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Abstract

This thesis deals with design, autonomous localization and position
control of unmanned multirotor aircraft for deployment in large historical
monuments without access to global navigation systems. A specialized
aerial platform respecting significant safety requirements was designed and
manufactured for applications of this work. The main focus of this thesis
lies in design and implementation of an active self-localization system with
onboard multimodal sensory setup and a priori generated map. For that,
we employ fusion of a global Monte Carlo Localization state estimation
with local refinement by Iterative Closest Point algorithm, and an inertial
measurement unit by Kalman Filter. The localization system is derived,
implemented, integrated into the aircraft position control feedback, and
evaluated in simulation and on real data obtained from experiments,
conducted in an interior of a physical church. These experiments verified
capability of the system to accurately estimate and autonomously control
state of the aircraft in real time.

Keywords: unmanned aerial vehicle, GNSS-denied environments,
indoor localization, active localization, multimodal sensor fusion, scan
matching, Monte Carlo Localization, Iterative Closest Point, Kalman
filtering, LiDAR, Point Cloud Library

Abstrakt

Tato práce se zabývá návrhem, autonomńı lokalizaćı a pozičńım ř́ızeńım
specializované bezpilotńı helikoptéry slouž́ıćı k dokumentaci historických
památek bez př́ıstupu ke globálńımu navigačńımu systému. Pro účely této
práce byla navržena a kompletně vyrobena specializovaná letová platforma,
plně respektuj́ıćı d̊uležité nároky na bezpečnost jej́ı aplikace. Hlavńım
př́ınosem této práce je návrh a implementace aktivńıho lokalizačńıho
systému za pomoci palubńıch senzor̊u a předem vygenerované mapy.
Lokalizačńı př́ıstup zpracovává globálńı odhad stavu helikoptéry založený
na metodách Monte Carlo, lokálně zpřesněným pomoćı algoritmu Iterative
Closest Point, a inerciálńı měř́ıćı jednotce pomoćı Kalmanova filtru.
Lokalizačńı systém byl navržen, implementován, integrován do zpětné
vazby pozičńıho ř́ızeńı helikoptéry, a posouzen v simulaci i na reálných
datech źıskaných při experimentech v reálném kostele. Tyto experimenty
potvrzuj́ı schopnost systému přesně odhadovat, sledovat a ř́ıdit stav
helikoptéry v reálném čase bez zásah̊u operátora.

Kĺıčová slova: bezpilotńı helikoptéra, prostřed́ı bez př́ıstupu GNSS,
aktivńı lokalizace, v́ıce-senzorová fúze, zarovnáńı sken̊u, Monte Carlo
lokalizace, Iterative Closest Point, Kalman̊uv filtr, LiDAR, Point Cloud
Library
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In recent years, a massive advances have emerged in the technology of aerial vehicles
capable of vertical landing and takeoff in terms of control, reliability, and autonomy. These
multirotor vehicles, commonly remarked as Unmanned Aerial Vehicles (UAVs) or Micro Aerial
Vehicles (MAVs), became extremely popular for their flexibility, diversity, and potential for
both, amusement and functionality.

Typical multirotor consists of at least three motors mounted with fixed-pitch propellers,
a rigid platform for electronics and a payload, and landing gear. The dimensions diversity
of multirotors starts at just a few centimeters and goes up to the size of a car. Number
of applications of multirotors is countless. To list a few examples, the applications include
hobbyist/professional aerial photography, 3D mapping, precision agriculture, cargo delivery
(including healthcare applications) and even drone racing. Furthermore, unmanned multiro-
tors are capable of deployment in hazardous scenarios (search & rescue), as a security and
emergence response, for inspections (tailing dams, overhead power lines, mines), surveying,
exploration, and even in less known applications of urban planning, conservation of wildlife
and nature, or telecommunications.

Since a multirotor is a dynamically unstable system, it constantly requires action inputs
even for the simplest scenarios such as altitude control. With exclusive utilization of its own
inertial measurement unit, a UAV is capable of self-stabilization, although is prone to drift
since an integration error is accumulated over time. To provide a control assistance (e.g.,
automatic hover), a global navigation satellite system (GNSS) receiver is commonly included
to provide a global position reference. However, usage of a GNSS is constrained by external
conditions and its availability in the operating environment. In GNSS-denied environments,
including most indoor and underground situations, the localization is not straightforward.
To assist the UAV control or even introduce autonomy in these situations, three localization
approaches can be employed: outer motion capture system referencing, relative localization,
and onboard self-localization.

First, an outer reference system can track motion of the UAV and transfer information
over an uplink connection. The inconvenience of these systems is their need to pre-set external
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devices. Two examples are Vicon Motion Capture [1, 2] and MarvelMind Robotics indoor
“GPS” [3]. The Vicon tracks motion of infrared reflections of an onboard object using a set
of infrared cameras. The MarvelMind Robotics indoor “GPS” triangulates a position of an
onboard ultrasonic beacon by a set of static beacons according to the time-of-flight principle.

Second, a relative localization approach can be employed onboard, where a sensor (typi-
cally a camera) tracks a salient object in an image stream. Two examples are WhyCon [4, 5, 6]
localizing black and white patterns from RGB cameras and UVDAR [7, 8, 9] capturing blink-
ing ultra-violet diodes by an ultra-violet sensitive camera. These systems can be utilized both
ways – as a ground motion capture system, or onboard the UAV to track motion of an onboard
sensor relative to a sensed object.

Third, a passive or active self-localization can be employed to estimate a UAV state
autonomously by processing solely onboard data. This approach is suitable for deployment
in an unknown environment, with typical sensors being passive cameras and active LiDARs
(Light Detection and Ranging). Methods utilizing cameras estimate motion of an onboard
camera by finding correlations of consecutive frames in the image stream, while LiDAR-based
methods estimate transformation between successive scans. Disadvantages of camera-based
approaches, referred to as visual-odometry, lay in high computing power demand and need for
feasible lighting conditions. Since an onboard computer needs to generate behavior for multiple
subsystems (e.g., trajectory planning, collision avoidance, data processing), this approach
might not be suitable for platforms with low processing power. In environments with bad
lighting conditions, like large historical buildings, the usage of visual-odometry is likewise
restricted, as discussed in Section 1.1. On the other hand, LiDARs measure time-of-flight of
near-infrared light to determine distance. This principle is not restricted by lighting conditions,
making it feasible for applications in dark areas. Overview of state-of-the-art LiDAR-based
techniques is discussed in detail in Section 1.2.

1.1 Motivation

Restorers and conservators monitor states of historical monuments to study short and
long term influence of time and restoration works on the monuments. Nowadays, during
regular study services of influence of restoration works, the scaffolding is necessary to monitor
conditions of a building. A UAV platform can supply the same documentation and inspection
techniques used by the experts in locations inaccessible by people without the need of a
large and expensive scaffolding installation, or in locations which had never been documented
before. The UAV platform can reduce, improve, and significantly speed up the duration of
the restoration works while scaling down their expenses.

The term historical monuments encompasses ancient or modern, war-damaged, dilap-
idated or restored cathedrals, chapels, churches, mausoleums, and temples of size varying
from small chapels up to large cathedrals. Although the type of environments is diverse, the
objects share common characteristics of bad lighting conditions and dust whirling due to an
aerodynamic influence of deployed UAVs, especially in medium and high altitudes.

The end-users (restorers, conservators, historians) lack documentation of hardly acces-
sible places in order to assess conditions of historical objects. Hence, in collaboration with
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National Heritage Institute1 of the Czech Republic, a set of historical monuments across the
Czech Republic was selected for initial deployment of a UAV platform. Examples of already
documented objects are Church of St. Mary Magdalene in Chlumı́n, Church of St. Maurice
in Olomouc or Chateau Plumlov. The full list of objects to document can be found in [10].
Apart from the evaluation of structural conditions of a historical building, other objects of
interest can be effectively documented for restoration or presentation purposes. That includes
paintings, altars, statues, mosaics, frescoes, stained glass, pillars, or pipe organs.

The objective of an aerial platform is to autonomously document these objects and
convey the acquired data to the end-users. However, the type of the acquired data may
vary from the ordinary high-quality photographs taken in the visible spectrum to more ex-
otic approaches – UV/IR spectrum photographs, radiography data, photogrammetry, or 3D
reconstruction outcomes.

To overcome the problem of bad lighting conditions, the proposed solution is a multi-
robotic system consisting of multiple UAVs. The first and main platform is a central UAV
equipped with onboard sensors for data acquisition and self-localization, which is comple-
mented by a set of supporting UAVs. Purpose of the supporting UAVs is to carry onboard
lights to highlight details of documented objects of interest. Therefore, the supporting UAVs
provide a mechanism to change illumination of the scene in order to highlight the object sur-
face topography or its relief. The illumination techniques (raking light, three point lighting),
together with initial results of the trajectory planning for formations of UAVs with supporting
lighting approaches, are described in [11].

The main motivation of this work focuses on linking solutions of multiple robotic prob-
lems in order to create a robust robotic system providing the end-users a valuable tool to
complement their work. A set of robotic problems in the application of UAV deployment for
documentation of historical monuments consists of the UAV control, GNSS-denied localiza-
tion, path and trajectory planning, sensor fusion, data processing, 3D mapping, formation
flying, and data acquisition. An engineering part of this work contains design and manu-
facture of the application-tailored UAV platform developed with respect to critical safety
requirements of the application. Second part of this work introduces reliable active GNSS-
denied self-localization system tailored for deployment in the presented environments.

1https://www.npu.cz/en

https://www.npu.cz/en
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Figure 1.1: Documentation of historical monuments by a platform of unmanned aerial vehicles
in cooperation with experts from restoration and conservation fields of study
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1.2 Related Work

UAVs are being utilized for airborne documentation of archaeological excavations [12,
13], 3D surveying of archaeological sites and landscapes [14, 15, 16], 3D recording of cultural
heritage [17], photogrammetry [15, 16], or visual inspecting [18, 19] for years. Most of these
airborne systems are deployed outdoors and georeference its data using a global positioning
system, which considerably simplifies the problem. The deployed UAVs for photogrammetry
purposes carry mainly lightweight LiDARs.

Although simultaneous localization and 3D mapping techniques (SLAM) are well-studied
for a single UAV [20, 21], and even for teams of UAVs [22, 23], only one work using UAVs in
context of documentation of interiors of historical buildings was found [24]. This manuscript
is based on a state-of-the-art visual SLAM with offline postprocessing to obtain a 3D model
of the historical site. Vision-based SLAM systems can be found [25, 26], however unstable
lighting conditions prevent to use exclusively vision-based approaches in the proposed archi-
tecture.

Similarly to numerous systems extending their applications with static terrestrial laser
scanners to assist with modeling of the scanned sites [27, 28], the proposed system archi-
tecture employs a static laser scanner. Similarly to [29, 30], Monte Carlo Localization in 3D
is employed from onboard 2D LiDAR. However, the global estimate refinement on a local
map by a scan matching technique based on Iterative Closest Point [31] is proposed. Multiple
manuscripts [32, 33] employ fusion of a scan matching of LiDAR data, inertial measurement
unit and a vertically oriented rangefinder. Kalman filter is used to derive 3D position of a
UAV. Although our approach employs similar techniques, it goes beyond by integration of
the system into the UAV position control feedback.

Most of the aerial systems use commercial multirotor vehicles, which might not be
optimal for their application. In this work, an application-tailored UAV platform suited for
environments of historical monuments is introduced to maximize the platform capabilities.
A multimodal sensor setup similar to [34] combines minimalist dimensions with maximal
payload weight. In comparison with [18], the proposed platform shares similar dimensions,
while it is equipped with a collision prevention system and its payload weight capacity is
significantly higher.

Preceding works of the MRS group at FEE CTU in Prague developed subsystems, which
are utilized throughout this work. In [35, 36], Model Predictive Control (MPC) and SO(3)
controllers are proposed to control a UAV along a specified trajectory. These controllers
were tested in harsh environments during two challenges of MBZIRC competition in 2017
[37, 38, 39]. Visual documentation of dark areas of interiors of large historical buildings by
a formation of UAVs using a model predictive control on the receding horizon is proposed
in [11]. Future extensions of this work plan to integrate and fuse state estimation based on
optic-flow in onboard camera images [40] and ultra-violet relative localization system UVDAR
[9] for mutual localization between UAVs during a formation flight.
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1.3 Outline

This thesis is partitioned as follows. Foremost, a detailed description of a custom-built
UAV platform suited for deployment in cluttered indoor environments of historical buildings
is presented in Chapter 2. Second, an overall architecture of the application-tailored system
for documentation of historical monuments is described in Chapter 3. Third, a concept of a
global map as a baseline for accurate, reliable and robust localization system is presented. Map
generation, interpretation and preprocessing is described in Chapter 4. Fourth, a proposed
system for reliable and accurate map-based localization is described in detail in Chapter 5. The
system covers combination of a global localization with local refinement, both fused together
to provide final state estimation. Fifth, an analysis of the localization system is described in
Chapter 6. This chapter presents simulation results, generation of a ground truth reference
data, and evaluation of the system on real data taken inside Church of St. Mary Magdalene
in Chlumı́n, Czech Republic. Sixth, the proposed localization system is integrated into the
position control feedback of the UAV control in Chapter 7. Finally, the thesis is concluded in
Chapter 8 by a discussion of the achieved objectives and future extensions of the work.

1.4 Mathematical Notation

Summary of mathematical notation used throughout the thesis is presented in Table 1.1.

Symbol Example Description

upper or lowercase letter m, M, M a scalar
bold upper or lowercase letter R, h a matrix or set
lowercase letter accented by a right arrow ~x a column vector

upper index T RT , ~x T vector and matrix transpose
lower index k Mk, Rk, ~xk M , R, ~x at discrete time step k

Table 1.1: Overview of the mathematical notation
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1.5 Table of Symbols

Chapter Symbol Description

Localization (Chapter 5) m Map
k Discrete time step
O, T Affine transformation matrix
R Orientation matrix
~t Translation vector
I Identity matrix

~p, ~Ω Robot position and orientation
~q Robot pose
~v, ~ω Robot linear and angular velocity
Φ, Θ, Ψ Roll, pitch, yaw
~x Robot state
x, y, z, Ψ State variables
ω Importance weight
S, s Set of sensors, sensor
Ls Sensor s observations length
Σ Covariance matrix

Monte Carlo Localization ~y Robot observations
(Section 5.2) ys Single observation of sensor s

ymin, ymax Observation range limits
~u Robot control input
η Normalization factor
H, h Set of hypotheses, hypothesis
M Total number of hypotheses
MKLD, Mglobal, Mlocal Hypotheses sampling subset size
Mmin, Mmax Hypotheses set size limits
ǫ0:6 Motion model noise
σhit, λshort, ν Observation model parameters
zmin
lim , zmax

lim Sampling z-axis limits
zestlim Sampling altitude estimate
zδlim Sampling z-axis offset
αslow, αfast Augmented-MCL decay rates

Scan Matching (Section 5.3) P, Q Source and reference point clouds
~p, ~q Points ~p ∈ P and ~q ∈ Q
ǫicp MSE of Iterative Closest Point
d1/2 Selection plane offset

Fusion (Section 5.4) A, B, K, Q, R, S Linear Kalman Filter matrices

Table 1.2: Summary of symbols utilized throughout Chapter 5



8 Chapter 1. Introduction



Chapter 2: Platform Design

Contents

2.1 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Frame Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

The operational environments of our application are heavily volatile. Let the hereafter
list be a summary of characteristics of such environments to account for in the context of an
aerial vehicle hardware design.

• Cluttered and narrow parts withing an environment.

• Presence of obstacles difficult to detect (chandelier ropes, lightning cables).

• Presence of dynamic obstacles in low altitudes (people, environment changes).

• Fragile nature of the surveyed objects.

• Presence of wind gust due to the stack effect (opened windows, doors).

• Whirling of dust due to an aerodynamic influence of a UAV.

These difficulties request the platform to be minimal in size, compact, powerful, safe,
equipped with onboard sensory equipment and maneuverable with a proportionally heavy
payload. The payload weight can differ accordingly to the required data output of the end-
user. Although for the data acquisition in the visible spectrum, example weights of the payload
are given at the bottom of Table 2.1 (total weight of the example payload is 1129 g).

Furthermore, the maneuverability is an immeasurable variable, thus a relation between
the maneuverability and a thrust-to-weight ratio of an aerial vehicle is proposed. The thrust-
to-weight defines the ratio between maximal positive thrust (in kilograms) from all the pro-
pellers combined to the total weight of the vehicle in the standard atmosphere on Earth.
Obviously, the ratio must be greater than 1:1 in order to obtain an ability to take off. It
is also clear, that the larger the ratio, the better the maneuverability. However, the exact
sufficient ratio is indefinable, since the maneuverability is also indefinable. Based on em-
pirical thumb-rule experience of the author, which correlates with the opinion of the drone
community [41], a sufficient ratio is defined to be close to 2:1 thrust-to-weight.

