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A B S T R A C T

In this work, a managed so�ware project is presented which aims to provide
a framework for rapid prototyping of distributed control using MATLAB and
Simulink so�ware. �e framework is made of a set of scripts that automate
the task of de�ning a distributed platform and e�ortlessly generating code for
the platform from a single Simulink scheme. For this purpose, the capabilities
of networking middleware are explored to create the general-use networking
interface. �e distributed platform in question is the slot car platoon with
BeagleBone Blue development boards at its core. Simulink implementation of
the connected hardware components is provided. As part of the demonstra-
tion of the functionality of the project, the slot car system model is presented,
identi�ed and validated. �is includes the friction force model, which is then
compensated using feedback control. Basic controller components of the Co-
operative Adaptive Cruise Control concept are prepared for further controller
design and demonstrated through simulation and hardware experiments with
the slot cars.

Keywords: platooning, distributed control, embedded system, Simulink, wire-
lessly communicating experimental platform, friction compensation, CACC

A B S T R A K T

V této práci je představen spravovaný so�warový projekt, jehož cílem je
poskytnout prostředí pro rychlé prototypování distribuovaného řízení za použítí
MATLAB a Simulink so�waru. Toto prostředí se skládá ze sady skriptů pro
automatizaci úlohy de�nování distribuované platformy a snadného generování
kódu pro tuto platformu z jediného simulinkového schématu. Za tímto účelem
jsou prozkoumány možnosti síťového middlewaru pro vytvoření síťového
rozhraní s všeobecným využitím. Distribuovaná platforma, pro kterou je pro-
jekt připraven, je kolona dráhových autíček s vývojovými deskami BeagleBone
Blue. Je poskytnuta simulinková implementace připojených hardwarových části.
Jako součást demonstrace funkčnosti projektu je představen, identi�kován a
ověřen model systému dráhového autíčka. Součástí je i model třecí síly, který je
poté kompenzován zpětnovazebním řízením. Základní řídící prvky konceptu
kooperativního adaptivního tempomatu jsou připraveny pro další návrh řídícího
systému a demonstrovány skrze simulační a skutečné experimenty s dráhovými
autíčky.

Klíčová slova: platooning, distribuované řízení, vestavěný systém, Simulink,
bezdrátově komunikující experimentálný platforma, kompenzace tření, CACC
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I N T R O D U C T I O N

While adaptive cruise control and a multitude of other advanced driving assistance
systems (ADASs) are common in new sold vehicles, the future where autonomous
and e�cient driving is utilized to the fullest may still seem like science �ction. With the
development over the last decade it is not unimaginable. In fact, there are optimistic
predictions that as early as 2030 there might be reliable and a�ordable autonomous
vehicles [1]. On the other hand, the general public opinion on the safety is rather
skeptical [2] and as such acceptance will most likely be gradual and slow.
�e vision is to improve safety, security, fuel e�ciency, road capacity, reduce travel

time, congestion and more [3]. �is will be achieved by eliminating human error
through autonomy and intelligent tra�c control by communication and planning.
One of the topics in this area and a partial subject of this work is platooning. By that
term we usually understand driving vehicles as part of a single lane convoy. Much
theoretical work has been put into the study of vehicular platoons. Experiments have
also been carried out, but due to the associated cost such experiments have been limited
to relatively small convoys and overprotective margins for error. For this reason the
slotcar platooning project exists at the Department of Control Engineering at the Czech
Technical University.
�e basis of this project is an embedded system inside a slotcar. Such a device allows

design and veri�cation of a self-controlled system similar in physical dynamics to that
of a train, tram or a car. Many students have worked on this project through a few
so�ware and hardware iterations. �e current one is focused on utilizing the defacto
standard in control design tools, Mathworks MATLAB and Simulink so�ware, and the
low cost development board BeagleBone Blue. �is small piece of hardware has o�en
been compared to the ever popular Raspberry Piwith a larger aimonproviding a feature
set suitable for robotics use. It also recieves good support by the BeagleBoard.org and
elinux.org communities and is supported by Mathworks in their so�ware [4]. Other
well packaged parts and a 3D printable enclosure to hold them are provided which
gives a ready to use device. It is cheap to buy and time saving to assemble.
While the hardware for the current slotcars had been mostly �nalized by previous

students, the so�ware part had been lacking by not providing a user interface (UI) for
fast controller design and veri�cation. �e UI should allow fast online manipulation
of the platoon. To explain this, through the Simulink product family, Simulink Coder
and Embedded Coder, one is able to execute a model of a controller on a single
development board and use many of the products’ advanced features to tune and verify.
Should one wish to use a multitude of development boards in their design, they will
run into a hurdle with the complexity of setting up and executing their models. �e
complexity lies in the need to design each board in a separate model, explicitly setup
communication between the boards, and manually execute each model. While it is not
impossible to do, a simplifying solution should exist. �at should be the major task
of this work, removing this complexity and allowing fast prototyping for distributed
systems.

first chapter tells the project’s history and contributors and describes the hard-
ware used in more detail, including preparation to obtain a working copy

second chapter reports the work done on the MATLAB and Simulink work�ow
for systematic code generation and execution on distributed systems

third chapter gives theoretical background and demonstrates use of the project
for platooning control using the improvements described in the second chapter

fourth chapter concludes and summarizes the work

xvii





1 S LOTC A R P L ATO O N I N G
P R O J E C T

Distributed control of spatially distributed systems is a research topic of theAdvanced
Algorithms for Control and Communications (AACC) group [5][6]. One of the ex-
perimental platforms designed there under the supervision of doc. Zdeněk Hurák is
the slot car platoon. First worked on byDanMartinec using the LegoMindstormsNXT
[7] and then using a custom printed circuit board (PCB) by Freescale Semiconductor
and modi�ed Carrera Ford Capri RS Tuner 3 slotcars [8] in 2012.

�e next iteration in 2017 was the work of Martin Lád, Filip Svoboda and Filip
Richter. It featured a similar Carrera slot car, this time however with a Raspberry Pi
Compute Module and USB WiFi and extensive so�ware for control of the slotcars
over a network with a graphical user interface (GUI) [9, 10]. I have worked with this
version and contributed to its code a little in my bachelor’s studies. �is version also
featured custom PCB design with a STM32F401 chip for the sensor data acquisition
and motor control interface and to regulate the power supply.

�is solution, while powerful, proved to be di�cult to maintain as the Carrera parts
were prone to wear and the PCB had to be �tted, soldered and checked for problems as
the author of the current third revision also notes [11]. And this is only the hardware
side of things. �e so�ware was a mixture of a monolithic Java application for both the
Raspberry Pi boards and the computer running the control GUI and custom written
C program for the controller. �ere was interfacing with Simulink so�ware over a user
datagram protocol (UDP) connection too. Simulink code could not be run on the slot
car and as such the use of the tool was for the most part limited to creating reference
control signals and logging scope data. Each controller had to be written inside the
application Java code and selected through the Java GUI. �is all was hard to read
into and learn and while the choice was justi�ed at the time, the new goal for Marek
Bečka was to create a simpler maintainable platform utilizing modular, well supported
and accepted components from known companies and communities.

Concurrently with Marek Bečka another bachelor student Petr Bláha tackled the
issue described in the introduction which was to create a work�ow inside the Math-
works ecosystem whose complexity didn’t grow with the number of boards inside a
modeled experiment [12]. He provided a solution which was demonstrated using two
BeagleBone Blue boards exchanging measurement data between themselves and with
the computer running Simulink. His script separated prede�ned device subsystems
from a parent model and replaced the interfaces with UDP blocks. �ese were then
distributed to their devices and ran independently.

