CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Master’'s Thesis

Real-time Global lllumination
using Irradiance Probes

Simon Sedlacek
Open Informatics

May 2019
Supervisor: doc. Ing. Jifi Bittner, Ph.D.

[‘.‘; ; ZADANI DIPLOMOVE PRACE

1. OSOBNI A STUDIJNI UDAJE
e N
PFijmeni: Sedlacek Jméno: Simon Osobni &islo: 434870

Fakulta/ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitacové grafiky a interakce

Studijni program: Oteviena informatika

Studijni obor: Pocitacova grafika
. J
Il. UDAJE K DIPLOMOVE PRACI
~
Nazev diplomové prace:
Vypocet globalniho osvétleni v redlném ¢ase pomoci sond intenzity ozareni
Nazev diplomové prace anglicky:
Real-Time Global lllumination using Irradiance Probes
Pokyny pro vypracovani:
Review existing methods for real-time global illumination. Focus on methods that allow computing global illumination even
on low-end graphics hardware and support at least partially dynamic scenes. Implement a recent global illumination method
using precomputed local reconstruction from sparse radiance probes [1].
Conduct a series of tests of the method on at least two different scenes and evaluate its precomputation times and running
times. Evaluate the rendering quality of the methods by comparing with an offline global illumination solution or using
high-quality settings of the implemented method with many radiance probes. Identify the strengths and weaknesses of
the method. Try to invent an extension of the implemented method which would allow using non-static objects and/or
extensions aimed for friendly real-life usage of this algorithm.
Seznam doporucené literatury:
[1] Ari Silvennoinen, Jaakko Lehtinen. Real-time Global lllumination by Precomputed Local Reconstruction from Sparse
Radiance Probes. ACM Transactions on Graphics, Vol. 36, No. 6, Article 230, 2017.
[2] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed Radiance Transfer for Real-Time Rendering in Dynamic,
Low-Frequency Lighting Environments. ACM Transactions on Graphics, Vol. 36, No. 6, Article 230, 2017.
[3] Jaroslav Kfivanek, Kadi Bouatouch, Sumanta Pattanaik, and Jifi Zara. Making radiance and irradiance caching practical:
Adaptive caching and neighbor clamping. In Rendering Techniques 2006 (Proc. of Eurographics Symposium on Rendering),
pages 127-138, 2006
[4] Tobias Ritschel Carsten Dachsbacher Thorsten Grosch Jan Kautz. The state of the art in interactive global illumination.
In Computer Graphics Forum (Vol. 31, No. 1, pp. 160-188), 2012.
Jméno a pracovisté vedouci(ho) diplomové prace:
doc. Ing. Jifi Bittner, Ph.D., Katedra pocitacové grafiky a interakce
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:
Datum zadani diplomové prace: 14.02.2019 Termin odevzdani diplomové prace: 24.05.2019
Platnost zadani diplomové prace: 20.09.2020
doc. Ing. Jifi Bittner, Ph.D. podpis vedouci(ho) Ustavu/katedry prof. Ing. Pavel Ripka, CSc.
podpis vedouci(ho) prace podpis dékana(ky)
. J

CVUT-CZ-ZDP-2015.1 Strana1z2 © CVUT v Praze, Design: EVUT v Praze, VIC

Ill. PREVZETi ZADANi

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych prament a jmen konzultanty je tfeba uvést v diplomové praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZDP-2015.1 Strana2z2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgement

I would like to thank my supervisor
doc. Ing. Jiri Bittner, Ph.D. as he was
supportive during my work on this the-
sis and encouraged me to continue in
this field of study beyond the scope of
this thesis. I would also like to thank
my family and my lovely Baruska for be-
ing so supportive during all those years
I have spent studying. Who would have
thought that their support would result
in real-time global illumination?

/ Declaration

Prohlasuji, ze jsem predlozenou pra-
ci vypracoval samostatné a ze jsem
uvedl veskeré pouzité informacni zdroje
v souladu s Metodickym pokynem o do-
drzovani etickych principti pri pripravé
vysokoskolskych zavéreénych praci.

V Praze dne 15. 5. 2019

Abstrakt

V této praci prezentuji sva dvé vylep-
Seni k nedavno zverejnéné metodé pro
vypocet globalniho osvétleni zalozené
na ukladani iradiance v ridké mnoziné.
Mé prvni rozsifeni umoznuje vypocet
globdlniho osvétleni i pro dynamické
objekty. Toto rozsifeni podporuje velké
mnozstvi stinovacich technik (normé-
mapovani, spekuldrni odrazy).
Mé¢ druhé rozsiteni pouziva dynamické
arovné detailu pro globalni osvétleni.
Je schopno vyrazné zvysit vykon algo-
ritmu bez velkych chyb ve vykreslenych
snimcich.

Kli€ova slova: globalni osvétleni v
realném cCase, predpocitany transport
radiance, prenos svétla, sférické har-
monické, dynamickd turoven detailu,
zlepseni ¢asové narocnosti

Preklad titulu: Vypocet globalniho
osvétleni v redlném case pomoci sond
intenzity ozareni

lové

/ Abstract

Vi

I present two extensions to a recently
introduced method for real-time global
illumination based on sparse irradiance
caching. The first extension allows
the computation of global illumination
shading for dynamic objects with the
support of various shading techniques
(normal mapping, specular reflections).
The second extension uses a dynamic
level of detail for global illumination,
which is able to significantly improve
performance without noticeable errors
of a rendered frame.

Keywords: real-time global illumi-
nation, precomputed radiance transfer,
light transport, spherical harmonics,
dynamic level of detail, performance
improvement

Contents

1 Introduction
2 RelatedWork 2
2.1 Overview of Real-Time

Global Illumination Methods....2
2.2 Precomputed Radiance

Transfer 4
3 Real-Time Global Illumination
by Precomputed Local Recon-
struction from Sparse Radi-
anceProbes 5
3.1 Method Overview 5
3.1.1 Quick introduction......... 5
3.1.2 Detailed introduction...... 7
3.2 Precomputation Phase......... 12
3.2.1 Irradiance Receivers
Placement 12
3.2.2 Probe Placement &
Radius Calculation 16
3.2.3 Probe Ray-Casting &
Receiver Coefficients..... 18
3.2.4 Receiver Clustering 21
3.2.5 Computational Tex-
tures and Output Data
File ..., 25
3.3 Rendering in Real-Time 30

3.3.1 Main Rendering Loop ... 30
3.4 Asymptotic Time and Mem-

ory Complexity 34
3.4.1 Precomputation Algo-
rithm Complexity........ 34
3.4.2 Real-time Algorithm
Complexity 35
4 Method Extensions 36

4.1 Shading Dynamic Objects
Using Voxel Irradiance Space . 37
4.1.1 Irradiance Voxel Space

Using Regular Grid 38
4.1.2 Computation of Irradi-
ance from Voxel Grid.... 40
4.2 Dynamic Level of Detail 41
4.2.1 Probe Computation
with LOD 41
4.2.2 Cluster Basis Compu-
tation with LOD 44

4.2.3 Irradiance Receiver
Computation with LOD . 45

/

4.2.4 Usage of LOD Irradi-
ance Textures in Frag-

BResults

5.1 Real-Time Global Illumina-
tion by Precomputed Local
Reconstruction from Sparse

Radiance Probes

5.1.1 Testing Number of

5.1.2 Testing Number of Re-

CeIVEIS ...

5.1.3 Testing a;; Coefficients

Setup ..oovvviiii

5.1.4 Incorrect Irradiance
at Contact Points of
Meshes

5.2 Extensions......................

5.2.1 Global Illumination
Shading for Dynamic

Objects ..o.ovvvinin.
5.2.2 Dynamic Level of Detail .
6 Conclusion

6.1 Future Work

References
A The ApplicationGuide
A.1 Scene Configuration File.......
A.2 Application GUIL

B Used Libraries and Extern

Packages..........................

C Compilation of Provided Appli-

cations

D The Contents of The Enclosed

Vii

56
61
71

5.1.

5.2.

5.3.

5.4.

5.6.

5.7.

5.9.

5.10.

5.11.

Tables / Figures

Setups for testing number of

probes in the scene............. 49
Setups for testing number of
receivers in the scene........... 51
Table of density setup for
irradiance voxel grid testing ... 57
Open Hall testing LOD setups . 61
Computation times for ren-

ders in figure of Open Hall,
camera 1...............oiil.. 62
Computation times for ren-

ders of Open Hall, camera

2 63
Computation times for ren-

ders of Open Hall, camera

5 64

Computation times for ren-

ders of Cornell Box scene. 65
Computation times, for ren-

ders of Large Cornell Box

SCEIIE. «iteneee e eee, 66
Table of distances setup for

LOD testingc..ceen. 67
Table of SH degree setup for
LOD testingc..cooeen. 68

viii

1.1.
2.1.

3.1.
3.2.
3.3.
3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.
3.13.

3.14.
3.15.
3.16.
3.17.
3.18.

3.19.

3.20.
3.21.

3.22.

3.23.
3.24.
3.25.
3.26.
3.27.
3.28.

The proposed method example ..1
The proposed method by Sil-
vennoinen and Lehtinen
Simple visualization of ren-
dering cycle. ... 6
Simple visualization of ren-
dering cycle, second iteration. ...6
Visualization of SH degrees. 8
Example of SH basis functions. ..8
Visualization of probe’s re-

light rays.......coocoiiiiiii. 9
Visualization of visibility

match between probes and a

TECEIVET. ..ttt it eeeeeaeens 10
Rule 1 of lightmap UV coor-
dinates calculation 13
Rule 2 of lightmap UV coor-
dinates calculation 13
Unused empty space vis. in
UVmapcovvviniinnen... 14
Fill of unused empty space

vis. in UVmap................. 14
UV coordinates without bor-

der ... 15
UV coordinates with border ... 15
Voxel normal consistency

check. ... 16
Probe placement 17
Probe Ray-casting.............. 18
Receiver, support of probes.... 19
Receiver, casting rays 19
Clustering visualization,

without error base splitting.... 21
Clustering visualization,

with error base splitting 22
Clustering comparison 22
Clustering, initial transport
matrix ... 23
Probe Ray Intersection tex-

TUTEe ©oe 25
Spherical Harmonics texture... 25
Cluster Matrix texture......... 26
Cluster Size texture 26
Cluster Probe Index texture... 27
Receiver Map texture 27
Receiver Transport texture 28

3.29. Receiver Material Map tex-
ture ... 28
3.30. Main rendering loop 30
3.31. Cluster basis vectors: matrix
multiplication 31
3.32. Irradiance fetch-back exam-
ples ..o 33
4.1. Visualization of spatial re-
CEIVET .ottt 37
4.2. Visualization of active spatial
TECEIVETS .. vviie e, 39
4.3. Recontruction of irradiance
for dynamic objects 40
4.4. 1LOD probe distance............ 41
4.5. LOD probe’s relight rays 42
4.6. LOD receivers supported by
probe ... 42
4.7. LOD receivers supported by
probe, shifted by radius........ 43
4.8. LOD Camera View Depen-
dant Zones...................... 43
4.9. LOD cluster matrix 44
4.10. LOD receiver write thought
irradiance texture LOD 45
4.11. LOD receiver in different
LOD than its cluster........... 46
4.12. Fragments take irradiance

4.13.

5.1.

5.2.

5.3.

5.4.

5.6.

without smoothing between

LOD oo 47
Fragments take irradiance

with smoothing between LOD . 47
Screenshot from the imple-
mented application. 48
Testing renders for different
number of probes............... 49
Testing scenes for a differ-

ent number of probes with
visualized probes position. 49
Testing scenes for a different
number of probes, single setup . 50
Testing scenes for a different
number of probes, multiple

Testing renders for a differ-
ent number of receivers 50

5.7. Testing renders for different
number of receivers, single

5.8. Testing renders for a dif-
ferent number of receivers,

dependency graph.............

5.9. Receivers, no hitpoint exam-

5.10. Testing weighted function
for ray hitpoints, visualiza-

tion of the problem

5.11. Testing weighted function

for ray hitpoints, renders

5.12. Incorrect irradiance at con-
tact points of meshes, exam-

ple of a bright aura

5.13. Incorrect irradiance at con-
tact points of meshes, how
higher sampling dims the au-

5.14. Incorrect irradiance at con-
tact points of meshes, shift-

ing receivers position.

5.15. Comparison of render with
shifted receivers position and
the original render without

shifting.

5.16. Dynamic irradiance voxel

calculation renders

5.17. Dynamic irradiance voxel
calculation, an SSIM differ-

5.18. Irradiance voxel grid with

different density setups

5.19. Irradiance voxel grid with
different density setups, ac-

tive voxels visualization.

5.20. Dynamic object shading re-

sults: Layers of shading.......

5.21. Shadow casted by a dynamic

object ...

5.22. Dynamic object shading re-

sults: Static light sources

5.23. Normal mapping for static

scene. Example................

. 95

.99

. o7

Xi

5.24.

5.25.

5.26.

5.27.

5.28.

5.29.

5.30.

5.31.

5.32.

5.33.

A.1.

Rendered scene Open Hall,

camera 1.........oovuiiininn.. 62
Rendered scene Open Hall,
CAMETA 2.\ iieieie i, 63
Rendered scene Open Hall,
CAMETA 3 veereeeeeee e, 64

Rendered scene Cornell Box

with different lightmap size

for different LOD. 65
Rendered scene Large Cor-

nell Box with different SH

degree for LOD 0 only.......... 66
Different LOD distance se-
TUPS. e 67

Different SH degree setups. 68
Fragments take irradiance
without smoothing between

LOD .o 69
Camera View Dependant

Zones in LOD 70
Testing lightmap border ex-
tension pixels in LOD.......... 70
Scene configuration file com-
mands.........ooiiiiiiii 76

Chapter 1
Introduction

Calculation of correct light reflectance thought the scene in computer graphics is one
of the most impactful effects there is. Correct light transport is often the effect, which
blurs a line between computer graphics and reality the most. As impactful this effect
is, it is also costly.

Due to the speed and number of photons, it is almost impossible to compute cor-
rectly. There are ways how to approximate light reflectance for offline rendering, for
example, path tracing [1]. These methods provide incredible results, but rendering time
is adequate to the visual effect. Furthermore, methods like path tracing are prone to
noisy outputs due to an insufficient amount of sampling rays. An example is shown in
Figure 1.1 right image.

To compute such an enormous task of light reflectance in real-time, even more prob-
lems show up. A standard way how to solve the problem today is to calculate only
single light bounce, from the light source to a first hit point. The rest of the light
reflectance is then approximated with ambient light. This solution is fast but lacks the
visual quality as no color bleeding or soft shadows are possible. An example, using
shadow mapping [2] and ambient light, is shown in Figure 1.1 left image.

As it is costly to compute the traveling path for every photon in real-time, there was
an idea to precompute these paths and reuse them in real-time rendering. Class of algo-
rithms which precompute lightpaths and reuse them in real-time is called Precomputed
Radiance Transfer [3].

For a starting point of my work, I chose newly released algorithm from Precomputed
Radiance Transfer class called Real-time Global Illumination by Precomputed Local
Reconstruction from Sparse Radiance Probes [4] by Silvennoinen and Lehtinen. This
algorithm allows to precompute light paths and due to re-rendering of computed light
paths, it is able to approximate global illumination in real-time for dynamic light-
sources. An example output of this algorithm is shown in Figure 1.1 middle images. As
for every method, there are some drawbacks. This method does not support dynamic
objects and effects like a normal mapping or specular reflections are costly.

My goal with this algorithm was to create and implement extensions to push it
towards real-life usage in commercial rendering engines.

SHADOW MAPPING + IMPLEMENTED METHOD
AMBIENT LIGHT IMPLEMENTED METHOD HIGHT QUALITY SETUP PATH TRACER

Figure 1.1. Rendering of Cornell box using different rendering techniques, rendering times
are noted in the bottom left corner.