Although frame sets for aerial vehicles are available on the commercial market, only a
few of them are suited for indoor applications. Besides, requirements of the application strictly
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specify minimalist dimensions of the UAV with respect to the onboard payload and sensors
weight. Therefore, a custom aerial platform, suited for the specific demands of historical
monuments documentation, is designed. The following list presents examples of similarly
application-tailored vehicles to the one proposed in this thesis.

In [34], a similar vehicle with 3D omnidirectional sensor coverage is presented. However,
this vehicle is larger in all dimensions (square base with 850mm side) and its payload weight
capabilities are lower in comparison to the proposed platform.

In [42], a vehicle for inventory applications and warehouse inspections using RFID mark-
ers is presented. These environments are characteristic by narrow passages between warehouse
structures and large similar locations in the same environment. Historical objects share some
of the environment characteristics similarities, which makes the application analogous. How-
ever, with 1700mm diameter dimension, the vehicle in [42] is significantly larger (commercial
DJI Matrice 600 frame).

Authors in [18] presented an application-tailored system for inspection of chimneys.
Apart from similar dimensions to our platform (800mm), the chimney inspection application
shares a considerable amount of characteristics. Identically to our application, the output of
the system is data to be inspected by an expert or an end-user. However, their application
environment - chimneys - is highly predictable and homogeneous, which makes it easier to
apprehend.

2.1 Hardware Design

The first objective of this thesis is to design a physical body for an autonomous drone
with capabilities of safe flight in an indoor aerial operational space. A basic multirotor vehicle
consists of a physical body (frame), drive (motors, ESCs, an accumulator and propellers), an
autopilot, and a radio controller receiver. As a consequence of autonomy, additional sensory
equipment is necessary to obtain capabilities of an environment sensing, self-localization, and
a behavior generation.

As aforementioned, the cluttered environment demands a balance between the dimen-
sions of the vehicle and a payload weight limit. A number of rotors, together with their
particular configuration, and length of attached propellers are aspects correlating the most
with final dimensions of the multirotor vehicle. A drive system of coaxial rotors is selected
based on the hereafter introduced methods. A coaxial rotor consists of two rotors on the same
axis of rotation, which are contra-rotating, as shown in Figure 2.1. Usage of coaxial rotors
slightly reduces the propulsion system efficiency [43]. On the other hand, it significantly re-
duces the dimensions of the vehicle and the motors redundancy adds disturbance and single
point of failure resistance. Having an expected total weight of the vehicle, four coaxial motors
in the octocopter X8 configuration shown in Figure 2.2 provide sufficient thrust.

Fixed-pitch propellers with the length of 12 inches and 5 inches pitch are used. The pitch
parameter defines the displacement of a propeller after one complete revolution in a solid
environment. Typically, the larger the propeller pitch, the higher torque is needed, since more
air resistance is produced on the propeller surface area. Selection of the propellers is influenced
by the minimalist requirement for the vehicle’s dimensions and commercial availability of
these particular propellers. In the octocopter X8 rotors configuration, enough motor thrust is
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(a) Designed coaxial mount (b) Physical coaxial mount

Figure 2.1: A coaxial rotor mount of the proposed design

provided, while propellers length is minimized and the electric power input of the motors is
kept under a producer-defined margin.

Figure 2.2: Multirotor with four coaxial rotors in X8 configuration [44]

The first step of a robot design is selection of suitable drive components. Firstly, the
expected total weight of the robot is approximated, and the appropriate drive parameters are
selected accordingly. To design an optimal drive subsystem, an online tool eCalc [45] is utilized
to estimate suitable drive parameters and limitations. The total robot weight approximation
is specified in Table 2.1 and the drive design from eCalc is specified in Figure 2.3a.

Two in parallel connected LiPo accumulators, each with four in series connected cells,
are utilized to provide power to onboard electronics and the drive system. Nominal voltage
for a LiPo accumulator is 3.7V per one cell, which results in the main power source of the
vehicle being a voltage source with a nominal voltage of 14.8V. The reason for this choice is
our remnant possession of these accumulators from previous research projects and MBZIRC
2017 competition [37, 38, 39].
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Proposed design of the drive system, shown in Figure 2.3a, yields a thrust-to-weight
ratio of 1.8:1. This configuration leads to a controllable vehicle with slightly lowered maneu-
verability in comparison with the recommended ratio. For the final version of the vehicle, the
power source upgrade to one LiPo accumulator with six in series connected cells is intended,
which shall enhance the flight characteristics. As shown in Figure 2.3b, replacing the power
supply while swapping for suitable motors leads to longer flight time, increase of payload
weight limit and thrust-to-weight ratio improvement.

Physical dimensions of the designed vehicle without propellers are specified in Figure 2.8
and respectively in Figure 2.10 with propellers. The resulting parameters of the vehicle are
10minutes time of flight with a load equal to the example payload weight in Table 2.1.

2.2 Components

In this section, a list of the components of the designed platform is introduced. The list
is also summarized by Table 2.1.

Motors MT2814 from company T-Motor suit well the voltage range of the selected
accumulators. These motors are part of the DC brushless category, as mostly used in the drone
industry. Important aspect of a DC brushless motor in the field of multirotors is unit kV. This
unit specifies theoretical number of motor revolutions per minute per volt (RPM/V ) of an
unloaded motor. Obviously, adding a propeller to a motor slows it down and the theoretical
value can never be reached. Generally, lower kV value leads to slower rotation rise time and
larger torque, which the motor is able to produce and hence the larger propellers are suitable.
The selected motors are characterized by 710 kV.

Electronic Speed Controller is a link between motors and an autopilot. It translates sig-
nals from autopilot to trigger the three coil segments in a DC brushless motor with three-phase
DC pulses. The requirements for precision, durability, and functionality of these electronic
controllers are extremely strict, thus buying these parts from verified manufacturers is recom-
mended. Important parameters of ESCs are the allowed continuous and burst current values,
and a communication protocol they employ.

Propellers produce lift in the forward direction, which is referred to as thrust. The aero-
dynamic mechanism of a lift production by an air pressure difference on the propeller blade
side surface is a well-studied principle in the field of aeronautics. Without loss of generality, a
detailed explanation of this principle is ignored. For historical reasons, wooden propellers were
regularly utilized. However, modern plastic and carbon materials took over in the multirotor
field and nowadays is rare to find a wooden propeller on an aerial vehicle, with an exception
of airplanes.

Accumulator serves as a power supply for each electronic part on the vehicle. It powers
the motors, ESCs, an onboard computer, all the sensory equipment and possibly even the
payload. Together with tethered drones, where a tether is attached to a drone providing
a power supply and a data link, accumulators are nowadays the only technology used as a
power source for an aerial vehicle. However, with the emergence of larger multirotors for cargo
consignment or man transport, even petrol powered systems might become common. From
the spectrum of various accumulator chemistries and types, particularly LiPo accumulators
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General Model Weight:

5300 g incl. Drive

187 oz

# of Rotors:

8

coaxial

Frame Size:

635 mm

25 inch

FCU Tilt Limit:
10°

Field Elevation:

300 m.ASL

984 ft.ASL

Air Temperature:

20 °C

68 °F

Pressure (QNH):

1000 hPa

29.53 inHg

Battery Cell Type (Cont. / max. C) - charge state:
custom  - normal

Configuration:

4 S 2 P

Cell Capacity:

6750 mAh

13500 mAh total

max. discharge:

90%

Resistance:

0.0028 Ohm

Voltage:

3.7 V

C-Rate:

25 C cont.

50 C max

Weight:

151 g

5.3 oz

Controller Type:
max 50A

Current:

50 A cont.

50 A max

Resistance:

0.005 Ohm

Weight:

65 g

2.3 oz

Accessories Current drain:

4 A

Weight:

0 g

0 oz

Motor Manufacturer - Type (Kv) - Cooling:

T-Motor  - MT2814-11 ² (710)

excellent   search...  

KV (w/o torque):

710 rpm/V

Prop-Kv-Wizard

no-load Current:

0.4 A @ 10 V

Limit (up to 15s):

440 W

Resistance:

0.125 Ohm

Case Length:

36 mm

1.42 inch

# mag. Poles:

14

Weight:

120 g

4.2 oz

Propeller Type - yoke twist:
Aeronaut CamCarbon  - +3.5°

Diameter:

12 inch

304.8 mm

Pitch:

5 inch

127 mm

# Blades:

2

PConst / TConst:

1.07  / 0.99

Gear Ratio:

1 : 1 calculate

Load: Hover Flight Time: electric Power: est. Temperature: Thrust-Weight: specific Thrust:

Remarks:
Battery
Load: 14.03 C

Voltage: 13.74 V

Rated Voltage: 14.80 V

Energy: 199.8 Wh

Total Capacity: 13500 mAh

Used Capacity: 12150 mAh

min. Flight Time: 3.9 min

Mixed Flight Time: 8.7 min

Hover Flight Time: 10.0 min

Weight: 1208 g

42.6 oz

Motor @ Optimum Efficiency
Current: 7.32 A

Voltage: 14.44 V

Revolutions*: 9557 rpm

electric Power: 105.7 W

mech. Power: 92.0 W

Efficiency: 87.0 %

Motor @ Maximum
Current: 23.17 A

Voltage: 13.62 V

Revolutions*: 7484 rpm

electric Power: 315.6 W

mech. Power: 239.9 W

Power-Weight: 476.4 W/kg

216.1 W/lb

Efficiency: 76.0 %

est. Temperature: 36 °C

97 °F

Wattmeter readings
Current: 185.36 A

Voltage: 13.74 V

Power: 2546.8 W

Motor @ Hover
Current: 8.65 A

Voltage: 14.35 V

Revolutions*: 4912 rpm

Throttle (log): 51 %

Throttle (linear): 61 %

electric Power: 124.1 W

mech. Power: 95.2 W

Power-Weight: 193.2 W/kg

87.6 W/lb

Efficiency: 76.7 %

est. Temperature: 26 °C

79 °F

specific Thrust: 5.34 g/W

0.19 oz/W

Total Drive
Drive Weight: 2957 g

104.3 oz

Thrust-Weight: 1.8 : 1

Current @ Hover: 69.19 A

P(in) @ Hover: 1024.0 W

P(out) @ Hover: 761.6 W

Efficiency @ Hover: 74.4 %

Current @ max: 185.34 A

P(in) @ max: 2743.0 W

P(out) @ max: 1918.9 W

Efficiency @ max: 70.0 %

Multicopter
All-up Weight: 5300 g

186.9 oz

add. Payload: 3046 g

107.4 oz

max Tilt: 10 °

max. Speed: 15 km/h

9.3 mph

est. rate of climb: 7.2 m/s

1417 ft/min

Total Disc Area: 29.19 dm²

452.45 in²

with Rotor fail:

share add to >> Download .csv (0) << clear

Range Estimator

Air Speed

Motor Characteristic at Full Throttle

Ampere

Important Note:
Before flight recheck your max. current! If your Current, el. Power or RPM are over the manufacturers
limits your motor, controller and/or battery may take damage! Verify before flight by measurment!

for printing use Landscape format
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General Model Weight:

6000 g incl. Drive

211.6 oz

# of Rotors:

8

coaxial

Frame Size:

635 mm

25 inch

FCU Tilt Limit:
10°

Field Elevation:

300 m.ASL

984 ft.ASL

Air Temperature:

20 °C

68 °F

Pressure (QNH):

1000 hPa

29.53 inHg

Battery Cell Type (Cont. / max. C) - charge state:
custom  - normal

Configuration:

6 S 1 P

Cell Capacity:

10000 mAh

10000 mAh total

max. discharge:

90%

Resistance:

0.0028 Ohm

Voltage:

3.7 V

C-Rate:

25 C cont.

50 C max

Weight:

151 g

5.3 oz

Controller Type:
max 30A

Current:

30 A cont.

30 A max

Resistance:

0.008 Ohm

Weight:

40 g

1.4 oz

Accessories Current drain:

4 A

Weight:

0 g

0 oz

Motor Manufacturer - Type (Kv) - Cooling:

T-Motor  - MT2826-8² (550)

excellent   search...  

KV (w/o torque):

550 rpm/V

Prop-Kv-Wizard

no-load Current:

0.9 A @ 10 V

Limit (up to 15s):

700 W

Resistance:

0.042 Ohm

Case Length:

48 mm

1.89 inch

# mag. Poles:

14

Weight:

187 g

6.6 oz

Propeller Type - yoke twist:
Aeronaut CamCarbon  - +3.5°

Diameter:

12 inch

304.8 mm

Pitch:

5 inch

127 mm

# Blades:

2

PConst / TConst:

1.07  / 0.99

Gear Ratio:

1 : 1 calculate

Load: Hover Flight Time: electric Power: est. Temperature: Thrust-Weight: specific Thrust:

Remarks:
Battery
Load: 23.03 C

Voltage: 18.33 V

Rated Voltage: 22.20 V

Energy: 222 Wh

Total Capacity: 10000 mAh

Used Capacity: 9000 mAh

min. Flight Time: 2.3 min

Mixed Flight Time: 8.1 min

Hover Flight Time: 10.2 min

Weight: 906 g

32 oz

Motor @ Optimum Efficiency
Current: 23.74 A

Voltage: 18.82 V

Revolutions*: 9767 rpm

electric Power: 446.7 W

mech. Power: 398.8 W

Efficiency: 89.3 %

Motor @ Maximum
Current: 28.29 A

Voltage: 18.10 V

Revolutions*: 9262 rpm

electric Power: 512.1 W

mech. Power: 455.8 W

Power-Weight: 682.8 W/kg

309.7 W/lb

Efficiency: 89.0 %

est. Temperature: 29 °C

84 °F

Wattmeter readings
Current: 226.32 A

Voltage: 18.33 V

Power: 4148.4 W

Motor @ Hover
Current: 6.14 A

Voltage: 21.25 V

Revolutions*: 5227 rpm

Throttle (log): 38 %

Throttle (linear): 47 %

electric Power: 130.6 W

mech. Power: 114.7 W

Power-Weight: 181.9 W/kg

82.5 W/lb

Efficiency: 87.8 %

est. Temperature: 22 °C

72 °F

specific Thrust: 5.74 g/W

0.2 oz/W

Total Drive
Drive Weight: 2994 g

105.6 oz

Thrust-Weight: 2.4 : 1

Current @ Hover: 49.15 A

P(in) @ Hover: 1091.2 W

P(out) @ Hover: 917.3 W

Efficiency @ Hover: 84.1 %

Current @ max: 226.29 A

P(in) @ max: 5023.6 W

P(out) @ max: 3646.2 W

Efficiency @ max: 72.6 %

Multicopter
All-up Weight: 6000 g

211.6 oz

add. Payload: 6511 g

229.7 oz

max Tilt: 10 °

max. Speed: 18 km/h

11.2 mph

est. rate of climb: 12.3 m/s

2421 ft/min

Total Disc Area: 29.19 dm²

452.45 in²

with Rotor fail:

share add to >> Download .csv (0) << clear

Range Estimator

Air Speed

Motor Characteristic at Full Throttle

Ampere

Important Note:
Before flight recheck your max. current! If your Current, el. Power or RPM are over the manufacturers
limits your motor, controller and/or battery may take damage! Verify before flight by measurment!

for printing use Landscape format
* The manufacturer limitation is NOT monitored
** Testdata with reduced accuracy
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(b) One LiPo accumulator with 6 in series connected cells (6SP1) and increased total weight

Figure 2.3: Designs of the vehicle’s drive components and its flight characteristics estimate
from eCalc tool [45]

are used for multirotors due to their convenient properties of lightweight, high capacity, large
discharge rate, and a customizable shape.

Frame provides a physical body and defines the dimensions of the whole vehicle. De-
tailed description of the frame component is present in Section 2.3.

Autopilot is a system for an underlying attitude stabilization and control of a vehicle,
using onboard accelerometers, barometers, magnetometers and gyroscopes. The selected au-
topilot Pixhawk Cube, previously featured as Pixhawk 2.1, is an open-hardware autopilot
broadly used by the robotic community. Particularly the Cube provides high redundancy for
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its separated, dampened and thermally stabilized IMU system, which comprises of three in-
dependent accelerometers, gyroscopes and magnetometers, and two independent barometers.

Central processing unit serves as the brain of an aerial vehicle. It provides computational
power for sensor data processing, trajectory planning, state estimation, mission supervision
and many other subsystems of an autonomous vehicle. Based on our experience with onboard
computers, Intel NUC7i7 (Intel R© Core

TM
i7-8650U, 1.9GHz with Turbo Boost and Hyper-

Threading technologies, 8GB RAM) is relied on for its compact size, number of various input
ports and powerful hardware components. The connection link between the autopilot and an
onboard computer is established over a bidirectional serial line with utilization of MAVLink
protocol [46]. The connection diagram between vehicle components and the central processing
unit is presented in Figure 2.4.

Radio communication between a ground operator and the vehicle is arranged via a
2.4GHz frequency receiver-transmitter channels. The autopilot adopts commands from the
onboard receiver during a non-autonomous flight mode. This link between a ground operator
and the vehicle is exceptionally important since the mission operator is obliged to take over
the vehicle control in case of any system malfunction.