In this work, I try to pick up a�er the aforementioned students following the same
design philosophy to extend and improve the solution. With the BeagleBone support
package by Simulink being somewhat limiting and having little documentation one
could argue that using a self-prepared solution would be better. I am against this
approach. �e package will progressively get better and be kept up to date with the
BeagleBone and Matlab development while a completely custom solution might age
quickly. �ere is enough to work on in parts that do not seem to be on the Matlab
roadmap, are absolutely needed or demonstrate how things can be done in the project.

1



2 slotcar platoon project

1.1 hardware
Most of this section will describe the work of the aforementioned Marek Bečka

who documented his solution in his Czech bachelor’s thesis [11]. His chassis work is
incorporated into the repository listed below in section 1.2.

BeagleBone Blue

DC
Motor

Encoder

Backup
Power

Capacitors Brushes

Proxim
ity

Sensor

Figure 1.1: Layout of slotcar hardware from the side

For a basic picture see �gure 1.1. Each slot car’s basis is a slot.it HRS2 chassis,
which includes a 23000 rpmDCmotor with 9:28 gear and thin copper braided brushes
for drawing voltage from the track. �e braids and motor are disconnected and the
former is connected through a diode to a series of backup capacitors and then both are
connected to the BeagleBone PCB vias for the DC jack as documented in �gure 1.2.
�e backup power supply has a capacitance of 0.5 F, which lasts long enough for the
BeagleBone to not power down in case of the temporarily lost connection between the
brushes and the power rail of the track. Further �ltering is done by the board itself. I
have replaced the supercapacitors with smaller package supercapacitors to improve
the wiring and mechanical toughness in the lower part of the slot car. �e braids need
to be taken care of as dust accumulates in them and they deform as the slot car moves.
Otherwise, power failures may occur. �e BB board sits on top of custom printed
mounting columns on top of the HRS2 chassis. �e outer chassis holds the proximity
sensor and is mounted on the sides and front into the HRS2.
Personally, I had little trouble assembling the slotcars and as such, I did not change

their design. Of course, future users of the platform might select di�erent parts,
remodel them or add additional ones. �e design is modular and the outer chassis and
BeagleBone holders are custom 3D printed. Even in the current outer chassis design,
there is enough space to �t for example a front facing camera.
It is also worthy to mention the capabilities of the BeagleBone Blue. It contains

an inertial measurement unit (IMU), motor drivers, 802.11b/g/n wireless network on
chip (NoC) and a large array of connectors for external devices [13]. Its system in
package (SiP) features a Cortex-A8 ARMv7 32-bit processor and two programmable
realtime unit (PRU) 200 MHz microcontrollers. �ese PRUs add hard real-time
low latency processing to the board to control peripherals. �ey contribute to the

Figure 1.2: Input power backup circuit



slotcar platoon project 3

extensibility selling point of the device as custom protocols and tight control loops
can be implemented [14]. �ink of a Raspberry Pi and two Arduinos [15] with a
high-bandwidth connection directly, over a bus, via interrupts or DMA [16]. �e
BeagleBone boards are fully open-hardware and many vendors contribute, make and
sell them. Overall the BeagleBone is worthy of consideration for diverse embedded
and robotic applications and far exceeds the capabilities of the Raspberry Pi.
One last note I wish to say about the hardware concerns the 3D printed parts.

Previously the PLA material had been used and there had been minor concerns with
degradation over time, the plastic becoming brittle and with di�culty bending the
plastic into place. Using the tougher ABS material has made the slot car more durable.
It is, however, harder to print and has a tendency to break between print layers when
printed bellow optimal printing settings on cooler temperatures. �is can be an issue
with the thin outer chassis and vertical joints so care needs to be taken to increase
printing temperature but not damage the printer. Instead of heating up the print to
bend into place it is possible and for some easier to use a modeling scalpel or other
knife to remove supports and excess material in joints. �e choice of printing method
is free and both the mentioned materials serve their purpose with pros and cons but
PLA seems to be more suited for additive printing even concerning overall mechanical
properties [17].

1.2 accessing the project
�e project is lead as a student project without backing and it is purposefully open-

source and open-hardware. �e repository can be found on Github [18]. �e 3D
printed chassis �les are kept in the A360 web storage. Public links for these �les are
listed in the cad folder in the repository. Currently, no proper schematic of the board
and connected circuits exist because the only custom circuit is the backup power
capacitors, see �gures 1.1 and 1.2. Other hardware is wired through standard interfaces.
BeagleBone has it’s own hardware documentation repository [13].

1.3 setting up the beaglebone system
In this section I will provide the steps to setting up an operating system (OS) for the

BeagleBone. Mostly to show my chosen sources and �ows and to describe the steps
that are generally undocumented or changed.
First, there is the choice of OS. Any OS built for the hard �oat ARM-v7 architecture

can be used with the BeagleBone. For ease, one should pick a distribution by Beagle-
Bone communities which include the device tree overlay, drivers and most necessary
packages. BeagleBone’s Ångström and Debian are commonly used [19][20] but to
utilize Matlab support for the development board, Debian IoT is recommended [21]. In
fact, the support package requires a speci�c kernel and version of librobotcontrol
library which come preinstalled on the BeagleBone Debian image [21] [22]. OnMatlab
version 2018b this is Debian 9.5 and librobotcontrol 1.0.3. �is information
can be found in the package’s setup procedure mention below. �e choice has been
narrowed down to a single image. With the distribution image selected, the next steps
are

1. editing /boot/uEnv.txt �le inside the image to make sure the script used to clone
the system to internal eMMC on startup is commented out

2. making a bootable SD card using the Linux dd tool or the Etcher utility [23]

3. booting o� this SD card on a BeagleBone connected to the computer over a
USB cable and connecting over secure shell (SSH)
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4. making changes inside the system

5. uncommenting the uEnv line to allow �ashing to internal eMMC

6. cloning the distribution to each of the devices by inserting the SD card and
powering up the board

How to do these can be found in many internet tutorials and there are more ways to
achieve the same goal. Doing things this way saves some time and leaves an SD card
backup in case starting over on a board is needed. As for the changes done to the
distribution, these are

● setting up connman to connect to a wireless network
● running the Matlab support package setup script to install some packages
● adding users and changing passwords
● switching to a real-time kernel
● updating the packages and installing build tools
● building libraries not in the package manager

�e Simulink package must be set up before switching kernels because it checks and
doesn’t accept any other. �is is done from the addon manager window. A network
can be connected either using the package setup or from the command line using
connmanctl. �e package setup also installs needed packages if the BeagleBone is
connected.
�e supported 9.5 version of the distribution comes with kernel 4.14.71-ti-r80 and

can be le� as is. Even though the slot car can be seen as a toy, having a real-time Linux
kernel will be bene�cial. �ere are around 14 total branches available. To list available
kernels, see listing 1.1. First, there are the mainline bone kernels which are aimed at the
BeagleBone and feature the best support. �en there are the ti-channel and ti-rt
kernels, which receive patches from Texas Instruments faster than mainline. �ese
are required for the robot control library as they feature experimental PRU drivers
not yet featured in the mainline. �ey could potentially have some broken drivers but
are also generally faster. �ird, there is the xenomai dual kernel. �e BeagleBoard.org
Foundation maintains patches for the ti kernels in their repository [24]. �e latest
4.14 version in the ti-rt channel was version 4.14.108-ti-rt-r104, which I install using
commands in listing 1.2.

