yusov [Yus14] proposed a rendering algorithm for point sprites that
uses precomputed light scattering for a set of possible light positions as shown in Fig-
ure 3.6b. Thanks to this, Yusov’s method can handle dynamic lighting at real-time
speeds. The precomputed data is stored in float look-up tables and is then utilized at
runtime. For particle modeling/generation, Yusov uses a grid-based approach centered
around camera with level of detail computed from its distance to a given particle, thanks
to which large cloudy areas are handled with ease (for results see Figure 3.6c).

14



Chapter 3. Related Works

(a) [DNO98] (b) [DKY+00]

(c) [HL01] (d) [HL01]

(e) [BN04] (f) [Wan03]

Figure 3.5: Procedural methods that use particle systems.
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(a) [Wan04]

(b) [Yus14] (c) [Yus14]

Figure 3.6: Procedural methods that use particle systems (continued).
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3.2.3 Volumetric Techniques

In the words of Ebert et al. [EMP+03], “Volumetric procedural techniques have all the
advantages of procedural techniques and are a natural choice for cloud modeling because
they are the most flexible, advanced modeling technique.” The authors propose dividing
the cloud model into two levels: its macrostructure and microstructure. Implicit func-
tions and turbulent volume densities model these, respectively [EMP+03]. Procedural
noise and turbulence functions create the cloud’s microstructure while implicit functions
such as spherical or elliptical implicit primitives are used to create the overall shape (see
Figure 3.7a). This method inspired multiple researchers. It provided a basis for the
method of Kniss et al. [KPH+03] where frequency noise function was used to generate
iridescence effects when rendering clouds as shown in Figure 3.7c.

Another notable method was proposed by Bouthors et al. that renders cumulus
clouds using a complex light transport analysis inside the cloud volume. Their method
takes advantage of both volumes and surfaces by representing the cloud boundary with a
regular triangular mesh while the high-frequency density variations are sampled from a
Hypertexture [PH89]. Hypertexture is used to generate complex 3D textures such as fur
or erosion by decomposing them into three regions: hard region where object is solid, soft
region where density of the object varies, and outside region where the object does not
exist. Bouthors et al. observe and compute light scattering for multiple orders starting
with order 1 (single scattering) and continuing with eight sets of orders in range [2,
inf). For single scattering, the method analytically integrates the Mie single scattering
along eye direction while for multiple scattering a complex collection method is used.
Their approach provided interactive frame rates in some cases depending on the mesh
and whether the Hypertexture is evaluated on the fly. Result of the method is shown
in Figure 3.7b.

Recently, a volumetric approach to modeling and rendering procedural clouds has
been heavily used in the game industry. This novel approach was first used in Guerilla
Games’ Horizon Zero Dawn and it was first presented by Schneider at SIGGRAPH [SV15].
The method uses adaptive ray marching that samples two 3D and one 2D noise textures.
More specifically, a combination of Worley’s and Perlin’s noise is used when generating
the 3D textures. For rendering of the clouds, anisotropic scattering is simulated by us-
ing a proposed composition of Beer’s law and a powder effect, coined as Beer’s-powder
approximation method. Furthermore, the Henyey-Greenstein phase function is used to
approximate anisotropic scattering. With optimizations that reproject last frame and use
low resolution buffers on edges of screen, the method renders in 2ms on the Playstation
4 console according to the authors. The system is constantly being updated and now has
an official name - Nubis [SV17]. We present its examples in Figure 3.2a and Figure 3.7d.

This method has gained a lot of traction and is generally used in other studios. As
an example, Hillaire [Hil16] shows that Frostbite engine, which powers a wide range
of Electronic Arts titles, uses the same approach with some minor modifications that
usually affect cloud authoring and weather controls (see Figure 3.7e). For more in-depth
analysis of this method, we would like to refer the reader to Häggström’s thesis [Häg18].
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(a) [EMP+03] (b) [BNM+08]

(c) [KPH+03]

(d) [SV15] (e) [Hil16]

Figure 3.7: Volumetric procedural methods.
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3.2.4 Image-Based Methods

A special subcategory of procedural methods are so-called image-based methods. These
are sometimes listed separately as is the case in Dobashi’s survey [DIYN17]. Image-based
methods generate clouds by trying to replicate visual properties or shapes from given
input images. They can be divided into two groups: satellite image-based and regular
photograph-based methods.

Satellite image-based methods generate large areas of clouds as seen from outer
space. Dobashi et al. [DNYO98] generate clouds represented by metaballs by simply
determining whether a given image pixel is or is not a cloud pixel. After that, each
metaball is given properties so that the final image resembles the input image as closely
as possible (see Figure 3.8a).

From photograph-based methods, let us present two different approaches by Dobashi
et al. that focus on cloud modeling and rendering, respectively. The first method
[DSY10] uses input photographs to generate three types of clouds: cirrus, altocumulus
and cumulus; where each has different representation. Two-dimensional textures are
used for cirrus clouds, metaballs for altocumulus clouds, and volumetric approach is
used for cumulus clouds. The texture and density distributions are then generated
using the input images as shown in Figure 3.8b. The second method [DIO+12] solves
an inverse rendering problem where, given an input photograph and an existing cloud
density distribution, the parameters needed for rendering clouds are estimated. Genetic
algorithms and histograms are utilized for searching physically correct parameters such
that the appearance of the rendered clouds is visually similar to the clouds in the input
photograph. Results of this method are presented in Figure 3.8c.

3.3 Closing Remarks

Cloud simulation is an important topic of computer graphics with a vast array of pro-
posed methods. Since we have described only a select few, we would like to refer the
reader to Duarte’s survey for more in-depth examination of the field [Dua16]. Nice
overview of multiple methods, especially image-based methods, can also be seen in
Dobashi’s survey [DIYN17].
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(a) [DNYO98]

(b) [DSY10]

(c) [DIO+12]

Figure 3.8: Image-based methods.
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4 Cloud Simulation Using
SkewT/LogP Diagrams

In his PhD thesis, Duarte proposes a novel approach to simulating clouds, more specif-
ically, cumulus clouds in Chapter 3 and orographic clouds in Chapter 4 [Dua16]. This
novel approach falls into physically-based methods with one exception. It solves Navier-
Stokes equations explicitly using sounding data that are obtained by meteorological
stations daily. This data is freely available online, especially in the case of the United
States of America with websites such as www.twisterdata.com and many others. These
soundings contain enough information for us to solve equations of cloud motion using
well-known line-to-line intersection algorithms when plotted in so-called SkewT/LogP
diagrams.

4.1 SkewT/LogP Diagram

SkewT/LogP diagram is a commonly used meteorological chart on which temperature,
pressure, density, mixing ratio, wind speed, and many other properties of the atmosphere
are plotted for a single point of Earth’s surface. SkewT/LogP diagram is the core of
Duarte’s novel approach since it enables us to solve Equation 2.9 by explicitly solving
Equation 2.8. This is done through determining three important parameters that are
featured in the simulation, namely: convective temperature Tc, convective condensation
level CCL, and equilibrium level EL.

The convective temperature Tc is a temperature at which particles of an air parcel
start to rise from the Earth’s surface. CCL is a level at which water vapor starts to
condense out of dry air, i.e. first point at which a cloud starts to form, whereas EL is a
level at which particles of a forming cloud stop rising as shown in Figure 4.1.

Figure 4.1: Individual simulation stages of [Dua16].
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All these parameters can be obtained by intersecting individual curves of the diagram.
These curves can be categorized into two groups: main curves and sounding curves. Main
curves are not dependent on the input sounding data as opposed to the sounding curves
which differ from sounding to sounding.

4.1.1 Main Curves

Isobars

Isobars are drawn as horizontal lines that depict a level of constant pressure. In the
current implementation, they are traced for every sounding data row which is 25mb =
25hPa in a vertical logarithmic scale. Please note that we use normalized coordinates
for rendering the diagram, meaning that values of x and y are in range [0, 1]. Isobar for
a specific pressure point P can be computed using

y =
lg(P )− lg(Pmin)

lg(Pmax)− lg(Pmin)
(4.1)

This results in vertically mirrored coordinates in OpenGL. This problem can be allevi-
ated by using orthographic projection with reversed y axis. Note that lg(P ) = log10(P ).

Isotherms

Isotherms are skewed straight lines with a 45 degree slope. The mapping of points in our
current system is a little different than the one proposed in Duarte’s thesis. Isotherm
coordinates for given temperature T are simply computed by using

Tnormalized =
T − Tmin

Tmax − Tmin
(4.2)

x = Tnormalized + 1− y (4.3)

Individual mapping functions are shown in Listing 8.1.

Isohumes (Mixing Ratio Lines)

Isohumes are lines of equal mixing ratio that describe the saturation mixing ratio of air.
Saturation mixing ratio w(T, P ) is the maximum amount of water vapor that air can
hold for given pressure and temperature. Isohumes therefore relate the mass of water
vapor in a parcel (in g) to the mass of dry air (in kg) as follows:

w(T, P ) =
ε · e(T )

P − e(T )
(4.4)

where ε = Rd/Rm ≈ 0.622 (Rd = 287.05307, Rm = 461.5) and e(T ) stands for the
saturation vapor pressure that can be approximated by the formula

e(T ) ≈ C exp

(
A · T
T +B

)
(4.5)
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where −30◦C ≤ T ≤ 35◦C, A = 17.67, B = 243.04 and C = 611.2. Note that the
formula expects temperature in ◦C and returns pressure in pascals [Bol80].

Given a constant value for the mixing ratio w(T, P ) = W , we can express T in terms
of P as follows:

T (P ) =
B ln

(
W ·P

C(W+ε)

)
A− ln

(
W ·P

C(W+ε)

) (4.6)

This equation is then used to determine an isohume that passes through point (T, P )
by calculating the temperature T (P + δ), with δ being a small integer value. Therefore,
pair of points (T, P ) and (T (P + δ), P + δ) define the final curve.

Dry Adiabats

Dry adiabats are the 1/ log(P ) curves (e.g. highlighted gray curve in Figure 4.3). These
represent the movement of particles between ground and CCL, i.e. movement before the
particles become saturated. This curve can be obtained from

T (P ) = θ

/(P0

P

)Rd/cp
(4.7)

where P0 is the ground pressure, P is a pressure for which we want to obtain the absolute
temperature, and θ is the potential temperature. It is important to note that all these
computations need to be done with SI units, therefore θ needs to be first converted to
K and then the final temperature T (P ) is converted back to ◦C for use in the diagram.
For the actual implementation of the dry adiabat creation, we would like to refer the
reader to Listing 8.2.

Moist Adiabats

Moist adiabats, also known as pseudoadiabats, give us information about the upwards
motion of saturated air, i.e. air that has reached its convective level. As opposed to
dry adiabats, moist adiabats cannot be created by non-iterative approach. This means
that the absolute temperature Tf at any final pressure Pf cannot be solved directly
knowing an initial pressure and absolute temperature Ps and Ts, respectively [BS13].
The procedure to create a pseudoadiabat therefore requires iterative approach with small
step of ∆P from an initial given point to find the temperature Tf at final pressure Pf .
The saturated adiabatic lapse rate (SALR) Γs = −dT/dz is defined as

Γs
Γd

=
1 + Lv(T )w(T,P )

RdT

1 + L2
v(T )w(T,P )ε
RdcpdT 2

(4.8)

where Γd ≈ g/cpd ≈ 9.76 [◦C km−1] is the dry adiabatic lapse rate (DALR), cpd = 1005.7
is the specific heat at constant pressure for dry air, w(T, P ) is the saturation mixing
ratio and Lv(T ) stands for the latent heat of vaporisation/condensation and is given by:

Lv(T ) = (aT 3 + bT 2 + cT + d) · 1000 (4.9)
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where a = −6.14342 · 10−5, b = 1.58927 · 10−3, c = −2.36418 and d = 2500.79 [Dua16].
It is usually approximated by its value for 0◦C where Lv ≈ 2.501 · 106 J kg−1. We can
rewrite Equation 4.8 in the terms of pressure as follows [BS13]:

dT

dP
=

1

P

RdT + Lv(T )w(T, P )

cpd + L2
v(T )w(T,P )ε
RdT 2

(4.10)

This equation is then utilized when creating the moist adiabat iteratively as shown in
Listing 8.3. Similarly, Duarte describes moist adiabats using the pseudoadiabatic lapse
rate based on the AMS Glossary of Meteorology [ams12] as

Γs(T, P ) = g
(1 + w(T, P ))

(
1 + Lv(T )·w(T,P )

Rd·T

)
cpd + w(T, P ) · cpv + Lv(T )2·w(T,P )·(ε+w(T,P ))

Rd·T 2

(4.11)

where w(T, P ) is the mixing ratio of water vapor, cpd = 1005.7 and cpv = 1875 are
the specific heat of dry air and the specific heat of water vapor at constant pressure,
respectively. The pressure lapse rate is given by

dT

dP
=

Γs(T, P )

ρ · g
(4.12)

Therefore, to obtain next temperature T (P1) and pressure P1 from initial temperature
T (P0) and pressure P0, we need to integrate the pressure lapse rate as follows:

T (P1) = T (P0) +

∫ P1

P0

Γs(T, p)

ρ · g
dp (4.13)

where density ρ is given from the ideal gas law:

ρ =
P − e(T )

Rd · T
+

e(T )

Rm · T
(4.14)

4.1.2 Sounding Curves

Part of the SkewT/LogP diagrams are, of course, the sounding curves obtained by ra-
diosondes. These are represented as piece-wise linear curves in the diagram. We are
mainly interested in three parameters when it comes to plotting data: ambient tem-
perature (TEMP, in ◦C), dew point temperature (DWPT, in ◦C) and the mixing ratio
(MIXR, in g/kg). Another important parameters are mainly the wind direction (DRCT,
in degree) and the wind speed (SKNT, in knots) which are useful when simulating wind.
Example of sounding data is presented in Table 4.1 and its corresponding SkewT/LogP
diagrams (ours and reference) are shown in Figure 4.2.
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PRES

[hPa]

HGHT

[m]

TEMP

[◦C]

DWPT

[◦C]

RELH

[%]

MIXR

[g/kg]

DRCT

[deg]

SKNT

[knot]

TWTB

[◦C]

TVRT

[◦C]

THTA

[K]

THTE

[K]

THTV

[K]

943.0 673 -4.9 -7.8 80 2.3 318 1 -5.8 -4.5 272.8 279.2 273.2

925.0 829 -0.6 -5.7 68 2.7 97 5 -2.4 -0.2 278.6 286.4 279.1

900.0 1048 -0.3 -5.9 66 2.7 102 5 -2.3 0.1 281.1 289.1 281.6

875.0 1274 0.5 -6.7 58 2.6 99 5 -2.1 0.9 284.3 292.0 284.7

850.0 1506 1.1 -8.0 50 2.5 102 2 -2.2 1.5 287.3 294.7 287.7

825.0 1746 1.2 -9.9 43 2.2 299 0 -2.8 1.6 289.9 296.5 290.2

800.0 1994 0.7 -12.4 36 1.9 293 4 -3.8 1.0 291.8 297.6 292.1
...

...
...

...
...

...
...

...
...

...
...

...
...

100.0 16069 -57.4 -84.9 1 0.0 284 22 -58.3 -57.4 416.3 416.3 416.3

Table 4.1: Example of sounding data obtained from www.twisterdata.com that corre-
sponds with the SkewT/LogP diagrams shown in Figure 4.2.

(a) Our current diagram visualization. (b) Diagram from www.twisterdata.com.

Figure 4.2: Comparison of implemented SkewT/LogP diagram with original source.

4.2 Simulation Steps

The simulation can be decomposed into three main steps: birth, dry lift and moist lift.
The important idea is that we are able to solve the presented equations of cloud motion
by using line-to-line intersections of the sounding curves with main curves of the STLP
diagram.
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Figure 4.3: SkewT/LogP diagram with highlighted curves.

4.2.1 Birth

In Duarte’s thesis, the process of creating particles is described as gestation (or genera-
tion) followed by their parturition (birth). In layman’s terms, this means that we first
generate particles on the ground (randomly, in an area) and then wait for them to reach
the convective temperature Tc by slowly heating them up. When the temperature of
particles reaches Tc, they begin to rise above the ground in the form of dry air. Thus,
the main variable we need to compute to simulate the generation and parturition of par-
ticles is the convective temperature Tc. The computation consists of the five following
steps:

1. Get the dew point (Td, P0) denoted as Td in Figure 4.3. We know this from the
sounding data column DWPT (dew point temperature). You may also notice
that it is an initial point of the piece-wise linear curve representing the dew point
temperature which is higlighted with a green color in the diagram.

2. Create the mixing ratio line that passes through the dew point (Td, P0). Shown as
a dark blue line in Figure 4.3.

3. Find the CCL point denoted as (TCCL, PCCL). It is the intersection of the mixing
ratio line from the previous step and one of the line segments of the piece-wise
linear curve Ca relative to ambient temperature (red in the diagram). CCL can be
therefore found using a line-to-line intersection algorithm.
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4. Compute potential temperature θ at the CCL which is given by

θCCL = TCCL

(
P0

PCCL

)Rd/cpd
(4.15)

5. We can use the potential temperature θCCL to obtain the convective temperature
Tc. This can be easily done by plotting a dry adiabat with θCCL from the previous
step and finding its absolute temperature T0 for ground pressure P0 where T0 = Tc.
This dry adiabat is shown as a wide dark grey curve in Figure 4.3.

Duarte shows that using a limited number of prepared profiles for particles in an air
parcel should be utilized to obtain believable results. This is done by precomputing all
important curves and values (dry and moist adiabats, CCL, EL) for each particle profile
which will be then used in the simulation. Particles are to be generated randomly in
predefined areas on the ground. The profiles are determined by Tc from the sounding
data in such a way, that they have a convective temperature in a predefined range
[Tc, Tc + ∆Tc]. Since computing a custom set of curves for each particle πi is unfeasible,
particles are grouped into these so-called profiles. Each profile Πk uses its own set of
curves that are determined by its convective temperature Tck . This means that profile
Πk has a convective temperature Tck = Tc + k · ∆Tc

N where N denotes the number of
profiles we want to use.