Video transmission and telemetry provides a live video feed with current flight param-
eters to a ground operator. This functionality enables a mission supervision and a visual
feedback to the operator based on the video feed from a First Person View (FPV) cam-
era. In consequence of the visual feedback, an end-user can adjust mission objective mid-air.
That includes objects of interest specification, mission repetition, detailed data acquisition
of a certain surface or change of sensing parameters (e.g., light conditions, camera exposure
time).

2.2.1 Sensory Equipment

This section lists down selected sensory equipment to supply enough onboard sensing
capabilities forward to an autonomous mission. The equipment, highlighted on an airborne
UAV in Figure 2.7, provides vision, laser and ultrasonic-based sensing information in various
direction to effectively cover the environment.

Environment scanner is the primary source of information about the vehicle’s neigh-
borhood. For our purposes, a planar 360◦ rotational laser scanner RPLIDAR A3 is employed.
The scanner parameters are 25m range radius, scan rate up to 20Hz, angular resolution down
to 0.3375◦ and sample rate up to 16 000 samples per second. The scanner is fixed to the UAV
frame and therefore the sensing plane orientation corresponds to the orientation of the UAV.
Figure 2.5 illustrates data produced by RPLIDAR A3 scanner to visually manifest the output
of the sensor. Nevertheless, the sensor choice could be conveniently replaced by a different
alternative. For example, a 3D scanner Velodyne Puck Lite can be employed for more robust
state estimation in defiance of its heavier dispositions.

A range measurement decay with increasing distance was identified during RPLIDAR
A3 evaluation in Section 5.2.2. Hence throughout the thesis, RPLIDAR A3 distance decay of
a range measurement x is corrected by relation

fcorr(x) = x+ 0.00512x2 (2.1)

determined by quadratic least squares regression, as illustrated in Figure 2.6.
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Figure 2.4: High-level connection diagram of the designed UAV electronics, where the sensory
equipment is described in detail in Section 2.2.1

(a) View on data embedded in a map obtained by
a 3D scanner, as described in Section 4.1

(b) Top-view on a raw data

Figure 2.5: Example of data from planar 360◦ scanner RPLIDAR A3 taken onboard an air-
borne UAV in Church of St. Mary Magdalene in Chlumı́n introduced in Chapter 4

Laser rangefinders oriented vertically to measure point distance in positive and negative
z-axis of the autopilot provide an estimate of distance from the ground (altitude) and distance
from the ceiling respectively. Specifications of the selected Garmin Lidar Lite sensors are
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Component group Component Specifications Weight [g]

Drive Motors T-Motor MT2814 8×120
Electronic Speed Controller Foxy Multi Opto 8×31
Propellers CAM-Carbon 12× 5 8×10
Accumulator Tattu 4S LiPo 2×605

Frame Base Carbon and
aluminium parts

630

Collision Prevention System Propeller guards 300
Landing gear Carbon tubes 50

Electronics Central processing unit Intel NUC7i7 150
Autopilot Pixhawk Cube (2.1) 39
Sensors data acquisition board Arduino Nano 7
Radio control receiver Optima 9, 2.4GHz 22

Sensors Optical rangefinders Garmin Lidar Lite v3 2×22
Ultrasonic rangefinders HC-SR04 4×9
Front-facing depth camera RealSense D435 72
Visual odometry camera mvBlueFOX 20
Rotational 2D laser scanner RPLIDAR A3 190

Video transmission Analog camera RunCam 2 49
& telemetry Analog video transmitter Boscam 5.8 GHz 20

Onscreen display MinimOSD 10

Payload Camera Sony Alpha A6000 344
Fixed focal length lens Sony 16mm f/2.8 SEL 67
Stabilization unit 2-axes Dragon Gimbal 358
Stabilization unit controller SimpleBGC 32 bit Tiny 100
LED light Aputure LED AL-F7 260

5266

Table 2.1: List of the proposed platform components with their specification and weight, and
an example of a payload for documentation in visible light spectrum

according to theirs datasheet 40m measurement range with 1 cm resolution and ±2.5 cm
accuracy under 5m, and ±10 cm accuracy over 5m.

Visual odometry camera with a suitable lens provides fast image information for a
vision based state estimation. In our case, an onboard-running optical flow algorithm [40]
is utilized for the vehicle velocities estimation from the motion of objects in a visual scene.
For redundancy of independent localization sources, a fusion of multiple velocity estimates is
proposed from the optical flow field of the scene below and in front of the UAV, if enough
processing capacity is provided. Hence, two mvBlueFOX cameras (front and down facing)
are integrated into the platform. Their parameters are 25Hz frame rate, rolling shutter, 1/3 ′′

optical sensor size and up to 1280 × 960 resolution. The optical flow algorithm implementation
[40] is not color-based, hence a greyscale camera version with camera sensor sensitive solely
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Figure 2.6: Bias correction of RPLIDAR A3 range measurement according to Equation 2.1

to light intensity (without Bayer mask) is preferred to maximize information sensitivity.

Ultrasonic rangefinders HC-SR04 provide a low-level safety mechanism, as they are
used directly in the lowest levels of the UAV control. In other words, they serve as virtual
bumpers to prevent undesirable collisions with the environment. These sensors with 4m max-
imal measurement range, 3mm resolution, and 15◦ field of view are mounted on diagonal axes
of the vehicle to roughly cover the possible areas of collisions.

Depth camera oriented forward provides depth information in the vehicle’s x-axis. The
employed camera Intel RealSense D435 produces syncrhonized RGB-D data stream with
resolution of 1280 × 720 px up to rate of 90Hz. The depth information can be further utilized
for attitude estimation, localization, map building, and 3D reconstruction.

2.3 Frame Design

A full design draft of the frame was modeled in a 3D modeling software1 in order
to expose potential drawbacks of a custom design. Then a prototype was assembled from
aluminum square tube profiles and carbon fiber composites. Carbon fiber composite is a
modern material in the aerial field, where its main advantage stands in a great proportion
between lightweight, and high stiffness and strength. All parts from carbon fiber composite
(henceforth carbon parts) were cut on a milling machine either by the thesis author or by an
external manufacturer. The design of the vehicle is divided into three components - frame,
base and collision prevention system.

1Autodesk Inventor Professional 2019 with a standalone student license provided by the Czech Technical

University
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Figure 2.7: Visualization of onboard sensory equipment and a payload field of view

Purpose of the frame component is to provide a rigid and connected platform to mount
the coaxial motors on. The frame is an H-shape with reinforcements at the side segments.
These reinforcements serve as a necesary precaution to handle twist momentums, which occur
at the motor mounts segments, hence to prevent material bends and wear outs. The final shape
is defined as a rectangle with the shorter side dimension designed to fit the propellers and
longer side dimension extended by a width of the base component, as illustrated in Figure 2.8.
The frame incorporates aluminum square bars serving as general shape connection links joined
by carbon motor mounts and L-shaped links. Furthermore, the frame involves soft mount
dampers as a connection link between the frame and base, which reduce vibrations transfer
from the motors to base components.

Base component serves as a platform for attachment of onboard electronics, power
distribution, batteries, and even a payload. It is designed as a stack of carbon plates with 2mm
thickness, as illustrated in Figure 2.9, where each layer serves its own functionality. Starting
from the bottom, the leading layer is a platform for accumulators attachment. On the bottom
side of this layer, downward looking sensors are located. One layer above, power distribution
is handled and non-sensory electronics is fixed. Looking from below at this layer, the landing
gear is attached to its central part and the frontal side is reserved for a payload hinge.
One more layer above, a general platform for the central processing unit, radio receiver, and
alternative sensors are located. This layer is the only one connected to the frame component,
whereas the rest is stacked either below or above it. The base-frame connection is established
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Figure 2.8: Visualization of the frame component with motor platforms and soft
mounts for the base component

via the aforementioned soft mount dampers. One more layer above is a smaller platform for
the autopilot and upward looking sensors. And finally on the top is a layer reserved for sensors
requiring unobscured visibility.

The third component, the collision prevention system, is a propeller guard system isolat-
ing an outer environment and hastily rotating propellers. These systems particularly common
on multirotor vehicles with operational spaces in close proximity to people and obstacles. For
deployment in a historical monument, the collision prevention system is compulsory due to
the requirement of absolute safety. The system protects conceivable fragile objects of interest
and prevents possible property damages. On the other hand, it likewise protects the pro-
pellers from outer sources, since a fractured propeller could destabilize the ensemble vehicle,
leading to possibilities of extensive property damages. The collision prevention system was
designed to be removable and robust enough for low-speed aerial movements, as shown in
Figure 2.10. Nonetheless, the system is highly sparse to allow air to flow freely. The designed
system certainly isolates large objects incoming from sides of the vehicle, although it could
still collide with small hanging objects during ascending or descending movements. Therefore,
the mission operators are obliged to decide, whether it is safe to fly in environments, where
this system could not provide sufficient safety guarantee.
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(a) Landing gear and the bottom-most layer for
attachment of downward looking sensors

(b) Platform for reliable battery attachment

(c) A location for power distribution manage-
ment and non-sensory equipment fixation

(d) A layer for central processing unit, radio
receiver and fixation of other sensors
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(e) Autopilot and upward looking sensors plat-
form

(f) Topmost layer reserved for sensors requiring
unobscured visibility

(g) Aggregated base component with all its layers and a landing gear

Figure 2.9: Visualizations of the individual base component parts
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(a) Detail of the system for a single motor (b) Top view on the entire system

(c) A perspective scene of the aggregated system

Figure 2.10: Visualizations of the collision prevention system
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(a) Stationary photo with unbalanced payload (b) Airborne photo with positionable payload sta-
bilization

(c) Airborne photo during a formation flight (d) Stationary photo with balanced payload

(e) Detail of the top layer (f) Airborne photo of the complete system

Figure 2.11: Photos of the finalized platform during a testing flight with and without the
collision prevention system, and a stabilized payload of either a camera or a light
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Chapter 3: System Architecture

A brief insight into the system’s control architecture is presented to empathize a reader
with the application-tailored system for documentation of historical monuments. The pro-
posed solution is based on the well-studied hybrid control paradigm of an autonomous system
[47]. The paradigm combines hierarchical (deliberative) with the reactive paradigm in a Plan
and then Sense-Act way, as illustrated in Figure 3.1.

Sense Act

Plan

Figure 3.1: Robotic hybrid paradigm

Commonly, robotic system architectures consist of stacked layers (or modules), each
providing data or information for layers above, or inducing a system behavior. This approach
provides effective development and security performance, which is particularly essential for
projects wrapping multiple subsystems. An architecture of the proposed system is described
in Figure 3.2, where the general layer architecture is introduced, together with a rough update
rate approximation of each particular layer.

Clearly, the proposed system consists of an abundant number of robotic problems. As
for the Act system (red color in figures), frequently tested UAV control approach [36, 35] is
employed, whose functionality was already proved in harsh outdoor environments [37, 38, 39].
For purposes of the proposed system, the control system is perceived as a black box, which
is supplied with vehicle’s state estimation and setpoint references, and it produces accurate
reference tracking in sufficient finite time.

Furthermore, a proposition of the Plan system is already presented in [11], where the
approach for documentation of dark areas of historical buildings using a formation of un-
manned aerial vehicles is presented. The Plan system is being developed in parallel by our
group and is not further discussed in this thesis.

Additionally, a System Fault Detection is introduced in Figure 3.2. This system, which
is extremely crucial for our application with tremendous safety requirements, monitors critical
components of the vehicle. That includes monitoring of hardware and likewise the software
components - e.g., sensory data acquirement, sensors and algorithms anomalies check, etc. In
case of any malfunction, it has the rights to override control layers and initiate an appropriate
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Figure 3.2: General system architecture comprised of dependent layers with an
approximation of their update rate

safety procedure. Examples of these safety procedures are immediate landing, return to takeoff
location, maintain hovering at the current location or total system shutdown. The System
Fault Detection system is likewise being developed in parallel by our group and is not further
discussed in this thesis.

In this thesis, the Sense system is described in details. The purpose of this system is
the extraction and interpretation of valuable information from raw data taken onboard the
vehicle. Its objective is to extract information about the world around the UAV and estimate
its state. The proposed methods for the Sense system are described in Chapter 5.

General nature of large buildings that are required to be documented restrain an opera-
tion of a global positioning system. Also, presence of practically inaccessible locations prevents
usage of any indoor pre-set localization system (e.g., a motion capture system). Therefore, the
Sense system is designed specifically for indoor environments. Thoroughly studied approaches
for indoor UAV localization are based on onboard cameras, rotational laser scanners or point
distance measurement sensors. This equipment leads to usage of variants of simultaneous lo-
calization and mapping (SLAM), scan matching or optic-flow mechanisms for reasoning and
self-localization in an indoor environment.

However, available vision-based methods become impractical due to their need for suit-
able lighting conditions, which might be harsh in large historical objects. This disadvantage
causes solely vision-based techniques to be non-applicable and further enhancements are re-
quired. Furthermore, to overcome a lack of reliability in state-of-the-art localization or pose
tracking algorithms employing solely onboard information, the system architecture is en-
hanced with a concept of a global a priori generated map. A map serves as a backbone
supporting localization algorithm by maximizing robustness capabilities of the localization
system and heavily decreasing the need for onboard sensing abilities. To further support re-
liability of the autonomous system demanded by the enormous safety requirements of the
application, the maximal velocity of the UAV is limited to 1m s−1, with optimal velocity
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being even below 0.5m s−1.

In Figure 3.3, high-level system architecture of the proposed approach with the con-
cept of global map is presented. Map generating, utilization and enhancement processes are
introduced further in Chapter 4.

Localization Mission Planner

Data Pre-
processing

Environment
Sensing

Navigation

Act
System Fault
Detection

World

Global Map

UAV State

Estimation

Map Refinement

Operator

Commands

Figure 3.3: System architecture based on a control scheme for a mobile robot
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Chapter 4: Global Map
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A map provides a global reference utilized in localization, mapping and navigation
modules. Its utilization adds straightforwardness to the robotic problem, supplies additional
robustness to the system and supports system reliability. An available global map yields
an opportunity to associate captured onboard data with a 3D map, which provides a well-
arranged data output to an end-user. For an example of a model of a historical object with
photos visually associated with the objects of interest, see Figure 4.1.

In Figure 4.1, a high-level application workflow is presented, where an end-user spec-
ifies objects of interest, which are further labeled and applied during mission planning and
optimization. Each of the included photographs and snapshots in this figure was taken from
ground or airborne locations in Church of St. Mary Magdalene in Chlumı́n, the Czech Re-
public, which is introduced in the following sections.

4.1 Map Generation

To generate a map, a reliable device for capturing a 3D map is employed. To accurately
scan interiors of historical buildings, a professional 3D scanner is operated. Two professional
environment scanners were analyzed on two historical objects.

The first device, Leica Nova MS60 [48], is classified as a multistation. Multistation com-
bines accurate measuring with other Leica technologies, including 3D point cloud generation,
imaging, motorization, automatic timing, data storage, and others. This multistation is com-
petent to produce a 3D point cloud including RGB information, intensity and signal-to-noise
ratio. The 3D points precision depends on the scanning frequency, where the fastest scan
mode (1000Hz mode) yields 300m maximal range and 1mm range accuracy. Furthermore,
multiple scans can be generated and then post-processed to generate registered scan of the
whole object. However, scanning time of Leica Nova MS60 during a single scan procedure
with the fastest scan mode reaches 60minutes of scan time.

In virtue of these abilities to generate a workable 3D point cloud, which can be utilized
as a map, an interior of Church of St. Mary Magdalene in Chlumı́n, the Czech Republic, was
scanned. In consequence of extensive scanning time, only one particular scan of the St. Mary
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Terrestrial Laser Scanner

Objects of Interest

UAV Mission Output  D a t a

Expert

Figure 4.1: Workflow diagram of the entire mission, starting from specification of objects of
interest in a scanned map, followed by a UAV or formation of UAVs mission and resulting to
a payload data output associated with model of the map.

Magdalene church was taken, and only in XYZ format (no color information to expedite the
scanning process). In addition to the 3D scan, a localization dataset with a position ground
truth data was taken within this church by multi station Leica Nova MS60 and in parallel
by a total station Leica Viva TS16 (shown in Figure 4.2a). Description of the localization
dataset is presented in Section 6.3. For these essential assets, Church of St. Mary Magdalene
is further used for simulation and real experiments, which are described in Chapter 6. The
exterior and interior insights, together with a raw scan produced by Leica MS60 multistation,
are presented in Figure 4.3.

The second examined device is a specialized laser scanner Leica BLK360 Imaging Laser
Scanner [49]. It captures the environment with RGB-color panoramic images overlaid on a
high-accuracy point cloud using 830 nm wavelength laser and distance measurement system
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based on time of flight principle enhanced by Waveform Digitizing technology. Table 4.1
specifies parameters of the scanner for each of its available scan modes. Its superior advantage
lays in scanning time of 3minutes for a full-dome scan (360◦ horizontal and 300◦ vertical field
of view) in standard resolution, 150MP spherical image generation and 60m maximal range.
The compressed time allows generation of scans at various locations and their registration
into a single 3D point cloud shortly before deployment of the aerial system. However, the fast
scanning time handicaps the 3D point accuracy to 6mm at 10m, and 8mm at 20m. This
accuracy is regarded as sufficient for the robotic application.