Listing 1.1: Listing available kernels
$ sudo apt-get update
$ sudo apt-cache search linux-image | grep <branch>

Listing 1.2: Installing RT LTS kernel
$ cd /opt/scripts/tools/
$ git pull
$ sudo ./update_kernel.sh --ti-rt-channel --lts
$ sudo reboot
$ uname -a
Linux beaglebone 4.14.108-ti-rt-r104 #1 SMP PREEMPT RT Tue Apr 9

18:48:02 UTC 2019 armv7l GNU/Linux

�e additional packages I install are cmake and ninja-build recommended for
building the nanomsg-next-generation (NNG) library and many other projects. For
the librobotcontrol package check that a�er the upgrade the installed package
version is still 1.0.3 using script rc_version and that the drivers are working with
rc_test_drivers. Some drivers might not be loaded when running o� the SD card
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and need to be checked a�er �ashing the eMMC.�e MATLAB support package was
created to utilize this library and that means it is necessary to make sure the library
is installed correctly. In chapter 2 I will use two network socket application libraries
UDP-based Data Transfer (UDT) and nanomsg-next-generation (NNG). Listings 1.3
and 1.4 show how these are built as dynamic libraries and placed in the /usr/local
directories on Linux. A�er these �les are placed, ldconfigmust be called to register
the libraries with the linker. �e git repository used for UDT is a clone with make�le
simply modi�ed to allow building on the ARM architecture. UDT is otherwise hosted
on SourceForge [25], NNG is on Github [26].

Listing 1.3: Building the UDT library
$ git clone https://gitlab.fel.cvut.cz/wernisim/udt-arm.git
$ cd udt-arm/udt4/src
$ make -e os=LINUX arch=ARM
$ sudo cp libudt.so /usr/local/lib
$ sudo cp udt.h /usr/local/include

Listing 1.4: Building the NNG library
$ git clone https://github.com/nanomsg/nng.git
$ mkdir nng/build cd nng/build
$ cmake -G Ninja -DBUILD_SHARED_LIBS=on ..
$ ninja
$ ninja install

Having prepared the SD card completely, the �nishing touches are done on the
boards a�er �ashing the eMMC.�ese include calibrating the sensors and checking
the drivers work using the Robot Control library (librobotcontrol) scripts. All the
scripts are on the path and begin with the rc_ pre�x. See listing 1.5. As a �nal check,
the BeagleBone /opt/scripts/tools/version.sh script can be used to verify the
installed system components.

Listing 1.5: Calibrating the hardware for the Robot Control library
$ rc_test_drivers
$ rc_calibrate_accel
$ rc_calibrate_gyro
$ rc_test_imu
$ rc_test_motors -d 1 -m 1

1.4 setting up the simulink environment
To utilize the support package for the BeagleBone Blue by Mathworks, MATLAB

needs to be run on the Windows OS. Hopefully, in the future the support will be
extended to Linux, seeing that Mac OS X has been added in the recent versions [22].
Preparing the environment for work with the project will nevertheless be the same
bar the used compilers and library installations. A compiler with support [27] should
be picked, installed and set up using mex -setup. Generally, instead of using the
support package provided by MATLAB for the MinGW compiler one should install
Visual Studio or MinGW by hand. �e package installs in an obfuscated location
and is not suited for compiling outside of MATLAB’s mex script. Next, the hardware
support package [21] needs to be installed either from the �le or by the addon ex-
plorer. A�er this from the addon manager window the package setup can be used
to prepare the BeagleBone with the SD card as part of the steps in the above section
1.3. It is also good to install a Simulink desktop RT kernel by the Matlab command
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sldrtkernel -install. Lastly, the project itself needs to be downloaded from the
Git repository listed above in section 1.2. MATLAB features Git integration a�er Git is
installed and added to the path variable. �is integration works with Simulink projects
with basic functionality.
�e UDT and NNG libraries have speci�c ways to build them depending on the in-

stalled compiler. �e compiler should be the same as the one set up for MEX. Otherwise
there will be incompatibility and errors when producing MEX �les inside MATLAB
that link against these libraries [28]. NNG supports cmake and all of its generators
[29]. I have tested it with the Ninja build tool inside the MSYS+MinGW environ-
ment and with Visual Studio 2017. As for UDT, the situation is slightly more di�cult.
Changes are required to build the library on 64-bit Windows. Either a new Make�le
must be created or the Visual Studio solution �les must be upgraded and an x64 con-
�guration added. I have done the later in the UDT repository clone mentioned in
listing 1.3. �e build con�guration is set in such a way that it re�ects the �ags which
mex uses with the compiler. �ose can be read from MATLAB command line by
mex.getCompilerConfigurations inside the Details �eld of the returned struc-
ture. Notably, the /MD �ag for Multi-threaded DLL runtime library, enabled C++
exceptions with extern C functions (/EHs), C7 compatible debug information format
(/Z7) and others.



2 C O D E G E N E R AT I O N F O R
D I S T R I B U T E D S Y S T E M S

�is chapter talks about the so�ware prepared for the problem touched upon in the
introduction. �rough the model con�guration using Simulink Coder and Embedded
Coder, one may set up the Simulink scheme to generate e�cient code which executes
the simulation in real time on supported and general-use hardware. �is extremely
handy feature inside the already powerful tools ofMatlab is whatmotivated the revision
of the slot cars. �e support package for BeagleBone Blue, which utilizes the Robot
Control library by the designers of the BeagleBone Blue version, gave an easy to start
platform for robotics use. Next was the question of managing more complex designs
with multiple BeagleBone’s. To explore the concepts of stability in mobile distributed
systems, a larger set of distributed hardware is needed. In this scenario working with
the bare tools proved to be a di�cult menial task. By preparing a set of scripts that
utilize the programmatic features, we would simplify the task dramatically.

2.1 simulink features
To explain the process and reasoning on which the project stands, I would �rst give

a list of tools that Matlab provides to make the task possible. �e starting point is the
support package for BeagleBone Blue [21], the hardware used in the slot cars. �is is a
complete set of simplifying tools to use code generation of Simulink schemes for the
hardware e�ortlessly. �e full build toolchain is set up including coordination with the
BeagleBoard via SSH. Also, some of the hardware interfaces of the BeagleBone are
provided in Simulink as a library of blocks. Using this package, a lot of the early work
which would otherwise be needed was skipped. Almost to the point of not having to
understand how the build process works.
Next, the Simulink project was considered for the management of the scripts and

models [30]. �is adds some useful features to the work and allows a cleaner and more
e�cient environment. Among the most welcome additions are path management,
dependency analysis, Git integration, and startup customizations. Overall, it exists
to keep the project healthy over a longer period of time, with which student projects
o�en struggle. On the same note is the object-oriented programming built into Matlab.
Similar to Java code, Matlab allows classes and scripts to be organized in packages. �is
lets the code to be well categorized and managed even further and adds modularity
and extensibility via interfaces and inheritance. �e classes are not meant to be used
for large data manipulations and demanding operations though, and they won’t be
used as such. �ey will be used for the top level logic.
Another crucial toolset is programmatic model editing [31]. I �rst considered

the options of model references [32]. �ese are still a useful technique that helps
with modularity and reducing build time, but for the purpose of generating code for
multiple boards, I have found them unsuitable. First there are limitations to how they
can be used [33] and second, it was hard to imagine a �nalized solution in which
they would work for the task. So instead the choice was to manipulate the models
programmatically until they were prepared to be distributed to each device. Using this
approach, where each board has its own topmodel, helps to simplify the understanding
of code execution on the target [34]. Around the time of this choice, Petr Bláha, already
mentioned in chapter 1 on the history of the project, shared his solution which worked