Chapter 2
Related Work

Because the implemented algorithm [4] belongs to the class of algorithms called Pre-
computed Radiance Transfer, I separated this chapter into two sections. The first
section describes general approaches on how global illumination in real-time has been
approximated. The second section focuses solely on the Precomputed Radiance Transfer
methods.

I 2.1 Overview of Real-Time Global lllumination
Methods

To achieve global illumination effect for low-frequency spatially-varying Bidirectional
Reflectance Distribution Function (BRDF') for completely static scenes (only the camera
can move), we can use any type of offline rendering method capable of global illumina-
tion. An example can be the path tracing algorithm [1]. Light is computed and stored
in textures, which are then used during rendering. This process is often called light
baking [5].

Even when partial interactivity is needed in real-time global illumination, the problem
becomes much more difficult to solve. Based on the paper of Ritschel et al. [6], real-time
global illumination methods can be separated into several categories.

One of the first approaches discretized the scene and use only patches (discrete sam-
ples) to compute light interaction between objects. This approach is called Finite Ele-
ments (sometimes called Radiosity) [7]. Finite Elements method is suitable for diffuse
surfaces as patches only calculate patch-to-patch light interaction omitting the viewing
position. The number of patches defines the quality of light reconstruction. However,
as we need to compute the interaction of every patch with every other patch, this ap-
proach does not scale well (quadratic growth). Nichols et al. [8] introduced hierarchical
ordering of patches for better scalability of the Finite Elements method.

The second available approach uses ray-tracing algorithms. Ray-tracing algorithms
provide a great variety of supported light effects: diffuse surfaces, reflections, refractions
or subsurface scattering. However, these algorithms have often noisy outputs, due to in-
sufficient sampling of rays. Usage of ray-tracing algorithms for real-time light reflectance
is becoming more available as recently introduced GPUs support HW Bounding Volume
Hierarchies (BVH) traversal using dedicated ray-tracing cores.

Photon Mapping [9] algorithm uses the idea of shooting a dense set of photons from
light-source which are then stored in a map. During rendering, this map is used to
estimate irradiance in certain fragment with respect to the density of photons in the
nearest area. Photon Mapping can be used to simulate even high-frequency spatially-
varying BRDF (as caustics). The bottleneck of this algorithm is the photon density
estimation, as every fragment has to search nearest photons in the photon map.

A similar approach to Photon Mapping is Instant Radiosity method [10]. In Instant
Radiosity, photons are not used for density estimation instead they are used as virtual
point lights (VPLs). As the name itself suggests, VPLs are then used as light-sources to
illuminate fragments of the scene. Using VPLs, Instant Radiosity avoids the searching
in the map during rendering. Nevertheless, there is still iteration over all VPLs. Walter
et al. [11] introduced Light Cuts method, which builds hierarchical tree structure over
all virtual point lights, enabling sub-linear light gathering in fragments.

More general approach with the usage of VPL idea is called Point-based Global
Ilumination [12]. Here, sample points are not only shot from light-sources but cover the
whole scene. A similar hierarchical structure is then used to gather light in fragments.

Notice how all methods above were neglecting the light path. They only measured
light at the surface. Because of this, these approaches are not suitable for rendering
global illumination in media with different density or viscosity. To capture light travel-
ing through the media, Discrete ordinate methods [13] discretize the space using a voxel
grid. Light traveling through the volume is then computed as voxel interaction with all
neighboring voxels. This approach yields slower convergence of the system. Kaplanyan
and Dachsbacher [14] improved convergence speed by usage of recursive grids together
with reflective shadow maps [15].

2. Related Work

I 2.2 Precomputed Radiance Transfer

As it was written in the paper of Ritschel et al. [6], many simplifications can be made if
all objects positions are fixed. It is possible to precompute light paths and reuse them
with precomputed visibility in real-time. Class of algorithms using this idea is called
Precomputed Radiance Transfer (PRT). For example, Sloan et al. [16] captured how
the surface of a geometry reacts to an incoming radiance. They stored this information
on surface points and were able to reconstruct a shading with self-shadowing not only
for polygon meshes but also for volumetric geometry such as clouds and fog.

For storage of light paths and information about light reflectance in many PRT
methods (including above-mentioned work of Sloan et al. [16]), Spherical Harmonics
[17] are often used. Green [18] describes the basic usage of Spherical Harmonics in
computer graphics.

Spherical Harmonics are efficient on memory and reconstruction. Though, they are
suitable mainly for low-frequency spatially-varying BRDF, such as diffuse surfaces. As
one of the first tries to avoid this restriction Liu et al. [19] used non-linear wavelets
to capture any-frequency signal. This allowed reconstructing even specular reflections.
However, non-linear wavelets are more demanding on both memory and computation
time. Which is also mentioned in the paper of Ritschel et al. [6].

Due to local coherence of light transport in space, the signal can be compressed using
clustering [20], Principal Component Analysis (PCA) [21] and other methods.

PRT methods do not support dynamic objects due to their precomputed light trans-
fer. To give at least approximation of lighting for dynamic objects Greger et al. [22]
stored a grid of spatial irradiance measured in many ways around the measuring point
to reconstruct lighting at any point in space. Similar approaches [23] were presented
to store ambient occlusion [24] or to transfer entire radiance [25] for reconstruction of
glossy materials. Jendersie et al. [26] used the idea of spatial irradiance caching [22]
to propagate incoming light to surface samples, from which they interpolated resulting
irradiance.

To support fully dynamic lights, Silvennoinen and Lehtinen [4] decomposed the light
transport to two major stages. They separated a light gathering (using radiance probes)
and a light distribution (using radiance receivers). Furthermore, with the usage of
Singular Value Decomposition (SVD), the truncation of transport matrices lead to
memory and time efficient algorithm for real-time global illumination. However, this
method does not support dynamic objects. Furthermore, effects like normal mapping or
specular reflections are possible only if radiance is transported. As it was already noted
by authors, transport of radiance is noticeable more demanding on both memory and
computation time due to the higher dimension of transport in every stage. Example of
this method is shown in Figure 2.1.

Figure 2.1. The proposed method by Silvennoinen and Lehtinen [4].

Chapter 3

Real-Time Global lllumination by
Precomputed Local Reconstruction from
Sparse Radiance Probes

Before I explain the implementation details of the proposed method [4], I will describe
the method in a more general way for better understanding.

I 3.1 Method Overview

To explain the most general concept of the light propagation, I separated explanation
into two sections. Section 3.1.1 provides a general idea without any mathematical
equations, whereas section 3.1.2 provides a detailed introduction into the mathematics
behind this algorithm.

B 3.1.1 Quickintroduction

To calculate global illumination in real-time, this method uses factorized radiance
transport and a sparse set of radiance probes. The method uses two main objects
where irradiance is transported:

1) Probes

2) Receivers

A probe is a point in space in which incoming radiance is measured from many
directions (ideally it would be from all directions). The probe stores this measured
radiance, which is then used by receivers. A set of probes is sparse (the usual density
is around 0.02 probes per m?).

A receiver is a point on the surface of the scene. The receiver uses surrounding
probes to gather irradiance. For each probe, the receiver fetches the radiance from a
correct direction and accumulate it. A set of receivers is dense (the usual density is
around 80 receivers per m?).In the implementation, receivers are texels of a lightmap,
which is then used when meshes of the scene are rendered.

3. Real-Time Global lllumination by Precomputed Local Reconstruction from Sparse Radiance Probes

A simple example of how this works is shown in Figure 3.1. On the first image is a
visualization of the scene: two probes (py and p;) in space visualized as red dots, many
receivers on scene surface as black dots and a single light source visualized as a yellow
rectangle. On the second image you can see that both probes measure radiance in the
scene and both of them see the light source. On the third. image probes contributed
measured radiance in all directions (visualized as yellow arrows). And finally on the
fourth image receivers fetch irradiance from probes and accumulate it, where the amount
of irradiance is visualized with yellow color. Irradiance measured in receivers is then
used to illuminate scene meshes.

light source light source

receivers receivers

light source light source

receivers

Figure 3.1. Simple visualization of rendering cycle.

Figure 3.2 shows the second iteration through the cycle. During the second ren-
dering cycle, probes do not only see irradiance coming from the light source but also
contributed irradiance in receivers. This feature is used by the system to simulate
infinite light bounces.

light source light source

receivers

receivers

light source light source

\

Figure 3.2. Simple visualization of rendering cycle, the second iteration.

receivers

receivers

B 3.1.2 Detailed introduction

The proposed method [4] uses a variety of mathematical instruments to store and
reconstruct the irradiance signal. Because they are a crucial part of the algorithm, I
decided to describe them in advance.

3.1.2.1 Spherical Harmonics

The proposed method [4] uses Spherical Harmonics to transport irradiance. Spherical
Harmonics (SH) are functions which allow us to approximate any k-dimensional function
which is defined on a surface of a sphere. The stored signal can be then reconstructed
in any direction. In many ways, Spherical Harmonics are similar to Fourier transforms,
as they also break the measured signal into components of some simple basis functions.
In the case of Fourier transforms, those simple basis functions are sine functions. In
the case of Spherical Harmonics, basis functions are noted as Y, (6, ¢).

As it was noted in [16], basis functions of Spherical Harmonics are orthonormal
functions over the sphere. To define a position on sphere surface, Spherical Harmonics
use the following parametrization:

s = (2,,2) = (sin(8)cos(p), sin(0)sin(), cos(0))
From this parametrization, basis functions are defined as:
Y6, 0) = Ki"e" P™ (cost),l € N, <m <

Functions K" are defined the following way:

K= \/(2z+1) (1 — m|)!

A (I + |m|)!

and Pllm‘ are associated Legendre polynomials.

Note, that we are going to use only real Spherical Harmonics, which is a special
version of Spherical Harmonics solely defined in space of real numbers.

I will now show the basic usage of Spherical Harmonics. Let’s say we have some
measured data from some point in space, where a single data value consists of [¢/,d]. ¥/
is a measured value and & is a direction in which the values were measured from our
point. From this set of data, we want to create a general function which would give
us ¢ for any input . In other words, we want a function in shape f(&) = @ for any
&. As it was mentioned in [18], to approximate such function we can use SH, with SH
function f (&) would look something like this:

n—1 1
F@ =) ANY"@) (1)

=0 m=—1

where n is the maximum degree of SH (sometimes called a band of SH), I goes through
all degrees up to n and m through certain degree basis functions. The degree of SH
crucially affects the accuracy of the reconstructed signal, the higher the degree is the
better approximation is provided. Y;™(&) is a value of [degree m'" basis function in a
direction &. Basis functions of a certain degree are constant functions and their value
can be computed with, for example, generator by Sloan [27], which I used in my work
as well.

3. Real-Time Global lllumination by Precomputed Local Reconstruction from Sparse Radiance Probes

Here you can see, that every degree of SH has its own set of basis functions, which
allows better and better approximation of the signal. An overview of SH degrees and
their basis functions is in Figure 3.3. You can see that, for example, degree 0 is only
able to reconstruct a single radius of values because it has only a single basis function
which is equal in all directions. But degree 2 has already 9 different basis functions
(degree 2 means degrees 0, 1 and 2). To obtain a number of basis functions for any
degree, there is a simple equation. Let’s say we have SH of degree N than this degree
has (IV + 1)? basis functions.

The last coefficient in Equation (1) is A", which is a unique number for this function.
This number defines multiplication of basis function Y, (dJ) for any . These numbers
A" are called SH coefficients. They encode the function itself and are measured from
the samples to obtain f(dJ). Of course, the number of SH coefficients is equal to the
number of basis functions.

o
wk kAN

Figure 3.3. Visualization of SH degrees!

An example of equations for real Spherical Harmonics functions from degree 0 to
degree 2 is shown in Figure 3.4.

Y™(x,y,zZ)) m=-2 m = -1 m=20 m=1 2
| = 1T
21"17
= [3 v [3 .z [3 =
! 1 Vd‘h‘ r Vir » Var r
| =2 1 /15 2y 1 /15 = 1[5 -2’ -y +2 1 /15 2= 2 —y
- 2V = 2 2V« 2 Ve’ 2 2V 7 2 -

Figure 3.4. Example of SH basis functions Y, (z, y, z) from degree 0 to degree 2.

! https: // www . mathworks . com / matlabcentral / fileexchange / 43856-real-complex-spherical-
harmonic-transform-gaunt-coefficients-and-rotations .

https://www.mathworks.com/matlabcentral/fileexchange/43856-real-complex-spherical-harmonic-transform-gaunt-coefficients-and-rotations .
https://www.mathworks.com/matlabcentral/fileexchange/43856-real-complex-spherical-harmonic-transform-gaunt-coefficients-and-rotations .

3.1 Method Overview

To simplify the equation for f(&J), I will use following notation (as it was used in the
work [4]):
N
£1@) = 3 A Y3(@) 2)
J
where ¢ is an index of this particular measured function and j is an index of a basis
function obtained as j = I? + [+ m. So how to compute those SH coefficients \;;? A
equation is as simple as final signal reconstruction, the process is just reversed:

Ny = / _ J@y; @) (3)

where 2 is a set of sampled radiance.

As the set of samples 2 is finite, computation of SH coefficients is done by Monte-
Carlo integration method [28]. For more about the usage of this method in my imple-
mentation, see 3.2.3.

Once SH coefficients are known, reconstruction of the signal can be computed by
Equation (2).

3.1.2.2 Probe irradiance measurement

To store information about surrounding irradiance, probes use Spherical Harmonics.
Firstly a probe must gather radiance samples from set 2 to compute irradiance. This
set is a precomputed set of rays (here called relight rays) and information about
their hitpoints. Every probe during the precomputation part shoots rays uniformly
distributed across the sphere (as it is shown in Figure 3.5) and stores resulting hitpoints
into a data texture. During real-time rendering, the probe just measures radiance at
the hitpoint and combines it with a value of appropriate basis function as it is shown in
Equation (3). From these values, every probe computes its SH coefficients in real-time.

Figure 3.5. Visualization of probes relight rays. Casting rays (red arrows) from probe p
(black dot) uniformly distributed on a sphere.

3. Real-Time Global lllumination by Precomputed Local Reconstruction from Sparse Radiance Probes

3.1.2.3 Receiverirradiance contribution

A contribution of irradiance in a receiver is done by gathering radiance from probes
SH functions. This gathering must be done in such a way, that only radiance which is
able to reach our receiver is gathered. Visualization of this selection is shown in Figure
3.6. Here we have two probes pi, ps and receiver x. The receiver must gather radiance
from surfaces that are visible to it. For example, if the receiver does not see some
light source, it cannot gather radiance from that light source. As radiance has been
measured only in probes, probes are our only source of irradiance gathering. Thus we
must combine these visibility rules to one: Receiver x gather irradiance from probe p;
in direction &, if both the probe and the receiver see in that direction exactly the same
surface. You can see a visualization of this visibility match between probes pi,ps and
receiver z in Figure 3.6.

Figure 3.6. Visualization of visibility match between probes (blue p; and green py) and a
receliver T.
To store information about this visibility match for each receiver in the work [4] they
introduced the following visibility function:

i(2) V(@)Y (¥ (<
Kij(w, @) = w; (z) V(D) Y;(_’(w)
2 wi(2) Vi (&)
where w;(x) is a weight function between probe i and receiver x defined as w;(z) =

w(w), where p; is a position of the probe, r is a constant radius of probes (single

number which will be computed at the beginning of the precomputation part) and
w(t) = 2t3 —3t2 + 1 for t €< 0,1 >. @& is a direction from the receiver to a surface
visible to the receiver, ¥ (&) is direction from the probe to the same surface. V;(J) is
a binary function, V;(&) = 1 if the surface visible to receiver x from the direction & is
also visible to probe i.

10

Function K;j(z,d) encodes not only how much from probe i is visible to receiver z,
but this visibility is also weighted by their distance. This function can be then used to
compute a visibility match from any direction . The visibility match is in the work
[4] noted as «;; and can be computed as an integral from K;;(z,d) for all &, as it is
shown in the following equation:

wen

Gathered irradiance in some receiver z is computed in the real-time using the follow-
ing equation:

I(z) ~ /Pm{)\}(w)cosﬁd@’ = Z)\ijaij (5)

where 7 is an index of a probe. Notice similarities with Equation (2), where «;; can
be seen as Vi : Y;(dJ) enriched via weighted visibility.