(a) Leica Viva TS16 (b) Leica Nova MS60 (c) Leica BLK360 [49]

Figure 4.2: Overview of examined Leica stations and 3D scanners

Scan mode Resolution
[mm@10m]

Estimated scan duration
[mm : ss]

Approx. scan size
[millions of points]

Fast 20 0:40 3
Standard 10 1:50 18
High density 5 3:40 65

Table 4.1: Essential parameters of Leica BLK360 scanner for each particular scan mode

To evaluate the competence of the Leica BLK360 scanner, the interior of Church of
St. Wenceslas in Smı́chov, Prague, was scanned. The exterior and interior insights, together
with colored scan registered from six different church locations by Leica BLK360 scanner,
are shown in Figure 4.4. In the output of the Leica BLK360 scanner in Figure 4.4, yellow
tetrahedrons represent the six scan locations. Individual scans were registered onto each other
in behalf of their mutual overlaps during post-processing1, and a complete point cloud was
created from the collective merge. The resulting point cloud is a collection of 331millions of
RGB-XYZ points, as specified in Table 4.2. The detail of a column capital in Figure 4.4h
implies the immense granularity of points.

As a consequence of atrocious color calibration of the scanner during the first two scans,
the colors in the figure do not match reality, as a reader can distinguish from a comparison of
Figure 4.4b and Figure 4.4e. Point cloud visualization of Church of St. Wenceslas in Figure 4.4
was carried out in JetStream Viewer.

1Post-processed in Cyclone REGISTER 360 with floating trial license provided to the MRS group
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(a) Exterior

(b) Interior photo of altair (c) Interior scan of altair

(d) Interior photo of balcony (e) Interior scan of balcony

Figure 4.3: Church of St. Mary Magdalene in Chlumı́n, the Czech Republic
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(a) Church front facade [50] (b) Segment of church interior [51]

(c) 3D view of the registered scan (d) Top-view on the entire site
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(e) Scan of an interior segment (f) Detail of a scanned statue and stained glass
windows

(g) Detail of a scanned remembrance site (h) Detail of a scanned column capital

Figure 4.4: Church of St. Wenceslas in Smı́chov, Prague, the Czech Republic
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4.2 Map Interpretation

In the previous section, a map in the concept of excessively dense point clouds was intro-
duced. Further in Chapter 5, an approach for UAV map-based self-localization is presented.
The approach disregards excessive details, completely omits available RGB information and
excludes endeavor to match high-detail features. For these reasons, a way to efficiently abolish
map details, and store and employ a map onboard a UAV is a necessity.

To optimize the efficiency and performance of a map management with respect to
computational resources of a UAV, octrees are utilized. Octrees, introduced in [52], provide
a hierarchical data structure for spatial subdivision of 3D space. This well-studied tree data
structure recursively subdivides 3D space into eight octants down to a defined resolution, as
illustrated in Figure 4.5. The octree structure ensures fast map transformations, as well as
node traversal to find a subset of voxels in an octree pierced by a directed line [53].

Figure 4.5: Visualization of octree spatial subdivision of 3D space [54]

An efficient open-source OctoMap mapping framework [55] is used to represent a map
with inner space representation based on octrees. This implementation extends a regularly
used 2D occupancy grid to 3D (hence grid cells convert to voxels), where octree representation
provides efficiency, and sparser and downsampled number of points. Having a map represented
as an occupancy grid, probabilistic techniques can be utilized to its modeling and updating,
where essential requests (sensor measurements integration, data access, collisions evaluation
or tree nodes queries) are implemented in an effective way [53, 56]. However, apart from
an occupancy status, voxels can be used during navigation and mission planning to store
information about the mission itself - i.e., whether a given voxel is part of an object of
interest and whether it was already documented.

In the concept of a map-based localization, the choice of map resolution factor needs to
respect the performance requirements. Obviously, greater resolution provides larger dropout
in octree traversal, searching of nearest neighbors and collision checking performance, since the
tree depth is increased. Furthermore, with respect to the localization task, the map resolution
is bounded by resolution of onboard sensors used for the task. As presented in Section 2.2.1,
the primary sensor is a planar laser scanner. Its range measurement accuracy is not specified



36 Chapter 4. Global Map

by its producer, but its accuracy of ±10 cm at 8m was derived from real measurement data
and demonstrated in Figure 2.6. The accuracy reasons for the choice of map resolution to
10 cm, which disregards the highest indistinguishable and unreliable details captured by the
sensor. Influence of a map resolution on OctoMap representation of a balcony in Church of
St. Mary Magdalene is presented in Figure 4.6.

(a) Reference point cloud (b) OctoMap with 5 cm resolution

(c) OctoMap with 10 cm resolution (d) OctoMap with 30 cm resolution

Figure 4.6: OctoMap representation of Church of St. Mary Magdalene in Chlumı́n

4.3 Map Processing

In order to establish convergence in performance of map operations, the map needs to be
processed prior to its utilization. 3D scanner output data volumes are specified in Table 4.2.
The data are, especially for the registered scan of Church of St. Wenceslas, intractable to
handle. Also, raw scanner data lack information in occluded locations with respect to the
scanning positions. These occlusions, observable behind columns or above the balcony in
Figure 4.3 or Figure 4.6, cause unpredictable issues during localization task as reference data
are missing in these locations. Therefore, in this section, a record of techniques either already
utilized or planned to in terms of map pre-processing is presented.
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Octree

Site Point Cloud 5 cm 10 cm 30 cm

Church of St. Mary Magdalene 644 159 509 293 179 942 25 057
Church of St. Wenceslas 330 884 107 2 633 991 727 159 82 885

Table 4.2: Number of points in available scan data - comparison between raw
point cloud and octree representation with various resolutions

An immense number of points strives for reduction during a robotic task. From a robotic
point of view, large point clouds with high points granularity contain redundant information
leading to performance dropout. Besides, storage of large point cloud data is memory and
time dependent, e.g., 331millions of XYZ points from Table 4.2 takes 6.2GB of memory.
Therefore, two methods for points reduction using uniform sampling are utilized. The first
method naturally emerges from the usage of octrees, where space voxels are created. Each
voxel represents all points located inside its retained space defined by an octree resolution,
which leads to representation of n points by a single voxel. Additionally, initialization of
octrees might consume a considerable amount of time, especially for a vast number of points.
To speed up octree initialization, a preliminary binary compression followed by a uniform
sampling of raw point clouds is performed. This approach is similar to the natural voxel
sampling since points below a specified resolution are disposed of, where a choice of the
resolution should be equal or greater than the resolution of the octree. Advantage of a raw
point cloud reduction is that it is a one-time action and further repetitive processes already
work with the sampled version, which marginally speeds up the application. An example of
such process profiting from the reduction of a point cloud is presented in Section 5.3. The
uniform sampling of a point cloud is demonstrated in Figure 4.7.

(a) Raw (b) Uniform sampling with resolution of 10 cm

Figure 4.7: Example of uniform sampling of a point cloud during pre-processing phase

Another attribute of a map is a presence of occluded locations, where map data are
missing. These occlusions are particularly present in scans, where the resulting scan was
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not aggregated from multiple scan locations. Additionally, high-ground locations are often
occluded by some high-leveled element of the historical object, i.e., a balcony or an upper
floor. Both occlusions can be seen in Figure 4.8, where the scan data were taken from one
location. Hence, the locations behind columns, above balconies or behind bench seats lack
information. Nonetheless, lack of points can likewise occur at certain surfaces, which do not
reflect the measurement laser beams at all or do not reflect enough beam energy back, when
a particular angle of impact is exceeded.

A typical example of an ambiguous surface is glass. Laser scans from the ground, as well
as the onboard scanner, do not return reliable data from a regular transparent glass. However,
as shown in Figure 4.4f, stained glass, repeatedly present in historical objects, reflects beams
to be successfully captured by the terrestrial laser scanner. Unfortunately, a testing flight in
proximity of the utilized laser scanner and stained glass was not performed yet. Because of
that, a conclusion of resemblance between the ground and onboard data over stained glass
surface is not presented.

Absence of data in certain map locations creates holes of variable sizes. From a localiza-
tion point of view, these gaps can create disturbances or even destabilize a state estimation.
Therefore, appropriate precautions have to be taken into account, when a robot shall work
with data, which are practically absent. As future work, a map enhancement based on prob-
abilistic integration of onboard data into the global map is planned, and therefore to some
extent reconstruct and refine the absent map segments.

Figure 4.8: Example of missing data (black color) in occluded locations
from a single-location scan

Nevertheless, an assumption about absence of data representing ground is already pro-
posed in the presented system, as anticipated in Figure 4.8 or better in Figure 4.6a. These
data are essential as a reference for an altitude estimation. Therefore, gaps of ground data
are filled by artificial insertion of information, presuming the ground is a plane not contain-
ing large and unexpected holes (e.g., stairs down). Gap filling is achieved by adding points
uniformly sampled from a plane. The plane parameters are obtained by fitting a plane on a
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set of points withdrew from the undermost parts of the available map using RANSAC algo-
rithm. Furthermore, the point clouds taken from ground locations share a common feature of
incorporating satisfactory information about a ceiling of the scanned objects as a consequence
of a clear view of the object scanner. As a consequence, a feature of adding artificial ground
data solely at locations allocated under the ceiling is proposed. The final addition of artificial
ground data is shown in Figure 4.9, where indoor ground data holes are patched with artificial
data.

(a) Absence of ground data in a raw map (b) Embedded artificial ground data

(c) Church of St. Mary Magdalene in Chlumı́n with artificial ground data

Figure 4.9: Patching of absent data at foreseen ground locations of a map
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5.1 Problem Statement

Online self-localization of a robot is one of the most crucial subsystems of the whole
application en route to an autonomous robot. It provides feedback between a robot’s repre-
sentation of a perceptive environment to other subsystems in the form of a state estimate,
which we define later in Equation 5.13. The systems relying on the state estimation are
mainly robot airborne stabilization, control, navigation, and mission supervision, although
map reconstruction or mission evaluation shall likewise include localization history. Table 1.2
contains summary of symbols used throughout this section.

The primary objective of the localization task is to find an affine transformation between
map and robot’s coordinate system, as embodied in Figure 5.1a. A coordinate system of a
map (henceforth map) in a matrix form is defined as

Omap =

[
Rmap ~tmap

0 1

]
, (5.1)

and a robot coordinate system being in center of gravity of the robot’s flight control unit
(henceforth fcu) as

Ofcu =

[
Rfcu ~tfcu
0 1

]
. (5.2)

Besides, for a known static Omap and an unknown dynamic Ofcu, their mutual relation

Ofcu = Tfcu,mapOmap (5.3)

is to be determined, where transformation Tfcu,map is given as

Tfcu,map =

[
Rfcu,map ~tfcu,map

0 1

]
, (5.4)
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where Rfcu,map ∈ R
3×3 is the orientation matrix and ~tfcu,map ∈ R

3×1 is the translation vector
of the fcu coordinate system with respect to the map coordinate system, both in 3D space.

The map coordinate system Omap represents a global coordinate system. Therefore,
with anticipation of

Omap = I4×4, (5.5)

where I4×4 is an identity matrix in order to match origin and orientation of the global coor-
dinate system with map, Equation 5.3 can be reformulated to

Ofcu = Tfcu,map I = Tfcu =

[
Rfcu ~tfcu
0 1

]
. (5.6)

The orientation matrix Rfcu represents a rotation of the robot around its x, y and z
axes in this particular order. Hence, its thorough description leads to

Rfcu(Ψ,Θ,Φ) = Rz(Ψ)Ry(Θ)Rx(Φ), (5.7)

where Ψ, Θ, Φ are yaw, pitch and roll of the robot (referred to as rotations around an aircraft
principal axes), and

Rz(Ψ) =



cos(Ψ) − sin(Ψ) 0
sin(Ψ) cos(Ψ) 0

0 0 1


 ,

Ry(Θ) =




cos(Θ) 0 sin(Θ)
0 1 0

− sin(Θ) 0 cos(Θ)


 ,

Rx(Φ) =



1 0 0
0 cos(Φ) − sin(Φ)
0 sin(Φ) cos(Φ)


 .

(5.8)

To summarize the objective of the localization task, a transformation defined in Equa-
tion 5.6 needs to be found by determining an orientation of the robot described by matrix
Rfcu and position of the robot described by translation vector ~tfcu. From this point forward,
lower index description of variables associated with the description of the robot’s coordinate
system fcu is ignored, which is an utmost subject of examination. Also, all variables are to
be defined with respect to a global map coordinate system, unless specified otherwise.

Let us define formally concepts of robot pose, position, velocity, and state with regards
to discrete time k. The pose of a UAV is defined as

~qk =

(
~pk
~Ωk

)
, (5.9)

where

~pk =



xk
yk
zk


 , ~Ωk =



Φk

Θk

Ψk


 (5.10)
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(a) Objective of the localization task - determin-
ing a transformation Tfcu between a robot and
a map coordination system

(b) Static coordinate systems of onboard sen-
sors depicted in Figure 2.7 with respect to robot
coordination system Ofcu

Figure 5.1: Essential dynamic and rigid transformations (rgb colors specify xyz axes in this
particular order) between a map, a robot and onboard sensors in a localization task

represent UAV position ~pk and orientation vector ~Ωk at time step k. In matrix representation,
pose of a robot is also given by Equation 5.6. Velocities of the UAV are defined as

~vk =



vxk
vyk
vzk


 , ~ωk =



ωx
k

ωy
k

ωz
k


 , (5.11)

where ~vk represents linear and ~ωk angular velocity at time step k.

Moreover, the objective of the localization task is to observe state of the UAV, which is
generally defined as the pose of the UAV. As aforementioned in Chapter 3, due to critical safety
requirements of the application, the total velocity of a UAV during the mission is limited to
maximum of 1m s−1. Based on this velocity limitations, the vehicle dynamics suppress steep
angular deviations of roll and pitch angles, hence

Φk ≈ Θk ≈ 0, ∀k. (5.12)

Because of that, pose angles roll Φ and pitch Θ are neglected in the localization task. State
of the robot at time step k is then defined as

~xk =




xk
yk
zk
Ψk


 . (5.13)

Taking into account this assumption, Equation 5.7 is simplified to

Rfcu,k(Ψk,Θk,Φk) ≈ Rz(Ψk)Ry(0)Rx(0) = Rz(Ψk). (5.14)
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To find transformation introduced in Equation 5.6, coordinate systems of all the sensors
utilized for the localization task have to be introduced. To maintain integrity, any dynamical
influences of the UAV frame and sensors attachments during a flight are disregarded. There-
fore, the sensors’ coordinate systems are considered to be rigidly fixed to the fcu system.
Under this assumption, the static transformations between sensors to fcu are associated with
known UAV design prior a flight, as illustrated in Figure 5.1b.

The proposed localization approach utilizes fewer sensors than is available onboard.
From the onboard sensors, described thoroughly in Section 2.2.1, vision-based and ultrasonic
sensors are excluded. Therefore, solely up- and down-oriented laser rangefinders measuring
a distance to the ground and ceiling, and a planar rotational laser scanner are utilized. The
main reason for the utilization of a subset of sensors is to maintain initial simplicity of the
system. Integration, fusion or refinement of state estimates using the excluded sensors remains
a part of future work.

The following sections contain a description of the proposed system for solving the
localization task, divided into two dependent subsystems. In Section 5.2, Equation 5.6 is
determined in an enormous configuration space of a historical object by utilizing a global
localization approach. In other words, essentially the kidnapped robot problem [57] is solved.
An approach to locally refine the global approach estimate with a fast scan matching technique
is introduced in Section 5.3. And finally, an approach to fuse these two localization estimates
into a single final and reliable output is presented in Section 5.4.

5.2 Monte Carlo Localization

The configuration space of a robot inside a priori known map of a historical object
is immense. That restricts straight registration of sensory data to the extensive map due
to unknown initial conditions. To overcome that, a Monte Carlo Localization approach [58]
is utilized to globally determine state of the robot and therefore solve the kidnapped robot
problem.

Monte Carlo Localization, also known as particle filter localization, is a recursive and
non-parametric Bayesian filter with linear time complexity. The non-parametricity specifies
independence on probability distribution assumptions and provides an ability to approximate
different types of probability distributions, including multi-modal distributions. Instead of
describing the probability density function of robot states in a configuration space, it holds a
set of randomly drawn samples from the probability density function itself. From this point
forward, samples are addressed as particles or hypotheses, and sensor data as observations.
MCL proceeds in two phases - prediction and correction. The current robot state is predicted
according to the probabilistic motion of the robot. In the second phase, a set of hypotheses is
updated according to sensor observations, followed by resampling of the probability density
function.

To formally define the task, a posterior probability is required to be determined in every
time step k as

p(~xk|~y1:k, ~u1:k), (5.15)

where an unobservable state of the robot ~xk is estimated at time step k given all the ob-
servations ~y1:k and system control inputs ~u1:k from the initial to the current time step k.
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Computing this posterior probability on the state space subset in form of hypotheses yields
an approximation of states probability distribution function.