4.2.2 Dry Lift and Moist Lift

The second and third steps of the simulation are based on solving the equation

dv

dt
= g

θp(z)− θa(z)
θa(z)

(4.16)

from which the rising force ~F as well as velocity ~v for a particle are computed. We
present both these steps at once since they differ in a small detail only. During the dry
lift, particles advect from the ground to CCL, then, during the moist lift, they advect
from CCL to EL. The trajectories for both stages are shown in Figure 4.4.

To solve the Equation 4.16 for particle πi at any point (T, P ) that is located at
altitude zi, we need to determine the potential temperature of the particle θi and the
ambient potential temperature of its surrounding environment θa. The value of θi is given
by an intersection of the isobar particle πi lies on with either its dry or moist adiabat for
dry lift and moist lift, respectively. Similarly, the ambient potential temperature of the
environment θa is simply given as the intersection of the same isobar and the ambient
temperature sounding curve.

When these intersections are obtained, we can compute Equation 4.16 to get accel-
eration of the particle πi. With acceleration, we can easily compute the vertical velocity
vi and the vertical displacement ∆z using basic kinematic equations.
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Figure 4.4: Trajectories of particles for dry and moist lift. Note the usage of multiple
profile curves for different convective temperatures Tc [Dua16].

Pressure Derivation

To use altitude and pressure interchangeably, a direct derivation of pressure P in hec-
topascals [hPa] based on altitude z in meters [m] is used. It is defined as [qui04]:

P =

(
44331.514− z

11880.516

)1/0.1902632

(4.17)

From this, we can also determine inverse relation as:

z = 44331.5− 4946.62 · (P · 100)0.190263 (4.18)

This is useful since we do not want to find the correct value from the sounding data
which would require a binary search and an interpolation at each conversion.

Wind

Duarte’s method uses the sounding data to simulate wind as well. There are two main
properties of wind that can be read from the sounding data table: the wind direction
α ∈ [0, 360] (DRCT, in degrees, clockwise from true north) and wind speed r (SKNT,
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in knots). From this we can obtain particle displacement on x and y axes (in their
respective altitude as defined in the sounding data table) as

∆x = r′ cos(α) (4.19)

∆y = r′ cos(α) (4.20)

where r′ is the speed converted to meters per second, r′ ≈ 0.514444 · r [m/s]. In Algo-
rithm 1 we present a pseudocode for the whole process of the described lift motion.

Algorithm 1: Dry and Moist Lift Motion

Data: Π . set of all particles

Data: Ca . ambient temperature curve

Result: Lift Motion

1 foreach πi ∈ Π do
2 Pi ← pressure at altitude zi of particle πi . Equation 4.17

3 l← isobar line at pressure Pi
4 if Pi > PCCL then . particle πi is below CCL

5 Ci ← dry adiabat for πi

6 else . particle πi is above CCL

7 Ci ← moist adiabat for πi

8 (TA, Pi)← (l ∩ Ca)
9 (TB, Pi)← (l ∩ Ci)

10 θa ← potential temperature at (TA, Pi) . Equation 2.8

11 θi ← potential temperature at (TB, Pi) . Equation 2.8

12 a← 9.81 · (θi − θa)/θa . Equation 4.16

13 vi ← vi + a · t
14 ∆z ← vi · t+ 1/2 · a · t2
15 zi ← zi + ∆z
16 xi ← xi + ∆x . Equation 4.20

17 yi ← yi + ∆y . Equation 4.20

18 Pi ← pressure at new altitude zi . Equation 4.18

4.3 Orographic Clouds

In the previous section, the main idea behind Duarte’s cloud simulator was established,
that is, the usage of sounding data and SkewT/LogP diagrams for simulating cumulus
clouds. Now let us look at his proposition of using the same principles for simulating
orographic clouds.

The only difference lies in the set of parameters that are needed for the simulation.
Terrain as an obstacle has to be considered as well. In the previous method, we needed Tc,
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CCL and EL for the individual simulation steps. Here, we require the lifting condensation
level (LCL), the level of free convection (LFC) and, once again, the equilibrium level
(EL) as shown in Figure 4.5. Beware, that EL is now computed differently and it is not
the same point as in the previous approach. Let us now look more closely at the process
of convection for orographic clouds.

Figure 4.5: Diagram showing the orographic parameters used in Duarte’s method.

Generally, a parcel of dry air is forced to move from low elevation to high elevation by
wind and an obstacle (mountain). This can be shortly described as a forced convection
because the air parcel by itself would not otherwise ascend in any manner. As it ascends,
it cools dry-adiabatically while saturation is not reached. The point where saturation
is reached (and therefore condensation starts) is called the lifting condensation level
(LCL). After passing the LCL, the air has negative buoyancy and is forced to ascend
moist-adiabatically due to orographic lift. When reaching the LFC, the air attains
positive buoyancy and starts lifting moist-adiabatically on its own. The air parcel stops
its ascension when reaching the EL similarly to the previous method. In short, the
algorithm is the same bar the usage of different parameters and the forced ascension due
to orographic lift.

The LCL is the intersection of the mixing ratio line which originates in the dew point
Td and the dry adiabat that passes through the ambient temperature sounding curve on
the ground as described in Algorithm 2.
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Algorithm 2: Computation of LCL point (TLCL, PLCL) for a particle πi

1 (Td, P0)← dewpoint on the ground
2 l← mixing ratio line through (Td, P0)
3 (Ti, P0)← ambient temperature of the particle πi on the ground
4 Cd ← dry adiabat through (Ti, P0)
5 (TLCL, PLCL)← l ∩ Cd

By plotting a moist adiabat through the LCL, we can find both the LFC and the EL.
The LFC is the first intersection of said moist adiabat with the ambient temperature
curve. The EL is simply the second intersection of these two curves. This is illustrated
step by step in Algorithm 3.

Algorithm 3: Computation of the LCF and EL points for a particle πi

1 (TLCL, PLCL)← LCL point of particle πi
2 Cm ← moist adiabat through (TLCL, PLCL)
3 (TLFC, PLFC)← first intersection of Cm and Ca
4 (TEL, PEL)← second intersection of Cm and Ca

4.3.1 Terrain Influence

Besides the parameter points, only addition to the simulation is terrain influence. Duarte
uses triangular meshes to describe the terrain. For determining how the particle moves
around it, the algorithm checks whether any faces of the mesh are intersected by the
velocity vector of the particle. If more than one face is intersected, the algorithm consid-
ers the visible face from particle’s position only. The velocity vector ~v is then projected
onto the face which is denoted by ~vproj as shown in Figure 4.6.

Figure 4.6: Obtaining ~vnew from the intersection point Pint and projected velocity ~vproj .
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Vector ~vproj represents the velocity parallel to the mountain face and therefore the
influence of the terrain. Two additional factors are considered: the terrain roughness
R ∈ [0, 1] and the distance d of the particle to the terrain. Using these properties, an
attenuation factor is defined as

k =
(1−R)

d2
(4.21)

for each face of the mountain. Using the attenuation factor, the altered velocity vector
~vnew is then defined as

~vnew = k · ~v (4.22)

The attenuation factor R determines terrain roughness. Terrain is without obstacles for
small R ≈ 0, while for large R ≈ 1, the terrain is considered to be covered with obstacles
such as trees.
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Second method that is used by the proposed simulator is the real-time Lattice Boltzmann
method. Lattice Boltzmann method (LBM) is a fluid simulation method that falls
under the set of computational fluid dynamics (CFD) methods. It solves the discrete
Boltzmann equation as opposed to Navier-Stokes equations. The method was chosen
for simulating wind as it is one of the areas in which Duarte’s approach uses a naive
solution. Since both the 2D and 3D versions of the LBM were implemented during the
creation of this thesis, both will be described. Note that only the 3D version is available
in the final framework while the 2D version is provided as a standalone project.

The main idea of LBM is that fluids can be perceived as a large number of very small
particles interacting with each other, exchanging energy, colliding. In other words, fluids
can be perceived as a group of their molecules on a microscopic level. LBM simplifies
this model by representing these molecular particles in an equidistant grid of nodes
(sometimes named cells or sites) called the lattice. Each node contains a distribution
function fi(~x, t) that describes the probability that a particle in node ~x will move in the
direction ~ei or not move at all at time step t as shown in Figure 5.1.

Figure 5.1: Visualization showing the basic idea of the distribution function fi. The
microscopic particle will remain in the same node with highest probability. The second
most probable direction of its movement is in direction ~e4 [Maq17].
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In short, when using Navier-Stokes equations we are interested in calculating the
macroscopic continuous values such as density and velocity directly. When using LBM we
calculate these values from the microscopic properties of the fluid (its molecules and their
chaotic movement). This is done by establishing links between the discrete properties
and their continuous counterparts [Maq17]. For the description of these properties we
use the DdQq notation, where d is the number of dimensions (in our case 2 and 3) and
q is the number of possible streaming directions. The most common model for 2D is
D2Q9 where the streaming of particles is done in 9 directions including zero vector ~e0 as
shown in Figure 5.2. For 3D, the most common models are D3Q15, D3Q19 and D3Q27.
As described in [WBSP18, SN10], the D3Q19 keeps the computational costs low while
maintaining an isotropic lattice, hence why it was chosen in this thesis.

The algorithm can be decomposed into multiple steps which are not dependent on
the dimensionality. Let us first look at the two main steps that are essential for LBM:
the streaming step and the collision step.

5.1 Streaming Step

The idea of the streaming step is very simple. We propagate the particle densities in
the streaming directions as described by the DdQq notation. For each lattice node,
we compute the updated distribution function using the values from previous frame as
you can see in Figure 5.2 where magnitudes of vectors ~fi are values of the distribution
function in the streaming directions. The same principle as in Figure 5.2 applies in 3D,
where the streaming is done in 19 directions instead.

Figure 5.2: Streaming step for D2Q9 configuration [BM11].

Let ~u be the macroscopic velocity of the particle. Vector ~u is simply a d dimensional
velocity vector (so either 2D or 3D). As described in [BM11], the microscopic velocity
vector ~ei for the D2Q9 model is defined as
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~ei =


(0, 0) i = 0

(1, 0), (0, 1), (−1, 0), (0,−1) i = 1− 4

(1, 1), (−1, 1), (−1,−1), (1,−1) i = 5− 8

(5.1)

For the 3D case we have chosen to use the third ordering proposed by Woodgate et al.
[WBSP18] that is described by

~ei =



(0, 0, 0) i = 0

(±1, 0, 0), (0, 0,±1), (0,±1, 0) i = 1− 6

(±1, 0,±1) i = 7− 10

(0,±1,±1) i = 11− 14

(±1,±1, 0) i = 15− 18

(5.2)

These orderings can be seen in Figure 5.3

(a) D2Q9 ordering [BM11]. (b) D3Q19 ordering. Third possible or-
dering as proposed in [WBSP18].

Figure 5.3: Selected DdQq orderings for our implementation.

The distribution function that we compute during the streaming step is denoted f∗i
and is important later on when the molecular particles collide during the collision step.

5.2 Collision Step

The second main step is called the collision step. Collisions between the microscopic
particles are simulated, thus obtaining the particle distribution function in the next
simulation frame. First, we need to compute the macroscopic density ρ which is given
as the sum of distribution function values in the given node ~x as

ρ(~x, t) =

q∑
i=0

fi(~x, t) (5.3)
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Provided with ρ, we can compute the macroscopic velocity ~u as

~u(~x, t) =
1

ρ

q∑
i=0

cfi(~x, t)~ei (5.4)

where c is the lattice velocity. Now that we have the macroscopic velocity ~u of the
examined node, we need to compute the equilibrium and update the distribution function
fi. The Bhatnagar-Gross-Krook (BGK) collision operator is used to find the equilibrium
distribution feqi (~x, t) for single phase flows (e.g. water, air, steam) as follows

feqi (~x, t) = wiρ+ ρsi(~u(~x, t)) (5.5)

where si(~u) is defined as

si(~u) = wi

[
3
~ei · ~u
c

+
9

2

(~ei · ~u)2

c2
− 3

2

~u2

c2

]
(5.6)

and wi are the weights (in 2D):

wi =


4/9 i = 0

1/9 i = 1− 4

1/36 i = 5− 8

(5.7)

and in 3D:

wi =


1/3 i = 0

1/18 i = 1− 6

1/36 i = 7− 18

(5.8)

The equilibrium function can be also extended to third order scheme as follows [DW16]

si(~u) = wi

[
3
~ei · ~u
c

+
9

2

(~ei · ~u)2

c2
− 3

2

~u2

c2
+
~ei · ~u
6c2

(
(9~e · ~u)2

c4
− 3~u2

c2

)]
(5.9)

This results in more stable simulation at the cost of higher computational complexity.
Let f∗i be the distribution function of node ~x that was already processed in the

streaming step as mentioned earlier. The final distribution function for regular lattice
node after the collision step is given by

fi = f∗i −
1

τ
(f∗i − f

eq
i ) (5.10)

where τ is the relaxation time which is directly related to the viscosity of the fluid. When
τ → 1/2, numerical instability may arise [BM11]. Simulation results with different τ
values are shown in Figure 5.4.
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(a) τ = 0.55

(b) τ = 0.7

(c) τ = 1.0

(d) τ = 10.0

Figure 5.4: Flow around circular obstacle with different τ values.
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5.3 Inlets

To create a flow in the simulation space, we need to define an initial macroscopic velocity
in selected lattice nodes. We call these nodes inlets. This step is very similar to the
collision step, only difference is that we do not compute the macroscopic density and
velocity. Macroscopic density is set to 1.0 and velocity is user-defined. Equilibrium is
then established and the same computation as in collision step is required.

5.4 Obstacles and Boundaries

The problem of obstacles in the scene can be solved simply by using a bounce back model
as described in [SN10, BM11]. The idea is that we reverse the distribution function
values (left value becomes the right value, etc.) after the streaming step. This approach
generates very rough surfaces where the fluid particles close to surface get stuck. As
described by Schreiber [SN10], advantage of this approach lies in its simplicity. We do
not need any knowledge about the boundary geometry such as its normals. Furthermore,
the full bounce back model is well suited for parallelized GPU implementation since there
are no memory accesses beyond the distribution function values of the obstacle node.
You can see in Figure 5.5 a similar approach where only the incoming distribution vectors
are reversed.

Bounce back models come in other variants as well. As an example, Bao [BM11]
describes a mid-grid bounce back model that introduces fictitious nodes which are placed
between obstacle nodes and the fluid.

Second option to bounce back boundaries are slip boundaries. These are used to
represent hydrophobic and slippery surfaces like lotus leafs for example[SN10]. Since
both mid-grid bounce back model and slip boundaries require additional information
and aren’t as easily parallelizable, they are out of scope of this work.

The obstacles are represented by a simple heightmap in 3D. To determine whether a
lattice node is an obstacle we check its height and compare it to the heightmap. If the
node lies below the heightmap, it is considered as an obstacle.

5.5 Particle Advection

To transport our particles we need to move them according to the macroscopic velocities
that are described in the lattice. Here, we find out the coordinate position of each
particle and calculate bilinear or trilinear interpolation of the velocities that surround
the particle in 2D and 3D, respectively. In other words, in 2D, we find four adjacent
lattice nodes that surround the particle and interpolate their macroscopic velocities. In
3D, we find eight adjacent nodes and do the same. The final interpolated velocity is
then added to the position of the particle.

Because we are simulating a part of Earth’s atmosphere, boundaries of the simula-
tion area cannot act as walls or as slip boundaries. Here we have multiple options what
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Figure 5.5: Full bounce back as presented in [BM11].

to do with particles that find themselves beyond the lattice walls. First, we can deac-
tivate these particles and wait for their reactivation by other simulation components.
Secondly, the particles can be respawned in an inlet wall of our selection (or any node
for that matter) using a uniform random distribution. Lastly, we can cycle the position
of particles. This means that we respawn the particle on the opposite side of the lattice
as if it were a tile in a repeating pattern. As an example, consider a 2D lattice. If a
particle were to leave a 2D simulation area at the top (its y coordinate is larger then
height of the area), it would keep its x coordinate value and y ← 0.

5.6 Main Loop

The simulation steps described above can be ordered in many ways and are presented
differently in variety of articles. The approach we have decided to implement uses the
order of steps as shown in Figure 5.6.

Figure 5.6: The order of simulation steps in our LBM implementation.
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6 Cloud Rendering

Before delving into our selected method of cloud rendering let us have a very brief look at
basic concepts of cloud radiometry. These concepts are essential in understanding how
to approach cloud rendering in general. As mentioned earlier, clouds are composed of
a large number of water droplets. These droplets interact with the incident (incoming)
light rays/photons by scattering them in many directions or by absorbing their energy.
We distinguish between single and multiple scattering. When the light passing through
the cloud reaches the viewer after being scattered only once - i.e. after passing through
only one water droplet, we describe this as single scattering. On the other hand, when
the particle passes through multiple water droplets, we call it multiple scattering as
shown in Figure 6.1 [DIYN17]. Single scattering occurs in media that are composed
of very small particles or that are very transparent, we denote such media as optically
thin. Multiple scattering occurs in media such as clouds where the light almost always
exits its volume after multiple scattering events. These media are denoted as optically
thick [HL01].

Figure 6.1: Diagram depicting single and multiple scattering events of light inside a
cloud [DIYN17].

6.1 Algorithm

Wide selection of methods can be used for rendering clouds as described in Chapter 3.
Since we use a particle system to represent the cloud’s density distribution, we can
either draw the particles at hand, or we can voxelize the particle data into some discrete
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grid. Because we want to avoid additional costs of converting our cloud representation,
a particle based technique was selected as an optimal solution.