The reasoning of integration in Equation (4) is the following: We know that gathered
irradiance in receiver x can be computed by Equation (5). Now if I rewrite exactly the
same equation just using K;;(J) it will look like this:

I(z) ~ / SN Koy (@) dis (6)

@GeQ i
This equation essentially just choose a direction &, calculate an amount of incoming
irradiance from that direction and aggregate it to I(x), then choose another direction

& and so on. But coefficients A;; are not dependant on the integral over all directions
Q. So we can rearrange the equation to this state:

From which is clearly visible Equation (4). Values «;; are precomputed for all re-
ceivers and stored to be used in real-time rendering. Computation of «;; in the algo-
rithm can be found in section 3.2.3.

11

I 3.2 Precomputation Phase

During the precomputation part, the algorithm precomputes all data required for real-
time rendering. The precomputed data are then stored in data textures. The imple-
mentation details of the precomputation application are described in this chapter.

B 3.2.1 Irradiance Receivers Placement

Irradiance receivers should cover the whole scene in such a way that every object (mesh)
of the scene has an equal density of receivers. It is also desirable to avoid placement
of receivers inside of the geometry or to areas, where should be always dark (contact
points of meshes). In the following chapters I will describe how I implemented this
process to be fully automatic.

3.2.1.1 Lightmap UV Coordinates for Meshes

In order to calculate irradiance of all meshes we have to place them on the lightmap
texture, so every mesh will have its own UV coordinates for user-defined textures and
UV coordinates for the lightmap texture. My goal was to place all meshes UV coordi-
nates on a single texture, so that the texture is square, no mesh UV coordinates collide
with another mesh UV coordinates and the texture should have minimum empty space.
The minimum empty space constraint yields 2D Knapsack problem which is NP hard
problem. To solve this problem in a polynomial time I designed an approximation al-
gorithm, which I will now describe. All UV coordinates are normalized, but not likely
all meshes should cover the same area in the lightmap texture. To determine how much
area each mesh should cover, I calculated a mesh scaling factor. I define the mesh
scaling factor in the following way:

Let’s take an edge e from the mesh in 3D and it’s UV coordinates correspondent
j. Edge e has two 3D points & and ¥, edge j has two 2D points &, and ¥,,, where

Zuo are the UV coordinates of point & and 4, are the UV coordinates of point 7. The

llell
scaling factor is then defined as %, where E is a set of all edges from the current

mesh. Note that averaging over all edges is not necessary if the unwrapped model is
not deformed. The scaling factor will be relative to the area this mesh should cover in
the lightmap. To ease the problem, firstly I approximate the mesh in a texture space
by a quad of his texture space. So it is a quad with size [0,1]?. T sort all meshes by
their scaling factor in decreasing order and place a mesh with the biggest factor in a
canvas (which will be our lightmap texture after normalization of UV coordinates).

12

3.2 Precomputation Phase

Then I place the rest of the meshes using the following rules:
1) If there is no free space, place the biggest (not yet placed) mesh into the canvas to
the bottom right corner, upscale size of the canvas and mark free space.
2) If there is free space available, place the biggest mesh which fits into this space and

marks free space.
V/
/ ‘w
=

Rules are visualized in figures 3.7 and 3.8.
Q‘Q

R
-
:

7
7

s
7

L

=

i

Figure 3.7. Lightmap UV coordinates calculation. The first rule: on the left is canvas
before, on the right is canvas after placement, the green area is free space available.

-
o #
s

o
#
-

n
\

]

Ny =
NN N
N N

L

Figure 3.8. Lightmap UV coordinates calculation. The second rule: on the left is canvas
before, on the right is canvas after placements, free space is always filled from the bottom
left corner.

13

3. Real-Time Global lllumination by Precomputed Local Reconstruction from Sparse Radiance Probes

There can still be a lot of unused space if mesh itself does not cover its UV coordinate
system regularly, as it is visible in Figure 3.9.

Figure 3.9. Lightmap UV coordinates calculation, unused space visualization. On the right
picture is visualized unused free space with red color.

L

To use this free space, I measure the maximum x coordinate and the maximum y
coordinate of this particular UV grid. A rectangle of free space is then a gap between
those maximal coordinates and the maximum of maximal coordinates as it is shown in

Figure 3.10.

maximum X

Figure 3.10. Lightmap UV coordinates calculation, filling of unused space. Free space is
colored with green color, another mesh UV grid is placed in new free space.

maximum y

After placing all meshes into the canvas I normalized their new UV coordinates with
a final size of the canvas. This solution has one issue. Using this method, neighboring
meshes have no space between them. This is a problem because I am using linear
texture filtering for smooth irradiance interpolation during real-time rendering.

Two neighboring meshes may then affect each other, as it is shown in Figure 3.11. Yet
another problem is visible from this figure as well. Due to the linear texture filtering,
there is blending between an initial black background color of the lightmap texture and
the actual irradiance on the mesh. This causes edges of meshes to be dark.

Figure 3.11. Incorrect UV coordinates. On the left: rendered scene, notice dark edges of
meshes. On the right: the lightmap texture, no borders between objects.

To solve both of these problems, I set a constant gap between all meshes in the
lightmap texture to three pixels. Every receiver which is on the edge of a mesh in the
lightmap texture will be extending its calculated irradiance one pixel behind the mesh
border. This will cause correct linear filtering of the irradiance texture as it is shown
in Figure 3.12.

L

> |

Figure 3.12. Corrected UV coordinates. On the left: rendered scene. On the right: the
lightmap texture, gaps between objects and single pixel borders.

3.2.1.2 Receiver Placement

It only makes sense if such a receiver is on a surface of some object because receivers
of irradiance are texels of the lightmap. For every receiver, I need its position in 3D,
a normal vector, coordinates of the texel and a material of a mesh where the receiver
is. I used OpenGL to gather this information. Using UV coordinates of the lightmap
texture as a position coordinates I rendered 3 different textures: one texture with
interpolated 3D positions, one with interpolated normal vectors and one with an ID
of a material which certain mesh uses. Receivers were then gathered from these three
textures. Texels of these textures were used to create a receiver if a normal vector at
texel coordinates was not zero.

l 3.2.2 Probe Placement & Radius Calculation

Probes have similar requirements for their placement as receivers, they also should cover
the scene with constant density. Probes, however, are placed in the space, not on the
surface of the scene. It is also crucial to not place probes inside of the geometry as this
would possibly lead to faulty results. Implementation details about the placement and
probe radius calculation are provided in this chapter.

3.2.2.1 Probe Placement

Firstly I created a voxel grid over the whole scene. A size of one voxel in every axis
is dependent on constant p, (as it was named in the work [4]). After the voxel grid
is created and all objects are assigned to appropriate cells, I marked all voxels where
probes could be. In the work [4], they used a flood-fill algorithm to obtain this list of
voxels. I used a different method. There are basic rules which I used to determine the
correct voxels:

1) The probe should not be in the same voxel with another object.

2) The probe should be in the voxel near a surface of some object.

3) The probe should not be inside an object.

I used a simple algorithm to determine correct voxels with these rules in mind. I
firstly calculated a normal vector of every voxel, which was not empty. The normal
vector was determined by two rules described in Figure 3.13. The green point indicates
a voxel where the probe could be placed. If a voxel contains more than a single object,
I determine (via dot product) if normals of those objects point in roughly the same
direction. If they do, the voxel still has the normal vector. If not, the voxel loses the
normal vector and voxels near him cannot contain probes. The last rule can be changed
so that a voxel, which does not have a normal vector, can have probes on both sides.
This would produce more probes, but would solve problematic (for example really thin)
meshes.

Figure 3.13. Voxel normal consistency check. On the left: the red arrow is a normal vector
of the object, the blue arrow is a normal vector of the voxel. On the right: no normal
vector of the voxel.

As a next step I determined the desired number of probes. This number can be
calculated as a number of cells in a grid with spacing set to a value of constant p,
which covers the whole scene. Let us suppose a scene with axis-aligned bounding box
(AABB) as its bounding volume (BV), let Zi.e, Ysize, Zsize D€ a size of this AABB in
x-axis, y-axis and z-axis. If we want to calculate a number of cells in a grid with a cell
size set to p,, we compute the number of cells in every direction and multiply them
together:

Tsize X Ysize X Zsize
Pp

The final step was lowering a number of probes to the desired count. We want to
have probes equally scattered in the scene. Thus, we need to have a constant density
of probes in the scene.

Deisred probe count =

16

3.2 Precomputation Phase

Firstly I introduce a density calculation as it was written in the work [4]. They use
a spacial weight kernel w;(z,r) = w(||z — pi||]2/r) in this form:

w(t) = 23 — 32 4+ 1, ¢f 0 <t <1; 0 otherwise

where r is some particular radius. In our case, we will calculate the density of a
certain probe p; as the following;:

K => wi(pj, pp)
J
where probes p; are all probes except probe p;. I calculate this kernel density for all
probes, then I remove a probe with the highest density and iteratively continue until I
have exactly as many probes as it was desired. In Figure 3.14 you can see the initial
set of probes created directly from the voxel grid and on the right-hand side is the final
probe set.

Figure 3.14. Probe positioning (probes visualized as blue dots). On the left: an initial
dense set of probes from a voxel grid. On the right: final probe set with similar kernel
density.

3.2.2.2 Probe Radius

The last step is radius calculation. Here comes in place a user-defined constant
N_OVERLAPS, which defines how many probes should support each receiver (for
all examples I used N_.OVERLAPS = 10). Probe supports only those receivers who
are within a radius of that probe. The radius is unknown but from N . OVERLAPS
constraint we can figure this number out. To avoid computation of radius using all
receivers, I chose smaller set of sample receivers. For each of these sample receivers I
calculate a radius r;. Radius r; is such a number for receiver ¢, that N_OVERLAPS
closest probes have this receiver under their support. The probe radius is then the
average of these radii. Note that we have to calculate only a single radius for all probes
due to a similar density of probes in the scene.

17

3. Real-Time Global lllumination by Precomputed Local Reconstruction from Sparse Radiance Probes

Il 3.2.3 Probe Ray-Casting & Receiver Coefficients

Probes need to know where to look to the lightmap for irradiance. For this purpose in
the proposed method [4] they used precomputed hitpoints from ray-casting. Receivers,
however, does not have to look into lightmap at all as they are gathering irradiance
from probes. Thus, we can simply precompute all visibility and weights for receivers in
advance. Details about these topics are covered in the following sections.

3.2.3.1 Probe Ray-Casting

For a contribution of radiance in probes in the work [4] they use precomputed ray-
casting. I implemented the same method. The same way as it was mentioned in the
method overview, I cast from every probe a set of rays which are uniformly distributed
across a sphere (see Figure 3.15). For each ray, I mark information about a material
index of the mesh the ray hit, a UV lightmap coordinates of the hitpoint and a 3D
coordinates of the hitpoint. If the ray hits nothing I set its material to some predefined
error value. This is the part where environment mapping can come in place. If a user
wants to use an environment map to illuminate meshes, he / she needs only to set
correct UV coordinates to rays which hit nothing during casting.

Information collected during ray-casting will be later stored in data texture called
Probe Ray Intersection texture. See section 3.2.5 for details about this data tex-
ture.

Figure 3.15. Probe Ray-casting, casting rays (red arrows) from probe p (black dot) uni-
formly distributed on a sphere.

18

3.2.3.2 Receiver Coefficients

Suppose we are going to calculate coefficients for receiver r;. We need to determine
which probes will contribute their radiance to our receiver r;. To do so, I measured
a distance from r; to every probe p;. If the distance is smaller than our measured
probe radius, this probe p; will contribute its radiance to the receiver. This way 1
determine N_.OVERLAPS probes which distances were closest to receiver r; (note
that N_.OVERLAPS is the maximal number of supporting probes). See visualization
in Figure 3.16. Notice that receiver r; does not have to directly see probe p; to be under
its support. If no probe supports this receiver within the probe radius, we can discard
this receiver completely because no radiance will ever reach it (as probes are the only
source of irradiance gathering).

Figure 3.16. Probes within radius support receiver r;, N.OVERLAPS = 3

With the list of supporting probes, I start casting rays distributed over a hemisphere
(which is rotated in the direction of the receiver normal vector). For each ray I determine
if any probe sees a hitpoint of that ray as it is visualized in Figure 3.17 (only one hitpoint
is traced for the visualization).

Figure 3.17. Receiver, casting rays (orange color), tracing hitpoint with rays from probes
(blue color).

If probe p; sees hitpoint, we will mark its radiance contribution from this direction.
When we need to determine irradiance at r; we will take into account radiance at p; in
the direction from probe p; to this hitpoint.

19

As it was covered in section 3.1.2, in the work [4] they introduce this equation to
compute a receiver irradiance:

I(x) =~ /P;E{)\}(w)cosﬁdw = ZAijaij (8)
ij
where we are now computing c;;. We can express o; like < Kjj(x,.), ® >, which is
a weighted visibility function over the whole sphere (every direction @), defined as:
wi () Vi(w)Y; (U (w)
> wi(2) Vi (w)

a;j is K;j(z,w) for all possible w, to obtain such a number I used the following
integral:

Kij ($, w) =

aiy = / Koy (w)dX)
weX

The reasoning for this integration has been covered in section 3.1.2.
To approximate a;; from samples of K;; gathered from ray-casting, I used Monte-
Carlo integration:

1
i % 3y 2 Kislo)ul)

where w(w) is the weight of the sample. The weight of the sample is inverse of a
probability of the sample. In this case, every sample of integration has the same weight
equal to 27 (27 because we use only half of sphere). So the final integration equation is:

Q5 = Zﬁﬂ Z Kij(rayy)
peEP

where P is a set of rays. Note that K;; contains information about Spherical Harmonics
in a direction of ray,. This means, that in the direction from probe p; to a hitpoint we
evaluate Spherical Harmonics and add this weighted evaluation to our receiver coeffi-
cients.

Question is, what to do with rays from receiver r; which hit nothing during ray-
casting. This topic has been covered in chapter 5.1.3.

20

Bl 3.2.4 Receiver Clustering

A number of irradiance transport coefficients o;; for each receiver in a scene is huge. It
is rather inefficient to store all these coefficients separately. To solve this problem, in
the work [4] they used PCA to reduce the number of coefficients needed to transport
irradiance. Furthermore, they used Clustered PCA (CPCA) because the calculation of
SVD for large matrices is not effective as well.

Now I will describe the solution they proposed and I implemented. I divided the
scene into smaller clusters. This division has been made by splitting a scene’s AABB
into half (always splitting the largest dimension). If a certain leaf of this AABB tree
has less than 1024 receivers, I calculated PCA matrices for this cluster (I will describe a
particular shape of these matrices later). If the PCA projection was sufficient (an error
of projection was less than 0.005), I accepted this composition and stoped division in
this leaf. Now I will describe it in more details.

3.2.4.1 Scene AABB Tree Division

I created an AABB over the whole scene. This was my starting point of the division.
In every next step I chose the widest axis of this AABB and split it in half along this
axis. If the resulting AABB has less then 1024 receivers, I created PCA matrices.
To visualize, how this threshold-based refinement affects the final image and a scene
clustering, I computed a single scene with two different setups. The first scene was
computed without any threshold-based refinement, the second scene with threshold-
based refinement and the threshold was set to 0.0001. The threshold was set this low
(in the work [4] and in rest of the renders I use threshold 0.005) to emphasize splitting
during threshold-based clustering. The resolution of the lightmap texture was set only
to 256 x 256 to emphasize splitting and support incoherence of the scene (receivers are
sparsely covering the scene, so they have less similar irradiance transport coefficients).
Visualization of clustered receivers is visible in Figure 3.18. Here is the AABB split
only based on a number of receivers. On the left you can see receivers visualized as
colored dots in 3D render, on the right they are placed in the lightmap texture.