A solution to the previous equation can be obtained by applying Bayes filter [59], which
recursively computes the posterior probability as

p(~xk|~yk, ~uk) = η p(~yk|~xk)

∫
p(~xk|~xk−1, ~uk) p(~xk−1|~yk−1, ~uk−1) d~xk−1, (5.16)

where η is a normalization constant. The equation derivation holds under an initial condition
p(~x0) = p(~x0|~y0, ~u0) and following Markov assumptions [60]:

• current state ~xk is only dependent on the previous state ~xk−1 and a known control input
~uk

p(~xk|~y1:k, ~u1:k) = η p(~yk|~xk, ~y1:k−1, ~u1:k) p(~xk|~y1:k−1, ~u1:k), (5.17)

p(~xk|~y1:k−1, ~u1:k) =

∫
p(~xk|~xk−1, ~y1:k−1, ~u1:k) p(~xk−1|~y1:k−1, ~u1:k) dxk−1, (5.18)

p(~xk|~xk−1, ~y1:k−1, ~u1:k) = p(~xk|~xk−1, ~uk), (5.19)

• and current observation ~yk is conditionally independent of all previous measurements ~y1:k−1,
on previous states ~x1:k−1 and control inputs ~u1:k

p(~yk|~xk, ~y1:k−1, ~u1:k) = p(~yk|~xk). (5.20)

More detailed derivation of Bayes filter and its utilization for MCL can be found in [58, 61, 60].

Let us describe Equation 5.16 more thoroughly. Normalization constant

η =
1∫

p(~yk|~xk, ~y1:k−1, ~u1:k) p(~xk|~y1:k−1, ~u1:k) d~xk
(5.21)

makes the posterior density integrate to one. Equation 5.20 represents a conditional proba-
bility of an observation ~yk given a robot state ~xk, commonly noted as an observation model,
which is described further in Section 5.2.2. Next, Equation 5.19 represents a conditional prob-
ability of a state ~xk given a previous state ~xk−1 and a control input ~uk, commonly noted as
a motion model, which is described thoroughly in Section 5.2.1. Finally, the last element of
the integral in Equation 5.16 is a recursive element of the same equation for the previous
time step k − 1. This element provides recursive incorporation of states ~x1:k, inputs ~u1:k and
observations ~y1:k.

An overview pseudocode of the MCL algorithm is presented in Algorithm 1, partially
based on [58]. Sampling techniques employed on lines 1, 8 and 9 are described in Section 5.2.3.
A motion model on lines 3 and 5 is described in Section 5.2.1 and an observation model on
line 6 in Section 5.2.2.

5.2.1 Motion Model

Odometry based motion model, typically described in 2D [62], is employed. However,
the motion model is extended to 3D space, similarly as in [63], to match the operational space.
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Algorithm 1 Monte Carlo Localization

1: H = generate M random hypotheses()
2: while true do
3: u = get input()
4: for h in H do
5: h.state = motion model(h.state, u) ⊲ Prediction step
6: h.weight = observation model(h.state) ⊲ Correction step
7: end for
8: M = estimate sufficient M() ⊲ Importance sampling
9: H = resample hypotheses(M, H) ⊲ Resampling step

10: end while

Commonly, an odometry based motion model is based on inner odometry (i.e., wheel
encoders in case of a ground robot). However, a reliable source of odometry information is not
available in the proposed UAV system. Therefore, a concept of dead reckoning utilizing linear
and angular velocities is imposed, where the velocities are provided by the flight controller
unit in its own coordinate system. An inner IMU of the autopilot provides linear accelera-
tions and angular velocities, where the linear accelerations are integrated to linear velocities.
As aforementioned, the Pixhawk Cube autopilot contains 3 independent IMUs, specifically
InvenSense MPU9250, ICM20948 and/or ICM20648 as first and second IMU, and ST Micro
L3GD20+LSM303D or InvenSense ICM2076XX as a backup IMU. The autopilot fuses the
three IMU data into one and integrates the accelerations to velocities and hence provides
immediate access to synchronized linear and angular velocities. The dead reckoning principle
then integrates provided velocities to estimate the pose of the robot. This pose estimate is
used to relatively move each one of the hypotheses according to the UAV kinematic model,
exhibited in Figure 5.2.

An odometry based model requires an input in the form of an odometry information.
While the dead reckoning principle is commonly utilized with a velocity based motion model,
the proposed solution employs it as a noisy odometry, because of a vast difference between
velocity and MCL algorithm update rates. The common update rate for an IMU is approx.
120Hz, while motion model is called approx. at 5Hz. Hence, the dead reckoning integrates ve-
locities in the background and provides odometry whenever outer systems require it. Therefore
in MCL, relative pose change between two iterations given by the dead reckoning is considered
as a piece of odometry information.

In comparison with [63], the motion model neglects variations in roll and pitch and
therefore reduces kinematic degrees of freedom to 4. Additionally, as introduced Equation 5.30,
a noise in the heading change ∆Ψk is accounted for. The 4 degrees of freedom kinematic model
of the UAV is illustrated in Figure 5.2. Given an input odometry at time step k

~uk = ~qk − ~qk−1 =
(
∆xk ∆yk ∆zk ∆Φk ∆Θk ∆Ψk

)T
, (5.22)
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other relations of the kinematic model are formulated as

αk = arctan

(
∆yk
∆xk

)
, (5.23)

βk = arctan

(
∆zk√

(∆xk)2 + (∆yk)2

)
, (5.24)

∆tk =
√

(∆xk)2 + (∆yk)2 + (∆zk)2, (5.25)

and the kinematic model itself

~xk =




xk−1 +∆tk cos(βk) cos(αk)
yk−1 +∆tk cos(βk) sin(αk)
zk−1 +∆tk sin(βk)
Ψk−1 +∆Ψk


 . (5.26)

Figure 5.2: Odometry based motion model in 3D space based on [63]

However, the velocities used for dead reckoning, and the UAV movement and control
are fundamentally inaccurate. Because of these inaccuracies, the presented kinematic model
shatters and in practice does not hold. In order to account for these unknown noise errors,
we introduce to the kinematic model artificial zero-mean Gaussian noises with standard de-
viations

σαk
= ǫ0αk + ǫ1∆tk, (5.27)

σβk
= ǫ2∆zk, (5.28)

σ∆tk = ǫ3∆tk + ǫ4∆Ψk, (5.29)

σ∆Ψk
= ǫ5∆tk + ǫ6∆Ψk, (5.30)

where ǫ0:6 represent amount of noise particular parameters deliver to the system. Appropriate
choice of these constants is essential in order for the motion model to distribute hypotheses
according to the authentic motion of the robot. Its importance is described in [62], which is
likewise used to empirically set these constants in our implementation.
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With definition of a function sample(σ), which draws a random sample from Gaussian
distribution N (0, σ), the motion model is finally defined by equation

~xk =




xk−1 + t̂k cos(β̂k) cos(α̂k)

yk−1 + t̂k cos(β̂k) sin(α̂k)

zk−1 + t̂k sin(β̂k)

Ψk−1 + Ψ̂k


 , (5.31)

where

α̂k = αk + sample(σαk
), (5.32)

β̂k = βk + sample(σβk), (5.33)

t̂k = ∆tk + sample(σtk), (5.34)

Ψ̂k = ∆Ψk + sample(σΨk
). (5.35)

5.2.2 Observation Model

An observation model characterizes a process of observations generation in a real world.
It shall cover individual characteristics of a modeled sensor, including probabilistic noise and
uncertainty. An observation model defines a conditional probability

p(~yk|~xk,mk), (5.36)

where ~yk is an observation (sensor measurement), ~xk is a state and mk is a map at time step
k.

Individual beams of multi-beam sensors are correlated. Hence, an independence is as-
sumed between particular laser beams and the Equation 5.36 accumulated from individual
beam measurement likelihoods can be formulated as

p(~yk|~xk,mk) =

L∏

l=1

p(ylk|~xk,mk), (5.37)

where L denotes number of beam measurements and ylk measurement l at time step k. How-
ever, the independence assumption holds only in an ideal case. In real applications, beam oc-
clusions, surface omnidirectional reflectance or sensor rotation-based errors occur. If enough
measurements are provided, the independence assumption may be supported by taking into
account each n-th beam measurement. In practice, about 50 samples is selected from total
1400 samples to increase their independence and likewise to speed up the multiplication pro-
cess of Equation 5.37.

In the perception task, solely laser sensors are utilized, for whom a beam-based ob-
servation model is employed [62]. It supposes that a beam-based sensor follows a Gaussian
probability distribution with the mean at the actual distance of the sensor from its target.
Moreover, additional introduced probabilistic errors are accounted for in the model.
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The observation model consists of four linearly combined components. Foremost, char-
acteristics of an unbiased laser beam measurement yk are represented by a probability

phit(yk|~xk,mk) =





ηN (yk, y
∗
k, σhit) = η 1

σhit

√
2π

e

(yk−y∗
k
)2

2σ2
hit if ymin < yk ≤ ymax

0 otherwise,

(5.38)

where N (yk, y
∗
k, σhit) represents univariate normal distribution of a random variable yk with

mean y∗k and standard deviation σhit, ymin defines minimal and ymax maximal sensing range
of a particular sensor, and η is a normalization factor

η =
1∫ ymax

ymin
N (yk, y

∗
k, σhit)dyk

. (5.39)

Variable y∗k represents an expected measurement value obtained e.g., by ray casting from state
~xk in a map mk.

The other three components represent observation errors occurring due to sensor noise,
failures or detection of dynamic obstacles. To model beams reflection before reaching the
target by small undetectable or unknown dynamic obstacles, the following probability can be
derived from the exponential distribution as

pshort(yk|~xk,mk) =




λshort

e−λshortyk

1−e
−λshorty

∗

k
if ymin < yk ≤ y∗k

0 otherwise,

(5.40)

where λshort is an intrinsic parameter of the distribution. Furthermore, to model sensor failures
and invalid measurements, a point-mass discrete distribution centered at ymax is incorporated

pmax(yk|~xk,mk) =




1 if yk = ymax

0 otherwise.
(5.41)

To comprehend occasional randommeasurements coming either from failures or sensor crosstalks,
a uniform distribution, spread over the full observation range, is included in form of a prob-
ability

prand(yk|~xk,mk) =





1

ymax−ymin
if ymin ≤ yk < ymax

0 otherwise.
(5.42)

The observation model, which was introduced above, is a result of a linear combination
of the four components:

p(yk|~xk,mk) =
(
νhit νshort νmax νrand

)



phit(yk|~xk,mk)
pshort(yk|~xk,mk)
pmax(yk|~xk,mk)
prand(yk|~xk,mk)


 , (5.43)

where constants ν represent components’ importance weights for which holds

νhit + νshort + νmax + νrand = 1. (5.44)
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(c) Realistic observation models for each of the employed laser sensors with in-
trinsic parameters given by Table 5.1 and y∗k = 20m

Figure 5.3: Explicit visualization of an observation model, its specific components and a
realistic observation model for the utilized laser sensors

Observation model of a single beam in Equation 5.43 represents single observation p(ylk|~xk,mk)
in Equation 5.37. A visual example for νhit = νshort = νmax = νrand = 0.25 is provided in
Figure 5.3a and Figure 5.3b. In a multi-sensor situation, Equation 5.37 is extended to

p(~yk|~xk,mk) =

S∏

s=1

ωs

(
Ls∏

l=1

p(ylk|~xk,mk)

)
, (5.45)

where s ∈ S denotes a sensor from set of sensors S, Ls is number of beam measurements
provided by sensor s, ωs ∈ 〈0, 1〉 is importance weight (belief) of sensor s, and ylk is measure-
ment l. Additionally to the assumption of independence between individual beams of a single
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sensor, mutual independence between individual sensors is likewise presumed.

In the preceding paragraphs, a set of parameters being a subject to tuning was in-
troduced. These parameters (σhit, λshort, νhit, νshort, νmax, νrand), also called intrinsic model
parameters, need to be determined for each particular sensor. A deterministic method to
learn the intrinsic parameters from data is described in [62]. A set of experimental data was
measured for each sensor within a range interval 1m to 40m, according to Figure 2.6. To de-
termine the intrinsic model parameters from these data, Algorithm 2 based on [62] is adopted.
While rangefinders naturally return a single beam measurement, the rotational planar scanner
returns a set of measurements. Hence, only a particular beam measurement corresponding to
the measured target was selected. A summary of parameters identification for each sensor is
presented in Table 5.1.

The experimental data were measured in a static environment. Hence the parameters
given by Table 5.1 are subject to change in dynamic environments. For example, a rangefinder
measuring distance to the ground (altimeter) might detect dynamic obstacles such as people
or furniture changes. Although outer dynamic obstacles are not expected in higher altitudes,
other agents (UAVs) might be detected during a mission with an airborne formation of heli-
copters. Both of these example situations are a subject of λshort parameter tweaking in order
to account for potential dynamic obstacles detection.

Sensor σhit λshort whit wshort wmax wrand

Garmin Lidar Lite 0.045 0.218 0.920 0.002 0.000 0.076
RPLidar A3 0.134 0.046 0.867 0.042 0.000 0.090

Table 5.1: Intrinsic model parameters of utilized laser sensors learned
from experimental data by Algorithm 2

5.2.3 Sampling

Computational and time complexity of MCL grows with a number of state dimensions.
The state ~x of a UAV with an assumption of slow movements has four dimensions - three for
the 3D position and one for the heading of the UAV. Besides, during an initialization phase,
MCL has to randomly sample the whole state space, which is frequently broad. To be able
to comprehend the task, a set of precautions and assumptions is proposed in order to reduce
the complexities by scaling down the sampling space.

Without loss of generality, a feasible hypothesis h is defined as a weighted UAV state
h = 〈wh, ~xh〉 located inside an indoor environment, while not being in collision with any
part of the environment assuming bounded 3D dimensions. Each hypothesis represents a
UAV state, hence its virtual dimensions correlate with dimensions of the UAV. For sake of
computational simplicity, the physical body of the UAV is assumed to be a ball with a collision
radius denoted r. Based on the proposed platform design described in Chapter 2, the collision
radius is defined as r = 0.4m.

In order to evaluate the feasibility of a hypothesis, its map location and a collision
status need to be determined. A hypothesis h with a position ~ph is evaluated as collision-free,
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Algorithm 2 Learn Intrinsic Parameters

Input: X, Y, m ⊲ Set of states, set of observations and a map
Output: σhit, λshort, νhit, νshort, νmax, νrand ⊲ Intrinsic Parameters

1: while convergence criterion not satisfied do
2: for ~xk in X do
3: Yk = Y(~xk) ⊲ Set of measurements at state ~xk
4: for ylk in Yk do

5: η =
[
phit(y

l
k|~xk,m) + pshort(y

l
k|~xk,m) + pmax(y

l
k|~xk,m) + prand(y

l
k|~xk,m)

]−1

6: ek,lhit = η phit(y
l
k|~xk,m)

7: ek,lshort = η pshort(y
l
k|~xk,m)

8: ek,lmax = η pmax(y
l
k|~xk,m)

9: ek,lrand = η prand(y
l
k|~xk,m)

10: yl∗k = y(~xk,m) ⊲ Correct measurement at state ~xk
11: end for
12: end for
13: |Y | =

∑
k

∑
l(phit(y

l
k|~xk,m) + pshort(y

l
k|~xk,m) + pmax(y

l
k|~xk,m) + prand(y

l
k|~xk,m))

14: σhit =

√
1

∑
k

∑
l e

k,l

hit

∑
k

∑
l e

k,l
hit(y

l
k − yl∗k )

15: λshort =
∑

k

∑
l e

k,l

short∑
k

∑
l e

k,l

short
yl
k

16: νhit = |Y |−1
∑

k

∑
l e

k,l
hit

17: νshort = |Y |−1
∑

k

∑
l e

k,l
short

18: νmax = |Y |−1
∑

k

∑
l e

k,l
max

19: νrand = |Y |−1
∑

k

∑
l e

k,l
rand

20: end while
21: return (σhit, λshort, νhit, νshort, νmax, νrand)

if inequality

||~ph − ~ph,nn||2 > r (5.46)

is satisfied. Position vector ~ph,nn represents location of the nearest occupied map element and
||~a||2 represents L2 (Euclidean) norm of vector ~a. Finding ~ph,nn is an equivalent of finding
the nearest neighbor, for which a KD-tree representation of the map is utilized. Because the
map is not updated online during a mission, initialization of the KD-tree representation is
performed once at mission initialization during a map preprocessing phase. A nearest neighbor
search complexity of a KD-tree ranges from O(log(n)) for the best case scenario to O(n) for
the worst [64]. Evaluation of an indoor location of a hypothesis is performed by ray casting
in the z-axis of the map from the position of the hypothesis. This technique was already
introduced in Section 4.3 for patching holes in ground data. When generating solely feasible
hypotheses, these conditions of feasibility significantly reduce the sampling space, as shown
in Figure 5.4a.