7
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in this way. Sadly there was some overlap with his work because of miscommunication.
However, with permission, I used his work as a kick-starter.
With the tools to enable the code generation for distributed targets out of the way,

the next few are connected to implementing custom functionality. �ere are multiple
ways to do this [35]. Each with their considerations, on which I will touch upon when
talking about the custom created code. Other than that, solutions outside the Simulink
so�ware, which are useful but have to be linked via custom code to use in Simulink
should be mentioned. �ese are the UDT [25] and NNG [36] network middleware
libraries I have decided to try and the Robot Control library [37], all of which I have
already mentioned in chapter 1. �e Robot Control library is especially important, as
it interfaces most of the possible uses of the BeagleBone Blue in a simpler way. Some
of the library is already available through the support package, but other times I will
use it in a custom way.
�is is by no means an extensive list of what is possible. �ere is a huge ecosystem

for many types of technical �elds and there are way too many tools and options to
explore. For this project, I have kept to the ones most obvious and useful but there is
always the possibility of extending the solution where it would prove interesting.

2.2 workflow

Generate

Inspect

Load configuration

Distribute

Start

Stop

Control model manipulation

Root model supplied

Distribution models created

Executable models loaded

Figure 2.1: Flowchart of the script process with model interactions

�e idea of working with distributed systems in Simulink, which are designed in
a single model, is to prepare a set of scripts that, when called on the design model,
create separate models. �ese are then worked with separately for the following tasks
of generating code and controlling the execution of this code. �is choice had the
prospect of being the least problematic. For a picture of the work�ow, see �gure 2.1.
�e le� column shows the scripts into which this work�ow is separated and the right
column shows their interactions with the Simulink model �les. Each of these scripts
will get their mention but �rst I describe the classes in which they reside.

2.2.1 Classes

To prevent the scripts from being too rigid and single-use, I have placed them in
classes that also serve as storage for design choices on what the scripts should do. �e
main andmost important class is theCon�guration class, which is a starting point when
working with the project. In this class, the options common to all parts of the process
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sit, e. g. the working folder, names of models and the used communication backend.
�is class also de�nes all the scripts listed in �gure 2.1 and they will be described
later. �e communication backend is its own class. In fact, it is an interface of which I
have two implementations based on the aforementioned network middleware libraries.
�e backend classes de�ne how the interface of the distributed systems is solved,
more in section 2.3. Apart from this, the con�guration class also holds a list of used
BeagleBone boards. �e class for these boards wraps the support package provided
beagleboneblue class and it holds the login information and provides functions to
manage the connection to these boards. �ese three classes wrap every script provided
apart from some helper scripts mentioned in section 2.4 and some code not suited to
the class and package format that Matlab uses. An example of how the con�guration is
de�ned is given in listing A.1 in appendix A.

2.2.2 Scripts

I will now describe the scripts in the order they are usually called which can partly
be read from �gure 2.1. �e �rst in the chart is not speci�cally a script. It is up to the
user whether to create the con�guration class by hand, by script, or load from a .mat
�le. It is a requirement to have a con�guration with all the �elds de�ned or le� at
default and to have a matching root model.

generate. �e �rst script does model manipulation. It �rst copies the root
model into the directory called distribution, which it creates in the con�guration
folder. It also creates models in this folder for each board with the content taken from
a speci�ed subsystem in the root model. A�er this the script calls into the speci�ed
communication backend’s createDistributionModels script.

create distribution models. �is script’s task is to replace the inports
and outports in the created distributionmodels with blocks of networking functionality.
It also removes the blocks of the board subsystems from the control model a�er
their information is parsed. Both the backend implementations work in a publisher-
subscriber pattern, as that is the same as how signals in Simulink are routed between
blocks, 1:N. �is helped simplify the steps required to create the networking interface
dramatically compared to the original work by Petr Bláha. However, there is still a
lot of analysis needed for communication to be set properly. First, the model must
be compiled to determine the data width of the routed signal. On the sender side,
this is set dynamically, but the receiver requires the information explicitly. �e script
portDetails does this including reading the data type, which I currently lock to type
double. It does so by using the get_param(’OBJ’,’PARAMETER’) function to read
the block properties [38]. Other than that the script getDirectConnections ensures
the connection parameters, e. g. port, and addresses, are set correctly by managing a
list of information on both sides of the interface when they are both boards and not
other blocks that stay in the control model.

inspect. Inspect is an optional script that opens all the generated models in their
own windows for the user to see. �is should be done a few times before one trusts
the generate script to work.

distribute. A�er the previous steps are �nished and the models are ready, this
script is called to set important model con�guration options, compile and load the
models. But before that, the network connection is checked. If a board marked as
crucial is unable to be connected, the script does not proceed. �en for each board, the
toolchain build is sequentially executed which compiles and loads themodel executable
on the device. Two modes are supported in normal and external modes. Petr Bláha
used a clever workaround in which a�er the code was generated, the compilation
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happened in parallel without waiting for results. I did not maintain this variant, but in
the future, it should be revised.

start / stop. �ese two scripts control the execution of the distributionmodels
as a batch. Start has the same logic as distribute where it won’t start unless all crucial
boards are connected. Stop script does not have this. �e other part of controlling
the execution is the tuning of parameters, which happens either in the control model
or in one of the board models executed externally. �ese �les are opened and closed
automatically by the scripts.

open shell. �is script de�ned on the BeagleBoard class is worthy of �nal
mention not because of its complexity, but for its usefulness. It is the fastest way to
open a SSH window for each of the boards since the login data is stored here.

2.3 networking
�e communication part of the created application is an important part of the

project. While the task could be le� to common UDP or transmission control pro-
tocol (TCP) blocks which Simulink provides, these blocks do not provide any good
features apart from what is de�ned in the protocol. �e features I seek are automatic
congestion control for UDP, the publish-subscribe pattern, message orientation, auto-
matic connection reestablishment and similar. �e idea came from the experiences in
the previous revision of slotcars, where we worked with a custom messaging imple-
mentation, and wished to instead use a standardized tool. At the time the considered
tool was ZeroMQ (ØMQ). Later, the idea to implement this as a Simulink s-function
was inspired by a Mathworks blog post on Co-Simulation [39]. Reading into the gen-
eral opinions and comparisons on ØMQ and similar libraries I instead picked the
NNG library [36] for its cleaner API and better code. �e development of this library
was branched from the development of ØMQ when some developers decided ØMQ
needed a rewrite [40], and then rewrote it a second time [41]. �e resulting library has
good prospects but most importantly there is a lot of strength under a simple interface.
�is builds upon TCP by adding listener-dialer and publisher-subscriber paradigms
for automatic one to many messaging. I use the backend based on this library when
absolute reliability is desirable.
Out of interest and concern over no UDP support I have also added a communi-

cation backend based on the UDT library [25]. �is, again, adds the sought features
with a messaging application programming interface (API), but built on top of UDP
for data-intensive tasks. It has advanced congestion control and packet multiplexing
to improve the performance and reliability of the transfer [42]. It, however, does not
support the publisher-subscriber pattern and is closer to traditional socket program-
ming. I emulate the pattern in the custom implementation by using a listening server
that stores its connections and pushes data to all the subscribers.
While the performance of a pureUDP approachmay be faster in terms ofmaximum

theoretical throughput, the self-awareness of UDT sockets and added mechanisms
should perform much more reliably in a general scenario.