Figure 3.18. Clustering visualization without threshold-based splitting, on the left: 3D ren-
der with receivers visualized as colored dots, on the right: receivers visualized on lightmap
texture. 24 clusters in total.

This method does not provide good results as the accuracy of the projection via SVD
is different in every cluster in the scene. To solve this problem, in the paper [4] they
measure the error of projection.

21

Based on this error, they decided if the splitting of the AABB should continue or
not. After applying this rule to my implementation the number of clusters increased
but it provided much better results. Visualization of the clustering is in Figure 3.19,
a comparison of renders rendered without and with the threshold-based splitting is in
Figure 3.20. The comparison was calculated using Structural Similarity index (SSIM).

Figure 3.19. Clustering visualization with threshold-based splitting, on the left: 3D render
with receivers visualized as colored dots, on the right: receivers visualized on lightmap
texture. 43 clusteres in total.

SIZE BASED ONLY
|

REFINEMENT & SIZE BASED
-

Figure 3.20. Clustering comparison. On the left are 3D renders, on the right are lightmap

textures. The first row is rendered with size-based refinement only, middle row is with

threshold-based and size-based refinement and the last row is an SSIM comparison of both
renders.

22

3.2.4.2 Cluster PCA Matrices & Error Computation

Now into more details about the PCA matrices used in the implementation. Irradiance
in receiver r can be computed with the following equation:

I(r) ~ /PZ{)\}(w)cosﬁdw = Z AijQij

As it was mentioned before, the number of «;; coefficients is huge. To solve memory
and computation time problems, PCA was used. During the creation of a certain
cluster, a list of receivers pertaining to this cluster is received. Let us call this list R.
Every receiver has list of probes which support him. From these lists I create single
list of unique probes for this cluster, which consists of all probes supporting receivers
in this cluster (this list can be in any order, but the order matters). Every probe from
this list has its SH coefficients A;;. We just need to match them with appropriate o
of a certain receiver. As an example I provide visualization in Figure 3.21. Here our
transport matrix is called A. In this particular case, we used 4 coefficients (SH degree
1) to compute irradiance. There are 3 unique probes supporting this cluster in order:
(2,4,7). You can notice, that receiver x; is supported by all probes, so its line in matrix
A (the first line) is full of non-zero coefficients «;;. But receiver x4 is supported only by
probe 7. Thus, the fourth line in A is mostly zero except for coefficients of probe 7.

A A = |

A3z I(x1)
1(x;)

Qoz Q2 Qpp Qzp | Moy Cyg Upg Uzq | Qo7 Qyy Up7 O3y

Qg2 G2 022 32 | O 0 O O 0 0 0 O Aaa
0 0 0O 0 |Qpg g0y a3 0O O O O Ma 1(x3)

0 0 0 O 0 0 0 0 |Gy Oy7 Oy O3y

As7

Figure 3.21. Visualization of initial transport matrix A.

23

Now we will apply Singular Value Decomposition to obtain three matrices:
A=UzVT"

In the paper [4], they truncated this decomposition (left only 32 biggest singular
values from matrix ¥). This approximation saves memory but can crucially devastate
irradiance transport. To prevent this from happening, we will measure an error caused
by this approximation. The error of SVD projection can be calculated as:

Z?il Si
Zj Sj

where s; is the i-th biggest singular value from the matrix X. As it was written in
the paper [4], I accept all decompositions with the error of projection less than 0.005.

Matrix V7 will be stored in Cluster Matrix texture, see section 3.2.5 for details
about this texture. Matrix U will be stored in Receiver Transport texture, see
section 3.2.5 for further details.

1.0 —

24

Hl 3.2.5 Computational Textures and Output Data File

Results from the precomputation application are stored in an SSF file which is a bi-
nary file containing all information about the static scene, its textures, constants etc.
Essentially, the whole scene can be rendered just using data from this single SSF file.
In my implementation of the method [4] I used 8 major data textures for real-time
computations. I will now describe all of them.

3.2.5.1 Probe Ray Intersection Texture

This texture is used to store information about ray hits traced during precomputation.
The texture is visualized in Figure 3.22. A single item, being intersection information
from ray i of probe j, of this texture, consists of three values. The first value is an index
of a material, which the intersected object has. The second and the third values are
UV coordinates to the lightmap texture. These coordinates correspond to the hitpoint
of ray i.

number of relight rays

ray i

. material
probe j index u \

number of probes

Figure 3.22. Ray Intersection texture with single item at position (i,j).

3.2.5.2 Spherical Harmonics Texture

This texture stores precomputed values of Spherical Harmonics basis functions used
to calculate SH coefficients in real-time rendering. Visualization of the texture is in
Figure 3.23. A single item of this texture consists of one float value which represents a
calculated value of a coefficient j in the direction of a ray i (noted as Yj(r;)).

number of relight rays

ray i

coeff | Yj(ri)

number of coefficients

Figure 3.23. Spherical Harmonics texture with a value of a coefficient j in the direction of
a ray i.

25

3.2.5.3 Cluster Matrix Texture

Cluster Matrix texture stores all CPCA transport matrices for receiver clusters. See
Figure 3.24 which represents a visualization of this texture. Clusters are indicated
with two-dimensional indexes. This decision has been made to fit big textures to
GPU memory. In all my renders I used number of values in a row set to 128,
number of SVD coeffs to 32 (this is equal to the number of singular values used in
the truncated transport matrix). Value maximum cluster matrix height depends on
the input scene. This texture can be a limiting factor of the algorithm due to the huge
number of clusters and sizes of their transport matrices.

number of values in row

number of
SVD coeffs

cluster [i,j]

cluster

™M :
i < matrix height
r+

maximum
cluster
matrix height

Y

Figure 3.24. Cluster Matrix texture with an item equal to CPCA transport matrix.

3.2.5.4 Cluster Size Texture

This simple texture consists of a single integer per item. The integer represents the size
of a cluster. The size of the cluster is defined as a number of probes which contribute
their radiance to this cluster. The value cluster matrix height is dependent on the
size of the cluster in the following way: cluster matrix height = cluster size X
number of coefficients, where number of coefficients is a number of Spherical
Harmonic coefficients (I used an order 7 of SH, so that is 64 coefficients). A visualization
of the texture is in Figure 3.25.

number of values in row
i

cluster [i,j]

SIZE

Figure 3.25. Cluster Size texture with an item equal to CPCA size of cluster.

26

3.2.5.5 Cluster Probe Index Texture

Cluster Probe Index texture is visualized in Figure 3.26. Again, clusters are indexed
the same way they were in Cluster Matrix texture and Cluster Size texture. Here, each
item is a vector of indexes, where each index points to a probe which supports this
cluster. Probes are in the same order as the corresponding matrix in Cluster Matrix
texture was created. You can see that cluster size from the previous texture is equal
to the length of the probe-index vector.

number of values in row
i

1

-

cluster [i,j]

cluster [/maximum
size cluster
size

Figure 3.26. Cluster Probe Index with an item equal to a vector of indexes of cluster-
supporting probes.

3.2.5.6 Receiver Map Texture

This texture is visualized in Figure 3.27. Single item consists of 4 values: [c;,¢,] is
a cluster index to which the receiver belongs and [z, y| is a position of a pixel in the
lightmap texture, where this receiver will write its irradiance.
number of values in row
I

receiver [i,j]

Figure 3.27. Receiver Map texture with an item equal to coordinates of a cluster and
coordinates of an apropriate texel in the lightmap texture.

27

3.2.5.7 Receiver Transport Texture
This texture is the second part of CPCA matrices. Visualization is provided in Figure
3.28. One item of this texture is equal to a row in a matrix U from SVD, A = ULV
This item is a transport vector which transforms an incoming cluster basis to irradiance
in receiver [i, j].
number of values in row
i

number of
SVD coeffs

receiver [i,j]
j [Uik

Figure 3.28. Receiver Transport texture with an item equal to a transport vector from
SVD.

3.2.5.8 Receiver Material Map Texture

This texture is visualized in Figure 3.29. Single item consists of two values. The first
value is an index of a material of a mesh, where the receiver lies. This information is
used for illumination of emissive materials. The second value extend is used when the
receiver is on the edge of mesh UV grid to extend irradiance by a single pixel as it was
mentioned in Receiver Placement section (3.2.1). This value is bitwise read in GPU.
The first four bits represent four neighboring pixels to extend. When no bit is set then
no pixel is extended.

number of values in row
i

receiver [i,j]

material

tend
index exten

Figure 3.29. Receiver Material Map.

28

3.2.5.9 The Rest of Textures

For computation, few more textures are needed. However, they are not as important.
Most of them are used only for my extensions, see chapter 4. I will briefly describe
which textures are computed and used in my work.

1) Probe position texture
Stores position of probes in space, used for method extension (LOD).

2) Probe Hit Point position texture
Stores position of hit points from probes relight rays in space,

used for method extension (LOD).

3) Receiver position texture
Stores position of receivers in space, used for method extension (LOD).

4) Cluster Bounding Volume texture
Stores 8 points of each cluster AABB in space, used for method extension (LOD).

29

3. Real-Time Global lllumination by Precomputed Local Reconstruction from Sparse Radiance Probes

I 3.3 Rendering in Real-Time

For real-time rendering, I chose OpenGL API together with few extensions. At the
beginning, the application loads an input SSF file and set every texture, constant, etc.
as it was written in that SSF file. Now I will describe the main rendering loop.

Il 3.3.1 MainRendering Loop

Visualization of the rendering loop is shown in Figure 3.30. There are two main branches
of a computation: a red and a green branch. This branching is often called ping-pong
calculations and it is used to remove dependencies of consecutive computations so they
can be computed in parallel. As you can see, for computation of basis vectors b, we need
to know what coefficients \;; of probes looks like. The same goes for the computation
of receivers irradiance, where we need to know basis vectors b.. During run-time, CPU
switches the red branch and the green branch in every draw call. This way every
compute shader always has data ready from the previous cycle and the computation
has to be blocked by a memory barrier only at the end of the draw call. However, this
way there is a delay of four frames before newly come information will propagate all
the way to the frame buffer.

CPU

Figure 3.30. Main rendering loop of the real-time application.

In Figure 3.30 you can also notice, that algorithm uses 3 different compute shaders
and a single rendering pipeline. I will describe all the stages separately.

30

3.3.1.1 Computing SH Coefficients)\;; in Real-Time

The first compute shader computes SH coefficients \;; as it was shown in section 3.1.2
using Equation (3):

Ny = / @Y (@ax

To calculate an integral in real-time from measured samples 1 used Monte-Carlo
integration method. Using this method I can rewrite the equation as:

1SN
Aij R ; f(@)Y;(Z)w(T) (10)

where N is a number of samples (in our case a number of relight rays per probe),
Z; is a single relight ray, f(&;) is a measured irradiance at a hitpoint of ray #;, Y;(Z;)
is a value of basis function j in a direction of ray &;. This value was precomputed
into Spherical Harmonics texture shown in section 3.2.5. w(&;) is the weight of a
single sample. The weight of the sample is an inverted probability of the sample. As all
rays have the same probability and we shoot rays over the whole sphere, w(Z;) will be
constant for every ray and equal to 47. So the final equation has the following shape:

N
47 . R
Nij N 5 > @)Y (@)
i=1

The result is stored in a texture, that will be used during cluster basis vectors com-
putation.

3.3.1.2 Computing Cluster Basis Vectors b in Real-Time

The second stage of the computation takes computed SH coefficients \;; and
matrices stored in Cluster Matrix texture and compute cluster basis vectors
b.. To choose which probe coefficients multiply with which matrix, there is

Cluster Probe Index texture. For asize of the cluster there is Cluster Size texturell

Everything about data textures is in section 3.2.5. Computation itself just multiply
the vector of SH coefficients with an appropriate matrix as it is shown in Figure 3.31.

zvt . |Ajjl = |b

Figure 3.31. Cluster basis vectors: matrix multiplication.

The result is stored in a texture to be used during receiver irradiance computation.

31

3.3.1.3 Computing Irradiance at Receivers in Real-Time

The last part of the computation writes to the lightmap texture. To obtain irradiance
which should be written into the lightmap, each receiver has to multiply a basis vector
of its cluster with his own transport vector. Matrices with transport vectors are stored
in Receiver Transport texture. Computation equation for receiver = looks like this:

where S is a number of used singular values after truncatization of SVD matrices (it
is also a height of the matrix XV?), U, ; is an i-th value in the transport vector for
the receiver x and b.; is an i-th value in the basis vector of cluster ¢ (cluster where z
belongs).

For the computation itself also other textures from section 3.2.5 are needed, but they
are not important for an explanation of the algorithm.

3.3.1.4 Rendering Scene

During rendering, a standard rendering pipeline is followed. Every fragment find its
irradiance in the lightmap texture. This means that every vertex of the mesh has two
different UV coordinates: one UV coordinates for diffuse textures etc. and the second
UV coordinates for the lightmap texture. After obtaining irradiance from the lightmap,
tone mapping comes in place. In my work, I implemented three tone mappings: Rein-
hard, Filmic and Exposure tone mapping.

32

3.3 Rendering in Real-Time

3.3.1.5 Multiple Bounce Irradiance Gathering

As it was mentioned in chapter 3.1.1, during the computation of \;; SH coefficients
irradiance is collected even from the previously computed lightmap. This fact will
cause reflection of light in the scene. Usage of the lightmap is even marked in Figure
3.30 as an arrow coming from an irradiance computation segment back to the A;;
computation segment. Irradiance from previous cycle is added to f(Z) in Equation
(10). The amount of the reflected irradiance can be set either from a material reflection
or as static reflection constant. In Figure 3.32 are few examples of a different static
reflection constant setups.

0.19 0.28 0.30

Figure 3.32. Irradiance fetch-back examples. Different setups of a static reflection con-
stant, from the top left to the bottom right: 0.0 , 0.06 , 0.13 ,0.19, 0.28, 0.3.

If the static reflection constant is 0, there is only a single bounce of light, from the
light source to receivers. Higher static reflection constant means more bounces, but
it takes system more frames to stabilize. Lower static reflection constant means fewer
bounces, worse results, but a faster convergence of the system to a stable state. In
my implementation, I set the static reflection constant to 0.19. If the static reflection
constant would be bigger than 1.0, the system would receive every frame more and
more irradiance and diverge to infinity.

33

3. Real-Time Global lllumination by Precomputed Local Reconstruction from Sparse Radiance Probes

I 3.4 Asymptotic Time and Memory Complexity

I chose to estimate the complexity due to a number of probes and a number of receivers,
as these values are directly set up by the user. For both parts, I marked the number of
probes with P and the number of receivers with R.

Bl 3.4.1 Precomputation Algorithm Complexity

At the beginning, we must iterate over all texels of rendered textures to choose which
texels create receivers: Q(R). During the shifting phase, we iterate over all receivers:
O(R). Then we must obtain the initial set of probes from the grid. Thus, iterate over
the whole grid: Q(P + N), where the initial set has size P+N. From the initial set of
probes, we must choose our final set. To do so, we calculate density function between all
pairs from the initial set: O((P + N)?). Then we iteratively remove probes until we get
the desired number of probes (which is P): O((N — P)(P + N)) ~ O(N?). To calculate
probe radii, we iterate over all receivers and for every receiver calculate a distance to
every probe: O(RP). Precomputation of probe hitpoints takes: O(Rk), where k is
a cost for shooting k rays. For each receiver, we obtain a set of the most influential
probes: O(RP). To measure coefficients for all receivers, we must again shoot rays:
O(Rk).

At the beginning of the clustering, we calculate the AABB of the scene: O(R). In
the worst-case clustering, we would get R clusters. Thus, doing 2R + 1 clustering
operations. In every clustering operation, we find a unique set of probes: O(RP), fill a
transformation matrix A: O(RP) and compute Singular Value Decomposition: O(RP?).
So the clustering gives us O((2R + 1)(RP + RP + RP?)) ~ O(R*P?). We must export
positions for both probes and receivers: O(P + R) and transformation matrices for all
clusters: O(R(P + R)).