The sampling space in z-coordinate of the map is further reduced by utilizing an esti-
mated altitude of the UAV. Distance measurements from the down-oriented rangefinder and
a previous estimate of the UAV position are fused together in order to obtain the altitude
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estimate. During a takeoff phase, which presumably occurs at a consistent ground location
with no considerable ground deformations, only a range measurement ysdown

of the downward
looking rangefinder sdown is utilized. An altitude estimate exclusively from sdown is defined as

zestlim = ysdown
+∆zsdown,fcu, (5.47)

where ∆zsdown,fcu represents z-coordinate difference between fcu and sdown coordinate systems
in the coordinate system of a map.

The limits of z-coordinate sampling are then given as

zmin
lim = zestlim − zδlim, (5.48)

zmax
lim = zestlim + zδlim, (5.49)

where zδlim represents an offset of z-coordinate sampling. The sampling offset zδlim yields a
sampling range to account for measurements error and recent vertical motion of a robot.
During consequent mission phases, sdown measures distance to heterogeneous objects on the
ground. To account for these measurements, the estimation limits at time step k are altered
to

zmin
lim = zk−1 − zδlim − |zestlim − zk−1|, (5.50)

zmax
lim = zk−1 + zδlim + |zestlim − zk−1|. (5.51)

Sampling space limitation extended by z-coordinate filtering is shown in Figure 5.4b. Besides,
a description of sampling control during various mission phases is described by a finite state
machine later in this section.

Adaptive Sampling

To this point, reduction of hypotheses sampling space was discussed. Let us now in-
troduce sampling techniques providing speed up and convergence guarantee of the MCL
algorithm. Guarantee of convergence to the global minimum in finite time is not a character-
istic of basic MCL algorithm, which may lead to incorrect convergence to a local minimum.
Therefore, in each resampling step, a subset of hypotheses with the lowest weights is thrown
away and replaced with a set of new randomly generated hypotheses over the whole sampling
space. This feature introduces capabilities of MCL to find a global minimum even if it already
converged into a local one, as shown in Figure 5.4c.

Many historical monuments share a characteristic of symmetricity, which likewise in-
duces possibility to converge to a local minimum. To emphasize this characteristic, a static
robot in the center of a square map can be considered. In this situation, MCL converges into
one of the four local minimums - the center of the square with four different headings. Basic
MCL algorithm is not able to cope with this situation without a distinct robot motion over the
map. To speed up convergence during these situations, a subset of hypotheses is replaced by a
set of new hypotheses matching the position of the latest state estimate of the algorithm with
heading Ψout, however with a heading randomly selected from set {Ψout−

π
2
,Ψout+π,Ψout+

π
2
}.

This mechanism to cope out with symmetricity of operational spaces is denoted on lines 10-15
in Algorithm 3 and visualized in Figure 5.4d.
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(a) Feasible hypotheses generation with col-
lision radius r = 0.4m

(b) Hypotheses generation with altitude
estimation during a takeoff phase and
zδlim = 0.5m

(c) Additional global feasible hypotheses
generation after MCL convergence

(d) Local heading sampling of feasible hy-
potheses to cope with environmental symme-
try

Figure 5.4: Sampling techniques of the MCL implementation to support correct and brisk
convergence rate (hypotheses are marked red)

An efficient number of hypotheses M remains to be determined since it massively in-
fluences the performance of the algorithm. Sampling the space with few hypotheses might
heavily extend the convergence process. On the other hand, sampling with large M might
extremely extend the computational time, because the observation model is computed for
each hypothesis separately. Besides the algorithm for sampling of the space with static M ,
two methods for adaptive sampling [62, 65] are adopted, which calculate online an effective
number of hypotheses.

The first method, adopted from Augmented-MCL algorithm [62], controls the ratio of
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hypotheses added globally in order to prevent convergence to an erroneous local minimum.
It compares the short-term with the long-term likelihood of observations used to specify a
number of hypotheses to be globally added as

Mglobal = M max

(
0.0, 1.0−

wfast

wslow

)
, (5.52)

where

wslow = wslow + αslow(wavg − wslow), (5.53)

wfast = wfast + αfast(wavg − wfast), (5.54)

wavg =
1

M

M∑

m=1

wm, (5.55)

where wm states for importance weight of a hypothesis with index m. Algorithm constants
αslow and αfast define decay rate for the exponential filters that estimate the long-term and
short-term averages. It is required to hold

0 ≤ αslow ≪ αfast. (5.56)

The second method of adaptive sampling is KLD-sampling [65], which estimates a
sufficient number of hypotheses MKLD. Its key idea lies in bounding of the error introduced
by the sample-based representation of the MCL. It provides such MKLD, that the Kullback-
Leibler divergence between the maximum likelihood estimate based on the hypotheses and
the true posterior does not exceed a pre-specified threshold ǫ. The MKLD estimate is based
on drawing from a discrete distribution with k different bins and for

MKLD =
1

2ǫ
χ2
k−1,1−δ (5.57)

guarantees with probability 1− δ that the K-L divergence between the maximum likelihood
estimate (MLE) and the true distribution is less than ǫ. The previous equation can be further
approximated by

MKLD
.
=

k − 1

2ǫ

(
1 +

2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

)3

, (5.58)

where z1−δ is the upper 1− δ quantile of the standard normal N (0, 1) distribution.

The proposed implementation of the bins is based on octrees extended with fourth
dimension - robot’s heading. Similarly to octrees, the whole heading space 〈0, 2π) is divided
to intervals of a specific size. These intervals, together with the 3D position, constitute the
bins. Prior to each resampling step, a number of occupied bins k by current hypotheses is
counted and MKLD is estimated by Equation 5.58.

During computation of the motion model (line 5 in Algorithm 1), the set of hypotheses
is moved according to Equation 5.31. At this stage, a subset of hypotheses might become
non-feasible by colliding with the environment. This subset of hypotheses is replaced by a set
of new random global hypotheses.
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Algorithm 3 Resampling Step

Input: MKLD, Mglobal, Mlocal ⊲ Sampling limits
H ⊲ Set of hypotheses

Output: Hresampled ⊲ Updated set of hypotheses

1: Hresampled = ∅ ⊲ Empty set initialization
2: for i in 〈0, MKLD) do
3: h = draw from H ∝ wH ⊲ Sample with respect to importance weights
4: Hresampled = Hresampled + h
5: end for
6: for i in 〈0, Mglobal) do
7: h = generate random hypothesis() ⊲ Sample over the whole sample space
8: Hresampled = Hresampled + h
9: end for

10: for i in 〈0, Mlocal) do
11: Ψ = draw random from {π

2
,−π

2
, π}

12: h = MCL estimate in previous step
13: h.state.heading = h.state.heading + Ψ ⊲ Sample rotated hypotheses
14: Hresampled = Hresampled + h
15: end for
16: return Hresampled

5.2.4 Enhancements

From MCL point of view, a mission is divided into two dependent phases - takeoff
and the mission itself. During takeoff, the main objective is to determine an initial global
estimate, while during the mission, the objective is to track a UAV movement. Therefore,
sampling behavior modifications are proposed to alter the behavior of the MCL according to
three states, given by a finite state machine outlined in Figure 5.5.

Takeoff Uncertain Stabilized
zestlim > 2m

Low estimate uncertainty

High estimate uncertainty

or fast movement

Figure 5.5: Monte Carlo Localization sampling state machine

At the beginning of the mission, a takeoff is initialized from an unknown ground location.
At low altitudes, dynamic obstacles, mainly in the form of people, are likely to be present. As
a consequence, the importance weights of the sensors in Equation 5.45 are during the takeoff
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phase set according to the estimated altitude of the UAV as

ωs =




1.0 if s is a vertical rangefinder

1

2
zestlim otherwise.

(5.59)

Hence, up to limit of 2m, the importance weight of the horizontal sensor is linearly
scaled by data from the altimeter to cope with the presence of dynamical obstacles. In alti-
tudes above 2m, the sensors importance weights are then set to ωs = 1. A determinant of the
covariance matrix of the state estimate is computed in order to evaluate the state estimate
uncertainty. The determinant value then triggers transitions between the Stabilized and Un-
certain states. Parameters of the sampling processes in each particular state are summarized
in Table 5.2, where Mmin and Mmax define lower and upper saturation limits of the total
number of hypotheses given as

M = MKLD +Mlocal +Mglobal. (5.60)

State Mmin Mmax Mglobal Mlocal (static ratio)

Takeoff high high high (static ratio) high
Uncertain medium medium medium (static ratio) medium
Stabilized low low Augmented-MCL (dynamic ratio) low

Table 5.2: Parameters of hypotheses sampling for states defined in Figure 5.5

Having a set of hypotheses of size M , state estimate output ~xk at time step k is given
as

~xk =

∑M
m=1

ωm~xm∑M
m=1

ωm

, (5.61)

where ωm is importance weight and ~xm is state of hypothesis m at time k. Hence, resulting
state estimate is given by weighted average over set of hypotheses.

5.3 Scan Matching

The global state estimation presented in the previous section is not single-handedly
suitable for real-time localization of a fast-moving UAV due to low update rate and sampling
dimensions complexity. For these reasons, having an initial global state estimate yielded by
the global estimation, fast local refinement procedure is initialized based on onboard data
alignment. Iterative Closest Point algorithm [31] is utilized to perform the 3D alignment of
onboard data and a map. Map possession provides a reliable alignment reference improving
robustness and performance of the system. In other words, a map registration is performed
in each localization time step by ICP.

By concept, the ICP algorithm tries to minimize an error between two point clouds
P and Q according to some error metric. Let us define point cloud as a collection of mul-
tidimensional points (in our case 3D with XYZ dimensions). Given a source point cloud P
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with points ~p ∈ P and a reference point cloud Q with points ~q ∈ Q, an initial problem is
finding correspondence pairs (~pi, ~qi), where ~pi ∈ P, ~qi ∈ Q. Given these correspondences, a
transformation Ticp from P to Q, such that when applied to P, the transformation assigns all
correspondence points ~pi onto ~qi, is estimated. Due to the non-convexity of the optimization,
an initial transformation guess is supplied to the ICP algorithm. In the proposed implemen-
tation, the transformation is estimated from an onboard IMU to supply speed and accuracy
of the map registration process. According to [66], registration process can be modularized
into four stages: selection, matching, rejection, and alignment. In the following sections, a
description of utilized techniques in each of the stages is included.

As implementation of the registration process, a modular framework for aligning in
3D – Point Cloud Library [67, 68] – is adopted. Decoupling the registration process to two
separate registration processes for lateral (XY and heading estimation) and vertical (altitude
estimation) movement is introduced later in Section 5.4. Both, lateral and vertical, registration
processes share their underlying principle, which is described herein Section 5.3.

5.3.1 Selection

During the selection phase, a source and reference point clouds are prepared. Primarily,
only a subset of the input point clouds is registered in order to reduce point redundancy and
significantly speed up the convergence, while still yielding sufficient results. As aforementioned
in Section 4.3, uniform sampling is applied to a map in point cloud representation. Besides,
uniform sampling is likewise applied to horizontal data taken onboard, although double the
granularity of points with respect to the map is kept in order to maintain a higher level of
features’ details.

At time step k, a reference point cloud is obtained by selecting a subset of points ~qi ∈ Q
from a map, which all satisfy

l(~xk−1, ~Ωk−1, d1) < ~qi < l(~xk−1, ~Ωk−1, d2), (5.62)

where l(~xk−1, ~Ωk−1, d1/2) define planes parallel to the XY plane of the robot with state ~xk−1

and orientation ~Ωk−1. Distance d1 = −d2 specifies translation of these planes in z-axis of the
robot. Orientation ~Ωk−1 is provided by the onboard autopilot since the roll and pitch of the
UAV are not specifically estimated. In other words, a subset of points is selected from point
cloud Q, where each point is located inside a 3D interval defined by two planes derived from
the UAV pose.

Equation 5.62 preserves visually occluded points, making them incorrectly observable
by the horizontal laser scanner from certain positions, as shown in Figure 5.6a. A point is
evaluated observable if a path of a laser beam from a sensor position (rigidly defined by
a robot position) to the particular point is collision-free. To determine a collision status
of such path, a ray-casting algorithm, implemented over octree representation of a map, is
employed. Therefore, all unobservable points are filtered out from the reference point cloud.
Final selection of a reference point cloud from the map is shown in Figure 5.6b.

The introduced proposition of the map registration decreases robustness during the
registration of a single measurement from the horizontal laser scanner onto a 3D stripe of
map points. During a UAV movement, map features present in the reference cloud may not
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(a) Without occlusions (b) With occlusions (final)

Figure 5.6: Visualization of a reference point cloud obtained during the selection phase of ICP

be present in the source cloud yet, and an initial transformation guess becomes even more
decisive. Therefore, usage of a short history of measurements is proposed to increase the
robustness of the map registration during a robot motion. Selection of a source point cloud
from onboard data is visualized in Figure 5.7.

(a) Single measurement (b) Aggregation of multiple past measurements
during an upward movement

Figure 5.7: Visualization of a source point cloud obtained during the selection phase of ICP

5.3.2 Matching & Rejection

Objective of the matching phase is to determine correspondence pairs of points in source
and reference data. A greedy approximation of finding ideal correspondences by pairing each
~pi ∈ P with its closest neighbor ~qi ∈ Q is adopted. The Point Cloud Library implementation
utilizes FLANN library [69, 70] for fast nearest neighbor searches, which significantly speeds
up the search in comparison with a naive brute-force pairing. Further evaluation of pairs
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feasibility is done during the rejection phase.

In the rejection phase, a filter stack is built, where each layer contains a correspondence
pair evaluation filter called a correspondence rejector. The objective of a correspondence
rejector is to remove a subset of pairs to increase robustness and accuracy of the alignment.
Typical subjects to removal are outliers or pairs diverging from a statistical distribution
across all the pairs. Proper pairs rejection significantly increases robustness and convergence
rate to a global minimum of the alignment phase, since it filters out noise measurements, or
source and reference divergences. In the following paragraphs, a brief description of employed
correspondence rejectors is introduced. These rejectors are applied on correspondence pairs
provided by the matching step in this particular order.

Median distance rejection procedure filters out pairs with a distance larger than the
median of all the point-to-point pair distances. Compared to a fixed threshold value of distance
filtering, the median rejection yields better results since it adapts to a distribution of the
distances between the two sets.

Duplicate reference matches rejection procedure filters out correspondences, where a
point ~q from a reference cloud is assigned to multiple points ~pi from a source cloud. If multiple
points ~pi from the source cloud are assigned to a single point ~q from the reference cloud, only
the pair with minimum Euclidean distance is kept and the rest is rejected. The duplicate
reference matches rejector is the reason for keeping double the granularity of a source cloud
to preserve the best correspondences, which could be possibly thrown away by the uniform
sampling.

RANSAC-based rejection procedure filters out outlier pair correspondences using Ran-
dom Sample Consensus algorithm. This method applies random transformations to subsets of
given sets and rejects correspondences based on the Euclidean distance of pairs after the ran-
dom transformation is applied to the source cloud. Due to the randomized nature of RANSAC
algorithm, this approach significantly increases chances of the alignment phase to converge
into a global optimum.

5.3.3 Alignment

Objective of the alignment phase is to find a transformation Ticp, which minimizes an
error function J(Ticp) over N correspondence pairs. Hence, the objective is to minimize

J(Ticp) =
N∑

i=1

||Ticp ~pi − ~qi||
2. (5.63)

In literature, multiple methods for solving the previous equation, classified as an unweighted
point-to-point error metric [71], can be found [71, 72, 73, 74]. Comparison of these methods
can be found in [75]. From the various approaches, a closed-form solution using singular value
decomposition [72] is utilized in the implementation of PCL library.

Convergence rate of the alignment phase depends on an initial guess of transformation
Ticp. To determine the initial transformation, the dead reckoning of IMU data is employed.
Similarly to the utilization of the dead reckoning in Section 5.2.1, the internal autopilot
velocities and accelerations are integrated to estimate the pose of the robot.
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Since ICP is an iterative algorithm, termination criteria need to be determined. A
maximum number of iterations and absolute mean square error value are employed to check
the performance of the ICP. Both the parameters are empirically defined based on given map
granularity, quality of an initial transformation guess, and desired registration accuracy.

At time step k, the alignment phase yields estimate of Equation 5.6 in matrix form as

Tk
fcu =

[
Rk

fcu
~t kfcu

0 1

]
= Tk

icpT
k−1

fcu . (5.64)

The final state estimate at time step k is then concatenated from the 3D position given by the
translation vector ~t kfcu and heading determined from the orientation matrix Rk

fcu. A visual
example of the final alignment is shown on real data in Figure 5.8.

(a) Before alignment (b) After alignment

Figure 5.8: Example of the ICP lateral alignment on real data. Red color depicts map (refer-
ence cloud) and green color depicts planar laser scanner data (source cloud).

5.4 Fusion

In the previous two sections, two approaches for map-based localization were presented.
To get as accurate state estimate as possible, both estimates obtained by these methods are
fused together in order to obtain a final state estimate output, as presented in Figure 5.9.
The fusion process is thoroughly described in this section.