Our initial choice was an approach proposed by Harris in his dissertation thesis
from 2001 [HL01]. This approach was later deemed not suitable since it assumes static
scenes that require a preprocessing step. In it, each particle is drawn from the light’s
point of view individually to a single framebuffer. Its color is then read back from the
framebuffer and saved to an auxiliary array. Using the precomputed array of particle
colors, the scene can be rendered at real-time provided the particles do not change their
positions. Additionally, Harris uses impostors to alleviate the high rate of pixel overdraw
that occurs when a camera is moved too close to a group of particles.

In the end, we have decided to reimplement the particle volume rendering approach
as proposed by Green [Gre08]. It is a method that produces very nice results in real-
time and does not require any additional data than particle positions and auxiliary
framebuffers. The idea is based on so-called half-angle slice rendering. A half-angle
between view vector ~v and light vector ~l is computed. In cases where the light and view
are roughly facing the same way (cos(θ) < 0 where θ = ∠(~v,~l)), the half-angle vector is
simply computed as their normalized sum. In cases where the light vector is opposite to
the view vector, the half-angle vector is computed from the light vector and the inverse
of view vector as shown in Figure 6.2.

Figure 6.2: Computation of the half-angle vector based on the mutual eye (camera) and
light positions [Gre08].

6.2 Particle Rendering

Particles are sorted based on their projection onto the half-angle vector defined axis by
using a simple dot product. As stated before, this method does not require any sort
of conversion of the particles to a discrete grid of voxels. The only thing we need are
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the particle positions in world space and an ability to draw them as point sprites in the
terminology of OpenGL or as a set of billboards in more general terms.

The rendering is done in batches called slices. The smaller each slice is, the higher
precision results we obtain at the cost of more draw calls and render target changes.
Green suggests that 32 to 128 slices is a good trade-off between visual quality and
performance.

First, a single slice is drawn to a framebuffer that holds the intensity of light reaching
each particle. This is done using the projection of the light source for which the lighting
is being computed. In the case of the sun, we use an orthographic projection the same
way we would when computing shadow maps. After the batch has been rendered to
the light buffer, we draw the particles from the camera’s point of view to an auxiliary
framebuffer using the screen projection. During this stage, we sample the light buffer
from which we determine how lit each particle fragment is. The algorithm iterates over
all slices until all particles are drawn.

The alpha blending of particle rendering depends on the half-angle vector com-
putation (i.e. on the mutual position of camera and light). The particles are in all
cases drawn from front-to-back from the light’s point of view. This means that if
θ ∈ [0, 90] → cos θ > 0, the particles are drawn front-to-back from the camera’s point
of view. In this case, we say that the view is inverted and the blending function is set
to (GL_ONE_MINUS_DST_ALPHA, GL_ONE). On the other hand, if the view is not inverted,
we draw the particles back-to-front from the camera’s point of view and the common
blending of (GL_ONE, GL_ONE_MINUS_SRC_ALPHA) is used. In both cases, we premultiply
the RGB values of the fragment with the alpha channel value in the fragment shader.

6.3 Cast Shadows

Since we use a framebuffer for accumulating particle densities from the light’s point of
view, we basically create an inverted shadow map. This can be used to draw shadows
that are cast by the clouds onto terrain and other objects by simply taking its inverted
values (1.0 - textureIntensity).

6.4 Light Texture Blurring

As suggested in the article by Green [Gre08], blurring the light texture after drawing
each slice approximates multiple scattering throughout the medium. This is particularly
useful in our case since volume of clouds scatters the light in all directions to some degree.
Of course, the predominant scattering direction is forward as described by Harris [Har03].
Nonetheless, blurring the light texture is an important improvement of the method which
gives us much more realistic results as shown in Figure 6.3.
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(a) Light texture blurred with 4 diagonal samples. (b) No blur applied.

Figure 6.3: Comparison of cloud visualization with and without blur.

6.5 Cloud Occlusion

The cloud rendering described in previous the sections should take place in an auxiliary
framebuffer. For clouds to be occluded by other objects such as mountain peaks or trees
when viewed from ground, depth map containing depths of these opaque objects must
be attached to the auxiliary framebuffer. After the particle rendering is finished, the
final image is composited into our scene image.

6.6 Phase Function

One large factor of cloud visualization is the directionality of the scattering light. Since
we use an approach that is not physically-based, we lack some of the properties we would
like to see in our visualization. Thankfully, directionality of scattering can be easily
added to the current model with a little trick that is not necessarily physically correct,
but provides us with good results for little cost. For description of these properties we
use a phase function. Phase function is a function of direction that determines how much
light from incident direction ~ω is scattered into the exitant direction ~ω′ [Har03].

The phase function P is normalized and only depends on the phase angle φ where
cosφ = ~ω · ~ω′. The phase function is described as:∫

4π
P (~ω, ~ω′)d~ω′ = 1 (6.1)

The phase function is reciprocal: P (~ω, ~ω′) = P (~ω′, ~ω) at the same point. The mean
cosine g of the scattering angle is defined as:
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g =

∫
4π
P (~ω, ~ω′)(~ω, ~ω′)d~ω′ (6.2)

If the mean cosine is 0, the scattering is isotropic. If g is negative, backward scattering
dominates, and if g is positive, the scattering points mainly in forward direction [Pre03].
There exists a vast array of phase functions where each describes scattering in particles
of different sizes and other parameters. Let us denote the phase functions based on the
scattering angle φ as shown in Figure 6.4 as P (~ω, ~ω′) = P (φ).

Figure 6.4: The phase function scattering angle φ is the angle between the incident
(bottom arrows) and scattered (top right arrow) light directions [Har03].

6.6.1 Isotropic Phase Function

The simplest phase function where the light is scattered in random directions with equal
probability is called isotropic. It is defined as:

P (φ) =
1

4π
(6.3)

6.6.2 Rayleigh Phase Function

Scattering inside very small particles such as those found in clear air can be approximated
using Rayleigh phase function. It is described as:

PRay(φ) =
3

4

(1 + cos2 φ)

λ4
(6.4)

For this phase function to be valid, the size of the particle must be smaller than
the wavelength λ of the light passing through it. Harris uses Rayleigh phase function
in his cloud rendering algorithm due to its low computational cost. It is implemented
in our framework but since it is not valid for particles of water vapor due to their size,
the results are not desirable. Let us therefore look at more accurate approximations for
larger particles such as water droplets.
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6.6.3 Henyey-Greenstein Phase Function

The Henyey-Greenstein phase function is very useful in approximating scattering in
water, clouds, biological tissues and many other natural materials [Pre03]. It simpli-
fies Gustav Mie’s theory of light scattering by larger particles. The phase function is
described as:

PHG(φ, g) =
1

4π

1− g2

(1− 2g cosφ+ g2)3/2
(6.5)

Here, g is the symmetry parameter that controls the scattering. Positive values of g
indicate that incident light will be scattered in forward direction, while for negative g
the light will be scattered in backward direction. For g = 0 we get isotropic scattering
as described previously. To see a visual comparison for different positive values of g,
please see Figure 6.6.

In Figure 6.5 you can see comparison of Rayleigh, Henyey-Greenstein and Mie phase
functions. The graph shows the lack of some features that are not captured by Henyey-
Greenstein approximation. These features, such as glory and fogbow which are optical
phenomena similar to rainbows and halos, are mainly present in the opposite direction
(backward scattering).

Figure 6.5: Logarithmic plots (inset: polar log plots) of Rayleigh (red), Henyey-
Greenstein with g = 0.99 (green) and Mie (blue) phase functions. The graph depicts
problems and missing features of Henyey-Greenstein phase function when compared to
Mie phase function [BNM+08].
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6.6.4 Double Henyey-Greenstein Phase Function

The main drawback of Henyey-Greenstein phase function is that it can only capture
scattering events in one direction (forward or backward depending on g). To alleviate this
issue, Kattawar [Kat75] shows an extension of the phase function using two symmetry
operators g1 and g2 that captures the front and backward facing lobes of the scattering
distribution. It is simply described as:

PDHG(φ) = (1− f)PHG(φ, g1) + fPHG(φ, g2) (6.6)

where g1 > 0 determines intensity of forward scattering and g2 < 0 backward scat-
tering and f is the interpolation parameter.

6.6.5 Schlick Phase Function

While Henyey-Greenstein phase function is a good approximation of Mie scattering, it
is still computationally expensive due to the usage of exponentiation (3/2) in fragment
shader. Schlick proposes a simpler expression that has a less described shape than the
Henyey-Greenstein phase function. The expression is described as:

PSch(φ, k) =
1

4π

1− k2

(1 + k cosφ)2
(6.7)

where k is a parameter similar to the asymmetry parameter g and it holds that −1 ≤
k ≤ 1. In our shader implementation, we use an approximation of k that is used in the
Frostbite engine by Electronic Arts [Hil16] as

k ≈ 0.55g3 − 1.55g (6.8)

Note that we use an inverse value as opposed to the suggested approximation in Frostbite
since we adhere to the rule that positive g scatters the light in forward direction. The
exponents (1 + k cosφ)2 can be simply substituted with multiplications in the shader
while we cannot get rid of the square root term in the Henyey-Greenstein equation1.

6.6.6 Cornette-Shanks Phase Function

Lastly, a modification of Henyey-Greenstein phase function was presented by Cornette
and Shanks [CS92]. The modification uses a more physically realistic approximation
that is, as stated by Premože [Pre03], more suitable for clouds. It is defined as:

PCS(φ, g) =
1

4π

3

2

(1− g2)

(2 + g2)

1 + cos2 φ

(1 + g2 − 2g cosφ)3/2
(6.9)

1Note that we have observed a difference of approximately 0.5ms when switching between these two
phase functions for 1 million particles on our desktop computer (see Table 9.1 for specifications).
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(a) g = 0.4 (b) g = 0.5 (c) g = 0.6

(d) g = 0.7 (e) g = 0.8 (f) g = 0.9

Figure 6.6: Comparison of different values of g for Henyey-Greenstein phase function.

We compare the Henyey-Greenstein, Schlick and Cornette-Shanks phase functions
that were integrated into our framework in Figure 6.7. Notice that the results show no
notable differences among the functions.

(a) Henyey-Greenstein (b) Schlick (c) Cornette-Shanks

Figure 6.7: Comparison of different phase functions with g = 0.8.
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7 Solution Proposal

In this chapter we would like to look at what our solutions are in integrating the pre-
viously described systems and algorithms into our framework. Main goal of this thesis
is an extension of Duarte’s method with a wind flow field generated using LBM. Since
Duarte’s method works with simple particles where we only need to know their positions,
velocities, and convective temperatures (i.e. which profile they belong to), coupling of
these two methods isn’t problematic. Another goal of this thesis is parallelization of
Duarte’s method on the GPU which is necessary for large amounts of particles. The
same holds for LBM where parallelization is necessary for real-time simulations. Besides
significant speed ups of both methods, their parallelization also allows us to store the
data only on GPU without ever needing to send it back to the CPU after initialization
of all our systems. Simply put, our simulator should run purely on GPU.

We propose a simple architecture for our application that is centered around the
ParticleSystem class. The ParticleSystem class holds all data pertaining to the particles
themselves. These are then accessed by individual simulators of the application as shown
in Figure 7.1.

Figure 7.1: Proposed simplified architecture of the application.
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Chapter 7. Solution Proposal

The simulators: STLPSimulator and LBMSimulator are independent entities when it
comes to their usage. In other words, each simulator can advect the particles by itself
and can be enabled or disabled on the run without affecting the other. Let us look at
how each should be incorporated into our framework.

7.1 SkewT/LogP Simulation

The SkewT/LogP (STLP) simulation runs on the GPU since the proposed method by
Duarte is easily parallelizable. The system initially loads the STLP diagram and then
parses it to the simulator for use. The diagram is loaded on the CPU and its curves are
uploaded to vertex buffer objects (VBOs) for rendering. The STLPSimulator class loads
only the necessary curves for simulation to CUDA memory. The system is designed
to be able to handle diagrams of variable sizes/ground altitudes. It does not presume
length of the curves and gives its users free hand at modifying curve smoothness. The
system should also support loading and editing diagrams at runtime. The simulator
must therefore update the data stored on GPU when the diagram is changed in any way.

As described in previous chapters, Duarte’s method includes a naive wind simulation
that uses the sounding data for particle advection. Since we want to conserve memory
and the wind is simulated by LBM, we can omit particle velocity vectors ~v from our
simulation and only use a single float to describe its vertical velocity vy. This is possible
because LBM does not need information about a particle’s velocity in previous simulation
step. We would like to note that Duarte’s naive wind from his cumulus cloud simulation
was implemented on the CPU but was later deprecated in our system when migrating to
GPU simulation only. Moreover, we have also tried applying wind data obtained from
soundings as an inlet velocity array for LBM. This however exhibited erratic behavior
that in most cases resulted in unstable LBM simulation and was deprecated in our
application.

We also omit Duarte’s terrain influence in his orographic simulation. The terrain
influence by Duarte tests all terrain mesh triangles with a given velocity vector when
searching for intersection point. This is very costly without any acceleration data struc-
tures such as grids, octress, kd-trees, or others. This problem is fortunately not present
when the terrain is defined by a heightmap. Nonetheless, for collisions/flow around
obstacles we use LBM which solves flow around the terrain implicitly.

7.2 Lattice Boltzmann Method Simulation

Thankfully, LBM is easily decoupled from other systems and can therefore stand on its
own. Note that Duarte’s system is an inherently lagrangian system, meaning that we
label each particle and track it anywhere in world space. This can be seen as one of its
strengths. On the other hand, LBM is an eulerian method. This means that we track
fixed points in the space (the lattice) and their properties. If we want to simulate our
particles using the LBM, we need to keep them inside the lattice’s simulation area. Now
let us consider that we want a vast terrain that would require large and computationally
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expensive simulation area. For this reason, we would like the user to have control over it.
Our proposed solution is to use a positionable LBM simulation area. Furthermore, we
propose that said area can also be scaled. The scaling determines lattice cell size in
world units.

This however poses problems for the LBM simulation. Due to time constraints,
parametrized LBM simulation was not implemented in the framework. This means
that by scaling the simulation area, one also scales the resulting velocities that move
the particles. This is one area of our system that would greatly benefit from future
improvements. As a naive solution, we add a velocity multiplier that is applied during
the advection of particles. Using this, users are able to speed up or slow down wind speed.
This however does not change properties of the lattice itself and therefore may look
unnatural for multipliers that are too large or too small. The actual lattice resolution,
i.e. the number of cells on each axis, does not have this problem and should also be
configurable using a configuration file.

7.3 Viewports

The application should also provide two viewports. One is the general 3D viewport
where users can look at the generated clouds, the terrain and much more. The other
is a 2D STLP diagram viewport where the user should be able to inspect and edit the
loaded STLP diagram. The framework should also support drawing the diagram in the
3D viewport as an overlay texture. The proposed appearance of the 3D viewport without
UI is shown in Figure 7.2 where the LBM simulation area is visualized.

Emitter

LBM Streamlines

LBM Simulation Area

Figure 7.2: Proposed 3D viewport of our application.
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7.4 Terrain

Since we use a terrain as an obstacle in LBM, LBM needs to have access to its data. In the
proposed system, everytime the terrain is generated or edited, the flattened normalized
height data is uploaded to the LBM simulator for use.

Furthermore, the framework should be able to generate random terrains using perlin
noise or load height data from grayscale textures. Both these features should be available
in the user interface of our application.

Terrain rendering is also considered. Multiple materials can be used when rendering
the terrain. For determining how much each material contributes to certain terrain
vertex we propose using simple RGBA textures that give us option to mix materials
without visible borders between them.

7.5 Cloud Rendering and Sky

Our framework supports cloud rendering using the described half-angle slicing method.
One contribution of our work is integration of anisotropic scattering approximation to
this method by using phase functions to increase intensity of selected particles. Addi-
tionally, to improve visual fidelity of the framework, sky model proposed by Hošek and
Wilkie [HW12] was added to the system. We sample the sky at sun position to tint the
directional light that is used as the sun.

7.6 Rendering

Since we want to present our results in gorgeous renders, we need to render the ter-
rain, materials and any other objects using modern shaders. For this, we have imple-
mented a simple physically-based rendering (PBR) shader system based on the tutorials
by Vries [dVa]. Furthermore, our system uses advanced shadow mapping technique
called exponential variance shadow maps (EVSM) which allows us to create soft and
high-quality shadows by blurring the depth map texture and by using mipmapping and
anisotropic filtering on said texture. EVSM is further explained in Appendix B.

7.7 Debugging Tools and User Control

The proposed framework needs to be versatile and give users a free hand at customizing
its individual systems. For this we add an extensive user interface that provides users
with options to modify parameters of said systems. If any parameters are not modifiable
at runtime, users are given an option to configure the application using a config.ini

file or command line arguments.
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7.8 World Unit Size

One major problem that we encountered when creating the application was the world
unit size. Due to the fact that the backbone of the whole application was initially a
pure LBM simulator, other systems adhered to the cell size of the lattice. In the final
application, the roles were reversed. Standard unit size of 1 meter is used throughout
the framework and the LBM simulator converts particle coordinates from world space
coordinate system to its own coordinate system and back when necessary.
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8 Implementation

Let us now look at selected implementation details of our framework. Since the created
framework is quite sizeable, only the most important and interesting topics and code
snippets will be presented. For a reader that wants to delve into our system head-on we
also provide Doxygen generated documentation for our framework1.