Memory complexity of the precomputation part is mostly affected by the storage
of coefficients for all receivers. Every receiver could possibly have stored coefficients
for every probe: O(RP). During clustering, memory demands cannot rise because of
truncatization of the transport matrices.

In total, we get time complexity of the precomputation part T'(R, P) ~ O(R?P?)
with memory complexity of S(R, P) ~ O(RP).

34

B 3.4.2 Real-time Algorithm Complexity

Real-time part of the algorithm is mostly computed in parallel on GPU, let the number
of parallel computational devices be c. Firstly, we compute \;; SH coefficients. Thus,
for every single coefficient we track precomputed hitpoints: O(3k), where 3 stands for
RGB. If this computation would appear on the single-threaded device, the complexity
will be: O(P - 64 - 3k), where 64 stands for 64 SH coefficients for a single probe. As the
computation is done in parallel, we get: O(% - 3k).

To obtain a cluster basis vector, we multiply XV7 with a vector full of \ij SH
coefficients. Matrix LV7 height can be at most 32 (as we truncated SVD matrices to
32 most influential singular values), a width of the matrix can be at most P (all probes
support this cluster). Thus, to obtain a single value from the cluster basis vector, we
multiply two vectors with a length of P: O(P3), where, 3 stands for RGB. To obtain
the whole cluster basis vector, we must do this 32 times: O(32- P3). In the worst-case
clustering, we get R clusters with a single receiver which is supported by all probes.
In this case, time complexity is: O(RP3). If we do this operation in parallel, we get:
O(£p3).

Irradiance computation consists of multiplication of two vectors with the length of 32
numbers. Thus, a single irradiance value can be computed in: O(32-3), where 3 stands
for RGB. In total for all receivers we get: O(R -32-3). If we use parallel computation,
the problem can be solved in: O(£-32-3).

Memory complexity of the real-time part is dependent solely on the transformation
matrices. A number of all A\ij SH coefficients is O(P -64). In the worst-case clustering,
we get R clusters with a single receiver. So, there will be R times XV7 matrix with
single row and P columns.

The transformation matrix U would have a height and a width of 1.

In total, we get time complexity of the real-time part T(R, P) ~ O(££

“-) with memory
complexity of S(R, P) ~ O(RP).

35

Chapter 4
Method Extensions

In my work, I implemented two extensions with an aim to push this method towards
usage in real-time rendering engines. My first extension is capable of shading dynamic
objects, so they can receive indirect illumination from a scene. This extension can do
much more. All the capabilities of this method are described in section 4.1.

The second extension is dynamic Level of Detail (LOD), where only those irradiance
receivers which are necessary to render the correct frame are computed. This method
can improve the performance on every stage of computation. Again, more is written in
section 4.2.

36

I 4.1 Shading Dynamic Objects Using Voxel Irradiance
Space

To gather irradiance for dynamic objects I combined the idea of spatial irradiance
caching [22] with the main implemented method [4]. However, as the work of Greger et
al. [22] was demanding on memory and computation, I used only the idea of measuring
irradiance in the grid. My approach to irradiance storage and irradiance gathering is
different and saves both memory and computation time.

To measure irradiance on a surface of dynamic objects I used a special version of
irradiance receivers, I call them spatial receivers. These receivers measure irradiance
from certain directions, particularly in such directions to be able to estimate irradiance
in all directions. In my implementation, a single spatial receiver is measuring irradiance
from 6 different directions as is shown in Figure 4.1. However, the method is not
constrained to a fixed number of directions. More directions can provide a better
approximation of irradiance.

v+
X- Z-
Z+ X+
y.-
Figure 4.1. Visualization of a spatial receiver using 6 directions to measure irradiance in
a space.

In every direction, I measure irradiance with a weight equal to a normalized degree
between the direction of incoming irradiance and a current direction vector. I pre-
compute Spherical Harmonics weighted functions for every direction. The weight is
computed with the following equation:

w(d, 1) % — acos(max(dot(d, I),0)

™

2

This equation gives us an ability to combine irradiance from different directions of
the spatial receiver into a single value. More about irradiance reconstruction will come
later.

When clustering spatial receivers, I chose to cluster every direction separately as
it was more coherent. The biggest benefit obtained from clustering spatial receivers
separately from standard receivers comes from GPU computation itself. In my imple-
mentation, I have a single compute shader which computes both receivers and spatial
receivers (as a lot of the code is the same). In the shader, one of the first thing which
is decided is if the currently computed receiver is a spatial or a standard one. So, there
is a branch which leads to big chunks of code. This would be a problem if receivers
and spatial receivers were mixed together. If they would be assigned in the same warp,
both branches would have to be executed. Because they are clustered separately, all
receivers come always before spatial receivers. As a result, there is either one or no
warp which has to go through both branches of the computation. Now I will describe
how I placed spatial receivers in the scene.

37

B 4.1.1 Irradiance Voxel Space Using Regular Grid

To be able to reconstruct irradiance in every point of scene I voxelized space with
a regular grid, where every vertex of the grid is a single spatial receiver. As input
from the user, the algorithm takes an approximate number of desired spatial receivers.
Using the following equations (1), (2), (3) (from the work of Amanatides and Woo[29)])
I estimate the number of spatial receivers in every axis.

_ NZQ_
N, = | {| —/— 1
- (1)
_ Ny -
N, = 2
Y szL' ()
N
N, =
v @

N, Ny, N, is a number of cells in z-, y-, x-axis, IV is a desired number of cells and
[,y, 2] is a size of the scene’s AABB.

Important note: it can happen, that some spatial receivers will be placed inside
objects of the static scene. These receivers would not receive any irradiance. This
would distort the resulting grid. To avoid this artifact, I used the same approach as for
standard receivers (see section 5.1.4). I shoot testing rays around the spatial receiver.
Here, however, I chose a different rule. If 80% of rays hit backface (no matter rays
which flew out of the scene) then the spatial receiver is shifted. Why omit rays which
flew out? The scene grid does not have to cover the scene completely. It can happen
that some spatial receivers are out of the scene because of the scene shape. If I left the
old rule (do not shift if any ray flew out) I would not shift any spatial receiver which is
placed out of the scene.

Choosing a regular grid as storage for spatial receivers got several reasons. The first,
the most important one, is the capability of HW linear interpolation using OpenGL 3D
textures. This way I avoided searching nearest spatial receivers for every fragment of
dynamic objects. Using interpolation I can use a relatively sparse grid to reconstruct
shading for dynamic objects.

For the second, it is possible to set extension of borders to infinity on 3D textures in
OpenGL. This allows to approximate irradiance even in points which are not directly
in the grid. So, the grid does not have to cover the whole scene.

For the third, it is easy and cheap to find correct coordinates to a regular 3D texture.
And for the fourth, I can easily detect which parts of the grid have to be computed and
which can be omitted.

38

4.1 Shading Dynamic Objects Using Voxel Irradiance Space

To extend this idea, in my implementation every dynamic object has its AABB. This
AABB is tested against the irradiance grid, so I can detect which spatial receivers have
to be computed. Visualization of this dynamic computation is shown in Figure 4.2.
Active voxels are drawn with green color, the AABB of a dynamic object (model of
cargo container) is red.

VOXELS + AABB
VISUALIZATION

RENDER AABB VISUALIZATION

Figure 4.2. Visualization of active spatial receivers (green voxels) triggered by dynamic
model of cargo container (red AABB).

39

4. Method Extensions

Bl 4.1.2 Computation of Irradiance from Voxel Grid

For dynamic objects, computation of irradiance is done per fragment. In a fragment
shader, every fragment determines its position in the 3D irradiance texture. Because
a normal vector of the fragment is known, it is possible to estimate which directions
of spatial receivers would affect this fragment the most. I measure weight for every
spatial receiver direction and summarize them with an irradiance together to gather
final irradiance contribution. Visualization is shown in Figure 4.3.

Measured irradiance

in x+ direction

Spatial Receiver Y

INTERPOLATE

Y
\N . .
¥ x+ irragiance

Fragment Fragment 2

irradiance

INTERPOLATE ~

y+ irradiance ®

Jsum
' X+ irragiance
Fragment

Figure 4.3. Visualization of irradiance reconstruction in a fragment. A spatial receivers
(green) in a grid, the fragment (black) with a normal vector(red) and interpolated irradi-
ances (blue). Summerized irradiance is marked with irradiance label (light vector).

™. x+ irragiance

The light vector describes from which direction comes the maximal valid irradiance to
a certain fragment. Notice how this method gives us an approximation of the light vector
even though irradiance was transferred. This allows using normal mapping and specular
reflections for dynamics objects. Furthermore, if we approximate these light vectors
even for fragments which are part of a static scene, we can apply normal mapping and
specular reflections to the static scene as well. This approximation is not as accurate as
transferring radiance vectors, but it cost almost no additional performance and results
are visually pleasing. For results using this method see chapter 5.

40

I 4.2 Dynamic Level of Detail

Computation of light in my implementation is separated to 3 separate stages: com-
putation of SH coefficients for probes ()\;;), computation of cluster basis vectors and
computation of irradiance for every receiver using cluster basis vectors. My method is
affecting every stage of this computation, so I will describe them sequentially. Every
aspect of LOD, such as distances, number of coefficients, a number of relight rays and
so on can be freely changed in runtime.

For every level of detail, I define a distance, where this level is triggered. The distance

is measured between the object and a center of the camera and then compared with
defined LOD distances.

B 4.2.1 Probe Computation with LOD

Firstly I determine to which LOD certain probe belongs. I measure this via distance
between the camera center and a probe position in space as is shown in Figure 4.4.

Camera robe
. >
level 0 level 1 level 2

Figure 4.4. Visualization of LOD distance for probes.

With a known level of detail for a certain probe, it is possible to reduce calculation
time in many ways.
The first place where I reduced calculation time is in the number of coefficients which
are computed. To explain I'll remind a little bit of theory about Spherical Harmonics.
As it was said in section 3.1.2, Spherical Harmonics can be seen as a general function
f(w). If we put some unit vector (direction in 3D) to this function, the function
will return value (in our case direction w is the direction of light and the returned
value is irradiance). To create this function f(w), Spherical Harmonics use basis
functions. With the combination of these functions, it is possible to reconstruct (with
some deviation) a signal encoded to the function. This is similar to Furrier transform
functions. Combinations of SH basis functions are encoded in so-called SH coefficients
(Aij). The more coefficients (and SH basis functions) we use, the more accurate will
be a reconstruction of the signal. So let us say we have SH of degree 4 (which is 25
coefficients, 25 basis functions to reconstruct function f(w)), now we use SH of degree
7 (which is 64 coefficients). But even if we use SH of degree 7, those 25 coefficients
from 64 in total will affect exactly the same basis functions as before.
I used this property in LOD, so I calculate only that number of coefficients for each
probe, which is necessary for correct irradiance reconstruction. For example, in level
0 I use 64 coefficients, in level 1 25 coeflicients, in level 2 only 16 coefficients and so
on. Of course, this number of coefficients must match with the computation of cluster
basis vectors, but I will get to that later.

41

The second major improvement was made in the number of relight rays. Relight
rays are used to approximate \;; coefficients using Monte-Carlo integration. The more
relight rays you use, the more accurate SH coeflicients are, so the reconstruction of
irradiance is more accurate. To save computation time it is desirable to lower the
amount of these rays. In my implementation, I used 512 for level 0, 256 for level 1, 128
for level 2 and so on.

With these extensions, you can notice some problems. The first problem is that a
relight ray hit does not have to be in the same LOD as the probe is. This problem is
visualized in Figure 4.5.

level 2

Camera
level 0
‘ / scene surface/

Figure 4.5. Visualization of different LOD for a probe and its relight rays, red rays require
more detail, green rays are at same LOD and blue need less detail.

To solve this problem, every relight ray needs to look into the lightmap texture to
correct LOD. There are two possible solutions on how to solve this. The first solution is,
that every relight ray remembers its 3D position of a hit. The relight ray then decides
itself to which LOD to look for the irradiance. The second solution is that relight rays
always take irradiance from the lightmap texture with highest LOD, because this LOD
is refreshed every frame and contains the newest information (more about the lightmap
texture computation in section 4.2.3). The second solution provides faster but less
accurate reconstruction of the signal. In my implementation, I made both solutions.
Another problem comes from receivers, see Figure 4.6.

r3

Camera robe o
¢ >
level 0 level 1 level 2

r
;)
Figure 4.6. Visualization of different LOD for a probe and receivers supported by this
probe.

Even though the probe is in level 1, we cannot assign him to level 1 because there is
receiver r1 which is in level 0 and needs more detail.

42

4.2 Dynamic Level of Detail

However, when the scene was precomputed, only receivers which fell under the sup-
port of a certain probe were affected by it. Support of every probe was determined
by a constant radius. Thus, the solution is to shift LOD of the probe by the constant
radius to make sure that every receiver which needs more detailed information will get
it. Visualization of this shifting is shown in Figure 4.7.

ProbeLOD N e ‘

Camera

level 0

Figure 4.7. Visualization of different probe LOD shifted by the probe radius.

To further improve performance I changed LOD for every probe (and its relight
rays) with respect to the camera point of view. I split surrounding of the camera into
separated zones as is shown in Figure 4.8. To maintain good performance I implemented
this separation using dot product with the camera view direction. This technique has
been used for cluster basis vectors and irradiance receivers as well.

ONE 0O

Figure 4.8. Visualization of separated zones around the camera, each zone has different
LOD distances.

It is important to calculate even points which are not directly visible to the viewer.
Due to global illumination, even not visible points affect the final image.

43

Bl 4.2.2 Cluster Basis Computation with LOD

Firstly, we have to determine to which LOD certain cluster belongs. In the precompu-
tation part, clusters were made by an kD-tree division. So, every cluster fits nicely into
AABB. From the precomputation I saved this AABB (I refitted the AABB to reduce
free space) then I measured the closest distance from the camera center to this BV and
use the camera view dependant zones as in section 4.2.1.

With determined LOD of the cluster, I can determine how many coefficients from
probes to use for basis vector. A number of coefficients for every LOD is constant
through the application. In the precomputation part, two PCA matrices were calcu-
lated: matrix V! and matrix U. In this stage, we compute a basis vector b so now we
only need matrix LV
An important property of SVD is that it will not change the order of input transforma-
tion vector. Thus, the order of columns in matrix XV? is equal to the order of columns
in the original transformation matrix, let’s call that matrix A. So, if the input vector
is some vector x, it means that Az = UXV'z. In the algorithm, our input vector is
a vector containing SH coefficients \;; of probes supporting this certain cluster. Be-
cause columns are in the correct order even after decomposition, we can use only those
columns from YV* which we need. For example, let us say we want to use only 25
coefficients, but our PCA matrices are computed for 64 coefficients. We will match
appropriate columns with input SH coefficients A;; to compute the basis vector only up
to those 25 coefficients, visualization is in Figure 4.9.

Mor .. Moas .. MNoes Ma . Mias Mea ... |

b SV

Figure 4.9. Visualization of partial matrix multiplication to obtain cluster basis vector b.
Grey parts are used/computed, white parts omitted.

LOD of each cluster is stored into a texture and used in receiver computation.

44

4.2 Dynamic Level of Detail

B 4.2.3 Irradiance Receiver Computation with LOD

In this section of computation, irradiance is computed for every receiver, so even for
spatial receivers. Before the irradiance is computed, a receiver is tested if it is necessary
to calculate it. The test is different if the receiver is a standard texel of lightmap
texture or if it is a spatial receiver.