2.4 libraries for slotcars and other tools
While not directly linked to the process of generating code for distributed systems,

these �les are part of the project either as helper tools or to be used with the slot
cars. I have prepared two model libraries that hold the sensor and actuator interfaces,
simulation models, and controller examples. �eir schematics are in �gures 2.2 and 2.3.
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�e control blocks will be explained in chapter 3. �ere are also two libraries that
hold the Simulink blocks for the communication backends. Implementation-wise, I
have written both these network interfaces as C and C++ s-functions. �ese generally
feature the highest speed and feature set out of the custom block options [43] but
cannot be inlined automatically. However, using Matlab systems that evaluate c code
by coder.ceval has been more user-friendly and cleaner in the Simulink project.
Later I would reconsider moving to Matlab systems fully.
Next, to the libraries, I have shared models of experiments I have used in chapter 3

as examples. One such example is shown and listed in appendix A.
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Figure 2.2: Schematic of the library with common slotcar blocks
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Figure 2.3: Schematic of the library with common slotcar blocks

�e last �les of the project are helper scripts. Currently, these are only scripts to
compile mex �les of the two backends’ s-functions and scripts that set the temporary
�le folders to a work folder.
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2.5 project structure
�e following folder tree shows how the �les described in this chapter are structured

and serves as a summary of what is presented.

project root - Simulink .prj file and git files

cad - folder for sharing of CAD work

examples - example models and configurations

experiments - git excluded workplace for experiments

lib - submodules

librobotcontrol

nng

udt-arm

models - model libraries

src - classes scripts and s-functions

@BeagleBoard - board class

@Configuration - configuration class

@+comms

+common - shared code between the backends

+interface - the Backend interface class

+nng - NNG backend implementation

+udt - UDT backend implementation

+gui - GUI wrapping the configuration class

+slotcar - drivers for used peripherals

sfunctions - implementations of networking

utils - helper scripts

work - folder for temporary files

cache

codegen



3 S LOTC A R P L ATO O N I N G
E X P E R I M E N T S

Before the experiments can be demonstrated, the control problem must be formu-
lated. From the perspective of a single slot car inside the platoon, the speed is regulated
in such a way that it is the maximal possible while ensuring that the slot car does not
crash into its predecessor. Next to speed, headway may be the controlled physical
variable and it is the kept distance towards the preceding car. �e smaller the headway
the smaller the space for overshoot when reacting to breaking but also the larger the
possible bene�ts towards fuel consumption and congestion. �ese two variables make
the two control loops commonly present in designed longitudinal control laws.
�e term of leader is also de�ned as the �rst vehicle of the string whose reference is

set in a di�erent way from the vehicles inside the platoon. It may brake and accelerate
arbitrarily. Any signal may be propagated through the platoon under the assumption
that the leader’s dynamics, including unmodeled errors andmeasurement noises, could
produce it.

V V V Vn
d d

ΛΛ

WLAN
Λ ΛΛ Λn−

Figure 3.1: String of slotcars with a shared wireless medium

From the perspective of the platoon as a whole it is a string of vehicles with in-
creasing complexity of dynamics in size. Under the assumption that each vehicle has
similar dynamics to one another, i. e. a heterogeneous string, and that only physical
propagation is present it can be shown that the last vehicle in line produces the largest
reaction to the leader and overall control e�ort. What could be ignored in a small
scale platoon may have larger e�ects in a platoon of modest or large sizes. For this
reason, the requirement for string stability exists. It describes and limits the worst case
attenuation of distance error, velocity or acceleration through the string [44]. When
wireless communication of control states is included the problem solutions become
more feasible. �e leader’s measured states may propagate to the last vehicle without
any dynamics, only the delay of communications is present. �is communication is the
new innovation in the �eld and the next logical step towards safer autonomy. �ere exist
many topologies of information �ow for strings. �ese include predecessor-following,
predecessor-leader following, two predecessor-leader following, and bidirectional
[44]. Without communication, this has been demonstrated on the previous version of
slotcars which had distance measurement on both front and back [10]. �is chapter
will additionally focus on cooperative control. On the current version of slotcars, only
the front distance is measured and apart of wirelessly communicated measurements,
the causality propagates from predecessor to follower only.

3.1 slotcar model
�e slotcar is simply a physical mass moved by a DC motor. Starting from the

input, the DC motor is powered by V input with pulse width modulation (PWM)

13
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Variable Symbol Unit
Duty cycle d (t)
Car velocity vc (t) m ⋅ s−

DCmotor voltage um (t) Ω
DCmotor current im (t) A

DCmotor angular velocity ωm (t) rad ⋅ s−
Table 3.1: Variables of the slotcar model

through an H-bridge. �e input’s actual voltage is slightly lower because of the loss on
the input diode (3.1). �ere may also be minor �uctuations in voltage when brushes
lose contact with the track. Given the PWM frequency is high enough the modulated
input voltage is cut o� in the frequency domain by the DC motor in a way that only
the DC component remains. Numerically the input voltage is simply multiplied by the
duty cycle of the PWM to obtain the regulated input voltage (3.2). Next, the motor
is modeled as a resistor and back electro-magnetic �eld (EMF) voltage source (3.4).
�e inductance of the motor winding is ignored because of the fast dynamics of the
motor current (compared to the car velocity) and because the current is not measured.
�e torque of the motor sha� is proportional to the current �owing through the motor
winding and it translates into back-wheel torque. �e back wheels are pushed into
the track by strong magnets and are made of quality rubber. With this there is no
slip of wheels and the car is pushed with the force given by the wheel torque, see
equation (3.5). Equation (3.6) is the combination of equations (3.1) to (3.5) and it
constitutes the controlled system from duty cycle to velocity.

U = U −Ud (3.1)
um (t) = Ud (t) (3.2)
vc (t) = nrωm (t) (3.3)

Rim (t) = um (t)−kmωm (t) (3.4)
dvc
dt
(t) = km

mnr
im (t)− mF f (vc (t)) (3.5)

dvc
dt
(t) = kmU

mnrR
d (t)− km 

mnrR
vc (t)− mF f (vc (t)) (3.6)

A fair number of simplifying assumptions have beenmade. �at is because they pose
negligible error in faultless operation. One last phenomenon present in the slotcars
that cannot be ignored is friction. It is caused mostly by the car being strongly pressed
into the track by its weight and the track magnets and grinding of gear and motor. It
has a noticeable impact on the dynamics. In fact, it is one of two nonlinearities in the
model, the other being input saturation. Especially when the car is at a halt and stiction
is active. At speeds close to zero the largest nonlinearities, including discontinuity, are
observable and most common friction models are not accurate or hard to use. �e
Continuous zero-velocity crossing model can be used to approximate friction behavior
around zero velocity to remove discontinuity caused by static friction. For control
purposes the static Karnopp, Armstrong and dynamic Dahl, LuGre, Bliman-Sorine,
Leuven and other models exist [45][46]. �e dynamic models have been shown to
be more accurate while requiring a larger number of parameters in a more complex,
but manageable, model [47]. Where all the friction models experience less trouble
and are more accurate is at speeds further from zero. At these speeds assuming the
friction consists only of Coulomb and viscous components is acceptable. Such a model
is given by equation (3.8). �is is su�cient for the experiments in this chapter because
the goal is to regulate distance while at higher speeds. Additionally, excluding the
friction part of the model, the car behaves as a linear �rst order system. �e continuous
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Figure 3.2: Comparison of hardware in the loop measurement and models with and
without friction

transfer function (TF) of this system is in equation (3.7). It will be used for tuning of
controllers.