8.1 Particle System and Memory Management

One of the main goals of this thesis is a proper utilization of the GPU and its capabil-
ities where possible. Since we are simulating clouds using vast amounts of particles, it
is crucial that we keep the number of data transfers between the GPU and CPU to a
minimum. At the core of this ideology is the ParticleSystem class2 that holds pointers to
the GPU memory where we store all necessary attributes needed for the simulation. Un-
fortunately, we cannot represent individual particles by a simple class or struct since the
data is divided into OpenGL managed memory and CUDA managed memory. OpenGL
requires particle positions and profile indices (i.e. index of a convective temperature
(Tc) profile they belong to). These are stored in regular vertex buffer objects (VBOs).
Furthermore, element buffer object (EBO) is used for indexation of the particles whose
main purpose lies in their sorting. Instead of sorting multiple individual buffers (and
CUDA arrays), we only sort particle indices which are then used in glDrawElements draw
call instead of a simple glDrawArrays draw call. Both VBOs and the EBO are registered
and mapped by CUDA for use in kernels during the simulation.

Besides these buffers, we also need to store particle velocities, more specifically, their
vertical velocity used in STLP. This information is only necessary in CUDA kernels
and is therefore stored in global device (GPU) memory. Lastly, we want the users to
have control over the displayed amount of particles at any moment. This is solved by
preloading a maximum amount of particles as defined in a configuration file and draw-
ing/simulating only those that are active. All active particles are the leftmost particles
in the arrays described above. At this moment, individual particles at random memory
location cannot be deactivated apart from the last one (rightmost one). Activation and
deactivation of the last active particle (or batches of particles) is used by emitters as
described in Section 8.8.

For easy cloud prototyping we provide a very simple save & load feature that writes
particle positions and their profile indices to binary files. By using binary file streams
the application loads and saves a million particles in approximately 25ms and 45ms on

1available at https://www.martincap.io/ProjectFuji/doc/
2defined in ParticleSystem.h header file

55

https://www.martincap.io/ProjectFuji/doc/class_particle_system.html
https://www.martincap.io/ProjectFuji/doc/
https://www.martincap.io/ProjectFuji/doc/class_particle_system.html


Chapter 8. Implementation

our test desktop machine (see Table 9.1), respectively. In the loading process, number
of saved particles is checked against maximum available memory, and in case of over-
flow, only the permitted amount is loaded. Particles are then uploaded either using
glNamedBufferSubData or glNamedBufferData to GPU based on whether they match the
maximum current capacity. For saving the particles, the GPU buffers must be first
mapped to CPU by using glMapNamedBuffer function before its content is written to the
save file.

8.2 SkewT/LogP Diagrams

Simple SkewT/LogP diagram1 visualization and user interface was implemented as part
of our framework. The sounding data is loaded from regular text files using the data lay-
out from www.twisterdata.com. The initial sounding data file can be set in config.ini

file or as a command line argument. Furthermore, all text files present in the prede-
termined sounding file directory are preloaded. This means that the user can load new
sounding data at runtime provided its files are in the correct directory.

One small complication of the diagram visualization lies in the fact that the y axis is
reversed in the orthographic projection due to the fact that pressure is displayed from
highest to lowest on the positive y axis. This is taken into account in the mapping func-
tion that skews the temperature axis and uses logarithm with base 10 on the pressures.
The particular implementation of these two-way mapping functions (in the implemen-
tation denoted as the normalization process) can be seen in Listing 8.1. Note that we
need to provide the y axis value when computing x for given temperature T and vice
versa. This means that the y axis value has to be always computed first.

1 float getNormalizedPres(float P) {

2 return ((log10f(P) - log10f(MIN_P)) / (log10f(MAX_P) - log10f(MIN_P)));

3 }

4 float getNormalizedTemp(float T, float y) {

5 return (T - MIN_TEMP) / (MAX_TEMP - MIN_TEMP) + (1.0f - y);

6 }

7 float getDenormalizedPres(float y) {

8 return powf(10.0f, y * (log10f(MAX_P) - log10f(MIN_P)) + log10f(MIN_P));

9 }

10 float getDenormalizedTemp(float x, float y) {

11 return (x + y - 1.0f) * (MAX_TEMP - MIN_TEMP) + MIN_TEMP;

12 }

Listing 8.1: Mapping and unmapping functions used for diagram creation.

We gather the corresponding curves into groups and upload them as a single array
to a VBO to reduce the necessary number of draw calls when rendering the diagram.
This comes at a price of a less scalable system that requires core changes if we were to
modify individual curves.

1defined in STLPDiagram.h with additional utility functions from STLPUtils.h
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8.2.1 Dry Adiabat Creation

Dry adiabats determine the dry lift motion of the particles. Their creation uses a non-
iterative approach that generates a curve for constant potential temperature θ. In other
words, we can compute any point (T, P ) of the dry adiabat for a potential temperature
θ without any additional data just by using Equation 4.7. The algorithm for generating
a single dry adiabat for given θ in degree Celsius is shown in Listing 8.2.

1 createDryAdiabat(float theta, Curve &curve) {

2 const float P0 = soundingData.groundPressure;

3 const float k = 0.286f; // Rd/cpd
4 const float thetaK = theta + 273.15f; // convert to Kelvin

5 foreach(P in soundingData) {

6 float T = thetaK / pow((P0 / P), k); // Equation 4.7

7 T -= 273.15f; // get value in Celsius

8 float y = getNormalizedPres(P); // get normalized y coordinate

9 float x = getNormalizedTemp(T, y); // get normalized x coordinate

10 curve.addVertex(x, y);

11 }

12 }

Listing 8.2: Function for computing dry adiabat with given θ value.

8.2.2 Moist Adiabats Implementation Details

Moist adiabats are the most tricky curves present in the SkewT/LogP diagrams since
they need to be created iteratively. We have had some problems with Duarte’s equations
when it comes to moist adiabat creation and therefore turned to other articles. The issues
were later resolved and due to this we provide two approaches as was described in the
theoretical part of our text. Interestingly enough, we have also found two non-iterative
approaches that try to significantly reduce the computational complexity of generating
moist adiabats which we would like to quickly introduce.

Non-Iterative Methods

First of these was proposed by Bakhshaii and Stull [BS13]. The method uses gene-
expression programming (GEP) and generates functions that compute T based on the
potential temperature θ and pressure P . We have implemented this method and even
though the approximations in the area that the algorithm was trained on are correct, we
have decided to use the iterative approach in the end. This is mainly because creating
the desired moist adiabats on CPU is a preprocessing step that is not significant when
it comes to runtime speed. Results of this method can be seen in Figure 8.1a.

Moisseeva and Stull also proposed a non-iterative approach which, according to their
paper, provides better results than Bakhshaii’s method [MS17]. It uses polynomials to
fit the pseudoadiabat curves. The method solves drift issues that can occur in iterative
solutions due to numerical integration errors. However, in the end, we have opted to
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use the iterative approach as to avoid random errors generated by the non-iterative
approaches. Results of Moisseeva and Stull’s method are presented in Figure 8.1b.

(a) Results of Bakhshaii’s method [BS13]. (b) Results of Moisseeva’s non-iterative approach [MS17].

Figure 8.1: Moist adiabats obtained by using non-iterative methods. Note that Mois-
seva’s moist adiabats are plotted using an emagram which is another type of thermody-
namic diagram.

Iterative Methods

The iterative approach is built on computing individual curve points one after another
with small ∆P . To create the moist adiabat, we can iteratively solve for T2 from given T1

at P1 and a ∆P = P2−P1 step (therefore we also know P2 at each iterative step). We have
implemented both the pseudoadiabatic lapse rate described by Duarte (Equation 4.11)
and the iterative approach described by Bakhshaii (Equation 4.10). In Listing 8.3 we
present an algorithm for creating the moist adiabats including the base of Bakhshaii’s
method on Line 20.
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1 createMoistAdiabat(float theta, float startP, float deltaP, float smallDeltaP) {

2 float T = getKelvin(theta);

3 float P_Pa;

4 float accumulatedP;

5 const float smallDeltaP_Pa = smallDeltaP * 100.0f;

6 for(float P = startP; P >= MIN_P - smallDeltaP; P -= smallDeltaP) {

7 if (accumulatedP >= deltaP || accumulatedP == 0.0f || P <= MIN_P) {

8 accumulatedP = 0.0f; // reset accumulated pressure

9 float y = getNormalizedPres(P); // get normalized y coordinate

10 float x = getNormalizedTemp(T, y); // get normalized x coordinate

11 curve.addVertex(x, y);

12 }

13 P_Pa = P * 100.0f; // convert to pascals

14 T -= dTdP_moist_degK(T, P_Pa) * smallDelta_Pa;

15 accumulatedP += smallDeltaP;

16 }

17 }

18

19 // Computes Equation 4.10

20 float dTdP_moist_degK(float T, float P) {

21 float L_v = computeLatentHeatOfVaporisationK(T); // Equation 4.9

22 float w = w_degK(T, P); // Equation 4.4

23 // Rd = 287.05307, cpd = 1005.7, EPS ≈ 0.622
24 float res = 1.0f / P;

25 res *= (R_d * T + L_v * w);

26 res /= (c_pd + (L_v * L_v * w * EPS / (R_d * T * T)));

27 return res;

28 }

Listing 8.3: Function for computing moist adiabat with given θ, start P , and delta
values.

8.2.3 Intersection of Line Segments in 2D

Intersection of two line segments is an important part of the simulation process when
finding necessary attributes such as Tc, CCL and others in the SkewT/LogP diagram.
This is why we would like to go a little more into detail of how to find the intersection
point of two line segments and if there is any. Furthermore, we would like to very briefly
show that not all line segment intersections require such a general approach, especially
when we are looking for intersection between isobars and ambient temperature curves
which are computed for all particles in each simulation step as was shown in Algorithm 1.

General Approach

First, let us look at the general approach to finding an intersection point between two
line segments as shown by Bourke [Bou88] and further explained by Walton [Wal].
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Assume two line segments, P1P2 and P3P4. We can define points Pa and Pb on each
of these two lines, respectively, as:

Pa = P1 + ta · (P2 − P1) (8.1)

Pb = P3 + tb · (P4 − P3) (8.2)

where 0 ≤ ta,b ≤ 1.
To find an intersection of these line segments, we assume Pa = Pb, which gives us

P1 + ta · (P2 − P1) = P3 + tb · (P4 − P3) (8.3)

We need to break this into x and y components. Let Pi = (xi, yi) for i = 1, 2, 3, 4. We
get

x1 + ta · (x2 − x1) = x3 + tb · (x4 − x3) (8.4)

y1 + ta · (y2 − y1) = y3 + tb · (y4 − y3) (8.5)

We can rearrange these equations as follows:

(x3 − x1) = ta(x2 − x1)− tb(x4 − x3) (8.6)

(y3 − y1) = ta(y2 − y1)− tb(y4 − y3) (8.7)

This set of equations can be rewritten into matrix form:[
x2 − x1 −(x4 − x3)
y2 − y1 −(y4 − y3)

] [
ta
tb

]
=

[
x3 − x1

y3 − y1

]
(8.8)

Since ta and tb are the only unknown values, we need to rearrange this by using an
inverse of the leftmost matrix. Just as a reminder, for any matrix A ∈ R2x2, where

A =

[
a b
c d

]
(8.9)

its inverse A−1 is defined as:

A−1 =
1

det A

[
d −b
−c a

]
(8.10)

where det A = ad− bc. This results in

[
ta
tb

]
=

1

(x4 − x3)(y2 − y1)− (x2 − x1)(y4 − y3)

[
−(y4 − y3) x4 − x3

−(y2 − y1) x2 − x1

] [
x3 − x1

y3 − y1

]
(8.11)

By multiplying, we obtain:

ta =
(x4 − x3)(y3 − y1)− (x3 − x1)(y4 − y3)

(x4 − x3)(y2 − y1)− (x2 − x1)(y4 − y3)
(8.12)
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tb =
(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

(x4 − x3)(y2 − y1)− (x2 − x1)(y4 − y3)
(8.13)

There are 4 possible base results when plugging our two points into these last two
equations:

1. Segments intersect: If 0 ≤ ta ≤ 1 and 0 ≤ tb ≤ 1 then the line segments inter-
sect. The point of intersection can be found by using either ta or tb in Equation 8.1
or Equation 8.2, respectively.

2. Lines intersect: If the value of either ta or tb falls outside of the range [0, 1], then
we are talking about an intersection between the two lines that are defined by the
two line segments. More specifically, if one of the two (ta or tb) lies in range [0, 1]
and the other does not, then we are looking at an intersection of a line segment
and a line.

3. Lines are collinear: If the denominator in Equation 8.12 or Equation 8.13 is
zero, it means that the two lines (and hence the line segments) are collinear. This
can be further separated into two cases:

(a) Lines do not intersect: Here, the lines are collinear but not the same.

(b) Lines intersect: Here, the two lines intersect in infinite number of points.
This part can also be decomposed since this does not tell us whether the two
line segments intersect in infinite amount of points or if only the lines intersect
and the line segments do not.

This general approach for finding intersections is only needed on the CPU when
creating the diagram and is available in the Curve.h header file. Our implementation
also offers some additional options such as reversing search order for curve vertices or
finding n-th intersection of the two curves.

Isobar Intersection

As the reader can observe, there are multiple cases in our dry and moist lift algorithms
where we only need to find an intersection between the ambient temperature curve and
a single isobar (which can be interpreted as a line instead of a line segment). Since
we assume that the ambient temperature curve Ca is y-monotone (y-strictly-monotone
even), we can simplify the intersection search by first looking for a correct segment based
on its y coordinate. This initial search can be done either naively using linear search or
more cleverly with a binary search. We use a binary search on the GPU for each kernel
thread.

Computation of the intersection point with selected segment is also much easier since
isobars are horizontal lines defined as y = k for some k, usually 0 ≤ k ≤ 1 because we
normalize our data (or 100 ≤ k ≤ 1000 [hPa] in pressure).
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Let P1 = (x1, y1) and P2 = (x2, y2) be the two end points of the selected line segment
of Ca. Let P3 = (x3, y3) be the desired intersection point. We know that y3 = k. Because
P3 is an interpolation of P1 and P2, we can express P3 in terms of P1 and P2 as follows:

P3 = tP1 + (1− t)P2 (8.14)

When written for each axis separately, we get

x3 = tx1 + (1− t)x2 (8.15)

y3 = ty1 + (1− t)y2 (8.16)

From Equation 8.16, we can express t as

t =
y3 − y2

y1 − y2
(8.17)

where everything is known as y3 = k. We can therefore plug t into Equation 8.15 to get
x3. We present the algorithm for finding the intersection with isobar in Listing 8.4 with
additional out of bounds checking whose purpose is further examined in Section 8.3.

1 vec2 getIntersectionWithIsobar(vec2 *vertices, int n, float y) {

2 if (y >= vertices[0].y) { return vertices[0]; }

3 if (y <= vertices[n - 1].y) { return vertices[n - 1]; }

4 int left = 0;

5 int right = n - 1;

6 while (left <= right) {

7 int curr = (left + right) / 2;

8 if (vertices[curr].y > y) {

9 left = curr + 1;

10 } else if (vertices[curr].y < y) {

11 right = curr - 1;

12 } else { return vertices[curr]; }

13 }

14 float t = (y - vertices[left].y) / (vertices[right].y - vertices[left].y);

15 float resT = t * vertices[right].x + (1.0f - t) * vertices[left].x;

16 return vec2(resT, y);

17 }

Listing 8.4: Isobar intersection using simple binary search and interpolation.

8.2.4 Diagram Customization

Similar to Duarte’s approach, we also offer customization of the sounding data curves,
particularly the ambient and dew point temperature curves. Position of the individual
control points can be adjusted on the appropriate isobar. For this to be possible, when
the user enables curve edit mode and uses a mouse button to select a point on the screen,
we search for the closest point on the curve. We adjust the point position on the CPU.
We leave the actual diagram update, simulation parameter recalculation, and upload to
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GPU to the user. We do not want to update these data continually which would be
computationally expensive. The application also provides customizable curve colors and
any group of curves can be hidden in the menu.

8.2.5 Text Rendering

Text rendering for labeling the diagram was implemented based on the tutorials by Joey
de Vries [dVb]. The text renderer uses FreeType1 library for TrueType font loading and
displays text as a series of textures. One important thing to note, again, is the reversal
of the y axis in the shader due to the projection matrix. This has also been taken into
account when using the font glyph bearings on the y axis (e.g. vertical offset of the
letters ‘p’ and ‘g’).

8.3 SkewT/LogP Simulator

Because the creation of the diagram is a particularly hard problem to parallelize, we
create the diagram on the CPU and upload necessary data to the GPU. One caveat here
is that we do not assume constant number of curve vertices (or edges) and therefore we
need to upload additional information along with the curve data. This is particularly
useful in cases where we upload arrays of curves as it is with the dry and moist adiabat
profiles. We do not assume constant number of curve vertices since the ground altitude
varies greatly among soundings. Furthermore, we do not plot the moist adiabats from
ground level considering their generation starts at either CCL or LCL based on parameter
selection. This saves us memory on the GPU.

The simulation algorithm isn’t particularly too far from the pseudocode shown in
Algorithm 1. Only additions are bound checking and artificial damping. Let us look at
both and what is the reason behind their usage.

First important addition to the algorithm is out of bound checking. This proved
particularly useful for diagrams where unwanted cases occur that lead to particles ac-
celerating to infinity. As an example, see Figure 8.2. There, particles are lifted almost
instantly moist-adiabatically. Since the difference between moist adiabats and the am-
bient temperature curve is always positive in this particular case, the particles would
accelerate to infinity very rapidly, producing computation errors in other stages of the
application loop (e.g. when sorting using Thrust library). For these reasons we check
whether each particle is out of bounds and if its computed direction of acceleration
points further out of bounds. In that case we do not update its position and velocity. In
instances where the particle is out of bounds but should accelerate towards the simula-
tion area, which happens, for example, when user creates a terrain that has origin below
ground pressure in the sounding data, the simulation uses the last valid values to com-
pute the acceleration. This is achieved by clamping the isobar intersection calculation
to last valid curve values as shown in Figure 8.3.