If it is a standard receiver, the test starts with reading LOD of its cluster from a
texture. Then, the level of this receiver needs to be known. For obtaining the level of
receiver we follow the same rules as for standard mipmapping. Let’s say that coordinates
of the receiver in the lightmap texture (in pixels) are (z,y). If for both coordinates
the last bit is 0, then this receiver is at least level 1. If 2 last bits are 0, then this
receiver is at least level 2 and so on. Otherwise, the receiver is level 0. For example, if
the cluster of this receiver is in LOD 1, every receiver with level bigger or equal than
the level of its cluster will be computed (every receiver with level 1,2,3... but not 0).
Level of the receiver also decides to how many LODs of the lightmap texture will the
irradiance value be written (see Figure 4.10). Let us say we have a cluster in LOD 2.
Only receivers with level 2 and 3 will be computed (and propagated to LODs 2 and 3).

A A A A A A X T 1 T level 3
A A A A A A A A A A A AL A AL AAMA level 2
AAANAARARAARAARARNARLAARAAAMRALARLAAMRNARALAARNA level 1
Jwrwrwru Twruﬁ.rTMTW‘A ”TWTHTHTHTHT WE‘WT “T ‘Nh‘ =7 level 0
' ‘ ‘ ‘ ' ‘ All receivers

Figure 4.10. Visualization of receivers writing its irradiance through LODs, receivers of
level 0 got black color, receivers of level 1 are green, level 2 is blue, and level 3 is a red
color.

45

4. Method Extensions

Important is that we cannot write irradiance only to that LOD which cluster has,
but we always have to propagate the resulting irradiance to the level of a certain
receiver. A reason for this is that even though cluster can be for example in LOD 0
(the closest point from a cluster AABB was in LOD 0) not every receiver has to be
in this LOD. So, we may require lesser detail during rendering from the cluster with
higher LOD, as it is visualized in Figure 4.11.

cluster LOD
distance

I rs |
] @ ®

level 0 - level 1 level 2
scene surface

—

.

Figure 4.11. Visualized problem with receivers being in different LOD than their cluster,
receiver 7o and r3 are in LOD 1 and 2 respectively, but the cluster is in LOD 0.

The second case is if the receiver is a spatial receiver. In this test, the spatial receiver
is checked if it is in a list of active receivers needed for the computation (if some dynamic
object triggered a voxel with this receiver as its vertex). The test is visualized in Figure
4.2.

46

4.2 Dynamic Level of Detail

Il 4.2.4 Usage of LOD Irradiance Textures in Fragments

LOD for every fragment of a static scene is determined exactly the same way as it was
shown in Figure 4.4. In a naive solution, the fragment just looks up its irradiance in
the appropriate lightmap texture LOD. This solution brings two major problems. The
first problem is an obvious one: there is a sharp edge between fragments in different
LODs. An example of this is shown in Figure 4.12.

Figure 4.12. Fragments take irradiance without smoothing between LOD, visible circle
artifact around the lions head.

To solve this artifact, I smooth irradiance in fragments between LODs of the lightmap
texture with a constant width of a smoothing range. A blending of irradiance always
happens from more detailed LOD to less detailed LOD, never the other way around. If
some LOD i is computed then necessarily LOD i+1 is computed as well, but this does
not have to be the case for LOD i -1.

A result of this improvement is shown in Figure 4.13.

Figure 4.13. Fragments take irradiance with smoothing between LOD, artifacts disap-
peared.

The second problem with fetching texels from the lightmap texture happens when

the system still balances change of light in the scene. Thus, when some fragment takes
irradiance from part of the system, which has not to converge yet, it starts flickering.
This happens because the borders of LODs for the computation part are the same as
for the rendering part.
The problem can be solved simply by shifting LOD distance for fragments. Not the best-
computed irradiance texture is shown using this solution, but there is a high possibility
that the system already converged in that part of the scene. Convergence of the system
is highly dependent on a difference of irradiance between computed and not computed
parts of the scene, a speed of camera movement through the scene and a refresh rate
of irradiance computation.

47

Chapter 5
Results

To test both the proposed method [4] and my extensions, I implemented an application
using C++ 14 and OpenGL 4.3. The application has parameters settable in run-time
using Nuklear GUI'. The rest of the parameters is then settable using a configuration
file. A complete guide on how to use the provided application is located in appendix
A. Screenshot from the application is shown in Figure 5.1.

S

Figure 5.1. Screenshot from the implemented application.

https://github.com/vurtun/nuklear

48

https://github.com/vurtun/nuklear

5.1 Real-Time Global lllumination by Precomputed Local Reconstruction from Sparse Radiance Probes

I 5.1 Real-Time Global lllumination by Precomputed
Local Reconstruction from Sparse Radiance Probes

In this chapter, I am going to test several parameters of the proposed method [4] which
are configurable. Testing has been done on laptop Lenovo G580:Intel(R) Core i5-3210M
CPU @ 2.50GHz,RAM: 8GB,GPU NVIDIA 630m 1GB, 800 Mhz.

B 5.1.1 Testing Number of Probes

A number of probes crucially affects the quality of the final render. The more probes
we use, the more accurate the signal reconstruction will be. However, computation of
probes during run-time is costly, due to integration over hundreds of relighting rays.
I tested this dependency as it is shown in Figure 5.2. In Figure 5.3 are visualized
positions of probes in the scene as blue dots. You can notice how a single probe in
image 0 is not sufficient for light reconstruction. However, 11 probes in image 2 provide
a similarly good result as 78 probes in image 4.

Figure 5.2. Testing renders for a different number of probes, from the left to the right,
from the lowest to the highest.

Figure 5.3. Testing scenes for a different number of probes with visualized probes position.

In Table 5.1 are setups used for each render. Figure 5.4 shows how the number of
probes affects computation time. 65 011 receivers were used.

image PO P1 P2 P3 P4
precomputation time [min)] 3.84 5.70 25.14 36.12 54.31
render time [ms] 5.29 5.67 6.56 7.55 10.28
number of probes 1 3 11 30 78

Table 5.1. Setups for testing number of probes in the scene.

49

5. Results

o)
=]
=
=

c

E 50 - 10+

qEJ40 £ 9

- 2

S30 c g

5 2

- ——

220 37

£ c

S g

010 6

Q.

0 20 40 60 80 0 20 40 60 80
number of probes number of probes

Figure 5.4. Testing scenes for a different number of probes, on the left is a graph for the
precomputation, on the right is a graph for the rendering.

In Figure 5.5 is comparison of times for a different number of receivers.

160
~=15 030 receivers
||==65 011 receivers
—270 914 receivers

=15 030 receivers
= 140 =65 011 receivers
= —270 914 receivers

30

S —_

—_ | n

qé . g 25 /
= 100 3}

= 80 gls

© £15/

g_ 60 g

€ 40 5" /
g —-

0 20 40 60 80 0 20 40 60 80

number of probes number of probes

Figure 5.5. Testing scenes for a different number of probes and a different number of
receivers. On the left is a graph for the precomputation, on the right is a graph for the
rendering.

B 5.1.2 Testing Number of Receivers

For accurate lightmap calculation, a dense set of receivers is needed. However, the more
receivers we have, the longer the computation takes. As a demonstration, I rendered
the scene with several setups. Results are shown in Figure 5.6. For every tested setup
there were 7 probes in the scene. Notice, how edges of meshes have blended irradiance
from neighboring faces in low-resolution lightmaps. This is caused by linear filtering
together with mesh unwrapped UV coordinates. The artifact disappears with higher
resolutions.

Figure 5.6. Testing renders for a different number of receivers, from the left to the right,
from the lowest to the highest.

50

5.1 Real-Time Global lllumination by Precomputed Local Reconstruction from Sparse Radiance Probes

In Table 5.2 is information about all rendered scenes from Figure 5.6.

image RO R1 R2 R3 R4
precomputation [min]| 0.09 0.45 2.06 8.75 37.8
render [ms] 1.61 1.76 3.02 6.15 19.19
receivers 712 3 369 15 608 67 662 282 403
clusters 2 4 36 103 428
lightmap size 64 x 64 128 x 128 256 x 256 512 x 512 1024 x 1024

Table 5.2. Setups for testing number of receivers in the scene.

Figure 5.7 visualizes data from table 5.2 in graphs. Notice how both graphs are pretty
much linear. This shows how impactful is the number of receivers on computation time.

40 20
€35
£ —
— w
E 30 E 15
=25 @
< £
220 510
© C
515 5
g‘ S
510)
o st
L
55
0 0 -
0 100 200 300 0 100 200 300
number of receivers [x103] number of receivers [x103]

Figure 5.7. Testing renders for a different number of receivers, on the left is a graph of
precomputation part, on the right is a graph of rendering part.

Figure 5.8 shows a comparison of a different number of probes.

120 25
=3 probes -3 probes
= -7 probes -7 probes
E 100 ' —30 probes, =20 —30 probes
g 80 ‘E
— [«}]
*‘-:' g 15
o -
g % 2
= = 10
2 40 L
§ S
@ 20 =3
Q
0 100 200 300 0 100 200 300
number of receivers [x103] number of receivers [x103]

Figure 5.8. Testing renders for a different number of receivers, multiple setups. On the
left is a graph of the precomputation part, on the right is a graph of the rendering part.

51

5. Results

Bl 5.1.3 Testing o;; Coefficients Setup

The proposed method [4] stored weighted visibility for irradiance receivers in o;; coef-
ficients. «;; coefficients had several problematic aspects I had to solve. This chapter
describes how I approached these problems in my implementation.

5.1.3.1 No Hitpoint During Ray-Casting

There is an undefined solution to the state where a ray hits no object during measure-
ment of o;; coefficients. During testing, I created four separate solutions, which I will
now describe. You can see a visualization of solutions together with appropriate renders
in Figure 5.9. Renders have enhanced contrast for better light leaks visibility.

In the first column is an initial solution. I add zero contribution to the receiver if
the ray had no hitpoint, the solution is in the first column, second row.

In the second solution (the second column) I added a contribution from probes that
in the same direction as the receiver see nothing as well. You can notice visible light
leaks due to unequal transfer function on the surface of meshes.

In the third solution (the third column) I added contribution only from probes which
directly see the receiver.

The fourth solution is in the fourth column. Here I added an equal contribution from
all probes no-matter visibility. This solution does not suffer from light leaks, but notice
incorrect irradiance on the left face of the red cube. In comparison to other solutions,
you can notice irradiance should be much weaker than it is. Thus, this solution is
incorrect. For my final implementation, I chose the first solution as it provided the best
results.

Figure 5.9. Receivers, no hitpoint example. From the left to the right: zero contribution,
visible light leaks; the same direction seen by probes; contribution from probes visible to
the receiver; contribution from all supporting probes.

52

5.1 Real-Time Global lllumination by Precomputed Local Reconstruction from Sparse Radiance Probes

5.1.3.2 Weighted Function for Ray Hitpoints

When casting a limited number of rays uniformly distributed across the hemisphere,
surfaces which are closer to ray-casting starting point will have a higher sampling density
of rays which hit them. This affects final measured coefficient «;; in a negative way.
Coeflicients which have been measured for receivers in corners will tend to have strong
deviation towards closer surfaces. An example of this problem is shown in Figure 5.10,
where a receiver is visualized as a black dot and measuring rays are green. Notice how
the bottom part of the screen has a lot denser hitpoints then, for example, the ceiling.

Figure 5.10. Testing weighted function for ray hitpoints, visualization of the problem.

To solve this problem, I weighted samples due to their hitpoint distance from a
starting point of ray-casting. As the rays are cast from a point, we can imagine their
probability of appearance at a certain distance as a projection on a surface of a sphere
(hemisphere in this case). The probability of a ray appearing in a distance = decreases
the same way as the surface of the hemisphere rises. I used this fact to weight all rays
equally. The weight is then equal to the inversed normalized surface of a hemisphere:

1

W) =1-5 5.7

To support my statement, I compared this weight function with the previous, linear
weight function W;(z) = x. Results are shown in Figure 5.11, where the left picture
is rendered with the linear weight function W;(z) and the right picture with the new
weight function W(x) . Notice, how corners and tight spaces have a tendency to be
darker on the left picture.

Figure 5.11. Testing weighted function for ray hitpoints: image W, was rendered with
linear weight function W, image W was rendered with W weight function.

53

5. Results

Il 5.1.4 Incorrectirradiance at Contact Points of Meshes

You may notice in renders that bright aura where different objects are in contact. For
example in Figure 5.12, where the red cube touches the floor.

Figure 5.12. Incorrect irradiance at contact points of meshes, example of a bright aura.

This aura is mainly caused by linear interpolation of texture. The aura will be smaller
if receivers are dense enough as it is shown in Figure 5.13.

Figure 5.13. Incorrect irradiance at contact points of meshes, how higher sampling dims
the aura.

Another reason which causes the problem comes from the used ray-caster. The ray-
caster I used had backface-culling enabled. Thus, if a starting point of a ray is too close
to another object, the ray will fly into that object. Also, because of backface-culling,
the ray will go through the object and fly out the other side. This false ray will then
measure irradiance at some distant part of the scene. Note that even with backface-
culling turned off, incorrect irradiance would still occur, but there will not be a bright
aura but a dark one. The dark aura would be less visible in more conditions, but the
results would be false nonetheless.

54

5.1 Real-Time Global lllumination by Precomputed Local Reconstruction from Sparse Radiance Probes

To solve this problem or at least dim the aura effect as much as possible, I included
a new part of the algorithm to the precomputation of the scene. When receivers are
created, their position in space is saved. From this position, their SH coefficients a;; are
then computed. My idea is to shift their position used for SH coefficients calculation.
For better imagination, my solution to this problem is shown in Figure 5.14. Colored
rectangles represent texels of the lightmap texture, green texels are correct, red texels
are wrong. Dots and arrows represent from which point certain receiver measured its
SH coefficients.

T i1t

Figure 5.14. Incorrect irradiance at contact points of meshes, shifting receivers position.
On the left is the original position of receivers, on the right is shifted position of incorrect
receivers.

Determining where to shift a receiver is not trivial. Surfaces and contact places of
meshes can have a huge variety of these problematic spots. To solve this problem for
general cases I chose a rather slow but reliable technique. From every receiver, I shoot
testing rays. If a testing ray r hits backface of any mesh, I measure a length of this ray
and choose the shortest ray from all rays which hit backface. If at least 60% of rays
hit backface and no ray flew out of the scene, I accept measured shifting. And finally,
I shift the position of the receiver in a direction (and distance) of this shortest ray. An
offset is involved to be sure that the shifted receiver is outside of the mesh. I store
this shift by overwritting receiver’s position in 3D with the shifted position. Its texel
position in lightmap never changes.

Resulting render using this technique as well as old render with the aura and SSIM
comparison is shown in Figure 5.15.

SHIFTED RECEIVERS INCORRECT AURA SSIM %";';EQRENCE

Figure 5.15. Comparison of render with shifted receivers position and the original render
without shifting. The last image is an SSIM comparison.

Notice how different the final render is when receivers were shifted. This is a good ex-
ample of how subtle changes completely change the final image when global illumination
techniques are used.

55

5. Results

I 5.2 Extensions

I implemented two major extensions for the proposed algorithm [4]. Testing and results
of these extensions is this chapter. Please visit the following URL! for accompanying
video.

Il 5.2.1 Giobal lllumination Shading for Dynamic Objects

Testing of my first extension capable of shading dynamic objects using indirect illumi-
nation is in this chapter.

5.2.1.1 Testing Voxel Grid - Dynamic Voxel Irradiance Calculation

For testing purpose, I precomputed a scene with a voxel grid of size [26 x 9 x 64]. So,
there are 14 976 spatial receivers in total. I placed two models into the scene. Then I
measured the time and the number of active voxels during computation. The resulting
renders with an active voxels visualization are visible in Figure 5.16. Achieved speedup
of the computation was 1.85.

GRID COMPUTED
RENDER VISUALIZATION

RECEIVERS TIME([ms] SPEEDUP

ALL SPATIAL

RECEIVERS 14 976 14.42 1.0

ACTIVE SPATIAL

RECEIVERS 404 7.8 1.85

Figure 5.16. Dynamic irradiance voxel calculation, on the left: rendered scene, on the
right: active voxels during computation. The first line: all voxels are active, the second
line: only voxels around dynamic objects are active.