V (s)
D (s) = KU

mR


s + K
mR

(3.7)

Figure 3.2 shows the error of not accounting for friction. In this experiment, the
duty cycle was set to prede�ned levels in two-second intervals and the velocity was
measured with the back wheels li�ed o� the track to remove some of the friction. A�er
the friction is added the model starts representing the reality much better albeit still
not perfect. �is non-linearity can cause issues with linear design methods. Either
the velocity controller must be directly robust to this heavy model uncertainty or a
friction observer and compensator must be employed. Better yet, both of these should
be used at the same time. For demonstration of control purposes, which is the e�ort
of this chapter, the �rst variant would su�ce. Despite that I will put some e�ort into
creating a compensator to improve the system responses in section 3.3.

F f (vc (t)) = bdvc (t)+bssign (vc (t)) (3.8)

�e parameters used in equations (3.1) to (3.6) are listed in table 3.2. Most of these
were measured directly, only the friction parameters and motor torque constant were
identi�ed or calculated. �e motor constant describes both the torque constant and
velocity (back EMF) constant and is calculated from the velocity constant’s de�nition
as per equation (3.9). �e rating by the manufacturer which is   rpm at V is
plugged into the equation.

km = Ur

ωr
(3.9)
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Parameter Symbol Value Unit
Input voltage U . V

Diode voltage drop Ud . V
Stalled motor resistance R  Ω
Motor constant km . N ⋅m ⋅ A−
Slotcar weight m  g
Gear ratio n /
Wheel radius r  mm

Torque to linear force gain K = km
nr . N ⋅ A−

Viscous friction parameter bv . kg ⋅ s−
Coulomb friction parameter bs . N

Table 3.2: Parameters of the slotcar model

�e frictions parameters have been found by a measured experiment of controller
e�ort with a multi-step reference of the closed velocity loop [46]. �e velocity loop is
described in section 3.2.

d (t) = (K
U
− Rbd

KU
) vc (t)−RbsKU

sign (vc (t)) (3.10)

Transforming equations (3.6) and (3.8) in steady state where v̇c =  gives equation (3.10).
By �tting the reference velocities and measured duty cycles around the tracked ve-
locities with a line gives �rst-degree polynomial coe�cients from which the friction
parameters may be calculated. �e �t is demonstrated in �gure 3.3. �e mean values
of the duty cycles are found on di�erent levels of the reference signal which are then
�tted. �e model is then validated in �gure 3.2. A�er this the friction compensation is
added in section 3.3.

3.2 cruise control
Asmentioned in the introduction, the goal of string platooning is to control velocity

and inter-vehicular distance. Controlling the motor current and acceleration is also
a possibility when utilizing an ammeter and the inbuilt IMU. In fact, acceleration
may be the superior choice of primary control concern over velocity because it carries
the information on the dynamics of the physical system faster, being the derivative.
Currently, in the project, I use velocity only because it poses less trouble as both signal
and measurement.
As for the overall design of the working controller for the described problem in

the introduction to this chapter, the structure is called cooperative adaptive cruise
control (CACC). �ere are variations of CACC, but it generally may be broken down
in the following fashion. �e basic part of the structure is the cruise control. �is is for
maintaining a constant reference velocity in the presence of disturbances. Next, the
adaptive part is added by measuring the distance to the vehicle in front and matching
its speed to keep a set distance. Last the cooperation is added, where the car exchanges
it’s ownmeasurements or input signals with other cars and uses them in a feed-forward
way to improve reaction time and reference tracking properties.
For an overall picture of one such controller see �gure 3.4. �is scheme has three

blocks representing control laws C, H, L, and the car model G de�ned in section 3.1. C
is a controller meant to improve the reference tracking of the velocity closed loop. H
is the control law of the spacing policy. �is control law acts on the relative distance
between the car and its predecessor and it may also vary with the speed. L is a general
control law acting on some network transmitted values. Most o�en these values are
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Figure 3.3: Measured controller e�ort (duty cycle) for di�erent reference velocities
with mean values �tted by a line

the reference signals the followed vehicles act upon or their actual measurements of
inner variables like acceleration or velocity. In the case of actual vehicle tra�c these
will also include planned changes based on the road ahead, e. g. the distance to known
tra�c light stops. �e control laws may be designed independently. In the end, string
stability will have to be ensured for the safety of CACC systems but not at the current
early stage of controller design for the slot cars.

3.2.1 Velocity tracking

�e velocity loop is the basis of the slot car control. Its goal is to maintain the
required speed from feedback. Most of the time a classic proportional-integral (PI)
controller is used for this task for its simplicity but more modern methods have also
been demonstrated in the form of model predictive control (MPC) [48][49] and H∞
controllers [50, 51]. in the PI controller the integral term removes the steady state error
caused by friction and modeling uncertainties. For a stable system like the slot car’s
equation (3.6) such control can be considered robust. �e input saturation is present
here so the controller should use some form of anti-windup. Else the car might not
react to a braking reference by the spacing policy a�er a while of maximum e�ort. �e
input is saturated not to the range − to  speci�c to PWM but to −. to .. �is
comes from the thermal limits of the controlling H-bridge controller. �e controller is
tuned with this limitation in mind. �e speci�c tuning requirements are not set but it
is better for the slotcars to be tuned more robust than fast.
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Figure 3.4: Slotcar with CACC

3.2.2 Spacing policy

�egoal of the spacing policy is to de�ne a desired distance to the predecessor vehicle
and calculate the necessary speed to keep it. It is a form of a position controller where
the position error is given directly by the measurement of inter-vehicle distance ∆x =
rx − x. �is distance should be close but with enough headway to react to immediate
braking by the predecessor without crashing. �e headway needed generally grows
with the velocity of the vehicles and themost common policy is given by equations (3.11)
and (3.12).

rv(k) = rv(k − ) + ce(k) (3.11)
e(k) = ∆x(k) − (h + hvv(k)) (3.12)

�e change in velocity is given by the measured distance to the predecessor and the
headway which grows with speed. �is headway is set by parameters h and hv and
the aggressiveness of acceleration is given by constant c. �is policy works in such a
way that the car stays at a speci�c point distance to the predecessor. �is means that
there is constant action e because of measurement error. Another variant is given in
equation (3.13) [49].

e(k) = c
∆x(k) − ∆xmin − e

∆x(k)−∆xmax
c (3.13)

�is equation creates a distance corridor as opposed to the point in which no action
is required. Only once the distance measurement falls outside of this corridor is
additional action produced. �eminimal corridor distance ∆xmin is set using the same
spacing policy as in equation (3.12). So �rst the speed variable headway is selected
and tested to satisfy string stability and then the corridor is added larger than some
multiple of the standard deviation of distance measurement error.

∆xmin(k) = h + hvv(k) (3.14)
∆xmax(k) = ∆xmin + dcor (3.15)

dcor = pσ ∆x (3.16)

In the form of equation (3.13) it is used in the optimization problem of model predictive
control. For an explicit policy, I will adopt only the idea of the dead-zone and the
coe�cients. �e spacing policy I use is given by equations (3.11) and (3.14) to (3.17).

e(k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆x(k) − ∆xmin(k) ∆x(k) ≤ ∆xmin(k)
∆x(k) − ∆xmax(k) ∆x(k) ≥ ∆xmax(k)
 otherwise

(3.17)
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(b) Velocity

Figure 3.5: Simulated ACC string of 4 cars

3.2.3 Wireless feedforward

�e �rst thing to note about this feedforward path of wirelessly transmitted signals
is that the communication poses many issues. �ese cumulate into two things. First the
random delay with time changing properties. �is is assumed to be nonexistent when
designing the control law and then acknowledged as causing some error. �en there
is the possibility of a broken communication link, which may or may not recover. In
such a situation the controller must detect this break and switch to a di�erent control
law. �is is, for example, the nulling of the feedforward output to return to the ACC
controller or degrading the CACC to estimate the lost network transmitted signal
when possible [52]. I will assume the simpler former variant. In case of not receiving
any packets for some duration, the path is disabled.