The proposed approach intents to take advantage of both localization algorithms. Monte
Carlo Localization yields a global state estimate, however is relatively slow even with usage of
the adaptive sampling techniques. Besides, its accuracy is heavily dependent on a map resolu-
tion, and motion and observation model parameters. Both of the models are specific for each
particular object they describe. A procedure for obtaining an approximation of observation
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model parameters was described in Section 5.2.2. According to an available expected mo-
tion model behavior, its parameters were chosen empirically. Despite the concept, the motion
model might not produce flawless results for dynamically complicated vehicles, like UAVs.

On the other hand, Iterative Closest Point yields a local transformation estimate, when
an initial global estimate is provided in order to cope with an extensive state space. After
an initial global estimate ~x mcl

0 is found, the ICP algorithm is initialized and starts tracking
the system state history over time by concatenating local transformations provided by ICP.
This refinement process yields significantly faster and precise state tracking results than MCL
itself. ICP state estimation is decoupled to two parallel estimations - lateral (XY axes and
heading) and vertical (altitude). There are two fundamental reasons for parallelization.

Primarily, a vast difference between data volume in horizontal and vertical planes is
taken into consideration. The horizontal laser scanner provides 14 000 samples per second,
which is a subject for reduction. On the other hand, in the vertical plane, only two observa-
tions are obtained – downward ydown and upward yup. The vast difference in the data volumes
requires decoupling, otherwise the horizontal estimation would heavily overweight the vertical
one. As described in Section 5.3, a short history of concatenated horizontal scans is registered
onto a reference cloud being a subset of map points during the ICP procedure. This registra-
tion process is performed in 3D and therefore likewise finds the transformation in the vertical
plane. However, if the reference cloud does not contain salient features in the vertical plane, a
global z-coordinate optimum might not be distinguishable. In such case, the output estimate
is an aftereffect of the initial transformation guess.

5.4.1 Vertical Estimation

During the vertical estimation, invalid real or map-based measurements can be ob-
tained. Real sensor yields invalid measurements with random probability exhibited by sudden
maximal range or not-a-number value. A map-based measurement is invalid when the ray
casting procedure does not hit an occupied cell. Besides, the downward looking rangefinder
may detect dynamic obstacles, which are represented by an identifiable discrepancy between
real and map-based observations. Let sdown be downward and sup upward oriented rangefind-
ers with their particular real (ydown, yup) and map-based

(
ymap
down, y

map
up

)
observations. If either

ydown or ymap
down observation is invalid, or a dynamic obstacle is detected according to

|ydown − ymap
down| > δydown

, (5.65)

a z-coordinate estimate is obtained at time step k as

zk = zk−1 + ymap
up − yup. (5.66)

The dynamic obstacle threshold δydown
specifies difference threshold for real and map-based

measurements, whose exceeding classifies the difference as a proof of dynamic obstacle. On
the other hand, if either yup or ymap

up observation is invalid, the estimate is given by

zk = zk−1 + ydown − ymap
down. (5.67)

In case both sensors are producing invalid data, the estimation is given by the lateral ICP
initialized according to the dead reckoning principle, described in Section 5.3.3. And finally,
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having valid observations from both sensors results to vertical ICP estimation with a source
cloud formulated from ydown and yup, and a reference cloud formulated from ymap

down and ymap
up .

As illustrated in Figure 5.9, both estimators share evaluation information between them-
selves. MCL shares its global state estimate ~xmcl

0 if its accuracy, given by the error covariance
Σmcl

k , is found sufficient. On the other hand, the ICP estimator evaluates the accuracy of the

registration process by computing absolute mean square error ǫicpk between reference point
cloud and source point cloud transformed by the local transformation found during the regis-
tration process itself. The absolute mean square error metric is used to evaluate, whether the
estimate is stuck in a local minimum. In this case, both estimators are reinitialized in order
to find the correct state.

5.4.2 Kalman Filtering

Both state estimates are fused using a Kalman Filter. Without loss of generality, UAV
is assumed to be a linear dynamic system for a short period of time during hovering and slow
flights with small tilts. These flights characteristics are expected in confined environments
of historical monuments. A Linear Kalman Filter (LKF) is utilized to estimate an internal
state of the UAV from a series of noisy measurements. Linear Kalman Filter is optimal and
recursive algorithm for estimating state of a stochastic system. It is recursive since it updates
the current state using the previous state and current observations, rather than the entire
history. The optimality is yielded by minimization of the mean-square error of the system
state.

Both estimates, together with IMU data, represent uncertain information about the
dynamical system. Using LKF, a hypothesis is obtained about the state of the continuously
changing system. LKF implementation can be divided into two distinct phases – prediction
and correction.

During the prediction phase at time step k, a state prediction ~̂xk and an error covariance
prediction Σ̂k are determined as

~̂xk = Ak~xk−1 +Bk~uk, (5.68)

Σ̂k = AkΣk−1A
T
k +Qk, (5.69)

where Ak is the state-transition model, Bk is the control-input model, ~uk is the system input,
and Qk is the covariance of the process noise. During the correction phase at time step k,
corrections are performed according to sensor observations ~yk to get the final state estimate
~xk and error covariance Σk as

Kk = Σ̂kP
T
k (PkΣ̂kP

T
k + Sk)

−1, (5.70)

~xk = ~̂xk +Kk(~yk −Pk ~̂xk), (5.71)

Σk = (I−KkPk)Σ̂k, (5.72)

where Kk is an optimal Kalman gain that minimizes the residual error, Pk is the observation
model, Sk is the covariance of the observation noise, and I is an identity matrix.

The dynamical system is defined at time step k as

~xk = ~xk−1 +∆k ~uk, (5.73)
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where state ~xk is given by Equation 5.13, ∆k is the time difference between time steps k and
k − 1, and

~uk =
(
vxk vyk vzk ωz

k

)T
(5.74)

is the input of the system in form of state velocities provided by the autopilot. Associating
the dynamical model of a UAV from Equation 5.73 with Equation 5.69 yields

Ak =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Bk =




∆k 0 0 0
0 ∆k 0 0
0 0 ∆k 0
0 0 0 ∆k


 . (5.75)

The process noise Qk ∈ R
4×4, the observation noise Sk ∈ R

8×8 and the observation model
Pk ∈ R

8×4 matrices are given as

Qk = diag(Qx, Qy, Qz, QΨ), (5.76)

Sk = diag(Smcl
x , Smcl

y , Smcl
z , Smcl

Ψ , Sicp
x , Sicp

y , Sicp
z , Sicp

Ψ
), (5.77)

Pk =

[
I4×4

I4×4

]
. (5.78)
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Figure 5.9: Workflow diagram of the state estimation process. Inputs of the fusion at a time
step k are map mk, sensor observations ~yk and an input of the UAV dynamical model ~uk. A
local state refinement and tracking by ICP algorithm is initialized after global state estimate
~x mcl
0 is provided by MCL. Reinitialization procedures are controlled with respect to MCL

estimate covariance Σmcl
k and ICP absolute mean square error ǫicpk .
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This chapter presents validation and verification of the developed system in simulation
and on real data obtained during testing flights. The performance and reliability of the local-
ization system is verified in a realistic simulation prior to its deployment to position control
feedback loop of a UAV. The main intention of simulation is to estimate suitability of the
developed system for deployment in safety-critical environments of historical buildings, to
reduce probability of failures and to obtain a qualitative analysis of the system. Performance
verification on real data evaluates suitability of the developed system in conditions matching
reality. Having a precise outer reference system, a quantitative analysis is performed in order
to evaluate the limits of the proposed localization system.

The following sections describe in detail evaluation metrics used for assessment of the
localization system, simulation setup with analysis of simulation results, obtaining of real-
world ground truth dataset during testing flights, and the quantitative analysis of the system
on data acquired during the same testing flights with a ground truth reference. The parameters
of the localization system evaluation in the simulation and on real data are summarized
in Table 6.1. Multimedia materials complementing analysis of the system are available at
http://mrs.felk.cvut.cz/theses/petracek2019.

6.1 Evaluation Metrics

To objectively evaluate experiments, an analysis tool for localization estimates is intro-
duced. A quantitative analysis is performed with respect to a ground truth pose data obtained
either instantly in a simulation or in real-world by an outer reference system, as described in
Section 6.3. Common trajectory evaluation methods for visual and/or inertial odometry are
employed, such as Root Mean Square Error (RMSE) and Absolute Trajectory Error (ATE)
metrics. Likewise common Relative Pose Error (RPE) metric is omitted, since it measures
local accuracy over a fixed time interval, hence measuring an odometry drift. Since a map
provides a reference, the localization system suppresses any long-term odometry drift, as will
be clear from evaluation figures in the following sections. RPE can be used to evaluate a

http://mrs.felk.cvut.cz/theses/petracek2019
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Specification Symbol Value

Map Resolution - 10 cm

MCL Motion model ǫ0, ǫ1, ǫ2, ǫ3, ǫ4, ǫ5, ǫ6 0.01, 0.5, 0.6, 0.8,
0.7, 0.7, 0.4

Observation model σhit, λshort, νhit, Summarized in Table 5.1
νshort, νmax, νrand

Augmented-MCL αslow, αfast 0.1, 0.85
KLD-sampling z1−δ, ǫ 2.327, 0.035
Hypotheses count M dynamic
Sampling limits zδlim 0.150m

- Takeoff
Mmin,Mmax,Mglobal,Mlocal

500, 5000, 0.4M , 0.05M
- Uncertain 300, 3000, 0.2M , 0.05M
- Certain 150, 1500, dynamic, 0.05M

ICP Termination criteria
- Max iterations - 5
- MSE threshold ǫicp 0.2m

Scan aggregation time - 200ms
Selection plane offset d1, d2 0.15m, −0.15m

LKF Observation noise
- MCL Sx, Sy, Sz, SΨ 1e−2m, 1e−2m,

1e−2m, 1e−2 rad

- ICP Sx, Sy, Sz, SΨ 8e−4m, 8e−4m,
5e−3m, 8e−4 rad

Process noise Qx, Qy, Qz, QΨ 5e−5m, 5e−5m,
5e−5m, 8e−5 rad

Table 6.1: Parameters of the localization system for simulation and real experiments presented
in Chapter 6 and Chapter 7

global error of a trajectory by averaging over all possible time intervals. Besides, ATE and
RPE are correlated metrics and usage of both of them is redundant.

The simplest quality estimate of a localization history (trajectory) provides Root Mean
Square Error defined as

RMSE(~x1:K) =

√∑K
k=1

(~x ∗
k − ~xk)2

K
, (6.1)

where K represents total number of discrete time steps, ~xk localization state estimate and
~x ∗
k ground truth state at time step k. RMSE measures error between two samples at a given

time. The Absolute Trajectory Error quantifies global consistency and like RMSE directly
measures the error between two samples at a given time, however firstly aligns the true and
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estimated trajectories. The ATE alignment is achieved in a closed form by singular value
decomposition, whose implementation is adopted from [76]. According to [77], the ATE of a
trajectory at time step k can be computed as

ATE(~xk) = (~x ∗
k )

−1S ~xk, (6.2)

where S is a rigid body transformation that maps estimated trajectory ~x1:K onto the ground
truth trajectory ~x ∗

1:K . To evaluate the metric, RMSE of ATE is then computed over all time
indices as

RMSE(~x1:K) =

√∑K
k=1

ATE(~xk)2

K
. (6.3)

6.2 Simulation

A realistic simulator Gazebo1 [78] is employed due to its convenient integration with
ROS2 framework [79], which is used for the system implementation. In the simulator, identical
UAV controllers and sensors are simulated, including control and sensor noise, as used for real
robots. This utilization provides easy transfer from the simulation environment onto a real
UAV without considerable effort. Furthermore, the simulation environment provides ground
truth data used for evaluation of the system, which is hard to obtain in the real world,
especially for challenging localization task in indoor environments. Gazebo simulator reflects
the real world as close as possible, although it never truly expresses all factors of reality, such
as influence of an environment (aerodynamic feedback), wind turbulence, propeller vibrations,
etc.

The simulation validates feasibility of the localization system for deployment of a real
UAV platform. It also assists with development of a reliable and robust system together with
its integration into a position feedback of autonomous UAV control. Hence, to manifest the
reality as close as possible, a point cloud captured in Church of St. Mary Magdalene, presented
in Chapter 4, is converted into a mesh model and integrated into Gazebo simulator, as shown
in Figure 6.1a. In the picture, roof and part of the outside wall of the model are visually
hidden to provide a clear view on interiors of the simulation world. This model is used for the
simulations throughout this section.

During development of the system, multiple simulation experiments with varying hori-
zontal and vertical velocities of the UAV were performed. Several trajectories were generated
and used for verification and validation of the localization system. Six experiments are pre-
sented to demonstrate the localization system performance. Linear and angular velocities
of the UAV in most of the experiments are 0.5m s−1, and 0.5 rad s−1 respectively, which is
planned to be used as limits during real missions in historical buildings for safety reasons.
The localization system is running online during the simulation experiments and no offline
post-processing is performed in the same way as during a real deployment. A position control
feedback from the state estimation is not established in this section, and the UAV is flying
according to simulated GNSS. The experiments are summarized by the following list.

1Gazebo 9.0, http://gazebosim.org/
2ROS Melodic, http://www.ros.org/

http://gazebosim.org/
http://www.ros.org/


68 Chapter 6. Experimental Verification

(a) Mesh model of Church of St. Mary Mag-
dalene in Chlumı́n

(b) Detail of a UAV platform used for simu-
lations

Figure 6.1: A testing world and a UAV model in Gazebo simulator

• Figure 6.2: Localization system convergence during UAV takeoff. The figure demon-
strates that the convergence time of MCL was approx. 9 s after takeoff. After that, the
global estimate triggered local refinement by ICP, as visible at the z-axis figure.

• Figure 6.3: Oscillations of position reference in vertical plane by ±1m demonstrating
vertical movement tracking with absence of long-term lateral and heading drifts.

• Figure 6.4: Reference position changes in each direction with static heading demonstrat-
ing state tracking in 3D space. The presented trajectory visits several diagonal positions
with respect to an initial pose of the UAV with 1m distance in each axis.

• Figure 6.5: Heading rotation of 360◦ demonstrating performance during orientation
changes.

• Figure 6.6: Circular trajectory in XY plane with center-oriented heading of the vehicle.

• Figure 6.7: Circular trajectory with 2m s−1 horizontal velocity of the vehicle. The ex-
periment demonstrates system performance for higher velocities, where roll and pitch
angles, that are assumed to be close to zero during slow flights, can no longer be ne-
glected. The influence of vehicle dynamics is particularly visible at z-axis figure.

Three of the presented experiments – diagonal references and both circular trajectories
– are visualized in Figure 6.8. The figure visually compares the final LKF state estimate
and ground truth position with respect to a map. Table 6.2 specifies MCL, ICP, and LKF
state estimate accuracy during each of the experiments. The presented simulations show
the performance of the system in scenarios with various complexity. In each experiment,
the system is capable of estimating and following state changes with precision specified in
Table 6.2. The experiments show, that the final state estimation update rate depends on
data size, maximal number of iterations and desired accuracy of ICP algorithm. During the
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simulation, the system provides state estimate at 10 to 15Hz. However, onboard a UAV, a
faster update rate can be achieved, since no simulation computation is required.
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Figure 6.2: Separate state variables during takeoff phase of a simulated UAV flight as estimated
by individual algorithms
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(b) Euclidean distance to the ground truth reference during the entire experiment
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Figure 6.3: Simulation verification of the localization system during 8min vertical oscillations
to demonstrate altitude tracking and long-term drift suppression in position and heading of
the UAV
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(a) State estimation for each state variable separately
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(b) Euclidean distance to the ground truth reference during the entire experiment

Figure 6.4: Simulation verification of the localization system for trajectory tracking with fixed
heading and simultaneous movement in each translational axis to demonstrate state tracking
in 3D space
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(c) Euclidean distance to the ground truth reference during the entire experiment

Figure 6.5: Verification of the localization system in a simulation with a fixed position and
360◦ rotation of the UAV to demonstrate tracking of heading changes
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Figure 6.6: Verification of the localization system in a simulation using a circular trajectory
with heading oriented into the center of the trajectory at 0.5m s−1 horizontal velocity
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Figure 6.7: Verification of the localization system in a simulation using a circular trajectory
with heading oriented into the center of the trajectory at 2m s−1 horizontal velocity
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Trajectory Vertical
Oscillations

Diagonal
Deviations

Yaw
Rotation

Circular with
Heading Change

max linear velocity [m s−1] 0.5 0.5 0.5 0.5 2.0

Figure Figure 6.3 Figure 6.4 Figure 6.5 Figure 6.6 Figure 6.7

ATE translation [m]

MCL 0.244 0.277 0.221 0.482 0.548
ICP 0.039 0.043 0.045 0.062 0.135
LKF 0.042 0.051 0.048 0.097 0.195

ATE heading [◦]

MCL 0.630 3.259 31.198 8.159 6.477
ICP 0.585 0.813 2.333 1.414 3.882
LKF 1.152 0.866 4.031 1.728 4.168

RMSE translation [m]

MCL 0.284 0.346 0.233 0.566 0.730
ICP 0.061 0.063 0.050 0.094 0.241
LKF 0.167 0.067 0.050 0.127 0.320

RMSE heading [◦]

MCL 0.630 0.863 7.117 1.952 5.631
ICP 0.582 0.810 2.333 1.616 4.267
LKF 0.579 0.809 2.049 1.601 4.277

max translation error [m]

MCL 0.649 0.623 0.395 1.512 2.075
ICP 0.154 0.226 0.504 0.232 0.446
LKF 0.167 0.156 0.356 0.336 0.686

max heading error [◦]

MCL 2.269 3.324 31.746 8.813 16.280
ICP 1.547 3.306 12.157 4.017 8.637
LKF 1.540 3.307 11.232 3.972 8.598

Table 6.2: Summary of the state estimate accuracy for MCL, ICP and LKF during simulations,
where LKF yields the final system state estimate
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(a) Static heading with position changes in each direction presented in Figure 6.4

(b) Circular trajectory with center-oriented heading and velocity 0.5m s−1 presented in Figure 6.6

(c) Circular trajectory with center-oriented heading and velocity 2m s−1 presented in Figure 6.7

Figure 6.8: Simulation verification – 3D position trajectories visualization (yellow: ground
truth, red: final state estimate)
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6.3 Ground Truth Dataset

In Section 4.1, mapping of Church of St. Mary Magdalene in Chlumı́n with multistation
Leica Nova MS60 was described. Here in Section 6.3, usage of total/multi stations Leica Nova
MS60 and Leica Viva TS16 for tracking of a UAV movement during a UAV flight is introduced.
Equipping the UAV with a reflector (glass prism with a special coating on the reflective
surfaces [80]), a station is able to lock and track the reflector in 3D space. Particularly, the
UAV is equipped with Leica GRZ101 360◦ Mini Prism reflector characterized by properties
in Table 6.3. The onboard mounting is shown in Figure 6.9. Due to the lightweight and small
dimensions of the reflector, the stations provide only the 3D position of the reflector relative
to a coordinate system of the station. The tracking of a target is handled by Automatic
Target Recognition (ATR) system, which locks and tracks the reflector target. During short
occlusions between a station and the target, a predicted trajectory of the target is followed to
be able to focus back once the occlusions disappear. A different UAV platform with identical
sensory equipment was employed during the presented deployment, because the proposed
hardware platform in Chapter 2 was not prepared for deployment at the time.