In Figure 5.17 is an SSIM comparison of these two rendered images. As you see,
images are equal, thus only unnecessary spatial receivers were omitted from the calcu-
lation.

SSIM DIFFERENCE
1.0

Figure 5.17. Dynamic irradiance voxel calculation, an SSIM difference of 1.0, complete

match.

! https://youtu.be/5A6B-_wSql4

56

https://youtu.be/5A6B-_wSq14

5.2 Extensions

5.2.1.2 Testing Voxel Grid - a Density of the Grid

Quality of shading is dependent on a density of the grid. To show how density can
affect shading, I prepared several renders with a different grid density. Results are
visible in Figure 5.18 in the first row. The second row shows how similar are other
images to image 4 (highest density) in terms of the SSIM comparison. In Figure 5.19
are visible currently active voxels used for computation. If you compare the first image
with the last one, there are clear differences. However, these examples use extreme
setups. Density showed in pictures 1,2,3 is sufficient for generally good results.

0.989 SSIM 0.997 SSIM 0.998 SSIM 0.999 SSIM REFERENCE

Figure 5.18. [rradiance voxel grid with different density setups. The lowest density on
the left, to the highest density on the right. Rendered images are in the first row, SSIM
comparisons with image 4 are in the second row.

Figure 5.19. [rradiance voxel grid with different density setups, active voxels visualization.

Information about different setups is shown in Table 5.3.

image VGO VG1 VG2 VG3 VG4
Spatial Receivers 8 180 800 1 440 59 976
active Spc. recs. 8 168 562 871 13 396
render time [ms] 4.15 4.19 4.33 4.44 15.70

Table 5.3. Table of density setup for irradiance voxel grid testing.

57

5. Results

5.2.1.3 Layers of Shading

Let me firstly show separate layers of shading, see Figure 5.20. There are renders of a
container in a Cornell box. The container model is dynamic. From the left to the right
there is: only diffuse shading, diffuse shading with normal maps, diffuse + specular
shading, all combined with a diffuse texture. A light source is a dynamic projective
light with white emission color.

SPECULAR REFLECTION
+ TEXTURE

DIFFUSE SHADING NORMAL MAPPING SPECULAR REFLECTION

Figure 5.20. Layers of shading, from the left to the right: only diffuse shading, diffuse
shading with normal maps, diffuse 4+ specular shading, all combined with a diffuse texture.

58

5.2 Extensions

5.2.1.4 Shadow Casting from Dynamic Objects

I implemented dynamic lights using shadow mapping. Because we have visibility infor-
mation even in run-time (if we render dynamic objects to the light source depth map)
we can project this shadow on receivers with dynamic objects taken into account. This
results in shadows cast from dynamic objects. Shadows are not ground truth, because
precomputed visibility of receivers does not take any dynamic object into account, but
it is a good and visually pleasing approximation.

Example of the dynamic object casting shadow is in Figure 5.21, where the dynamic
object is a character in the middle.

Figure 5.21. Shadow casted by a dynamic object (character).

5.2.1.5 Static Light Sources and Dynamic Objects

My approach supports not only dynamic light sources for dynamic objects, but also
static precomputed light sources. There is no visibility information about the dynamic
object for precomputed light sources, so the shadow reconstruction is not possible, but
shading is possible nevertheless.

In Figure 5.22 you can see how static light sources illuminate a dynamic object
(container). Notice how in the last image colors blend on the dynamic object surface.

Figure 5.22. Static light sources illuminate a dynamic object.

59

5.2.1.6 Normal Mapping for Static Scene

As it was already mentioned in section 4.1, my extension supports approximation of
normal mapping for a static scene without the need of radiance transport, just using
the irradiance voxel grid.

Examples are shown in Figure 5.23.

NORMAL MAPPING
ONLY DIFFUSE + SPECULAR REFLECTIONS

.] S~ —

'. 1 |- .‘_
*' | 4 " — [
4 3 _

e R B
e

“."-_,-. ~ T .
£ PR ==Y
-

Figure 5.23. Normal mapping for a static scene, the left image is without any normal
mapping, the right image is with normal mapping.

Bl 5.2.2 Dynamic Level of Detail

I measured 3 different scenes, each for a different purpose. Testing hardware for this
section was the following PC setup: 2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz,
RAM: 64GB, GPU NVIDIA GeForce GTX Titan Black 6GB, 980 Mhz.

After these measurements comes testing of each changeable LOD aspect (distance,
SH degree, number of relight rays, camera view dependent zones, and pixel border
extensions).

5.2.2.1 Open Hall

For this scene, I chose 4 different LOD setups, which are all visible in Table 5.4. As
LOD also affects camera position and direction (because of frustum based leveling of
detail), I chose 3 different camera setups. This scene was precomputed with a total
number of 512 026 receivers and 44 probes.

setup LVL 0 LVL 1 LVL 2 LVL 3
NO LOD [7,0.0] [7, o0 [7, o0] [7, 0]
S0 [7,00] [6,200] [4,50.0] [3,100]
S1 7,00 [7,11.0] [6,30.0 5, 60]
S2 [4,00] [4,11.0] [4,30.0] 3, 60]

Table 5.4. Open Hall testing LOD setups: [SH degree, LOD distance].
Measured scenes with these setups are shown in figures 5.24, 5.25 and 5.26. The

first line shows renders using a dynamic directional light and the second line the same
renders but using a static area light.

61

5. Results

Figure 5.24 presents renders for the first camera. This figure is followed by Table 5.5,
where are measured times for each render. Measured times are the same for each row of
Figure 5.24, because different light setup does not affect computation time. The third
column in Figure 5.24 shows SSIM differences between NO LOD setup and others.

] it e} (8 L

i e 5 W6

Figure 5.24. Rendered scene Open Hall, camera 1, in rows are from the top to the bottom
setups from Table 5.4, the first line is without LOD. The third column is the SSIM difference
between the image in the first line and image in the current line.

active receivers comp. time [ms] speed-up SSIM
NO LOD 512 026 1.99 1.0 1.0
SO 275 190 1.50 1.33 0.995
S1 158 371 1.35 1.47 0.991
S2 158 371 1.23 1.62 0.984

Table 5.5. Computation times for renders in Figure 5.24 with setups from Table 5.4.

62

5.2 Extensions

Figure 5.25 contains renders for the second camera, the third column contains SSIM
differences. The figure is followed by Table 5.6, where are measured times for each
render.

Figure 5.25. Rendered scene Open Hall, camera 2, in rows are from the top to the bottom
setups from Table 5.4, the first line is without LOD. The third column is the SSIM difference
between the image in the first line and image in the current line.

active receivers comp. time [ms] speed-up SSIM
NO LOD 512 026 1.99 1.0 1.0
SO 135 452 1.25 1.60 0.998
S1 99 744 1.24 1.60 0.993
S2 99 744 1.15 1.73 0.989

Table 5.6. Computation times for renders in Figure 5.25 with setups from Table 5.4.

63

5. Results

Last Figure 5.26 contains renders for the third camera, the third column contains
SSIM differences. The figure is followed by Table 5.7, where are measured times for
each render.

Figure 5.26. Rendered scene Open Hall, camera 3, in rows are from the top to the bottom
setups from Table 5.4, the first line is without LOD. The third column is the SSIM difference
between the image in the first line and image in the current line.

active receivers comp. time [ms] speed-up SSIM
NO LOD 512 026 1.99 1.0 1.0
SO 217 911 1.43 1.39 0.998
S1 126 279 1.27 1.57 0.996
S2 126 279 1.16 1.72 0.994

Table 5.7. Computation times for renders in Figure 5.26 with setups from Table 5.4.

64

5.2 Extensions

5.2.2.2 Cornell Box

I tested this small Cornell Box for different LOD lightmap textures. Maximal lightmap
size was 512 x 512. The first image is with a maximal lightmap size (LOD 0), the second
image with a lightmap half the size (LOD 1) and so on. There are 4 LODs in total, so
4 images for 4 different lightmap sizes. The scene Cornell Box was precomputed with
a total of 67 682 receivers and 7 probes. Images are shown in Figure 5.27.

Figure 5.27. Rendered scene Cornell Box with different lightmap size for different LOD.
From the left to the right is LOD 0 to LOD 3.

Computation times are shown in Table 5.8. As it can be expected, with half of the
receivers, computation time is two times shorter.

LOD 0 LOD 1 LOD 2 LOD 3

active receivers 67 682 16 857 4 210 1073
computation time [ms] 0.92 0.44 0.24 0.17
speed-up 1.0 2.10 3.83 5.41

Table 5.8. Computation times for renders of Cornell Box scene.

65

5. Results

5.2.2.3 Large Cornell Box

As this Cornell box provides noticeable color bleeding, I rendered this scene with dif-
ferent SH degree to compare how estimation of color bleeding using different degrees of
SH will looks like and how much time will it take. The scene Large Cornell Box was
precomputed with 342 009 receivers and 13 probes. All renders with different degrees
are shown in Figure 5.28.

Figure 5.28. Rendered scene Large Cornell Box with different SH degree for LOD 0 only.

In Table 5.9 are measured times for Large Cornell Box scene.

SH 0 SH 1 SH 2 SH 3

computation time [ms] 1.42 1.42 1.43 1.43
speed-up 1.06 1.06 1.05 1.05

SH 4 SH 5 SH 6 SH 7

computation time [ms] 1.43 1.43 1.46 1.50
speed-up 1.05 1.05 1.02 1.0

Table 5.9. Computation times, for renders of Large Cornell Box scene.

66

5.2.2.4 Testing LOD Distance

The most significant value to change in my dynamic LOD system is definitely the
drawing distance. The drawing distance change not only which the texture will appear
on the screen, but also which sections of texture will be computed and which will be
omitted. To demonstrate this, I prepared a few examples in Figure 5.29. Each line has
the following distance setup for LODs. Setups are shown in Table 5.10.

Setup LOD 0 LOD 1 LOD 2 LOD 3

DO 0.0 20.0 50.0 100.0
D1 0.0 14.0 24.0 46.0
D2 0.0 0.0 12.0 30.5

Table 5.10. Table of distances setup for LOD testing.

DO RENDER SSIM DIFFERENCE VISUALIZATION
0.994 OF LOD LAYERS

LOD LIGHTMAPS

D1 RENDER SSIM DIFFERENCE VISUALIZATION

0.985 OF LOD LAYERS LOD LIGHTMAPS

D2 RENDER SSIM DIFFERENCE VISUALIZATION

0.971 OF LOD LAYERS LOD LIGHTMAPS

Figure 5.29. Different LOD distance setups. From the top to the bottom: dst_0 , dst_1,

dst_2. Setups are from Table 5.10. LOD 0, 1, 2, 3 is colored with red, green, blue, yellow

color. In the first column is the rendered scene. In the second is SSIM comparison with

the reference image. The third column shows visualized LODs with color. The fourth and
the fifth columns are lightmaps for LODs 0, 1, 2, 3.

In Figure 5.29 you can see how different setup leads to uncalculated irradiance in
lightmaps of different LODs. For example, in the first line, roughly half of the floor
and ceiling is calculated in LOD 0. The rest is calculated in LOD 1 and 2. And in the
second line no irradiance has been calculated in LOD 0 at all. This is because LOD 1
starts at 0.0. Thus, LOD 0 will never be calculated in this case.

67

5. Results

Furthermore, notice how lightmaps of different LODs are blend together at their
borders. This is done to hide imperfections due to different resolutions of the textures.
Images were compared with a reference image, which was rendered without LOD (every
receiver and probe was in LOD 0).

5.2.2.5 Testing LOD Degree of Spherical Harmonics

Changing a degree of SH for different LODs got its advantages in a matter of compu-
tation speed-up. However, this change brings discontinuity to the system. If degrees of
neighboring LODs are drastically different, it shows negatively on the resulting render.
Few setups are shown in Figure 5.30. Setups themselves are noted in Table 5.11.

Setup LOD 0 LOD 1 LOD 2 LOD 3
REFERENCE 7 7 7 7
SDO 7 5 3 2
SD1 4 3 2 0
SD2 7 2 0 0

Table 5.11. Table of SH degree setup for LOD testing.

SSIM DIFFERENCE

SDO RENDER 5.998

REFERENCE
WITH MAX DEGREE

SSIM DIFFERENCE
SD1 RENDER 5.990

SSIM DIFFERENCE
0.973

SD2 RENDER

Figure 5.30. Different SH degree setups. Rendered results for setups from Table 5.11. A
reference image is on the right. Rendered images are in the left column. SSIM differences,
tested against the reference image (on the right), are in the right column.

68

5.2 Extensions

In Figure 5.30 in the third row are clearly visible seams between LODs due to the
big difference of the SH degree in neighboring LODs. During testing, I noticed that the
maximal gap between LODs SH degree, which do not produce artifacts, is two. Greater
gaps leave visible seams in the render.

5.2.2.6 Testing LOD Number of Relight Rays for Probes

For this testing I prepared a scene, where is clearly visible how dynamic LOD is able
to blend together lightmaps which have been calculated with a different number of
relight rays. Results are shown in Figure 5.31. Notice how a lower number of relight
rays does not necessarily mean darker result. It just means that an approximation of
a signal function will be less accurate. I measured the similarity of an image at the
bottom (adaptive solution) with the rest of the images. As you can see, similarities show
that the adaptive number of relight rays matches the most with the highest number of
relight rays, which was desired. As the number of rays decreases with a bigger distance,
similarities disappear.

SSIM DIFFERENCE
0.999

SSIM DIFFERENCE
0.997

512 RAYS RENDER 265 RAYS RENDER

128 RAYS RENDER SSIM DI ERENCE 64 RAYS RENDER SSIM DIFFERENCE

ADAPTIVE NUMBER
OF RAYS

Figure 5.31. A different number of relight rays setups. The bottom image shows render

with an adaptive number of relight rays, for LOD 0, 1, 2, 3 algorithms used 512, 256, 128,

64 relight rays. The rest of the images has a static number of relight rays. SSIM differences
were tested against image using the adaptive method (at the bottom).

69

5. Results

5.2.2.7 Testing Camera View Dependant Zones in LOD

Previously shown in chapter 4.2 (Figure 4.8), LOD is capable of discarding calculations
even in dependency to a camera view. An example is shown in Figure 5.32.

REFERENCE USING LOD SSIM DIFFERENCE
SPEEDUP
1.99[ms] 1.25[ms] 0.997

1.60

Figure 5.32. Camera View Dependant Zones in LOD. On the left: NO camera view de-

pendant zones, 229 076 computed receivers. In the middle: WITH camera view dependant

zones, 105 259 computed receivers. On the right is the SSIM comparison. A complete
number of receivers is 335 015.

5.2.2.8 Testing Lightmap Border Extension Pixels in LOD

As it was mentioned in chapter 3.2.1, due to the linear filtering, edges of the lightmap
blend together with an initial black color of the lightmap. This creates dark edges
on meshes during rendering. Artifact gets even worse if LOD is used because smaller
lightmap will get stretched out to the bigger area. Thus, blending is even further into
a mesh. To solve this problem, I extended irradiance at pixels laying on borders. After
LOD was implemented, I had to implement this feature even to the lower LODs of the
lightmap. Problem and its solution are shown in Figure 5.33.

Figure 5.33. Pixel border extension, from the left to the right: No border extension, bor-
der extension only in LOD 0, border extension in all LODs. Wrong color blending is
highlighted.

70

Chapter 6
Conclusion

In the first part of my work, I described my reimplementation of the method for real-
time global illumination [4]. I split the implementation into two applications: the
precomputation application and the real-time rendering application. The precomputa-
tion application takes mesh as input together with several user-defined constants and
computes all textures and data needed for real-time rendering. I invented several algo-
rithms to make this application fully automatic: automatic placement of meshes into
the lightmap, automatic scaling of the lightmap (chapter 3.2.1) and automatic calcu-
lation of the initial set of probes (chapter 3.2.2). The real-time rendering application
uses the output file from the precomputation application and it renders the scene in
real-time using OpenGL.