Out of the topologies already mentioned in the introductory part to this chapter
I consider leader following in the communications without delving into the analysis
of string stability. �e leader transmits its immediate intention to move - the control
error of the velocity loop. �is control error is then added to the control error of the
receiving vehicle. In another variant, the leader transmits its measured velocity for
the popularity of stopping the slotcars by hand when demonstrating the platform. In
this early stage of controller development, a simpler approach will do to demonstrate
the ability to include wireless communications in the controller design. Otherwise,
these cooperative paths without any �ltering do not bene�t the controller. No speci�c
error propagation is suppressed and some undesirable e�ects occur. �is can be seen
when comparing the simulations in �gures 3.5 and 3.6. �e CACC system produces a
slightly faster response at the last vehicle but at the cost of more perturbation
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(b) Velocity

Figure 3.6: Simulated CACC string of 4 cars

3.3 friction compensation
In section 3.1 a model for friction was selected and veri�ed. Now a friction observer

can be added to the controller. �is task is separate from the CACC control problem,
only the velocity loopwith the PI control is adopted from the previous section. E�ective
friction compensation relies on velocity measurement with good resolution and small
time delay [45] and a good model. For this reason, I expect the compensator to not be
robust on the slotcars at all. When paired with the velocity loop, however, which uses
the integral term to compensate for uncertainties, the compensator should improve
properties.

Velocity
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F f
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+++rv u+
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Figure 3.7: Block diagram of friction compensation
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Figure 3.8: Simulated comparison of step response of slotcar models with friction
and Gaussian measurement noise to the linear transfer function

�e scheme of the compensator is in �gure 3.7. �e idea is to create a friction ob-
server whose output is added to the plant input as to compensate for the actual friction
or at least a part of it [45, 53]. Figure 3.8 demonstrates the bene�t of a model perfect
feedback friction observer in a direct step reference tracking situation. �e model with
friction, measurement noise, and friction compensation follows the frictionless linear
model unlike the one without compensation.
Since the friction model gives the dependence of friction force on velocity, only

the velocity estimate is needed. To reduce the measurement noise and in the future
to incorporate acceleration measurements a Kalman �lter with the linear car model
can be used. �e inputs to the Kalman �lter are the velocity measurements and the
system input before friction compensation is added. From the estimate of velocity, the
estimate of the friction force is calculated and then gain is applied. �is gain is set
such that when the friction force is substituted into the duty cycle in equation (3.6) the
two terms cancel each other. Because the friction estimate might not be very good in
practice the gain is lowered as it is better to undercompensate than to overcompensate
since the later may lead to instability [45]. However, the experiments performed show
that the velocity observer in this form performs well as the simulation suggested.

3.4 sampling rates
As part of the controller design, I shortly consider each of the sampling rates. �e

car dynamics, given as a TF in equation (3.7), has a frequency cuto� given by the
magnitude of its pole. As per the Nyquist theorem, the sampling rate should be safely
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larger with a minimum ratio of 2 than this frequency or some higher frequency which
is dampened enough to be considered a marginal error, e. g. at the − dB level. Good
engineering practice is to select an even smaller sampling rate which is ten times the
frequency or more depending on the application.
�e rate of networked messages is a di�erent problem altogether which is too

variable to solve easily, in a stochastic time variant fashion [54]. Some talk about this
was presented in sections 2.3 and 3.2.3. �e controller uses bu�ers to synchronize and
change the rate of the signal transmitted over the network and should have a strategy
when the bu�ers are empty. Otherwise, the rate should be as high as possible without
experiencing an over-utilized communication channel.
�e last sampling rate which should be noted is the sampling rate of velocity mea-

surement. By this, I do not mean the rate of the microcontroller sampling the encoder
signals. I mean the rate used to calculate velocity by di�erentiating the change of
encoder’s tick count and the period. �ere are two approaches with di�erent precision
at di�erent speeds. At high speeds, the simpler constant sampling time is preferable
with good accuracy while at low speeds a constant position is sometimes used with
variable sampling time as the measure between ticks of the encoder. I consider the
�rst approach only. �e longer the sampling period the better the accuracy but at the
cost of delay of the measurement. It is somewhat analogous to �ltering. �e larger the
contribution of past data in a �lter, e. g. the window size of a moving mean �lter, the
more lag is added and bandwidth is limited. Such delay is usually not mentioned to
not complicate the control problem but it may even destabilize the designed control
loop when too large. Considering the control loop may be robust to sensor noise or a
model-based estimator may be employed it is better to pick the noisier variant with
less lag. Of course in another path where the added lag does not play much role, the
velocity can be �ltered. �is can be for example when transmitting the values over a
network whose delay will overshadow the smaller one.

3.5 experiments

PID controller spacing policy sampling rates
kp . ho . fundamental Hz
ki . hd . communication Hz
kd  dcor . encoder Hz

c 

Table 3.3: Selected parameters of the CACC controller for experiments

In the sections above a designed controller has been created which incorporates
friction compensation and CACC and in this section I will show them through exper-
iments with slotcars. More than the validity of the designed control I will show the
schemes from which the experiments were run. At the time of these experiments, I
had four slotcars prepared and planned for. Two of which were working previously,
one I completed by adding power backup and one I built myself. One of them showed
a faulty motor drive however and so the experiments were done with three slotcars.
Table 3.3 lists the coe�cients selected for the controller described in section 3.2.
�e �rst experiment is shown in �gure 3.9. �is one shows the validity of the spacing

policy against stationary objects. At full speed, the car stops in time before crashing
and backs away into the required distance. �is is a basic requirement for the spacing
policy. In the case of detecting an object while turning which will be evaded, the car
slows down or comes to a halt and then proceeds if there is enough space.
�e second experiment is simply driving the platoon by cycling through reference

speeds for the leader. Here because of measurement error, the cars occasionally crash
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Figure 3.9: Testing ACC controller when driving into a wall at maximum speed

one another. In this way, the controller is not robust. For the Simulink schematics used
for these experiments please see appendix A in which I show all the block diagrams,
the used con�guration script.
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Figure 3.10: Testing CACC controller with 3 slotcars