1available at: https://www.freetype.org/
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(a) Diagram where particles would accelerate to in-
finity indefinitely.

(b) Closeup of the problematic section.

Figure 8.2: Example of a problematic case where the sounding data produce a diagram
that would accelerate particles indefinitely without our additional bound checking.

Figure 8.3: Visualization of clamping of the isobar intersections to last valid values.
Note that the red points represent individual particles in our system.

Unfortunately, there is another issue with the simulation proposed by Duarte for
which we did not find any sound explanation. The simulated particles oscillate around
the equilibrium level with very large altitude reach. In layman’s terms, the particles
“overshoot” the equilibrium and stop way above it. After that, they accumulate negative
velocity on the y axis, causing them, once again, to “overshoot” the equilibrium. This
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is particularly visible when choosing ∆t < 10. In our experiments, we observe that the
particles actually do reach equilibrium after some time. The smaller ∆t is used, the
slower the equilibrium is reached. We presume that this is inevitable due to the very
nature of the algorithm proposed by Duarte. There is no negative or damping force in
either case (when particle is below or above equilibrium) and the particle velocity ~vi only
increases till the equilibrium is reached because only the difference between dry or moist
adiabat and the ambient temperature curve is used for acceleration computation (see
line 12 in Algorithm 1). To solve this issue, we propose a simple damping multiplier that
decreases the particle velocity ~vi by multiplying it by value vdamping < 1, vdamping → 1.

Another problem of Duarte’s method is the nature of the SkewT/LogP diagram. The
sounding data is observed for a single point in the atmosphere which is heavily dependent
on the initial ground altitude/pressure. This means that we would get different results
when releasing a radiosonde from top of a mountain and from a valley. Since most
weather soundings capture as much information as possible, radiosondes are mostly
released from low altitudes to capture larger part of the atmosphere. Thus, the actual
simulation for particles that do not start at ground level as described by the sounding
data is not physically accurate. This can in some extreme cases result in initial negative
acceleration for particles on top of mountain peaks which would move them (moist-
adiabatically) downwards through the mountain’s boundary. One option to solve this
issue is to have areas which use different diagrams based on their altitude. This would
however require a lot of memory and for this reason it was not considered in the final
implementation.

8.4 Lattice Boltzmann Method

During the creation of this thesis, the Lattice Boltzmann Method (LBM) was imple-
mented both in 2D and 3D on CPU and GPU both. However, the final framework only
supports 3D GPU implementation. Once again, because LBM is an easily parallelizable
problem, the actual code bears no surprises and does not pose any issues that weren’t
covered in the theory.

For the simulation, the main idea is to use two lattices where each holds one con-
figuration of the simulation space. The lattices are swapped after each simulation step
and the lattice with the configuration from previous step is used for computing a new
configuration in the next step. This is similar to using two framebuffers when rendering
a window with OpenGL. It is possible to implement indexation that supports in-place
update of the lattice as proposed by Latt [Lat07] which could save a large amount of
memory for fine lattices and will be taken into consideration in future updates, however,
it is now out of scope of this work.

The lattice is stored in memory as a one dimensional array of nodes where each
node holds 19 float values in the case of D3Q19 configuration. Furthermore, an array of
velocities is also necessary for simulation which results in additional 3 floats per node.
As an example, a lattice with resolution 1003 would require 1003 · (19+3) ·4 Bytes which
translates to 88 Megabytes of memory.
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(a) Top view.

(b) Side view.

Figure 8.4: Box displaced by prebaked LBM simulation displayed with an orthographic
projection. Note that we hide particles that are below CCL in the shown images.

Implementation of the individual simulation steps is quite straightforward and can be
found in the source file LBM3D_1D_indices.cu. Each simulation step that was described
in Chapter 5 uses a single kernel for its execution. All kernels are simply called in
succession as they appear in Figure 5.6. Note that before particle movement step is
done, we need to map the VBOs containing particle positions and profile indices using
cudaGraphicsMapResources call. After the kernel has been executed, the resource must
be freed by calling cudaGraphicsUnmapResources. CUDA and OpenGL interoperability
is demonstrated on a particle sorting algorithm in Listing 8.6.

Besides the basic steps, we have also implemented the subgrid model approach which
ensures that the simulation is stable by recomputing the value of τ in each lattice node.
Furthermore, the subgrid model is not dependent on the lattice resolution and can there-
fore be enabled or disabled at runtime. The model and the theory behind it are further
examined in Appendix C. Simulation results using the subgrid model are presented in
Figure 8.4.

Since LBM simulation can become unstable even while the subgrid model is enabled,
we check that particles have valid values before they are rendered to prevent crashes
or other issues. This however requires a kernel that checks all particle positions and is
therefore computationally costly.
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For the collision step, we make use of shared memory cache that loads the whole
block of lattice nodes. This is most effective when the size of blocks is rather small since
we want to run a good amount of blocks on a single streaming multiprocessor (SM).
This means that we use 32x2 threads in 3D. This configuration of blocks was also used
for time measurements.

8.4.1 Standalone Application

In the standalone LBM application, multiple other features were available such as particle
color coding based on their velocity as shown in Figure 8.5, particle velocity vector and
lattice node velocity vector glyph visualizations, and many more. One interesting detail
worth mentioning was the option to switch between CPU and GPU implementations
and vice versa at runtime by enabling LBM_EXPERIMENTAL and recompiling. Using this
switch, users could get a sense of how much faster the GPU implementation is.

Figure 8.5: Visualization of particle velocities using viridis color map in 2D.

8.4.2 Inlets

In our implementation, we give users a free hand at selecting which walls (faces) of the
simulation area bounding box are treated as inlets. The implementation of this system is
very simple. The kernel that updates inlets (updateInletsKernel) simply checks whether
the node of each of the run threads belongs to the given wall. If so, the macroscopic
velocity is set to its user defined value and regular collision operator is applied.

8.4.3 Boundaries

Boundaries play a large role in the simulation. Within our application, we offer three
possible modes of how particles that cross the simulation area boundaries are treated.
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First option is that the particles are simply respawned randomly with uniform distribu-
tion in the active inlet wall. Second option respawns particles on the opposite side of the
simulation area as if it were a single repeating tile/block. As an example, imagine as if
the area was a texture with GL_TEXTURE_WRAP_S/T set to GL_REPEAT. This is achieved by
using a modulo operator. One important detail is that we need to use modulo operating
on floats as follows

pos.x = fmodf(pos.x + d_latticeWidth - 1, d_latticeWidth - 1)

for the particles not to be snapping to lattice nodes on respawn. The third mode is a
combination of the previous two where we respawn particles randomly if they leave the
boundary on the y axis while cycling them as in the second option on the x and z axes.

8.4.4 Streamline Particle System

Streamlines are an important visualization tool for flow fields that are particularly useful
for observing properties of the fluid. Each streamline shows a path taken by a tracked
particle starting at specified point. Streamline particle system was implemented for
debugging and visualizing our LBM implementation. For this we use a special particle
system and LBM kernels that continually create the streamline by activating or reusing
predefined sets of vertices. In other words, each streamline has a maximal number of
vertices which are all hidden at the start. During the simulation we iterate over this set
of vertices and update their position to current position of the particle.

Figure 8.6: Streamlines generated around a peak with τ = 0.6 and the subgrid model
enabled demonstrating eddy currents in the fluid flow.
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8.5 Cloud Rendering

The cloud rendering algorithm is straightforward and as mentioned before it closely re-
sembles a shadow mapping algorithm with few minor changes. Since the volumetric cloud
rendering was a later addition to our system, it is not managed by the ParticleSystem

class which itself provides a simpler rendering option that draws point sprites with basic
blending. The volumetric rendering is handled by a ParticleRenderer class.

Before the clouds can be rendered, the half-angle vector must be first calculated and
the particles must be sorted. The half-angle vector computation is shown in Algorithm 4.

Algorithm 4: Half-angle vector computation

1 Function recalcVectors(vec3 viewVec, vec3 lightVec)
2 if dot(viewVec, lightVec) > 0 then
3 halfVec= normalize(viewVec + lightVec);
4 invertedRendering= true;

5 else
6 halfVec= normalize(-viewVec + lightVec);
7 invertedRendering= false;

8.5.1 Particle Sorting

To achieve real-time speeds, especially with large numbers of particles reaching millions,
the sorting must be done quickly. For this, we utilize the GPU and the Thrust1 library
provided by NVIDIA. The sorting step can be decomposed into two substeps. First,
we need to compute the projections onto the half-angle vector. This is done by using a
custom kernel that goes through all particles (in parallel) and computes the projection as
a dot product of their position with the half-angle vector as shown in Listing 8.5. These
projection distances are saved to an auxiliary array. In the second step, we utilize Thrust
function sort_by_key where we use the distances as keys for sorting the particle indices.
We use particle indexing with glDrawElements (as opposed to glDrawArrays) since each
particle has multiple properties and we want to avoid sorting all these arrays individually.
Furthermore, sorting using a set of keys that have a primitive type value such as float
is very beneficial in that Thrust selects a much faster radix sort implementation instead
of merge sort implementation that is used on custom objects. The sorting function is
shown in Listing 8.6 where CUDA and OpenGL interoperability is demonstrated.

1available at: https://thrust.github.io/
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1 global void computeDistances(vec3 *particleVertices, float *particleDistances,

vec3 sortVector, int numParticles) {

2 int idx = threadIdx.x + blockDim.x * blockIdx.x;

3 if (idx < numParticles) {

4 particleDistances[idx] = dot(particleVertices[idx], sortVector);

5 }

6 }

Listing 8.5: Particle distances computation kernel that uses a projection onto a given
sorting vector (half-angle vector in our case).

1 void sortParticlesByProjection(vec3 sortVector) {

2

3 vec3 *d_mappedParticleVerticesVBO; // mapped particle positions (VBO)

4 unsigned int *d_mappedParticlesEBO; // mapped indices of vertices (EBO)

5

6 cudaGraphicsMapResources(1, &cudaParticleVerticesVBO, 0);

7 cudaGraphicsResourceGetMappedPointer((void **)&d_mappedParticleVerticesVBO,

nullptr, cudaParticleVerticesVBO);

8

9 cudaGraphicsMapResources(1, &cudaParticlesEBO, 0);

10 cudaGraphicsResourceGetMappedPointer((void **)&d_mappedParticlesEBO, nullptr,

cudaParticlesEBO);

11

12 computeParticleProjectedDistances<<<gridDim, blockDim>>>(

d_mappedParticleVerticesVBO, d_particleDistances, sortVector,

numActiveParticles); // Listing 8.5

13

14 thrust::sequence(thrust::device, d_mappedParticlesEBO, d_mappedParticlesEBO +

numActiveParticles); // sequence [0, 1, 2, ..., numActiveParticles]

15

16 // sort active particles using the auxiliary d_particleDistances array

17 thrust::sort_by_key(thrust::device, d_particleDistances, d_particleDistances +

numActiveParticles, d_mappedParticlesEBO, thrust::less_equal<float>());

18

19 cudaGraphicsUnmapResources(1, &cudaParticleVerticesVBO, 0);

20 cudaGraphicsUnmapResources(1, &cudaParticlesEBO, 0);

21 }

Listing 8.6: Particle sorting algorithm showcasing VBO and EBO mapping with a kernel
call.
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8.5.2 Slice Rendering

The clouds are rendered in two passes for each slice. For this, two render targets (frame-
buffers) are needed. One for rendering the cloud particles from the light’s point of view
and one for rendering the particles from the camera’s perspective. Let us call the first
framebuffer a light framebuffer and the second an image framebuffer. We iterate through
all slices and accumulate particle lightness into the light framebuffer which is then used
as a texture sampler for when rendering into the image framebuffer. This process is
shown in Algorithm 5. Note that for each slice we have to switch the render target twice
which is computationally expensive. Blurring of the light texture in-between rendering
individual slices is also possible to give an impression of more scattered light within the
medium. This also gives softer shadows if the light texture is used for shadow mapping.

Algorithm 5: Drawing slices iteratively

1 Function drawSlices()
2 batchSize ← ceil(numActiveParticles / numSlices);
3 clear light framebuffer with vec4(vec3(1.0) - dirLight.color, 0.0);
4 clear image framebuffer with vec4(0.0);
5 for i = 0 to numSlices - 1 do
6 drawSlice(i);
7 drawSliceLightView(i);
8 if useBlurPass then
9 blurLightTexture();

The blending of particles also depends on the current pass of the algorithm. When
rendering to the image framebuffer, blending varies based on the half-angle vector com-
putation as shown in Algorithm 6. When rendering the particles to the light buffer,
(GL_ONE, GL_ONE_MINUS_SRC_COLOR) blending is utilized as shown in Algorithm 7.

Algorithm 6: Drawing a slice to the image framebuffer

1 Function drawSlice(int i)
2 bind image framebuffer;
3 set viewport to screen size;
4 if invertedRendering then
5 blend function ← (GL_ONE_MINUS_DST_ALPHA, GL_ONE);

6 else
7 blend function ← (GL_ONE, GL_ONE_MINUS_SRC_ALPHA);

8 drawPointSprites(imagePassShader, i · batchSize, batchSize, true);
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Algorithm 7: Drawing a slice to the lighting framebuffer

1 Function drawSliceLightView(int i)
2 bind light framebuffer;
3 set viewport to light texture resolution;
4 blend function ← (GL_ONE, GL_ONE_MINUS_SRC_COLOR);
5 drawPointSprites(lightPassShader, i · batchSize, batchSize, false);

Initially, we chose to draw particles as simple point sprites using OpenGL’s built-in
texture coordinates (gl_PointCoord) for texturing. This later proved to be problematic
since we draw the particles from two points of view with different projection matrices.
This means that even if we were to scale the points according to either distance to camera
or distance to light, we would get shading that is constantly changing. In other words,
we need control over the world size of the quad that is drawn. For this, we use a simple
geometry shader in both passes which gives us full control over the particle rendering at
a small cost in performance. We show a pseudocode of the remainder of the described
rendering process in Appendix E.

8.5.3 Auxiliary Framebuffers

A very important part of our rendering pipeline is the usage of auxiliary framebuffers for
rendering the scene. As any reader with some experience with graphics programming
would assume, we choose to use auxiliary framebuffers for post-processing, HDR and
tone-mapping purposes. This is true to some degree, but we would like to stress that the
main reason this approach was selected pertains to cloud rendering. Since we render the
clouds separately to a custom framebuffer, we need depth data generated when rendering
opaque objects (or more generally, any objects that were rendered before clouds and
should occlude them). As shown in the sample implementation by Green, one option is
to draw the scene depth data to the framebuffer that is used for rendering final cloud
color. This is however a problem when rendering complex scenes as is our case where
large terrain and instanced meshes such as trees are present. With this approach, the
scene would have to be drawn twice to two depth buffers separately.

To solve this issue, using an auxiliary framebuffer object is a simple and effective
solution. We draw the scene to the auxiliary framebuffer, let us call it the main frame-
buffer of our application. Then, when we render the cloud particles, we attach the depth
component texture of our main framebuffer to the cloud image framebuffer. This is
safe even if we wanted to use the depth attachment later for other tests since the cloud
rendering algorithm does not write to the depth buffer, it only reads from it. There is
one drawback however, because we use the same depth attachment for both the main
framebuffer and the cloud image framebuffer, both their resolutions must be the same.
This is only an issue if we want to render the clouds with a lower resolution than the
final image to reduce computational complexity.
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Additionally, we want our system to utilize multisample anti-aliasing (MSAA). Sec-
ond framebuffer that has multisampled color and depth attachments is needed for MSAA
to be possible. We render the scene to the multisampled framebuffer. Before rendering
the clouds, we blit the multisampled color and depth values to the regular auxiliary
framebuffer to use the regular depth texture in cloud rendering where MSAA is unnec-
essary. From then on we use the regular auxiliary framebuffer till the end of rendering
loop at which we transfer its color data to the default window framebuffer. The whole
process is illustrated in Figure 8.7.

Figure 8.7: Rendering loop including the usage of auxiliary framebuffers.

8.5.4 Phase Function Integration

We have implemented all the phase functions presented in Section 6.6 into our framework.
Users can therefore alter between them at runtime to observe their properties. Since we
do not use a physically-based volume rendering approach, we incorporated the phase
functions using a simple trick. During the rendering of each particle batch, we increase
the intensity of the fragment as follows

fragColor.xyz *= (vec3(1.0)+ shadow * phaseFunctionVal)

Multiplying the output of the phase function with the shadow intensity makes sure that
the increased intensity is only visible in less dense areas. Since we want to increase the
intensity only, we need to add unit vector to the multiplication term.

8.5.5 Performance Note

One very important thing to note is the setting of individual parameters and the number
of particles used. One may obtain similar results with much lower amount of particles
by increasing their opacity and size, which usually yields much faster rendering. This
depends on scene and complexity of the shape formed by the particles. In Figure 8.8 we
show a comparison between two cloudscapes generated with different sets of parameters
producing visually similar results.
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(a) Clouds composed of 500k particles with opacity
multiplier set to 0.1.

(b) Clouds composed of 200k particles with opacity
multiplier set to 0.3 and with more intense blur.

Figure 8.8: Comparison of clouds with different visualization parameter settings and
particle counts.

8.5.6 Stylization

As part of experimentation we have implemented the possibility of using simple atlas
textures to further randomize the visual appearance of rendered clouds. Furthermore,
the cloud rendering algorithm is quite suitable for stylized visualization of clouds as
shown in Figure 8.9

Figure 8.9: Stylized appearance of clouds using a texture atlas to select different sprite
textures randomly.
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8.6 Sky Rendering

Large part of the final impression from any generated image is its backdrop/background.
In our case the most important background is the sky atmosphere itself. Since we want
to present our clouds in dynamic environments, HDRI sky images are not very practical
since they are static and usually contain clouds themselves (which is not necessarily
a problem, especially if the clouds represent the high clouds from upper parts of the
atmosphere). That is why we chose to use a dynamic sky model, particularly the one
proposed by Hošek and Wilkie [HW12]. An implementation of the model is public on
their webpage1, however, we have based our code on an implementation by Ben Anderson
that uses the Rust language which is available on his GitHub page2 [And17].