In the second part of my work, I created two extensions to the proposed algorithm [4].
The first extension is able to shade dynamic objects in real-time with global illumination
from the scene using spatial irradiance receivers in a sparse voxel grid. Furthermore,
my method is able to approximate normal mapping and specular reflections for both
dynamic objects and static scene without the need for costly radiance transport. This
method even supports shadow-casting by dynamic objects when dynamic lights are
used.

The second extension uses a dynamic Level of Detail to omit computations and
improve performance. My dynamic Level of Detail provides multiple lightmaps. One
lightmap for every Level of Detail. Each lightmap has different resolution and each
Level of Detail has different detail settings. Every aspect of my dynamic Level of
Detail method can be changed in run-time.

I have tested all the important constants and implementation decisions of the pro-
posed method in chapter 5.1. I have also tested my two extensions in chapter 5.2.

For the demonstration of the proposed method [4] and my extensions, I have imple-
mented the precomputation application and the real-time rendering application.

I 6.1 Future Work

As the method is able to cast shadows for dynamic objects only from dynamic light-
sources, I want to focus on the full support of shadow-casting even from indirect illu-
mination. Another field of study would be high-frequency spatially-varying BRDF as
it is not well handled by the current method.

Another improvement can be done in the precomputation part in terms of speed. As
most of the computation can be done in parallel, the precomputation application would
greatly benefit from multithreaded or GPU implementation.

71

References

[1] Lafortune, Eric P. and Willems, Yves D., Bi-directional path tracing, Proceedings
of Third International Conference on Computational Graphics and Visualization
Techniques (Compugraphics ’93),pages 145-153, December 1993, Alvor, Portugal

[2] Stefan Brabec and Thomas Annen and Hans-Peter Seidel,Practical Shadow Map-
ping. Journal of Graphics Tools, vol.7,num.4 pages 9-18, 2002 Taylor & Francis

[3] Ravi Ramamoorthi, Precomputation-Based Rendering, vol.3, num. 4, pages 281-
369, Foundations and Trends® in Computer Graphics and Vision 2009

[4] Ari Silvennoinen, Jaakko Lehtinen., Real-time Global Illumination by Precom-
puted Local Reconstruction from Sparse Radiance Probes. ACM Transactions on
Graphics, Vol. 36, No. 6, Article 230. Publication date: November 2017.

[5] Henry Schéfer and Jochen Stifmuth and Cornelia Denk and Marc Stamminger,
Memory efficient light baking. vol. 36, num. 3, pages 193 - 200, Computers &
Graphics 2012

[6] Ritschel, Tobias and Dachsbacher, Carsten and Grosch, Thorsten and Kautz, Jan.
The State of the Art in Interactive Global Illumination. vol.31, num.l, pages
160-188, Computer Graphics Forum 2012

[7] GORAL C. M., TORRANCE K. E., GREENBERG D. P.,BATTAILE B.Modeling
the interaction of light between diffuse surfaces. ACM SIGGRAPH Computer
Graphics 18, 3 (1984), 213-222.

[8] NICHOLS G., SHOPF J., WYMAN C.: Hierarchical Image-Space Radiosity for In-
teractive Global Illumination. Computer Graphics Forum 28, 4 (2009), 1141-1149.
9, 11, 15

[9] JENSEN H. W.: Global illumination using photon maps. In Proc. EGWR (1996),
pp. 21-30. 5, 15

[10] KELLER A.: Instant radiosity. Proc. SIGGRAPH 31, 3 (1997), 49-56. 6, 25

[11] WALTER B., FERNANDEZ S., ARBREE A., BALA K., DONIKIAN M.,
GREENBERG D. P. Lightcuts: a scalable approach to illumination. ACM Trans.
Graph. (Proc. SIGGRAPH) 24, 3 (2005), 1098-1107. 8, 12, 15

[12] CHRISTENSEN P.: Point-Based Approximate Color Bleeding. Tech. rep., Pixar,
2008. 6, 8, 15, 25

[13] CHANDRASEKHAR S.: Radiative Transfer. Dover Pubns, 1950. 9

[14] KAPLANYAN A., DACHSBACHER C.: Cascaded light propagation volumes for
real-time indirect illumination. In Proc. I3D (2010), p. 99. 9, 10, 15, 26

[15] DACHSBACHER C., STAMMINGER M.: Reflective shadow maps. In Proc. 13D
(2005), p. 203. 6, 7,9, 11, 12, 14, 15, 25

[16] Peter-Pike Sloan, Jan Kautz, and John Snyder, Precomputed Radiance Trans-
fer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Enviroments.

72

ACM Transactions on Graphics, Vol. 21, Issue 3, Pages 527 - 536. Publication
date: July 2002.

[17] R. T. Seeley: Spherical Harmonics. The American Mathematical Monthly, vol.
73, num. 4P2, o. 115-121, Taylor & Francis 1966

[18] Robin Green, Spherical Harmonics Lighting: The Gritty Details. Sony Computer
Entertainment America, January 16, 2003.

[19] LIU X., SLOAN P.-P., SHUM H.-Y., SNYDER J.: All-Frequency Precomputed
Radiance Transfer for Glossy Objects. In Proc. EGSR (2004), vol. 3, pp. 337-344.
10, 26

[20] SLOAN P.-P., HALL J., HART J., SNYDER J.: Clustered principal components
for precomputed radiance transfer. Proc. SIGGRAPH 22, 3 (2003), 382. 10, 11,
12

[21] LEHTINEN J., KAUTZ J.: Matrix radiance transfer. In Proc. I3D (2003), I3D
'03, pp. 59-64. 10

[22] GREGER G., SHIRLEY P., HUBBARD P., GREENBERG D.: The irradiance
volume. IEEE Computer Graphics and Applications 18, 2 (1998), 32-43. 10, 26

[23] KONTKANEN J., LAINE S.: Ambient occlusion fields. In Proc. I3D (2005), p.
41. 10, 11, 26

[24] PHARR, Matt; GREEN, Simon. Ambient occlusion. GPU Gems, 2004, 1: 279-
292.

[25] PAN M.: Precomputed Radiance Transfer Field for Rendering Interreflections in
Dynamic Scenes. Computer Graphics Forum 26, 3 (2007), 485-493. 10

[26] Johannes Jendersie, David Kuri, and Thorsten Grosch. 2016. Precom-
puted illuminance composition for real-time global illumination. In Proceed-
ings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games (I3D ’16). ACM, New York, NY, USA, 129-137. DOI:
https://doi.org/10.1145/2856400.2856407

[27] Peter-Pike Sloan, Efficient Spherical Harmonic Evaluation. Journal of Computer
Graphics Techniques, 2 (2), 2013,
https://www.ppsloan.org/publications/SHICGT.pdf

[28] Adekitan, A.L.. (2014). MONTE CARLO SIMULATION.

[29] Amanatides and Woo. A Fast Voxel Traversal Algorithm for Ray Tracing. Euro-
graphics 1987.

73

https://www.ppsloan.org/publications/SHJCGT.pdf

Appendix A
The Application Guide

All controls of the provided application are explained in this appendix. Prepared ex-
amples can be executed by running provided scripts (.sh for Linux).

I A.1 Scene Configuration File

The application binary takes as an input a configuration file, file with .scene suffix.
From this file, all parameters can be set up. All commands start with ! followed by
command name and arguments, comments can be added by # at the beginning of the
comment. List of all commands is provided on the next page in Figure A.1.

75

A The Application Guide

command

description

ISSF *.ssf

Load precomputed static scene from the
provided fle. REQUIRED.

!DOBJ *.obj

Load a dynamic obiject.

!DOBJ_GRID_INSERT 1

Enlight the dynamic object with the
irradiance grid?

!DOBJ_SCALE 1

Set scale of the dynamic object.

!DOBJ_INIT TRANSLATE 10.5 0.2 4

Translate the dynamic object to an
initial position.

!DOBJ_INIT ROTATE 20.0 10 5 1

Rotate the dynamic object to an
initial position (angle , vec3(axis)).

!DOBJ_ANIM TRANSLATE 1 0 2

Translate the dynamic object in every
frame by this vector.

!DOBJ_ANIM ROTATE 0.01 1 0.2 1

Rotate the dynamic object in every
frame by this angle around this axis
(angle , vec3(axis)).

'DOBJ_BEZIER -1 3 0; -0.9 8.5 -6.1;

Move the dynamic object along the
Bezier curve defned by the argument
points.

!DOBJ_BEZIER_SPEED 0.002

Set a speed of the dynamic object
movement along the Bezier curve.

!BACKGROUND_COLOR 0 0 O

Set color of the background (R G B).

!SCREEN_RESOLUTION 1024 720

Set an initial screen resolution
(width height) .

IMAT EMIS 3 0.2

Set an emissivity of material 3 to
0.2.

!LIGHT_ MODE AREA

Set a mode of the light: AREA, FLASH,
POINT.

!LIGHT_INIT TRANSLATE 12 3 11

Translate the light to an initial
position.

'LIGHT _INIT YAW 12.1

Set an initial yvaw for the light.

!LIGHT INIT PITCH -4

Set an initial pitch for the light.

!LIGHT INIT COLOR 0 0 O

Set an initial color for the light
(R G B).

ICAMERA_INIT_TRANSLATE 5 0 1

Translate the camera to an initial

position.

!CAMERA INIT YAW 180

Set an initial yaw for the camera.

ICAMERA_INIT PITCH -0.5

Set an initial pitch for the camera.

!CAMERA_FOV 60

Set a feld of view for the camera.

!TONE_MAPPING E

Set an initial tone mapping to: E
(exposure), F (flmic), R (Reinhard).

!TONE_MAPPING GAMMA 1.58

Set an initial tone mapping gamma.

!TONE_MAPPING_EXPOSURE 11.9

Set an initial tone mapping exposure
(only for exposure tone mapping).

!TONE_MAPPING_CONTRAST 2.10

Set an initial tone mapping contrast.

!TONE_MAPPING DIMMER 0.03

Set an initial tone mapping dimmer.

! SCREENSHOT _FOLDER ./screen_shots

Set a folder for the screenshots.

LoD di : 1 lod 1, 1
1LOD_DISTANCE 0.0 20.0 50.0 100.0 et 20 lgésga'{"fzz 5 :‘fwgys gdm od

H for LOD: 1 lod 1
'LOD_SH DEGREE 7 4 3 1 s degreleo q °2r 100 4 3°d G Led L

#Commented line

Comment a line using "#".

Figure A.1. List of all scene configuration file commands.

76

I A.2 Application GUI

The application provides GUI to change several parameters in run-time. Press F to
enable camera movement with mouse, press L to switch between camera and light source
movement. Use W, A, S, D to move around with the camera or the light source. Press T
to switch between 3D view and texture view. Press 1 to display LOD 0 lightmap, press
2 to display the rest of the lightmaps, press 3 to display shadow map. Change camera
speed by Page Up and Page Down keys.

GUI is split into the left and the right panel. Press G to show/hide the left panel,
press H to show/hide the right panel. Listing all features in the left panel:
Reset Camera - resets the camera to its initial position
Reflection - sets static reflection value for global illumination
Static Materials - emissivity for any material of a static mesh can be set up here
Dynamic Light - set mode, color and rendering of impostor object for the dynamic
light
Tone Mapping - setup of tone mapping
Visualization - check certain box to visualize probes, bounding volumes or voxels
Information - press to display information about the static scene

Listing all features in the right panel:

Level of Detail - set every layer of LOD separately: Level 0,1,2,3

Distance - set drawing distance of certain LOD lightmap

SH Degree - set a degree of Spherical Harmonics for certain LOD

Reset Settings - reload initial LOD setup

Measurements - display window for measuring time and number of active receivers

77

Appendix B
Used Libraries and Extern Packages

Intel Embree!

Efficient Spherical Harmonic Evaluation?
SVD C++ implementation 3

OpenGL *

Nuklear GUI®

OpenGL Mathematics®

GLFW”

The OpenGL Utility Toolkit®

The OpenGL Extension Wrangler Library®
Assimp 1°

DevIL M

NVIDIA CUDA!?

NVIDIA OptiX'?

https://www.embree.org/
http://jcgt.org/published/0002/02/06/
http://svn.lirec.eu/libs/magicsquares/src/SVD.cpp
https://www.opengl.org/
https://github.com/vurtun/nuklear
https://glm.g-truc.net/0.9.9/index.html
https://www.glfw.org/
http://freeglut.sourceforge.net/
http://glew.sourceforge.net/
http://www.assimp.org/
http://openil.sourceforge.net/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/optix

© 0 N W N

e e
w N = O

78

https://www.embree.org/
http://jcgt.org/published/0002/02/06/
http://svn.lirec.eu/libs/magicsquares/src/SVD.cpp
https://www.opengl.org/
https://github.com/vurtun/nuklear
https://glm.g-truc.net/0.9.9/index.html
https://www.glfw.org/
http://freeglut.sourceforge.net/
http://glew.sourceforge.net/
http://www.assimp.org/
http://openil.sourceforge.net/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/optix

Appendix C
Compilation of Provided Applications

Provided source code of the applications can be built on Linux systems. If one desires to
compile the code on Windows, focus on getline() function as it has different requirements
on Windows and type ssize_t which is not available on Windows.

There are three different applications provided. All of them can be compiled using
cmake. To compile PRECOMPUTATION_APP and SH_.COMP_APP use gecc 7.3.0 or
later. Use the following commands to compile one of these applications:

cd < source_code_folder >

cmake CMakeLists.txt
make

To compile REAL_TIME_APP use gcc of version less then 6.0 (I used gee 4.8). As
the REAL_TIME_APP uses OptiX together with NVIDIA CUDA, nvcc compiler is
required. The gce version requirement must hold due to CUDA compiler compatibility.
Use the following commands to compile this application:

cd < source_code_folder >

cmake CMakeLists.txt

make

79

Appendix D

The Contents of The Enclosed DVD

—

img

tex files

Documentation

Diplomrai_thesis. pdf

application files

—

Linux Application
READ_ME.md

linux_libs.zip

run_scene_cornell_box.sh
run_scene_open_hall_day.sh

run_scene_open_hall_video.sh

—

REAL_TIME_APP
PRECOMPUTATION_APP

SH_COMP_APP

—

Source Code

80

< all images presented
in the thesis

provided libraries required
by the application

<«— executable examples

source code of the real-time
rendering application

source code of the
precomputation application

source code of the
application for computing
Spherical Harmonics basis
function values

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Related Work
	Overview of Real-Time Global Illumination Methods
	Precomputed Radiance Transfer

	Real-Time Global Illumination by Precomputed Local Reconstruction from Sparse Radiance Probes
	Method Overview
	Quick introduction
	Detailed introduction

	Precomputation Phase
	Irradiance Receivers Placement
	Probe Placement & Radius Calculation
	Probe Ray-Casting & Receiver Coefficients
	Receiver Clustering
	Computational Textures and Output Data File

	Rendering in Real-Time
	Main Rendering Loop

	Asymptotic Time and Memory Complexity
	Precomputation Algorithm Complexity
	Real-time Algorithm Complexity

	Method Extensions
	Shading Dynamic Objects Using Voxel Irradiance Space
	Irradiance Voxel Space Using Regular Grid
	Computation of Irradiance from Voxel Grid

	Dynamic Level of Detail
	Probe Computation with LOD
	Cluster Basis Computation with LOD
	Irradiance Receiver Computation with LOD
	Usage of LOD Irradiance Textures in Fragments

	Results
	Real-Time Global Illumination by Precomputed Local Reconstruction from Sparse Radiance Probes
	Testing Number of Probes
	Testing Number of Receivers
	Testing $alpha _{ij}$ Coefficients Setup
	Incorrect Irradiance at Contact Points of Meshes

	Extensions
	Global Illumination Shading for Dynamic Objects
	Dynamic Level of Detail

	Conclusion
	Future Work

	References
	The Application Guide
	Scene Configuration File
	Application GUI

	Used Libraries and Extern Packages
	Compilation of Provided Applications
	The Contents of The Enclosed DVD