4 C O N C L U S I O N

�e goal of the work in this thesis was to prepare a work�ow for code generation for
distributed systems and to demonstrate this using the slot cars which were prepared by
previous students. I have prepared an extensible Simulink project for this task which
includes both the classes and scripts for manipulating models of distributed systems
and the drivers and model �les for slot car control via Simulink. �is allows utilizing
model-based project management of Simulink so�ware. Modest use of object-oriented
programming features inMatlab gives the code readability, additional extensibility, and
some modularity. In connection to the development of custom functionality, I have
also explored the options of including custom algorithms as part of the code generation
process and the options of incorporating networking application cleverness into the
distributed system’s communication segment. Two example networking solutions
using middleware both on top of the TCP and UDP protocols have been tested.
�e added value of this project over the bare tools provided by the Mathworks

ecosystem is in the utilization of the programmatic approach to model manipulation
and in adding communication middleware which serves as the backbone of the dis-
tributed application. �is gives a serviceable alternative to manual manipulation which
in the case of working with multiple hardware pieces at once becomes di�cult. While
the possibilities that Mathworks provides could not be fully explored and not all parts
of the solution could be made problem-free, a stable work�ow has been created to
allow design and validation of complex distributed systems.
For the purpose of slot car control, I have also prepared a model with identi�ed pa-

rameters including the non-linear friction phenomenon. While not perfect, the model
has been shown to perform reasonably well. �is was demonstrated by experiments
with basic controllers of the CACC structure which include networking. �is should
complete the early controller development for the slot cars with better sensing and
more robust control to follow. As part of the project, model libraries have been created
which hold the blocks used in the experiments for future use.
In the current state, the hardware and so�ware for the third slot car revision have

come together and hopefully become transparent enough for interested parties to try
out. While some of the features are not as polished as on the previous slot cars, the
modularity and relative simplicity this version provide both so�ware and hardware
allow more improvements to come. �ese improvements should include better sensor
and actuator hardware and �xes to so�ware issues that went under the radar or were
hardly solvable in the releases of utilized tools available at the time.
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A V I S U A L D E M O N S T R AT I O N
O F T H E P R O J E C T
W O R K F LO W

In the �rst appendix I show some of the Simulink schemes used and how the
experiments were run. As stated in the chapter 2 the base of de�ning an experiment is
the Con�guration class. I de�ne this by running a script in which the properties are set.

Listing A.1: Example of de�ning the Con�guration class

1 %% define experiment options
2 conf = Configuration;
3 conf.Folder = pwd;
4 conf.RootModel = 'drive4CACC';
5 conf.MatlabIpv4 = '192.168.88.11';
6 conf.CommsBackend = comms.udt.UdtBackend;
7 conf.CommsBackend.SampleTime = 0.01;
8 conf.ParallelCompilation = false;
9
10 %% define used boards
11 conf.Boards(1).Ipv4 = '192.168.88.19';
12 conf.Boards(1).ModelName = 'M1';
13 conf.Boards(1).External = false;
14 conf.Boards(1).Crucial = true;
15
16 conf.Boards(2).Ipv4 = '192.168.88.20';
17 conf.Boards(2).ModelName = 'M2';
18 conf.Boards(2).External = false;
19 conf.Boards(2).Crucial = false;
20
21 conf.Boards(3).Ipv4 = '192.168.88.15';
22 conf.Boards(3).ModelName = 'M3';
23 conf.Boards(3).External = false;
24 conf.Boards(3).Crucial = false;
25
26 conf.Boards(4).Ipv4 = '192.168.88.18';
27 conf.Boards(4).ModelName = 'M2';
28 conf.Boards(4).External = false;
29 conf.Boards(4).Crucial = false;

Tied to this con�guration is the root model sitting in the same folder or in the folder
speci�ed. For the CACC experiment this model is the block schematic in �gure A.1.
For this experiment the driving reference of the leader is generated in the leader car
and the PC model serves for logging and viewing of received data. When the speed is
to be interactive, I drag the generating block le� outside the subsystem. A�er that the
generated control scheme serves also as tunable user input. Calling gui.default\
_gui(conf) opens the GUI which binds to the con�guration, see �gure A.2. From
this the work�ow can be initiated.
A�er the generate script is run, separate model �les are created in the distribution

folder. �e control model looks the same as �gure A.1 but with the insides of the areas
replaced by communication blocks. �at is why in the design model the lines were
muxed and then demuxed, to keep both data streams in a single connection. As for the
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Figure A.1: Simulink block diagram of drive4CACC

Figure A.2: Gui for the experiment

created models for each board, the top block diagram is in �gure A.3 for the second
board. �is diagram has communication blocks with matching parameters to the other
side, the control scheme. Inside the CACC block is the schematic of the controller,
�gure A.4. Inside this schematic are the controllers and the blocks implementing the
hardware interface. Outside of the target for generated code these blocks do nothing
so it is safe to leave them unused in the control scheme a�er removing a board from
the con�guration.
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Figure A.3: Top scheme running in the slotcar
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Figure A.5: Scheme running on the board for model veri�cation

�e other experiment I wish to show is the one used formodel veri�cation, �gureA.5,
which was used in section 3.1. In this model running on the slotcar the hardware
interface and the two simulation models are running side-by-side. �e results are then
viewed directly in the scope when running external mode but also they are sent to the
control model for viewing and logging.





B U N U S E D I M P R O V E M E N T S
A N D I D E A S

In this appendix I wish to mention some things that would not �t into the main
text. Perhaps to inspire or motivate some future changes and �xes to the platform.

overheating. First thing concerns the hardware oversight of combining the slot-
car racing motor with the Toshiba TB6612FNGH-bridge integrated chip (IC) present
on the BeagleBone. What happens is that a�er a while of riding the motors stop. From
the data sheet of the IC it is clear that it is not rated for operation with a relatively low
resistance racing motor at the higher voltages. �e chip’s thermal protection turns
o� functions before it blows up. Currently I have set a limit on the duty cycle the
controller is allowed to use to  %. �is does put acceptable ranges on the IC. �e
motor circuitry should be revised a little in the future. �at brings me to a comple-
mentary thought. �at is to put a resistor in series with the motor and place voltage
measurement on it to determine the motor current. �is should not detriment the
velocity of the car because limits have to be placed on the motor anyway to help di-
mension the motor into the . A average that the IC can handle. Instead it could
allow some more intelligent switching or control. In fact this is a common procedure
in more sophisticated H-bridge chips. Or just replace the H-bridge in the next revision
altogether.

board accessibility. Make holes to be able to click the power and reset
buttons on the BB. �e BeagleBone has startup on receiving power so the buttons
do not have to be clicked but when the contact is lost for a little bit and the power
backup condensators do not drain fully then the board remains in a battery monitoring
state and waits for the user to click the power button. �e chassis hides the buttons
completely and so I made larger circular cutouts into the chassis where the two buttons
are so they can be pressed with a straightened paper clip or a similar, even thicker
object. �is change is prepared in the 3D work for the next print. Also under the
keyword accessibility is the BeagleBone’s NoC power saving feature. A�er a while
of inactivity the antenna goes into such a low powered mode that the router must be
moved in a  cm distance for connection to be remade and the NoC to go full power.
�is happens even with power management turned o�.

inertial measurement. �e matlab driver for the IMU is now rewritten
to utilize the Robot Control library and fully working. I did not incorporate it into
the platooning experiments but acceleration and perhaps even the angular velocity
(steering) do have a place in the control strategies. �e measurement could be used to
improve velocity measurement by sensor fusion, e. g. Kalman �lter, or to implement
acceleration control.

reliable power collection. �e brushes on the slotcar base have not
been particularly sturdy or contact reliable. However it is simple to remove them from
the holder and replace them because they are not soldered or glued on. Getting copper
braids with a larger width should help because the current ones are so thin that they
can get pressed into the gap between the power rails and lose contact.

zigbee. Where wireless networking is concerned, 802.11 is the most popular
family of technologies but all of them have quirks whichmay be unfavorable sometimes.
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32 conclusion

One alternative of interest is the ZigBee technology. Without running into details, the
advantage of ZigBee over Wi-Fi is the use of ad-hoc mesh type topology which does
not really work well in Wi-Fi. It also has some di�erences in the physical layer which
might make it more suitable. ZigBee has been explored as a choice of physical layer
for meshed applications and it seems to be robust [55]. Products like the XBee have
many variants and extensions for robotics projects so one that would �t into the slotcar
should not be di�cult to �nd.
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