The Hošek-Wilkie model is an improvement of the Preetham model [PSS99] based
on the same formula by Perez et al.[PSM93]. The Perez formula for describing the
luminance of clear skies is defined as

FPerez(θ, γ) = (1 +AeB/ cos θ)(1 + CeDγ + E cos2 γ) (8.18)

where γ is the angle formed by the view direction and a vector pointing towards the sun,
and θ is the angle between zenith and view direction as shown in Figure 8.10 [HW12].

Figure 8.10: Angles used in the computation. η is the elevation while θ and γ are used
to compute the fragment color and are plugged into the updated Perez formula [HW12].

In Hošek-Wilkie’s model, a path tracer was used to produce realistic sky renders that
are then fitted using Levenberg-Marquardt non-linear least-square method in MATLAB.
In their source code, they provide data for their original spectral bands, CIE XYZ model
and RGB model. The updated Perez formula is defined as

F(θ, γ) = (1 +Ae
B

cos θ+0.01 ) · (C +DeEγ + F cos2 γ +G · χ(H, γ) + I · cos
1
2 θ) (8.19)

χ(g, α) =
1 + cos2 α

(1 + g2 − 2g · cosα)
3
2

(8.20)

1available at: https://cgg.mff.cuni.cz/projects/SkylightModelling/
2available at: https://github.com/benanders/Hosek-Wilkie
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We implement the formula on both the CPU and GPU. On CPU, the formula equa-
tions are necessary for parameter recalculation when any angles (θ, γ), or any parameters
such as turbidity of the sky or ground albedo, change. The GPU implementation is in
a form of a fragment shader (sky_hosek.frag) that renders the sky using a simple cube.
Example of the sky model in use is shown in Figure 8.11.

As was mentioned, even though HDRI images aren’t ideal for our purposes, they are
a stepping stone to the dynamic sky model. For this reason, their implementation is also
available in our framework.

To improve visual fidelity of our engine, we wish to update sun color based on the
appearance of the atmosphere. For this we utilize a simple approach of sampling the at-
mosphere on the CPU and updating the sun light color. Since the atmosphere generates
very saturated colors when the sun elevation is low, we interpolate the final color as a
mix of white color and the sky sample. The interpolation coefficient can be modified by
the user at any time.

Figure 8.11: Sunrise generated with the Hošek-Wilkie model with turbidity set to 4 and
albedo to 0.5.

76



Chapter 8. Implementation

8.7 Terrain

Terrain plays a major part in our application since it determines where the particles can
be generated and which nodes of the lattice are obstacle nodes. All this information
is stored in the heightmap from which the terrain is created at the initialization stage
of the application. Since it is not the main focus of this thesis, the terrain is created
naively on the CPU.

8.7.1 Heightmap

As mentioned above, the terrain is defined by its heightmap. In our case it is generally
a grayscale texture where each texel describes height of the terrain within a given range.
This range can be selected based on multiple factors, but it generally depends on the
terrain scale. For loading the heightmap, we use a single header library stb_image.h
1 which gives us the ability to load 16-bit per channel textures. This is particularly
useful because we want to create a smooth terrain and 8-bit information does not suffice
considering it only allows 256 height levels. There is an option of using all RGBA
channels instead of a grayscale image with additional logic that would assign a scale
factor to each channel. For example values in the red channel would be in units of
hundreds meters, G in tens of meters and so on. Problem of this approach is mainly
that the creation of a custom heightmap is not intuitive and the user cannot determine
the terrain profile just from looking at the texture. An example of the grayscale image
and its corresponding terrain is shown in Figure 8.12.

(a) Heightmap used for terrain generation. (b) Terrain created from the heightmap.

Figure 8.12: Grayscale heightmap used for terrain generation and the resulting terrain.

1available at: https://github.com/nothings/stb
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8.7.2 Perlin Noise

Additionaly, a perlin noise generator was implemented based on Perlin’s Java reference
source code for his improved perlin noise [Per02b, Per02a]. We have extended his ref-
erence code with octaves as shown in Listing 8.7 and an option to generate turbulent
noise which takes the absolute value of each sample. The sampler can be used statically
or as an instance where settings for frequency, number of octaves, sampling mode and
more are remembered for each individual sampler. Perlin noise is also utilized in particle
emitters where it is fed into CDF samplers as will be described in Section 8.8.

(a) General perlin noise used. (b) Turbulent perlin noise used.

Figure 8.13: Example of terrains generated by perlin noise with 10 octaves.

1 float perlinNoiseSampleOctaves(float x, float y, float z, float startFrequency,

int numOctaves, float persistence, int samplingMode) {

2 if (numOctaves <= 1) {

3 return perlinNoiseSample(x, y, z, startFrequency, samplingMode);

4 }

5 float frequency = startFrequency;

6 float amplitude = 1.0f;

7 float maxTotalValue = 0.0f;

8 float totalValue = 0.0f;

9 for (int i = 0; i < numOctaves; i++) {

10 totalValue += perlinNoiseSample(x, y, z, frequency, samplingMode) *

amplitude;

11 maxTotalValue += amplitude;

12 amplitude *= persistence;

13 frequency *= 2.0f;

14 }

15 return (totalValue / maxTotalValue);

16 }

Listing 8.7: Generating perlin noise with multiple octaves.
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8.7.3 Creation

We create the terrain by iterating through the heightmap texture and creating quads
composed of two triangles for each 4 adjacent texels. To create a smooth appearance
we need to generate interpolated normals for the terrain mesh. One option would be
to iterate over all terrain vertices and interpolate normals of incident triangles. This is
not necessary since all the information required to create normals for smooth shading is
already stored in the heightmap.

For computing the normals from heightmap, the trick lies in the fact that we can
compute the tangents in x and z directions (assuming that y axis points upward as is in
OpenGL). The tangent vector on the x axis of the terrain surface can be computed as

~tx =

(
∂x

∂x
,
∂h(x, z)

∂x
,
∂z

∂x

)
=

(
1,
∂h(x, z)

∂x
, 0

)
(8.21)

where y = h(x, z) denotes the height function. Similarly, the tangent vector on the z
axis is

~tz =

(
∂x

∂z
,
∂h(x, z)

∂z
,
∂z

∂z

)
=

(
0,
∂h(x, z)

∂x
, 1

)
(8.22)

[Daw18]

For estimating the partial derivatives, central difference formula is used [MF+04].
Assume that f ∈ R3[a, b] and that x− h, x, x+ h ∈ [a, b]. Then

f ′(x) ≈ f(x+ h)− f(x− h)

2h
(8.23)

This means that we can estimate

∂h

∂x
≈ R− L

2
and

∂h

∂z
≈ T −B

2
(8.24)

where R, L, T , B denote the right, left, top, and bottom adjacent heightmap texels.

To obtain the final normal vector, we compute a cross product taking the right-hand
rule into account as

~n = ~tz × ~tx =

(
− R− L

2
, 1,−T −B

2

)
= (L−R, 2, B − T ) (8.25)

Implementation of this can be seen in Listing 8.8. Note that we divide the tangents with
the texel size in world units and normalize the resulting vector.
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1 vec3 computeNormal(int x, int z) {

2 int xLeft = max(x - 1, 0);

3 int xRight = min(x + 1, width - 1);

4 int zBottom = max(z - 1, 0);

5 int zTop = min(z + 1, depth - 1);

6

7 float heightLeft = heightData[xLeft][z];

8 float heightRight = heightData[xRight][z];

9 float heightBottom = heightData[x][zBottom];

10 float heightTop = heightData[x][zTop];

11

12 vec3 normal;

13 normal.x = (heightLeft - heightRight) / texelWorldSize;

14 normal.y = 2.0f;

15 normal.z = (heightTop - heightBottom) / texelWorldSize;

16

17 return normalize(normal);

18 }

Listing 8.8: Calculating normal vector from height data.

8.7.4 Texturing

Our framework supports multiple textures/materials on the terrain by using multiple
texture units in a special purpose shader set just for terrain (terrain_pbr.vert and
terrain_pbr.frag). To determine how the materials are mixed together, an RGBA
image called the material map is used. Each of its channels determines how much each
material contributes to the final color. The same goes for other properties such as normal
maps, metalness, roughness, and ambient occlusion (AO). Our framework also supports
visualization of any textures on the terrain. In Figure 8.14 we demonstrate this feature
by rendering the terrain with its material map (a) or with its normal map (b).

(a) Material map with normals shown using a
geometry shader.

(b) Visualized normal maps.

Figure 8.14: Visualizations of textures on our terrain.
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8.8 Emitters

Another important part of the cloud generation are emitters that are placed on the
ground. Without LBM, shapes of the emitters are the main contributor to the final
cloud shape. We have taken a very user-oriented approach in regards to emitter usage.
There are two main categories of emitters present in our framework: emitters that span
the whole terrain and so-called positional emitters that can be placed anywhere in the
world as shown in Figure 8.15.

Figure 8.15: Class diagram of implemented emitters.

Air parcel particles are heated on the ground based on multitude of factors in real
life. To that end, simple geometric shapes such as circles and squares aren’t enough to
capture fascinating shapes that a cloud can form when viewed from above. Optimally,
emitters could have any shape imaginable. For this reason we have chosen to implement
cumulative distribution function (CDF) based sampling giving us the option to sample
from a given probability texture. With this approach, any grayscale texture can be used
as a pattern delineating an emitter area on the terrain for drawing clouds. Users can
therefore create custom shapes that they may wish to reproduce in their favorite digital
art software. A good example of this can be seen in Figure 8.16 where a black and white
logo was taken to create a desired cloud shape.

8.8.1 Cumulative Distribution Function Sampling

The cumulative distribution function (CDF) FX : R → [0, 1] is a basic concept from
theory of probability and statistics. It is defined as

FX(t) = P (X ≤ t) (8.26)

where P (X ≤ t) is the probability that the random variable X has a value less than or
equal to t [Nav07]. We sample the 2D image by using the inversion method. This means
that we generate uniform random variables and map them to the random variables from
the desired distribution, in this case a 2D probability image.

The CDF is computed on the CPU when we load the texture. If we want to modify
the texture contents at runtime, we upload the image data to GPU and update the sums
array (that represents the CDF) using Thrust library’s inclusive scan as described by
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Figure 8.16: Cloud formation shaped as the logo of the Department of Computer Graph-
ics and Interaction created with emitter that uses CDF sampling. Also note the cloud
shadow generated by our method.

Barák et al. [BBH13]. Our approach differs from conventional approaches in the fact
that we do not normalize the function to range [0, 1] since we load the texture as a set of
discrete values of type unsigned short int. This means that when we generate a uniform
random sample for an array, we generate it in range [1, totalSum] where totalSum is the
last value in the array after the inclusive scan was computed. Furthermore, as opposed to
Barák et al., we flatten the probability image into a 1D array. This is done particularly
to reduce the number of kernel calls and generally simplify the procedure. The actual
sampling function is shown in Algorithm 8.

Since we are able to generate any given shape on the terrain using the inverse CDF
mapping, we can also generate particles using any desired noise function. As an example,
we provide an option to use perlin noise in tandem with CDF sampler to either multiply
an existing texture or use the perlin noise output directly for sampling as shown in
Figure 8.17.

8.8.2 Brush Mode

Placing and moving emitters using the user interface is a cumbersome process and even
though our framework offers CDF sampling, we felt that a more user friendly approach
was still needed. For this reason, a brush mode for emitters was implemented. The
brush mode builds on the concept of positional emitters by using them as brushes.
EmitterBrushMode class manages brushes and determines which brush is currently active.
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Algorithm 8: CDF sampling procedure

Data: sums array containing inclusive prefix sums of the probability texture
Result: row and col indices of the sample

1 val ← random value ∈ [1, totalSum]
2 L ← 0
3 R ← n− 1
4 while L ≤ R do

5 idx ← bL+R
2 c

6 if val ≤ sums[idx] then
7 R ← idx− 1

8 else
9 L ← idx+ 1

10 row ← L / width
11 col ← L % width

Figure 8.17: Clouds generated with perlin noise that was sampled using CDF with no
wind applied.

If the brush mode is enabled, EmitterBrushMode is an aggregate class of ParticleSystem
that handles mouse input events by placing the active brush where the mouse cursor
intersects the terrain. For pixel perfect selection of the terrain point intersected by the
mouse cursor, we use a TerrainPicker class.
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The TerrainPicker class has its own framebuffer for rendering the terrain with cus-
tom fragment shader that renders the world space position of each fragment to the
framebuffer’s color attachment. For this to be valid, the color attachment must be of
type GL_FLOAT, otherwise OpenGL would clamp the values to a range [0, 1]. The terrain
picker must be updated in each frame by rendering the terrain when the brush mode is
active and the current camera was moved. Obtaining the world space position of terrain
pixel selected by the mouse cursor is then as simple as calling glReadPixels(mouse_x

, mouse_y, ...). Example of a hand drawn cloud using the brush mode is shown in
Figure 8.18.

The brush mode works with simple emitters as well as with more advanced posi-
tional CDF emitters giving users countless options to draw their cloudscapes. Lastly,
the emitter brush mode also supports scaling the brushes, changing their opacity (how
quickly they emit particles) or changing profile indices of the emitted particles.

Figure 8.18: Example of a hand drawn cloud shape using a basic circular emitter.

8.8.3 Memory Management

Careful reader may wonder how the emitters upload data to the GPU without degrading
the performance. Uploading individual particles would be very costly and not viable if
we were to generate ten thousand particles in one frame which is permitted in our system.
To solve this issue, the ParticleSystem calls all its emitters in its update function and
accumulates emitted particle data for the current frame. Particles are then uploaded in
a batch to the end of the active particles block if there is remaining memory left.
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8.9 General

Shading Model. The main building stone of any engine is its shading model. Initially,
we have opted to use only a basic Blinn-Phong implementation due to its simplicity.
As the application evolved, we’ve decided that adding simple physically-based rendering
(PBR) materials1 would improve the visual fidelity of our application greatly. Due to
this change of heart, the application supports rendering using both approaches.

Screen Size. We would like to note that our framework is designed with screen resize
and fullscreen mode in mind. For this, each system that uses auxiliary framebuffers
for rendering has to be refreshed at screen resolution change. Furthermore, in case of
minimized window where screen width and height are set to zero, the application yields
until it is reopened. Correct screen aspect ratio is also managed by refreshing necessary
projection matrices.

User Interface. An important part of our framework is its user interface that gives
users freedom in customizing individual parts of the simulation process. Nuklear li-
brary [Met17] has been selected to create a simple and user-friendly graphical interface.
Nuklear is an ANSI C single header library that offers good functionality and customiz-
ability. It is an immediate mode GUI which gives us easy control over the individual
events generated by users. For more information about the user interface, please see
Appendix F.

Application Loop. When all the features described in this chapter are put together, we
get a comprehensive framework that must update and render a wide-range of systems.
In Figure 8.19 we present a very simplified application loop of the framework. Note
that the majority of presented steps can be enabled/disabled. Only exceptions are the
initialization stage and opaque object rendering.

Figure 8.19: Main loop of the application.

1PBR implementation based on: https://learnopengl.com/PBR/Lighting
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9 Results

In this chapter we would like to present some of the results obtained when using our
framework. One of our main focuses was making all systems interactive and making
all the simulation steps optional and fully configurable. Thanks to this, fundamentally
different results can be obtained with a little bit of experimentation. In Figure 9.1 fog-
like clouds seen from an observer’s point of view on top of a mountain are shown. This
image was generated with lower opacity particles flowing through the mountain range
using both simulation methods. In Figure 9.2 the reader can observe an overcast sky
generated using multiple perlin noise emitters and the STLP method. Furthermore, in
Figure 9.3 a thick layer of clouds displaced by a mountain peak is shown.

Figure 9.1: Fog-like clouds flowing through a mountain range.

Comparison of our method with a reference photograph can be seen in Figure 9.4
where the clouds are flowing through a mountainous terrain with high peaks. Another
comparison showcasing the visual properties of our cloud rendering method is presented
in Figure 9.5. In it, a single cloud was rendered with high particle shadowing multi-
plier generating the very dark appearance as seen in the reference photograph. Third
comparison (Figure 9.6) illustrates how our method generates and renders a thick layer
of clouds at dawn. In Figure 9.8 we demonstrate how a simple box of particles can be
scattered using our simulator to generate an interesting cumulus cloud next to a hill.
Lastly, comparison of our overcast stratocumulus clouds with a reference photograph is
shown in Figure 9.9.
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Figure 9.2: Clouds generated with multiple perlin noise emitters showing a cloud overcast
with stratocumulus-like appearance.

Figure 9.3: Thick cloud layer fully encompassing a mountain peak from above with high
particle opacity.
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(a) Our result. (b) Reference photograph [Bir13].

Figure 9.4: Comparison of our method with reference photography. Clouds are flowing
through a mountainous terrain using the LBM and STLP methods.

(a) Our result. (b) Reference photograph [Pru15].

Figure 9.5: Comparison of our cloud rendering method with a reference photograph.
The cloud was rendered with high self-shadowing multiplier and the Henyey-Greenstein
phase function.
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(a) Our results. (b) Reference photograph [Ker09]

Figure 9.6: Layer of clouds generated with our method compared with a reference pho-
tograph. The image also showcases how the sun’s color is changed dynamically based
on the sun’s elevation.

Figure 9.7: Clouds flowing above a mountain range captured from below. Both STLP
and LBM were used for generating the cloudscape.
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Figure 9.8: Large cloud generated from box with simulation of LBM and STLP applied
for short amount of time.