Height Diameter Weight Point
Accuracy

3D Translation 3D Rotation

30mm 28mm <30 g ±1.5mm Yes No

Table 6.3: Parameters of Leica GRZ101 360◦ Mini Prism reflector

(a) Airborne photo of the UAV (b) Detail of the reflector

Figure 6.9: UAV mounted with onboard sensors and Leica GRZ101 Mini Prism during a
manual flight, where a localization dataset with 3D translation was collected

In Figure 6.10, two snapshots of a manual flight with a UAV carrying the Leica GRZ101
360◦ Mini Prism tracked by both stations are shown. Requirements of the ATR system in the
context of UAV tracking can be summarized by the following list:

• clear view from a station to the target,
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• no extremely steep angles between UAV and the stations (constraint on maximal al-
titude based on a distance between UAV and the stations, which is limited in indoor
environments),

• slow aerial movement to prevent loss of target track, and

• no large nonlinear movements during short occlusions.

During multiple manual flights in Church of St. Mary Magdalene, both stations were
capable to some extent track the UAV and report its 3D position at a frequency of 5Hz.
Distance between the UAV and both stations was varying from 5 to 30m with altitude of
the UAV varying from 0 to 15m. As the UAV was controlled manually by a human operator,
some of the maneuvers lack smoothness in both, position and velocity. Also, the legs of the
UAV repeatedly intercepted the visual trajectory between stations and the reflector resulting
in short period occlusions. In these situations, target reference got frequently lost and no
data were coming from any of the stations. Hence, the data further used as a ground truth
reference contain short time period outages as the stations initialized re-locking procedure.
Due to fewer tracking outages for multistation Leica Nova MS60, its data were adopted as
the ground truth translation reference.

Coordinate system of the map exactly matched coordinate systems of the stations. How-
ever, time synchronization between the UAV and stations was unfortunately not provided and
data obtained by the stations had to be manually synchronized with data acquired onboard
the UAV. Since the ground truth position data rate is 5Hz, the synchronization process in-
troduces maximal time error of 200ms, which for a UAV with velocity of 1m s−1 results to
an accuracy of 0.2m. Additionally, to cope with lack of reference rotation, a rotation for each
translation sample was determined by ICP algorithm described in Section 5.3. This step was
performed offline with parameters of ICP preset to obtain as accurate rotation estimate as
possible.

Figure 6.10: Demonstration of automatic tracking of a prism reflector mounted onboard a
UAV by the Leica stations. The red lines are added to the picture to highlight the stations’
laser beams measuring distance to the onboard reflector.
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6.4 Verification on Real Data

In this section, a set of experiments is evaluated on real-world data described in Sec-
tion 6.3. From multiple manual flights tracked by an outer reference system, three particular
trajectories are presented. The helicopter, equipped with all the presented sensors as shown
in Figure 6.9a, was operated manually. Due to the manual operation, the velocities of the
helicopter during the experiments vary according to the header of Table 6.4. Each presented
experiment was operated in parts of the map with enough reference data, as the proposed
approach is based on map registration procedures.

In Table 6.4, the quantitative analysis of the proposed localization system on real data
is presented for MCL, ICP, and LKF state estimation separately. The presented experimental
verification shows the performance of the system similar to the simulation verification in
Section 6.2. In each experiment, the system is capable of state estimation and its following
during the UAV movement. The three presented offline evaluations on experimental data
are summarized by the following list. The resulting state estimation history during each
evaluation on experimental data, together with position ground truth, is embedded within a
map in Figure 6.14.

• Figure 6.11: First experimental flight contains oscillations of the UAV altitude and
small heading changes. The visual trajectory between the total station and the onboard
tracked reflector was occluded at times around 15 s, 30 s and 35 s, leading to lack of
ground truth data at these particular time periods.

• Figure 6.12: Second experimental flight contains the takeoff phase of the flight. It shows
the convergence of the MCL into the global optimum and initialization of the ICP
procedure at altitude of approx. 2.3m. The experiment also shows capabilities to track
the lateral motion of a UAV.

• Figure 6.13: Third experimental flight shows drawbacks of the MCL global estimation.
During the experiment, the MCL state estimation update rate is 2.2Hz on average.
Such a low rate leads to loss of the tracking capabilities during quick state changes.
Particularly at the time around 22 s, motion of the vehicle accelerated in each axis,
leading to a velocity peak and loss of tracking capabilities of MCL state estimation.

The quantitative analysis of the localization system, given in Table 6.4, shows estimation
accuracy with translational RMSE less than 0.25m during each experiment. The experiments
also show minimal delay and smoothness of the final state tracking estimate. Both of these
parameters are important for deployment onto a real UAV platform since both could desta-
bilize control of the UAV. In conclusion, the proposed localization system proved to be a
reliable and robust source with sufficient precision of the position estimate.
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Figure 6.11: Experimental verification of the localization system during a manual flight.
Ground truth reference is interrupted around 15 s, 30 s and 35 s due to visual occlusions
between a total station and the tracked target.
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Figure 6.12: Experimental verification of the localization system during second manual flight.
The verification contains takeoff phase of the flight, where MCL estimation convergence and
ICP procedure initialization is visible at altitude of approx. 2.3m.
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Figure 6.13: Experimental verification of the localization system during third manual flight.
The experiment contains losses of the global MCL estimation due to low update rate of the
algorithm and fast motion of the UAV.
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Trajectory Experiment 1 Experiment 2 Experiment 3
length [m] 45.812 24.055 21.163

avg linear velocity [m s−1] 0.485 0.361 0.505
max linear velocity [m s−1] 2.294 1.586 1.734

Figure Figure 6.11 Figure 6.12 Figure 6.13

ATE translation [m]

MCL 0.476 0.407 0.946
ICP 0.108 0.091 0.214
LKF 0.108 0.168 0.214

ATE heading [◦]

MCL 0.069 3.595 21.605
ICP 2.494 2.388 2.770
LKF 3.353 2.395 2.750

RMSE translation [m]

MCL 0.419 0.440 0.946
ICP 0.143 0.117 0.234
LKF 0.140 0.179 0.230

RMSE heading [◦]

MCL 3.411 3.193 21.159
ICP 2.483 6.791 2.739
LKF 2.460 2.381 2.747

max translation error [m]

MCL 1.248 0.920 2.881
ICP 0.573 0.271 0.765
LKF 0.522 0.385 0.594

max heading error [◦]

MCL 8.184 9.105 87.135
ICP 6.962 6.791 11.331
LKF 6.928 6.807 11.302

Table 6.4: Summary of the state estimate accuracy for MCL, ICP and LKF during experi-
mental verification during manual flights in Church of St. Mary Magdalene in Chlumı́n. LKF
estimate yields the final system state estimate. Due to the ground truth reference interrupts,
specified in Section 6.3, maximal errors are calculated from data with available ground truth
reference only.
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(a) First experimental flight presented in Figure 6.11

(b) Second experimental flight presented in Figure 6.12

(c) Third experimental flight presented in Figure 6.13

Figure 6.14: Verification on real data – 3D position trajectories visualization (yellow: ground
truth, red: final state estimate)



Chapter 7: Position Control

Suitability of the presented localization system for deployment into a UAV position con-
trol feedback is herein discussed. This chapter is also complemented by multimedia materials
available at http://mrs.felk.cvut.cz/theses/petracek2019. The localization system is
integrated into the UAV control pipeline developed in the Multi-Robot Systems group1. The
control pipeline is depicted in Figure 7.1, which extends the system architecture from Fig-
ure 3.3 by detailed overview of the Act component. A mission planner provides a reference
setpoint for the model predictive controller (MPC) in the MPC tracker [36]. The MPC tracker
outputs position, velocity and acceleration commands at 100Hz handled by the non-linear
SO(3) controller. The SO(3) controller outputs optimal angular velocities and thrust com-
mands for an embedded attitude controller responsible for maintaining the desired attitude.
Detailed description of the control system can be found in [35, 36].

The position feedback integration is verified exclusively in the simulation environment,
which was introduced in Section 6.2. Control feedback from the state estimation module to
the MPC tracker and non-linear SO(3) state feedback controller is established. In order to
obtain a 6 degrees-of-freedom pose estimate, the state observer module concatenates the 3D
position and the heading from the state estimate presented in Chapter 5, and tilt angles
roll and pitch from the attitude controller. The proposed UAV platform is equipped with
the PX4 stack running on Pixhawk attitude controller [81], although the UAV controllers
are independent on type of the utilized flight controller. Supplying exclusively the position
estimation to the SO(3) controller yielded slow and oscillatory response of the system. Hence,
the UAV velocities are provided back from the autopilot to the SO(3) controller to improve
the trajectory tracking system performance.

To verify the functionality of the position control loop, three experiments are presented.
First in Figure 7.2a, multiple lateral reference setpoints are given to the MPC tracker. Second
in Figure 7.2b, the trajectory follows the same lateral reference setpoints, although it oscillates
in altitude and heading of the UAV. In both simulations, the references are successfully
followed by the UAV showing the capabilities of the system to supply precise and reliable
feedback information utilized for position control of the UAV. Third in Figure 7.2c, the desired
reference is a circular trajectory over a set of obstacles (church benches) with the heading
of the UAV oriented into the center of the trajectory. Likewise, the experiment proves the
position control feedback functionality.

The constraints of precise and slow UAV dynamics slow down the response of the control
system, as specifically evident in Figure 7.2c. Appropriate parameters (position and velocity
gains) of the control system with the proposed system in the feedback loop can be tuned for
faster response of the trajectory tracking.

1Czech Technical University in Prague, Faculty of Electrical Engineering

http://mrs.felk.cvut.cz/theses/petracek2019
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Mission
Planner

MPC
Tracker

SO(3)
Controller

Attitude
Controller

Autopilot

Actuators

State
Observer

~vk, ~ωk, ~Ωk
~qk

~qk, ~vk, ~ωk

mk, ~yk

Figure 7.1: Diagram of the control pipeline of a UAV with detailed description of the Act
component from Figure 3.3. At time step k, inputs of the state observer are a map mk, sensors
observations ~yk, linear ~vk and angular ~ωk velocities of the UAV, and attitude ~Ωk of the UAV.
The output is the pose ~qk of the UAV, concatenated from a state estimate ~xk and tilt angles
roll and pitch given by ~Ωk. Apart from the pose of the UAV, the velocities estimated by the
autopilot are provided to the SO(3) controller to support the position control of the UAV.
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(b) Multiple reference setpoints tracking with oscillations in altitude and heading
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(c) Circular trajectory tracking with center-oriented heading

Figure 7.2: Separate state variables during simulations with the proposed localization system
integrated into the UAV position feedback of the Multi-Robot Systems group control pipeline
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Chapter 8: Conclusion

Contents
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In this thesis, a hardware and software solution of a specialized UAV platform was
developed for documentation of historical monuments without access to a global navigation
system. The application-tailored platform was designed, manufactured and already deployed
in documentation task of Church of St. Mary Magdalene in Chlumı́n. Furthermore, a self-
localization system in a priori generated map was developed. The system pipeline consists of
generating and processing of a map, processing of onboard sensory data, and fusion of IMU,
global Monte Carlo Localization and local Iterative Closest Point state estimation methods.
The proposed localization solution was successfully integrated into the UAV control system of
the Multi-Robot Systems group at FEE CTU. The accuracy of the system was verified in the
simulation environment and on real-flight data recorded during flights with a precise position
ground truth. The results show the capabilities to provide real-time state estimation with
position RMSE less than 25 cm. The state estimate was integrated into the position feedback
control loop of a UAV, which was tested in the simulation environment. Many experiments
have been conducted in realistic scenarios of a historical building demonstrating capabilities
of the system to precisely estimate state of the UAV in 3D space. The thesis is complemented
by multimedia materials available at http://mrs.felk.cvut.cz/theses/petracek2019.

The entire assignment of this thesis has been fulfilled successfully. According to the
assignment, the following tasks have been completed.

• Design, production and testing of a specialized UAV platform respecting requirements
for deployment in historical monuments was presented in Chapter 2.

• A method for stabilization and localization in a map without access to an external lo-
calization service was developed and implemented in Chapter 5. Methods for generating
of such map were described in Chapter 4.

• The proposed self-localization system was verified and validated in a realistic simulation
environment in Section 6.2 and on real-flight datasets labeled by a precise position
ground truth in Section 6.4.

• The proposed self-localization system was integrated into the closed-loop control pipeline
of the Multi-Robot Systems group and tested in a realistic simulation environment in
Chapter 7.

http://mrs.felk.cvut.cz/theses/petracek2019


90 Chapter 8. Conclusion

8.1 Future Work

Foremost, the UAV platform shall be complemented by a set of supporting vehicles
capable of self-localization and conveying of light with tilting capabilities.

During development of the localization system, several ideas improving its functionality
emerged. First, the generated maps by a terrestrial laser scanner contain large holes in the
resulting output data due to visual occlusions between scanning locations and a scanned
object. The system shall be complemented with map refinement mechanisms to fill these
openings from aerial data. Second, the state estimation mechanism shall be extended with
sequential scan matching to provide accurate velocity estimation. Third, dynamic obstacles
shall be introduced into the localization system to consider an influence of other agents during
a formation flight.

Regarding sources of state estimation, multiple other techniques shall be integrated
into the fusion of various localization sources. That includes mainly down- and front-oriented
optic-flow estimations useful in environments with appropriate lighting conditions and sparse
obstacle density.
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CD Content

Table 1 lists arrangement of all directories on the attached CD.

Directory name Description

thesis the thesis in pdf format
sources/thesis latex source codes
sources/indoor localization software source codes
media multimedia materials

Table 1: CD Content
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List of abbreviations

Table 2 lists abbreviations used in this thesis.

Abbreviation Meaning

UAV Unmanned Aerial Vehicle
FEE CTU Faculty of Electrical Engineering, Czech Technical University in Prague
MRS Multi-Robot Systems group at FEE CTU
LiDAR Light Detection and Ranging
ROS Robot Operating System
MBZIRC Mohamed Bin Zayed International Robotics Challenge
MPC Model Predictive Control
GNSS Global Navigation Satellite System
GPS Global Positioning System
ESC Electronic Speed Controller
LiPo Lithium-Polymer accumulator
PWM Pulse Width Modulation
FPV First Person View
FCU Flight Control Unit
IMU Inertial Measurement Unit
MLE Maximum Likelihood Estimate
ICP Iterative Closest Point
LKF Linear Kalman Filter
ODE Open Dynamics Engine
ATE Absolute Trajectory Error
RPE Relative Pose Error
ATR Automatic Target Recognition
MSE Mean Squared Error
RMSE Root Mean Squared Error

Table 2: Lists of abbreviations
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