(a) Our result. (b) Reference photograph [wmoa]

Figure 9.9: Comparison of generated stratocumulus clouds with a reference photograph.
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9.1 Measurements

The algorithm was tested on two computers: a desktop and a notebook. See Table 9.1
for their specifications.

Desktop Notebook

Operating system
MS Windows

10 Home (64-bit)

MS Windows

10 Home (64-bit)

CPU
Intel Core i7-6700K

@ 4.00GHz 4.00GHz

Intel Core i7-7700HQ

@ 2.80GHz 2.81GHz

GPU
NVIDIA GeForce

GTX 1080

NVIDIA GeForce

GTX 1050 Ti

Memory 32.0 GB RAM 16.0 GB RAM

Compute capability 6.1 6.1

CUDA driver version 10.0 10.0

Streaming multiprocessors 20 6

CUDA cores 2560 768

Table 9.1: Specifications of computers that were used for measurements.

For time measurements in the framework, we provide an extensive timer system that
tracks the most important and costly parts of the simulation process. Timers can be
added in code by using the TimerManager::createTimer() function. Each timer will be
automatically added to the UI and its measured frame times will be appended to the
generated benchmark .csv file.

We mention this system because the application and its speed are mainly dependent
on the configuration of our cloud rendering algorithm. Attributes such as point size,
particle opacity, sprite texture selection or particle shadow alpha have great impact on
the final speed of the application. Generally, the larger and more opaque the particles,
the slower the rendering process. The main cause of this is pixel overdraw where each
particle draws multiple pixels to the screen. Furthermore, the closer the camera gets to a
large group of particles, the larger slowdown will occur due to said overdraw. Complexity
of the cloud rendering algorithm also depends on the number of slices that are used. The
higher the slice count, the more computationally expensive the algorithm becomes. 256
slices were used for all the presented result images and measurements. The application
was run in fullscreen with full HD resolution and 4xMSAA during all tests.

In the first shown pair of diagrams (Figure 9.10) we present a benchmark of our
application in its default settings on both the desktop computer and the notebook. The
lattice size is set to 100 × 60 × 100 (width × height × depth) and 500k particles are
drawn. Furthermore, particles that are below CCL are not drawn since they should not
be visible during the simulation. As the reader can observe, the application holds a
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steady real-time frame rate with these settings maintaining around 30 frames per second
(FPS) or drawing each frame in 32.61ms on average on the desktop. On the notebook,
interactive times are achieved with 65.60ms needed to draw and simulate one frame on
average. During the measurement we have used a fixed camera as shown in Figure 9.11.
Average times for all the measured systems are shown in Table 9.2.

The application and all its systems show stable frame rate when fixed camera is
used. As the reader can notice, the most costly part of our system is the rendering by
a large margin. On the other hand, the STLP simulation has negligible impact on the
performance.
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(a) Desktop benchmark.
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(b) Notebook benchmark.

Figure 9.10: Benchmark of our application with 500k active particles and LBM with
100× 60× 100 lattice nodes. Total time shown denotes actual time needed to generate
one frame including other operations such as drawing terrain etc.

Total LBM Rendering Sorting STLP

Desktop 32.61 8.24 15.17 1.70 0.68

Notebook 65.60 12.46 31.30 2.48 1.12

Table 9.2: Average times [ms] from the benchmark presented in Figure 9.10

In a second benchmark (see Figure 9.12), more extreme conditions were tested with
10 million active particles and a lattice with resolution 1003. Furthermore, the camera
was moved around the scene which led to peaks and valleys in frame rate due to rapid
changes in pixel overdraw as described earlier. Nonetheless, running all the systems,
the application averaged 6.30 frames per second or 158.62ms per frame which is in
our opinion adequate. Note that all images of our results presented in this thesis use
maximally one million active particles (500k particles in most cases). Beyond particle
rendering, all other operations, including LBM, show stable frame rates once again. For
average times for this benchmark, please see Table 9.3.
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Figure 9.11: Cropped screenshot obtained during the benchmarking process using a fixed
camera.

Total LBM Rendering Sorting STLP

158.62 31.98 94.49 15.63 8.65

Table 9.3: Average times [ms] from the benchmark presented in Figure 9.12

Additionally to the benchmarks, in Table 9.4 we present how the performance of our
LBM implementation scales with lattice size and particle count. Lastly, in Table 9.5,
the speed of the STLP simulation is presented. As the reader can notice, the STLP
simulation can be run for large amounts of particles quite easily.

9.1.1 CPU and GPU Comparison

For more in-depth measurements of our older LBM implementation we would like to refer
the reader to our standalone project report available at www.martincap.io/ProjectFuji/
LatticeBoltzmann_report.pdf where CPU and GPU implementations of the LBM are
compared. For CPU measurements of the STLP simulator, please see Duarte’s thesis
[Dua16] where he presents his results using a single-threaded CPU implementation. Dur-
ing the creation of this thesis, we have shortly tested our CPU implementation of the
STLP simulator and obtained similar results as Duarte.
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Figure 9.12: Benchmark of our application on the desktop with 10 million particles and
LBM with 1003 lattice nodes. During the benchmarking the camera was purposefully
moved around resulting in fluctuations in particle rendering speed.

Lattice

Particles
500k 1m 5m 10m

503 2.56 3.17 8.03 14.23

1003 13.73 14.27 18.74 24.91

1503 44.16 44.87 50.98 59.10

2003 103.82 106.18 123.04 127.79

Table 9.4: Table showing simulation frame time [ms] for LBM with relation to lattice
resolution and number of particles. Values are averaged from 1000 frames.

Particles 500k 1m 5m 10m 50m

Time [ms] 0.94 1.28 4.04 7.63 35.50

Table 9.5: Table showing average time [ms] needed for one STLP simulation step with
relation to number of particles. Values are averaged from 1000 frames.
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10 Conclusion

In this thesis we have demonstrated how the SkewT/LogP cloud simulation method
proposed by Duarte [Dua16] can be coupled with the Lattice Boltzmann method to pro-
duce orographic clouds. An extensive framework was implemented using C++, OpenGL
and CUDA. Majority of the framework takes advantage of the GPU and exploits the
parallelizability of the above-mentioned methods. Additionally, a volume rendering al-
gorithm based on Green’s paper [Gre08] was implemented. The algorithm was extended
with anisotropic light scattering by using phase functions to increase intensity of less
occluded cloud particles. Everything put together runs in real-time including other im-
plemented algorithms such as exponential variance shadow maps, mesh instancing, or
PBR shaders for example. Furthermore, a user-friendly graphic interface was created
for the application. With it, users can draw cloud particles on the terrain, modify the
SkewT/LogP diagram and much more.

We feel that this approach to cloud simulation would require a lot more work and
attention to be useful in practical scenarios. Currently, it is heavily dependent on user
experimentation where multitude of its parameters can have great impact on the gen-
erated cloud shapes. For this purpose, we provide a wide range of tools that make the
experimentation process with both simulation methods as easy as possible. However, one
could say that Duarte’s approach clashes with LBM in many ways. The SkewT/LogP
simulator requires prepared emitters on the ground with time-varying variables to feed
the system with interesting cloud profiles. On the other hand, LBM is a physically-based
approach that, in its current state, does not give enough options to determine the final
flow of its simulated fluid. This results in particle clusters being separated and creating
more viscous fluidlike results than desired. These issues are easily spotted with our cloud
visualization technique which does not account for lone particles, rendering light dots
in the sky where the density of the condensed particles is too low to be visible by the
naked eye.

With these issues in mind, the method is most suitable for cloudscapes with high
cloud coverage. Additionally, as suggested in the previous chapter, with some exper-
imentation and with our set of tools, visually pleasing results with interesting cloud
formations are easily obtainable. In brief, we have accomplished the goals we set out for
this thesis. Beyond that, a great deal of time was spent on adding a cloud visualization
which was not initially planned. Thanks to this, we have created a comprehensive cloud
simulator that may be easily extended in the future.
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11 Future Work

There are countless areas where one could take our work and improve upon it. As men-
tioned earlier, parametrization of the LBM, from which the whole simulation process
would greatly benefit, is not implemented in our framework. Another area of improve-
ment would be addition of more sophisticated emitters whose shape and convective tem-
perature profiles could be adjusted using time dependent curves or functions. To take it
even further, a surface heating and cooling algorithm that would act as an emitter would
be another major improvement to the framework. Inclusion of Hošek’s solar radiance
model [HW13] in the sky model would give us a realistic sun appearance in place of
our current simplified visualization. Last but not least, an ability to render physically
realistic night scenes should also be considered in future updates of our framework.
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A Obtaining Relation Between T
and P Under Adiabatic Changes

Once the air parcel has been lifted to level (height) z, it has the same pressure as
the environment, that is, Pe(z) = Pp(z). Let a = Pe(z) = Pp(z). By substituting a in
Equation 2.2 (ideal gas law, P = ρRT ), we obtain a = ρe(z)RTe(z) and a = ρp(z)RTp(z).
These can be rewritten to

ρe(z) =
a

RTe(z)
(A.1)

and
ρp(z) =

a

RTp(z)
(A.2)

By substituting (dPe/dz)z with −ρe(z)g (using hydrostatic balance, see Equation 2.3)
in Equation 2.4 we get

ρp(z)
dv

dt
= −(−ρe(z)g)− ρp(z)g (A.3)

By substituting values of ρe(z) and ρp(z) in Equation A.3 we obtain

a

RTp(z)

dv

dt
=

ag

RTe(z)
− ag

RTp(z)
(A.4)

By dividing the equation with a and simplifying we get (in steps)

dv

dt
=
RTp(z)g

RTe(z)
− RTp(z)g

RTp(z)
(A.5)

dv

dt
= g

(Tp(z))
2 − Tp(z)Te(z)

Te(z)Tp(z)
(A.6)

dv

dt
= g

Tp(z)(Tp(z)− Te(z))
Te(z)Tp(z)

(A.7)

dv

dt
= g

Tp(z)− Te(z)
Te(z)

(A.8)
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B Exponential Variance Shadow
Maps

For rendering shadows in our framework, the exponential variance shadow maps (EVSM)
method proposed by Lauritzen and McCool [LM08] was implemented. The method is an
extension of variance shadow maps (VSM) proposed by Donnelly and Lauritzen [DL06].

Basic idea of VSM lies in the usage of Chebyshev’s inequality. Instead of storing
depths in the depth map, the first and second moments M1 = x and M2 = x2 of depth
x are stored instead. From these moments, we can compute the mean µ = E(x) = M1

and the variance σ2 = E(x2) − E(x)2 = M2 −M2
1 . The Chebyshev’s inequality then

describes the upper bound of shadow intensity pmax for a given fragment at depth t as

P (x > t) ≤ pmax(t) ≡ σ2

σ2 + (t− µ)2
(B.1)

The main advantage of using this approach lies in the fact that blurring the depth map
and applying other filters such as mipmapping or anisotropic filtering are sensible oper-
ations. On the other hand, this does not hold for the naive shadow mapping technique.
Thanks to this, generating high quality soft shadows is possible by blurring the depth
map texture. However, one large disadvantage of this method is that it is prone to light
bleeding because only the upper bound pmax of the shadow intensity is computed. This
leads to unwanted and unnaturally lit areas, especially in penumbras of shadows that
are cast onto different shadows as shown in Figure B.1. This can be partly resolved by
clamping pmax by some minimum value which reduces light bleeding but also reduces
the quality of the shadows when set too high.

Figure B.1: Very apparent example of light bleeding that was produces with depth map
blurring.
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Appendix B. Exponential Variance Shadow Maps

To solve the light bleeding issue, Lauritzen and McCool propose using the exponential
warping function. More specifically, the saved values to the depth map should be warped
using a function ecx where c is a user-defined constant and x is the fragment depth.
Therefore, instead of storing the first and second moments of the depth in the first pass,
we store ecx and (ecx)2 instead. The same warping is applied in the second pass when
drawing the scene from camera’s point of view. The warped values are then used in the
Chebyshev’s inequality to compute the shadow intensity of a given fragment.

Gaussian Blur. Additionally, optimized two-pass gaussian blur with linear sampling as
described by Rákos [Rá10] was implemented as part of the project. Thus, creation of high
quality soft shadows with low depth map resolutions is possible as shown in Figure B.2.

More Information. For more information about the implemented method, please see my
personal website: www.martincap.io.

(a) Naive shadows. (b) EVSM shadows.

Figure B.2: Comparison of naive shadow mapping technique and EVSM with optimized
9x9 gaussian blur. Resolution of 256x256 depth map resolution.
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C Subgrid Model of LBM

One of the main purposes of this work is the use of LBM in orographic cloud simulation.
For that reason, we want to reach high Reynolds number (Re) flows with our simulation.
The higher the value of Re, the more turbulent results we get, possibly creating eddy
currents in proximity to colliders/obstacles. Multiple methods exist for achieving these
desired effects. Let us describe the model as presented by Wei et al. in [WZF+03].

Smagorinsky Subgrid Model

At unit time step, the fluid kinematic viscosity ν is related to the relaxation time τ by

ν =
2τ − 1

6
(C.1)

Since we want to reach high Reynolds number (Re) flows, we want the value of ν to
be as small as possible, meaning that we send τ → 1/2. Numerical issues can arise when
τ → 1/2, leading to instability.

This problem can be partly resolved using the subgrid model [WZF+03]. As described
in the paper, the roots of the numerical instability lie in the inability of the LBM to
represent flow dynamics on scales smaller than the lattice spacing. Since the lattice may
be coarse, we lack the ability to transfer energy in smaller scale, making us unable to
stabilize the model. The Smagorinsky subgrid model is used to alleviate these issues
to some degree. It is important to note that this model does not in fact subdivide the
lattice in any manner, it just updates the collision step computation to capture these
small energy transfers. In the Smagorinsky subgrid model, the value of τ is allowed to
vary over lattice and change during each frame. This method also does not break the
parallelizability of the application, since we only access values of the neighbouring nodes.

To compute τnew for a given node, we must calculate the magnitude of the local strain
tensor S. For this, we use equations provided in the dissertation thesis by Wood [Woo16].
First, let us define a non-equilibrium distribution as

fneqi = fi(~x, t)− feqi (~x, t) (C.2)
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Appendix C. Subgrid Model of LBM

The local strain tensor can be then obtained using the set of equations (note that
we use different indexation of our D3Q19 model than in [Woo16]):

sxx = α(fneq3 + fneq4 + fneq7 + fneq8 + fneq9 + fneq10 + fneq15 + fneq16 + fneq17 + fneq18 ) (C.3)

sxy = syx = α(fneq15 + fneq16 + fneq17 + fneq18 ) (C.4)

sxz = szx = α(fneq7 − fneq8 + fneq9 − fneq10 ) (C.5)

syy = α(fneq5 + fneq6 + fneq11 + fneq12 + fneq13 + fneq14 + fneq15 + fneq16 + fneq17 + fneq18 ) (C.6)

syz = szy = α(−fneq11 + fneq12 + fneq13 − f
neq
14 ) (C.7)

szz = α(fneq1 + fneq2 + fneq7 + fneq8 + fneq9 + fneq10 + fneq11 + fneq12 + fneq13 + fneq14 ) (C.8)

where cs is the physical speed of sound of the fluid and it is related to c as cs = c/
√

3,
ρ is the macroscopic density and

α =
−1

2ρc2
sτ

(C.9)

The magnitude of the local strain tensor is

|S| =
√

2(s2
xx + s2

yy + s2
zz + 2(s2

xy + s2
xz + s2

yz)) (C.10)

The Smagorinsky eddy viscosity, given by

νt = C2|S| (C.11)

is then added to the shear viscosity to locally adjust the value of τ as

τnew = 3(ν + C2|S|) + 1/2) (C.12)

where C is the Smagorinsky constant that typically has the value of 0.3.
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D Physics and Thermodynamics
Basics

In this appendix, we would like to provide a very short glossary of terms that were not
explained in the main text. The definitions are taken and paraphrased from [Ahr11] and
www.engineeringtoolbox.com.

Pressure P Units. SI unit of pressure is 1 pascal [Pa] which is 1 N/m2. Bar is another
commonly used unit of pressure that is not approved as part of the SI unit system. It
holds that

1 bar = 105 Pa = 1000 hPa = 100 kPa (D.1)

or as is commonly used

1 millibar = 1 hPa (D.2)

Temperature T . Temperature is the measure of the average kinetic energy of each indi-
vidual molecule in a substance:

KEavg =
3

2
k · T (D.3)

where KEavg is the average kinetic energy of molecule and k = 1.381 · 10−23 is the
Boltzmann constant.

Multiple scales/units are used to measure temperature, in this thesis only degree
Celsius [◦C] and degree Kelvin [K] are used. Celsius and Kelvin share the same incre-
mental scale and one unit of Kelvin is equal in size to one unit of Celsius. To calculate
temperature in degree Kelvin from degree Celsius, add 273.15 to Celsius as follows:

T (K) = T (◦C) + 273.15 (D.4)

Dry Bulb Temperature. Dry bulb temperature is the most commonly used air property
usually referred to as “air temperature”. It basically corresponds to ambient air temper-
ature. The dry bulb temperature is obtained with thermometers that are not affected
by moisture of the air.
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Appendix D. Physics and Thermodynamics Basics

Wet Bulb Temperature Wet bulb temperature is the adiabatic saturation temperature
and can be measured by using a thermometer with the bulb wrapped in wet muslin
(a lightweight cotton cloth).

Dew Point Temperature. Dew point temperature is a temperature where water vapor
starts to condense out of the air and therefore becomes completely saturated. The
measurement of the dew point is related to humidity. If the dew point temperature is
close to the dry air temperature, the relative humidity is high, otherwise, it is low.

Lapse Rate. The rate at which air temperature in Earth’s atmosphere decreases with
height. It is the negative of the rate the temperature changes with altitude:

Γ = −dT
dz

(D.5)

The average lapse rate in the atmosphere up to 11km is about 6.5 degrees Celsius for
every 1000 meters.

Buoyancy. Buoyancy, or upthrust, is the tendency of a body to float or rise when sub-
merged in a fluid. The resultant upward force acting on the object that is immersed in
the fluid is called the buoyant force and can be expressed as

F = V γ = V ρg (D.6)

where F [N] is the buoyant force, V [m3] is volume of the body, γ = ρg [N/m3] is the
specific weight of fluid, ρ [kg/m3] is the density of fluid and g = 9.81 [m/s2] is the
acceleration of gravity.

Thermal Energy. Thermal energy is a kinetic energy of all the molecules in a system
added together as opposed to temperature, which is a measure of the average kinetic
energy for each molecule.

U =
3

2
·N · k · T (D.7)

where U is the thermal energy of ideal gas, N is the number of molecules, k = 1.381·10−23

is the Boltzmann constant and T is temperature.

Heat. Heat is the amount of thermal energy added to or removed from a system. It is
an energy that is tranferred between systems when they’re at different temperatures. It
is denoted as Q with SI unit Joule [J].
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Heat Capacity. Heat capacity (C, [J / K]) of a substance is the amount of heat required
to change its temperature by one degree. It has units of energy per degree. It is a
characteristic of an object. It is defined as

Q = C · dt (D.8)

where Q [J] is the amount of heat supplied, C [J / K] is the heat capacity of a system
or object and dt [K] is the temperature change.

Calorie (cal). Calorie is the amount of heat energy needed to raise the temperature
of one gram of water by one degree Celsius at a pressure of one atmosphere.

Specific Heat Capacity. Specific heat capacity (c, [J / (gK)] is the amount of heat re-
quired to change the temperature of a mass unit of a substance by one degree. Specific
heat is a more common term for the same.

The heat supplied to a mass can be expressed as

dQ = m · c · dt (D.9)

where dQ [J, kJ] is the supplied heat, m [g, kg] is the unit of mass , c is the specific heat
[J / (gK), kJ / (kgC)] and dt is the change of temperature [K]. For example: The specific
heat of iron is 0.45 J / (gK), which means that it takes 0.45 Joules of heat to raise one
gram of iron by one degree of Kelvin. Therefore if dQ is positive, heat is flowing into
the system, and if dQ is negative, heat is flowing out of the system.

From Equation D.9 we can obtain

c =
dQ

m · dt
(D.10)

Specific Heat - Gases. There are two definitions of specific heat for vapors and gases:

1. cp =
(
∂h
∂T

)
p

. . . specific heat at constant pressure

2. cv =
(
∂h
∂T

)
v

. . . specific heat at constant volume

For solids and liquids, it holds that cp = cv.

Gas Constant R. The individual gas constant R can be expressed as

R = cp − cv (D.11)

Ratio of Specific Heat The ratio of specific heat is expressed as

k =
cp
cv

(D.12)
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Latent Heat. The heat energy required to change a substance from one state to another
is called latent heat. During a change of phase, the heat added does not alter the
temperature. For example, if we have ice that is melting, the temperature remains at
0 ◦C until all the ice isn’t changed to liquid water. When it finally becomes liquid water,
added heat will start to increase its temperature till the next phase change (vaporization).
The heat energy released when water vapor condenses to form liquid droplets is called
latent heat of condensation. Conversely, the heat energy required to change liquid into
vapor at the same temperature is called latent heat of vaporization [Ahr11]. Specific
latent heat for a particular substance can be obtained from:

dQ = m · L (D.13)

where L [kJ / kg] is the specific latent heat, dQ [kJ] is the amount of energy that was
released or absorbed during the change of phase and m [kg] is the mass of the substance.
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E Point Sprite Rendering

In this chapter, we present the remainder of the cloud rendering algorithm. Pseudocode
showing how the point sprites are drawn is presented in Algorithm 9. The most im-
portant information lies in the fact that we do not write to the depth buffer, only read
from it. Furthermore, in the drawPoints function (line 11) we show that out of bounds
checking (line 12) is necessary for batch sizes of variable lengths. As an example, take a
situation where we have 500,000 active particles with 865 slices. This yields a batch size
of d500,000 / 865e ≈ d578.035e = 579. The last slice with index 864 would then have a
starting particle index computed as 579 ·864 = 500,256 which is a particle that is already
out of bounds. If the algorithm passes the first check, the second check (line 14) only
recalculates the amount of particles to be drawn preventing an overflow.

Algorithm 9: Point sprite rendering

1 Function drawPointSprites(shader, int start, int count, bool shadowed)
2 enable depth test;
3 depth mask ← GL_FALSE;
4 enable blending;
5 use shader;
6 if shadowed then
7 bind and prepare light texture;

8 drawPoints(start, count);
9 depth mask ← GL_TRUE;

10 disable blending;

11 Function drawPoints(int start, int count)
12 if start > numActiveParticles then
13 return;

14 if start + count > numActiveParticles then
15 count = numActiveParticles− start;
16 draw points from start to start+ count;
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F User Interface

Here we would like to familiarize the reader with the user interface of our application.
The application has multiple tabs for customizing parameters of individual systems such
as LBM, STLP, terrain, particle rendering and many more. There are also two viewport
modes: 2D diagram viewport and a 3D viewport. Please note that both modes share
the same UI panels. As shown in Figure F.1, the 3D viewport of the application offers a
main menubar, two sidebars, frame rate measurement head-up display, overlay textures,
and an overlay diagram.

In the 2D diagram viewport, users can navigate the STLP diagram by moving around
it or by zooming in and out to view individual intersections or other details they are
interested. Furthermore, curve editing (if enabled in STLP panel) is possible by dragging
individual ambient temperature or dew point curve vertices along their isobars.

Each sidebar of the UI can be set to one of twelve modes that pertain to individual
systems or settings. These are LBM options, lighting settings, terrain customization
and settings, sky settings, cloud visualization, STLP, emitter controls, view options,
debugging pane, scene hierarchy, properties tab, and particle settings. We will shortly
present all these tabs in their default settings. Please note that there is a large amount
of contextual and pop-up menus in the UI and not all will be covered in the next pages.
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Appendix F. User Interface

Figure F.2: LBM Tab.

In the LBM tab, users can play or pause the
simulation. Resetting the simulation is also pos-
sible by reinitializing the lattice to its default
weights. Value of τ can be set. The same goes for
a property named step frame. Step frame is an
integer n that makes sure that the simulation is
only run in frames with index that is a multiple
of n. Inlet settings such as inlet velocity vector,
respawn mode and active inlet walls are further
customizable. Subgrid model can also be enabled
and disabled at runtime. Velocity multiplier is
the artificial multiplier applied when moving the
cloud particles. Extended collision step as de-
scribed in Equation 5.9 can also be enabled, this
is however unstable in its current form.

LBM simulation area can be edited as well.
The area can be positioned and scaled freely in
the world space. Additionally, the area can be
snapped to ground based on its four bottom cor-
ners. During editing, a secondary bounding box
is shown to visualize the current simulation area.
Changes made to the area can be saved or dis-
carded as shown.

Streamlines are also managed in the LBM
tab. First, streamline instance must be created
by defining its streamline count and maximum
streamline length. After creation, options such
as setting horizontal or vertical lines of seeds are
present. Additionally, tracked particles can be
reset to their initial positions. Finally, the gen-
erated streamline instance can be torn down and
replaced with a new one with different streamline
count and length arguments.
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Figure F.3: SkewT/LogP Tab.

In the SkewT/LogP (STLP) tab users can
control both the STLP simulation as well as the
diagram settings. Simulation can be played or
paused. Similarly to LBM step frame, we provide
an option to skip simulation step in the defined
number of frames. ∆t can also be set using one
of the present widgets. Note that the value de-
noted with (Quick) only acts as a faster slider for
convenience and does not have any impact on the
simulation. “Divide Previous Velocity” denotes
our damping factor whose 100× multiple can be
set manually. The 100× multiplier is used so that
users can fine-tune the simulation with high pre-
cision. An option to clear the vertical velocity
(vy) CUDA array to zeros is also provided.

In the diagram settings, users can select the
sounding data file and whether to use orographic
parameters. The number of convective tempera-
ture profiles to be used and their range in degree
Celsius is also modifiable. Moreover, sounding
curve editing can be enabled or disabled. After
any changes to the diagram are made, “Recalcu-
late Parameters” button must be used to update
all curves for the simulation. If a different sound-
ing file was selected, “Load Sounding File” button
(contextual) must be pressed for the changes to
take place. In the diagram curves panel, groups
of curves can be hidden and their color can be
changed.

Diagram particle visualization controls are
also present in this tab. Diagram particles can
be hidden and their active count can be synchro-
nized with the particle system. Moreover, their
visualization color can be set. Overlay diagram
settings are also available. The overlay diagram
can be scaled and positioned on the screen. CCL
and EL levels can be visualized in the 3D viewport
using their perspective checkboxes. Additionally,
particle settings and parameter information pan-
els are shown. Lastly, a miscellaneous panel gives
options for scaling diagram text and changing vis-
ibility of certain diagram labels.
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Figure F.4: Cloud Visualization Tab.

In the cloud visualization tab, the sun posi-
tion can be adjusted. The volumetric rendering
can be enabled/disabled. In the image, options
for the volumetric rendering are illustrated. In its
settings, number of slices and number of displayed
slices can be customized. Based on its count, the
tab also shows what is the current particle batch
size for a single draw call. Inversion threshold
denotes a value against which the cos(~l, ~v) (see
Algorithm 4) is compared. The panel provides
information about whether the inverted render-
ing is currently in action. Debugging option to
form a box out of the particles is also available.
The box can be positioned and scaled by clicking
the edit button on its right. Point size, opacity
multiplier, tint color and shadow alpha determin-
ing how dark the occluded particles are, are also
editable. “Shader Set” and “First/Second Pass
Shader Mode” change the used shader set and de-
bugging shader uniforms, respectively. The point
sprite texture can be changed as well.

Our cloud rendering approach also supports
casting shadows which can be enabled or disabled
freely. Multiplier of the cast shadow can be ad-
justed. Phase functions are also changeable at
runtime. Users can select either of the phase func-
tions described in Section 6.6 for rendering. Ap-
propriate settings for each phase function will be
presented. An option to multiply the phase func-
tion result with shadow intensity is also available.

Experimental usage of texture atlases as sprite
textures can be enabled including a visualization
mode showing color coded particles based on their
atlas texture indices. Lastly, light texture blur-
ring can be enabled/disabled and its intensity can
be adjusted.
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Figure F.5: Lighting Tab.

In the lighting settings tab, the sun position,
focus point and the sun’s orthographic projection
can be customized. Furthermore, settings for the
exponential variance shadow maps are present in-
cluding shadow bias, whether to show shadows
only, and whether to use gaussian blur on the
generated shadow depth map.

Fog settings are also present. Users can select
fog mode (linear or exponential) and its settings:
minimum and maximum distance for linear fog,
falloff for exponential fog, and its intensity and
color. Lastly, directional light settings such as its
intensity (only for PBR shaders) and whether to
sample the sky for tinting its color are shown.
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Figure F.6: Terrain Tab.

In the terrain tab, users can hide the terrain,
choose to visualize its normals (using a geome-
try shader), change its material map, or set prop-
erties of its global normal map and grunge map
that break repeating patterns of its tiled mate-
rials. Furthermore, users can select any texture
to be projected onto the terrain for easier debug-
ging. Normal map visualization of the terrain is
also present in two modes: display default nor-
mals of the terrain mesh or display normals gen-
erated from its normal map textures. Panel of all
materials is present where albedo, metallic rough-
ness, normal map and ambient occlusion textures
can be changed along with their tiling for each
material individually.

Lastly, a button to open terrain generation
window is present. The terrain generator window
then provides options to change altitude range of
the terrain and the world size of texels. Terrains
can either be generated using a heightmap tex-
ture or perlin noise. If perlin noise is selected, its
settings are shown such as its frequency, number
of octaves, persistence (stacked multiplier applied
to each octave, e.g. if set to 1/2, second octave
will have intensity 1/2, third octave 1/4, n-th oc-
tave (1/2)n), and its mode (basic in range [-1, 1],
normalized to range [0, 1], or turbulent (absolute
value)).
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Figure F.7: Sky Tab.

In the sky tab, users can select whether to
use a skybox instead of a single color background.
When a skybox is enabled, regular HDRI images
or the dynamic model by Hošek and Wilkie can
be used for its rendering. If the dynamic model
is selected, options such as its turbidity, albedo
and sun visualization are shown. Option to recal-
culate the model live (each frame if its properties
such as sun elevation have changed) is present and
recommended to keep enabled. Debugging infor-
mation such as sun elevation are shown.

Furthermore, sun movement simulation op-
tion and its parameters such as speed of move-
ment and rotation axis (x or z) are present.
Lastly, the same directional light settings as in
Figure F.5 are provided.
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Figure F.8: Emitters Tab.

In the emitters tab, users are presented with
an option to create new emitters by opening an
emitter creation window. Brush mode that was
described in subsection 8.8.2 can also be enabled
or disabled.

If the brush mode is disabled, list of all emit-
ters is shown. Each emitter in the list can be
customized individually. Customization options
differ based on the emitter type. All emitters
share basic options such as whether they are en-
abled and visible, how many particles they emit
per frame and what is the range of profile indices
their emitted particles fall into. In case of posi-
tional emitters, their position and scale are also
modifiable.

If the brush mode is enabled, users can se-
lect the active brush from all available positional
emitters. If active brush is selected, users can
click and draw particles on the terrain. Using the
mouse wheel, users can change the scale of the
active brush. If shift is held down, the scrolling
changes how many particles are emitted by the
active brush. Furthermore, by holding control or
the alt key, scrolling adjusts the profile indices of
emitted particles.
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Figure F.9: View Tab.

The view tab gives users basic options such as
changing the camera speed, the current projection
mode (perspective or orthographic), whether to
use a freeroam camera, or whether the camera is
snapped to ground, hence simulating walking on
ground. Render mode can also be enabled which
hides all helper structures such as grids or axes.
Field of view (FOV) is editable when perspec-
tive projection is used. On the other hand, if or-
thographic projection is used, users can set front,
side and top views as in popular 3D modelers like
Blender or Maya. Lastly, using this panel, users
can switch between the 3D and 2D viewports.

Figure F.10: Particles Tab.

In the particles tab, users can load and
save current particle positions to a binary file
or change the number of currently active par-
ticles. Moreover, particle positions can also be
set. Particles can be either shaped into a box or
respawned randomly on the ground.
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Figure F.11: Debug Tab.

The debug tab contains useful functions and
information for debugging the whole application.

Its first section shows all timers for the ap-
plication. Each timer can be controlled in-
dividually and it displays all its accumulated
data such as average time, frame time, maxi-
mum and minimum times, and options to enable
GPU synchronization before and after it starts
or ends timing. The GPU synchronization is
further divided into two synchronization calls:
glFinish() for synchronizing OpenGL pipeline
and cudaDeviceSynchronize() for synchronizing
CUDA kernel execution. Timers can also be op-
erated all at once using global start, reset and end
buttons. Benchmarking checkbox can be used if
the user wants the application to automatically
generate .csv files containing all frame times cap-
tured by the timers.

Second section of the debugging tab contains
controls of overlay textures. Here, users can set
visibility of each overlay texture slot, select any
texture to be displayed within it and whether to
show its alpha texture.

Lastly, general information about the applica-
tion such as terrain resolution, camera position,
lattice dimensions, etc., is provided.
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Figure F.12: Hierarchy Tab.

The hierarchy tab simply contains the scene
hierarchy as users would expect from any other
game/rendering engine. Individual objects can
be selected and their detailed properties are then
shown in the properties tab (see Figure F.13).
Multiple objects can be selected at once and will
all be shown in the properties tab.

Figure F.13: Properties Tab.

Object details such as its transform (position,
rotation, scale) and whether the object is visible
or casts shadows are shown in the properties tab.
Furthermore, options such as object snapping to
ground or unparenting are present. If the selected
object is an instanced model, it is also possible to
refresh its instances by assigning them a new set
of random positions on the terrain.
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G Acronyms

AMS American Meteorology Society

ANSI American National Standards Institute

AO Ambient Occlusion

BGK Bhatnagar-Gross-Krook (Equation)

CA Cellular Automata

CDF Cumulative Distribution Function

CCL Convective Condensation Level

CFD Computational Fluid Dynamics

CML Coupled Map Lattice

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DALR Dry Adiabatic Lapse Rate

EBO Element Buffer Object

EL Equilibrium Level

EVSM Exponential Variance Shadow Maps

FBO Framebuffer Object

FOV Field of View

GEP Gene-Expression Programming

GPGPU General-Purpose Computing on Graphics Processing Unit

GPU Graphics Processing Unit

HDR High Dynamic Range

HDRI High Dynamic Range Imaging

LBM Lattice Boltzmann Method
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LCL Lifting Condensation Level

LFC Level of Free Convection

MSAA Multisample Anti-Aliasing

PBR Physically-Based Rendering

PNG Portable Network Graphics

SALR Saturated Adiabatic Lapse Rate

SI Système International (d’Unités) - International System of Units

SM Streaming Multiprocessor

STLP SkewT/LogP

UI User Interface

VBO Vertex Buffer Object

VSM Variance Shadow Maps

WMO World Meteorological Association
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H DVD Contents

DVD Contents

images

ProjectFuji doc

ProjectFuji exe

ProjectFuji src

Cap Thesis.pdf

Cap Thesis src

User Manual.pdf

Directory containing selected images of our results.

Generated Doxygen documentation for the code.

Directory containing executables.

Directory containing source code.

Thesis text in PDF format.

LATEX source files for this thesis.

User manual for the application.
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